1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*  D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
3 /*
4     Copyright (c) 2001, 2002 by D-Link Corporation
5     Written by Edward Peng.<edward_peng@dlink.com.tw>
6     Created 03-May-2001, base on Linux' sundance.c.
7 
8 */
9 
10 #include "dl2k.h"
11 #include <linux/dma-mapping.h>
12 
13 #define dw32(reg, val)	iowrite32(val, ioaddr + (reg))
14 #define dw16(reg, val)	iowrite16(val, ioaddr + (reg))
15 #define dw8(reg, val)	iowrite8(val, ioaddr + (reg))
16 #define dr32(reg)	ioread32(ioaddr + (reg))
17 #define dr16(reg)	ioread16(ioaddr + (reg))
18 #define dr8(reg)	ioread8(ioaddr + (reg))
19 
20 #define MAX_UNITS 8
21 static int mtu[MAX_UNITS];
22 static int vlan[MAX_UNITS];
23 static int jumbo[MAX_UNITS];
24 static char *media[MAX_UNITS];
25 static int tx_flow=-1;
26 static int rx_flow=-1;
27 static int copy_thresh;
28 static int rx_coalesce=10;	/* Rx frame count each interrupt */
29 static int rx_timeout=200;	/* Rx DMA wait time in 640ns increments */
30 static int tx_coalesce=16;	/* HW xmit count each TxDMAComplete */
31 
32 
33 MODULE_AUTHOR ("Edward Peng");
34 MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
35 MODULE_LICENSE("GPL");
36 module_param_array(mtu, int, NULL, 0);
37 module_param_array(media, charp, NULL, 0);
38 module_param_array(vlan, int, NULL, 0);
39 module_param_array(jumbo, int, NULL, 0);
40 module_param(tx_flow, int, 0);
41 module_param(rx_flow, int, 0);
42 module_param(copy_thresh, int, 0);
43 module_param(rx_coalesce, int, 0);	/* Rx frame count each interrupt */
44 module_param(rx_timeout, int, 0);	/* Rx DMA wait time in 64ns increments */
45 module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
46 
47 
48 /* Enable the default interrupts */
49 #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
50        UpdateStats | LinkEvent)
51 
dl2k_enable_int(struct netdev_private * np)52 static void dl2k_enable_int(struct netdev_private *np)
53 {
54 	void __iomem *ioaddr = np->ioaddr;
55 
56 	dw16(IntEnable, DEFAULT_INTR);
57 }
58 
59 static const int max_intrloop = 50;
60 static const int multicast_filter_limit = 0x40;
61 
62 static int rio_open (struct net_device *dev);
63 static void rio_timer (struct timer_list *t);
64 static void rio_tx_timeout (struct net_device *dev, unsigned int txqueue);
65 static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
66 static irqreturn_t rio_interrupt (int irq, void *dev_instance);
67 static void rio_free_tx (struct net_device *dev, int irq);
68 static void tx_error (struct net_device *dev, int tx_status);
69 static int receive_packet (struct net_device *dev);
70 static void rio_error (struct net_device *dev, int int_status);
71 static void set_multicast (struct net_device *dev);
72 static struct net_device_stats *get_stats (struct net_device *dev);
73 static int clear_stats (struct net_device *dev);
74 static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
75 static int rio_close (struct net_device *dev);
76 static int find_miiphy (struct net_device *dev);
77 static int parse_eeprom (struct net_device *dev);
78 static int read_eeprom (struct netdev_private *, int eep_addr);
79 static int mii_wait_link (struct net_device *dev, int wait);
80 static int mii_set_media (struct net_device *dev);
81 static int mii_get_media (struct net_device *dev);
82 static int mii_set_media_pcs (struct net_device *dev);
83 static int mii_get_media_pcs (struct net_device *dev);
84 static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
85 static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
86 		      u16 data);
87 
88 static const struct ethtool_ops ethtool_ops;
89 
90 static const struct net_device_ops netdev_ops = {
91 	.ndo_open		= rio_open,
92 	.ndo_start_xmit	= start_xmit,
93 	.ndo_stop		= rio_close,
94 	.ndo_get_stats		= get_stats,
95 	.ndo_validate_addr	= eth_validate_addr,
96 	.ndo_set_mac_address 	= eth_mac_addr,
97 	.ndo_set_rx_mode	= set_multicast,
98 	.ndo_eth_ioctl		= rio_ioctl,
99 	.ndo_tx_timeout		= rio_tx_timeout,
100 };
101 
102 static int
rio_probe1(struct pci_dev * pdev,const struct pci_device_id * ent)103 rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
104 {
105 	struct net_device *dev;
106 	struct netdev_private *np;
107 	static int card_idx;
108 	int chip_idx = ent->driver_data;
109 	int err, irq;
110 	void __iomem *ioaddr;
111 	void *ring_space;
112 	dma_addr_t ring_dma;
113 
114 	err = pci_enable_device (pdev);
115 	if (err)
116 		return err;
117 
118 	irq = pdev->irq;
119 	err = pci_request_regions (pdev, "dl2k");
120 	if (err)
121 		goto err_out_disable;
122 
123 	pci_set_master (pdev);
124 
125 	err = -ENOMEM;
126 
127 	dev = alloc_etherdev (sizeof (*np));
128 	if (!dev)
129 		goto err_out_res;
130 	SET_NETDEV_DEV(dev, &pdev->dev);
131 
132 	np = netdev_priv(dev);
133 
134 	/* IO registers range. */
135 	ioaddr = pci_iomap(pdev, 0, 0);
136 	if (!ioaddr)
137 		goto err_out_dev;
138 	np->eeprom_addr = ioaddr;
139 
140 #ifdef MEM_MAPPING
141 	/* MM registers range. */
142 	ioaddr = pci_iomap(pdev, 1, 0);
143 	if (!ioaddr)
144 		goto err_out_iounmap;
145 #endif
146 	np->ioaddr = ioaddr;
147 	np->chip_id = chip_idx;
148 	np->pdev = pdev;
149 	spin_lock_init (&np->tx_lock);
150 	spin_lock_init (&np->rx_lock);
151 
152 	/* Parse manual configuration */
153 	np->an_enable = 1;
154 	np->tx_coalesce = 1;
155 	if (card_idx < MAX_UNITS) {
156 		if (media[card_idx] != NULL) {
157 			np->an_enable = 0;
158 			if (strcmp (media[card_idx], "auto") == 0 ||
159 			    strcmp (media[card_idx], "autosense") == 0 ||
160 			    strcmp (media[card_idx], "0") == 0 ) {
161 				np->an_enable = 2;
162 			} else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
163 			    strcmp (media[card_idx], "4") == 0) {
164 				np->speed = 100;
165 				np->full_duplex = 1;
166 			} else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
167 				   strcmp (media[card_idx], "3") == 0) {
168 				np->speed = 100;
169 				np->full_duplex = 0;
170 			} else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
171 				   strcmp (media[card_idx], "2") == 0) {
172 				np->speed = 10;
173 				np->full_duplex = 1;
174 			} else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
175 				   strcmp (media[card_idx], "1") == 0) {
176 				np->speed = 10;
177 				np->full_duplex = 0;
178 			} else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
179 				 strcmp (media[card_idx], "6") == 0) {
180 				np->speed=1000;
181 				np->full_duplex=1;
182 			} else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
183 				 strcmp (media[card_idx], "5") == 0) {
184 				np->speed = 1000;
185 				np->full_duplex = 0;
186 			} else {
187 				np->an_enable = 1;
188 			}
189 		}
190 		if (jumbo[card_idx] != 0) {
191 			np->jumbo = 1;
192 			dev->mtu = MAX_JUMBO;
193 		} else {
194 			np->jumbo = 0;
195 			if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
196 				dev->mtu = mtu[card_idx];
197 		}
198 		np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
199 		    vlan[card_idx] : 0;
200 		if (rx_coalesce > 0 && rx_timeout > 0) {
201 			np->rx_coalesce = rx_coalesce;
202 			np->rx_timeout = rx_timeout;
203 			np->coalesce = 1;
204 		}
205 		np->tx_flow = (tx_flow == 0) ? 0 : 1;
206 		np->rx_flow = (rx_flow == 0) ? 0 : 1;
207 
208 		if (tx_coalesce < 1)
209 			tx_coalesce = 1;
210 		else if (tx_coalesce > TX_RING_SIZE-1)
211 			tx_coalesce = TX_RING_SIZE - 1;
212 	}
213 	dev->netdev_ops = &netdev_ops;
214 	dev->watchdog_timeo = TX_TIMEOUT;
215 	dev->ethtool_ops = &ethtool_ops;
216 #if 0
217 	dev->features = NETIF_F_IP_CSUM;
218 #endif
219 	/* MTU range: 68 - 1536 or 8000 */
220 	dev->min_mtu = ETH_MIN_MTU;
221 	dev->max_mtu = np->jumbo ? MAX_JUMBO : PACKET_SIZE;
222 
223 	pci_set_drvdata (pdev, dev);
224 
225 	ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
226 					GFP_KERNEL);
227 	if (!ring_space)
228 		goto err_out_iounmap;
229 	np->tx_ring = ring_space;
230 	np->tx_ring_dma = ring_dma;
231 
232 	ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
233 					GFP_KERNEL);
234 	if (!ring_space)
235 		goto err_out_unmap_tx;
236 	np->rx_ring = ring_space;
237 	np->rx_ring_dma = ring_dma;
238 
239 	/* Parse eeprom data */
240 	parse_eeprom (dev);
241 
242 	/* Find PHY address */
243 	err = find_miiphy (dev);
244 	if (err)
245 		goto err_out_unmap_rx;
246 
247 	/* Fiber device? */
248 	np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0;
249 	np->link_status = 0;
250 	/* Set media and reset PHY */
251 	if (np->phy_media) {
252 		/* default Auto-Negotiation for fiber deivices */
253 	 	if (np->an_enable == 2) {
254 			np->an_enable = 1;
255 		}
256 	} else {
257 		/* Auto-Negotiation is mandatory for 1000BASE-T,
258 		   IEEE 802.3ab Annex 28D page 14 */
259 		if (np->speed == 1000)
260 			np->an_enable = 1;
261 	}
262 
263 	err = register_netdev (dev);
264 	if (err)
265 		goto err_out_unmap_rx;
266 
267 	card_idx++;
268 
269 	printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
270 		dev->name, np->name, dev->dev_addr, irq);
271 	if (tx_coalesce > 1)
272 		printk(KERN_INFO "tx_coalesce:\t%d packets\n",
273 				tx_coalesce);
274 	if (np->coalesce)
275 		printk(KERN_INFO
276 		       "rx_coalesce:\t%d packets\n"
277 		       "rx_timeout: \t%d ns\n",
278 				np->rx_coalesce, np->rx_timeout*640);
279 	if (np->vlan)
280 		printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
281 	return 0;
282 
283 err_out_unmap_rx:
284 	dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
285 			  np->rx_ring_dma);
286 err_out_unmap_tx:
287 	dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
288 			  np->tx_ring_dma);
289 err_out_iounmap:
290 #ifdef MEM_MAPPING
291 	pci_iounmap(pdev, np->ioaddr);
292 #endif
293 	pci_iounmap(pdev, np->eeprom_addr);
294 err_out_dev:
295 	free_netdev (dev);
296 err_out_res:
297 	pci_release_regions (pdev);
298 err_out_disable:
299 	pci_disable_device (pdev);
300 	return err;
301 }
302 
303 static int
find_miiphy(struct net_device * dev)304 find_miiphy (struct net_device *dev)
305 {
306 	struct netdev_private *np = netdev_priv(dev);
307 	int i, phy_found = 0;
308 
309 	np->phy_addr = 1;
310 
311 	for (i = 31; i >= 0; i--) {
312 		int mii_status = mii_read (dev, i, 1);
313 		if (mii_status != 0xffff && mii_status != 0x0000) {
314 			np->phy_addr = i;
315 			phy_found++;
316 		}
317 	}
318 	if (!phy_found) {
319 		printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
320 		return -ENODEV;
321 	}
322 	return 0;
323 }
324 
325 static int
parse_eeprom(struct net_device * dev)326 parse_eeprom (struct net_device *dev)
327 {
328 	struct netdev_private *np = netdev_priv(dev);
329 	void __iomem *ioaddr = np->ioaddr;
330 	int i, j;
331 	u8 sromdata[256];
332 	u8 *psib;
333 	u32 crc;
334 	PSROM_t psrom = (PSROM_t) sromdata;
335 
336 	int cid, next;
337 
338 	for (i = 0; i < 128; i++)
339 		((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i));
340 
341 	if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) {	/* D-Link Only */
342 		/* Check CRC */
343 		crc = ~ether_crc_le (256 - 4, sromdata);
344 		if (psrom->crc != cpu_to_le32(crc)) {
345 			printk (KERN_ERR "%s: EEPROM data CRC error.\n",
346 					dev->name);
347 			return -1;
348 		}
349 	}
350 
351 	/* Set MAC address */
352 	eth_hw_addr_set(dev, psrom->mac_addr);
353 
354 	if (np->chip_id == CHIP_IP1000A) {
355 		np->led_mode = psrom->led_mode;
356 		return 0;
357 	}
358 
359 	if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
360 		return 0;
361 	}
362 
363 	/* Parse Software Information Block */
364 	i = 0x30;
365 	psib = (u8 *) sromdata;
366 	do {
367 		cid = psib[i++];
368 		next = psib[i++];
369 		if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
370 			printk (KERN_ERR "Cell data error\n");
371 			return -1;
372 		}
373 		switch (cid) {
374 		case 0:	/* Format version */
375 			break;
376 		case 1:	/* End of cell */
377 			return 0;
378 		case 2:	/* Duplex Polarity */
379 			np->duplex_polarity = psib[i];
380 			dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]);
381 			break;
382 		case 3:	/* Wake Polarity */
383 			np->wake_polarity = psib[i];
384 			break;
385 		case 9:	/* Adapter description */
386 			j = (next - i > 255) ? 255 : next - i;
387 			memcpy (np->name, &(psib[i]), j);
388 			break;
389 		case 4:
390 		case 5:
391 		case 6:
392 		case 7:
393 		case 8:	/* Reversed */
394 			break;
395 		default:	/* Unknown cell */
396 			return -1;
397 		}
398 		i = next;
399 	} while (1);
400 
401 	return 0;
402 }
403 
rio_set_led_mode(struct net_device * dev)404 static void rio_set_led_mode(struct net_device *dev)
405 {
406 	struct netdev_private *np = netdev_priv(dev);
407 	void __iomem *ioaddr = np->ioaddr;
408 	u32 mode;
409 
410 	if (np->chip_id != CHIP_IP1000A)
411 		return;
412 
413 	mode = dr32(ASICCtrl);
414 	mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
415 
416 	if (np->led_mode & 0x01)
417 		mode |= IPG_AC_LED_MODE;
418 	if (np->led_mode & 0x02)
419 		mode |= IPG_AC_LED_MODE_BIT_1;
420 	if (np->led_mode & 0x08)
421 		mode |= IPG_AC_LED_SPEED;
422 
423 	dw32(ASICCtrl, mode);
424 }
425 
desc_to_dma(struct netdev_desc * desc)426 static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
427 {
428 	return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
429 }
430 
free_list(struct net_device * dev)431 static void free_list(struct net_device *dev)
432 {
433 	struct netdev_private *np = netdev_priv(dev);
434 	struct sk_buff *skb;
435 	int i;
436 
437 	/* Free all the skbuffs in the queue. */
438 	for (i = 0; i < RX_RING_SIZE; i++) {
439 		skb = np->rx_skbuff[i];
440 		if (skb) {
441 			dma_unmap_single(&np->pdev->dev,
442 					 desc_to_dma(&np->rx_ring[i]),
443 					 skb->len, DMA_FROM_DEVICE);
444 			dev_kfree_skb(skb);
445 			np->rx_skbuff[i] = NULL;
446 		}
447 		np->rx_ring[i].status = 0;
448 		np->rx_ring[i].fraginfo = 0;
449 	}
450 	for (i = 0; i < TX_RING_SIZE; i++) {
451 		skb = np->tx_skbuff[i];
452 		if (skb) {
453 			dma_unmap_single(&np->pdev->dev,
454 					 desc_to_dma(&np->tx_ring[i]),
455 					 skb->len, DMA_TO_DEVICE);
456 			dev_kfree_skb(skb);
457 			np->tx_skbuff[i] = NULL;
458 		}
459 	}
460 }
461 
rio_reset_ring(struct netdev_private * np)462 static void rio_reset_ring(struct netdev_private *np)
463 {
464 	int i;
465 
466 	np->cur_rx = 0;
467 	np->cur_tx = 0;
468 	np->old_rx = 0;
469 	np->old_tx = 0;
470 
471 	for (i = 0; i < TX_RING_SIZE; i++)
472 		np->tx_ring[i].status = cpu_to_le64(TFDDone);
473 
474 	for (i = 0; i < RX_RING_SIZE; i++)
475 		np->rx_ring[i].status = 0;
476 }
477 
478  /* allocate and initialize Tx and Rx descriptors */
alloc_list(struct net_device * dev)479 static int alloc_list(struct net_device *dev)
480 {
481 	struct netdev_private *np = netdev_priv(dev);
482 	int i;
483 
484 	rio_reset_ring(np);
485 	np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
486 
487 	/* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
488 	for (i = 0; i < TX_RING_SIZE; i++) {
489 		np->tx_skbuff[i] = NULL;
490 		np->tx_ring[i].next_desc = cpu_to_le64(np->tx_ring_dma +
491 					      ((i + 1) % TX_RING_SIZE) *
492 					      sizeof(struct netdev_desc));
493 	}
494 
495 	/* Initialize Rx descriptors & allocate buffers */
496 	for (i = 0; i < RX_RING_SIZE; i++) {
497 		/* Allocated fixed size of skbuff */
498 		struct sk_buff *skb;
499 
500 		skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
501 		np->rx_skbuff[i] = skb;
502 		if (!skb) {
503 			free_list(dev);
504 			return -ENOMEM;
505 		}
506 
507 		np->rx_ring[i].next_desc = cpu_to_le64(np->rx_ring_dma +
508 						((i + 1) % RX_RING_SIZE) *
509 						sizeof(struct netdev_desc));
510 		/* Rubicon now supports 40 bits of addressing space. */
511 		np->rx_ring[i].fraginfo =
512 		    cpu_to_le64(dma_map_single(&np->pdev->dev, skb->data,
513 					       np->rx_buf_sz, DMA_FROM_DEVICE));
514 		np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
515 	}
516 
517 	return 0;
518 }
519 
rio_hw_init(struct net_device * dev)520 static void rio_hw_init(struct net_device *dev)
521 {
522 	struct netdev_private *np = netdev_priv(dev);
523 	void __iomem *ioaddr = np->ioaddr;
524 	int i;
525 	u16 macctrl;
526 
527 	/* Reset all logic functions */
528 	dw16(ASICCtrl + 2,
529 	     GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset);
530 	mdelay(10);
531 
532 	rio_set_led_mode(dev);
533 
534 	/* DebugCtrl bit 4, 5, 9 must set */
535 	dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230);
536 
537 	if (np->chip_id == CHIP_IP1000A &&
538 	    (np->pdev->revision == 0x40 || np->pdev->revision == 0x41)) {
539 		/* PHY magic taken from ipg driver, undocumented registers */
540 		mii_write(dev, np->phy_addr, 31, 0x0001);
541 		mii_write(dev, np->phy_addr, 27, 0x01e0);
542 		mii_write(dev, np->phy_addr, 31, 0x0002);
543 		mii_write(dev, np->phy_addr, 27, 0xeb8e);
544 		mii_write(dev, np->phy_addr, 31, 0x0000);
545 		mii_write(dev, np->phy_addr, 30, 0x005e);
546 		/* advertise 1000BASE-T half & full duplex, prefer MASTER */
547 		mii_write(dev, np->phy_addr, MII_CTRL1000, 0x0700);
548 	}
549 
550 	if (np->phy_media)
551 		mii_set_media_pcs(dev);
552 	else
553 		mii_set_media(dev);
554 
555 	/* Jumbo frame */
556 	if (np->jumbo != 0)
557 		dw16(MaxFrameSize, MAX_JUMBO+14);
558 
559 	/* Set RFDListPtr */
560 	dw32(RFDListPtr0, np->rx_ring_dma);
561 	dw32(RFDListPtr1, 0);
562 
563 	/* Set station address */
564 	/* 16 or 32-bit access is required by TC9020 datasheet but 8-bit works
565 	 * too. However, it doesn't work on IP1000A so we use 16-bit access.
566 	 */
567 	for (i = 0; i < 3; i++)
568 		dw16(StationAddr0 + 2 * i,
569 		     cpu_to_le16(((const u16 *)dev->dev_addr)[i]));
570 
571 	set_multicast (dev);
572 	if (np->coalesce) {
573 		dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16);
574 	}
575 	/* Set RIO to poll every N*320nsec. */
576 	dw8(RxDMAPollPeriod, 0x20);
577 	dw8(TxDMAPollPeriod, 0xff);
578 	dw8(RxDMABurstThresh, 0x30);
579 	dw8(RxDMAUrgentThresh, 0x30);
580 	dw32(RmonStatMask, 0x0007ffff);
581 	/* clear statistics */
582 	clear_stats (dev);
583 
584 	/* VLAN supported */
585 	if (np->vlan) {
586 		/* priority field in RxDMAIntCtrl  */
587 		dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10);
588 		/* VLANId */
589 		dw16(VLANId, np->vlan);
590 		/* Length/Type should be 0x8100 */
591 		dw32(VLANTag, 0x8100 << 16 | np->vlan);
592 		/* Enable AutoVLANuntagging, but disable AutoVLANtagging.
593 		   VLAN information tagged by TFC' VID, CFI fields. */
594 		dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging);
595 	}
596 
597 	/* Start Tx/Rx */
598 	dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable);
599 
600 	macctrl = 0;
601 	macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
602 	macctrl |= (np->full_duplex) ? DuplexSelect : 0;
603 	macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
604 	macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
605 	dw16(MACCtrl, macctrl);
606 }
607 
rio_hw_stop(struct net_device * dev)608 static void rio_hw_stop(struct net_device *dev)
609 {
610 	struct netdev_private *np = netdev_priv(dev);
611 	void __iomem *ioaddr = np->ioaddr;
612 
613 	/* Disable interrupts */
614 	dw16(IntEnable, 0);
615 
616 	/* Stop Tx and Rx logics */
617 	dw32(MACCtrl, TxDisable | RxDisable | StatsDisable);
618 }
619 
rio_open(struct net_device * dev)620 static int rio_open(struct net_device *dev)
621 {
622 	struct netdev_private *np = netdev_priv(dev);
623 	const int irq = np->pdev->irq;
624 	int i;
625 
626 	i = alloc_list(dev);
627 	if (i)
628 		return i;
629 
630 	rio_hw_init(dev);
631 
632 	i = request_irq(irq, rio_interrupt, IRQF_SHARED, dev->name, dev);
633 	if (i) {
634 		rio_hw_stop(dev);
635 		free_list(dev);
636 		return i;
637 	}
638 
639 	timer_setup(&np->timer, rio_timer, 0);
640 	np->timer.expires = jiffies + 1 * HZ;
641 	add_timer(&np->timer);
642 
643 	netif_start_queue (dev);
644 
645 	dl2k_enable_int(np);
646 	return 0;
647 }
648 
649 static void
rio_timer(struct timer_list * t)650 rio_timer (struct timer_list *t)
651 {
652 	struct netdev_private *np = from_timer(np, t, timer);
653 	struct net_device *dev = pci_get_drvdata(np->pdev);
654 	unsigned int entry;
655 	int next_tick = 1*HZ;
656 	unsigned long flags;
657 
658 	spin_lock_irqsave(&np->rx_lock, flags);
659 	/* Recover rx ring exhausted error */
660 	if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
661 		printk(KERN_INFO "Try to recover rx ring exhausted...\n");
662 		/* Re-allocate skbuffs to fill the descriptor ring */
663 		for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
664 			struct sk_buff *skb;
665 			entry = np->old_rx % RX_RING_SIZE;
666 			/* Dropped packets don't need to re-allocate */
667 			if (np->rx_skbuff[entry] == NULL) {
668 				skb = netdev_alloc_skb_ip_align(dev,
669 								np->rx_buf_sz);
670 				if (skb == NULL) {
671 					np->rx_ring[entry].fraginfo = 0;
672 					printk (KERN_INFO
673 						"%s: Still unable to re-allocate Rx skbuff.#%d\n",
674 						dev->name, entry);
675 					break;
676 				}
677 				np->rx_skbuff[entry] = skb;
678 				np->rx_ring[entry].fraginfo =
679 				    cpu_to_le64 (dma_map_single(&np->pdev->dev, skb->data,
680 								np->rx_buf_sz, DMA_FROM_DEVICE));
681 			}
682 			np->rx_ring[entry].fraginfo |=
683 			    cpu_to_le64((u64)np->rx_buf_sz << 48);
684 			np->rx_ring[entry].status = 0;
685 		} /* end for */
686 	} /* end if */
687 	spin_unlock_irqrestore (&np->rx_lock, flags);
688 	np->timer.expires = jiffies + next_tick;
689 	add_timer(&np->timer);
690 }
691 
692 static void
rio_tx_timeout(struct net_device * dev,unsigned int txqueue)693 rio_tx_timeout (struct net_device *dev, unsigned int txqueue)
694 {
695 	struct netdev_private *np = netdev_priv(dev);
696 	void __iomem *ioaddr = np->ioaddr;
697 
698 	printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
699 		dev->name, dr32(TxStatus));
700 	rio_free_tx(dev, 0);
701 	dev->if_port = 0;
702 	netif_trans_update(dev); /* prevent tx timeout */
703 }
704 
705 static netdev_tx_t
start_xmit(struct sk_buff * skb,struct net_device * dev)706 start_xmit (struct sk_buff *skb, struct net_device *dev)
707 {
708 	struct netdev_private *np = netdev_priv(dev);
709 	void __iomem *ioaddr = np->ioaddr;
710 	struct netdev_desc *txdesc;
711 	unsigned entry;
712 	u64 tfc_vlan_tag = 0;
713 
714 	if (np->link_status == 0) {	/* Link Down */
715 		dev_kfree_skb(skb);
716 		return NETDEV_TX_OK;
717 	}
718 	entry = np->cur_tx % TX_RING_SIZE;
719 	np->tx_skbuff[entry] = skb;
720 	txdesc = &np->tx_ring[entry];
721 
722 #if 0
723 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
724 		txdesc->status |=
725 		    cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
726 				 IPChecksumEnable);
727 	}
728 #endif
729 	if (np->vlan) {
730 		tfc_vlan_tag = VLANTagInsert |
731 		    ((u64)np->vlan << 32) |
732 		    ((u64)skb->priority << 45);
733 	}
734 	txdesc->fraginfo = cpu_to_le64 (dma_map_single(&np->pdev->dev, skb->data,
735 						       skb->len, DMA_TO_DEVICE));
736 	txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
737 
738 	/* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
739 	 * Work around: Always use 1 descriptor in 10Mbps mode */
740 	if (entry % np->tx_coalesce == 0 || np->speed == 10)
741 		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
742 					      WordAlignDisable |
743 					      TxDMAIndicate |
744 					      (1 << FragCountShift));
745 	else
746 		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
747 					      WordAlignDisable |
748 					      (1 << FragCountShift));
749 
750 	/* TxDMAPollNow */
751 	dw32(DMACtrl, dr32(DMACtrl) | 0x00001000);
752 	/* Schedule ISR */
753 	dw32(CountDown, 10000);
754 	np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
755 	if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
756 			< TX_QUEUE_LEN - 1 && np->speed != 10) {
757 		/* do nothing */
758 	} else if (!netif_queue_stopped(dev)) {
759 		netif_stop_queue (dev);
760 	}
761 
762 	/* The first TFDListPtr */
763 	if (!dr32(TFDListPtr0)) {
764 		dw32(TFDListPtr0, np->tx_ring_dma +
765 		     entry * sizeof (struct netdev_desc));
766 		dw32(TFDListPtr1, 0);
767 	}
768 
769 	return NETDEV_TX_OK;
770 }
771 
772 static irqreturn_t
rio_interrupt(int irq,void * dev_instance)773 rio_interrupt (int irq, void *dev_instance)
774 {
775 	struct net_device *dev = dev_instance;
776 	struct netdev_private *np = netdev_priv(dev);
777 	void __iomem *ioaddr = np->ioaddr;
778 	unsigned int_status;
779 	int cnt = max_intrloop;
780 	int handled = 0;
781 
782 	while (1) {
783 		int_status = dr16(IntStatus);
784 		dw16(IntStatus, int_status);
785 		int_status &= DEFAULT_INTR;
786 		if (int_status == 0 || --cnt < 0)
787 			break;
788 		handled = 1;
789 		/* Processing received packets */
790 		if (int_status & RxDMAComplete)
791 			receive_packet (dev);
792 		/* TxDMAComplete interrupt */
793 		if ((int_status & (TxDMAComplete|IntRequested))) {
794 			int tx_status;
795 			tx_status = dr32(TxStatus);
796 			if (tx_status & 0x01)
797 				tx_error (dev, tx_status);
798 			/* Free used tx skbuffs */
799 			rio_free_tx (dev, 1);
800 		}
801 
802 		/* Handle uncommon events */
803 		if (int_status &
804 		    (HostError | LinkEvent | UpdateStats))
805 			rio_error (dev, int_status);
806 	}
807 	if (np->cur_tx != np->old_tx)
808 		dw32(CountDown, 100);
809 	return IRQ_RETVAL(handled);
810 }
811 
812 static void
rio_free_tx(struct net_device * dev,int irq)813 rio_free_tx (struct net_device *dev, int irq)
814 {
815 	struct netdev_private *np = netdev_priv(dev);
816 	int entry = np->old_tx % TX_RING_SIZE;
817 	unsigned long flag = 0;
818 
819 	if (irq)
820 		spin_lock(&np->tx_lock);
821 	else
822 		spin_lock_irqsave(&np->tx_lock, flag);
823 
824 	/* Free used tx skbuffs */
825 	while (entry != np->cur_tx) {
826 		struct sk_buff *skb;
827 
828 		if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
829 			break;
830 		skb = np->tx_skbuff[entry];
831 		dma_unmap_single(&np->pdev->dev,
832 				 desc_to_dma(&np->tx_ring[entry]), skb->len,
833 				 DMA_TO_DEVICE);
834 		if (irq)
835 			dev_consume_skb_irq(skb);
836 		else
837 			dev_kfree_skb(skb);
838 
839 		np->tx_skbuff[entry] = NULL;
840 		entry = (entry + 1) % TX_RING_SIZE;
841 	}
842 	if (irq)
843 		spin_unlock(&np->tx_lock);
844 	else
845 		spin_unlock_irqrestore(&np->tx_lock, flag);
846 	np->old_tx = entry;
847 
848 	/* If the ring is no longer full, clear tx_full and
849 	   call netif_wake_queue() */
850 
851 	if (netif_queue_stopped(dev) &&
852 	    ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
853 	    < TX_QUEUE_LEN - 1 || np->speed == 10)) {
854 		netif_wake_queue (dev);
855 	}
856 }
857 
858 static void
tx_error(struct net_device * dev,int tx_status)859 tx_error (struct net_device *dev, int tx_status)
860 {
861 	struct netdev_private *np = netdev_priv(dev);
862 	void __iomem *ioaddr = np->ioaddr;
863 	int frame_id;
864 	int i;
865 
866 	frame_id = (tx_status & 0xffff0000);
867 	printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
868 		dev->name, tx_status, frame_id);
869 	dev->stats.tx_errors++;
870 	/* Ttransmit Underrun */
871 	if (tx_status & 0x10) {
872 		dev->stats.tx_fifo_errors++;
873 		dw16(TxStartThresh, dr16(TxStartThresh) + 0x10);
874 		/* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
875 		dw16(ASICCtrl + 2,
876 		     TxReset | DMAReset | FIFOReset | NetworkReset);
877 		/* Wait for ResetBusy bit clear */
878 		for (i = 50; i > 0; i--) {
879 			if (!(dr16(ASICCtrl + 2) & ResetBusy))
880 				break;
881 			mdelay (1);
882 		}
883 		rio_set_led_mode(dev);
884 		rio_free_tx (dev, 1);
885 		/* Reset TFDListPtr */
886 		dw32(TFDListPtr0, np->tx_ring_dma +
887 		     np->old_tx * sizeof (struct netdev_desc));
888 		dw32(TFDListPtr1, 0);
889 
890 		/* Let TxStartThresh stay default value */
891 	}
892 	/* Late Collision */
893 	if (tx_status & 0x04) {
894 		dev->stats.tx_fifo_errors++;
895 		/* TxReset and clear FIFO */
896 		dw16(ASICCtrl + 2, TxReset | FIFOReset);
897 		/* Wait reset done */
898 		for (i = 50; i > 0; i--) {
899 			if (!(dr16(ASICCtrl + 2) & ResetBusy))
900 				break;
901 			mdelay (1);
902 		}
903 		rio_set_led_mode(dev);
904 		/* Let TxStartThresh stay default value */
905 	}
906 	/* Maximum Collisions */
907 	if (tx_status & 0x08)
908 		dev->stats.collisions++;
909 	/* Restart the Tx */
910 	dw32(MACCtrl, dr16(MACCtrl) | TxEnable);
911 }
912 
913 static int
receive_packet(struct net_device * dev)914 receive_packet (struct net_device *dev)
915 {
916 	struct netdev_private *np = netdev_priv(dev);
917 	int entry = np->cur_rx % RX_RING_SIZE;
918 	int cnt = 30;
919 
920 	/* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
921 	while (1) {
922 		struct netdev_desc *desc = &np->rx_ring[entry];
923 		int pkt_len;
924 		u64 frame_status;
925 
926 		if (!(desc->status & cpu_to_le64(RFDDone)) ||
927 		    !(desc->status & cpu_to_le64(FrameStart)) ||
928 		    !(desc->status & cpu_to_le64(FrameEnd)))
929 			break;
930 
931 		/* Chip omits the CRC. */
932 		frame_status = le64_to_cpu(desc->status);
933 		pkt_len = frame_status & 0xffff;
934 		if (--cnt < 0)
935 			break;
936 		/* Update rx error statistics, drop packet. */
937 		if (frame_status & RFS_Errors) {
938 			dev->stats.rx_errors++;
939 			if (frame_status & (RxRuntFrame | RxLengthError))
940 				dev->stats.rx_length_errors++;
941 			if (frame_status & RxFCSError)
942 				dev->stats.rx_crc_errors++;
943 			if (frame_status & RxAlignmentError && np->speed != 1000)
944 				dev->stats.rx_frame_errors++;
945 			if (frame_status & RxFIFOOverrun)
946 				dev->stats.rx_fifo_errors++;
947 		} else {
948 			struct sk_buff *skb;
949 
950 			/* Small skbuffs for short packets */
951 			if (pkt_len > copy_thresh) {
952 				dma_unmap_single(&np->pdev->dev,
953 						 desc_to_dma(desc),
954 						 np->rx_buf_sz,
955 						 DMA_FROM_DEVICE);
956 				skb_put (skb = np->rx_skbuff[entry], pkt_len);
957 				np->rx_skbuff[entry] = NULL;
958 			} else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) {
959 				dma_sync_single_for_cpu(&np->pdev->dev,
960 							desc_to_dma(desc),
961 							np->rx_buf_sz,
962 							DMA_FROM_DEVICE);
963 				skb_copy_to_linear_data (skb,
964 						  np->rx_skbuff[entry]->data,
965 						  pkt_len);
966 				skb_put (skb, pkt_len);
967 				dma_sync_single_for_device(&np->pdev->dev,
968 							   desc_to_dma(desc),
969 							   np->rx_buf_sz,
970 							   DMA_FROM_DEVICE);
971 			}
972 			skb->protocol = eth_type_trans (skb, dev);
973 #if 0
974 			/* Checksum done by hw, but csum value unavailable. */
975 			if (np->pdev->pci_rev_id >= 0x0c &&
976 				!(frame_status & (TCPError | UDPError | IPError))) {
977 				skb->ip_summed = CHECKSUM_UNNECESSARY;
978 			}
979 #endif
980 			netif_rx (skb);
981 		}
982 		entry = (entry + 1) % RX_RING_SIZE;
983 	}
984 	spin_lock(&np->rx_lock);
985 	np->cur_rx = entry;
986 	/* Re-allocate skbuffs to fill the descriptor ring */
987 	entry = np->old_rx;
988 	while (entry != np->cur_rx) {
989 		struct sk_buff *skb;
990 		/* Dropped packets don't need to re-allocate */
991 		if (np->rx_skbuff[entry] == NULL) {
992 			skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
993 			if (skb == NULL) {
994 				np->rx_ring[entry].fraginfo = 0;
995 				printk (KERN_INFO
996 					"%s: receive_packet: "
997 					"Unable to re-allocate Rx skbuff.#%d\n",
998 					dev->name, entry);
999 				break;
1000 			}
1001 			np->rx_skbuff[entry] = skb;
1002 			np->rx_ring[entry].fraginfo =
1003 			    cpu_to_le64(dma_map_single(&np->pdev->dev, skb->data,
1004 						       np->rx_buf_sz, DMA_FROM_DEVICE));
1005 		}
1006 		np->rx_ring[entry].fraginfo |=
1007 		    cpu_to_le64((u64)np->rx_buf_sz << 48);
1008 		np->rx_ring[entry].status = 0;
1009 		entry = (entry + 1) % RX_RING_SIZE;
1010 	}
1011 	np->old_rx = entry;
1012 	spin_unlock(&np->rx_lock);
1013 	return 0;
1014 }
1015 
1016 static void
rio_error(struct net_device * dev,int int_status)1017 rio_error (struct net_device *dev, int int_status)
1018 {
1019 	struct netdev_private *np = netdev_priv(dev);
1020 	void __iomem *ioaddr = np->ioaddr;
1021 	u16 macctrl;
1022 
1023 	/* Link change event */
1024 	if (int_status & LinkEvent) {
1025 		if (mii_wait_link (dev, 10) == 0) {
1026 			printk (KERN_INFO "%s: Link up\n", dev->name);
1027 			if (np->phy_media)
1028 				mii_get_media_pcs (dev);
1029 			else
1030 				mii_get_media (dev);
1031 			if (np->speed == 1000)
1032 				np->tx_coalesce = tx_coalesce;
1033 			else
1034 				np->tx_coalesce = 1;
1035 			macctrl = 0;
1036 			macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
1037 			macctrl |= (np->full_duplex) ? DuplexSelect : 0;
1038 			macctrl |= (np->tx_flow) ?
1039 				TxFlowControlEnable : 0;
1040 			macctrl |= (np->rx_flow) ?
1041 				RxFlowControlEnable : 0;
1042 			dw16(MACCtrl, macctrl);
1043 			np->link_status = 1;
1044 			netif_carrier_on(dev);
1045 		} else {
1046 			printk (KERN_INFO "%s: Link off\n", dev->name);
1047 			np->link_status = 0;
1048 			netif_carrier_off(dev);
1049 		}
1050 	}
1051 
1052 	/* UpdateStats statistics registers */
1053 	if (int_status & UpdateStats) {
1054 		get_stats (dev);
1055 	}
1056 
1057 	/* PCI Error, a catastronphic error related to the bus interface
1058 	   occurs, set GlobalReset and HostReset to reset. */
1059 	if (int_status & HostError) {
1060 		printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
1061 			dev->name, int_status);
1062 		dw16(ASICCtrl + 2, GlobalReset | HostReset);
1063 		mdelay (500);
1064 		rio_set_led_mode(dev);
1065 	}
1066 }
1067 
1068 static struct net_device_stats *
get_stats(struct net_device * dev)1069 get_stats (struct net_device *dev)
1070 {
1071 	struct netdev_private *np = netdev_priv(dev);
1072 	void __iomem *ioaddr = np->ioaddr;
1073 #ifdef MEM_MAPPING
1074 	int i;
1075 #endif
1076 	unsigned int stat_reg;
1077 
1078 	/* All statistics registers need to be acknowledged,
1079 	   else statistic overflow could cause problems */
1080 
1081 	dev->stats.rx_packets += dr32(FramesRcvOk);
1082 	dev->stats.tx_packets += dr32(FramesXmtOk);
1083 	dev->stats.rx_bytes += dr32(OctetRcvOk);
1084 	dev->stats.tx_bytes += dr32(OctetXmtOk);
1085 
1086 	dev->stats.multicast = dr32(McstFramesRcvdOk);
1087 	dev->stats.collisions += dr32(SingleColFrames)
1088 			     +  dr32(MultiColFrames);
1089 
1090 	/* detailed tx errors */
1091 	stat_reg = dr16(FramesAbortXSColls);
1092 	dev->stats.tx_aborted_errors += stat_reg;
1093 	dev->stats.tx_errors += stat_reg;
1094 
1095 	stat_reg = dr16(CarrierSenseErrors);
1096 	dev->stats.tx_carrier_errors += stat_reg;
1097 	dev->stats.tx_errors += stat_reg;
1098 
1099 	/* Clear all other statistic register. */
1100 	dr32(McstOctetXmtOk);
1101 	dr16(BcstFramesXmtdOk);
1102 	dr32(McstFramesXmtdOk);
1103 	dr16(BcstFramesRcvdOk);
1104 	dr16(MacControlFramesRcvd);
1105 	dr16(FrameTooLongErrors);
1106 	dr16(InRangeLengthErrors);
1107 	dr16(FramesCheckSeqErrors);
1108 	dr16(FramesLostRxErrors);
1109 	dr32(McstOctetXmtOk);
1110 	dr32(BcstOctetXmtOk);
1111 	dr32(McstFramesXmtdOk);
1112 	dr32(FramesWDeferredXmt);
1113 	dr32(LateCollisions);
1114 	dr16(BcstFramesXmtdOk);
1115 	dr16(MacControlFramesXmtd);
1116 	dr16(FramesWEXDeferal);
1117 
1118 #ifdef MEM_MAPPING
1119 	for (i = 0x100; i <= 0x150; i += 4)
1120 		dr32(i);
1121 #endif
1122 	dr16(TxJumboFrames);
1123 	dr16(RxJumboFrames);
1124 	dr16(TCPCheckSumErrors);
1125 	dr16(UDPCheckSumErrors);
1126 	dr16(IPCheckSumErrors);
1127 	return &dev->stats;
1128 }
1129 
1130 static int
clear_stats(struct net_device * dev)1131 clear_stats (struct net_device *dev)
1132 {
1133 	struct netdev_private *np = netdev_priv(dev);
1134 	void __iomem *ioaddr = np->ioaddr;
1135 #ifdef MEM_MAPPING
1136 	int i;
1137 #endif
1138 
1139 	/* All statistics registers need to be acknowledged,
1140 	   else statistic overflow could cause problems */
1141 	dr32(FramesRcvOk);
1142 	dr32(FramesXmtOk);
1143 	dr32(OctetRcvOk);
1144 	dr32(OctetXmtOk);
1145 
1146 	dr32(McstFramesRcvdOk);
1147 	dr32(SingleColFrames);
1148 	dr32(MultiColFrames);
1149 	dr32(LateCollisions);
1150 	/* detailed rx errors */
1151 	dr16(FrameTooLongErrors);
1152 	dr16(InRangeLengthErrors);
1153 	dr16(FramesCheckSeqErrors);
1154 	dr16(FramesLostRxErrors);
1155 
1156 	/* detailed tx errors */
1157 	dr16(FramesAbortXSColls);
1158 	dr16(CarrierSenseErrors);
1159 
1160 	/* Clear all other statistic register. */
1161 	dr32(McstOctetXmtOk);
1162 	dr16(BcstFramesXmtdOk);
1163 	dr32(McstFramesXmtdOk);
1164 	dr16(BcstFramesRcvdOk);
1165 	dr16(MacControlFramesRcvd);
1166 	dr32(McstOctetXmtOk);
1167 	dr32(BcstOctetXmtOk);
1168 	dr32(McstFramesXmtdOk);
1169 	dr32(FramesWDeferredXmt);
1170 	dr16(BcstFramesXmtdOk);
1171 	dr16(MacControlFramesXmtd);
1172 	dr16(FramesWEXDeferal);
1173 #ifdef MEM_MAPPING
1174 	for (i = 0x100; i <= 0x150; i += 4)
1175 		dr32(i);
1176 #endif
1177 	dr16(TxJumboFrames);
1178 	dr16(RxJumboFrames);
1179 	dr16(TCPCheckSumErrors);
1180 	dr16(UDPCheckSumErrors);
1181 	dr16(IPCheckSumErrors);
1182 	return 0;
1183 }
1184 
1185 static void
set_multicast(struct net_device * dev)1186 set_multicast (struct net_device *dev)
1187 {
1188 	struct netdev_private *np = netdev_priv(dev);
1189 	void __iomem *ioaddr = np->ioaddr;
1190 	u32 hash_table[2];
1191 	u16 rx_mode = 0;
1192 
1193 	hash_table[0] = hash_table[1] = 0;
1194 	/* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1195 	hash_table[1] |= 0x02000000;
1196 	if (dev->flags & IFF_PROMISC) {
1197 		/* Receive all frames promiscuously. */
1198 		rx_mode = ReceiveAllFrames;
1199 	} else if ((dev->flags & IFF_ALLMULTI) ||
1200 			(netdev_mc_count(dev) > multicast_filter_limit)) {
1201 		/* Receive broadcast and multicast frames */
1202 		rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1203 	} else if (!netdev_mc_empty(dev)) {
1204 		struct netdev_hw_addr *ha;
1205 		/* Receive broadcast frames and multicast frames filtering
1206 		   by Hashtable */
1207 		rx_mode =
1208 		    ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1209 		netdev_for_each_mc_addr(ha, dev) {
1210 			int bit, index = 0;
1211 			int crc = ether_crc_le(ETH_ALEN, ha->addr);
1212 			/* The inverted high significant 6 bits of CRC are
1213 			   used as an index to hashtable */
1214 			for (bit = 0; bit < 6; bit++)
1215 				if (crc & (1 << (31 - bit)))
1216 					index |= (1 << bit);
1217 			hash_table[index / 32] |= (1 << (index % 32));
1218 		}
1219 	} else {
1220 		rx_mode = ReceiveBroadcast | ReceiveUnicast;
1221 	}
1222 	if (np->vlan) {
1223 		/* ReceiveVLANMatch field in ReceiveMode */
1224 		rx_mode |= ReceiveVLANMatch;
1225 	}
1226 
1227 	dw32(HashTable0, hash_table[0]);
1228 	dw32(HashTable1, hash_table[1]);
1229 	dw16(ReceiveMode, rx_mode);
1230 }
1231 
rio_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1232 static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1233 {
1234 	struct netdev_private *np = netdev_priv(dev);
1235 
1236 	strscpy(info->driver, "dl2k", sizeof(info->driver));
1237 	strscpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
1238 }
1239 
rio_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1240 static int rio_get_link_ksettings(struct net_device *dev,
1241 				  struct ethtool_link_ksettings *cmd)
1242 {
1243 	struct netdev_private *np = netdev_priv(dev);
1244 	u32 supported, advertising;
1245 
1246 	if (np->phy_media) {
1247 		/* fiber device */
1248 		supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1249 		advertising = ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1250 		cmd->base.port = PORT_FIBRE;
1251 	} else {
1252 		/* copper device */
1253 		supported = SUPPORTED_10baseT_Half |
1254 			SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1255 			| SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1256 			SUPPORTED_Autoneg | SUPPORTED_MII;
1257 		advertising = ADVERTISED_10baseT_Half |
1258 			ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1259 			ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full |
1260 			ADVERTISED_Autoneg | ADVERTISED_MII;
1261 		cmd->base.port = PORT_MII;
1262 	}
1263 	if (np->link_status) {
1264 		cmd->base.speed = np->speed;
1265 		cmd->base.duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1266 	} else {
1267 		cmd->base.speed = SPEED_UNKNOWN;
1268 		cmd->base.duplex = DUPLEX_UNKNOWN;
1269 	}
1270 	if (np->an_enable)
1271 		cmd->base.autoneg = AUTONEG_ENABLE;
1272 	else
1273 		cmd->base.autoneg = AUTONEG_DISABLE;
1274 
1275 	cmd->base.phy_address = np->phy_addr;
1276 
1277 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1278 						supported);
1279 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
1280 						advertising);
1281 
1282 	return 0;
1283 }
1284 
rio_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1285 static int rio_set_link_ksettings(struct net_device *dev,
1286 				  const struct ethtool_link_ksettings *cmd)
1287 {
1288 	struct netdev_private *np = netdev_priv(dev);
1289 	u32 speed = cmd->base.speed;
1290 	u8 duplex = cmd->base.duplex;
1291 
1292 	netif_carrier_off(dev);
1293 	if (cmd->base.autoneg == AUTONEG_ENABLE) {
1294 		if (np->an_enable) {
1295 			return 0;
1296 		} else {
1297 			np->an_enable = 1;
1298 			mii_set_media(dev);
1299 			return 0;
1300 		}
1301 	} else {
1302 		np->an_enable = 0;
1303 		if (np->speed == 1000) {
1304 			speed = SPEED_100;
1305 			duplex = DUPLEX_FULL;
1306 			printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1307 		}
1308 		switch (speed) {
1309 		case SPEED_10:
1310 			np->speed = 10;
1311 			np->full_duplex = (duplex == DUPLEX_FULL);
1312 			break;
1313 		case SPEED_100:
1314 			np->speed = 100;
1315 			np->full_duplex = (duplex == DUPLEX_FULL);
1316 			break;
1317 		case SPEED_1000: /* not supported */
1318 		default:
1319 			return -EINVAL;
1320 		}
1321 		mii_set_media(dev);
1322 	}
1323 	return 0;
1324 }
1325 
rio_get_link(struct net_device * dev)1326 static u32 rio_get_link(struct net_device *dev)
1327 {
1328 	struct netdev_private *np = netdev_priv(dev);
1329 	return np->link_status;
1330 }
1331 
1332 static const struct ethtool_ops ethtool_ops = {
1333 	.get_drvinfo = rio_get_drvinfo,
1334 	.get_link = rio_get_link,
1335 	.get_link_ksettings = rio_get_link_ksettings,
1336 	.set_link_ksettings = rio_set_link_ksettings,
1337 };
1338 
1339 static int
rio_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1340 rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1341 {
1342 	int phy_addr;
1343 	struct netdev_private *np = netdev_priv(dev);
1344 	struct mii_ioctl_data *miidata = if_mii(rq);
1345 
1346 	phy_addr = np->phy_addr;
1347 	switch (cmd) {
1348 	case SIOCGMIIPHY:
1349 		miidata->phy_id = phy_addr;
1350 		break;
1351 	case SIOCGMIIREG:
1352 		miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num);
1353 		break;
1354 	case SIOCSMIIREG:
1355 		if (!capable(CAP_NET_ADMIN))
1356 			return -EPERM;
1357 		mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in);
1358 		break;
1359 	default:
1360 		return -EOPNOTSUPP;
1361 	}
1362 	return 0;
1363 }
1364 
1365 #define EEP_READ 0x0200
1366 #define EEP_BUSY 0x8000
1367 /* Read the EEPROM word */
1368 /* We use I/O instruction to read/write eeprom to avoid fail on some machines */
read_eeprom(struct netdev_private * np,int eep_addr)1369 static int read_eeprom(struct netdev_private *np, int eep_addr)
1370 {
1371 	void __iomem *ioaddr = np->eeprom_addr;
1372 	int i = 1000;
1373 
1374 	dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff));
1375 	while (i-- > 0) {
1376 		if (!(dr16(EepromCtrl) & EEP_BUSY))
1377 			return dr16(EepromData);
1378 	}
1379 	return 0;
1380 }
1381 
1382 enum phy_ctrl_bits {
1383 	MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1384 	MII_DUPLEX = 0x08,
1385 };
1386 
1387 #define mii_delay() dr8(PhyCtrl)
1388 static void
mii_sendbit(struct net_device * dev,u32 data)1389 mii_sendbit (struct net_device *dev, u32 data)
1390 {
1391 	struct netdev_private *np = netdev_priv(dev);
1392 	void __iomem *ioaddr = np->ioaddr;
1393 
1394 	data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE;
1395 	dw8(PhyCtrl, data);
1396 	mii_delay ();
1397 	dw8(PhyCtrl, data | MII_CLK);
1398 	mii_delay ();
1399 }
1400 
1401 static int
mii_getbit(struct net_device * dev)1402 mii_getbit (struct net_device *dev)
1403 {
1404 	struct netdev_private *np = netdev_priv(dev);
1405 	void __iomem *ioaddr = np->ioaddr;
1406 	u8 data;
1407 
1408 	data = (dr8(PhyCtrl) & 0xf8) | MII_READ;
1409 	dw8(PhyCtrl, data);
1410 	mii_delay ();
1411 	dw8(PhyCtrl, data | MII_CLK);
1412 	mii_delay ();
1413 	return (dr8(PhyCtrl) >> 1) & 1;
1414 }
1415 
1416 static void
mii_send_bits(struct net_device * dev,u32 data,int len)1417 mii_send_bits (struct net_device *dev, u32 data, int len)
1418 {
1419 	int i;
1420 
1421 	for (i = len - 1; i >= 0; i--) {
1422 		mii_sendbit (dev, data & (1 << i));
1423 	}
1424 }
1425 
1426 static int
mii_read(struct net_device * dev,int phy_addr,int reg_num)1427 mii_read (struct net_device *dev, int phy_addr, int reg_num)
1428 {
1429 	u32 cmd;
1430 	int i;
1431 	u32 retval = 0;
1432 
1433 	/* Preamble */
1434 	mii_send_bits (dev, 0xffffffff, 32);
1435 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1436 	/* ST,OP = 0110'b for read operation */
1437 	cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1438 	mii_send_bits (dev, cmd, 14);
1439 	/* Turnaround */
1440 	if (mii_getbit (dev))
1441 		goto err_out;
1442 	/* Read data */
1443 	for (i = 0; i < 16; i++) {
1444 		retval |= mii_getbit (dev);
1445 		retval <<= 1;
1446 	}
1447 	/* End cycle */
1448 	mii_getbit (dev);
1449 	return (retval >> 1) & 0xffff;
1450 
1451       err_out:
1452 	return 0;
1453 }
1454 static int
mii_write(struct net_device * dev,int phy_addr,int reg_num,u16 data)1455 mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1456 {
1457 	u32 cmd;
1458 
1459 	/* Preamble */
1460 	mii_send_bits (dev, 0xffffffff, 32);
1461 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1462 	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1463 	cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1464 	mii_send_bits (dev, cmd, 32);
1465 	/* End cycle */
1466 	mii_getbit (dev);
1467 	return 0;
1468 }
1469 static int
mii_wait_link(struct net_device * dev,int wait)1470 mii_wait_link (struct net_device *dev, int wait)
1471 {
1472 	__u16 bmsr;
1473 	int phy_addr;
1474 	struct netdev_private *np;
1475 
1476 	np = netdev_priv(dev);
1477 	phy_addr = np->phy_addr;
1478 
1479 	do {
1480 		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1481 		if (bmsr & BMSR_LSTATUS)
1482 			return 0;
1483 		mdelay (1);
1484 	} while (--wait > 0);
1485 	return -1;
1486 }
1487 static int
mii_get_media(struct net_device * dev)1488 mii_get_media (struct net_device *dev)
1489 {
1490 	__u16 negotiate;
1491 	__u16 bmsr;
1492 	__u16 mscr;
1493 	__u16 mssr;
1494 	int phy_addr;
1495 	struct netdev_private *np;
1496 
1497 	np = netdev_priv(dev);
1498 	phy_addr = np->phy_addr;
1499 
1500 	bmsr = mii_read (dev, phy_addr, MII_BMSR);
1501 	if (np->an_enable) {
1502 		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1503 			/* Auto-Negotiation not completed */
1504 			return -1;
1505 		}
1506 		negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) &
1507 			mii_read (dev, phy_addr, MII_LPA);
1508 		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1509 		mssr = mii_read (dev, phy_addr, MII_STAT1000);
1510 		if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) {
1511 			np->speed = 1000;
1512 			np->full_duplex = 1;
1513 			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1514 		} else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) {
1515 			np->speed = 1000;
1516 			np->full_duplex = 0;
1517 			printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1518 		} else if (negotiate & ADVERTISE_100FULL) {
1519 			np->speed = 100;
1520 			np->full_duplex = 1;
1521 			printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1522 		} else if (negotiate & ADVERTISE_100HALF) {
1523 			np->speed = 100;
1524 			np->full_duplex = 0;
1525 			printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1526 		} else if (negotiate & ADVERTISE_10FULL) {
1527 			np->speed = 10;
1528 			np->full_duplex = 1;
1529 			printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1530 		} else if (negotiate & ADVERTISE_10HALF) {
1531 			np->speed = 10;
1532 			np->full_duplex = 0;
1533 			printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1534 		}
1535 		if (negotiate & ADVERTISE_PAUSE_CAP) {
1536 			np->tx_flow &= 1;
1537 			np->rx_flow &= 1;
1538 		} else if (negotiate & ADVERTISE_PAUSE_ASYM) {
1539 			np->tx_flow = 0;
1540 			np->rx_flow &= 1;
1541 		}
1542 		/* else tx_flow, rx_flow = user select  */
1543 	} else {
1544 		__u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1545 		switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) {
1546 		case BMCR_SPEED1000:
1547 			printk (KERN_INFO "Operating at 1000 Mbps, ");
1548 			break;
1549 		case BMCR_SPEED100:
1550 			printk (KERN_INFO "Operating at 100 Mbps, ");
1551 			break;
1552 		case 0:
1553 			printk (KERN_INFO "Operating at 10 Mbps, ");
1554 		}
1555 		if (bmcr & BMCR_FULLDPLX) {
1556 			printk (KERN_CONT "Full duplex\n");
1557 		} else {
1558 			printk (KERN_CONT "Half duplex\n");
1559 		}
1560 	}
1561 	if (np->tx_flow)
1562 		printk(KERN_INFO "Enable Tx Flow Control\n");
1563 	else
1564 		printk(KERN_INFO "Disable Tx Flow Control\n");
1565 	if (np->rx_flow)
1566 		printk(KERN_INFO "Enable Rx Flow Control\n");
1567 	else
1568 		printk(KERN_INFO "Disable Rx Flow Control\n");
1569 
1570 	return 0;
1571 }
1572 
1573 static int
mii_set_media(struct net_device * dev)1574 mii_set_media (struct net_device *dev)
1575 {
1576 	__u16 pscr;
1577 	__u16 bmcr;
1578 	__u16 bmsr;
1579 	__u16 anar;
1580 	int phy_addr;
1581 	struct netdev_private *np;
1582 	np = netdev_priv(dev);
1583 	phy_addr = np->phy_addr;
1584 
1585 	/* Does user set speed? */
1586 	if (np->an_enable) {
1587 		/* Advertise capabilities */
1588 		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1589 		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1590 			~(ADVERTISE_100FULL | ADVERTISE_10FULL |
1591 			  ADVERTISE_100HALF | ADVERTISE_10HALF |
1592 			  ADVERTISE_100BASE4);
1593 		if (bmsr & BMSR_100FULL)
1594 			anar |= ADVERTISE_100FULL;
1595 		if (bmsr & BMSR_100HALF)
1596 			anar |= ADVERTISE_100HALF;
1597 		if (bmsr & BMSR_100BASE4)
1598 			anar |= ADVERTISE_100BASE4;
1599 		if (bmsr & BMSR_10FULL)
1600 			anar |= ADVERTISE_10FULL;
1601 		if (bmsr & BMSR_10HALF)
1602 			anar |= ADVERTISE_10HALF;
1603 		anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1604 		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1605 
1606 		/* Enable Auto crossover */
1607 		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1608 		pscr |= 3 << 5;	/* 11'b */
1609 		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1610 
1611 		/* Soft reset PHY */
1612 		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1613 		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1614 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1615 		mdelay(1);
1616 	} else {
1617 		/* Force speed setting */
1618 		/* 1) Disable Auto crossover */
1619 		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1620 		pscr &= ~(3 << 5);
1621 		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1622 
1623 		/* 2) PHY Reset */
1624 		bmcr = mii_read (dev, phy_addr, MII_BMCR);
1625 		bmcr |= BMCR_RESET;
1626 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1627 
1628 		/* 3) Power Down */
1629 		bmcr = 0x1940;	/* must be 0x1940 */
1630 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1631 		mdelay (100);	/* wait a certain time */
1632 
1633 		/* 4) Advertise nothing */
1634 		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1635 
1636 		/* 5) Set media and Power Up */
1637 		bmcr = BMCR_PDOWN;
1638 		if (np->speed == 100) {
1639 			bmcr |= BMCR_SPEED100;
1640 			printk (KERN_INFO "Manual 100 Mbps, ");
1641 		} else if (np->speed == 10) {
1642 			printk (KERN_INFO "Manual 10 Mbps, ");
1643 		}
1644 		if (np->full_duplex) {
1645 			bmcr |= BMCR_FULLDPLX;
1646 			printk (KERN_CONT "Full duplex\n");
1647 		} else {
1648 			printk (KERN_CONT "Half duplex\n");
1649 		}
1650 #if 0
1651 		/* Set 1000BaseT Master/Slave setting */
1652 		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1653 		mscr |= MII_MSCR_CFG_ENABLE;
1654 		mscr &= ~MII_MSCR_CFG_VALUE = 0;
1655 #endif
1656 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1657 		mdelay(10);
1658 	}
1659 	return 0;
1660 }
1661 
1662 static int
mii_get_media_pcs(struct net_device * dev)1663 mii_get_media_pcs (struct net_device *dev)
1664 {
1665 	__u16 negotiate;
1666 	__u16 bmsr;
1667 	int phy_addr;
1668 	struct netdev_private *np;
1669 
1670 	np = netdev_priv(dev);
1671 	phy_addr = np->phy_addr;
1672 
1673 	bmsr = mii_read (dev, phy_addr, PCS_BMSR);
1674 	if (np->an_enable) {
1675 		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1676 			/* Auto-Negotiation not completed */
1677 			return -1;
1678 		}
1679 		negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
1680 			mii_read (dev, phy_addr, PCS_ANLPAR);
1681 		np->speed = 1000;
1682 		if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1683 			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1684 			np->full_duplex = 1;
1685 		} else {
1686 			printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1687 			np->full_duplex = 0;
1688 		}
1689 		if (negotiate & PCS_ANAR_PAUSE) {
1690 			np->tx_flow &= 1;
1691 			np->rx_flow &= 1;
1692 		} else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1693 			np->tx_flow = 0;
1694 			np->rx_flow &= 1;
1695 		}
1696 		/* else tx_flow, rx_flow = user select  */
1697 	} else {
1698 		__u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
1699 		printk (KERN_INFO "Operating at 1000 Mbps, ");
1700 		if (bmcr & BMCR_FULLDPLX) {
1701 			printk (KERN_CONT "Full duplex\n");
1702 		} else {
1703 			printk (KERN_CONT "Half duplex\n");
1704 		}
1705 	}
1706 	if (np->tx_flow)
1707 		printk(KERN_INFO "Enable Tx Flow Control\n");
1708 	else
1709 		printk(KERN_INFO "Disable Tx Flow Control\n");
1710 	if (np->rx_flow)
1711 		printk(KERN_INFO "Enable Rx Flow Control\n");
1712 	else
1713 		printk(KERN_INFO "Disable Rx Flow Control\n");
1714 
1715 	return 0;
1716 }
1717 
1718 static int
mii_set_media_pcs(struct net_device * dev)1719 mii_set_media_pcs (struct net_device *dev)
1720 {
1721 	__u16 bmcr;
1722 	__u16 esr;
1723 	__u16 anar;
1724 	int phy_addr;
1725 	struct netdev_private *np;
1726 	np = netdev_priv(dev);
1727 	phy_addr = np->phy_addr;
1728 
1729 	/* Auto-Negotiation? */
1730 	if (np->an_enable) {
1731 		/* Advertise capabilities */
1732 		esr = mii_read (dev, phy_addr, PCS_ESR);
1733 		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1734 			~PCS_ANAR_HALF_DUPLEX &
1735 			~PCS_ANAR_FULL_DUPLEX;
1736 		if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
1737 			anar |= PCS_ANAR_HALF_DUPLEX;
1738 		if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
1739 			anar |= PCS_ANAR_FULL_DUPLEX;
1740 		anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1741 		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1742 
1743 		/* Soft reset PHY */
1744 		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1745 		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1746 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1747 		mdelay(1);
1748 	} else {
1749 		/* Force speed setting */
1750 		/* PHY Reset */
1751 		bmcr = BMCR_RESET;
1752 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1753 		mdelay(10);
1754 		if (np->full_duplex) {
1755 			bmcr = BMCR_FULLDPLX;
1756 			printk (KERN_INFO "Manual full duplex\n");
1757 		} else {
1758 			bmcr = 0;
1759 			printk (KERN_INFO "Manual half duplex\n");
1760 		}
1761 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1762 		mdelay(10);
1763 
1764 		/*  Advertise nothing */
1765 		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1766 	}
1767 	return 0;
1768 }
1769 
1770 
1771 static int
rio_close(struct net_device * dev)1772 rio_close (struct net_device *dev)
1773 {
1774 	struct netdev_private *np = netdev_priv(dev);
1775 	struct pci_dev *pdev = np->pdev;
1776 
1777 	netif_stop_queue (dev);
1778 
1779 	rio_hw_stop(dev);
1780 
1781 	free_irq(pdev->irq, dev);
1782 	del_timer_sync (&np->timer);
1783 
1784 	free_list(dev);
1785 
1786 	return 0;
1787 }
1788 
1789 static void
rio_remove1(struct pci_dev * pdev)1790 rio_remove1 (struct pci_dev *pdev)
1791 {
1792 	struct net_device *dev = pci_get_drvdata (pdev);
1793 
1794 	if (dev) {
1795 		struct netdev_private *np = netdev_priv(dev);
1796 
1797 		unregister_netdev (dev);
1798 		dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
1799 				  np->rx_ring_dma);
1800 		dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
1801 				  np->tx_ring_dma);
1802 #ifdef MEM_MAPPING
1803 		pci_iounmap(pdev, np->ioaddr);
1804 #endif
1805 		pci_iounmap(pdev, np->eeprom_addr);
1806 		free_netdev (dev);
1807 		pci_release_regions (pdev);
1808 		pci_disable_device (pdev);
1809 	}
1810 }
1811 
1812 #ifdef CONFIG_PM_SLEEP
rio_suspend(struct device * device)1813 static int rio_suspend(struct device *device)
1814 {
1815 	struct net_device *dev = dev_get_drvdata(device);
1816 	struct netdev_private *np = netdev_priv(dev);
1817 
1818 	if (!netif_running(dev))
1819 		return 0;
1820 
1821 	netif_device_detach(dev);
1822 	del_timer_sync(&np->timer);
1823 	rio_hw_stop(dev);
1824 
1825 	return 0;
1826 }
1827 
rio_resume(struct device * device)1828 static int rio_resume(struct device *device)
1829 {
1830 	struct net_device *dev = dev_get_drvdata(device);
1831 	struct netdev_private *np = netdev_priv(dev);
1832 
1833 	if (!netif_running(dev))
1834 		return 0;
1835 
1836 	rio_reset_ring(np);
1837 	rio_hw_init(dev);
1838 	np->timer.expires = jiffies + 1 * HZ;
1839 	add_timer(&np->timer);
1840 	netif_device_attach(dev);
1841 	dl2k_enable_int(np);
1842 
1843 	return 0;
1844 }
1845 
1846 static SIMPLE_DEV_PM_OPS(rio_pm_ops, rio_suspend, rio_resume);
1847 #define RIO_PM_OPS    (&rio_pm_ops)
1848 
1849 #else
1850 
1851 #define RIO_PM_OPS	NULL
1852 
1853 #endif /* CONFIG_PM_SLEEP */
1854 
1855 static struct pci_driver rio_driver = {
1856 	.name		= "dl2k",
1857 	.id_table	= rio_pci_tbl,
1858 	.probe		= rio_probe1,
1859 	.remove		= rio_remove1,
1860 	.driver.pm	= RIO_PM_OPS,
1861 };
1862 
1863 module_pci_driver(rio_driver);
1864 
1865 /* Read Documentation/networking/device_drivers/ethernet/dlink/dl2k.rst. */
1866