1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ADA4250 driver
4  *
5  * Copyright 2022 Analog Devices Inc.
6  */
7 
8 #include <linux/bitfield.h>
9 #include <linux/bits.h>
10 #include <linux/device.h>
11 #include <linux/iio/iio.h>
12 #include <linux/module.h>
13 #include <linux/regmap.h>
14 #include <linux/regulator/consumer.h>
15 #include <linux/spi/spi.h>
16 
17 #include <asm/unaligned.h>
18 
19 /* ADA4250 Register Map */
20 #define ADA4250_REG_GAIN_MUX        0x00
21 #define ADA4250_REG_REFBUF_EN       0x01
22 #define ADA4250_REG_RESET           0x02
23 #define ADA4250_REG_SNSR_CAL_VAL    0x04
24 #define ADA4250_REG_SNSR_CAL_CNFG   0x05
25 #define ADA4250_REG_DIE_REV         0x18
26 #define ADA4250_REG_CHIP_ID         0x19
27 
28 /* ADA4250_REG_GAIN_MUX Map */
29 #define ADA4250_GAIN_MUX_MSK        GENMASK(2, 0)
30 
31 /* ADA4250_REG_REFBUF Map */
32 #define ADA4250_REFBUF_MSK          BIT(0)
33 
34 /* ADA4250_REG_RESET Map */
35 #define ADA4250_RESET_MSK           BIT(0)
36 
37 /* ADA4250_REG_SNSR_CAL_VAL Map */
38 #define ADA4250_CAL_CFG_BIAS_MSK    GENMASK(7, 0)
39 
40 /* ADA4250_REG_SNSR_CAL_CNFG Bit Definition */
41 #define ADA4250_BIAS_SET_MSK        GENMASK(3, 2)
42 #define ADA4250_RANGE_SET_MSK       GENMASK(1, 0)
43 
44 /* Miscellaneous definitions */
45 #define ADA4250_CHIP_ID             0x4250
46 #define ADA4250_RANGE1              0
47 #define	ADA4250_RANGE4              3
48 
49 /* ADA4250 current bias set */
50 enum ada4250_current_bias {
51 	ADA4250_BIAS_DISABLED,
52 	ADA4250_BIAS_BANDGAP,
53 	ADA4250_BIAS_AVDD,
54 };
55 
56 struct ada4250_state {
57 	struct spi_device	*spi;
58 	struct regmap		*regmap;
59 	struct regulator	*reg;
60 	/* Protect against concurrent accesses to the device and data content */
61 	struct mutex		lock;
62 	u8			bias;
63 	u8			gain;
64 	int			offset_uv;
65 	bool			refbuf_en;
66 };
67 
68 /* ADA4250 Current Bias Source Settings: Disabled, Bandgap Reference, AVDD */
69 static const int calibbias_table[] = {0, 1, 2};
70 
71 /* ADA4250 Gain (V/V) values: 1, 2, 4, 8, 16, 32, 64, 128 */
72 static const int hwgain_table[] = {1, 2, 4, 8, 16, 32, 64, 128};
73 
74 static const struct regmap_config ada4250_regmap_config = {
75 	.reg_bits = 8,
76 	.val_bits = 8,
77 	.read_flag_mask = BIT(7),
78 	.max_register = 0x1A,
79 };
80 
ada4250_set_offset_uv(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,int offset_uv)81 static int ada4250_set_offset_uv(struct iio_dev *indio_dev,
82 				 const struct iio_chan_spec *chan,
83 				 int offset_uv)
84 {
85 	struct ada4250_state *st = iio_priv(indio_dev);
86 
87 	int i, ret, x[8], max_vos, min_vos, voltage_v, vlsb = 0;
88 	u8 offset_raw, range = ADA4250_RANGE1;
89 	u32 lsb_coeff[6] = {1333, 2301, 4283, 8289, 16311, 31599};
90 
91 	if (st->bias == 0 || st->bias == 3)
92 		return -EINVAL;
93 
94 	voltage_v = regulator_get_voltage(st->reg);
95 	voltage_v = DIV_ROUND_CLOSEST(voltage_v, 1000000);
96 
97 	if (st->bias == ADA4250_BIAS_AVDD)
98 		x[0] = voltage_v;
99 	else
100 		x[0] = 5;
101 
102 	x[1] = 126 * (x[0] - 1);
103 
104 	for (i = 0; i < 6; i++)
105 		x[i + 2] = DIV_ROUND_CLOSEST(x[1] * 1000, lsb_coeff[i]);
106 
107 	if (st->gain == 0)
108 		return -EINVAL;
109 
110 	/*
111 	 * Compute Range and Voltage per LSB for the Sensor Offset Calibration
112 	 * Example of computation for Range 1 and Range 2 (Curren Bias Set = AVDD):
113 	 *                     Range 1                            Range 2
114 	 *   Gain   | Max Vos(mV) |   LSB(mV)        |  Max Vos(mV)  | LSB(mV) |
115 	 *    2     |    X1*127   | X1=0.126(AVDD-1) |   X1*3*127    |  X1*3   |
116 	 *    4     |    X2*127   | X2=X1/1.3333     |   X2*3*127    |  X2*3   |
117 	 *    8     |    X3*127   | X3=X1/2.301      |   X3*3*127    |  X3*3   |
118 	 *    16    |    X4*127   | X4=X1/4.283      |   X4*3*127    |  X4*3   |
119 	 *    32    |    X5*127   | X5=X1/8.289      |   X5*3*127    |  X5*3   |
120 	 *    64    |    X6*127   | X6=X1/16.311     |   X6*3*127    |  X6*3   |
121 	 *    128   |    X7*127   | X7=X1/31.599     |   X7*3*127    |  X7*3   |
122 	 */
123 	for (i = ADA4250_RANGE1; i <= ADA4250_RANGE4; i++) {
124 		max_vos = x[st->gain] *  127 * ((1 << (i + 1)) - 1);
125 		min_vos = -1 * max_vos;
126 		if (offset_uv > min_vos && offset_uv < max_vos) {
127 			range = i;
128 			vlsb = x[st->gain] * ((1 << (i + 1)) - 1);
129 			break;
130 		}
131 	}
132 
133 	if (vlsb <= 0)
134 		return -EINVAL;
135 
136 	offset_raw = DIV_ROUND_CLOSEST(abs(offset_uv), vlsb);
137 
138 	mutex_lock(&st->lock);
139 	ret = regmap_update_bits(st->regmap, ADA4250_REG_SNSR_CAL_CNFG,
140 				 ADA4250_RANGE_SET_MSK,
141 				 FIELD_PREP(ADA4250_RANGE_SET_MSK, range));
142 	if (ret)
143 		goto exit;
144 
145 	st->offset_uv = offset_raw * vlsb;
146 
147 	/*
148 	 * To set the offset calibration value, use bits [6:0] and bit 7 as the
149 	 * polarity bit (set to "0" for a negative offset and "1" for a positive
150 	 * offset).
151 	 */
152 	if (offset_uv < 0) {
153 		offset_raw |= BIT(7);
154 		st->offset_uv *= (-1);
155 	}
156 
157 	ret = regmap_write(st->regmap, ADA4250_REG_SNSR_CAL_VAL, offset_raw);
158 
159 exit:
160 	mutex_unlock(&st->lock);
161 
162 	return ret;
163 }
164 
ada4250_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long info)165 static int ada4250_read_raw(struct iio_dev *indio_dev,
166 			    struct iio_chan_spec const *chan,
167 			    int *val, int *val2, long info)
168 {
169 	struct ada4250_state *st = iio_priv(indio_dev);
170 	int ret;
171 
172 	switch (info) {
173 	case IIO_CHAN_INFO_HARDWAREGAIN:
174 		ret = regmap_read(st->regmap, ADA4250_REG_GAIN_MUX, val);
175 		if (ret)
176 			return ret;
177 
178 		*val = BIT(*val);
179 
180 		return IIO_VAL_INT;
181 	case IIO_CHAN_INFO_OFFSET:
182 		*val = st->offset_uv;
183 
184 		return IIO_VAL_INT;
185 	case IIO_CHAN_INFO_CALIBBIAS:
186 		ret = regmap_read(st->regmap, ADA4250_REG_SNSR_CAL_CNFG, val);
187 		if (ret)
188 			return ret;
189 
190 		*val = FIELD_GET(ADA4250_BIAS_SET_MSK, *val);
191 
192 		return IIO_VAL_INT;
193 	case IIO_CHAN_INFO_SCALE:
194 		*val = 1;
195 		*val2 = 1000000;
196 
197 		return IIO_VAL_FRACTIONAL;
198 	default:
199 		return -EINVAL;
200 	}
201 }
202 
ada4250_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long info)203 static int ada4250_write_raw(struct iio_dev *indio_dev,
204 			     struct iio_chan_spec const *chan,
205 			     int val, int val2, long info)
206 {
207 	struct ada4250_state *st = iio_priv(indio_dev);
208 	int ret;
209 
210 	switch (info) {
211 	case IIO_CHAN_INFO_HARDWAREGAIN:
212 		ret = regmap_write(st->regmap, ADA4250_REG_GAIN_MUX,
213 				   FIELD_PREP(ADA4250_GAIN_MUX_MSK, ilog2(val)));
214 		if (ret)
215 			return ret;
216 
217 		st->gain = ilog2(val);
218 
219 		return ret;
220 	case IIO_CHAN_INFO_OFFSET:
221 		return ada4250_set_offset_uv(indio_dev, chan, val);
222 	case IIO_CHAN_INFO_CALIBBIAS:
223 		ret = regmap_update_bits(st->regmap, ADA4250_REG_SNSR_CAL_CNFG,
224 					 ADA4250_BIAS_SET_MSK,
225 					 FIELD_PREP(ADA4250_BIAS_SET_MSK, val));
226 		if (ret)
227 			return ret;
228 
229 		st->bias = val;
230 
231 		return ret;
232 	default:
233 		return -EINVAL;
234 	}
235 }
236 
ada4250_read_avail(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,const int ** vals,int * type,int * length,long mask)237 static int ada4250_read_avail(struct iio_dev *indio_dev,
238 			      struct iio_chan_spec const *chan,
239 			      const int **vals, int *type, int *length,
240 			      long mask)
241 {
242 	switch (mask) {
243 	case IIO_CHAN_INFO_CALIBBIAS:
244 		*vals = calibbias_table;
245 		*type = IIO_VAL_INT;
246 		*length = ARRAY_SIZE(calibbias_table);
247 
248 		return IIO_AVAIL_LIST;
249 	case IIO_CHAN_INFO_HARDWAREGAIN:
250 		*vals = hwgain_table;
251 		*type = IIO_VAL_INT;
252 		*length = ARRAY_SIZE(hwgain_table);
253 
254 		return IIO_AVAIL_LIST;
255 	default:
256 		return -EINVAL;
257 	}
258 }
259 
ada4250_reg_access(struct iio_dev * indio_dev,unsigned int reg,unsigned int write_val,unsigned int * read_val)260 static int ada4250_reg_access(struct iio_dev *indio_dev,
261 			      unsigned int reg,
262 			      unsigned int write_val,
263 			      unsigned int *read_val)
264 {
265 	struct ada4250_state *st = iio_priv(indio_dev);
266 
267 	if (read_val)
268 		return regmap_read(st->regmap, reg, read_val);
269 	else
270 		return regmap_write(st->regmap, reg, write_val);
271 }
272 
273 static const struct iio_info ada4250_info = {
274 	.read_raw = ada4250_read_raw,
275 	.write_raw = ada4250_write_raw,
276 	.read_avail = &ada4250_read_avail,
277 	.debugfs_reg_access = &ada4250_reg_access,
278 };
279 
280 static const struct iio_chan_spec ada4250_channels[] = {
281 	{
282 		.type = IIO_VOLTAGE,
283 		.output = 1,
284 		.indexed = 1,
285 		.channel = 0,
286 		.info_mask_separate = BIT(IIO_CHAN_INFO_HARDWAREGAIN) |
287 				BIT(IIO_CHAN_INFO_OFFSET) |
288 				BIT(IIO_CHAN_INFO_CALIBBIAS) |
289 				BIT(IIO_CHAN_INFO_SCALE),
290 		.info_mask_separate_available = BIT(IIO_CHAN_INFO_CALIBBIAS) |
291 						BIT(IIO_CHAN_INFO_HARDWAREGAIN),
292 	}
293 };
294 
ada4250_reg_disable(void * data)295 static void ada4250_reg_disable(void *data)
296 {
297 	regulator_disable(data);
298 }
299 
ada4250_init(struct ada4250_state * st)300 static int ada4250_init(struct ada4250_state *st)
301 {
302 	int ret;
303 	u16 chip_id;
304 	u8 data[2] __aligned(8) = {};
305 	struct spi_device *spi = st->spi;
306 
307 	st->refbuf_en = device_property_read_bool(&spi->dev, "adi,refbuf-enable");
308 
309 	st->reg = devm_regulator_get(&spi->dev, "avdd");
310 	if (IS_ERR(st->reg))
311 		return dev_err_probe(&spi->dev, PTR_ERR(st->reg),
312 				     "failed to get the AVDD voltage\n");
313 
314 	ret = regulator_enable(st->reg);
315 	if (ret) {
316 		dev_err(&spi->dev, "Failed to enable specified AVDD supply\n");
317 		return ret;
318 	}
319 
320 	ret = devm_add_action_or_reset(&spi->dev, ada4250_reg_disable, st->reg);
321 	if (ret)
322 		return ret;
323 
324 	ret = regmap_write(st->regmap, ADA4250_REG_RESET,
325 			   FIELD_PREP(ADA4250_RESET_MSK, 1));
326 	if (ret)
327 		return ret;
328 
329 	ret = regmap_bulk_read(st->regmap, ADA4250_REG_CHIP_ID, data, 2);
330 	if (ret)
331 		return ret;
332 
333 	chip_id = get_unaligned_le16(data);
334 
335 	if (chip_id != ADA4250_CHIP_ID) {
336 		dev_err(&spi->dev, "Invalid chip ID.\n");
337 		return -EINVAL;
338 	}
339 
340 	return regmap_write(st->regmap, ADA4250_REG_REFBUF_EN,
341 			    FIELD_PREP(ADA4250_REFBUF_MSK, st->refbuf_en));
342 }
343 
ada4250_probe(struct spi_device * spi)344 static int ada4250_probe(struct spi_device *spi)
345 {
346 	struct iio_dev *indio_dev;
347 	struct regmap *regmap;
348 	struct ada4250_state *st;
349 	int ret;
350 
351 	indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
352 	if (!indio_dev)
353 		return -ENOMEM;
354 
355 	regmap = devm_regmap_init_spi(spi, &ada4250_regmap_config);
356 	if (IS_ERR(regmap))
357 		return PTR_ERR(regmap);
358 
359 	st = iio_priv(indio_dev);
360 	st->regmap = regmap;
361 	st->spi = spi;
362 
363 	indio_dev->info = &ada4250_info;
364 	indio_dev->name = "ada4250";
365 	indio_dev->channels = ada4250_channels;
366 	indio_dev->num_channels = ARRAY_SIZE(ada4250_channels);
367 
368 	mutex_init(&st->lock);
369 
370 	ret = ada4250_init(st);
371 	if (ret) {
372 		dev_err(&spi->dev, "ADA4250 init failed\n");
373 		return ret;
374 	}
375 
376 	return devm_iio_device_register(&spi->dev, indio_dev);
377 }
378 
379 static const struct spi_device_id ada4250_id[] = {
380 	{ "ada4250", 0 },
381 	{}
382 };
383 MODULE_DEVICE_TABLE(spi, ada4250_id);
384 
385 static const struct of_device_id ada4250_of_match[] = {
386 	{ .compatible = "adi,ada4250" },
387 	{},
388 };
389 MODULE_DEVICE_TABLE(of, ada4250_of_match);
390 
391 static struct spi_driver ada4250_driver = {
392 	.driver = {
393 			.name = "ada4250",
394 			.of_match_table = ada4250_of_match,
395 		},
396 	.probe = ada4250_probe,
397 	.id_table = ada4250_id,
398 };
399 module_spi_driver(ada4250_driver);
400 
401 MODULE_AUTHOR("Antoniu Miclaus <antoniu.miclaus@analog.com");
402 MODULE_DESCRIPTION("Analog Devices ADA4250");
403 MODULE_LICENSE("GPL v2");
404