/Linux-v6.1/drivers/gpu/drm/i915/gvt/ |
D | scheduler.c | 63 static void update_shadow_pdps(struct intel_vgpu_workload *workload) in update_shadow_pdps() argument 66 struct intel_context *ctx = workload->req->context; in update_shadow_pdps() 68 if (WARN_ON(!workload->shadow_mm)) in update_shadow_pdps() 71 if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount))) in update_shadow_pdps() 76 (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps); in update_shadow_pdps() 84 static void sr_oa_regs(struct intel_vgpu_workload *workload, in sr_oa_regs() argument 87 struct drm_i915_private *dev_priv = workload->vgpu->gvt->gt->i915; in sr_oa_regs() 101 if (workload->engine->id != RCS0) in sr_oa_regs() 105 workload->oactxctrl = reg_state[ctx_oactxctrl + 1]; in sr_oa_regs() 107 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { in sr_oa_regs() [all …]
|
D | execlist.c | 370 static int prepare_execlist_workload(struct intel_vgpu_workload *workload) in prepare_execlist_workload() argument 372 struct intel_vgpu *vgpu = workload->vgpu; in prepare_execlist_workload() 377 if (!workload->emulate_schedule_in) in prepare_execlist_workload() 380 ctx[0] = *get_desc_from_elsp_dwords(&workload->elsp_dwords, 0); in prepare_execlist_workload() 381 ctx[1] = *get_desc_from_elsp_dwords(&workload->elsp_dwords, 1); in prepare_execlist_workload() 383 ret = emulate_execlist_schedule_in(&s->execlist[workload->engine->id], in prepare_execlist_workload() 392 static int complete_execlist_workload(struct intel_vgpu_workload *workload) in complete_execlist_workload() argument 394 struct intel_vgpu *vgpu = workload->vgpu; in complete_execlist_workload() 397 &s->execlist[workload->engine->id]; in complete_execlist_workload() 399 struct list_head *next = workload_q_head(vgpu, workload->engine)->next; in complete_execlist_workload() [all …]
|
D | cmd_parser.c | 513 struct intel_vgpu_workload *workload; member 851 u32 base = s->workload->engine->mmio_base; in is_cmd_update_pdps() 859 struct intel_vgpu_mm *shadow_mm = s->workload->shadow_mm; in cmd_pdp_mmio_update_handler() 875 &s->workload->lri_shadow_mm); in cmd_pdp_mmio_update_handler() 1015 s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4); in cmd_reg_handler() 1226 s->workload->pending_events); in cmd_handler_pipe_control() 1233 s->workload->pending_events); in cmd_handler_mi_user_interrupt() 1746 s->workload->pending_events); in cmd_handler_mi_flush_dw() 1817 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm; in find_bb_size() 1833 s->engine->name, s->workload); in find_bb_size() [all …]
|
D | cmd_parser.h | 50 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload); 56 int intel_gvt_scan_engine_context(struct intel_vgpu_workload *workload);
|
D | trace.h | 231 void *workload, const char *cmd_name), 234 buf_addr_type, workload, cmd_name), 243 __field(void*, workload) 255 __entry->workload = workload; 271 __entry->workload)
|
D | scheduler.h | 139 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload); 166 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload);
|
/Linux-v6.1/tools/perf/tests/ |
D | perf-record.c | 112 err = sched__get_first_possible_cpu(evlist->workload.pid, &cpu_mask); in test__PERF_RECORD() 124 if (sched_setaffinity(evlist->workload.pid, cpu_mask_size, &cpu_mask) < 0) { in test__PERF_RECORD() 210 if ((pid_t)sample.pid != evlist->workload.pid) { in test__PERF_RECORD() 212 name, evlist->workload.pid, sample.pid); in test__PERF_RECORD() 216 if ((pid_t)sample.tid != evlist->workload.pid) { in test__PERF_RECORD() 218 name, evlist->workload.pid, sample.tid); in test__PERF_RECORD() 227 (pid_t)event->comm.pid != evlist->workload.pid) { in test__PERF_RECORD()
|
/Linux-v6.1/tools/perf/Documentation/ |
D | perf-sched.txt | 18 of an arbitrary workload. 21 and other scheduling properties of the workload. 23 'perf sched script' to see a detailed trace of the workload that 26 'perf sched replay' to simulate the workload that was recorded 28 that mimic the workload based on the events in the trace. These 30 of the workload as it occurred when it was recorded - and can repeat 34 workload captured via perf sched record. Columns stand for
|
D | perf-timechart.txt | 6 perf-timechart - Tool to visualize total system behavior during a workload 18 of an arbitrary workload. By default timechart records only scheduler
|
/Linux-v6.1/Documentation/admin-guide/mm/ |
D | idle_page_tracking.rst | 11 accessed by a workload and which are idle. This information can be useful for 12 estimating the workload's working set size, which, in turn, can be taken into 13 account when configuring the workload parameters, setting memory cgroup limits, 14 or deciding where to place the workload within a compute cluster. 53 workload one should: 55 1. Mark all the workload's pages as idle by setting corresponding bits in 57 ``/proc/pid/pagemap`` if the workload is represented by a process, or by 58 filtering out alien pages using ``/proc/kpagecgroup`` in case the workload 61 2. Wait until the workload accesses its working set.
|
/Linux-v6.1/tools/perf/bench/ |
D | find-bit-bench.c | 34 static noinline void workload(int val) in workload() function 80 workload(bit); in do_for_each_set_bit() 93 workload(bit); in do_for_each_set_bit()
|
/Linux-v6.1/Documentation/filesystems/nfs/ |
D | knfsd-stats.rst | 54 Depending on the NFS workload patterns and various network stack 58 However this is a more accurate and less workload-dependent measure 74 pool for the NFS workload (the workload is thread-limited), in which 76 performance of the NFS workload. 93 threads configured than can be used by the NFS workload. This is 99 slow; the idle timeout is 60 minutes. Unless the NFS workload
|
/Linux-v6.1/tools/perf/tests/shell/ |
D | test_arm_spe_fork.sh | 44 int workload() { 53 return workload();
|
D | test_intel_pt.sh | 23 workload="${temp_dir}/workload" 63 cat << _end_of_file_ | /usr/bin/cc -o "${workload}" -xc - -pthread && have_workload=true 254 $workload & 256 $workload &
|
/Linux-v6.1/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ |
D | pp_psm.c | 270 long workload; in psm_adjust_power_state_dynamic() local 295 workload = hwmgr->workload_setting[index]; in psm_adjust_power_state_dynamic() 297 if (hwmgr->power_profile_mode != workload && hwmgr->hwmgr_func->set_power_profile_mode) in psm_adjust_power_state_dynamic() 298 hwmgr->hwmgr_func->set_power_profile_mode(hwmgr, &workload, 0); in psm_adjust_power_state_dynamic()
|
/Linux-v6.1/Documentation/scheduler/ |
D | sched-capacity.rst | 72 With a workload that periodically does a fixed amount of work, you will get an 103 Executing the same workload as described in 1.3.1, which each CPU running at its 111 workload on CPU1 151 One issue that needs to be taken into account is that a workload's duty cycle is 153 periodic workload at a given frequency F:: 162 Now, consider running the *same* workload at frequency F/2:: 184 identical workload on CPUs of different capacity values will yield different 192 Executing a given periodic workload on each CPU at their maximum frequency would 383 workload on CPU0 390 workload on CPU1 [all …]
|
/Linux-v6.1/Documentation/admin-guide/mm/damon/ |
D | start.rst | 50 with your real workload. The last line asks ``damo`` to record the access 123 accessed for >=60 seconds in your workload to be swapped out. :: 127 $ damo schemes -c test_scheme <pid of your workload>
|
/Linux-v6.1/Documentation/translations/zh_CN/scheduler/ |
D | sched-capacity.rst | 108 workload on CPU1 339 workload on CPU0 346 workload on CPU1
|
/Linux-v6.1/Documentation/admin-guide/pm/ |
D | intel-speed-select.rst | 10 variety of diverse workload requirements. 82 This feature allows configuration of a server dynamically based on workload 216 workload, disable turbo:: 220 Then runs a busy workload on all CPUs, for example:: 262 level 0 to 2800 MHz at performance level 4. As a result, any workload, which can 540 the user control base frequency. If some critical workload threads demand 568 Before enabling Intel(R) SST-BF and measuring its impact on a workload 569 performance, execute some workload and measure performance and get a baseline 584 To compare, pick a multi-threaded workload where each thread can be scheduled on 588 Below, the workload is measuring average scheduler wakeup latency, so a lower [all …]
|
D | intel_uncore_frequency_scaling.rst | 16 on the workload characteristics. To optimize the total power and improve overall 18 algorithms monitor workload usage of uncore and set a desirable frequency.
|
/Linux-v6.1/tools/perf/util/ |
D | bpf_lock_contention.c | 82 if (target__none(target) && evlist->workload.pid > 0) { in lock_contention_prepare() 83 u32 pid = evlist->workload.pid; in lock_contention_prepare()
|
D | evlist.c | 72 evlist->workload.pid = -1; in evlist__init() 1404 evlist->workload.pid = fork(); in evlist__prepare_workload() 1405 if (evlist->workload.pid < 0) { in evlist__prepare_workload() 1410 if (!evlist->workload.pid) { in evlist__prepare_workload() 1481 perf_thread_map__set_pid(evlist->core.threads, 0, evlist->workload.pid); in evlist__prepare_workload() 1495 evlist->workload.cork_fd = go_pipe[1]; in evlist__prepare_workload() 1510 if (evlist->workload.cork_fd > 0) { in evlist__start_workload() 1516 ret = write(evlist->workload.cork_fd, &bf, 1); in evlist__start_workload() 1520 close(evlist->workload.cork_fd); in evlist__start_workload()
|
/Linux-v6.1/Documentation/timers/ |
D | no_hz.rst | 52 However, if you are instead running a light workload with long idle 59 In addition, if you are running either a real-time workload or an HPC 60 workload with short iterations, the scheduling-clock interrupts can 61 degrade your applications performance. If this describes your workload, 206 but do not see any change in your workload's behavior. Is this because 207 your workload isn't affected that much by OS jitter, or is it because 218 possible, then you can conclude that your workload is not all that 294 constraining the workload. For example, the only way to eliminate
|
/Linux-v6.1/tools/lib/perf/Documentation/ |
D | libperf-counting.txt | 35 * does some workload 158 From this moment events are counting and we can do our workload.
|
/Linux-v6.1/Documentation/accounting/ |
D | psi.rst | 24 hardware according to workload demand. 32 workload health or risking major disruptions such as OOM kills. 50 actual CPU cycles are going to waste, and a workload that spends
|