1 // SPDX-License-Identifier: GPL-2.0+
2 /* Copyright (c) 2020 Intel Corporation. */
3
4 #include <linux/clk.h>
5 #include <linux/completion.h>
6 #include <linux/dmaengine.h>
7 #include <linux/dma-direction.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/err.h>
10 #include <linux/init.h>
11 #include <linux/iopoll.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14
15 #include <linux/mtd/mtd.h>
16 #include <linux/mtd/rawnand.h>
17 #include <linux/mtd/nand.h>
18
19 #include <linux/of.h>
20 #include <linux/platform_device.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
23 #include <linux/types.h>
24 #include <linux/units.h>
25 #include <asm/unaligned.h>
26
27 #define EBU_CLC 0x000
28 #define EBU_CLC_RST 0x00000000u
29
30 #define EBU_ADDR_SEL(n) (0x020 + (n) * 4)
31 /* 5 bits 26:22 included for comparison in the ADDR_SELx */
32 #define EBU_ADDR_MASK(x) ((x) << 4)
33 #define EBU_ADDR_SEL_REGEN 0x1
34
35 #define EBU_BUSCON(n) (0x060 + (n) * 4)
36 #define EBU_BUSCON_CMULT_V4 0x1
37 #define EBU_BUSCON_RECOVC(n) ((n) << 2)
38 #define EBU_BUSCON_HOLDC(n) ((n) << 4)
39 #define EBU_BUSCON_WAITRDC(n) ((n) << 6)
40 #define EBU_BUSCON_WAITWRC(n) ((n) << 8)
41 #define EBU_BUSCON_BCGEN_CS 0x0
42 #define EBU_BUSCON_SETUP_EN BIT(22)
43 #define EBU_BUSCON_ALEC 0xC000
44
45 #define EBU_CON 0x0B0
46 #define EBU_CON_NANDM_EN BIT(0)
47 #define EBU_CON_NANDM_DIS 0x0
48 #define EBU_CON_CSMUX_E_EN BIT(1)
49 #define EBU_CON_ALE_P_LOW BIT(2)
50 #define EBU_CON_CLE_P_LOW BIT(3)
51 #define EBU_CON_CS_P_LOW BIT(4)
52 #define EBU_CON_SE_P_LOW BIT(5)
53 #define EBU_CON_WP_P_LOW BIT(6)
54 #define EBU_CON_PRE_P_LOW BIT(7)
55 #define EBU_CON_IN_CS_S(n) ((n) << 8)
56 #define EBU_CON_OUT_CS_S(n) ((n) << 10)
57 #define EBU_CON_LAT_EN_CS_P ((0x3D) << 18)
58
59 #define EBU_WAIT 0x0B4
60 #define EBU_WAIT_RDBY BIT(0)
61 #define EBU_WAIT_WR_C BIT(3)
62
63 #define HSNAND_CTL1 0x110
64 #define HSNAND_CTL1_ADDR_SHIFT 24
65
66 #define HSNAND_CTL2 0x114
67 #define HSNAND_CTL2_ADDR_SHIFT 8
68 #define HSNAND_CTL2_CYC_N_V5 (0x2 << 16)
69
70 #define HSNAND_INT_MSK_CTL 0x124
71 #define HSNAND_INT_MSK_CTL_WR_C BIT(4)
72
73 #define HSNAND_INT_STA 0x128
74 #define HSNAND_INT_STA_WR_C BIT(4)
75
76 #define HSNAND_CTL 0x130
77 #define HSNAND_CTL_ENABLE_ECC BIT(0)
78 #define HSNAND_CTL_GO BIT(2)
79 #define HSNAND_CTL_CE_SEL_CS(n) BIT(3 + (n))
80 #define HSNAND_CTL_RW_READ 0x0
81 #define HSNAND_CTL_RW_WRITE BIT(10)
82 #define HSNAND_CTL_ECC_OFF_V8TH BIT(11)
83 #define HSNAND_CTL_CKFF_EN 0x0
84 #define HSNAND_CTL_MSG_EN BIT(17)
85
86 #define HSNAND_PARA0 0x13c
87 #define HSNAND_PARA0_PAGE_V8192 0x3
88 #define HSNAND_PARA0_PIB_V256 (0x3 << 4)
89 #define HSNAND_PARA0_BYP_EN_NP 0x0
90 #define HSNAND_PARA0_BYP_DEC_NP 0x0
91 #define HSNAND_PARA0_TYPE_ONFI BIT(18)
92 #define HSNAND_PARA0_ADEP_EN BIT(21)
93
94 #define HSNAND_CMSG_0 0x150
95 #define HSNAND_CMSG_1 0x154
96
97 #define HSNAND_ALE_OFFS BIT(2)
98 #define HSNAND_CLE_OFFS BIT(3)
99 #define HSNAND_CS_OFFS BIT(4)
100
101 #define HSNAND_ECC_OFFSET 0x008
102
103 #define MAX_CS 2
104
105 #define USEC_PER_SEC 1000000L
106
107 struct ebu_nand_cs {
108 void __iomem *chipaddr;
109 u32 addr_sel;
110 };
111
112 struct ebu_nand_controller {
113 struct nand_controller controller;
114 struct nand_chip chip;
115 struct device *dev;
116 void __iomem *ebu;
117 void __iomem *hsnand;
118 struct dma_chan *dma_tx;
119 struct dma_chan *dma_rx;
120 struct completion dma_access_complete;
121 struct clk *clk;
122 u32 nd_para0;
123 u8 cs_num;
124 struct ebu_nand_cs cs[MAX_CS];
125 };
126
nand_to_ebu(struct nand_chip * chip)127 static inline struct ebu_nand_controller *nand_to_ebu(struct nand_chip *chip)
128 {
129 return container_of(chip, struct ebu_nand_controller, chip);
130 }
131
ebu_nand_waitrdy(struct nand_chip * chip,int timeout_ms)132 static int ebu_nand_waitrdy(struct nand_chip *chip, int timeout_ms)
133 {
134 struct ebu_nand_controller *ctrl = nand_to_ebu(chip);
135 u32 status;
136
137 return readl_poll_timeout(ctrl->ebu + EBU_WAIT, status,
138 (status & EBU_WAIT_RDBY) ||
139 (status & EBU_WAIT_WR_C), 20, timeout_ms);
140 }
141
ebu_nand_readb(struct nand_chip * chip)142 static u8 ebu_nand_readb(struct nand_chip *chip)
143 {
144 struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip);
145 u8 cs_num = ebu_host->cs_num;
146 u8 val;
147
148 val = readb(ebu_host->cs[cs_num].chipaddr + HSNAND_CS_OFFS);
149 ebu_nand_waitrdy(chip, 1000);
150 return val;
151 }
152
ebu_nand_writeb(struct nand_chip * chip,u32 offset,u8 value)153 static void ebu_nand_writeb(struct nand_chip *chip, u32 offset, u8 value)
154 {
155 struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip);
156 u8 cs_num = ebu_host->cs_num;
157
158 writeb(value, ebu_host->cs[cs_num].chipaddr + offset);
159 ebu_nand_waitrdy(chip, 1000);
160 }
161
ebu_read_buf(struct nand_chip * chip,u_char * buf,unsigned int len)162 static void ebu_read_buf(struct nand_chip *chip, u_char *buf, unsigned int len)
163 {
164 int i;
165
166 for (i = 0; i < len; i++)
167 buf[i] = ebu_nand_readb(chip);
168 }
169
ebu_write_buf(struct nand_chip * chip,const u_char * buf,int len)170 static void ebu_write_buf(struct nand_chip *chip, const u_char *buf, int len)
171 {
172 int i;
173
174 for (i = 0; i < len; i++)
175 ebu_nand_writeb(chip, HSNAND_CS_OFFS, buf[i]);
176 }
177
ebu_nand_disable(struct nand_chip * chip)178 static void ebu_nand_disable(struct nand_chip *chip)
179 {
180 struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip);
181
182 writel(0, ebu_host->ebu + EBU_CON);
183 }
184
ebu_select_chip(struct nand_chip * chip)185 static void ebu_select_chip(struct nand_chip *chip)
186 {
187 struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip);
188 void __iomem *nand_con = ebu_host->ebu + EBU_CON;
189 u32 cs = ebu_host->cs_num;
190
191 writel(EBU_CON_NANDM_EN | EBU_CON_CSMUX_E_EN | EBU_CON_CS_P_LOW |
192 EBU_CON_SE_P_LOW | EBU_CON_WP_P_LOW | EBU_CON_PRE_P_LOW |
193 EBU_CON_IN_CS_S(cs) | EBU_CON_OUT_CS_S(cs) |
194 EBU_CON_LAT_EN_CS_P, nand_con);
195 }
196
ebu_nand_set_timings(struct nand_chip * chip,int csline,const struct nand_interface_config * conf)197 static int ebu_nand_set_timings(struct nand_chip *chip, int csline,
198 const struct nand_interface_config *conf)
199 {
200 struct ebu_nand_controller *ctrl = nand_to_ebu(chip);
201 unsigned int rate = clk_get_rate(ctrl->clk) / HZ_PER_MHZ;
202 unsigned int period = DIV_ROUND_UP(USEC_PER_SEC, rate);
203 const struct nand_sdr_timings *timings;
204 u32 trecov, thold, twrwait, trdwait;
205 u32 reg = 0;
206
207 timings = nand_get_sdr_timings(conf);
208 if (IS_ERR(timings))
209 return PTR_ERR(timings);
210
211 if (csline == NAND_DATA_IFACE_CHECK_ONLY)
212 return 0;
213
214 trecov = DIV_ROUND_UP(max(timings->tREA_max, timings->tREH_min),
215 period);
216 reg |= EBU_BUSCON_RECOVC(trecov);
217
218 thold = DIV_ROUND_UP(max(timings->tDH_min, timings->tDS_min), period);
219 reg |= EBU_BUSCON_HOLDC(thold);
220
221 trdwait = DIV_ROUND_UP(max(timings->tRC_min, timings->tREH_min),
222 period);
223 reg |= EBU_BUSCON_WAITRDC(trdwait);
224
225 twrwait = DIV_ROUND_UP(max(timings->tWC_min, timings->tWH_min), period);
226 reg |= EBU_BUSCON_WAITWRC(twrwait);
227
228 reg |= EBU_BUSCON_CMULT_V4 | EBU_BUSCON_BCGEN_CS | EBU_BUSCON_ALEC |
229 EBU_BUSCON_SETUP_EN;
230
231 writel(reg, ctrl->ebu + EBU_BUSCON(ctrl->cs_num));
232
233 return 0;
234 }
235
ebu_nand_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)236 static int ebu_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
237 struct mtd_oob_region *oobregion)
238 {
239 struct nand_chip *chip = mtd_to_nand(mtd);
240
241 if (section)
242 return -ERANGE;
243
244 oobregion->offset = HSNAND_ECC_OFFSET;
245 oobregion->length = chip->ecc.total;
246
247 return 0;
248 }
249
ebu_nand_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)250 static int ebu_nand_ooblayout_free(struct mtd_info *mtd, int section,
251 struct mtd_oob_region *oobregion)
252 {
253 struct nand_chip *chip = mtd_to_nand(mtd);
254
255 if (section)
256 return -ERANGE;
257
258 oobregion->offset = chip->ecc.total + HSNAND_ECC_OFFSET;
259 oobregion->length = mtd->oobsize - oobregion->offset;
260
261 return 0;
262 }
263
264 static const struct mtd_ooblayout_ops ebu_nand_ooblayout_ops = {
265 .ecc = ebu_nand_ooblayout_ecc,
266 .free = ebu_nand_ooblayout_free,
267 };
268
ebu_dma_rx_callback(void * cookie)269 static void ebu_dma_rx_callback(void *cookie)
270 {
271 struct ebu_nand_controller *ebu_host = cookie;
272
273 dmaengine_terminate_async(ebu_host->dma_rx);
274
275 complete(&ebu_host->dma_access_complete);
276 }
277
ebu_dma_tx_callback(void * cookie)278 static void ebu_dma_tx_callback(void *cookie)
279 {
280 struct ebu_nand_controller *ebu_host = cookie;
281
282 dmaengine_terminate_async(ebu_host->dma_tx);
283
284 complete(&ebu_host->dma_access_complete);
285 }
286
ebu_dma_start(struct ebu_nand_controller * ebu_host,u32 dir,const u8 * buf,u32 len)287 static int ebu_dma_start(struct ebu_nand_controller *ebu_host, u32 dir,
288 const u8 *buf, u32 len)
289 {
290 struct dma_async_tx_descriptor *tx;
291 struct completion *dma_completion;
292 dma_async_tx_callback callback;
293 struct dma_chan *chan;
294 dma_cookie_t cookie;
295 unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
296 dma_addr_t buf_dma;
297 int ret;
298 u32 timeout;
299
300 if (dir == DMA_DEV_TO_MEM) {
301 chan = ebu_host->dma_rx;
302 dma_completion = &ebu_host->dma_access_complete;
303 callback = ebu_dma_rx_callback;
304 } else {
305 chan = ebu_host->dma_tx;
306 dma_completion = &ebu_host->dma_access_complete;
307 callback = ebu_dma_tx_callback;
308 }
309
310 buf_dma = dma_map_single(chan->device->dev, (void *)buf, len, dir);
311 if (dma_mapping_error(chan->device->dev, buf_dma)) {
312 dev_err(ebu_host->dev, "Failed to map DMA buffer\n");
313 ret = -EIO;
314 goto err_unmap;
315 }
316
317 tx = dmaengine_prep_slave_single(chan, buf_dma, len, dir, flags);
318 if (!tx) {
319 ret = -ENXIO;
320 goto err_unmap;
321 }
322
323 tx->callback = callback;
324 tx->callback_param = ebu_host;
325 cookie = tx->tx_submit(tx);
326
327 ret = dma_submit_error(cookie);
328 if (ret) {
329 dev_err(ebu_host->dev, "dma_submit_error %d\n", cookie);
330 ret = -EIO;
331 goto err_unmap;
332 }
333
334 init_completion(dma_completion);
335 dma_async_issue_pending(chan);
336
337 /* Wait DMA to finish the data transfer.*/
338 timeout = wait_for_completion_timeout(dma_completion, msecs_to_jiffies(1000));
339 if (!timeout) {
340 dev_err(ebu_host->dev, "I/O Error in DMA RX (status %d)\n",
341 dmaengine_tx_status(chan, cookie, NULL));
342 dmaengine_terminate_sync(chan);
343 ret = -ETIMEDOUT;
344 goto err_unmap;
345 }
346
347 return 0;
348
349 err_unmap:
350 dma_unmap_single(ebu_host->dev, buf_dma, len, dir);
351
352 return ret;
353 }
354
ebu_nand_trigger(struct ebu_nand_controller * ebu_host,int page,u32 cmd)355 static void ebu_nand_trigger(struct ebu_nand_controller *ebu_host,
356 int page, u32 cmd)
357 {
358 unsigned int val;
359
360 val = cmd | (page & 0xFF) << HSNAND_CTL1_ADDR_SHIFT;
361 writel(val, ebu_host->hsnand + HSNAND_CTL1);
362 val = (page & 0xFFFF00) >> 8 | HSNAND_CTL2_CYC_N_V5;
363 writel(val, ebu_host->hsnand + HSNAND_CTL2);
364
365 writel(ebu_host->nd_para0, ebu_host->hsnand + HSNAND_PARA0);
366
367 /* clear first, will update later */
368 writel(0xFFFFFFFF, ebu_host->hsnand + HSNAND_CMSG_0);
369 writel(0xFFFFFFFF, ebu_host->hsnand + HSNAND_CMSG_1);
370
371 writel(HSNAND_INT_MSK_CTL_WR_C,
372 ebu_host->hsnand + HSNAND_INT_MSK_CTL);
373
374 if (!cmd)
375 val = HSNAND_CTL_RW_READ;
376 else
377 val = HSNAND_CTL_RW_WRITE;
378
379 writel(HSNAND_CTL_MSG_EN | HSNAND_CTL_CKFF_EN |
380 HSNAND_CTL_ECC_OFF_V8TH | HSNAND_CTL_CE_SEL_CS(ebu_host->cs_num) |
381 HSNAND_CTL_ENABLE_ECC | HSNAND_CTL_GO | val,
382 ebu_host->hsnand + HSNAND_CTL);
383 }
384
ebu_nand_read_page_hwecc(struct nand_chip * chip,u8 * buf,int oob_required,int page)385 static int ebu_nand_read_page_hwecc(struct nand_chip *chip, u8 *buf,
386 int oob_required, int page)
387 {
388 struct mtd_info *mtd = nand_to_mtd(chip);
389 struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip);
390 int ret, reg_data;
391
392 ebu_nand_trigger(ebu_host, page, NAND_CMD_READ0);
393
394 ret = ebu_dma_start(ebu_host, DMA_DEV_TO_MEM, buf, mtd->writesize);
395 if (ret)
396 return ret;
397
398 if (oob_required)
399 chip->ecc.read_oob(chip, page);
400
401 reg_data = readl(ebu_host->hsnand + HSNAND_CTL);
402 reg_data &= ~HSNAND_CTL_GO;
403 writel(reg_data, ebu_host->hsnand + HSNAND_CTL);
404
405 return 0;
406 }
407
ebu_nand_write_page_hwecc(struct nand_chip * chip,const u8 * buf,int oob_required,int page)408 static int ebu_nand_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
409 int oob_required, int page)
410 {
411 struct mtd_info *mtd = nand_to_mtd(chip);
412 struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip);
413 void __iomem *int_sta = ebu_host->hsnand + HSNAND_INT_STA;
414 int reg_data, ret, val;
415 u32 reg;
416
417 ebu_nand_trigger(ebu_host, page, NAND_CMD_SEQIN);
418
419 ret = ebu_dma_start(ebu_host, DMA_MEM_TO_DEV, buf, mtd->writesize);
420 if (ret)
421 return ret;
422
423 if (oob_required) {
424 reg = get_unaligned_le32(chip->oob_poi);
425 writel(reg, ebu_host->hsnand + HSNAND_CMSG_0);
426
427 reg = get_unaligned_le32(chip->oob_poi + 4);
428 writel(reg, ebu_host->hsnand + HSNAND_CMSG_1);
429 }
430
431 ret = readl_poll_timeout_atomic(int_sta, val, !(val & HSNAND_INT_STA_WR_C),
432 10, 1000);
433 if (ret)
434 return ret;
435
436 reg_data = readl(ebu_host->hsnand + HSNAND_CTL);
437 reg_data &= ~HSNAND_CTL_GO;
438 writel(reg_data, ebu_host->hsnand + HSNAND_CTL);
439
440 return 0;
441 }
442
443 static const u8 ecc_strength[] = { 1, 1, 4, 8, 24, 32, 40, 60, };
444
ebu_nand_attach_chip(struct nand_chip * chip)445 static int ebu_nand_attach_chip(struct nand_chip *chip)
446 {
447 struct mtd_info *mtd = nand_to_mtd(chip);
448 struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip);
449 u32 ecc_steps, ecc_bytes, ecc_total, pagesize, pg_per_blk;
450 u32 ecc_strength_ds = chip->ecc.strength;
451 u32 ecc_size = chip->ecc.size;
452 u32 writesize = mtd->writesize;
453 u32 blocksize = mtd->erasesize;
454 int bch_algo, start, val;
455
456 /* Default to an ECC size of 512 */
457 if (!chip->ecc.size)
458 chip->ecc.size = 512;
459
460 switch (ecc_size) {
461 case 512:
462 start = 1;
463 if (!ecc_strength_ds)
464 ecc_strength_ds = 4;
465 break;
466 case 1024:
467 start = 4;
468 if (!ecc_strength_ds)
469 ecc_strength_ds = 32;
470 break;
471 default:
472 return -EINVAL;
473 }
474
475 /* BCH ECC algorithm Settings for number of bits per 512B/1024B */
476 bch_algo = round_up(start + 1, 4);
477 for (val = start; val < bch_algo; val++) {
478 if (ecc_strength_ds == ecc_strength[val])
479 break;
480 }
481 if (val == bch_algo)
482 return -EINVAL;
483
484 if (ecc_strength_ds == 8)
485 ecc_bytes = 14;
486 else
487 ecc_bytes = DIV_ROUND_UP(ecc_strength_ds * fls(8 * ecc_size), 8);
488
489 ecc_steps = writesize / ecc_size;
490 ecc_total = ecc_steps * ecc_bytes;
491 if ((ecc_total + 8) > mtd->oobsize)
492 return -ERANGE;
493
494 chip->ecc.total = ecc_total;
495 pagesize = fls(writesize >> 11);
496 if (pagesize > HSNAND_PARA0_PAGE_V8192)
497 return -ERANGE;
498
499 pg_per_blk = fls((blocksize / writesize) >> 6) / 8;
500 if (pg_per_blk > HSNAND_PARA0_PIB_V256)
501 return -ERANGE;
502
503 ebu_host->nd_para0 = pagesize | pg_per_blk | HSNAND_PARA0_BYP_EN_NP |
504 HSNAND_PARA0_BYP_DEC_NP | HSNAND_PARA0_ADEP_EN |
505 HSNAND_PARA0_TYPE_ONFI | (val << 29);
506
507 mtd_set_ooblayout(mtd, &ebu_nand_ooblayout_ops);
508 chip->ecc.read_page = ebu_nand_read_page_hwecc;
509 chip->ecc.write_page = ebu_nand_write_page_hwecc;
510
511 return 0;
512 }
513
ebu_nand_exec_op(struct nand_chip * chip,const struct nand_operation * op,bool check_only)514 static int ebu_nand_exec_op(struct nand_chip *chip,
515 const struct nand_operation *op, bool check_only)
516 {
517 const struct nand_op_instr *instr = NULL;
518 unsigned int op_id;
519 int i, timeout_ms, ret = 0;
520
521 if (check_only)
522 return 0;
523
524 ebu_select_chip(chip);
525 for (op_id = 0; op_id < op->ninstrs; op_id++) {
526 instr = &op->instrs[op_id];
527
528 switch (instr->type) {
529 case NAND_OP_CMD_INSTR:
530 ebu_nand_writeb(chip, HSNAND_CLE_OFFS | HSNAND_CS_OFFS,
531 instr->ctx.cmd.opcode);
532 break;
533
534 case NAND_OP_ADDR_INSTR:
535 for (i = 0; i < instr->ctx.addr.naddrs; i++)
536 ebu_nand_writeb(chip,
537 HSNAND_ALE_OFFS | HSNAND_CS_OFFS,
538 instr->ctx.addr.addrs[i]);
539 break;
540
541 case NAND_OP_DATA_IN_INSTR:
542 ebu_read_buf(chip, instr->ctx.data.buf.in,
543 instr->ctx.data.len);
544 break;
545
546 case NAND_OP_DATA_OUT_INSTR:
547 ebu_write_buf(chip, instr->ctx.data.buf.out,
548 instr->ctx.data.len);
549 break;
550
551 case NAND_OP_WAITRDY_INSTR:
552 timeout_ms = instr->ctx.waitrdy.timeout_ms * 1000;
553 ret = ebu_nand_waitrdy(chip, timeout_ms);
554 break;
555 }
556 }
557
558 return ret;
559 }
560
561 static const struct nand_controller_ops ebu_nand_controller_ops = {
562 .attach_chip = ebu_nand_attach_chip,
563 .setup_interface = ebu_nand_set_timings,
564 .exec_op = ebu_nand_exec_op,
565 };
566
ebu_dma_cleanup(struct ebu_nand_controller * ebu_host)567 static void ebu_dma_cleanup(struct ebu_nand_controller *ebu_host)
568 {
569 if (ebu_host->dma_rx)
570 dma_release_channel(ebu_host->dma_rx);
571
572 if (ebu_host->dma_tx)
573 dma_release_channel(ebu_host->dma_tx);
574 }
575
ebu_nand_probe(struct platform_device * pdev)576 static int ebu_nand_probe(struct platform_device *pdev)
577 {
578 struct device *dev = &pdev->dev;
579 struct ebu_nand_controller *ebu_host;
580 struct device_node *chip_np;
581 struct nand_chip *nand;
582 struct mtd_info *mtd;
583 struct resource *res;
584 char *resname;
585 int ret;
586 u32 cs;
587
588 ebu_host = devm_kzalloc(dev, sizeof(*ebu_host), GFP_KERNEL);
589 if (!ebu_host)
590 return -ENOMEM;
591
592 ebu_host->dev = dev;
593 nand_controller_init(&ebu_host->controller);
594
595 ebu_host->ebu = devm_platform_ioremap_resource_byname(pdev, "ebunand");
596 if (IS_ERR(ebu_host->ebu))
597 return PTR_ERR(ebu_host->ebu);
598
599 ebu_host->hsnand = devm_platform_ioremap_resource_byname(pdev, "hsnand");
600 if (IS_ERR(ebu_host->hsnand))
601 return PTR_ERR(ebu_host->hsnand);
602
603 chip_np = of_get_next_child(dev->of_node, NULL);
604 if (!chip_np)
605 return dev_err_probe(dev, -EINVAL,
606 "Could not find child node for the NAND chip\n");
607
608 ret = of_property_read_u32(chip_np, "reg", &cs);
609 if (ret) {
610 dev_err(dev, "failed to get chip select: %d\n", ret);
611 goto err_of_node_put;
612 }
613 if (cs >= MAX_CS) {
614 dev_err(dev, "got invalid chip select: %d\n", cs);
615 ret = -EINVAL;
616 goto err_of_node_put;
617 }
618
619 ebu_host->cs_num = cs;
620
621 resname = devm_kasprintf(dev, GFP_KERNEL, "nand_cs%d", cs);
622 ebu_host->cs[cs].chipaddr = devm_platform_ioremap_resource_byname(pdev,
623 resname);
624 if (IS_ERR(ebu_host->cs[cs].chipaddr)) {
625 ret = PTR_ERR(ebu_host->cs[cs].chipaddr);
626 goto err_of_node_put;
627 }
628
629 ebu_host->clk = devm_clk_get_enabled(dev, NULL);
630 if (IS_ERR(ebu_host->clk)) {
631 ret = dev_err_probe(dev, PTR_ERR(ebu_host->clk),
632 "failed to get and enable clock\n");
633 goto err_of_node_put;
634 }
635
636 ebu_host->dma_tx = dma_request_chan(dev, "tx");
637 if (IS_ERR(ebu_host->dma_tx)) {
638 ret = dev_err_probe(dev, PTR_ERR(ebu_host->dma_tx),
639 "failed to request DMA tx chan!.\n");
640 goto err_of_node_put;
641 }
642
643 ebu_host->dma_rx = dma_request_chan(dev, "rx");
644 if (IS_ERR(ebu_host->dma_rx)) {
645 ret = dev_err_probe(dev, PTR_ERR(ebu_host->dma_rx),
646 "failed to request DMA rx chan!.\n");
647 ebu_host->dma_rx = NULL;
648 goto err_cleanup_dma;
649 }
650
651 resname = devm_kasprintf(dev, GFP_KERNEL, "addr_sel%d", cs);
652 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, resname);
653 if (!res) {
654 ret = -EINVAL;
655 goto err_cleanup_dma;
656 }
657 ebu_host->cs[cs].addr_sel = res->start;
658 writel(ebu_host->cs[cs].addr_sel | EBU_ADDR_MASK(5) | EBU_ADDR_SEL_REGEN,
659 ebu_host->ebu + EBU_ADDR_SEL(cs));
660
661 nand_set_flash_node(&ebu_host->chip, chip_np);
662
663 mtd = nand_to_mtd(&ebu_host->chip);
664 if (!mtd->name) {
665 dev_err(ebu_host->dev, "NAND label property is mandatory\n");
666 ret = -EINVAL;
667 goto err_cleanup_dma;
668 }
669
670 mtd->dev.parent = dev;
671 ebu_host->dev = dev;
672
673 platform_set_drvdata(pdev, ebu_host);
674 nand_set_controller_data(&ebu_host->chip, ebu_host);
675
676 nand = &ebu_host->chip;
677 nand->controller = &ebu_host->controller;
678 nand->controller->ops = &ebu_nand_controller_ops;
679
680 /* Scan to find existence of the device */
681 ret = nand_scan(&ebu_host->chip, 1);
682 if (ret)
683 goto err_cleanup_dma;
684
685 ret = mtd_device_register(mtd, NULL, 0);
686 if (ret)
687 goto err_clean_nand;
688
689 return 0;
690
691 err_clean_nand:
692 nand_cleanup(&ebu_host->chip);
693 err_cleanup_dma:
694 ebu_dma_cleanup(ebu_host);
695 err_of_node_put:
696 of_node_put(chip_np);
697
698 return ret;
699 }
700
ebu_nand_remove(struct platform_device * pdev)701 static void ebu_nand_remove(struct platform_device *pdev)
702 {
703 struct ebu_nand_controller *ebu_host = platform_get_drvdata(pdev);
704 int ret;
705
706 ret = mtd_device_unregister(nand_to_mtd(&ebu_host->chip));
707 WARN_ON(ret);
708 nand_cleanup(&ebu_host->chip);
709 ebu_nand_disable(&ebu_host->chip);
710 ebu_dma_cleanup(ebu_host);
711 }
712
713 static const struct of_device_id ebu_nand_match[] = {
714 { .compatible = "intel,lgm-ebunand" },
715 {}
716 };
717 MODULE_DEVICE_TABLE(of, ebu_nand_match);
718
719 static struct platform_driver ebu_nand_driver = {
720 .probe = ebu_nand_probe,
721 .remove_new = ebu_nand_remove,
722 .driver = {
723 .name = "intel-nand-controller",
724 .of_match_table = ebu_nand_match,
725 },
726
727 };
728 module_platform_driver(ebu_nand_driver);
729
730 MODULE_LICENSE("GPL v2");
731 MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
732 MODULE_DESCRIPTION("Intel's LGM External Bus NAND Controller driver");
733