/Linux-v6.6/arch/mips/cavium-octeon/ |
D | Kconfig | 31 bool "Lock often used kernel code in the L2" 34 Enable locking parts of the kernel into the L2 cache. 37 bool "Lock the TLB handler in L2" 41 Lock the low level TLB fast path into L2. 44 bool "Lock the exception handler in L2" 48 Lock the low level exception handler into L2. 51 bool "Lock the interrupt handler in L2" 55 Lock the low level interrupt handler into L2. 58 bool "Lock the 2nd level interrupt handler in L2" 62 Lock the 2nd level interrupt handler in L2. [all …]
|
/Linux-v6.6/Documentation/devicetree/bindings/cache/ |
D | freescale-l2cache.txt | 1 Freescale L2 Cache Controller 3 L2 cache is present in Freescale's QorIQ and QorIQ Qonverge platforms. 42 - reg : Address and size of L2 cache controller registers 43 - cache-size : Size of the entire L2 cache 44 - interrupts : Error interrupt of L2 controller 45 - cache-line-size : Size of L2 cache lines 49 L2: l2-cache-controller@20000 { 53 cache-size = <0x40000>; // L2,256K
|
/Linux-v6.6/arch/arc/kernel/ |
D | entry-compact.S | 152 ; if L2 IRQ interrupted a L1 ISR, disable preemption 154 ; This is to avoid a potential L1-L2-L1 scenario 156 ; -L2 interrupts L1 (before L1 ISR could run) 159 ; Returns from L2 context fine 160 ; But both L1 and L2 re-enabled, so another L1 can be taken 165 ; L2 interrupting L1 implies both L2 and L1 active 170 bbit0 r9, STATUS_A1_BIT, 1f ; L1 not active when L2 IRQ, so normal 209 ; out of the L2 interrupt context (drop to pure kernel mode) and jump 320 ; use the same priority as rtie: EXCPN, L2 IRQ, L1 IRQ, None 335 ; However the context returning might not have taken L2 intr itself [all …]
|
/Linux-v6.6/security/apparmor/include/ |
D | label.h | 163 #define next_comb(I, L1, L2) \ argument 166 if ((I).j >= (L2)->size) { \ 174 #define label_for_each_comb(I, L1, L2, P1, P2) \ argument 176 ((P1) = (L1)->vec[(I).i]) && ((P2) = (L2)->vec[(I).j]); \ 177 (I) = next_comb(I, L1, L2)) 179 #define fn_for_each_comb(L1, L2, P1, P2, FN) \ argument 183 label_for_each_comb(i, (L1), (L2), (P1), (P2)) { \ 243 #define fn_for_each2_XXX(L1, L2, P, FN, ...) \ argument 247 label_for_each ## __VA_ARGS__(i, (L1), (L2), (P)) { \ 253 #define fn_for_each_in_merge(L1, L2, P, FN) \ argument [all …]
|
D | perms.h | 183 #define xcheck_ns_labels(L1, L2, FN, args...) \ argument 186 fn_for_each((L1), __p1, FN(__p1, (L2), args)); \ 190 #define xcheck_labels_profiles(L1, L2, FN, args...) \ argument 191 xcheck_ns_labels((L1), (L2), xcheck_ns_profile_label, (FN), args) 193 #define xcheck_labels(L1, L2, P, FN1, FN2) \ argument 194 xcheck(fn_for_each((L1), (P), (FN1)), fn_for_each((L2), (P), (FN2)))
|
/Linux-v6.6/arch/arm/boot/dts/calxeda/ |
D | highbank.dts | 25 next-level-cache = <&L2>; 44 next-level-cache = <&L2>; 63 next-level-cache = <&L2>; 82 next-level-cache = <&L2>; 135 L2: cache-controller { label
|
/Linux-v6.6/Documentation/virt/kvm/x86/ |
D | running-nested-guests.rst | 14 | L2 | | L2 | 36 - L2 – level-2 guest; a VM running on L1, this is the "nested guest" 45 metal, running the LPAR hypervisor), L1 (host hypervisor), L2 49 L1, and L2) for all architectures; and will largely focus on 139 .. note:: If you suspect your L2 (i.e. nested guest) is running slower, 191 On AMD systems, once an L1 guest has started an L2 guest, the L1 guest 193 "savevm"/"loadvm") until the L2 guest shuts down. Attempting to migrate 194 or save-and-load an L1 guest while an L2 guest is running will result in 199 actually running L2 guests, is expected to function normally even on AMD 202 Migrating an L2 guest is always expected to succeed, so all the following [all …]
|
/Linux-v6.6/Documentation/devicetree/bindings/cpufreq/ |
D | cpufreq-dt.txt | 33 next-level-cache = <&L2>; 47 next-level-cache = <&L2>; 53 next-level-cache = <&L2>; 59 next-level-cache = <&L2>;
|
/Linux-v6.6/arch/arm/boot/dts/arm/ |
D | vexpress-v2p-ca9.dts | 42 next-level-cache = <&L2>; 49 next-level-cache = <&L2>; 56 next-level-cache = <&L2>; 63 next-level-cache = <&L2>; 164 L2: cache-controller@1e00a000 { label 225 /* PL310, L2 cache, RAM cell supply (not PL310 logic) */ 270 /* PL310, L2 cache, RAM cell supply (not PL310 logic) */ 284 /* PL310, L2 cache, RAM cell supply (not PL310 logic) */
|
D | arm-realview-eb-a9mp.dts | 42 next-level-cache = <&L2>; 49 next-level-cache = <&L2>; 56 next-level-cache = <&L2>; 63 next-level-cache = <&L2>;
|
D | arm-realview-eb-11mp.dts | 46 next-level-cache = <&L2>; 53 next-level-cache = <&L2>; 60 next-level-cache = <&L2>; 67 next-level-cache = <&L2>;
|
/Linux-v6.6/drivers/net/ethernet/intel/iavf/ |
D | iavf_common.c | 518 IAVF_PTT(1, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2), 519 IAVF_PTT(2, L2, NONE, NOF, NONE, NONE, NOF, TS, PAY2), 520 IAVF_PTT(3, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2), 523 IAVF_PTT(6, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2), 524 IAVF_PTT(7, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2), 527 IAVF_PTT(10, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2), 528 IAVF_PTT(11, L2, NONE, NOF, NONE, NONE, NOF, NONE, NONE), 529 IAVF_PTT(12, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3), 530 IAVF_PTT(13, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3), 531 IAVF_PTT(14, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3), [all …]
|
/Linux-v6.6/Documentation/locking/ |
D | lockdep-design.rst | 22 dependency can be understood as lock order, where L1 -> L2 suggests that 23 a task is attempting to acquire L2 while holding L1. From lockdep's 24 perspective, the two locks (L1 and L2) are not necessarily related; that 145 <L1> -> <L2> 146 <L2> -> <L1> 521 L1 -> L2 523 , which means lockdep has seen L1 held before L2 held in the same context at runtime. 524 And in deadlock detection, we care whether we could get blocked on L2 with L1 held, 525 IOW, whether there is a locker L3 that L1 blocks L3 and L2 gets blocked by L3. So 526 we only care about 1) what L1 blocks and 2) what blocks L2. As a result, we can combine [all …]
|
/Linux-v6.6/drivers/cache/ |
D | Kconfig | 5 bool "Andes Technology AX45MP L2 Cache controller" 9 Support for the L2 cache controller on Andes Technology AX45MP platforms.
|
/Linux-v6.6/arch/arm/boot/dts/nxp/vf/ |
D | vf610.dtsi | 8 next-level-cache = <&L2>; 12 L2: cache-controller@40006000 { label
|
/Linux-v6.6/arch/powerpc/perf/ |
D | isa207-common.c | 226 ret = PH(LVL, L2) | LEVEL(L2) | P(SNOOP, HIT); in isa207_find_source() 260 ret |= PH(LVL, L2) | LEVEL(L2) | P(SNOOP, HIT); in isa207_find_source() 262 ret |= PH(LVL, L2) | LEVEL(L2) | P(SNOOP, HITM); in isa207_find_source() 269 ret = PH(LVL, L2) | LEVEL(L2) | REM | P(SNOOP, HIT) | P(HOPS, 0); in isa207_find_source() 271 ret = PH(LVL, L2) | LEVEL(L2) | REM | P(SNOOP, HITM) | P(HOPS, 0); in isa207_find_source()
|
/Linux-v6.6/arch/powerpc/boot/dts/fsl/ |
D | mpc8572ds_camp_core1.dts | 5 * In CAMP mode, each core needs to have its own dts. Only mpic and L2 cache 58 cache-size = <0x80000>; // L2, 512K 80 18 16 10 42 45 58 /* MEM L2 mdio serial crypto */
|
D | mpc8572ds_camp_core0.dts | 5 * In CAMP mode, each core needs to have its own dts. Only mpic and L2 cache 41 cache-size = <0x80000>; // L2, 512K
|
/Linux-v6.6/Documentation/networking/ |
D | ipvlan.rst | 14 the master device share the L2 with its slave devices. I have developed this 45 (b) This command will create IPvlan link in L2 bridge mode:: 49 (c) This command will create an IPvlan device in L2 private mode:: 53 (d) This command will create an IPvlan device in L2 vepa mode:: 61 IPvlan has two modes of operation - L2 and L3. For a given master device, 68 4.1 L2 mode: 81 master device for the L2 processing and routing from that instance will be 133 namespace where L2 on the slave could be changed / misused.
|
/Linux-v6.6/arch/arm/boot/dts/broadcom/ |
D | bcm4708.dtsi | 31 next-level-cache = <&L2>; 38 next-level-cache = <&L2>;
|
/Linux-v6.6/Documentation/admin-guide/perf/ |
D | qcom_l2_pmu.rst | 5 This driver supports the L2 cache clusters found in Qualcomm Technologies 6 Centriq SoCs. There are multiple physical L2 cache clusters, each with their 9 There is one logical L2 PMU exposed, which aggregates the results from
|
/Linux-v6.6/arch/alpha/kernel/ |
D | setup.c | 1279 int L1I, L1D, L2, L3; in determine_cpu_caches() local 1302 L2 = external_cache_probe(128*1024, 5); in determine_cpu_caches() 1316 L2 = (car & 1 ? CSHAPE (size, 3, 1) : -1); in determine_cpu_caches() 1330 L2 = CSHAPE (96*1024, width, 3); in determine_cpu_caches() 1364 L2 = ((cbox_config >> 31) & 1 ? CSHAPE (size, 6, 1) : -1); in determine_cpu_caches() 1366 L2 = external_cache_probe(512*1024, 6); in determine_cpu_caches() 1378 L2 = external_cache_probe(1024*1024, 6); in determine_cpu_caches() 1385 L2 = CSHAPE(7*1024*1024/4, 6, 7); in determine_cpu_caches() 1391 L1I = L1D = L2 = L3 = 0; in determine_cpu_caches() 1397 alpha_l2_cacheshape = L2; in determine_cpu_caches()
|
/Linux-v6.6/Documentation/devicetree/bindings/arm/cpu-enable-method/ |
D | nuvoton,npcm750-smp | 30 next-level-cache = <&L2>; 39 next-level-cache = <&L2>;
|
/Linux-v6.6/Documentation/devicetree/bindings/clock/ |
D | mvebu-core-clock.txt | 10 2 = nbclk (L2 Cache clock) 17 2 = l2clk (L2 Cache clock) 23 2 = l2clk (L2 Cache clock) 43 2 = l2clk (L2 Cache clock derived from CPU0 clock)
|
/Linux-v6.6/arch/arm/boot/dts/amlogic/ |
D | meson6.dtsi | 19 next-level-cache = <&L2>; 26 next-level-cache = <&L2>;
|