1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3
4 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5
6 802.11 status code portion of this file from ethereal-0.10.6:
7 Copyright 2000, Axis Communications AB
8 Ethereal - Network traffic analyzer
9 By Gerald Combs <gerald@ethereal.com>
10 Copyright 1998 Gerald Combs
11
12
13 Contact Information:
14 Intel Linux Wireless <ilw@linux.intel.com>
15 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
16
17 ******************************************************************************/
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <net/cfg80211-wext.h>
22 #include "ipw2200.h"
23 #include "ipw.h"
24
25
26 #ifndef KBUILD_EXTMOD
27 #define VK "k"
28 #else
29 #define VK
30 #endif
31
32 #ifdef CONFIG_IPW2200_DEBUG
33 #define VD "d"
34 #else
35 #define VD
36 #endif
37
38 #ifdef CONFIG_IPW2200_MONITOR
39 #define VM "m"
40 #else
41 #define VM
42 #endif
43
44 #ifdef CONFIG_IPW2200_PROMISCUOUS
45 #define VP "p"
46 #else
47 #define VP
48 #endif
49
50 #ifdef CONFIG_IPW2200_RADIOTAP
51 #define VR "r"
52 #else
53 #define VR
54 #endif
55
56 #ifdef CONFIG_IPW2200_QOS
57 #define VQ "q"
58 #else
59 #define VQ
60 #endif
61
62 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
63 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
64 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
65 #define DRV_VERSION IPW2200_VERSION
66
67 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
68
69 MODULE_DESCRIPTION(DRV_DESCRIPTION);
70 MODULE_VERSION(DRV_VERSION);
71 MODULE_AUTHOR(DRV_COPYRIGHT);
72 MODULE_LICENSE("GPL");
73 MODULE_FIRMWARE("ipw2200-ibss.fw");
74 #ifdef CONFIG_IPW2200_MONITOR
75 MODULE_FIRMWARE("ipw2200-sniffer.fw");
76 #endif
77 MODULE_FIRMWARE("ipw2200-bss.fw");
78
79 static int cmdlog = 0;
80 static int debug = 0;
81 static int default_channel = 0;
82 static int network_mode = 0;
83
84 static u32 ipw_debug_level;
85 static int associate;
86 static int auto_create = 1;
87 static int led_support = 1;
88 static int disable = 0;
89 static int bt_coexist = 0;
90 static int hwcrypto = 0;
91 static int roaming = 1;
92 static const char ipw_modes[] = {
93 'a', 'b', 'g', '?'
94 };
95 static int antenna = CFG_SYS_ANTENNA_BOTH;
96
97 #ifdef CONFIG_IPW2200_PROMISCUOUS
98 static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */
99 #endif
100
101 static struct ieee80211_rate ipw2200_rates[] = {
102 { .bitrate = 10 },
103 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
104 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
105 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
106 { .bitrate = 60 },
107 { .bitrate = 90 },
108 { .bitrate = 120 },
109 { .bitrate = 180 },
110 { .bitrate = 240 },
111 { .bitrate = 360 },
112 { .bitrate = 480 },
113 { .bitrate = 540 }
114 };
115
116 #define ipw2200_a_rates (ipw2200_rates + 4)
117 #define ipw2200_num_a_rates 8
118 #define ipw2200_bg_rates (ipw2200_rates + 0)
119 #define ipw2200_num_bg_rates 12
120
121 /* Ugly macro to convert literal channel numbers into their mhz equivalents
122 * There are certianly some conditions that will break this (like feeding it '30')
123 * but they shouldn't arise since nothing talks on channel 30. */
124 #define ieee80211chan2mhz(x) \
125 (((x) <= 14) ? \
126 (((x) == 14) ? 2484 : ((x) * 5) + 2407) : \
127 ((x) + 1000) * 5)
128
129 #ifdef CONFIG_IPW2200_QOS
130 static int qos_enable = 0;
131 static int qos_burst_enable = 0;
132 static int qos_no_ack_mask = 0;
133 static int burst_duration_CCK = 0;
134 static int burst_duration_OFDM = 0;
135
136 static struct libipw_qos_parameters def_qos_parameters_OFDM = {
137 {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
138 QOS_TX3_CW_MIN_OFDM},
139 {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
140 QOS_TX3_CW_MAX_OFDM},
141 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
142 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
143 {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
144 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
145 };
146
147 static struct libipw_qos_parameters def_qos_parameters_CCK = {
148 {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
149 QOS_TX3_CW_MIN_CCK},
150 {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
151 QOS_TX3_CW_MAX_CCK},
152 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
153 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
154 {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
155 QOS_TX3_TXOP_LIMIT_CCK}
156 };
157
158 static struct libipw_qos_parameters def_parameters_OFDM = {
159 {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
160 DEF_TX3_CW_MIN_OFDM},
161 {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
162 DEF_TX3_CW_MAX_OFDM},
163 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
164 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
165 {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
166 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
167 };
168
169 static struct libipw_qos_parameters def_parameters_CCK = {
170 {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
171 DEF_TX3_CW_MIN_CCK},
172 {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
173 DEF_TX3_CW_MAX_CCK},
174 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
175 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
176 {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
177 DEF_TX3_TXOP_LIMIT_CCK}
178 };
179
180 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
181
182 static int from_priority_to_tx_queue[] = {
183 IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
184 IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
185 };
186
187 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
188
189 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
190 *qos_param);
191 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
192 *qos_param);
193 #endif /* CONFIG_IPW2200_QOS */
194
195 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
196 static void ipw_remove_current_network(struct ipw_priv *priv);
197 static void ipw_rx(struct ipw_priv *priv);
198 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
199 struct clx2_tx_queue *txq, int qindex);
200 static int ipw_queue_reset(struct ipw_priv *priv);
201
202 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, const void *buf,
203 int len, int sync);
204
205 static void ipw_tx_queue_free(struct ipw_priv *);
206
207 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
208 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
209 static void ipw_rx_queue_replenish(void *);
210 static int ipw_up(struct ipw_priv *);
211 static void ipw_bg_up(struct work_struct *work);
212 static void ipw_down(struct ipw_priv *);
213 static void ipw_bg_down(struct work_struct *work);
214 static int ipw_config(struct ipw_priv *);
215 static int init_supported_rates(struct ipw_priv *priv,
216 struct ipw_supported_rates *prates);
217 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
218 static void ipw_send_wep_keys(struct ipw_priv *, int);
219
snprint_line(char * buf,size_t count,const u8 * data,u32 len,u32 ofs)220 static int snprint_line(char *buf, size_t count,
221 const u8 * data, u32 len, u32 ofs)
222 {
223 int out, i, j, l;
224 char c;
225
226 out = scnprintf(buf, count, "%08X", ofs);
227
228 for (l = 0, i = 0; i < 2; i++) {
229 out += scnprintf(buf + out, count - out, " ");
230 for (j = 0; j < 8 && l < len; j++, l++)
231 out += scnprintf(buf + out, count - out, "%02X ",
232 data[(i * 8 + j)]);
233 for (; j < 8; j++)
234 out += scnprintf(buf + out, count - out, " ");
235 }
236
237 out += scnprintf(buf + out, count - out, " ");
238 for (l = 0, i = 0; i < 2; i++) {
239 out += scnprintf(buf + out, count - out, " ");
240 for (j = 0; j < 8 && l < len; j++, l++) {
241 c = data[(i * 8 + j)];
242 if (!isascii(c) || !isprint(c))
243 c = '.';
244
245 out += scnprintf(buf + out, count - out, "%c", c);
246 }
247
248 for (; j < 8; j++)
249 out += scnprintf(buf + out, count - out, " ");
250 }
251
252 return out;
253 }
254
printk_buf(int level,const u8 * data,u32 len)255 static void printk_buf(int level, const u8 * data, u32 len)
256 {
257 char line[81];
258 u32 ofs = 0;
259 if (!(ipw_debug_level & level))
260 return;
261
262 while (len) {
263 snprint_line(line, sizeof(line), &data[ofs],
264 min(len, 16U), ofs);
265 printk(KERN_DEBUG "%s\n", line);
266 ofs += 16;
267 len -= min(len, 16U);
268 }
269 }
270
snprintk_buf(u8 * output,size_t size,const u8 * data,size_t len)271 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
272 {
273 size_t out = size;
274 u32 ofs = 0;
275 int total = 0;
276
277 while (size && len) {
278 out = snprint_line(output, size, &data[ofs],
279 min_t(size_t, len, 16U), ofs);
280
281 ofs += 16;
282 output += out;
283 size -= out;
284 len -= min_t(size_t, len, 16U);
285 total += out;
286 }
287 return total;
288 }
289
290 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
291 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
292 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
293
294 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
295 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
296 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
297
298 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
299 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
ipw_write_reg8(struct ipw_priv * a,u32 b,u8 c)300 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
301 {
302 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
303 __LINE__, (u32) (b), (u32) (c));
304 _ipw_write_reg8(a, b, c);
305 }
306
307 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
308 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
ipw_write_reg16(struct ipw_priv * a,u32 b,u16 c)309 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
310 {
311 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
312 __LINE__, (u32) (b), (u32) (c));
313 _ipw_write_reg16(a, b, c);
314 }
315
316 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
317 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
ipw_write_reg32(struct ipw_priv * a,u32 b,u32 c)318 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
319 {
320 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
321 __LINE__, (u32) (b), (u32) (c));
322 _ipw_write_reg32(a, b, c);
323 }
324
325 /* 8-bit direct write (low 4K) */
_ipw_write8(struct ipw_priv * ipw,unsigned long ofs,u8 val)326 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
327 u8 val)
328 {
329 writeb(val, ipw->hw_base + ofs);
330 }
331
332 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
333 #define ipw_write8(ipw, ofs, val) do { \
334 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
335 __LINE__, (u32)(ofs), (u32)(val)); \
336 _ipw_write8(ipw, ofs, val); \
337 } while (0)
338
339 /* 16-bit direct write (low 4K) */
_ipw_write16(struct ipw_priv * ipw,unsigned long ofs,u16 val)340 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
341 u16 val)
342 {
343 writew(val, ipw->hw_base + ofs);
344 }
345
346 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
347 #define ipw_write16(ipw, ofs, val) do { \
348 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
349 __LINE__, (u32)(ofs), (u32)(val)); \
350 _ipw_write16(ipw, ofs, val); \
351 } while (0)
352
353 /* 32-bit direct write (low 4K) */
_ipw_write32(struct ipw_priv * ipw,unsigned long ofs,u32 val)354 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
355 u32 val)
356 {
357 writel(val, ipw->hw_base + ofs);
358 }
359
360 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
361 #define ipw_write32(ipw, ofs, val) do { \
362 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
363 __LINE__, (u32)(ofs), (u32)(val)); \
364 _ipw_write32(ipw, ofs, val); \
365 } while (0)
366
367 /* 8-bit direct read (low 4K) */
_ipw_read8(struct ipw_priv * ipw,unsigned long ofs)368 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
369 {
370 return readb(ipw->hw_base + ofs);
371 }
372
373 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
374 #define ipw_read8(ipw, ofs) ({ \
375 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
376 (u32)(ofs)); \
377 _ipw_read8(ipw, ofs); \
378 })
379
380 /* 16-bit direct read (low 4K) */
_ipw_read16(struct ipw_priv * ipw,unsigned long ofs)381 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
382 {
383 return readw(ipw->hw_base + ofs);
384 }
385
386 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
387 #define ipw_read16(ipw, ofs) ({ \
388 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
389 (u32)(ofs)); \
390 _ipw_read16(ipw, ofs); \
391 })
392
393 /* 32-bit direct read (low 4K) */
_ipw_read32(struct ipw_priv * ipw,unsigned long ofs)394 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
395 {
396 return readl(ipw->hw_base + ofs);
397 }
398
399 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
400 #define ipw_read32(ipw, ofs) ({ \
401 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
402 (u32)(ofs)); \
403 _ipw_read32(ipw, ofs); \
404 })
405
406 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
407 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
408 #define ipw_read_indirect(a, b, c, d) ({ \
409 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
410 __LINE__, (u32)(b), (u32)(d)); \
411 _ipw_read_indirect(a, b, c, d); \
412 })
413
414 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
415 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
416 int num);
417 #define ipw_write_indirect(a, b, c, d) do { \
418 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
419 __LINE__, (u32)(b), (u32)(d)); \
420 _ipw_write_indirect(a, b, c, d); \
421 } while (0)
422
423 /* 32-bit indirect write (above 4K) */
_ipw_write_reg32(struct ipw_priv * priv,u32 reg,u32 value)424 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
425 {
426 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
427 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
428 _ipw_write32(priv, IPW_INDIRECT_DATA, value);
429 }
430
431 /* 8-bit indirect write (above 4K) */
_ipw_write_reg8(struct ipw_priv * priv,u32 reg,u8 value)432 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
433 {
434 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
435 u32 dif_len = reg - aligned_addr;
436
437 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
438 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
439 _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
440 }
441
442 /* 16-bit indirect write (above 4K) */
_ipw_write_reg16(struct ipw_priv * priv,u32 reg,u16 value)443 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
444 {
445 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
446 u32 dif_len = (reg - aligned_addr) & (~0x1ul);
447
448 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
449 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
450 _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
451 }
452
453 /* 8-bit indirect read (above 4K) */
_ipw_read_reg8(struct ipw_priv * priv,u32 reg)454 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
455 {
456 u32 word;
457 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
458 IPW_DEBUG_IO(" reg = 0x%8X :\n", reg);
459 word = _ipw_read32(priv, IPW_INDIRECT_DATA);
460 return (word >> ((reg & 0x3) * 8)) & 0xff;
461 }
462
463 /* 32-bit indirect read (above 4K) */
_ipw_read_reg32(struct ipw_priv * priv,u32 reg)464 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
465 {
466 u32 value;
467
468 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
469
470 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
471 value = _ipw_read32(priv, IPW_INDIRECT_DATA);
472 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg, value);
473 return value;
474 }
475
476 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
477 /* for area above 1st 4K of SRAM/reg space */
_ipw_read_indirect(struct ipw_priv * priv,u32 addr,u8 * buf,int num)478 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
479 int num)
480 {
481 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
482 u32 dif_len = addr - aligned_addr;
483 u32 i;
484
485 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
486
487 if (num <= 0) {
488 return;
489 }
490
491 /* Read the first dword (or portion) byte by byte */
492 if (unlikely(dif_len)) {
493 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
494 /* Start reading at aligned_addr + dif_len */
495 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
496 *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
497 aligned_addr += 4;
498 }
499
500 /* Read all of the middle dwords as dwords, with auto-increment */
501 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
502 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
503 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
504
505 /* Read the last dword (or portion) byte by byte */
506 if (unlikely(num)) {
507 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
508 for (i = 0; num > 0; i++, num--)
509 *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
510 }
511 }
512
513 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
514 /* for area above 1st 4K of SRAM/reg space */
_ipw_write_indirect(struct ipw_priv * priv,u32 addr,u8 * buf,int num)515 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
516 int num)
517 {
518 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
519 u32 dif_len = addr - aligned_addr;
520 u32 i;
521
522 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
523
524 if (num <= 0) {
525 return;
526 }
527
528 /* Write the first dword (or portion) byte by byte */
529 if (unlikely(dif_len)) {
530 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
531 /* Start writing at aligned_addr + dif_len */
532 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
533 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
534 aligned_addr += 4;
535 }
536
537 /* Write all of the middle dwords as dwords, with auto-increment */
538 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
539 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
540 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
541
542 /* Write the last dword (or portion) byte by byte */
543 if (unlikely(num)) {
544 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
545 for (i = 0; num > 0; i++, num--, buf++)
546 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
547 }
548 }
549
550 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
551 /* for 1st 4K of SRAM/regs space */
ipw_write_direct(struct ipw_priv * priv,u32 addr,void * buf,int num)552 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
553 int num)
554 {
555 memcpy_toio((priv->hw_base + addr), buf, num);
556 }
557
558 /* Set bit(s) in low 4K of SRAM/regs */
ipw_set_bit(struct ipw_priv * priv,u32 reg,u32 mask)559 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
560 {
561 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
562 }
563
564 /* Clear bit(s) in low 4K of SRAM/regs */
ipw_clear_bit(struct ipw_priv * priv,u32 reg,u32 mask)565 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
566 {
567 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
568 }
569
__ipw_enable_interrupts(struct ipw_priv * priv)570 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
571 {
572 if (priv->status & STATUS_INT_ENABLED)
573 return;
574 priv->status |= STATUS_INT_ENABLED;
575 ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
576 }
577
__ipw_disable_interrupts(struct ipw_priv * priv)578 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
579 {
580 if (!(priv->status & STATUS_INT_ENABLED))
581 return;
582 priv->status &= ~STATUS_INT_ENABLED;
583 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
584 }
585
ipw_enable_interrupts(struct ipw_priv * priv)586 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
587 {
588 unsigned long flags;
589
590 spin_lock_irqsave(&priv->irq_lock, flags);
591 __ipw_enable_interrupts(priv);
592 spin_unlock_irqrestore(&priv->irq_lock, flags);
593 }
594
ipw_disable_interrupts(struct ipw_priv * priv)595 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
596 {
597 unsigned long flags;
598
599 spin_lock_irqsave(&priv->irq_lock, flags);
600 __ipw_disable_interrupts(priv);
601 spin_unlock_irqrestore(&priv->irq_lock, flags);
602 }
603
ipw_error_desc(u32 val)604 static char *ipw_error_desc(u32 val)
605 {
606 switch (val) {
607 case IPW_FW_ERROR_OK:
608 return "ERROR_OK";
609 case IPW_FW_ERROR_FAIL:
610 return "ERROR_FAIL";
611 case IPW_FW_ERROR_MEMORY_UNDERFLOW:
612 return "MEMORY_UNDERFLOW";
613 case IPW_FW_ERROR_MEMORY_OVERFLOW:
614 return "MEMORY_OVERFLOW";
615 case IPW_FW_ERROR_BAD_PARAM:
616 return "BAD_PARAM";
617 case IPW_FW_ERROR_BAD_CHECKSUM:
618 return "BAD_CHECKSUM";
619 case IPW_FW_ERROR_NMI_INTERRUPT:
620 return "NMI_INTERRUPT";
621 case IPW_FW_ERROR_BAD_DATABASE:
622 return "BAD_DATABASE";
623 case IPW_FW_ERROR_ALLOC_FAIL:
624 return "ALLOC_FAIL";
625 case IPW_FW_ERROR_DMA_UNDERRUN:
626 return "DMA_UNDERRUN";
627 case IPW_FW_ERROR_DMA_STATUS:
628 return "DMA_STATUS";
629 case IPW_FW_ERROR_DINO_ERROR:
630 return "DINO_ERROR";
631 case IPW_FW_ERROR_EEPROM_ERROR:
632 return "EEPROM_ERROR";
633 case IPW_FW_ERROR_SYSASSERT:
634 return "SYSASSERT";
635 case IPW_FW_ERROR_FATAL_ERROR:
636 return "FATAL_ERROR";
637 default:
638 return "UNKNOWN_ERROR";
639 }
640 }
641
ipw_dump_error_log(struct ipw_priv * priv,struct ipw_fw_error * error)642 static void ipw_dump_error_log(struct ipw_priv *priv,
643 struct ipw_fw_error *error)
644 {
645 u32 i;
646
647 if (!error) {
648 IPW_ERROR("Error allocating and capturing error log. "
649 "Nothing to dump.\n");
650 return;
651 }
652
653 IPW_ERROR("Start IPW Error Log Dump:\n");
654 IPW_ERROR("Status: 0x%08X, Config: %08X\n",
655 error->status, error->config);
656
657 for (i = 0; i < error->elem_len; i++)
658 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
659 ipw_error_desc(error->elem[i].desc),
660 error->elem[i].time,
661 error->elem[i].blink1,
662 error->elem[i].blink2,
663 error->elem[i].link1,
664 error->elem[i].link2, error->elem[i].data);
665 for (i = 0; i < error->log_len; i++)
666 IPW_ERROR("%i\t0x%08x\t%i\n",
667 error->log[i].time,
668 error->log[i].data, error->log[i].event);
669 }
670
ipw_is_init(struct ipw_priv * priv)671 static inline int ipw_is_init(struct ipw_priv *priv)
672 {
673 return (priv->status & STATUS_INIT) ? 1 : 0;
674 }
675
ipw_get_ordinal(struct ipw_priv * priv,u32 ord,void * val,u32 * len)676 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
677 {
678 u32 addr, field_info, field_len, field_count, total_len;
679
680 IPW_DEBUG_ORD("ordinal = %i\n", ord);
681
682 if (!priv || !val || !len) {
683 IPW_DEBUG_ORD("Invalid argument\n");
684 return -EINVAL;
685 }
686
687 /* verify device ordinal tables have been initialized */
688 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
689 IPW_DEBUG_ORD("Access ordinals before initialization\n");
690 return -EINVAL;
691 }
692
693 switch (IPW_ORD_TABLE_ID_MASK & ord) {
694 case IPW_ORD_TABLE_0_MASK:
695 /*
696 * TABLE 0: Direct access to a table of 32 bit values
697 *
698 * This is a very simple table with the data directly
699 * read from the table
700 */
701
702 /* remove the table id from the ordinal */
703 ord &= IPW_ORD_TABLE_VALUE_MASK;
704
705 /* boundary check */
706 if (ord > priv->table0_len) {
707 IPW_DEBUG_ORD("ordinal value (%i) longer then "
708 "max (%i)\n", ord, priv->table0_len);
709 return -EINVAL;
710 }
711
712 /* verify we have enough room to store the value */
713 if (*len < sizeof(u32)) {
714 IPW_DEBUG_ORD("ordinal buffer length too small, "
715 "need %zd\n", sizeof(u32));
716 return -EINVAL;
717 }
718
719 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
720 ord, priv->table0_addr + (ord << 2));
721
722 *len = sizeof(u32);
723 ord <<= 2;
724 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
725 break;
726
727 case IPW_ORD_TABLE_1_MASK:
728 /*
729 * TABLE 1: Indirect access to a table of 32 bit values
730 *
731 * This is a fairly large table of u32 values each
732 * representing starting addr for the data (which is
733 * also a u32)
734 */
735
736 /* remove the table id from the ordinal */
737 ord &= IPW_ORD_TABLE_VALUE_MASK;
738
739 /* boundary check */
740 if (ord > priv->table1_len) {
741 IPW_DEBUG_ORD("ordinal value too long\n");
742 return -EINVAL;
743 }
744
745 /* verify we have enough room to store the value */
746 if (*len < sizeof(u32)) {
747 IPW_DEBUG_ORD("ordinal buffer length too small, "
748 "need %zd\n", sizeof(u32));
749 return -EINVAL;
750 }
751
752 *((u32 *) val) =
753 ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
754 *len = sizeof(u32);
755 break;
756
757 case IPW_ORD_TABLE_2_MASK:
758 /*
759 * TABLE 2: Indirect access to a table of variable sized values
760 *
761 * This table consist of six values, each containing
762 * - dword containing the starting offset of the data
763 * - dword containing the lengh in the first 16bits
764 * and the count in the second 16bits
765 */
766
767 /* remove the table id from the ordinal */
768 ord &= IPW_ORD_TABLE_VALUE_MASK;
769
770 /* boundary check */
771 if (ord > priv->table2_len) {
772 IPW_DEBUG_ORD("ordinal value too long\n");
773 return -EINVAL;
774 }
775
776 /* get the address of statistic */
777 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
778
779 /* get the second DW of statistics ;
780 * two 16-bit words - first is length, second is count */
781 field_info =
782 ipw_read_reg32(priv,
783 priv->table2_addr + (ord << 3) +
784 sizeof(u32));
785
786 /* get each entry length */
787 field_len = *((u16 *) & field_info);
788
789 /* get number of entries */
790 field_count = *(((u16 *) & field_info) + 1);
791
792 /* abort if not enough memory */
793 total_len = field_len * field_count;
794 if (total_len > *len) {
795 *len = total_len;
796 return -EINVAL;
797 }
798
799 *len = total_len;
800 if (!total_len)
801 return 0;
802
803 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
804 "field_info = 0x%08x\n",
805 addr, total_len, field_info);
806 ipw_read_indirect(priv, addr, val, total_len);
807 break;
808
809 default:
810 IPW_DEBUG_ORD("Invalid ordinal!\n");
811 return -EINVAL;
812
813 }
814
815 return 0;
816 }
817
ipw_init_ordinals(struct ipw_priv * priv)818 static void ipw_init_ordinals(struct ipw_priv *priv)
819 {
820 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
821 priv->table0_len = ipw_read32(priv, priv->table0_addr);
822
823 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
824 priv->table0_addr, priv->table0_len);
825
826 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
827 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
828
829 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
830 priv->table1_addr, priv->table1_len);
831
832 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
833 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
834 priv->table2_len &= 0x0000ffff; /* use first two bytes */
835
836 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
837 priv->table2_addr, priv->table2_len);
838
839 }
840
ipw_register_toggle(u32 reg)841 static u32 ipw_register_toggle(u32 reg)
842 {
843 reg &= ~IPW_START_STANDBY;
844 if (reg & IPW_GATE_ODMA)
845 reg &= ~IPW_GATE_ODMA;
846 if (reg & IPW_GATE_IDMA)
847 reg &= ~IPW_GATE_IDMA;
848 if (reg & IPW_GATE_ADMA)
849 reg &= ~IPW_GATE_ADMA;
850 return reg;
851 }
852
853 /*
854 * LED behavior:
855 * - On radio ON, turn on any LEDs that require to be on during start
856 * - On initialization, start unassociated blink
857 * - On association, disable unassociated blink
858 * - On disassociation, start unassociated blink
859 * - On radio OFF, turn off any LEDs started during radio on
860 *
861 */
862 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
863 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
864 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
865
ipw_led_link_on(struct ipw_priv * priv)866 static void ipw_led_link_on(struct ipw_priv *priv)
867 {
868 unsigned long flags;
869 u32 led;
870
871 /* If configured to not use LEDs, or nic_type is 1,
872 * then we don't toggle a LINK led */
873 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
874 return;
875
876 spin_lock_irqsave(&priv->lock, flags);
877
878 if (!(priv->status & STATUS_RF_KILL_MASK) &&
879 !(priv->status & STATUS_LED_LINK_ON)) {
880 IPW_DEBUG_LED("Link LED On\n");
881 led = ipw_read_reg32(priv, IPW_EVENT_REG);
882 led |= priv->led_association_on;
883
884 led = ipw_register_toggle(led);
885
886 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
887 ipw_write_reg32(priv, IPW_EVENT_REG, led);
888
889 priv->status |= STATUS_LED_LINK_ON;
890
891 /* If we aren't associated, schedule turning the LED off */
892 if (!(priv->status & STATUS_ASSOCIATED))
893 schedule_delayed_work(&priv->led_link_off,
894 LD_TIME_LINK_ON);
895 }
896
897 spin_unlock_irqrestore(&priv->lock, flags);
898 }
899
ipw_bg_led_link_on(struct work_struct * work)900 static void ipw_bg_led_link_on(struct work_struct *work)
901 {
902 struct ipw_priv *priv =
903 container_of(work, struct ipw_priv, led_link_on.work);
904 mutex_lock(&priv->mutex);
905 ipw_led_link_on(priv);
906 mutex_unlock(&priv->mutex);
907 }
908
ipw_led_link_off(struct ipw_priv * priv)909 static void ipw_led_link_off(struct ipw_priv *priv)
910 {
911 unsigned long flags;
912 u32 led;
913
914 /* If configured not to use LEDs, or nic type is 1,
915 * then we don't goggle the LINK led. */
916 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
917 return;
918
919 spin_lock_irqsave(&priv->lock, flags);
920
921 if (priv->status & STATUS_LED_LINK_ON) {
922 led = ipw_read_reg32(priv, IPW_EVENT_REG);
923 led &= priv->led_association_off;
924 led = ipw_register_toggle(led);
925
926 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
927 ipw_write_reg32(priv, IPW_EVENT_REG, led);
928
929 IPW_DEBUG_LED("Link LED Off\n");
930
931 priv->status &= ~STATUS_LED_LINK_ON;
932
933 /* If we aren't associated and the radio is on, schedule
934 * turning the LED on (blink while unassociated) */
935 if (!(priv->status & STATUS_RF_KILL_MASK) &&
936 !(priv->status & STATUS_ASSOCIATED))
937 schedule_delayed_work(&priv->led_link_on,
938 LD_TIME_LINK_OFF);
939
940 }
941
942 spin_unlock_irqrestore(&priv->lock, flags);
943 }
944
ipw_bg_led_link_off(struct work_struct * work)945 static void ipw_bg_led_link_off(struct work_struct *work)
946 {
947 struct ipw_priv *priv =
948 container_of(work, struct ipw_priv, led_link_off.work);
949 mutex_lock(&priv->mutex);
950 ipw_led_link_off(priv);
951 mutex_unlock(&priv->mutex);
952 }
953
__ipw_led_activity_on(struct ipw_priv * priv)954 static void __ipw_led_activity_on(struct ipw_priv *priv)
955 {
956 u32 led;
957
958 if (priv->config & CFG_NO_LED)
959 return;
960
961 if (priv->status & STATUS_RF_KILL_MASK)
962 return;
963
964 if (!(priv->status & STATUS_LED_ACT_ON)) {
965 led = ipw_read_reg32(priv, IPW_EVENT_REG);
966 led |= priv->led_activity_on;
967
968 led = ipw_register_toggle(led);
969
970 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
971 ipw_write_reg32(priv, IPW_EVENT_REG, led);
972
973 IPW_DEBUG_LED("Activity LED On\n");
974
975 priv->status |= STATUS_LED_ACT_ON;
976
977 cancel_delayed_work(&priv->led_act_off);
978 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
979 } else {
980 /* Reschedule LED off for full time period */
981 cancel_delayed_work(&priv->led_act_off);
982 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
983 }
984 }
985
986 #if 0
987 void ipw_led_activity_on(struct ipw_priv *priv)
988 {
989 unsigned long flags;
990 spin_lock_irqsave(&priv->lock, flags);
991 __ipw_led_activity_on(priv);
992 spin_unlock_irqrestore(&priv->lock, flags);
993 }
994 #endif /* 0 */
995
ipw_led_activity_off(struct ipw_priv * priv)996 static void ipw_led_activity_off(struct ipw_priv *priv)
997 {
998 unsigned long flags;
999 u32 led;
1000
1001 if (priv->config & CFG_NO_LED)
1002 return;
1003
1004 spin_lock_irqsave(&priv->lock, flags);
1005
1006 if (priv->status & STATUS_LED_ACT_ON) {
1007 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1008 led &= priv->led_activity_off;
1009
1010 led = ipw_register_toggle(led);
1011
1012 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1013 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1014
1015 IPW_DEBUG_LED("Activity LED Off\n");
1016
1017 priv->status &= ~STATUS_LED_ACT_ON;
1018 }
1019
1020 spin_unlock_irqrestore(&priv->lock, flags);
1021 }
1022
ipw_bg_led_activity_off(struct work_struct * work)1023 static void ipw_bg_led_activity_off(struct work_struct *work)
1024 {
1025 struct ipw_priv *priv =
1026 container_of(work, struct ipw_priv, led_act_off.work);
1027 mutex_lock(&priv->mutex);
1028 ipw_led_activity_off(priv);
1029 mutex_unlock(&priv->mutex);
1030 }
1031
ipw_led_band_on(struct ipw_priv * priv)1032 static void ipw_led_band_on(struct ipw_priv *priv)
1033 {
1034 unsigned long flags;
1035 u32 led;
1036
1037 /* Only nic type 1 supports mode LEDs */
1038 if (priv->config & CFG_NO_LED ||
1039 priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1040 return;
1041
1042 spin_lock_irqsave(&priv->lock, flags);
1043
1044 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1045 if (priv->assoc_network->mode == IEEE_A) {
1046 led |= priv->led_ofdm_on;
1047 led &= priv->led_association_off;
1048 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1049 } else if (priv->assoc_network->mode == IEEE_G) {
1050 led |= priv->led_ofdm_on;
1051 led |= priv->led_association_on;
1052 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1053 } else {
1054 led &= priv->led_ofdm_off;
1055 led |= priv->led_association_on;
1056 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1057 }
1058
1059 led = ipw_register_toggle(led);
1060
1061 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1062 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1063
1064 spin_unlock_irqrestore(&priv->lock, flags);
1065 }
1066
ipw_led_band_off(struct ipw_priv * priv)1067 static void ipw_led_band_off(struct ipw_priv *priv)
1068 {
1069 unsigned long flags;
1070 u32 led;
1071
1072 /* Only nic type 1 supports mode LEDs */
1073 if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1074 return;
1075
1076 spin_lock_irqsave(&priv->lock, flags);
1077
1078 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1079 led &= priv->led_ofdm_off;
1080 led &= priv->led_association_off;
1081
1082 led = ipw_register_toggle(led);
1083
1084 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1085 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1086
1087 spin_unlock_irqrestore(&priv->lock, flags);
1088 }
1089
ipw_led_radio_on(struct ipw_priv * priv)1090 static void ipw_led_radio_on(struct ipw_priv *priv)
1091 {
1092 ipw_led_link_on(priv);
1093 }
1094
ipw_led_radio_off(struct ipw_priv * priv)1095 static void ipw_led_radio_off(struct ipw_priv *priv)
1096 {
1097 ipw_led_activity_off(priv);
1098 ipw_led_link_off(priv);
1099 }
1100
ipw_led_link_up(struct ipw_priv * priv)1101 static void ipw_led_link_up(struct ipw_priv *priv)
1102 {
1103 /* Set the Link Led on for all nic types */
1104 ipw_led_link_on(priv);
1105 }
1106
ipw_led_link_down(struct ipw_priv * priv)1107 static void ipw_led_link_down(struct ipw_priv *priv)
1108 {
1109 ipw_led_activity_off(priv);
1110 ipw_led_link_off(priv);
1111
1112 if (priv->status & STATUS_RF_KILL_MASK)
1113 ipw_led_radio_off(priv);
1114 }
1115
ipw_led_init(struct ipw_priv * priv)1116 static void ipw_led_init(struct ipw_priv *priv)
1117 {
1118 priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1119
1120 /* Set the default PINs for the link and activity leds */
1121 priv->led_activity_on = IPW_ACTIVITY_LED;
1122 priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1123
1124 priv->led_association_on = IPW_ASSOCIATED_LED;
1125 priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1126
1127 /* Set the default PINs for the OFDM leds */
1128 priv->led_ofdm_on = IPW_OFDM_LED;
1129 priv->led_ofdm_off = ~(IPW_OFDM_LED);
1130
1131 switch (priv->nic_type) {
1132 case EEPROM_NIC_TYPE_1:
1133 /* In this NIC type, the LEDs are reversed.... */
1134 priv->led_activity_on = IPW_ASSOCIATED_LED;
1135 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1136 priv->led_association_on = IPW_ACTIVITY_LED;
1137 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1138
1139 if (!(priv->config & CFG_NO_LED))
1140 ipw_led_band_on(priv);
1141
1142 /* And we don't blink link LEDs for this nic, so
1143 * just return here */
1144 return;
1145
1146 case EEPROM_NIC_TYPE_3:
1147 case EEPROM_NIC_TYPE_2:
1148 case EEPROM_NIC_TYPE_4:
1149 case EEPROM_NIC_TYPE_0:
1150 break;
1151
1152 default:
1153 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1154 priv->nic_type);
1155 priv->nic_type = EEPROM_NIC_TYPE_0;
1156 break;
1157 }
1158
1159 if (!(priv->config & CFG_NO_LED)) {
1160 if (priv->status & STATUS_ASSOCIATED)
1161 ipw_led_link_on(priv);
1162 else
1163 ipw_led_link_off(priv);
1164 }
1165 }
1166
ipw_led_shutdown(struct ipw_priv * priv)1167 static void ipw_led_shutdown(struct ipw_priv *priv)
1168 {
1169 ipw_led_activity_off(priv);
1170 ipw_led_link_off(priv);
1171 ipw_led_band_off(priv);
1172 cancel_delayed_work(&priv->led_link_on);
1173 cancel_delayed_work(&priv->led_link_off);
1174 cancel_delayed_work(&priv->led_act_off);
1175 }
1176
1177 /*
1178 * The following adds a new attribute to the sysfs representation
1179 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1180 * used for controlling the debug level.
1181 *
1182 * See the level definitions in ipw for details.
1183 */
debug_level_show(struct device_driver * d,char * buf)1184 static ssize_t debug_level_show(struct device_driver *d, char *buf)
1185 {
1186 return sprintf(buf, "0x%08X\n", ipw_debug_level);
1187 }
1188
debug_level_store(struct device_driver * d,const char * buf,size_t count)1189 static ssize_t debug_level_store(struct device_driver *d, const char *buf,
1190 size_t count)
1191 {
1192 char *p = (char *)buf;
1193 u32 val;
1194
1195 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1196 p++;
1197 if (p[0] == 'x' || p[0] == 'X')
1198 p++;
1199 val = simple_strtoul(p, &p, 16);
1200 } else
1201 val = simple_strtoul(p, &p, 10);
1202 if (p == buf)
1203 printk(KERN_INFO DRV_NAME
1204 ": %s is not in hex or decimal form.\n", buf);
1205 else
1206 ipw_debug_level = val;
1207
1208 return strnlen(buf, count);
1209 }
1210 static DRIVER_ATTR_RW(debug_level);
1211
ipw_get_event_log_len(struct ipw_priv * priv)1212 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1213 {
1214 /* length = 1st dword in log */
1215 return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1216 }
1217
ipw_capture_event_log(struct ipw_priv * priv,u32 log_len,struct ipw_event * log)1218 static void ipw_capture_event_log(struct ipw_priv *priv,
1219 u32 log_len, struct ipw_event *log)
1220 {
1221 u32 base;
1222
1223 if (log_len) {
1224 base = ipw_read32(priv, IPW_EVENT_LOG);
1225 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1226 (u8 *) log, sizeof(*log) * log_len);
1227 }
1228 }
1229
ipw_alloc_error_log(struct ipw_priv * priv)1230 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1231 {
1232 struct ipw_fw_error *error;
1233 u32 log_len = ipw_get_event_log_len(priv);
1234 u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1235 u32 elem_len = ipw_read_reg32(priv, base);
1236
1237 error = kmalloc(sizeof(*error) +
1238 sizeof(*error->elem) * elem_len +
1239 sizeof(*error->log) * log_len, GFP_ATOMIC);
1240 if (!error) {
1241 IPW_ERROR("Memory allocation for firmware error log "
1242 "failed.\n");
1243 return NULL;
1244 }
1245 error->jiffies = jiffies;
1246 error->status = priv->status;
1247 error->config = priv->config;
1248 error->elem_len = elem_len;
1249 error->log_len = log_len;
1250 error->elem = (struct ipw_error_elem *)error->payload;
1251 error->log = (struct ipw_event *)(error->elem + elem_len);
1252
1253 ipw_capture_event_log(priv, log_len, error->log);
1254
1255 if (elem_len)
1256 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1257 sizeof(*error->elem) * elem_len);
1258
1259 return error;
1260 }
1261
event_log_show(struct device * d,struct device_attribute * attr,char * buf)1262 static ssize_t event_log_show(struct device *d,
1263 struct device_attribute *attr, char *buf)
1264 {
1265 struct ipw_priv *priv = dev_get_drvdata(d);
1266 u32 log_len = ipw_get_event_log_len(priv);
1267 u32 log_size;
1268 struct ipw_event *log;
1269 u32 len = 0, i;
1270
1271 /* not using min() because of its strict type checking */
1272 log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1273 sizeof(*log) * log_len : PAGE_SIZE;
1274 log = kzalloc(log_size, GFP_KERNEL);
1275 if (!log) {
1276 IPW_ERROR("Unable to allocate memory for log\n");
1277 return 0;
1278 }
1279 log_len = log_size / sizeof(*log);
1280 ipw_capture_event_log(priv, log_len, log);
1281
1282 len += scnprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1283 for (i = 0; i < log_len; i++)
1284 len += scnprintf(buf + len, PAGE_SIZE - len,
1285 "\n%08X%08X%08X",
1286 log[i].time, log[i].event, log[i].data);
1287 len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
1288 kfree(log);
1289 return len;
1290 }
1291
1292 static DEVICE_ATTR_RO(event_log);
1293
error_show(struct device * d,struct device_attribute * attr,char * buf)1294 static ssize_t error_show(struct device *d,
1295 struct device_attribute *attr, char *buf)
1296 {
1297 struct ipw_priv *priv = dev_get_drvdata(d);
1298 u32 len = 0, i;
1299 if (!priv->error)
1300 return 0;
1301 len += scnprintf(buf + len, PAGE_SIZE - len,
1302 "%08lX%08X%08X%08X",
1303 priv->error->jiffies,
1304 priv->error->status,
1305 priv->error->config, priv->error->elem_len);
1306 for (i = 0; i < priv->error->elem_len; i++)
1307 len += scnprintf(buf + len, PAGE_SIZE - len,
1308 "\n%08X%08X%08X%08X%08X%08X%08X",
1309 priv->error->elem[i].time,
1310 priv->error->elem[i].desc,
1311 priv->error->elem[i].blink1,
1312 priv->error->elem[i].blink2,
1313 priv->error->elem[i].link1,
1314 priv->error->elem[i].link2,
1315 priv->error->elem[i].data);
1316
1317 len += scnprintf(buf + len, PAGE_SIZE - len,
1318 "\n%08X", priv->error->log_len);
1319 for (i = 0; i < priv->error->log_len; i++)
1320 len += scnprintf(buf + len, PAGE_SIZE - len,
1321 "\n%08X%08X%08X",
1322 priv->error->log[i].time,
1323 priv->error->log[i].event,
1324 priv->error->log[i].data);
1325 len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
1326 return len;
1327 }
1328
error_store(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1329 static ssize_t error_store(struct device *d,
1330 struct device_attribute *attr,
1331 const char *buf, size_t count)
1332 {
1333 struct ipw_priv *priv = dev_get_drvdata(d);
1334
1335 kfree(priv->error);
1336 priv->error = NULL;
1337 return count;
1338 }
1339
1340 static DEVICE_ATTR_RW(error);
1341
cmd_log_show(struct device * d,struct device_attribute * attr,char * buf)1342 static ssize_t cmd_log_show(struct device *d,
1343 struct device_attribute *attr, char *buf)
1344 {
1345 struct ipw_priv *priv = dev_get_drvdata(d);
1346 u32 len = 0, i;
1347 if (!priv->cmdlog)
1348 return 0;
1349 for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1350 (i != priv->cmdlog_pos) && (len < PAGE_SIZE);
1351 i = (i + 1) % priv->cmdlog_len) {
1352 len +=
1353 scnprintf(buf + len, PAGE_SIZE - len,
1354 "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1355 priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1356 priv->cmdlog[i].cmd.len);
1357 len +=
1358 snprintk_buf(buf + len, PAGE_SIZE - len,
1359 (u8 *) priv->cmdlog[i].cmd.param,
1360 priv->cmdlog[i].cmd.len);
1361 len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
1362 }
1363 len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
1364 return len;
1365 }
1366
1367 static DEVICE_ATTR_RO(cmd_log);
1368
1369 #ifdef CONFIG_IPW2200_PROMISCUOUS
1370 static void ipw_prom_free(struct ipw_priv *priv);
1371 static int ipw_prom_alloc(struct ipw_priv *priv);
rtap_iface_store(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1372 static ssize_t rtap_iface_store(struct device *d,
1373 struct device_attribute *attr,
1374 const char *buf, size_t count)
1375 {
1376 struct ipw_priv *priv = dev_get_drvdata(d);
1377 int rc = 0;
1378
1379 if (count < 1)
1380 return -EINVAL;
1381
1382 switch (buf[0]) {
1383 case '0':
1384 if (!rtap_iface)
1385 return count;
1386
1387 if (netif_running(priv->prom_net_dev)) {
1388 IPW_WARNING("Interface is up. Cannot unregister.\n");
1389 return count;
1390 }
1391
1392 ipw_prom_free(priv);
1393 rtap_iface = 0;
1394 break;
1395
1396 case '1':
1397 if (rtap_iface)
1398 return count;
1399
1400 rc = ipw_prom_alloc(priv);
1401 if (!rc)
1402 rtap_iface = 1;
1403 break;
1404
1405 default:
1406 return -EINVAL;
1407 }
1408
1409 if (rc) {
1410 IPW_ERROR("Failed to register promiscuous network "
1411 "device (error %d).\n", rc);
1412 }
1413
1414 return count;
1415 }
1416
rtap_iface_show(struct device * d,struct device_attribute * attr,char * buf)1417 static ssize_t rtap_iface_show(struct device *d,
1418 struct device_attribute *attr,
1419 char *buf)
1420 {
1421 struct ipw_priv *priv = dev_get_drvdata(d);
1422 if (rtap_iface)
1423 return sprintf(buf, "%s", priv->prom_net_dev->name);
1424 else {
1425 buf[0] = '-';
1426 buf[1] = '1';
1427 buf[2] = '\0';
1428 return 3;
1429 }
1430 }
1431
1432 static DEVICE_ATTR_ADMIN_RW(rtap_iface);
1433
rtap_filter_store(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1434 static ssize_t rtap_filter_store(struct device *d,
1435 struct device_attribute *attr,
1436 const char *buf, size_t count)
1437 {
1438 struct ipw_priv *priv = dev_get_drvdata(d);
1439
1440 if (!priv->prom_priv) {
1441 IPW_ERROR("Attempting to set filter without "
1442 "rtap_iface enabled.\n");
1443 return -EPERM;
1444 }
1445
1446 priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1447
1448 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1449 BIT_ARG16(priv->prom_priv->filter));
1450
1451 return count;
1452 }
1453
rtap_filter_show(struct device * d,struct device_attribute * attr,char * buf)1454 static ssize_t rtap_filter_show(struct device *d,
1455 struct device_attribute *attr,
1456 char *buf)
1457 {
1458 struct ipw_priv *priv = dev_get_drvdata(d);
1459 return sprintf(buf, "0x%04X",
1460 priv->prom_priv ? priv->prom_priv->filter : 0);
1461 }
1462
1463 static DEVICE_ATTR_ADMIN_RW(rtap_filter);
1464 #endif
1465
scan_age_show(struct device * d,struct device_attribute * attr,char * buf)1466 static ssize_t scan_age_show(struct device *d, struct device_attribute *attr,
1467 char *buf)
1468 {
1469 struct ipw_priv *priv = dev_get_drvdata(d);
1470 return sprintf(buf, "%d\n", priv->ieee->scan_age);
1471 }
1472
scan_age_store(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1473 static ssize_t scan_age_store(struct device *d, struct device_attribute *attr,
1474 const char *buf, size_t count)
1475 {
1476 struct ipw_priv *priv = dev_get_drvdata(d);
1477 struct net_device *dev = priv->net_dev;
1478 char buffer[] = "00000000";
1479 unsigned long len =
1480 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1481 unsigned long val;
1482 char *p = buffer;
1483
1484 IPW_DEBUG_INFO("enter\n");
1485
1486 strncpy(buffer, buf, len);
1487 buffer[len] = 0;
1488
1489 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1490 p++;
1491 if (p[0] == 'x' || p[0] == 'X')
1492 p++;
1493 val = simple_strtoul(p, &p, 16);
1494 } else
1495 val = simple_strtoul(p, &p, 10);
1496 if (p == buffer) {
1497 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1498 } else {
1499 priv->ieee->scan_age = val;
1500 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1501 }
1502
1503 IPW_DEBUG_INFO("exit\n");
1504 return len;
1505 }
1506
1507 static DEVICE_ATTR_RW(scan_age);
1508
led_show(struct device * d,struct device_attribute * attr,char * buf)1509 static ssize_t led_show(struct device *d, struct device_attribute *attr,
1510 char *buf)
1511 {
1512 struct ipw_priv *priv = dev_get_drvdata(d);
1513 return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1514 }
1515
led_store(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1516 static ssize_t led_store(struct device *d, struct device_attribute *attr,
1517 const char *buf, size_t count)
1518 {
1519 struct ipw_priv *priv = dev_get_drvdata(d);
1520
1521 IPW_DEBUG_INFO("enter\n");
1522
1523 if (count == 0)
1524 return 0;
1525
1526 if (*buf == 0) {
1527 IPW_DEBUG_LED("Disabling LED control.\n");
1528 priv->config |= CFG_NO_LED;
1529 ipw_led_shutdown(priv);
1530 } else {
1531 IPW_DEBUG_LED("Enabling LED control.\n");
1532 priv->config &= ~CFG_NO_LED;
1533 ipw_led_init(priv);
1534 }
1535
1536 IPW_DEBUG_INFO("exit\n");
1537 return count;
1538 }
1539
1540 static DEVICE_ATTR_RW(led);
1541
status_show(struct device * d,struct device_attribute * attr,char * buf)1542 static ssize_t status_show(struct device *d,
1543 struct device_attribute *attr, char *buf)
1544 {
1545 struct ipw_priv *p = dev_get_drvdata(d);
1546 return sprintf(buf, "0x%08x\n", (int)p->status);
1547 }
1548
1549 static DEVICE_ATTR_RO(status);
1550
cfg_show(struct device * d,struct device_attribute * attr,char * buf)1551 static ssize_t cfg_show(struct device *d, struct device_attribute *attr,
1552 char *buf)
1553 {
1554 struct ipw_priv *p = dev_get_drvdata(d);
1555 return sprintf(buf, "0x%08x\n", (int)p->config);
1556 }
1557
1558 static DEVICE_ATTR_RO(cfg);
1559
nic_type_show(struct device * d,struct device_attribute * attr,char * buf)1560 static ssize_t nic_type_show(struct device *d,
1561 struct device_attribute *attr, char *buf)
1562 {
1563 struct ipw_priv *priv = dev_get_drvdata(d);
1564 return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1565 }
1566
1567 static DEVICE_ATTR_RO(nic_type);
1568
ucode_version_show(struct device * d,struct device_attribute * attr,char * buf)1569 static ssize_t ucode_version_show(struct device *d,
1570 struct device_attribute *attr, char *buf)
1571 {
1572 u32 len = sizeof(u32), tmp = 0;
1573 struct ipw_priv *p = dev_get_drvdata(d);
1574
1575 if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1576 return 0;
1577
1578 return sprintf(buf, "0x%08x\n", tmp);
1579 }
1580
1581 static DEVICE_ATTR_RO(ucode_version);
1582
rtc_show(struct device * d,struct device_attribute * attr,char * buf)1583 static ssize_t rtc_show(struct device *d, struct device_attribute *attr,
1584 char *buf)
1585 {
1586 u32 len = sizeof(u32), tmp = 0;
1587 struct ipw_priv *p = dev_get_drvdata(d);
1588
1589 if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1590 return 0;
1591
1592 return sprintf(buf, "0x%08x\n", tmp);
1593 }
1594
1595 static DEVICE_ATTR_RO(rtc);
1596
1597 /*
1598 * Add a device attribute to view/control the delay between eeprom
1599 * operations.
1600 */
eeprom_delay_show(struct device * d,struct device_attribute * attr,char * buf)1601 static ssize_t eeprom_delay_show(struct device *d,
1602 struct device_attribute *attr, char *buf)
1603 {
1604 struct ipw_priv *p = dev_get_drvdata(d);
1605 int n = p->eeprom_delay;
1606 return sprintf(buf, "%i\n", n);
1607 }
eeprom_delay_store(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1608 static ssize_t eeprom_delay_store(struct device *d,
1609 struct device_attribute *attr,
1610 const char *buf, size_t count)
1611 {
1612 struct ipw_priv *p = dev_get_drvdata(d);
1613 sscanf(buf, "%i", &p->eeprom_delay);
1614 return strnlen(buf, count);
1615 }
1616
1617 static DEVICE_ATTR_RW(eeprom_delay);
1618
command_event_reg_show(struct device * d,struct device_attribute * attr,char * buf)1619 static ssize_t command_event_reg_show(struct device *d,
1620 struct device_attribute *attr, char *buf)
1621 {
1622 u32 reg = 0;
1623 struct ipw_priv *p = dev_get_drvdata(d);
1624
1625 reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1626 return sprintf(buf, "0x%08x\n", reg);
1627 }
command_event_reg_store(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1628 static ssize_t command_event_reg_store(struct device *d,
1629 struct device_attribute *attr,
1630 const char *buf, size_t count)
1631 {
1632 u32 reg;
1633 struct ipw_priv *p = dev_get_drvdata(d);
1634
1635 sscanf(buf, "%x", ®);
1636 ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1637 return strnlen(buf, count);
1638 }
1639
1640 static DEVICE_ATTR_RW(command_event_reg);
1641
mem_gpio_reg_show(struct device * d,struct device_attribute * attr,char * buf)1642 static ssize_t mem_gpio_reg_show(struct device *d,
1643 struct device_attribute *attr, char *buf)
1644 {
1645 u32 reg = 0;
1646 struct ipw_priv *p = dev_get_drvdata(d);
1647
1648 reg = ipw_read_reg32(p, 0x301100);
1649 return sprintf(buf, "0x%08x\n", reg);
1650 }
mem_gpio_reg_store(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1651 static ssize_t mem_gpio_reg_store(struct device *d,
1652 struct device_attribute *attr,
1653 const char *buf, size_t count)
1654 {
1655 u32 reg;
1656 struct ipw_priv *p = dev_get_drvdata(d);
1657
1658 sscanf(buf, "%x", ®);
1659 ipw_write_reg32(p, 0x301100, reg);
1660 return strnlen(buf, count);
1661 }
1662
1663 static DEVICE_ATTR_RW(mem_gpio_reg);
1664
indirect_dword_show(struct device * d,struct device_attribute * attr,char * buf)1665 static ssize_t indirect_dword_show(struct device *d,
1666 struct device_attribute *attr, char *buf)
1667 {
1668 u32 reg = 0;
1669 struct ipw_priv *priv = dev_get_drvdata(d);
1670
1671 if (priv->status & STATUS_INDIRECT_DWORD)
1672 reg = ipw_read_reg32(priv, priv->indirect_dword);
1673 else
1674 reg = 0;
1675
1676 return sprintf(buf, "0x%08x\n", reg);
1677 }
indirect_dword_store(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1678 static ssize_t indirect_dword_store(struct device *d,
1679 struct device_attribute *attr,
1680 const char *buf, size_t count)
1681 {
1682 struct ipw_priv *priv = dev_get_drvdata(d);
1683
1684 sscanf(buf, "%x", &priv->indirect_dword);
1685 priv->status |= STATUS_INDIRECT_DWORD;
1686 return strnlen(buf, count);
1687 }
1688
1689 static DEVICE_ATTR_RW(indirect_dword);
1690
indirect_byte_show(struct device * d,struct device_attribute * attr,char * buf)1691 static ssize_t indirect_byte_show(struct device *d,
1692 struct device_attribute *attr, char *buf)
1693 {
1694 u8 reg = 0;
1695 struct ipw_priv *priv = dev_get_drvdata(d);
1696
1697 if (priv->status & STATUS_INDIRECT_BYTE)
1698 reg = ipw_read_reg8(priv, priv->indirect_byte);
1699 else
1700 reg = 0;
1701
1702 return sprintf(buf, "0x%02x\n", reg);
1703 }
indirect_byte_store(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1704 static ssize_t indirect_byte_store(struct device *d,
1705 struct device_attribute *attr,
1706 const char *buf, size_t count)
1707 {
1708 struct ipw_priv *priv = dev_get_drvdata(d);
1709
1710 sscanf(buf, "%x", &priv->indirect_byte);
1711 priv->status |= STATUS_INDIRECT_BYTE;
1712 return strnlen(buf, count);
1713 }
1714
1715 static DEVICE_ATTR_RW(indirect_byte);
1716
direct_dword_show(struct device * d,struct device_attribute * attr,char * buf)1717 static ssize_t direct_dword_show(struct device *d,
1718 struct device_attribute *attr, char *buf)
1719 {
1720 u32 reg = 0;
1721 struct ipw_priv *priv = dev_get_drvdata(d);
1722
1723 if (priv->status & STATUS_DIRECT_DWORD)
1724 reg = ipw_read32(priv, priv->direct_dword);
1725 else
1726 reg = 0;
1727
1728 return sprintf(buf, "0x%08x\n", reg);
1729 }
direct_dword_store(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1730 static ssize_t direct_dword_store(struct device *d,
1731 struct device_attribute *attr,
1732 const char *buf, size_t count)
1733 {
1734 struct ipw_priv *priv = dev_get_drvdata(d);
1735
1736 sscanf(buf, "%x", &priv->direct_dword);
1737 priv->status |= STATUS_DIRECT_DWORD;
1738 return strnlen(buf, count);
1739 }
1740
1741 static DEVICE_ATTR_RW(direct_dword);
1742
rf_kill_active(struct ipw_priv * priv)1743 static int rf_kill_active(struct ipw_priv *priv)
1744 {
1745 if (0 == (ipw_read32(priv, 0x30) & 0x10000)) {
1746 priv->status |= STATUS_RF_KILL_HW;
1747 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1748 } else {
1749 priv->status &= ~STATUS_RF_KILL_HW;
1750 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1751 }
1752
1753 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1754 }
1755
rf_kill_show(struct device * d,struct device_attribute * attr,char * buf)1756 static ssize_t rf_kill_show(struct device *d, struct device_attribute *attr,
1757 char *buf)
1758 {
1759 /* 0 - RF kill not enabled
1760 1 - SW based RF kill active (sysfs)
1761 2 - HW based RF kill active
1762 3 - Both HW and SW baed RF kill active */
1763 struct ipw_priv *priv = dev_get_drvdata(d);
1764 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1765 (rf_kill_active(priv) ? 0x2 : 0x0);
1766 return sprintf(buf, "%i\n", val);
1767 }
1768
ipw_radio_kill_sw(struct ipw_priv * priv,int disable_radio)1769 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1770 {
1771 if ((disable_radio ? 1 : 0) ==
1772 ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1773 return 0;
1774
1775 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
1776 disable_radio ? "OFF" : "ON");
1777
1778 if (disable_radio) {
1779 priv->status |= STATUS_RF_KILL_SW;
1780
1781 cancel_delayed_work(&priv->request_scan);
1782 cancel_delayed_work(&priv->request_direct_scan);
1783 cancel_delayed_work(&priv->request_passive_scan);
1784 cancel_delayed_work(&priv->scan_event);
1785 schedule_work(&priv->down);
1786 } else {
1787 priv->status &= ~STATUS_RF_KILL_SW;
1788 if (rf_kill_active(priv)) {
1789 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1790 "disabled by HW switch\n");
1791 /* Make sure the RF_KILL check timer is running */
1792 cancel_delayed_work(&priv->rf_kill);
1793 schedule_delayed_work(&priv->rf_kill,
1794 round_jiffies_relative(2 * HZ));
1795 } else
1796 schedule_work(&priv->up);
1797 }
1798
1799 return 1;
1800 }
1801
rf_kill_store(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1802 static ssize_t rf_kill_store(struct device *d, struct device_attribute *attr,
1803 const char *buf, size_t count)
1804 {
1805 struct ipw_priv *priv = dev_get_drvdata(d);
1806
1807 ipw_radio_kill_sw(priv, buf[0] == '1');
1808
1809 return count;
1810 }
1811
1812 static DEVICE_ATTR_RW(rf_kill);
1813
speed_scan_show(struct device * d,struct device_attribute * attr,char * buf)1814 static ssize_t speed_scan_show(struct device *d, struct device_attribute *attr,
1815 char *buf)
1816 {
1817 struct ipw_priv *priv = dev_get_drvdata(d);
1818 int pos = 0, len = 0;
1819 if (priv->config & CFG_SPEED_SCAN) {
1820 while (priv->speed_scan[pos] != 0)
1821 len += sprintf(&buf[len], "%d ",
1822 priv->speed_scan[pos++]);
1823 return len + sprintf(&buf[len], "\n");
1824 }
1825
1826 return sprintf(buf, "0\n");
1827 }
1828
speed_scan_store(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1829 static ssize_t speed_scan_store(struct device *d, struct device_attribute *attr,
1830 const char *buf, size_t count)
1831 {
1832 struct ipw_priv *priv = dev_get_drvdata(d);
1833 int channel, pos = 0;
1834 const char *p = buf;
1835
1836 /* list of space separated channels to scan, optionally ending with 0 */
1837 while ((channel = simple_strtol(p, NULL, 0))) {
1838 if (pos == MAX_SPEED_SCAN - 1) {
1839 priv->speed_scan[pos] = 0;
1840 break;
1841 }
1842
1843 if (libipw_is_valid_channel(priv->ieee, channel))
1844 priv->speed_scan[pos++] = channel;
1845 else
1846 IPW_WARNING("Skipping invalid channel request: %d\n",
1847 channel);
1848 p = strchr(p, ' ');
1849 if (!p)
1850 break;
1851 while (*p == ' ' || *p == '\t')
1852 p++;
1853 }
1854
1855 if (pos == 0)
1856 priv->config &= ~CFG_SPEED_SCAN;
1857 else {
1858 priv->speed_scan_pos = 0;
1859 priv->config |= CFG_SPEED_SCAN;
1860 }
1861
1862 return count;
1863 }
1864
1865 static DEVICE_ATTR_RW(speed_scan);
1866
net_stats_show(struct device * d,struct device_attribute * attr,char * buf)1867 static ssize_t net_stats_show(struct device *d, struct device_attribute *attr,
1868 char *buf)
1869 {
1870 struct ipw_priv *priv = dev_get_drvdata(d);
1871 return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1872 }
1873
net_stats_store(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1874 static ssize_t net_stats_store(struct device *d, struct device_attribute *attr,
1875 const char *buf, size_t count)
1876 {
1877 struct ipw_priv *priv = dev_get_drvdata(d);
1878 if (buf[0] == '1')
1879 priv->config |= CFG_NET_STATS;
1880 else
1881 priv->config &= ~CFG_NET_STATS;
1882
1883 return count;
1884 }
1885
1886 static DEVICE_ATTR_RW(net_stats);
1887
channels_show(struct device * d,struct device_attribute * attr,char * buf)1888 static ssize_t channels_show(struct device *d,
1889 struct device_attribute *attr,
1890 char *buf)
1891 {
1892 struct ipw_priv *priv = dev_get_drvdata(d);
1893 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1894 int len = 0, i;
1895
1896 len = sprintf(&buf[len],
1897 "Displaying %d channels in 2.4Ghz band "
1898 "(802.11bg):\n", geo->bg_channels);
1899
1900 for (i = 0; i < geo->bg_channels; i++) {
1901 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1902 geo->bg[i].channel,
1903 geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ?
1904 " (radar spectrum)" : "",
1905 ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) ||
1906 (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT))
1907 ? "" : ", IBSS",
1908 geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1909 "passive only" : "active/passive",
1910 geo->bg[i].flags & LIBIPW_CH_B_ONLY ?
1911 "B" : "B/G");
1912 }
1913
1914 len += sprintf(&buf[len],
1915 "Displaying %d channels in 5.2Ghz band "
1916 "(802.11a):\n", geo->a_channels);
1917 for (i = 0; i < geo->a_channels; i++) {
1918 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1919 geo->a[i].channel,
1920 geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ?
1921 " (radar spectrum)" : "",
1922 ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) ||
1923 (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT))
1924 ? "" : ", IBSS",
1925 geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1926 "passive only" : "active/passive");
1927 }
1928
1929 return len;
1930 }
1931
1932 static DEVICE_ATTR_ADMIN_RO(channels);
1933
notify_wx_assoc_event(struct ipw_priv * priv)1934 static void notify_wx_assoc_event(struct ipw_priv *priv)
1935 {
1936 union iwreq_data wrqu;
1937 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1938 if (priv->status & STATUS_ASSOCIATED)
1939 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1940 else
1941 eth_zero_addr(wrqu.ap_addr.sa_data);
1942 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1943 }
1944
ipw_irq_tasklet(struct tasklet_struct * t)1945 static void ipw_irq_tasklet(struct tasklet_struct *t)
1946 {
1947 struct ipw_priv *priv = from_tasklet(priv, t, irq_tasklet);
1948 u32 inta, inta_mask, handled = 0;
1949 unsigned long flags;
1950
1951 spin_lock_irqsave(&priv->irq_lock, flags);
1952
1953 inta = ipw_read32(priv, IPW_INTA_RW);
1954 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1955
1956 if (inta == 0xFFFFFFFF) {
1957 /* Hardware disappeared */
1958 IPW_WARNING("TASKLET INTA == 0xFFFFFFFF\n");
1959 /* Only handle the cached INTA values */
1960 inta = 0;
1961 }
1962 inta &= (IPW_INTA_MASK_ALL & inta_mask);
1963
1964 /* Add any cached INTA values that need to be handled */
1965 inta |= priv->isr_inta;
1966
1967 spin_unlock_irqrestore(&priv->irq_lock, flags);
1968
1969 spin_lock_irqsave(&priv->lock, flags);
1970
1971 /* handle all the justifications for the interrupt */
1972 if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1973 ipw_rx(priv);
1974 handled |= IPW_INTA_BIT_RX_TRANSFER;
1975 }
1976
1977 if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1978 IPW_DEBUG_HC("Command completed.\n");
1979 ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1980 priv->status &= ~STATUS_HCMD_ACTIVE;
1981 wake_up_interruptible(&priv->wait_command_queue);
1982 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1983 }
1984
1985 if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1986 IPW_DEBUG_TX("TX_QUEUE_1\n");
1987 ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1988 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1989 }
1990
1991 if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1992 IPW_DEBUG_TX("TX_QUEUE_2\n");
1993 ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1994 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1995 }
1996
1997 if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1998 IPW_DEBUG_TX("TX_QUEUE_3\n");
1999 ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
2000 handled |= IPW_INTA_BIT_TX_QUEUE_3;
2001 }
2002
2003 if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
2004 IPW_DEBUG_TX("TX_QUEUE_4\n");
2005 ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
2006 handled |= IPW_INTA_BIT_TX_QUEUE_4;
2007 }
2008
2009 if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
2010 IPW_WARNING("STATUS_CHANGE\n");
2011 handled |= IPW_INTA_BIT_STATUS_CHANGE;
2012 }
2013
2014 if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
2015 IPW_WARNING("TX_PERIOD_EXPIRED\n");
2016 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2017 }
2018
2019 if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2020 IPW_WARNING("HOST_CMD_DONE\n");
2021 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2022 }
2023
2024 if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2025 IPW_WARNING("FW_INITIALIZATION_DONE\n");
2026 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2027 }
2028
2029 if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2030 IPW_WARNING("PHY_OFF_DONE\n");
2031 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2032 }
2033
2034 if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2035 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2036 priv->status |= STATUS_RF_KILL_HW;
2037 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2038 wake_up_interruptible(&priv->wait_command_queue);
2039 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2040 cancel_delayed_work(&priv->request_scan);
2041 cancel_delayed_work(&priv->request_direct_scan);
2042 cancel_delayed_work(&priv->request_passive_scan);
2043 cancel_delayed_work(&priv->scan_event);
2044 schedule_work(&priv->link_down);
2045 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
2046 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2047 }
2048
2049 if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2050 IPW_WARNING("Firmware error detected. Restarting.\n");
2051 if (priv->error) {
2052 IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2053 if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2054 struct ipw_fw_error *error =
2055 ipw_alloc_error_log(priv);
2056 ipw_dump_error_log(priv, error);
2057 kfree(error);
2058 }
2059 } else {
2060 priv->error = ipw_alloc_error_log(priv);
2061 if (priv->error)
2062 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2063 else
2064 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2065 "log.\n");
2066 if (ipw_debug_level & IPW_DL_FW_ERRORS)
2067 ipw_dump_error_log(priv, priv->error);
2068 }
2069
2070 /* XXX: If hardware encryption is for WPA/WPA2,
2071 * we have to notify the supplicant. */
2072 if (priv->ieee->sec.encrypt) {
2073 priv->status &= ~STATUS_ASSOCIATED;
2074 notify_wx_assoc_event(priv);
2075 }
2076
2077 /* Keep the restart process from trying to send host
2078 * commands by clearing the INIT status bit */
2079 priv->status &= ~STATUS_INIT;
2080
2081 /* Cancel currently queued command. */
2082 priv->status &= ~STATUS_HCMD_ACTIVE;
2083 wake_up_interruptible(&priv->wait_command_queue);
2084
2085 schedule_work(&priv->adapter_restart);
2086 handled |= IPW_INTA_BIT_FATAL_ERROR;
2087 }
2088
2089 if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2090 IPW_ERROR("Parity error\n");
2091 handled |= IPW_INTA_BIT_PARITY_ERROR;
2092 }
2093
2094 if (handled != inta) {
2095 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2096 }
2097
2098 spin_unlock_irqrestore(&priv->lock, flags);
2099
2100 /* enable all interrupts */
2101 ipw_enable_interrupts(priv);
2102 }
2103
2104 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
get_cmd_string(u8 cmd)2105 static char *get_cmd_string(u8 cmd)
2106 {
2107 switch (cmd) {
2108 IPW_CMD(HOST_COMPLETE);
2109 IPW_CMD(POWER_DOWN);
2110 IPW_CMD(SYSTEM_CONFIG);
2111 IPW_CMD(MULTICAST_ADDRESS);
2112 IPW_CMD(SSID);
2113 IPW_CMD(ADAPTER_ADDRESS);
2114 IPW_CMD(PORT_TYPE);
2115 IPW_CMD(RTS_THRESHOLD);
2116 IPW_CMD(FRAG_THRESHOLD);
2117 IPW_CMD(POWER_MODE);
2118 IPW_CMD(WEP_KEY);
2119 IPW_CMD(TGI_TX_KEY);
2120 IPW_CMD(SCAN_REQUEST);
2121 IPW_CMD(SCAN_REQUEST_EXT);
2122 IPW_CMD(ASSOCIATE);
2123 IPW_CMD(SUPPORTED_RATES);
2124 IPW_CMD(SCAN_ABORT);
2125 IPW_CMD(TX_FLUSH);
2126 IPW_CMD(QOS_PARAMETERS);
2127 IPW_CMD(DINO_CONFIG);
2128 IPW_CMD(RSN_CAPABILITIES);
2129 IPW_CMD(RX_KEY);
2130 IPW_CMD(CARD_DISABLE);
2131 IPW_CMD(SEED_NUMBER);
2132 IPW_CMD(TX_POWER);
2133 IPW_CMD(COUNTRY_INFO);
2134 IPW_CMD(AIRONET_INFO);
2135 IPW_CMD(AP_TX_POWER);
2136 IPW_CMD(CCKM_INFO);
2137 IPW_CMD(CCX_VER_INFO);
2138 IPW_CMD(SET_CALIBRATION);
2139 IPW_CMD(SENSITIVITY_CALIB);
2140 IPW_CMD(RETRY_LIMIT);
2141 IPW_CMD(IPW_PRE_POWER_DOWN);
2142 IPW_CMD(VAP_BEACON_TEMPLATE);
2143 IPW_CMD(VAP_DTIM_PERIOD);
2144 IPW_CMD(EXT_SUPPORTED_RATES);
2145 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2146 IPW_CMD(VAP_QUIET_INTERVALS);
2147 IPW_CMD(VAP_CHANNEL_SWITCH);
2148 IPW_CMD(VAP_MANDATORY_CHANNELS);
2149 IPW_CMD(VAP_CELL_PWR_LIMIT);
2150 IPW_CMD(VAP_CF_PARAM_SET);
2151 IPW_CMD(VAP_SET_BEACONING_STATE);
2152 IPW_CMD(MEASUREMENT);
2153 IPW_CMD(POWER_CAPABILITY);
2154 IPW_CMD(SUPPORTED_CHANNELS);
2155 IPW_CMD(TPC_REPORT);
2156 IPW_CMD(WME_INFO);
2157 IPW_CMD(PRODUCTION_COMMAND);
2158 default:
2159 return "UNKNOWN";
2160 }
2161 }
2162
2163 #define HOST_COMPLETE_TIMEOUT HZ
2164
__ipw_send_cmd(struct ipw_priv * priv,struct host_cmd * cmd)2165 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2166 {
2167 int rc = 0;
2168 unsigned long flags;
2169 unsigned long now, end;
2170
2171 spin_lock_irqsave(&priv->lock, flags);
2172 if (priv->status & STATUS_HCMD_ACTIVE) {
2173 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2174 get_cmd_string(cmd->cmd));
2175 spin_unlock_irqrestore(&priv->lock, flags);
2176 return -EAGAIN;
2177 }
2178
2179 priv->status |= STATUS_HCMD_ACTIVE;
2180
2181 if (priv->cmdlog) {
2182 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2183 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2184 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2185 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2186 cmd->len);
2187 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2188 }
2189
2190 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2191 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2192 priv->status);
2193
2194 #ifndef DEBUG_CMD_WEP_KEY
2195 if (cmd->cmd == IPW_CMD_WEP_KEY)
2196 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2197 else
2198 #endif
2199 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2200
2201 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2202 if (rc) {
2203 priv->status &= ~STATUS_HCMD_ACTIVE;
2204 IPW_ERROR("Failed to send %s: Reason %d\n",
2205 get_cmd_string(cmd->cmd), rc);
2206 spin_unlock_irqrestore(&priv->lock, flags);
2207 goto exit;
2208 }
2209 spin_unlock_irqrestore(&priv->lock, flags);
2210
2211 now = jiffies;
2212 end = now + HOST_COMPLETE_TIMEOUT;
2213 again:
2214 rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2215 !(priv->
2216 status & STATUS_HCMD_ACTIVE),
2217 end - now);
2218 if (rc < 0) {
2219 now = jiffies;
2220 if (time_before(now, end))
2221 goto again;
2222 rc = 0;
2223 }
2224
2225 if (rc == 0) {
2226 spin_lock_irqsave(&priv->lock, flags);
2227 if (priv->status & STATUS_HCMD_ACTIVE) {
2228 IPW_ERROR("Failed to send %s: Command timed out.\n",
2229 get_cmd_string(cmd->cmd));
2230 priv->status &= ~STATUS_HCMD_ACTIVE;
2231 spin_unlock_irqrestore(&priv->lock, flags);
2232 rc = -EIO;
2233 goto exit;
2234 }
2235 spin_unlock_irqrestore(&priv->lock, flags);
2236 } else
2237 rc = 0;
2238
2239 if (priv->status & STATUS_RF_KILL_HW) {
2240 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2241 get_cmd_string(cmd->cmd));
2242 rc = -EIO;
2243 goto exit;
2244 }
2245
2246 exit:
2247 if (priv->cmdlog) {
2248 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2249 priv->cmdlog_pos %= priv->cmdlog_len;
2250 }
2251 return rc;
2252 }
2253
ipw_send_cmd_simple(struct ipw_priv * priv,u8 command)2254 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2255 {
2256 struct host_cmd cmd = {
2257 .cmd = command,
2258 };
2259
2260 return __ipw_send_cmd(priv, &cmd);
2261 }
2262
ipw_send_cmd_pdu(struct ipw_priv * priv,u8 command,u8 len,const void * data)2263 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2264 const void *data)
2265 {
2266 struct host_cmd cmd = {
2267 .cmd = command,
2268 .len = len,
2269 .param = data,
2270 };
2271
2272 return __ipw_send_cmd(priv, &cmd);
2273 }
2274
ipw_send_host_complete(struct ipw_priv * priv)2275 static int ipw_send_host_complete(struct ipw_priv *priv)
2276 {
2277 if (!priv) {
2278 IPW_ERROR("Invalid args\n");
2279 return -1;
2280 }
2281
2282 return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2283 }
2284
ipw_send_system_config(struct ipw_priv * priv)2285 static int ipw_send_system_config(struct ipw_priv *priv)
2286 {
2287 return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2288 sizeof(priv->sys_config),
2289 &priv->sys_config);
2290 }
2291
ipw_send_ssid(struct ipw_priv * priv,u8 * ssid,int len)2292 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2293 {
2294 if (!priv || !ssid) {
2295 IPW_ERROR("Invalid args\n");
2296 return -1;
2297 }
2298
2299 return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2300 ssid);
2301 }
2302
ipw_send_adapter_address(struct ipw_priv * priv,const u8 * mac)2303 static int ipw_send_adapter_address(struct ipw_priv *priv, const u8 * mac)
2304 {
2305 if (!priv || !mac) {
2306 IPW_ERROR("Invalid args\n");
2307 return -1;
2308 }
2309
2310 IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2311 priv->net_dev->name, mac);
2312
2313 return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2314 }
2315
ipw_adapter_restart(void * adapter)2316 static void ipw_adapter_restart(void *adapter)
2317 {
2318 struct ipw_priv *priv = adapter;
2319
2320 if (priv->status & STATUS_RF_KILL_MASK)
2321 return;
2322
2323 ipw_down(priv);
2324
2325 if (priv->assoc_network &&
2326 (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2327 ipw_remove_current_network(priv);
2328
2329 if (ipw_up(priv)) {
2330 IPW_ERROR("Failed to up device\n");
2331 return;
2332 }
2333 }
2334
ipw_bg_adapter_restart(struct work_struct * work)2335 static void ipw_bg_adapter_restart(struct work_struct *work)
2336 {
2337 struct ipw_priv *priv =
2338 container_of(work, struct ipw_priv, adapter_restart);
2339 mutex_lock(&priv->mutex);
2340 ipw_adapter_restart(priv);
2341 mutex_unlock(&priv->mutex);
2342 }
2343
2344 static void ipw_abort_scan(struct ipw_priv *priv);
2345
2346 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2347
ipw_scan_check(void * data)2348 static void ipw_scan_check(void *data)
2349 {
2350 struct ipw_priv *priv = data;
2351
2352 if (priv->status & STATUS_SCAN_ABORTING) {
2353 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2354 "adapter after (%dms).\n",
2355 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2356 schedule_work(&priv->adapter_restart);
2357 } else if (priv->status & STATUS_SCANNING) {
2358 IPW_DEBUG_SCAN("Scan completion watchdog aborting scan "
2359 "after (%dms).\n",
2360 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2361 ipw_abort_scan(priv);
2362 schedule_delayed_work(&priv->scan_check, HZ);
2363 }
2364 }
2365
ipw_bg_scan_check(struct work_struct * work)2366 static void ipw_bg_scan_check(struct work_struct *work)
2367 {
2368 struct ipw_priv *priv =
2369 container_of(work, struct ipw_priv, scan_check.work);
2370 mutex_lock(&priv->mutex);
2371 ipw_scan_check(priv);
2372 mutex_unlock(&priv->mutex);
2373 }
2374
ipw_send_scan_request_ext(struct ipw_priv * priv,struct ipw_scan_request_ext * request)2375 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2376 struct ipw_scan_request_ext *request)
2377 {
2378 return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2379 sizeof(*request), request);
2380 }
2381
ipw_send_scan_abort(struct ipw_priv * priv)2382 static int ipw_send_scan_abort(struct ipw_priv *priv)
2383 {
2384 if (!priv) {
2385 IPW_ERROR("Invalid args\n");
2386 return -1;
2387 }
2388
2389 return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2390 }
2391
ipw_set_sensitivity(struct ipw_priv * priv,u16 sens)2392 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2393 {
2394 struct ipw_sensitivity_calib calib = {
2395 .beacon_rssi_raw = cpu_to_le16(sens),
2396 };
2397
2398 return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2399 &calib);
2400 }
2401
ipw_send_associate(struct ipw_priv * priv,struct ipw_associate * associate)2402 static int ipw_send_associate(struct ipw_priv *priv,
2403 struct ipw_associate *associate)
2404 {
2405 if (!priv || !associate) {
2406 IPW_ERROR("Invalid args\n");
2407 return -1;
2408 }
2409
2410 return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2411 associate);
2412 }
2413
ipw_send_supported_rates(struct ipw_priv * priv,struct ipw_supported_rates * rates)2414 static int ipw_send_supported_rates(struct ipw_priv *priv,
2415 struct ipw_supported_rates *rates)
2416 {
2417 if (!priv || !rates) {
2418 IPW_ERROR("Invalid args\n");
2419 return -1;
2420 }
2421
2422 return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2423 rates);
2424 }
2425
ipw_set_random_seed(struct ipw_priv * priv)2426 static int ipw_set_random_seed(struct ipw_priv *priv)
2427 {
2428 u32 val;
2429
2430 if (!priv) {
2431 IPW_ERROR("Invalid args\n");
2432 return -1;
2433 }
2434
2435 get_random_bytes(&val, sizeof(val));
2436
2437 return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2438 }
2439
ipw_send_card_disable(struct ipw_priv * priv,u32 phy_off)2440 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2441 {
2442 __le32 v = cpu_to_le32(phy_off);
2443 if (!priv) {
2444 IPW_ERROR("Invalid args\n");
2445 return -1;
2446 }
2447
2448 return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2449 }
2450
ipw_send_tx_power(struct ipw_priv * priv,struct ipw_tx_power * power)2451 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2452 {
2453 if (!priv || !power) {
2454 IPW_ERROR("Invalid args\n");
2455 return -1;
2456 }
2457
2458 return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2459 }
2460
ipw_set_tx_power(struct ipw_priv * priv)2461 static int ipw_set_tx_power(struct ipw_priv *priv)
2462 {
2463 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
2464 struct ipw_tx_power tx_power;
2465 s8 max_power;
2466 int i;
2467
2468 memset(&tx_power, 0, sizeof(tx_power));
2469
2470 /* configure device for 'G' band */
2471 tx_power.ieee_mode = IPW_G_MODE;
2472 tx_power.num_channels = geo->bg_channels;
2473 for (i = 0; i < geo->bg_channels; i++) {
2474 max_power = geo->bg[i].max_power;
2475 tx_power.channels_tx_power[i].channel_number =
2476 geo->bg[i].channel;
2477 tx_power.channels_tx_power[i].tx_power = max_power ?
2478 min(max_power, priv->tx_power) : priv->tx_power;
2479 }
2480 if (ipw_send_tx_power(priv, &tx_power))
2481 return -EIO;
2482
2483 /* configure device to also handle 'B' band */
2484 tx_power.ieee_mode = IPW_B_MODE;
2485 if (ipw_send_tx_power(priv, &tx_power))
2486 return -EIO;
2487
2488 /* configure device to also handle 'A' band */
2489 if (priv->ieee->abg_true) {
2490 tx_power.ieee_mode = IPW_A_MODE;
2491 tx_power.num_channels = geo->a_channels;
2492 for (i = 0; i < tx_power.num_channels; i++) {
2493 max_power = geo->a[i].max_power;
2494 tx_power.channels_tx_power[i].channel_number =
2495 geo->a[i].channel;
2496 tx_power.channels_tx_power[i].tx_power = max_power ?
2497 min(max_power, priv->tx_power) : priv->tx_power;
2498 }
2499 if (ipw_send_tx_power(priv, &tx_power))
2500 return -EIO;
2501 }
2502 return 0;
2503 }
2504
ipw_send_rts_threshold(struct ipw_priv * priv,u16 rts)2505 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2506 {
2507 struct ipw_rts_threshold rts_threshold = {
2508 .rts_threshold = cpu_to_le16(rts),
2509 };
2510
2511 if (!priv) {
2512 IPW_ERROR("Invalid args\n");
2513 return -1;
2514 }
2515
2516 return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2517 sizeof(rts_threshold), &rts_threshold);
2518 }
2519
ipw_send_frag_threshold(struct ipw_priv * priv,u16 frag)2520 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2521 {
2522 struct ipw_frag_threshold frag_threshold = {
2523 .frag_threshold = cpu_to_le16(frag),
2524 };
2525
2526 if (!priv) {
2527 IPW_ERROR("Invalid args\n");
2528 return -1;
2529 }
2530
2531 return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2532 sizeof(frag_threshold), &frag_threshold);
2533 }
2534
ipw_send_power_mode(struct ipw_priv * priv,u32 mode)2535 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2536 {
2537 __le32 param;
2538
2539 if (!priv) {
2540 IPW_ERROR("Invalid args\n");
2541 return -1;
2542 }
2543
2544 /* If on battery, set to 3, if AC set to CAM, else user
2545 * level */
2546 switch (mode) {
2547 case IPW_POWER_BATTERY:
2548 param = cpu_to_le32(IPW_POWER_INDEX_3);
2549 break;
2550 case IPW_POWER_AC:
2551 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2552 break;
2553 default:
2554 param = cpu_to_le32(mode);
2555 break;
2556 }
2557
2558 return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2559 ¶m);
2560 }
2561
ipw_send_retry_limit(struct ipw_priv * priv,u8 slimit,u8 llimit)2562 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2563 {
2564 struct ipw_retry_limit retry_limit = {
2565 .short_retry_limit = slimit,
2566 .long_retry_limit = llimit
2567 };
2568
2569 if (!priv) {
2570 IPW_ERROR("Invalid args\n");
2571 return -1;
2572 }
2573
2574 return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2575 &retry_limit);
2576 }
2577
2578 /*
2579 * The IPW device contains a Microwire compatible EEPROM that stores
2580 * various data like the MAC address. Usually the firmware has exclusive
2581 * access to the eeprom, but during device initialization (before the
2582 * device driver has sent the HostComplete command to the firmware) the
2583 * device driver has read access to the EEPROM by way of indirect addressing
2584 * through a couple of memory mapped registers.
2585 *
2586 * The following is a simplified implementation for pulling data out of the
2587 * eeprom, along with some helper functions to find information in
2588 * the per device private data's copy of the eeprom.
2589 *
2590 * NOTE: To better understand how these functions work (i.e what is a chip
2591 * select and why do have to keep driving the eeprom clock?), read
2592 * just about any data sheet for a Microwire compatible EEPROM.
2593 */
2594
2595 /* write a 32 bit value into the indirect accessor register */
eeprom_write_reg(struct ipw_priv * p,u32 data)2596 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2597 {
2598 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2599
2600 /* the eeprom requires some time to complete the operation */
2601 udelay(p->eeprom_delay);
2602 }
2603
2604 /* perform a chip select operation */
eeprom_cs(struct ipw_priv * priv)2605 static void eeprom_cs(struct ipw_priv *priv)
2606 {
2607 eeprom_write_reg(priv, 0);
2608 eeprom_write_reg(priv, EEPROM_BIT_CS);
2609 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2610 eeprom_write_reg(priv, EEPROM_BIT_CS);
2611 }
2612
2613 /* perform a chip select operation */
eeprom_disable_cs(struct ipw_priv * priv)2614 static void eeprom_disable_cs(struct ipw_priv *priv)
2615 {
2616 eeprom_write_reg(priv, EEPROM_BIT_CS);
2617 eeprom_write_reg(priv, 0);
2618 eeprom_write_reg(priv, EEPROM_BIT_SK);
2619 }
2620
2621 /* push a single bit down to the eeprom */
eeprom_write_bit(struct ipw_priv * p,u8 bit)2622 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2623 {
2624 int d = (bit ? EEPROM_BIT_DI : 0);
2625 eeprom_write_reg(p, EEPROM_BIT_CS | d);
2626 eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2627 }
2628
2629 /* push an opcode followed by an address down to the eeprom */
eeprom_op(struct ipw_priv * priv,u8 op,u8 addr)2630 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2631 {
2632 int i;
2633
2634 eeprom_cs(priv);
2635 eeprom_write_bit(priv, 1);
2636 eeprom_write_bit(priv, op & 2);
2637 eeprom_write_bit(priv, op & 1);
2638 for (i = 7; i >= 0; i--) {
2639 eeprom_write_bit(priv, addr & (1 << i));
2640 }
2641 }
2642
2643 /* pull 16 bits off the eeprom, one bit at a time */
eeprom_read_u16(struct ipw_priv * priv,u8 addr)2644 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2645 {
2646 int i;
2647 u16 r = 0;
2648
2649 /* Send READ Opcode */
2650 eeprom_op(priv, EEPROM_CMD_READ, addr);
2651
2652 /* Send dummy bit */
2653 eeprom_write_reg(priv, EEPROM_BIT_CS);
2654
2655 /* Read the byte off the eeprom one bit at a time */
2656 for (i = 0; i < 16; i++) {
2657 u32 data = 0;
2658 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2659 eeprom_write_reg(priv, EEPROM_BIT_CS);
2660 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2661 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2662 }
2663
2664 /* Send another dummy bit */
2665 eeprom_write_reg(priv, 0);
2666 eeprom_disable_cs(priv);
2667
2668 return r;
2669 }
2670
2671 /* helper function for pulling the mac address out of the private */
2672 /* data's copy of the eeprom data */
eeprom_parse_mac(struct ipw_priv * priv,u8 * mac)2673 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2674 {
2675 memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], ETH_ALEN);
2676 }
2677
ipw_read_eeprom(struct ipw_priv * priv)2678 static void ipw_read_eeprom(struct ipw_priv *priv)
2679 {
2680 int i;
2681 __le16 *eeprom = (__le16 *) priv->eeprom;
2682
2683 IPW_DEBUG_TRACE(">>\n");
2684
2685 /* read entire contents of eeprom into private buffer */
2686 for (i = 0; i < 128; i++)
2687 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2688
2689 IPW_DEBUG_TRACE("<<\n");
2690 }
2691
2692 /*
2693 * Either the device driver (i.e. the host) or the firmware can
2694 * load eeprom data into the designated region in SRAM. If neither
2695 * happens then the FW will shutdown with a fatal error.
2696 *
2697 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2698 * bit needs region of shared SRAM needs to be non-zero.
2699 */
ipw_eeprom_init_sram(struct ipw_priv * priv)2700 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2701 {
2702 int i;
2703
2704 IPW_DEBUG_TRACE(">>\n");
2705
2706 /*
2707 If the data looks correct, then copy it to our private
2708 copy. Otherwise let the firmware know to perform the operation
2709 on its own.
2710 */
2711 if (priv->eeprom[EEPROM_VERSION] != 0) {
2712 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2713
2714 /* write the eeprom data to sram */
2715 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2716 ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2717
2718 /* Do not load eeprom data on fatal error or suspend */
2719 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2720 } else {
2721 IPW_DEBUG_INFO("Enabling FW initialization of SRAM\n");
2722
2723 /* Load eeprom data on fatal error or suspend */
2724 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2725 }
2726
2727 IPW_DEBUG_TRACE("<<\n");
2728 }
2729
ipw_zero_memory(struct ipw_priv * priv,u32 start,u32 count)2730 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2731 {
2732 count >>= 2;
2733 if (!count)
2734 return;
2735 _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2736 while (count--)
2737 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2738 }
2739
ipw_fw_dma_reset_command_blocks(struct ipw_priv * priv)2740 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2741 {
2742 ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2743 CB_NUMBER_OF_ELEMENTS_SMALL *
2744 sizeof(struct command_block));
2745 }
2746
ipw_fw_dma_enable(struct ipw_priv * priv)2747 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2748 { /* start dma engine but no transfers yet */
2749
2750 IPW_DEBUG_FW(">> :\n");
2751
2752 /* Start the dma */
2753 ipw_fw_dma_reset_command_blocks(priv);
2754
2755 /* Write CB base address */
2756 ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2757
2758 IPW_DEBUG_FW("<< :\n");
2759 return 0;
2760 }
2761
ipw_fw_dma_abort(struct ipw_priv * priv)2762 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2763 {
2764 u32 control = 0;
2765
2766 IPW_DEBUG_FW(">> :\n");
2767
2768 /* set the Stop and Abort bit */
2769 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2770 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2771 priv->sram_desc.last_cb_index = 0;
2772
2773 IPW_DEBUG_FW("<<\n");
2774 }
2775
ipw_fw_dma_write_command_block(struct ipw_priv * priv,int index,struct command_block * cb)2776 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2777 struct command_block *cb)
2778 {
2779 u32 address =
2780 IPW_SHARED_SRAM_DMA_CONTROL +
2781 (sizeof(struct command_block) * index);
2782 IPW_DEBUG_FW(">> :\n");
2783
2784 ipw_write_indirect(priv, address, (u8 *) cb,
2785 (int)sizeof(struct command_block));
2786
2787 IPW_DEBUG_FW("<< :\n");
2788 return 0;
2789
2790 }
2791
ipw_fw_dma_kick(struct ipw_priv * priv)2792 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2793 {
2794 u32 control = 0;
2795 u32 index = 0;
2796
2797 IPW_DEBUG_FW(">> :\n");
2798
2799 for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2800 ipw_fw_dma_write_command_block(priv, index,
2801 &priv->sram_desc.cb_list[index]);
2802
2803 /* Enable the DMA in the CSR register */
2804 ipw_clear_bit(priv, IPW_RESET_REG,
2805 IPW_RESET_REG_MASTER_DISABLED |
2806 IPW_RESET_REG_STOP_MASTER);
2807
2808 /* Set the Start bit. */
2809 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2810 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2811
2812 IPW_DEBUG_FW("<< :\n");
2813 return 0;
2814 }
2815
ipw_fw_dma_dump_command_block(struct ipw_priv * priv)2816 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2817 {
2818 u32 address;
2819 u32 register_value = 0;
2820 u32 cb_fields_address = 0;
2821
2822 IPW_DEBUG_FW(">> :\n");
2823 address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2824 IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address);
2825
2826 /* Read the DMA Controlor register */
2827 register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2828 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value);
2829
2830 /* Print the CB values */
2831 cb_fields_address = address;
2832 register_value = ipw_read_reg32(priv, cb_fields_address);
2833 IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value);
2834
2835 cb_fields_address += sizeof(u32);
2836 register_value = ipw_read_reg32(priv, cb_fields_address);
2837 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value);
2838
2839 cb_fields_address += sizeof(u32);
2840 register_value = ipw_read_reg32(priv, cb_fields_address);
2841 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n",
2842 register_value);
2843
2844 cb_fields_address += sizeof(u32);
2845 register_value = ipw_read_reg32(priv, cb_fields_address);
2846 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value);
2847
2848 IPW_DEBUG_FW(">> :\n");
2849 }
2850
ipw_fw_dma_command_block_index(struct ipw_priv * priv)2851 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2852 {
2853 u32 current_cb_address = 0;
2854 u32 current_cb_index = 0;
2855
2856 IPW_DEBUG_FW("<< :\n");
2857 current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2858
2859 current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2860 sizeof(struct command_block);
2861
2862 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n",
2863 current_cb_index, current_cb_address);
2864
2865 IPW_DEBUG_FW(">> :\n");
2866 return current_cb_index;
2867
2868 }
2869
ipw_fw_dma_add_command_block(struct ipw_priv * priv,u32 src_address,u32 dest_address,u32 length,int interrupt_enabled,int is_last)2870 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2871 u32 src_address,
2872 u32 dest_address,
2873 u32 length,
2874 int interrupt_enabled, int is_last)
2875 {
2876
2877 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2878 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2879 CB_DEST_SIZE_LONG;
2880 struct command_block *cb;
2881 u32 last_cb_element = 0;
2882
2883 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2884 src_address, dest_address, length);
2885
2886 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2887 return -1;
2888
2889 last_cb_element = priv->sram_desc.last_cb_index;
2890 cb = &priv->sram_desc.cb_list[last_cb_element];
2891 priv->sram_desc.last_cb_index++;
2892
2893 /* Calculate the new CB control word */
2894 if (interrupt_enabled)
2895 control |= CB_INT_ENABLED;
2896
2897 if (is_last)
2898 control |= CB_LAST_VALID;
2899
2900 control |= length;
2901
2902 /* Calculate the CB Element's checksum value */
2903 cb->status = control ^ src_address ^ dest_address;
2904
2905 /* Copy the Source and Destination addresses */
2906 cb->dest_addr = dest_address;
2907 cb->source_addr = src_address;
2908
2909 /* Copy the Control Word last */
2910 cb->control = control;
2911
2912 return 0;
2913 }
2914
ipw_fw_dma_add_buffer(struct ipw_priv * priv,dma_addr_t * src_address,int nr,u32 dest_address,u32 len)2915 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address,
2916 int nr, u32 dest_address, u32 len)
2917 {
2918 int ret, i;
2919 u32 size;
2920
2921 IPW_DEBUG_FW(">>\n");
2922 IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
2923 nr, dest_address, len);
2924
2925 for (i = 0; i < nr; i++) {
2926 size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH);
2927 ret = ipw_fw_dma_add_command_block(priv, src_address[i],
2928 dest_address +
2929 i * CB_MAX_LENGTH, size,
2930 0, 0);
2931 if (ret) {
2932 IPW_DEBUG_FW_INFO(": Failed\n");
2933 return -1;
2934 } else
2935 IPW_DEBUG_FW_INFO(": Added new cb\n");
2936 }
2937
2938 IPW_DEBUG_FW("<<\n");
2939 return 0;
2940 }
2941
ipw_fw_dma_wait(struct ipw_priv * priv)2942 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2943 {
2944 u32 current_index = 0, previous_index;
2945 u32 watchdog = 0;
2946
2947 IPW_DEBUG_FW(">> :\n");
2948
2949 current_index = ipw_fw_dma_command_block_index(priv);
2950 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2951 (int)priv->sram_desc.last_cb_index);
2952
2953 while (current_index < priv->sram_desc.last_cb_index) {
2954 udelay(50);
2955 previous_index = current_index;
2956 current_index = ipw_fw_dma_command_block_index(priv);
2957
2958 if (previous_index < current_index) {
2959 watchdog = 0;
2960 continue;
2961 }
2962 if (++watchdog > 400) {
2963 IPW_DEBUG_FW_INFO("Timeout\n");
2964 ipw_fw_dma_dump_command_block(priv);
2965 ipw_fw_dma_abort(priv);
2966 return -1;
2967 }
2968 }
2969
2970 ipw_fw_dma_abort(priv);
2971
2972 /*Disable the DMA in the CSR register */
2973 ipw_set_bit(priv, IPW_RESET_REG,
2974 IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2975
2976 IPW_DEBUG_FW("<< dmaWaitSync\n");
2977 return 0;
2978 }
2979
ipw_remove_current_network(struct ipw_priv * priv)2980 static void ipw_remove_current_network(struct ipw_priv *priv)
2981 {
2982 struct list_head *element, *safe;
2983 struct libipw_network *network = NULL;
2984 unsigned long flags;
2985
2986 spin_lock_irqsave(&priv->ieee->lock, flags);
2987 list_for_each_safe(element, safe, &priv->ieee->network_list) {
2988 network = list_entry(element, struct libipw_network, list);
2989 if (ether_addr_equal(network->bssid, priv->bssid)) {
2990 list_del(element);
2991 list_add_tail(&network->list,
2992 &priv->ieee->network_free_list);
2993 }
2994 }
2995 spin_unlock_irqrestore(&priv->ieee->lock, flags);
2996 }
2997
2998 /*
2999 * Check that card is still alive.
3000 * Reads debug register from domain0.
3001 * If card is present, pre-defined value should
3002 * be found there.
3003 *
3004 * @param priv
3005 * @return 1 if card is present, 0 otherwise
3006 */
ipw_alive(struct ipw_priv * priv)3007 static inline int ipw_alive(struct ipw_priv *priv)
3008 {
3009 return ipw_read32(priv, 0x90) == 0xd55555d5;
3010 }
3011
3012 /* timeout in msec, attempted in 10-msec quanta */
ipw_poll_bit(struct ipw_priv * priv,u32 addr,u32 mask,int timeout)3013 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
3014 int timeout)
3015 {
3016 int i = 0;
3017
3018 do {
3019 if ((ipw_read32(priv, addr) & mask) == mask)
3020 return i;
3021 mdelay(10);
3022 i += 10;
3023 } while (i < timeout);
3024
3025 return -ETIME;
3026 }
3027
3028 /* These functions load the firmware and micro code for the operation of
3029 * the ipw hardware. It assumes the buffer has all the bits for the
3030 * image and the caller is handling the memory allocation and clean up.
3031 */
3032
ipw_stop_master(struct ipw_priv * priv)3033 static int ipw_stop_master(struct ipw_priv *priv)
3034 {
3035 int rc;
3036
3037 IPW_DEBUG_TRACE(">>\n");
3038 /* stop master. typical delay - 0 */
3039 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3040
3041 /* timeout is in msec, polled in 10-msec quanta */
3042 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3043 IPW_RESET_REG_MASTER_DISABLED, 100);
3044 if (rc < 0) {
3045 IPW_ERROR("wait for stop master failed after 100ms\n");
3046 return -1;
3047 }
3048
3049 IPW_DEBUG_INFO("stop master %dms\n", rc);
3050
3051 return rc;
3052 }
3053
ipw_arc_release(struct ipw_priv * priv)3054 static void ipw_arc_release(struct ipw_priv *priv)
3055 {
3056 IPW_DEBUG_TRACE(">>\n");
3057 mdelay(5);
3058
3059 ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3060
3061 /* no one knows timing, for safety add some delay */
3062 mdelay(5);
3063 }
3064
3065 struct fw_chunk {
3066 __le32 address;
3067 __le32 length;
3068 };
3069
ipw_load_ucode(struct ipw_priv * priv,u8 * data,size_t len)3070 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3071 {
3072 int rc = 0, i, addr;
3073 u8 cr = 0;
3074 __le16 *image;
3075
3076 image = (__le16 *) data;
3077
3078 IPW_DEBUG_TRACE(">>\n");
3079
3080 rc = ipw_stop_master(priv);
3081
3082 if (rc < 0)
3083 return rc;
3084
3085 for (addr = IPW_SHARED_LOWER_BOUND;
3086 addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3087 ipw_write32(priv, addr, 0);
3088 }
3089
3090 /* no ucode (yet) */
3091 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3092 /* destroy DMA queues */
3093 /* reset sequence */
3094
3095 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3096 ipw_arc_release(priv);
3097 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3098 mdelay(1);
3099
3100 /* reset PHY */
3101 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3102 mdelay(1);
3103
3104 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3105 mdelay(1);
3106
3107 /* enable ucode store */
3108 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3109 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3110 mdelay(1);
3111
3112 /* write ucode */
3113 /*
3114 * @bug
3115 * Do NOT set indirect address register once and then
3116 * store data to indirect data register in the loop.
3117 * It seems very reasonable, but in this case DINO do not
3118 * accept ucode. It is essential to set address each time.
3119 */
3120 /* load new ipw uCode */
3121 for (i = 0; i < len / 2; i++)
3122 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3123 le16_to_cpu(image[i]));
3124
3125 /* enable DINO */
3126 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3127 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3128
3129 /* this is where the igx / win driver deveates from the VAP driver. */
3130
3131 /* wait for alive response */
3132 for (i = 0; i < 100; i++) {
3133 /* poll for incoming data */
3134 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3135 if (cr & DINO_RXFIFO_DATA)
3136 break;
3137 mdelay(1);
3138 }
3139
3140 if (cr & DINO_RXFIFO_DATA) {
3141 /* alive_command_responce size is NOT multiple of 4 */
3142 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3143
3144 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3145 response_buffer[i] =
3146 cpu_to_le32(ipw_read_reg32(priv,
3147 IPW_BASEBAND_RX_FIFO_READ));
3148 memcpy(&priv->dino_alive, response_buffer,
3149 sizeof(priv->dino_alive));
3150 if (priv->dino_alive.alive_command == 1
3151 && priv->dino_alive.ucode_valid == 1) {
3152 rc = 0;
3153 IPW_DEBUG_INFO
3154 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3155 "of %02d/%02d/%02d %02d:%02d\n",
3156 priv->dino_alive.software_revision,
3157 priv->dino_alive.software_revision,
3158 priv->dino_alive.device_identifier,
3159 priv->dino_alive.device_identifier,
3160 priv->dino_alive.time_stamp[0],
3161 priv->dino_alive.time_stamp[1],
3162 priv->dino_alive.time_stamp[2],
3163 priv->dino_alive.time_stamp[3],
3164 priv->dino_alive.time_stamp[4]);
3165 } else {
3166 IPW_DEBUG_INFO("Microcode is not alive\n");
3167 rc = -EINVAL;
3168 }
3169 } else {
3170 IPW_DEBUG_INFO("No alive response from DINO\n");
3171 rc = -ETIME;
3172 }
3173
3174 /* disable DINO, otherwise for some reason
3175 firmware have problem getting alive resp. */
3176 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3177
3178 return rc;
3179 }
3180
ipw_load_firmware(struct ipw_priv * priv,u8 * data,size_t len)3181 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3182 {
3183 int ret = -1;
3184 int offset = 0;
3185 struct fw_chunk *chunk;
3186 int total_nr = 0;
3187 int i;
3188 struct dma_pool *pool;
3189 void **virts;
3190 dma_addr_t *phys;
3191
3192 IPW_DEBUG_TRACE("<< :\n");
3193
3194 virts = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(void *),
3195 GFP_KERNEL);
3196 if (!virts)
3197 return -ENOMEM;
3198
3199 phys = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(dma_addr_t),
3200 GFP_KERNEL);
3201 if (!phys) {
3202 kfree(virts);
3203 return -ENOMEM;
3204 }
3205 pool = dma_pool_create("ipw2200", &priv->pci_dev->dev, CB_MAX_LENGTH, 0,
3206 0);
3207 if (!pool) {
3208 IPW_ERROR("dma_pool_create failed\n");
3209 kfree(phys);
3210 kfree(virts);
3211 return -ENOMEM;
3212 }
3213
3214 /* Start the Dma */
3215 ret = ipw_fw_dma_enable(priv);
3216
3217 /* the DMA is already ready this would be a bug. */
3218 BUG_ON(priv->sram_desc.last_cb_index > 0);
3219
3220 do {
3221 u32 chunk_len;
3222 u8 *start;
3223 int size;
3224 int nr = 0;
3225
3226 chunk = (struct fw_chunk *)(data + offset);
3227 offset += sizeof(struct fw_chunk);
3228 chunk_len = le32_to_cpu(chunk->length);
3229 start = data + offset;
3230
3231 nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH;
3232 for (i = 0; i < nr; i++) {
3233 virts[total_nr] = dma_pool_alloc(pool, GFP_KERNEL,
3234 &phys[total_nr]);
3235 if (!virts[total_nr]) {
3236 ret = -ENOMEM;
3237 goto out;
3238 }
3239 size = min_t(u32, chunk_len - i * CB_MAX_LENGTH,
3240 CB_MAX_LENGTH);
3241 memcpy(virts[total_nr], start, size);
3242 start += size;
3243 total_nr++;
3244 /* We don't support fw chunk larger than 64*8K */
3245 BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL);
3246 }
3247
3248 /* build DMA packet and queue up for sending */
3249 /* dma to chunk->address, the chunk->length bytes from data +
3250 * offeset*/
3251 /* Dma loading */
3252 ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr],
3253 nr, le32_to_cpu(chunk->address),
3254 chunk_len);
3255 if (ret) {
3256 IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3257 goto out;
3258 }
3259
3260 offset += chunk_len;
3261 } while (offset < len);
3262
3263 /* Run the DMA and wait for the answer */
3264 ret = ipw_fw_dma_kick(priv);
3265 if (ret) {
3266 IPW_ERROR("dmaKick Failed\n");
3267 goto out;
3268 }
3269
3270 ret = ipw_fw_dma_wait(priv);
3271 if (ret) {
3272 IPW_ERROR("dmaWaitSync Failed\n");
3273 goto out;
3274 }
3275 out:
3276 for (i = 0; i < total_nr; i++)
3277 dma_pool_free(pool, virts[i], phys[i]);
3278
3279 dma_pool_destroy(pool);
3280 kfree(phys);
3281 kfree(virts);
3282
3283 return ret;
3284 }
3285
3286 /* stop nic */
ipw_stop_nic(struct ipw_priv * priv)3287 static int ipw_stop_nic(struct ipw_priv *priv)
3288 {
3289 int rc = 0;
3290
3291 /* stop */
3292 ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3293
3294 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3295 IPW_RESET_REG_MASTER_DISABLED, 500);
3296 if (rc < 0) {
3297 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3298 return rc;
3299 }
3300
3301 ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3302
3303 return rc;
3304 }
3305
ipw_start_nic(struct ipw_priv * priv)3306 static void ipw_start_nic(struct ipw_priv *priv)
3307 {
3308 IPW_DEBUG_TRACE(">>\n");
3309
3310 /* prvHwStartNic release ARC */
3311 ipw_clear_bit(priv, IPW_RESET_REG,
3312 IPW_RESET_REG_MASTER_DISABLED |
3313 IPW_RESET_REG_STOP_MASTER |
3314 CBD_RESET_REG_PRINCETON_RESET);
3315
3316 /* enable power management */
3317 ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3318 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3319
3320 IPW_DEBUG_TRACE("<<\n");
3321 }
3322
ipw_init_nic(struct ipw_priv * priv)3323 static int ipw_init_nic(struct ipw_priv *priv)
3324 {
3325 int rc;
3326
3327 IPW_DEBUG_TRACE(">>\n");
3328 /* reset */
3329 /*prvHwInitNic */
3330 /* set "initialization complete" bit to move adapter to D0 state */
3331 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3332
3333 /* low-level PLL activation */
3334 ipw_write32(priv, IPW_READ_INT_REGISTER,
3335 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3336
3337 /* wait for clock stabilization */
3338 rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3339 IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3340 if (rc < 0)
3341 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3342
3343 /* assert SW reset */
3344 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3345
3346 udelay(10);
3347
3348 /* set "initialization complete" bit to move adapter to D0 state */
3349 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3350
3351 IPW_DEBUG_TRACE(">>\n");
3352 return 0;
3353 }
3354
3355 /* Call this function from process context, it will sleep in request_firmware.
3356 * Probe is an ok place to call this from.
3357 */
ipw_reset_nic(struct ipw_priv * priv)3358 static int ipw_reset_nic(struct ipw_priv *priv)
3359 {
3360 int rc = 0;
3361 unsigned long flags;
3362
3363 IPW_DEBUG_TRACE(">>\n");
3364
3365 rc = ipw_init_nic(priv);
3366
3367 spin_lock_irqsave(&priv->lock, flags);
3368 /* Clear the 'host command active' bit... */
3369 priv->status &= ~STATUS_HCMD_ACTIVE;
3370 wake_up_interruptible(&priv->wait_command_queue);
3371 priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3372 wake_up_interruptible(&priv->wait_state);
3373 spin_unlock_irqrestore(&priv->lock, flags);
3374
3375 IPW_DEBUG_TRACE("<<\n");
3376 return rc;
3377 }
3378
3379
3380 struct ipw_fw {
3381 __le32 ver;
3382 __le32 boot_size;
3383 __le32 ucode_size;
3384 __le32 fw_size;
3385 u8 data[];
3386 };
3387
ipw_get_fw(struct ipw_priv * priv,const struct firmware ** raw,const char * name)3388 static int ipw_get_fw(struct ipw_priv *priv,
3389 const struct firmware **raw, const char *name)
3390 {
3391 struct ipw_fw *fw;
3392 int rc;
3393
3394 /* ask firmware_class module to get the boot firmware off disk */
3395 rc = request_firmware(raw, name, &priv->pci_dev->dev);
3396 if (rc < 0) {
3397 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3398 return rc;
3399 }
3400
3401 if ((*raw)->size < sizeof(*fw)) {
3402 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3403 return -EINVAL;
3404 }
3405
3406 fw = (void *)(*raw)->data;
3407
3408 if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3409 le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3410 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3411 name, (*raw)->size);
3412 return -EINVAL;
3413 }
3414
3415 IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3416 name,
3417 le32_to_cpu(fw->ver) >> 16,
3418 le32_to_cpu(fw->ver) & 0xff,
3419 (*raw)->size - sizeof(*fw));
3420 return 0;
3421 }
3422
3423 #define IPW_RX_BUF_SIZE (3000)
3424
ipw_rx_queue_reset(struct ipw_priv * priv,struct ipw_rx_queue * rxq)3425 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3426 struct ipw_rx_queue *rxq)
3427 {
3428 unsigned long flags;
3429 int i;
3430
3431 spin_lock_irqsave(&rxq->lock, flags);
3432
3433 INIT_LIST_HEAD(&rxq->rx_free);
3434 INIT_LIST_HEAD(&rxq->rx_used);
3435
3436 /* Fill the rx_used queue with _all_ of the Rx buffers */
3437 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3438 /* In the reset function, these buffers may have been allocated
3439 * to an SKB, so we need to unmap and free potential storage */
3440 if (rxq->pool[i].skb != NULL) {
3441 dma_unmap_single(&priv->pci_dev->dev,
3442 rxq->pool[i].dma_addr,
3443 IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
3444 dev_kfree_skb(rxq->pool[i].skb);
3445 rxq->pool[i].skb = NULL;
3446 }
3447 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3448 }
3449
3450 /* Set us so that we have processed and used all buffers, but have
3451 * not restocked the Rx queue with fresh buffers */
3452 rxq->read = rxq->write = 0;
3453 rxq->free_count = 0;
3454 spin_unlock_irqrestore(&rxq->lock, flags);
3455 }
3456
3457 #ifdef CONFIG_PM
3458 static int fw_loaded = 0;
3459 static const struct firmware *raw = NULL;
3460
free_firmware(void)3461 static void free_firmware(void)
3462 {
3463 if (fw_loaded) {
3464 release_firmware(raw);
3465 raw = NULL;
3466 fw_loaded = 0;
3467 }
3468 }
3469 #else
3470 #define free_firmware() do {} while (0)
3471 #endif
3472
ipw_load(struct ipw_priv * priv)3473 static int ipw_load(struct ipw_priv *priv)
3474 {
3475 #ifndef CONFIG_PM
3476 const struct firmware *raw = NULL;
3477 #endif
3478 struct ipw_fw *fw;
3479 u8 *boot_img, *ucode_img, *fw_img;
3480 u8 *name = NULL;
3481 int rc = 0, retries = 3;
3482
3483 switch (priv->ieee->iw_mode) {
3484 case IW_MODE_ADHOC:
3485 name = "ipw2200-ibss.fw";
3486 break;
3487 #ifdef CONFIG_IPW2200_MONITOR
3488 case IW_MODE_MONITOR:
3489 name = "ipw2200-sniffer.fw";
3490 break;
3491 #endif
3492 case IW_MODE_INFRA:
3493 name = "ipw2200-bss.fw";
3494 break;
3495 }
3496
3497 if (!name) {
3498 rc = -EINVAL;
3499 goto error;
3500 }
3501
3502 #ifdef CONFIG_PM
3503 if (!fw_loaded) {
3504 #endif
3505 rc = ipw_get_fw(priv, &raw, name);
3506 if (rc < 0)
3507 goto error;
3508 #ifdef CONFIG_PM
3509 }
3510 #endif
3511
3512 fw = (void *)raw->data;
3513 boot_img = &fw->data[0];
3514 ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3515 fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3516 le32_to_cpu(fw->ucode_size)];
3517
3518 if (!priv->rxq)
3519 priv->rxq = ipw_rx_queue_alloc(priv);
3520 else
3521 ipw_rx_queue_reset(priv, priv->rxq);
3522 if (!priv->rxq) {
3523 IPW_ERROR("Unable to initialize Rx queue\n");
3524 rc = -ENOMEM;
3525 goto error;
3526 }
3527
3528 retry:
3529 /* Ensure interrupts are disabled */
3530 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3531 priv->status &= ~STATUS_INT_ENABLED;
3532
3533 /* ack pending interrupts */
3534 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3535
3536 ipw_stop_nic(priv);
3537
3538 rc = ipw_reset_nic(priv);
3539 if (rc < 0) {
3540 IPW_ERROR("Unable to reset NIC\n");
3541 goto error;
3542 }
3543
3544 ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3545 IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3546
3547 /* DMA the initial boot firmware into the device */
3548 rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3549 if (rc < 0) {
3550 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3551 goto error;
3552 }
3553
3554 /* kick start the device */
3555 ipw_start_nic(priv);
3556
3557 /* wait for the device to finish its initial startup sequence */
3558 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3559 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3560 if (rc < 0) {
3561 IPW_ERROR("device failed to boot initial fw image\n");
3562 goto error;
3563 }
3564 IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3565
3566 /* ack fw init done interrupt */
3567 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3568
3569 /* DMA the ucode into the device */
3570 rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3571 if (rc < 0) {
3572 IPW_ERROR("Unable to load ucode: %d\n", rc);
3573 goto error;
3574 }
3575
3576 /* stop nic */
3577 ipw_stop_nic(priv);
3578
3579 /* DMA bss firmware into the device */
3580 rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3581 if (rc < 0) {
3582 IPW_ERROR("Unable to load firmware: %d\n", rc);
3583 goto error;
3584 }
3585 #ifdef CONFIG_PM
3586 fw_loaded = 1;
3587 #endif
3588
3589 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3590
3591 rc = ipw_queue_reset(priv);
3592 if (rc < 0) {
3593 IPW_ERROR("Unable to initialize queues\n");
3594 goto error;
3595 }
3596
3597 /* Ensure interrupts are disabled */
3598 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3599 /* ack pending interrupts */
3600 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3601
3602 /* kick start the device */
3603 ipw_start_nic(priv);
3604
3605 if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3606 if (retries > 0) {
3607 IPW_WARNING("Parity error. Retrying init.\n");
3608 retries--;
3609 goto retry;
3610 }
3611
3612 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3613 rc = -EIO;
3614 goto error;
3615 }
3616
3617 /* wait for the device */
3618 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3619 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3620 if (rc < 0) {
3621 IPW_ERROR("device failed to start within 500ms\n");
3622 goto error;
3623 }
3624 IPW_DEBUG_INFO("device response after %dms\n", rc);
3625
3626 /* ack fw init done interrupt */
3627 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3628
3629 /* read eeprom data */
3630 priv->eeprom_delay = 1;
3631 ipw_read_eeprom(priv);
3632 /* initialize the eeprom region of sram */
3633 ipw_eeprom_init_sram(priv);
3634
3635 /* enable interrupts */
3636 ipw_enable_interrupts(priv);
3637
3638 /* Ensure our queue has valid packets */
3639 ipw_rx_queue_replenish(priv);
3640
3641 ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3642
3643 /* ack pending interrupts */
3644 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3645
3646 #ifndef CONFIG_PM
3647 release_firmware(raw);
3648 #endif
3649 return 0;
3650
3651 error:
3652 if (priv->rxq) {
3653 ipw_rx_queue_free(priv, priv->rxq);
3654 priv->rxq = NULL;
3655 }
3656 ipw_tx_queue_free(priv);
3657 release_firmware(raw);
3658 #ifdef CONFIG_PM
3659 fw_loaded = 0;
3660 raw = NULL;
3661 #endif
3662
3663 return rc;
3664 }
3665
3666 /*
3667 * DMA services
3668 *
3669 * Theory of operation
3670 *
3671 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3672 * 2 empty entries always kept in the buffer to protect from overflow.
3673 *
3674 * For Tx queue, there are low mark and high mark limits. If, after queuing
3675 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3676 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3677 * Tx queue resumed.
3678 *
3679 * The IPW operates with six queues, one receive queue in the device's
3680 * sram, one transmit queue for sending commands to the device firmware,
3681 * and four transmit queues for data.
3682 *
3683 * The four transmit queues allow for performing quality of service (qos)
3684 * transmissions as per the 802.11 protocol. Currently Linux does not
3685 * provide a mechanism to the user for utilizing prioritized queues, so
3686 * we only utilize the first data transmit queue (queue1).
3687 */
3688
3689 /*
3690 * Driver allocates buffers of this size for Rx
3691 */
3692
3693 /*
3694 * ipw_rx_queue_space - Return number of free slots available in queue.
3695 */
ipw_rx_queue_space(const struct ipw_rx_queue * q)3696 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3697 {
3698 int s = q->read - q->write;
3699 if (s <= 0)
3700 s += RX_QUEUE_SIZE;
3701 /* keep some buffer to not confuse full and empty queue */
3702 s -= 2;
3703 if (s < 0)
3704 s = 0;
3705 return s;
3706 }
3707
ipw_tx_queue_space(const struct clx2_queue * q)3708 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3709 {
3710 int s = q->last_used - q->first_empty;
3711 if (s <= 0)
3712 s += q->n_bd;
3713 s -= 2; /* keep some reserve to not confuse empty and full situations */
3714 if (s < 0)
3715 s = 0;
3716 return s;
3717 }
3718
ipw_queue_inc_wrap(int index,int n_bd)3719 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3720 {
3721 return (++index == n_bd) ? 0 : index;
3722 }
3723
3724 /*
3725 * Initialize common DMA queue structure
3726 *
3727 * @param q queue to init
3728 * @param count Number of BD's to allocate. Should be power of 2
3729 * @param read_register Address for 'read' register
3730 * (not offset within BAR, full address)
3731 * @param write_register Address for 'write' register
3732 * (not offset within BAR, full address)
3733 * @param base_register Address for 'base' register
3734 * (not offset within BAR, full address)
3735 * @param size Address for 'size' register
3736 * (not offset within BAR, full address)
3737 */
ipw_queue_init(struct ipw_priv * priv,struct clx2_queue * q,int count,u32 read,u32 write,u32 base,u32 size)3738 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3739 int count, u32 read, u32 write, u32 base, u32 size)
3740 {
3741 q->n_bd = count;
3742
3743 q->low_mark = q->n_bd / 4;
3744 if (q->low_mark < 4)
3745 q->low_mark = 4;
3746
3747 q->high_mark = q->n_bd / 8;
3748 if (q->high_mark < 2)
3749 q->high_mark = 2;
3750
3751 q->first_empty = q->last_used = 0;
3752 q->reg_r = read;
3753 q->reg_w = write;
3754
3755 ipw_write32(priv, base, q->dma_addr);
3756 ipw_write32(priv, size, count);
3757 ipw_write32(priv, read, 0);
3758 ipw_write32(priv, write, 0);
3759
3760 _ipw_read32(priv, 0x90);
3761 }
3762
ipw_queue_tx_init(struct ipw_priv * priv,struct clx2_tx_queue * q,int count,u32 read,u32 write,u32 base,u32 size)3763 static int ipw_queue_tx_init(struct ipw_priv *priv,
3764 struct clx2_tx_queue *q,
3765 int count, u32 read, u32 write, u32 base, u32 size)
3766 {
3767 struct pci_dev *dev = priv->pci_dev;
3768
3769 q->txb = kmalloc_array(count, sizeof(q->txb[0]), GFP_KERNEL);
3770 if (!q->txb)
3771 return -ENOMEM;
3772
3773 q->bd =
3774 dma_alloc_coherent(&dev->dev, sizeof(q->bd[0]) * count,
3775 &q->q.dma_addr, GFP_KERNEL);
3776 if (!q->bd) {
3777 IPW_ERROR("dma_alloc_coherent(%zd) failed\n",
3778 sizeof(q->bd[0]) * count);
3779 kfree(q->txb);
3780 q->txb = NULL;
3781 return -ENOMEM;
3782 }
3783
3784 ipw_queue_init(priv, &q->q, count, read, write, base, size);
3785 return 0;
3786 }
3787
3788 /*
3789 * Free one TFD, those at index [txq->q.last_used].
3790 * Do NOT advance any indexes
3791 *
3792 * @param dev
3793 * @param txq
3794 */
ipw_queue_tx_free_tfd(struct ipw_priv * priv,struct clx2_tx_queue * txq)3795 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3796 struct clx2_tx_queue *txq)
3797 {
3798 struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3799 struct pci_dev *dev = priv->pci_dev;
3800 int i;
3801
3802 /* classify bd */
3803 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3804 /* nothing to cleanup after for host commands */
3805 return;
3806
3807 /* sanity check */
3808 if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3809 IPW_ERROR("Too many chunks: %i\n",
3810 le32_to_cpu(bd->u.data.num_chunks));
3811 /* @todo issue fatal error, it is quite serious situation */
3812 return;
3813 }
3814
3815 /* unmap chunks if any */
3816 for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3817 dma_unmap_single(&dev->dev,
3818 le32_to_cpu(bd->u.data.chunk_ptr[i]),
3819 le16_to_cpu(bd->u.data.chunk_len[i]),
3820 DMA_TO_DEVICE);
3821 if (txq->txb[txq->q.last_used]) {
3822 libipw_txb_free(txq->txb[txq->q.last_used]);
3823 txq->txb[txq->q.last_used] = NULL;
3824 }
3825 }
3826 }
3827
3828 /*
3829 * Deallocate DMA queue.
3830 *
3831 * Empty queue by removing and destroying all BD's.
3832 * Free all buffers.
3833 *
3834 * @param dev
3835 * @param q
3836 */
ipw_queue_tx_free(struct ipw_priv * priv,struct clx2_tx_queue * txq)3837 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3838 {
3839 struct clx2_queue *q = &txq->q;
3840 struct pci_dev *dev = priv->pci_dev;
3841
3842 if (q->n_bd == 0)
3843 return;
3844
3845 /* first, empty all BD's */
3846 for (; q->first_empty != q->last_used;
3847 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3848 ipw_queue_tx_free_tfd(priv, txq);
3849 }
3850
3851 /* free buffers belonging to queue itself */
3852 dma_free_coherent(&dev->dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3853 q->dma_addr);
3854 kfree(txq->txb);
3855
3856 /* 0 fill whole structure */
3857 memset(txq, 0, sizeof(*txq));
3858 }
3859
3860 /*
3861 * Destroy all DMA queues and structures
3862 *
3863 * @param priv
3864 */
ipw_tx_queue_free(struct ipw_priv * priv)3865 static void ipw_tx_queue_free(struct ipw_priv *priv)
3866 {
3867 /* Tx CMD queue */
3868 ipw_queue_tx_free(priv, &priv->txq_cmd);
3869
3870 /* Tx queues */
3871 ipw_queue_tx_free(priv, &priv->txq[0]);
3872 ipw_queue_tx_free(priv, &priv->txq[1]);
3873 ipw_queue_tx_free(priv, &priv->txq[2]);
3874 ipw_queue_tx_free(priv, &priv->txq[3]);
3875 }
3876
ipw_create_bssid(struct ipw_priv * priv,u8 * bssid)3877 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3878 {
3879 /* First 3 bytes are manufacturer */
3880 bssid[0] = priv->mac_addr[0];
3881 bssid[1] = priv->mac_addr[1];
3882 bssid[2] = priv->mac_addr[2];
3883
3884 /* Last bytes are random */
3885 get_random_bytes(&bssid[3], ETH_ALEN - 3);
3886
3887 bssid[0] &= 0xfe; /* clear multicast bit */
3888 bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */
3889 }
3890
ipw_add_station(struct ipw_priv * priv,u8 * bssid)3891 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3892 {
3893 struct ipw_station_entry entry;
3894 int i;
3895
3896 for (i = 0; i < priv->num_stations; i++) {
3897 if (ether_addr_equal(priv->stations[i], bssid)) {
3898 /* Another node is active in network */
3899 priv->missed_adhoc_beacons = 0;
3900 if (!(priv->config & CFG_STATIC_CHANNEL))
3901 /* when other nodes drop out, we drop out */
3902 priv->config &= ~CFG_ADHOC_PERSIST;
3903
3904 return i;
3905 }
3906 }
3907
3908 if (i == MAX_STATIONS)
3909 return IPW_INVALID_STATION;
3910
3911 IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3912
3913 entry.reserved = 0;
3914 entry.support_mode = 0;
3915 memcpy(entry.mac_addr, bssid, ETH_ALEN);
3916 memcpy(priv->stations[i], bssid, ETH_ALEN);
3917 ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3918 &entry, sizeof(entry));
3919 priv->num_stations++;
3920
3921 return i;
3922 }
3923
ipw_find_station(struct ipw_priv * priv,u8 * bssid)3924 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3925 {
3926 int i;
3927
3928 for (i = 0; i < priv->num_stations; i++)
3929 if (ether_addr_equal(priv->stations[i], bssid))
3930 return i;
3931
3932 return IPW_INVALID_STATION;
3933 }
3934
ipw_send_disassociate(struct ipw_priv * priv,int quiet)3935 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3936 {
3937 int err;
3938
3939 if (priv->status & STATUS_ASSOCIATING) {
3940 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3941 schedule_work(&priv->disassociate);
3942 return;
3943 }
3944
3945 if (!(priv->status & STATUS_ASSOCIATED)) {
3946 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3947 return;
3948 }
3949
3950 IPW_DEBUG_ASSOC("Disassociation attempt from %pM "
3951 "on channel %d.\n",
3952 priv->assoc_request.bssid,
3953 priv->assoc_request.channel);
3954
3955 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3956 priv->status |= STATUS_DISASSOCIATING;
3957
3958 if (quiet)
3959 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3960 else
3961 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3962
3963 err = ipw_send_associate(priv, &priv->assoc_request);
3964 if (err) {
3965 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3966 "failed.\n");
3967 return;
3968 }
3969
3970 }
3971
ipw_disassociate(void * data)3972 static int ipw_disassociate(void *data)
3973 {
3974 struct ipw_priv *priv = data;
3975 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3976 return 0;
3977 ipw_send_disassociate(data, 0);
3978 netif_carrier_off(priv->net_dev);
3979 return 1;
3980 }
3981
ipw_bg_disassociate(struct work_struct * work)3982 static void ipw_bg_disassociate(struct work_struct *work)
3983 {
3984 struct ipw_priv *priv =
3985 container_of(work, struct ipw_priv, disassociate);
3986 mutex_lock(&priv->mutex);
3987 ipw_disassociate(priv);
3988 mutex_unlock(&priv->mutex);
3989 }
3990
ipw_system_config(struct work_struct * work)3991 static void ipw_system_config(struct work_struct *work)
3992 {
3993 struct ipw_priv *priv =
3994 container_of(work, struct ipw_priv, system_config);
3995
3996 #ifdef CONFIG_IPW2200_PROMISCUOUS
3997 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3998 priv->sys_config.accept_all_data_frames = 1;
3999 priv->sys_config.accept_non_directed_frames = 1;
4000 priv->sys_config.accept_all_mgmt_bcpr = 1;
4001 priv->sys_config.accept_all_mgmt_frames = 1;
4002 }
4003 #endif
4004
4005 ipw_send_system_config(priv);
4006 }
4007
4008 struct ipw_status_code {
4009 u16 status;
4010 const char *reason;
4011 };
4012
4013 static const struct ipw_status_code ipw_status_codes[] = {
4014 {0x00, "Successful"},
4015 {0x01, "Unspecified failure"},
4016 {0x0A, "Cannot support all requested capabilities in the "
4017 "Capability information field"},
4018 {0x0B, "Reassociation denied due to inability to confirm that "
4019 "association exists"},
4020 {0x0C, "Association denied due to reason outside the scope of this "
4021 "standard"},
4022 {0x0D,
4023 "Responding station does not support the specified authentication "
4024 "algorithm"},
4025 {0x0E,
4026 "Received an Authentication frame with authentication sequence "
4027 "transaction sequence number out of expected sequence"},
4028 {0x0F, "Authentication rejected because of challenge failure"},
4029 {0x10, "Authentication rejected due to timeout waiting for next "
4030 "frame in sequence"},
4031 {0x11, "Association denied because AP is unable to handle additional "
4032 "associated stations"},
4033 {0x12,
4034 "Association denied due to requesting station not supporting all "
4035 "of the datarates in the BSSBasicServiceSet Parameter"},
4036 {0x13,
4037 "Association denied due to requesting station not supporting "
4038 "short preamble operation"},
4039 {0x14,
4040 "Association denied due to requesting station not supporting "
4041 "PBCC encoding"},
4042 {0x15,
4043 "Association denied due to requesting station not supporting "
4044 "channel agility"},
4045 {0x19,
4046 "Association denied due to requesting station not supporting "
4047 "short slot operation"},
4048 {0x1A,
4049 "Association denied due to requesting station not supporting "
4050 "DSSS-OFDM operation"},
4051 {0x28, "Invalid Information Element"},
4052 {0x29, "Group Cipher is not valid"},
4053 {0x2A, "Pairwise Cipher is not valid"},
4054 {0x2B, "AKMP is not valid"},
4055 {0x2C, "Unsupported RSN IE version"},
4056 {0x2D, "Invalid RSN IE Capabilities"},
4057 {0x2E, "Cipher suite is rejected per security policy"},
4058 };
4059
ipw_get_status_code(u16 status)4060 static const char *ipw_get_status_code(u16 status)
4061 {
4062 int i;
4063 for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
4064 if (ipw_status_codes[i].status == (status & 0xff))
4065 return ipw_status_codes[i].reason;
4066 return "Unknown status value.";
4067 }
4068
average_init(struct average * avg)4069 static inline void average_init(struct average *avg)
4070 {
4071 memset(avg, 0, sizeof(*avg));
4072 }
4073
4074 #define DEPTH_RSSI 8
4075 #define DEPTH_NOISE 16
exponential_average(s16 prev_avg,s16 val,u8 depth)4076 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4077 {
4078 return ((depth-1)*prev_avg + val)/depth;
4079 }
4080
average_add(struct average * avg,s16 val)4081 static void average_add(struct average *avg, s16 val)
4082 {
4083 avg->sum -= avg->entries[avg->pos];
4084 avg->sum += val;
4085 avg->entries[avg->pos++] = val;
4086 if (unlikely(avg->pos == AVG_ENTRIES)) {
4087 avg->init = 1;
4088 avg->pos = 0;
4089 }
4090 }
4091
average_value(struct average * avg)4092 static s16 average_value(struct average *avg)
4093 {
4094 if (!unlikely(avg->init)) {
4095 if (avg->pos)
4096 return avg->sum / avg->pos;
4097 return 0;
4098 }
4099
4100 return avg->sum / AVG_ENTRIES;
4101 }
4102
ipw_reset_stats(struct ipw_priv * priv)4103 static void ipw_reset_stats(struct ipw_priv *priv)
4104 {
4105 u32 len = sizeof(u32);
4106
4107 priv->quality = 0;
4108
4109 average_init(&priv->average_missed_beacons);
4110 priv->exp_avg_rssi = -60;
4111 priv->exp_avg_noise = -85 + 0x100;
4112
4113 priv->last_rate = 0;
4114 priv->last_missed_beacons = 0;
4115 priv->last_rx_packets = 0;
4116 priv->last_tx_packets = 0;
4117 priv->last_tx_failures = 0;
4118
4119 /* Firmware managed, reset only when NIC is restarted, so we have to
4120 * normalize on the current value */
4121 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4122 &priv->last_rx_err, &len);
4123 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4124 &priv->last_tx_failures, &len);
4125
4126 /* Driver managed, reset with each association */
4127 priv->missed_adhoc_beacons = 0;
4128 priv->missed_beacons = 0;
4129 priv->tx_packets = 0;
4130 priv->rx_packets = 0;
4131
4132 }
4133
ipw_get_max_rate(struct ipw_priv * priv)4134 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4135 {
4136 u32 i = 0x80000000;
4137 u32 mask = priv->rates_mask;
4138 /* If currently associated in B mode, restrict the maximum
4139 * rate match to B rates */
4140 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4141 mask &= LIBIPW_CCK_RATES_MASK;
4142
4143 /* TODO: Verify that the rate is supported by the current rates
4144 * list. */
4145
4146 while (i && !(mask & i))
4147 i >>= 1;
4148 switch (i) {
4149 case LIBIPW_CCK_RATE_1MB_MASK:
4150 return 1000000;
4151 case LIBIPW_CCK_RATE_2MB_MASK:
4152 return 2000000;
4153 case LIBIPW_CCK_RATE_5MB_MASK:
4154 return 5500000;
4155 case LIBIPW_OFDM_RATE_6MB_MASK:
4156 return 6000000;
4157 case LIBIPW_OFDM_RATE_9MB_MASK:
4158 return 9000000;
4159 case LIBIPW_CCK_RATE_11MB_MASK:
4160 return 11000000;
4161 case LIBIPW_OFDM_RATE_12MB_MASK:
4162 return 12000000;
4163 case LIBIPW_OFDM_RATE_18MB_MASK:
4164 return 18000000;
4165 case LIBIPW_OFDM_RATE_24MB_MASK:
4166 return 24000000;
4167 case LIBIPW_OFDM_RATE_36MB_MASK:
4168 return 36000000;
4169 case LIBIPW_OFDM_RATE_48MB_MASK:
4170 return 48000000;
4171 case LIBIPW_OFDM_RATE_54MB_MASK:
4172 return 54000000;
4173 }
4174
4175 if (priv->ieee->mode == IEEE_B)
4176 return 11000000;
4177 else
4178 return 54000000;
4179 }
4180
ipw_get_current_rate(struct ipw_priv * priv)4181 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4182 {
4183 u32 rate, len = sizeof(rate);
4184 int err;
4185
4186 if (!(priv->status & STATUS_ASSOCIATED))
4187 return 0;
4188
4189 if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4190 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4191 &len);
4192 if (err) {
4193 IPW_DEBUG_INFO("failed querying ordinals.\n");
4194 return 0;
4195 }
4196 } else
4197 return ipw_get_max_rate(priv);
4198
4199 switch (rate) {
4200 case IPW_TX_RATE_1MB:
4201 return 1000000;
4202 case IPW_TX_RATE_2MB:
4203 return 2000000;
4204 case IPW_TX_RATE_5MB:
4205 return 5500000;
4206 case IPW_TX_RATE_6MB:
4207 return 6000000;
4208 case IPW_TX_RATE_9MB:
4209 return 9000000;
4210 case IPW_TX_RATE_11MB:
4211 return 11000000;
4212 case IPW_TX_RATE_12MB:
4213 return 12000000;
4214 case IPW_TX_RATE_18MB:
4215 return 18000000;
4216 case IPW_TX_RATE_24MB:
4217 return 24000000;
4218 case IPW_TX_RATE_36MB:
4219 return 36000000;
4220 case IPW_TX_RATE_48MB:
4221 return 48000000;
4222 case IPW_TX_RATE_54MB:
4223 return 54000000;
4224 }
4225
4226 return 0;
4227 }
4228
4229 #define IPW_STATS_INTERVAL (2 * HZ)
ipw_gather_stats(struct ipw_priv * priv)4230 static void ipw_gather_stats(struct ipw_priv *priv)
4231 {
4232 u32 rx_err, rx_err_delta, rx_packets_delta;
4233 u32 tx_failures, tx_failures_delta, tx_packets_delta;
4234 u32 missed_beacons_percent, missed_beacons_delta;
4235 u32 quality = 0;
4236 u32 len = sizeof(u32);
4237 s16 rssi;
4238 u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4239 rate_quality;
4240 u32 max_rate;
4241
4242 if (!(priv->status & STATUS_ASSOCIATED)) {
4243 priv->quality = 0;
4244 return;
4245 }
4246
4247 /* Update the statistics */
4248 ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4249 &priv->missed_beacons, &len);
4250 missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4251 priv->last_missed_beacons = priv->missed_beacons;
4252 if (priv->assoc_request.beacon_interval) {
4253 missed_beacons_percent = missed_beacons_delta *
4254 (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4255 (IPW_STATS_INTERVAL * 10);
4256 } else {
4257 missed_beacons_percent = 0;
4258 }
4259 average_add(&priv->average_missed_beacons, missed_beacons_percent);
4260
4261 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4262 rx_err_delta = rx_err - priv->last_rx_err;
4263 priv->last_rx_err = rx_err;
4264
4265 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4266 tx_failures_delta = tx_failures - priv->last_tx_failures;
4267 priv->last_tx_failures = tx_failures;
4268
4269 rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4270 priv->last_rx_packets = priv->rx_packets;
4271
4272 tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4273 priv->last_tx_packets = priv->tx_packets;
4274
4275 /* Calculate quality based on the following:
4276 *
4277 * Missed beacon: 100% = 0, 0% = 70% missed
4278 * Rate: 60% = 1Mbs, 100% = Max
4279 * Rx and Tx errors represent a straight % of total Rx/Tx
4280 * RSSI: 100% = > -50, 0% = < -80
4281 * Rx errors: 100% = 0, 0% = 50% missed
4282 *
4283 * The lowest computed quality is used.
4284 *
4285 */
4286 #define BEACON_THRESHOLD 5
4287 beacon_quality = 100 - missed_beacons_percent;
4288 if (beacon_quality < BEACON_THRESHOLD)
4289 beacon_quality = 0;
4290 else
4291 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4292 (100 - BEACON_THRESHOLD);
4293 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4294 beacon_quality, missed_beacons_percent);
4295
4296 priv->last_rate = ipw_get_current_rate(priv);
4297 max_rate = ipw_get_max_rate(priv);
4298 rate_quality = priv->last_rate * 40 / max_rate + 60;
4299 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4300 rate_quality, priv->last_rate / 1000000);
4301
4302 if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4303 rx_quality = 100 - (rx_err_delta * 100) /
4304 (rx_packets_delta + rx_err_delta);
4305 else
4306 rx_quality = 100;
4307 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
4308 rx_quality, rx_err_delta, rx_packets_delta);
4309
4310 if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4311 tx_quality = 100 - (tx_failures_delta * 100) /
4312 (tx_packets_delta + tx_failures_delta);
4313 else
4314 tx_quality = 100;
4315 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
4316 tx_quality, tx_failures_delta, tx_packets_delta);
4317
4318 rssi = priv->exp_avg_rssi;
4319 signal_quality =
4320 (100 *
4321 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4322 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4323 (priv->ieee->perfect_rssi - rssi) *
4324 (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4325 62 * (priv->ieee->perfect_rssi - rssi))) /
4326 ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4327 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4328 if (signal_quality > 100)
4329 signal_quality = 100;
4330 else if (signal_quality < 1)
4331 signal_quality = 0;
4332
4333 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4334 signal_quality, rssi);
4335
4336 quality = min(rx_quality, signal_quality);
4337 quality = min(tx_quality, quality);
4338 quality = min(rate_quality, quality);
4339 quality = min(beacon_quality, quality);
4340 if (quality == beacon_quality)
4341 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4342 quality);
4343 if (quality == rate_quality)
4344 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4345 quality);
4346 if (quality == tx_quality)
4347 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4348 quality);
4349 if (quality == rx_quality)
4350 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4351 quality);
4352 if (quality == signal_quality)
4353 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4354 quality);
4355
4356 priv->quality = quality;
4357
4358 schedule_delayed_work(&priv->gather_stats, IPW_STATS_INTERVAL);
4359 }
4360
ipw_bg_gather_stats(struct work_struct * work)4361 static void ipw_bg_gather_stats(struct work_struct *work)
4362 {
4363 struct ipw_priv *priv =
4364 container_of(work, struct ipw_priv, gather_stats.work);
4365 mutex_lock(&priv->mutex);
4366 ipw_gather_stats(priv);
4367 mutex_unlock(&priv->mutex);
4368 }
4369
4370 /* Missed beacon behavior:
4371 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4372 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4373 * Above disassociate threshold, give up and stop scanning.
4374 * Roaming is disabled if disassociate_threshold <= roaming_threshold */
ipw_handle_missed_beacon(struct ipw_priv * priv,int missed_count)4375 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4376 int missed_count)
4377 {
4378 priv->notif_missed_beacons = missed_count;
4379
4380 if (missed_count > priv->disassociate_threshold &&
4381 priv->status & STATUS_ASSOCIATED) {
4382 /* If associated and we've hit the missed
4383 * beacon threshold, disassociate, turn
4384 * off roaming, and abort any active scans */
4385 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4386 IPW_DL_STATE | IPW_DL_ASSOC,
4387 "Missed beacon: %d - disassociate\n", missed_count);
4388 priv->status &= ~STATUS_ROAMING;
4389 if (priv->status & STATUS_SCANNING) {
4390 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4391 IPW_DL_STATE,
4392 "Aborting scan with missed beacon.\n");
4393 schedule_work(&priv->abort_scan);
4394 }
4395
4396 schedule_work(&priv->disassociate);
4397 return;
4398 }
4399
4400 if (priv->status & STATUS_ROAMING) {
4401 /* If we are currently roaming, then just
4402 * print a debug statement... */
4403 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4404 "Missed beacon: %d - roam in progress\n",
4405 missed_count);
4406 return;
4407 }
4408
4409 if (roaming &&
4410 (missed_count > priv->roaming_threshold &&
4411 missed_count <= priv->disassociate_threshold)) {
4412 /* If we are not already roaming, set the ROAM
4413 * bit in the status and kick off a scan.
4414 * This can happen several times before we reach
4415 * disassociate_threshold. */
4416 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4417 "Missed beacon: %d - initiate "
4418 "roaming\n", missed_count);
4419 if (!(priv->status & STATUS_ROAMING)) {
4420 priv->status |= STATUS_ROAMING;
4421 if (!(priv->status & STATUS_SCANNING))
4422 schedule_delayed_work(&priv->request_scan, 0);
4423 }
4424 return;
4425 }
4426
4427 if (priv->status & STATUS_SCANNING &&
4428 missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4429 /* Stop scan to keep fw from getting
4430 * stuck (only if we aren't roaming --
4431 * otherwise we'll never scan more than 2 or 3
4432 * channels..) */
4433 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4434 "Aborting scan with missed beacon.\n");
4435 schedule_work(&priv->abort_scan);
4436 }
4437
4438 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4439 }
4440
ipw_scan_event(struct work_struct * work)4441 static void ipw_scan_event(struct work_struct *work)
4442 {
4443 union iwreq_data wrqu;
4444
4445 struct ipw_priv *priv =
4446 container_of(work, struct ipw_priv, scan_event.work);
4447
4448 wrqu.data.length = 0;
4449 wrqu.data.flags = 0;
4450 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4451 }
4452
handle_scan_event(struct ipw_priv * priv)4453 static void handle_scan_event(struct ipw_priv *priv)
4454 {
4455 /* Only userspace-requested scan completion events go out immediately */
4456 if (!priv->user_requested_scan) {
4457 schedule_delayed_work(&priv->scan_event,
4458 round_jiffies_relative(msecs_to_jiffies(4000)));
4459 } else {
4460 priv->user_requested_scan = 0;
4461 mod_delayed_work(system_wq, &priv->scan_event, 0);
4462 }
4463 }
4464
4465 /*
4466 * Handle host notification packet.
4467 * Called from interrupt routine
4468 */
ipw_rx_notification(struct ipw_priv * priv,struct ipw_rx_notification * notif)4469 static void ipw_rx_notification(struct ipw_priv *priv,
4470 struct ipw_rx_notification *notif)
4471 {
4472 u16 size = le16_to_cpu(notif->size);
4473
4474 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4475
4476 switch (notif->subtype) {
4477 case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4478 struct notif_association *assoc = ¬if->u.assoc;
4479
4480 switch (assoc->state) {
4481 case CMAS_ASSOCIATED:{
4482 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4483 IPW_DL_ASSOC,
4484 "associated: '%*pE' %pM\n",
4485 priv->essid_len, priv->essid,
4486 priv->bssid);
4487
4488 switch (priv->ieee->iw_mode) {
4489 case IW_MODE_INFRA:
4490 memcpy(priv->ieee->bssid,
4491 priv->bssid, ETH_ALEN);
4492 break;
4493
4494 case IW_MODE_ADHOC:
4495 memcpy(priv->ieee->bssid,
4496 priv->bssid, ETH_ALEN);
4497
4498 /* clear out the station table */
4499 priv->num_stations = 0;
4500
4501 IPW_DEBUG_ASSOC
4502 ("queueing adhoc check\n");
4503 schedule_delayed_work(
4504 &priv->adhoc_check,
4505 le16_to_cpu(priv->
4506 assoc_request.
4507 beacon_interval));
4508 break;
4509 }
4510
4511 priv->status &= ~STATUS_ASSOCIATING;
4512 priv->status |= STATUS_ASSOCIATED;
4513 schedule_work(&priv->system_config);
4514
4515 #ifdef CONFIG_IPW2200_QOS
4516 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4517 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4518 if ((priv->status & STATUS_AUTH) &&
4519 (IPW_GET_PACKET_STYPE(¬if->u.raw)
4520 == IEEE80211_STYPE_ASSOC_RESP)) {
4521 if ((sizeof
4522 (struct
4523 libipw_assoc_response)
4524 <= size)
4525 && (size <= 2314)) {
4526 struct
4527 libipw_rx_stats
4528 stats = {
4529 .len = size - 1,
4530 };
4531
4532 IPW_DEBUG_QOS
4533 ("QoS Associate "
4534 "size %d\n", size);
4535 libipw_rx_mgt(priv->
4536 ieee,
4537 (struct
4538 libipw_hdr_4addr
4539 *)
4540 ¬if->u.raw, &stats);
4541 }
4542 }
4543 #endif
4544
4545 schedule_work(&priv->link_up);
4546
4547 break;
4548 }
4549
4550 case CMAS_AUTHENTICATED:{
4551 if (priv->
4552 status & (STATUS_ASSOCIATED |
4553 STATUS_AUTH)) {
4554 struct notif_authenticate *auth
4555 = ¬if->u.auth;
4556 IPW_DEBUG(IPW_DL_NOTIF |
4557 IPW_DL_STATE |
4558 IPW_DL_ASSOC,
4559 "deauthenticated: '%*pE' %pM: (0x%04X) - %s\n",
4560 priv->essid_len,
4561 priv->essid,
4562 priv->bssid,
4563 le16_to_cpu(auth->status),
4564 ipw_get_status_code
4565 (le16_to_cpu
4566 (auth->status)));
4567
4568 priv->status &=
4569 ~(STATUS_ASSOCIATING |
4570 STATUS_AUTH |
4571 STATUS_ASSOCIATED);
4572
4573 schedule_work(&priv->link_down);
4574 break;
4575 }
4576
4577 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4578 IPW_DL_ASSOC,
4579 "authenticated: '%*pE' %pM\n",
4580 priv->essid_len, priv->essid,
4581 priv->bssid);
4582 break;
4583 }
4584
4585 case CMAS_INIT:{
4586 if (priv->status & STATUS_AUTH) {
4587 struct
4588 libipw_assoc_response
4589 *resp;
4590 resp =
4591 (struct
4592 libipw_assoc_response
4593 *)¬if->u.raw;
4594 IPW_DEBUG(IPW_DL_NOTIF |
4595 IPW_DL_STATE |
4596 IPW_DL_ASSOC,
4597 "association failed (0x%04X): %s\n",
4598 le16_to_cpu(resp->status),
4599 ipw_get_status_code
4600 (le16_to_cpu
4601 (resp->status)));
4602 }
4603
4604 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4605 IPW_DL_ASSOC,
4606 "disassociated: '%*pE' %pM\n",
4607 priv->essid_len, priv->essid,
4608 priv->bssid);
4609
4610 priv->status &=
4611 ~(STATUS_DISASSOCIATING |
4612 STATUS_ASSOCIATING |
4613 STATUS_ASSOCIATED | STATUS_AUTH);
4614 if (priv->assoc_network
4615 && (priv->assoc_network->
4616 capability &
4617 WLAN_CAPABILITY_IBSS))
4618 ipw_remove_current_network
4619 (priv);
4620
4621 schedule_work(&priv->link_down);
4622
4623 break;
4624 }
4625
4626 case CMAS_RX_ASSOC_RESP:
4627 break;
4628
4629 default:
4630 IPW_ERROR("assoc: unknown (%d)\n",
4631 assoc->state);
4632 break;
4633 }
4634
4635 break;
4636 }
4637
4638 case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4639 struct notif_authenticate *auth = ¬if->u.auth;
4640 switch (auth->state) {
4641 case CMAS_AUTHENTICATED:
4642 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4643 "authenticated: '%*pE' %pM\n",
4644 priv->essid_len, priv->essid,
4645 priv->bssid);
4646 priv->status |= STATUS_AUTH;
4647 break;
4648
4649 case CMAS_INIT:
4650 if (priv->status & STATUS_AUTH) {
4651 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4652 IPW_DL_ASSOC,
4653 "authentication failed (0x%04X): %s\n",
4654 le16_to_cpu(auth->status),
4655 ipw_get_status_code(le16_to_cpu
4656 (auth->
4657 status)));
4658 }
4659 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4660 IPW_DL_ASSOC,
4661 "deauthenticated: '%*pE' %pM\n",
4662 priv->essid_len, priv->essid,
4663 priv->bssid);
4664
4665 priv->status &= ~(STATUS_ASSOCIATING |
4666 STATUS_AUTH |
4667 STATUS_ASSOCIATED);
4668
4669 schedule_work(&priv->link_down);
4670 break;
4671
4672 case CMAS_TX_AUTH_SEQ_1:
4673 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4674 IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4675 break;
4676 case CMAS_RX_AUTH_SEQ_2:
4677 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4678 IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4679 break;
4680 case CMAS_AUTH_SEQ_1_PASS:
4681 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4682 IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4683 break;
4684 case CMAS_AUTH_SEQ_1_FAIL:
4685 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4686 IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4687 break;
4688 case CMAS_TX_AUTH_SEQ_3:
4689 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4690 IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4691 break;
4692 case CMAS_RX_AUTH_SEQ_4:
4693 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4694 IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4695 break;
4696 case CMAS_AUTH_SEQ_2_PASS:
4697 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4698 IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4699 break;
4700 case CMAS_AUTH_SEQ_2_FAIL:
4701 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4702 IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4703 break;
4704 case CMAS_TX_ASSOC:
4705 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4706 IPW_DL_ASSOC, "TX_ASSOC\n");
4707 break;
4708 case CMAS_RX_ASSOC_RESP:
4709 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4710 IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4711
4712 break;
4713 case CMAS_ASSOCIATED:
4714 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4715 IPW_DL_ASSOC, "ASSOCIATED\n");
4716 break;
4717 default:
4718 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4719 auth->state);
4720 break;
4721 }
4722 break;
4723 }
4724
4725 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4726 struct notif_channel_result *x =
4727 ¬if->u.channel_result;
4728
4729 if (size == sizeof(*x)) {
4730 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4731 x->channel_num);
4732 } else {
4733 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4734 "(should be %zd)\n",
4735 size, sizeof(*x));
4736 }
4737 break;
4738 }
4739
4740 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4741 struct notif_scan_complete *x = ¬if->u.scan_complete;
4742 if (size == sizeof(*x)) {
4743 IPW_DEBUG_SCAN
4744 ("Scan completed: type %d, %d channels, "
4745 "%d status\n", x->scan_type,
4746 x->num_channels, x->status);
4747 } else {
4748 IPW_ERROR("Scan completed of wrong size %d "
4749 "(should be %zd)\n",
4750 size, sizeof(*x));
4751 }
4752
4753 priv->status &=
4754 ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4755
4756 wake_up_interruptible(&priv->wait_state);
4757 cancel_delayed_work(&priv->scan_check);
4758
4759 if (priv->status & STATUS_EXIT_PENDING)
4760 break;
4761
4762 priv->ieee->scans++;
4763
4764 #ifdef CONFIG_IPW2200_MONITOR
4765 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4766 priv->status |= STATUS_SCAN_FORCED;
4767 schedule_delayed_work(&priv->request_scan, 0);
4768 break;
4769 }
4770 priv->status &= ~STATUS_SCAN_FORCED;
4771 #endif /* CONFIG_IPW2200_MONITOR */
4772
4773 /* Do queued direct scans first */
4774 if (priv->status & STATUS_DIRECT_SCAN_PENDING)
4775 schedule_delayed_work(&priv->request_direct_scan, 0);
4776
4777 if (!(priv->status & (STATUS_ASSOCIATED |
4778 STATUS_ASSOCIATING |
4779 STATUS_ROAMING |
4780 STATUS_DISASSOCIATING)))
4781 schedule_work(&priv->associate);
4782 else if (priv->status & STATUS_ROAMING) {
4783 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4784 /* If a scan completed and we are in roam mode, then
4785 * the scan that completed was the one requested as a
4786 * result of entering roam... so, schedule the
4787 * roam work */
4788 schedule_work(&priv->roam);
4789 else
4790 /* Don't schedule if we aborted the scan */
4791 priv->status &= ~STATUS_ROAMING;
4792 } else if (priv->status & STATUS_SCAN_PENDING)
4793 schedule_delayed_work(&priv->request_scan, 0);
4794 else if (priv->config & CFG_BACKGROUND_SCAN
4795 && priv->status & STATUS_ASSOCIATED)
4796 schedule_delayed_work(&priv->request_scan,
4797 round_jiffies_relative(HZ));
4798
4799 /* Send an empty event to user space.
4800 * We don't send the received data on the event because
4801 * it would require us to do complex transcoding, and
4802 * we want to minimise the work done in the irq handler
4803 * Use a request to extract the data.
4804 * Also, we generate this even for any scan, regardless
4805 * on how the scan was initiated. User space can just
4806 * sync on periodic scan to get fresh data...
4807 * Jean II */
4808 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4809 handle_scan_event(priv);
4810 break;
4811 }
4812
4813 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4814 struct notif_frag_length *x = ¬if->u.frag_len;
4815
4816 if (size == sizeof(*x))
4817 IPW_ERROR("Frag length: %d\n",
4818 le16_to_cpu(x->frag_length));
4819 else
4820 IPW_ERROR("Frag length of wrong size %d "
4821 "(should be %zd)\n",
4822 size, sizeof(*x));
4823 break;
4824 }
4825
4826 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4827 struct notif_link_deterioration *x =
4828 ¬if->u.link_deterioration;
4829
4830 if (size == sizeof(*x)) {
4831 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4832 "link deterioration: type %d, cnt %d\n",
4833 x->silence_notification_type,
4834 x->silence_count);
4835 memcpy(&priv->last_link_deterioration, x,
4836 sizeof(*x));
4837 } else {
4838 IPW_ERROR("Link Deterioration of wrong size %d "
4839 "(should be %zd)\n",
4840 size, sizeof(*x));
4841 }
4842 break;
4843 }
4844
4845 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4846 IPW_ERROR("Dino config\n");
4847 if (priv->hcmd
4848 && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4849 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4850
4851 break;
4852 }
4853
4854 case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4855 struct notif_beacon_state *x = ¬if->u.beacon_state;
4856 if (size != sizeof(*x)) {
4857 IPW_ERROR
4858 ("Beacon state of wrong size %d (should "
4859 "be %zd)\n", size, sizeof(*x));
4860 break;
4861 }
4862
4863 if (le32_to_cpu(x->state) ==
4864 HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4865 ipw_handle_missed_beacon(priv,
4866 le32_to_cpu(x->
4867 number));
4868
4869 break;
4870 }
4871
4872 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4873 struct notif_tgi_tx_key *x = ¬if->u.tgi_tx_key;
4874 if (size == sizeof(*x)) {
4875 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4876 "0x%02x station %d\n",
4877 x->key_state, x->security_type,
4878 x->station_index);
4879 break;
4880 }
4881
4882 IPW_ERROR
4883 ("TGi Tx Key of wrong size %d (should be %zd)\n",
4884 size, sizeof(*x));
4885 break;
4886 }
4887
4888 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4889 struct notif_calibration *x = ¬if->u.calibration;
4890
4891 if (size == sizeof(*x)) {
4892 memcpy(&priv->calib, x, sizeof(*x));
4893 IPW_DEBUG_INFO("TODO: Calibration\n");
4894 break;
4895 }
4896
4897 IPW_ERROR
4898 ("Calibration of wrong size %d (should be %zd)\n",
4899 size, sizeof(*x));
4900 break;
4901 }
4902
4903 case HOST_NOTIFICATION_NOISE_STATS:{
4904 if (size == sizeof(u32)) {
4905 priv->exp_avg_noise =
4906 exponential_average(priv->exp_avg_noise,
4907 (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4908 DEPTH_NOISE);
4909 break;
4910 }
4911
4912 IPW_ERROR
4913 ("Noise stat is wrong size %d (should be %zd)\n",
4914 size, sizeof(u32));
4915 break;
4916 }
4917
4918 default:
4919 IPW_DEBUG_NOTIF("Unknown notification: "
4920 "subtype=%d,flags=0x%2x,size=%d\n",
4921 notif->subtype, notif->flags, size);
4922 }
4923 }
4924
4925 /*
4926 * Destroys all DMA structures and initialise them again
4927 *
4928 * @param priv
4929 * @return error code
4930 */
ipw_queue_reset(struct ipw_priv * priv)4931 static int ipw_queue_reset(struct ipw_priv *priv)
4932 {
4933 int rc = 0;
4934 /* @todo customize queue sizes */
4935 int nTx = 64, nTxCmd = 8;
4936 ipw_tx_queue_free(priv);
4937 /* Tx CMD queue */
4938 rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4939 IPW_TX_CMD_QUEUE_READ_INDEX,
4940 IPW_TX_CMD_QUEUE_WRITE_INDEX,
4941 IPW_TX_CMD_QUEUE_BD_BASE,
4942 IPW_TX_CMD_QUEUE_BD_SIZE);
4943 if (rc) {
4944 IPW_ERROR("Tx Cmd queue init failed\n");
4945 goto error;
4946 }
4947 /* Tx queue(s) */
4948 rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4949 IPW_TX_QUEUE_0_READ_INDEX,
4950 IPW_TX_QUEUE_0_WRITE_INDEX,
4951 IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4952 if (rc) {
4953 IPW_ERROR("Tx 0 queue init failed\n");
4954 goto error;
4955 }
4956 rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4957 IPW_TX_QUEUE_1_READ_INDEX,
4958 IPW_TX_QUEUE_1_WRITE_INDEX,
4959 IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4960 if (rc) {
4961 IPW_ERROR("Tx 1 queue init failed\n");
4962 goto error;
4963 }
4964 rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4965 IPW_TX_QUEUE_2_READ_INDEX,
4966 IPW_TX_QUEUE_2_WRITE_INDEX,
4967 IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4968 if (rc) {
4969 IPW_ERROR("Tx 2 queue init failed\n");
4970 goto error;
4971 }
4972 rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4973 IPW_TX_QUEUE_3_READ_INDEX,
4974 IPW_TX_QUEUE_3_WRITE_INDEX,
4975 IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4976 if (rc) {
4977 IPW_ERROR("Tx 3 queue init failed\n");
4978 goto error;
4979 }
4980 /* statistics */
4981 priv->rx_bufs_min = 0;
4982 priv->rx_pend_max = 0;
4983 return rc;
4984
4985 error:
4986 ipw_tx_queue_free(priv);
4987 return rc;
4988 }
4989
4990 /*
4991 * Reclaim Tx queue entries no more used by NIC.
4992 *
4993 * When FW advances 'R' index, all entries between old and
4994 * new 'R' index need to be reclaimed. As result, some free space
4995 * forms. If there is enough free space (> low mark), wake Tx queue.
4996 *
4997 * @note Need to protect against garbage in 'R' index
4998 * @param priv
4999 * @param txq
5000 * @param qindex
5001 * @return Number of used entries remains in the queue
5002 */
ipw_queue_tx_reclaim(struct ipw_priv * priv,struct clx2_tx_queue * txq,int qindex)5003 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
5004 struct clx2_tx_queue *txq, int qindex)
5005 {
5006 u32 hw_tail;
5007 int used;
5008 struct clx2_queue *q = &txq->q;
5009
5010 hw_tail = ipw_read32(priv, q->reg_r);
5011 if (hw_tail >= q->n_bd) {
5012 IPW_ERROR
5013 ("Read index for DMA queue (%d) is out of range [0-%d)\n",
5014 hw_tail, q->n_bd);
5015 goto done;
5016 }
5017 for (; q->last_used != hw_tail;
5018 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
5019 ipw_queue_tx_free_tfd(priv, txq);
5020 priv->tx_packets++;
5021 }
5022 done:
5023 if ((ipw_tx_queue_space(q) > q->low_mark) &&
5024 (qindex >= 0))
5025 netif_wake_queue(priv->net_dev);
5026 used = q->first_empty - q->last_used;
5027 if (used < 0)
5028 used += q->n_bd;
5029
5030 return used;
5031 }
5032
ipw_queue_tx_hcmd(struct ipw_priv * priv,int hcmd,const void * buf,int len,int sync)5033 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, const void *buf,
5034 int len, int sync)
5035 {
5036 struct clx2_tx_queue *txq = &priv->txq_cmd;
5037 struct clx2_queue *q = &txq->q;
5038 struct tfd_frame *tfd;
5039
5040 if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5041 IPW_ERROR("No space for Tx\n");
5042 return -EBUSY;
5043 }
5044
5045 tfd = &txq->bd[q->first_empty];
5046 txq->txb[q->first_empty] = NULL;
5047
5048 memset(tfd, 0, sizeof(*tfd));
5049 tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5050 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5051 priv->hcmd_seq++;
5052 tfd->u.cmd.index = hcmd;
5053 tfd->u.cmd.length = len;
5054 memcpy(tfd->u.cmd.payload, buf, len);
5055 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5056 ipw_write32(priv, q->reg_w, q->first_empty);
5057 _ipw_read32(priv, 0x90);
5058
5059 return 0;
5060 }
5061
5062 /*
5063 * Rx theory of operation
5064 *
5065 * The host allocates 32 DMA target addresses and passes the host address
5066 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5067 * 0 to 31
5068 *
5069 * Rx Queue Indexes
5070 * The host/firmware share two index registers for managing the Rx buffers.
5071 *
5072 * The READ index maps to the first position that the firmware may be writing
5073 * to -- the driver can read up to (but not including) this position and get
5074 * good data.
5075 * The READ index is managed by the firmware once the card is enabled.
5076 *
5077 * The WRITE index maps to the last position the driver has read from -- the
5078 * position preceding WRITE is the last slot the firmware can place a packet.
5079 *
5080 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5081 * WRITE = READ.
5082 *
5083 * During initialization the host sets up the READ queue position to the first
5084 * INDEX position, and WRITE to the last (READ - 1 wrapped)
5085 *
5086 * When the firmware places a packet in a buffer it will advance the READ index
5087 * and fire the RX interrupt. The driver can then query the READ index and
5088 * process as many packets as possible, moving the WRITE index forward as it
5089 * resets the Rx queue buffers with new memory.
5090 *
5091 * The management in the driver is as follows:
5092 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
5093 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5094 * to replensish the ipw->rxq->rx_free.
5095 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5096 * ipw->rxq is replenished and the READ INDEX is updated (updating the
5097 * 'processed' and 'read' driver indexes as well)
5098 * + A received packet is processed and handed to the kernel network stack,
5099 * detached from the ipw->rxq. The driver 'processed' index is updated.
5100 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5101 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5102 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
5103 * were enough free buffers and RX_STALLED is set it is cleared.
5104 *
5105 *
5106 * Driver sequence:
5107 *
5108 * ipw_rx_queue_alloc() Allocates rx_free
5109 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
5110 * ipw_rx_queue_restock
5111 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
5112 * queue, updates firmware pointers, and updates
5113 * the WRITE index. If insufficient rx_free buffers
5114 * are available, schedules ipw_rx_queue_replenish
5115 *
5116 * -- enable interrupts --
5117 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
5118 * READ INDEX, detaching the SKB from the pool.
5119 * Moves the packet buffer from queue to rx_used.
5120 * Calls ipw_rx_queue_restock to refill any empty
5121 * slots.
5122 * ...
5123 *
5124 */
5125
5126 /*
5127 * If there are slots in the RX queue that need to be restocked,
5128 * and we have free pre-allocated buffers, fill the ranks as much
5129 * as we can pulling from rx_free.
5130 *
5131 * This moves the 'write' index forward to catch up with 'processed', and
5132 * also updates the memory address in the firmware to reference the new
5133 * target buffer.
5134 */
ipw_rx_queue_restock(struct ipw_priv * priv)5135 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5136 {
5137 struct ipw_rx_queue *rxq = priv->rxq;
5138 struct list_head *element;
5139 struct ipw_rx_mem_buffer *rxb;
5140 unsigned long flags;
5141 int write;
5142
5143 spin_lock_irqsave(&rxq->lock, flags);
5144 write = rxq->write;
5145 while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5146 element = rxq->rx_free.next;
5147 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5148 list_del(element);
5149
5150 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5151 rxb->dma_addr);
5152 rxq->queue[rxq->write] = rxb;
5153 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5154 rxq->free_count--;
5155 }
5156 spin_unlock_irqrestore(&rxq->lock, flags);
5157
5158 /* If the pre-allocated buffer pool is dropping low, schedule to
5159 * refill it */
5160 if (rxq->free_count <= RX_LOW_WATERMARK)
5161 schedule_work(&priv->rx_replenish);
5162
5163 /* If we've added more space for the firmware to place data, tell it */
5164 if (write != rxq->write)
5165 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5166 }
5167
5168 /*
5169 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5170 * Also restock the Rx queue via ipw_rx_queue_restock.
5171 *
5172 * This is called as a scheduled work item (except for during initialization)
5173 */
ipw_rx_queue_replenish(void * data)5174 static void ipw_rx_queue_replenish(void *data)
5175 {
5176 struct ipw_priv *priv = data;
5177 struct ipw_rx_queue *rxq = priv->rxq;
5178 struct list_head *element;
5179 struct ipw_rx_mem_buffer *rxb;
5180 unsigned long flags;
5181
5182 spin_lock_irqsave(&rxq->lock, flags);
5183 while (!list_empty(&rxq->rx_used)) {
5184 element = rxq->rx_used.next;
5185 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5186 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5187 if (!rxb->skb) {
5188 printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5189 priv->net_dev->name);
5190 /* We don't reschedule replenish work here -- we will
5191 * call the restock method and if it still needs
5192 * more buffers it will schedule replenish */
5193 break;
5194 }
5195 list_del(element);
5196
5197 rxb->dma_addr =
5198 dma_map_single(&priv->pci_dev->dev, rxb->skb->data,
5199 IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
5200
5201 list_add_tail(&rxb->list, &rxq->rx_free);
5202 rxq->free_count++;
5203 }
5204 spin_unlock_irqrestore(&rxq->lock, flags);
5205
5206 ipw_rx_queue_restock(priv);
5207 }
5208
ipw_bg_rx_queue_replenish(struct work_struct * work)5209 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5210 {
5211 struct ipw_priv *priv =
5212 container_of(work, struct ipw_priv, rx_replenish);
5213 mutex_lock(&priv->mutex);
5214 ipw_rx_queue_replenish(priv);
5215 mutex_unlock(&priv->mutex);
5216 }
5217
5218 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5219 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5220 * This free routine walks the list of POOL entries and if SKB is set to
5221 * non NULL it is unmapped and freed
5222 */
ipw_rx_queue_free(struct ipw_priv * priv,struct ipw_rx_queue * rxq)5223 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5224 {
5225 int i;
5226
5227 if (!rxq)
5228 return;
5229
5230 for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5231 if (rxq->pool[i].skb != NULL) {
5232 dma_unmap_single(&priv->pci_dev->dev,
5233 rxq->pool[i].dma_addr,
5234 IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
5235 dev_kfree_skb(rxq->pool[i].skb);
5236 }
5237 }
5238
5239 kfree(rxq);
5240 }
5241
ipw_rx_queue_alloc(struct ipw_priv * priv)5242 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5243 {
5244 struct ipw_rx_queue *rxq;
5245 int i;
5246
5247 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5248 if (unlikely(!rxq)) {
5249 IPW_ERROR("memory allocation failed\n");
5250 return NULL;
5251 }
5252 spin_lock_init(&rxq->lock);
5253 INIT_LIST_HEAD(&rxq->rx_free);
5254 INIT_LIST_HEAD(&rxq->rx_used);
5255
5256 /* Fill the rx_used queue with _all_ of the Rx buffers */
5257 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5258 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5259
5260 /* Set us so that we have processed and used all buffers, but have
5261 * not restocked the Rx queue with fresh buffers */
5262 rxq->read = rxq->write = 0;
5263 rxq->free_count = 0;
5264
5265 return rxq;
5266 }
5267
ipw_is_rate_in_mask(struct ipw_priv * priv,int ieee_mode,u8 rate)5268 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5269 {
5270 rate &= ~LIBIPW_BASIC_RATE_MASK;
5271 if (ieee_mode == IEEE_A) {
5272 switch (rate) {
5273 case LIBIPW_OFDM_RATE_6MB:
5274 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ?
5275 1 : 0;
5276 case LIBIPW_OFDM_RATE_9MB:
5277 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ?
5278 1 : 0;
5279 case LIBIPW_OFDM_RATE_12MB:
5280 return priv->
5281 rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5282 case LIBIPW_OFDM_RATE_18MB:
5283 return priv->
5284 rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5285 case LIBIPW_OFDM_RATE_24MB:
5286 return priv->
5287 rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5288 case LIBIPW_OFDM_RATE_36MB:
5289 return priv->
5290 rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5291 case LIBIPW_OFDM_RATE_48MB:
5292 return priv->
5293 rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5294 case LIBIPW_OFDM_RATE_54MB:
5295 return priv->
5296 rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5297 default:
5298 return 0;
5299 }
5300 }
5301
5302 /* B and G mixed */
5303 switch (rate) {
5304 case LIBIPW_CCK_RATE_1MB:
5305 return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0;
5306 case LIBIPW_CCK_RATE_2MB:
5307 return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0;
5308 case LIBIPW_CCK_RATE_5MB:
5309 return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0;
5310 case LIBIPW_CCK_RATE_11MB:
5311 return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0;
5312 }
5313
5314 /* If we are limited to B modulations, bail at this point */
5315 if (ieee_mode == IEEE_B)
5316 return 0;
5317
5318 /* G */
5319 switch (rate) {
5320 case LIBIPW_OFDM_RATE_6MB:
5321 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0;
5322 case LIBIPW_OFDM_RATE_9MB:
5323 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0;
5324 case LIBIPW_OFDM_RATE_12MB:
5325 return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5326 case LIBIPW_OFDM_RATE_18MB:
5327 return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5328 case LIBIPW_OFDM_RATE_24MB:
5329 return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5330 case LIBIPW_OFDM_RATE_36MB:
5331 return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5332 case LIBIPW_OFDM_RATE_48MB:
5333 return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5334 case LIBIPW_OFDM_RATE_54MB:
5335 return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5336 }
5337
5338 return 0;
5339 }
5340
ipw_compatible_rates(struct ipw_priv * priv,const struct libipw_network * network,struct ipw_supported_rates * rates)5341 static int ipw_compatible_rates(struct ipw_priv *priv,
5342 const struct libipw_network *network,
5343 struct ipw_supported_rates *rates)
5344 {
5345 int num_rates, i;
5346
5347 memset(rates, 0, sizeof(*rates));
5348 num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5349 rates->num_rates = 0;
5350 for (i = 0; i < num_rates; i++) {
5351 if (!ipw_is_rate_in_mask(priv, network->mode,
5352 network->rates[i])) {
5353
5354 if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) {
5355 IPW_DEBUG_SCAN("Adding masked mandatory "
5356 "rate %02X\n",
5357 network->rates[i]);
5358 rates->supported_rates[rates->num_rates++] =
5359 network->rates[i];
5360 continue;
5361 }
5362
5363 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5364 network->rates[i], priv->rates_mask);
5365 continue;
5366 }
5367
5368 rates->supported_rates[rates->num_rates++] = network->rates[i];
5369 }
5370
5371 num_rates = min(network->rates_ex_len,
5372 (u8) (IPW_MAX_RATES - num_rates));
5373 for (i = 0; i < num_rates; i++) {
5374 if (!ipw_is_rate_in_mask(priv, network->mode,
5375 network->rates_ex[i])) {
5376 if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) {
5377 IPW_DEBUG_SCAN("Adding masked mandatory "
5378 "rate %02X\n",
5379 network->rates_ex[i]);
5380 rates->supported_rates[rates->num_rates++] =
5381 network->rates[i];
5382 continue;
5383 }
5384
5385 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5386 network->rates_ex[i], priv->rates_mask);
5387 continue;
5388 }
5389
5390 rates->supported_rates[rates->num_rates++] =
5391 network->rates_ex[i];
5392 }
5393
5394 return 1;
5395 }
5396
ipw_copy_rates(struct ipw_supported_rates * dest,const struct ipw_supported_rates * src)5397 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5398 const struct ipw_supported_rates *src)
5399 {
5400 u8 i;
5401 for (i = 0; i < src->num_rates; i++)
5402 dest->supported_rates[i] = src->supported_rates[i];
5403 dest->num_rates = src->num_rates;
5404 }
5405
5406 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5407 * mask should ever be used -- right now all callers to add the scan rates are
5408 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
ipw_add_cck_scan_rates(struct ipw_supported_rates * rates,u8 modulation,u32 rate_mask)5409 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5410 u8 modulation, u32 rate_mask)
5411 {
5412 u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5413 LIBIPW_BASIC_RATE_MASK : 0;
5414
5415 if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK)
5416 rates->supported_rates[rates->num_rates++] =
5417 LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB;
5418
5419 if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK)
5420 rates->supported_rates[rates->num_rates++] =
5421 LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB;
5422
5423 if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK)
5424 rates->supported_rates[rates->num_rates++] = basic_mask |
5425 LIBIPW_CCK_RATE_5MB;
5426
5427 if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK)
5428 rates->supported_rates[rates->num_rates++] = basic_mask |
5429 LIBIPW_CCK_RATE_11MB;
5430 }
5431
ipw_add_ofdm_scan_rates(struct ipw_supported_rates * rates,u8 modulation,u32 rate_mask)5432 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5433 u8 modulation, u32 rate_mask)
5434 {
5435 u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5436 LIBIPW_BASIC_RATE_MASK : 0;
5437
5438 if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK)
5439 rates->supported_rates[rates->num_rates++] = basic_mask |
5440 LIBIPW_OFDM_RATE_6MB;
5441
5442 if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK)
5443 rates->supported_rates[rates->num_rates++] =
5444 LIBIPW_OFDM_RATE_9MB;
5445
5446 if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK)
5447 rates->supported_rates[rates->num_rates++] = basic_mask |
5448 LIBIPW_OFDM_RATE_12MB;
5449
5450 if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK)
5451 rates->supported_rates[rates->num_rates++] =
5452 LIBIPW_OFDM_RATE_18MB;
5453
5454 if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK)
5455 rates->supported_rates[rates->num_rates++] = basic_mask |
5456 LIBIPW_OFDM_RATE_24MB;
5457
5458 if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK)
5459 rates->supported_rates[rates->num_rates++] =
5460 LIBIPW_OFDM_RATE_36MB;
5461
5462 if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK)
5463 rates->supported_rates[rates->num_rates++] =
5464 LIBIPW_OFDM_RATE_48MB;
5465
5466 if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK)
5467 rates->supported_rates[rates->num_rates++] =
5468 LIBIPW_OFDM_RATE_54MB;
5469 }
5470
5471 struct ipw_network_match {
5472 struct libipw_network *network;
5473 struct ipw_supported_rates rates;
5474 };
5475
ipw_find_adhoc_network(struct ipw_priv * priv,struct ipw_network_match * match,struct libipw_network * network,int roaming)5476 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5477 struct ipw_network_match *match,
5478 struct libipw_network *network,
5479 int roaming)
5480 {
5481 struct ipw_supported_rates rates;
5482
5483 /* Verify that this network's capability is compatible with the
5484 * current mode (AdHoc or Infrastructure) */
5485 if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5486 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5487 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5488 network->ssid_len, network->ssid,
5489 network->bssid);
5490 return 0;
5491 }
5492
5493 if (unlikely(roaming)) {
5494 /* If we are roaming, then ensure check if this is a valid
5495 * network to try and roam to */
5496 if ((network->ssid_len != match->network->ssid_len) ||
5497 memcmp(network->ssid, match->network->ssid,
5498 network->ssid_len)) {
5499 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5500 network->ssid_len, network->ssid,
5501 network->bssid);
5502 return 0;
5503 }
5504 } else {
5505 /* If an ESSID has been configured then compare the broadcast
5506 * ESSID to ours */
5507 if ((priv->config & CFG_STATIC_ESSID) &&
5508 ((network->ssid_len != priv->essid_len) ||
5509 memcmp(network->ssid, priv->essid,
5510 min(network->ssid_len, priv->essid_len)))) {
5511 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5512 network->ssid_len, network->ssid,
5513 network->bssid, priv->essid_len,
5514 priv->essid);
5515 return 0;
5516 }
5517 }
5518
5519 /* If the old network rate is better than this one, don't bother
5520 * testing everything else. */
5521
5522 if (network->time_stamp[0] < match->network->time_stamp[0]) {
5523 IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5524 match->network->ssid_len, match->network->ssid);
5525 return 0;
5526 } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5527 IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5528 match->network->ssid_len, match->network->ssid);
5529 return 0;
5530 }
5531
5532 /* Now go through and see if the requested network is valid... */
5533 if (priv->ieee->scan_age != 0 &&
5534 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5535 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5536 network->ssid_len, network->ssid,
5537 network->bssid,
5538 jiffies_to_msecs(jiffies -
5539 network->last_scanned));
5540 return 0;
5541 }
5542
5543 if ((priv->config & CFG_STATIC_CHANNEL) &&
5544 (network->channel != priv->channel)) {
5545 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5546 network->ssid_len, network->ssid,
5547 network->bssid,
5548 network->channel, priv->channel);
5549 return 0;
5550 }
5551
5552 /* Verify privacy compatibility */
5553 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5554 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5555 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5556 network->ssid_len, network->ssid,
5557 network->bssid,
5558 priv->
5559 capability & CAP_PRIVACY_ON ? "on" : "off",
5560 network->
5561 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5562 "off");
5563 return 0;
5564 }
5565
5566 if (ether_addr_equal(network->bssid, priv->bssid)) {
5567 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of the same BSSID match: %pM.\n",
5568 network->ssid_len, network->ssid,
5569 network->bssid, priv->bssid);
5570 return 0;
5571 }
5572
5573 /* Filter out any incompatible freq / mode combinations */
5574 if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5575 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5576 network->ssid_len, network->ssid,
5577 network->bssid);
5578 return 0;
5579 }
5580
5581 /* Ensure that the rates supported by the driver are compatible with
5582 * this AP, including verification of basic rates (mandatory) */
5583 if (!ipw_compatible_rates(priv, network, &rates)) {
5584 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5585 network->ssid_len, network->ssid,
5586 network->bssid);
5587 return 0;
5588 }
5589
5590 if (rates.num_rates == 0) {
5591 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5592 network->ssid_len, network->ssid,
5593 network->bssid);
5594 return 0;
5595 }
5596
5597 /* TODO: Perform any further minimal comparititive tests. We do not
5598 * want to put too much policy logic here; intelligent scan selection
5599 * should occur within a generic IEEE 802.11 user space tool. */
5600
5601 /* Set up 'new' AP to this network */
5602 ipw_copy_rates(&match->rates, &rates);
5603 match->network = network;
5604 IPW_DEBUG_MERGE("Network '%*pE (%pM)' is a viable match.\n",
5605 network->ssid_len, network->ssid, network->bssid);
5606
5607 return 1;
5608 }
5609
ipw_merge_adhoc_network(struct work_struct * work)5610 static void ipw_merge_adhoc_network(struct work_struct *work)
5611 {
5612 struct ipw_priv *priv =
5613 container_of(work, struct ipw_priv, merge_networks);
5614 struct libipw_network *network = NULL;
5615 struct ipw_network_match match = {
5616 .network = priv->assoc_network
5617 };
5618
5619 if ((priv->status & STATUS_ASSOCIATED) &&
5620 (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5621 /* First pass through ROAM process -- look for a better
5622 * network */
5623 unsigned long flags;
5624
5625 spin_lock_irqsave(&priv->ieee->lock, flags);
5626 list_for_each_entry(network, &priv->ieee->network_list, list) {
5627 if (network != priv->assoc_network)
5628 ipw_find_adhoc_network(priv, &match, network,
5629 1);
5630 }
5631 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5632
5633 if (match.network == priv->assoc_network) {
5634 IPW_DEBUG_MERGE("No better ADHOC in this network to "
5635 "merge to.\n");
5636 return;
5637 }
5638
5639 mutex_lock(&priv->mutex);
5640 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5641 IPW_DEBUG_MERGE("remove network %*pE\n",
5642 priv->essid_len, priv->essid);
5643 ipw_remove_current_network(priv);
5644 }
5645
5646 ipw_disassociate(priv);
5647 priv->assoc_network = match.network;
5648 mutex_unlock(&priv->mutex);
5649 return;
5650 }
5651 }
5652
ipw_best_network(struct ipw_priv * priv,struct ipw_network_match * match,struct libipw_network * network,int roaming)5653 static int ipw_best_network(struct ipw_priv *priv,
5654 struct ipw_network_match *match,
5655 struct libipw_network *network, int roaming)
5656 {
5657 struct ipw_supported_rates rates;
5658
5659 /* Verify that this network's capability is compatible with the
5660 * current mode (AdHoc or Infrastructure) */
5661 if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5662 !(network->capability & WLAN_CAPABILITY_ESS)) ||
5663 (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5664 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5665 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5666 network->ssid_len, network->ssid,
5667 network->bssid);
5668 return 0;
5669 }
5670
5671 if (unlikely(roaming)) {
5672 /* If we are roaming, then ensure check if this is a valid
5673 * network to try and roam to */
5674 if ((network->ssid_len != match->network->ssid_len) ||
5675 memcmp(network->ssid, match->network->ssid,
5676 network->ssid_len)) {
5677 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5678 network->ssid_len, network->ssid,
5679 network->bssid);
5680 return 0;
5681 }
5682 } else {
5683 /* If an ESSID has been configured then compare the broadcast
5684 * ESSID to ours */
5685 if ((priv->config & CFG_STATIC_ESSID) &&
5686 ((network->ssid_len != priv->essid_len) ||
5687 memcmp(network->ssid, priv->essid,
5688 min(network->ssid_len, priv->essid_len)))) {
5689 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5690 network->ssid_len, network->ssid,
5691 network->bssid, priv->essid_len,
5692 priv->essid);
5693 return 0;
5694 }
5695 }
5696
5697 /* If the old network rate is better than this one, don't bother
5698 * testing everything else. */
5699 if (match->network && match->network->stats.rssi > network->stats.rssi) {
5700 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because '%*pE (%pM)' has a stronger signal.\n",
5701 network->ssid_len, network->ssid,
5702 network->bssid, match->network->ssid_len,
5703 match->network->ssid, match->network->bssid);
5704 return 0;
5705 }
5706
5707 /* If this network has already had an association attempt within the
5708 * last 3 seconds, do not try and associate again... */
5709 if (network->last_associate &&
5710 time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5711 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of storming (%ums since last assoc attempt).\n",
5712 network->ssid_len, network->ssid,
5713 network->bssid,
5714 jiffies_to_msecs(jiffies -
5715 network->last_associate));
5716 return 0;
5717 }
5718
5719 /* Now go through and see if the requested network is valid... */
5720 if (priv->ieee->scan_age != 0 &&
5721 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5722 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5723 network->ssid_len, network->ssid,
5724 network->bssid,
5725 jiffies_to_msecs(jiffies -
5726 network->last_scanned));
5727 return 0;
5728 }
5729
5730 if ((priv->config & CFG_STATIC_CHANNEL) &&
5731 (network->channel != priv->channel)) {
5732 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5733 network->ssid_len, network->ssid,
5734 network->bssid,
5735 network->channel, priv->channel);
5736 return 0;
5737 }
5738
5739 /* Verify privacy compatibility */
5740 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5741 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5742 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5743 network->ssid_len, network->ssid,
5744 network->bssid,
5745 priv->capability & CAP_PRIVACY_ON ? "on" :
5746 "off",
5747 network->capability &
5748 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5749 return 0;
5750 }
5751
5752 if ((priv->config & CFG_STATIC_BSSID) &&
5753 !ether_addr_equal(network->bssid, priv->bssid)) {
5754 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of BSSID mismatch: %pM.\n",
5755 network->ssid_len, network->ssid,
5756 network->bssid, priv->bssid);
5757 return 0;
5758 }
5759
5760 /* Filter out any incompatible freq / mode combinations */
5761 if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5762 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5763 network->ssid_len, network->ssid,
5764 network->bssid);
5765 return 0;
5766 }
5767
5768 /* Filter out invalid channel in current GEO */
5769 if (!libipw_is_valid_channel(priv->ieee, network->channel)) {
5770 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid channel in current GEO\n",
5771 network->ssid_len, network->ssid,
5772 network->bssid);
5773 return 0;
5774 }
5775
5776 /* Ensure that the rates supported by the driver are compatible with
5777 * this AP, including verification of basic rates (mandatory) */
5778 if (!ipw_compatible_rates(priv, network, &rates)) {
5779 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5780 network->ssid_len, network->ssid,
5781 network->bssid);
5782 return 0;
5783 }
5784
5785 if (rates.num_rates == 0) {
5786 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5787 network->ssid_len, network->ssid,
5788 network->bssid);
5789 return 0;
5790 }
5791
5792 /* TODO: Perform any further minimal comparititive tests. We do not
5793 * want to put too much policy logic here; intelligent scan selection
5794 * should occur within a generic IEEE 802.11 user space tool. */
5795
5796 /* Set up 'new' AP to this network */
5797 ipw_copy_rates(&match->rates, &rates);
5798 match->network = network;
5799
5800 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' is a viable match.\n",
5801 network->ssid_len, network->ssid, network->bssid);
5802
5803 return 1;
5804 }
5805
ipw_adhoc_create(struct ipw_priv * priv,struct libipw_network * network)5806 static void ipw_adhoc_create(struct ipw_priv *priv,
5807 struct libipw_network *network)
5808 {
5809 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
5810 int i;
5811
5812 /*
5813 * For the purposes of scanning, we can set our wireless mode
5814 * to trigger scans across combinations of bands, but when it
5815 * comes to creating a new ad-hoc network, we have tell the FW
5816 * exactly which band to use.
5817 *
5818 * We also have the possibility of an invalid channel for the
5819 * chossen band. Attempting to create a new ad-hoc network
5820 * with an invalid channel for wireless mode will trigger a
5821 * FW fatal error.
5822 *
5823 */
5824 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
5825 case LIBIPW_52GHZ_BAND:
5826 network->mode = IEEE_A;
5827 i = libipw_channel_to_index(priv->ieee, priv->channel);
5828 BUG_ON(i == -1);
5829 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5830 IPW_WARNING("Overriding invalid channel\n");
5831 priv->channel = geo->a[0].channel;
5832 }
5833 break;
5834
5835 case LIBIPW_24GHZ_BAND:
5836 if (priv->ieee->mode & IEEE_G)
5837 network->mode = IEEE_G;
5838 else
5839 network->mode = IEEE_B;
5840 i = libipw_channel_to_index(priv->ieee, priv->channel);
5841 BUG_ON(i == -1);
5842 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5843 IPW_WARNING("Overriding invalid channel\n");
5844 priv->channel = geo->bg[0].channel;
5845 }
5846 break;
5847
5848 default:
5849 IPW_WARNING("Overriding invalid channel\n");
5850 if (priv->ieee->mode & IEEE_A) {
5851 network->mode = IEEE_A;
5852 priv->channel = geo->a[0].channel;
5853 } else if (priv->ieee->mode & IEEE_G) {
5854 network->mode = IEEE_G;
5855 priv->channel = geo->bg[0].channel;
5856 } else {
5857 network->mode = IEEE_B;
5858 priv->channel = geo->bg[0].channel;
5859 }
5860 break;
5861 }
5862
5863 network->channel = priv->channel;
5864 priv->config |= CFG_ADHOC_PERSIST;
5865 ipw_create_bssid(priv, network->bssid);
5866 network->ssid_len = priv->essid_len;
5867 memcpy(network->ssid, priv->essid, priv->essid_len);
5868 memset(&network->stats, 0, sizeof(network->stats));
5869 network->capability = WLAN_CAPABILITY_IBSS;
5870 if (!(priv->config & CFG_PREAMBLE_LONG))
5871 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5872 if (priv->capability & CAP_PRIVACY_ON)
5873 network->capability |= WLAN_CAPABILITY_PRIVACY;
5874 network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5875 memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5876 network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5877 memcpy(network->rates_ex,
5878 &priv->rates.supported_rates[network->rates_len],
5879 network->rates_ex_len);
5880 network->last_scanned = 0;
5881 network->flags = 0;
5882 network->last_associate = 0;
5883 network->time_stamp[0] = 0;
5884 network->time_stamp[1] = 0;
5885 network->beacon_interval = 100; /* Default */
5886 network->listen_interval = 10; /* Default */
5887 network->atim_window = 0; /* Default */
5888 network->wpa_ie_len = 0;
5889 network->rsn_ie_len = 0;
5890 }
5891
ipw_send_tgi_tx_key(struct ipw_priv * priv,int type,int index)5892 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5893 {
5894 struct ipw_tgi_tx_key key;
5895
5896 if (!(priv->ieee->sec.flags & (1 << index)))
5897 return;
5898
5899 key.key_id = index;
5900 memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5901 key.security_type = type;
5902 key.station_index = 0; /* always 0 for BSS */
5903 key.flags = 0;
5904 /* 0 for new key; previous value of counter (after fatal error) */
5905 key.tx_counter[0] = cpu_to_le32(0);
5906 key.tx_counter[1] = cpu_to_le32(0);
5907
5908 ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5909 }
5910
ipw_send_wep_keys(struct ipw_priv * priv,int type)5911 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5912 {
5913 struct ipw_wep_key key;
5914 int i;
5915
5916 key.cmd_id = DINO_CMD_WEP_KEY;
5917 key.seq_num = 0;
5918
5919 /* Note: AES keys cannot be set for multiple times.
5920 * Only set it at the first time. */
5921 for (i = 0; i < 4; i++) {
5922 key.key_index = i | type;
5923 if (!(priv->ieee->sec.flags & (1 << i))) {
5924 key.key_size = 0;
5925 continue;
5926 }
5927
5928 key.key_size = priv->ieee->sec.key_sizes[i];
5929 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5930
5931 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5932 }
5933 }
5934
ipw_set_hw_decrypt_unicast(struct ipw_priv * priv,int level)5935 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5936 {
5937 if (priv->ieee->host_encrypt)
5938 return;
5939
5940 switch (level) {
5941 case SEC_LEVEL_3:
5942 priv->sys_config.disable_unicast_decryption = 0;
5943 priv->ieee->host_decrypt = 0;
5944 break;
5945 case SEC_LEVEL_2:
5946 priv->sys_config.disable_unicast_decryption = 1;
5947 priv->ieee->host_decrypt = 1;
5948 break;
5949 case SEC_LEVEL_1:
5950 priv->sys_config.disable_unicast_decryption = 0;
5951 priv->ieee->host_decrypt = 0;
5952 break;
5953 case SEC_LEVEL_0:
5954 priv->sys_config.disable_unicast_decryption = 1;
5955 break;
5956 default:
5957 break;
5958 }
5959 }
5960
ipw_set_hw_decrypt_multicast(struct ipw_priv * priv,int level)5961 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5962 {
5963 if (priv->ieee->host_encrypt)
5964 return;
5965
5966 switch (level) {
5967 case SEC_LEVEL_3:
5968 priv->sys_config.disable_multicast_decryption = 0;
5969 break;
5970 case SEC_LEVEL_2:
5971 priv->sys_config.disable_multicast_decryption = 1;
5972 break;
5973 case SEC_LEVEL_1:
5974 priv->sys_config.disable_multicast_decryption = 0;
5975 break;
5976 case SEC_LEVEL_0:
5977 priv->sys_config.disable_multicast_decryption = 1;
5978 break;
5979 default:
5980 break;
5981 }
5982 }
5983
ipw_set_hwcrypto_keys(struct ipw_priv * priv)5984 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
5985 {
5986 switch (priv->ieee->sec.level) {
5987 case SEC_LEVEL_3:
5988 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5989 ipw_send_tgi_tx_key(priv,
5990 DCT_FLAG_EXT_SECURITY_CCM,
5991 priv->ieee->sec.active_key);
5992
5993 if (!priv->ieee->host_mc_decrypt)
5994 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
5995 break;
5996 case SEC_LEVEL_2:
5997 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5998 ipw_send_tgi_tx_key(priv,
5999 DCT_FLAG_EXT_SECURITY_TKIP,
6000 priv->ieee->sec.active_key);
6001 break;
6002 case SEC_LEVEL_1:
6003 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6004 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6005 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6006 break;
6007 case SEC_LEVEL_0:
6008 default:
6009 break;
6010 }
6011 }
6012
ipw_adhoc_check(void * data)6013 static void ipw_adhoc_check(void *data)
6014 {
6015 struct ipw_priv *priv = data;
6016
6017 if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6018 !(priv->config & CFG_ADHOC_PERSIST)) {
6019 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6020 IPW_DL_STATE | IPW_DL_ASSOC,
6021 "Missed beacon: %d - disassociate\n",
6022 priv->missed_adhoc_beacons);
6023 ipw_remove_current_network(priv);
6024 ipw_disassociate(priv);
6025 return;
6026 }
6027
6028 schedule_delayed_work(&priv->adhoc_check,
6029 le16_to_cpu(priv->assoc_request.beacon_interval));
6030 }
6031
ipw_bg_adhoc_check(struct work_struct * work)6032 static void ipw_bg_adhoc_check(struct work_struct *work)
6033 {
6034 struct ipw_priv *priv =
6035 container_of(work, struct ipw_priv, adhoc_check.work);
6036 mutex_lock(&priv->mutex);
6037 ipw_adhoc_check(priv);
6038 mutex_unlock(&priv->mutex);
6039 }
6040
ipw_debug_config(struct ipw_priv * priv)6041 static void ipw_debug_config(struct ipw_priv *priv)
6042 {
6043 IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6044 "[CFG 0x%08X]\n", priv->config);
6045 if (priv->config & CFG_STATIC_CHANNEL)
6046 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6047 else
6048 IPW_DEBUG_INFO("Channel unlocked.\n");
6049 if (priv->config & CFG_STATIC_ESSID)
6050 IPW_DEBUG_INFO("ESSID locked to '%*pE'\n",
6051 priv->essid_len, priv->essid);
6052 else
6053 IPW_DEBUG_INFO("ESSID unlocked.\n");
6054 if (priv->config & CFG_STATIC_BSSID)
6055 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6056 else
6057 IPW_DEBUG_INFO("BSSID unlocked.\n");
6058 if (priv->capability & CAP_PRIVACY_ON)
6059 IPW_DEBUG_INFO("PRIVACY on\n");
6060 else
6061 IPW_DEBUG_INFO("PRIVACY off\n");
6062 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6063 }
6064
ipw_set_fixed_rate(struct ipw_priv * priv,int mode)6065 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6066 {
6067 /* TODO: Verify that this works... */
6068 struct ipw_fixed_rate fr;
6069 u32 reg;
6070 u16 mask = 0;
6071 u16 new_tx_rates = priv->rates_mask;
6072
6073 /* Identify 'current FW band' and match it with the fixed
6074 * Tx rates */
6075
6076 switch (priv->ieee->freq_band) {
6077 case LIBIPW_52GHZ_BAND: /* A only */
6078 /* IEEE_A */
6079 if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) {
6080 /* Invalid fixed rate mask */
6081 IPW_DEBUG_WX
6082 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6083 new_tx_rates = 0;
6084 break;
6085 }
6086
6087 new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A;
6088 break;
6089
6090 default: /* 2.4Ghz or Mixed */
6091 /* IEEE_B */
6092 if (mode == IEEE_B) {
6093 if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) {
6094 /* Invalid fixed rate mask */
6095 IPW_DEBUG_WX
6096 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6097 new_tx_rates = 0;
6098 }
6099 break;
6100 }
6101
6102 /* IEEE_G */
6103 if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK |
6104 LIBIPW_OFDM_RATES_MASK)) {
6105 /* Invalid fixed rate mask */
6106 IPW_DEBUG_WX
6107 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6108 new_tx_rates = 0;
6109 break;
6110 }
6111
6112 if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) {
6113 mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1);
6114 new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK;
6115 }
6116
6117 if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) {
6118 mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1);
6119 new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK;
6120 }
6121
6122 if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) {
6123 mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1);
6124 new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK;
6125 }
6126
6127 new_tx_rates |= mask;
6128 break;
6129 }
6130
6131 fr.tx_rates = cpu_to_le16(new_tx_rates);
6132
6133 reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6134 ipw_write_reg32(priv, reg, *(u32 *) & fr);
6135 }
6136
ipw_abort_scan(struct ipw_priv * priv)6137 static void ipw_abort_scan(struct ipw_priv *priv)
6138 {
6139 int err;
6140
6141 if (priv->status & STATUS_SCAN_ABORTING) {
6142 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6143 return;
6144 }
6145 priv->status |= STATUS_SCAN_ABORTING;
6146
6147 err = ipw_send_scan_abort(priv);
6148 if (err)
6149 IPW_DEBUG_HC("Request to abort scan failed.\n");
6150 }
6151
ipw_add_scan_channels(struct ipw_priv * priv,struct ipw_scan_request_ext * scan,int scan_type)6152 static void ipw_add_scan_channels(struct ipw_priv *priv,
6153 struct ipw_scan_request_ext *scan,
6154 int scan_type)
6155 {
6156 int channel_index = 0;
6157 const struct libipw_geo *geo;
6158 int i;
6159
6160 geo = libipw_get_geo(priv->ieee);
6161
6162 if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) {
6163 int start = channel_index;
6164 for (i = 0; i < geo->a_channels; i++) {
6165 if ((priv->status & STATUS_ASSOCIATED) &&
6166 geo->a[i].channel == priv->channel)
6167 continue;
6168 channel_index++;
6169 scan->channels_list[channel_index] = geo->a[i].channel;
6170 ipw_set_scan_type(scan, channel_index,
6171 geo->a[i].
6172 flags & LIBIPW_CH_PASSIVE_ONLY ?
6173 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6174 scan_type);
6175 }
6176
6177 if (start != channel_index) {
6178 scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6179 (channel_index - start);
6180 channel_index++;
6181 }
6182 }
6183
6184 if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) {
6185 int start = channel_index;
6186 if (priv->config & CFG_SPEED_SCAN) {
6187 int index;
6188 u8 channels[LIBIPW_24GHZ_CHANNELS] = {
6189 /* nop out the list */
6190 [0] = 0
6191 };
6192
6193 u8 channel;
6194 while (channel_index < IPW_SCAN_CHANNELS - 1) {
6195 channel =
6196 priv->speed_scan[priv->speed_scan_pos];
6197 if (channel == 0) {
6198 priv->speed_scan_pos = 0;
6199 channel = priv->speed_scan[0];
6200 }
6201 if ((priv->status & STATUS_ASSOCIATED) &&
6202 channel == priv->channel) {
6203 priv->speed_scan_pos++;
6204 continue;
6205 }
6206
6207 /* If this channel has already been
6208 * added in scan, break from loop
6209 * and this will be the first channel
6210 * in the next scan.
6211 */
6212 if (channels[channel - 1] != 0)
6213 break;
6214
6215 channels[channel - 1] = 1;
6216 priv->speed_scan_pos++;
6217 channel_index++;
6218 scan->channels_list[channel_index] = channel;
6219 index =
6220 libipw_channel_to_index(priv->ieee, channel);
6221 ipw_set_scan_type(scan, channel_index,
6222 geo->bg[index].
6223 flags &
6224 LIBIPW_CH_PASSIVE_ONLY ?
6225 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6226 : scan_type);
6227 }
6228 } else {
6229 for (i = 0; i < geo->bg_channels; i++) {
6230 if ((priv->status & STATUS_ASSOCIATED) &&
6231 geo->bg[i].channel == priv->channel)
6232 continue;
6233 channel_index++;
6234 scan->channels_list[channel_index] =
6235 geo->bg[i].channel;
6236 ipw_set_scan_type(scan, channel_index,
6237 geo->bg[i].
6238 flags &
6239 LIBIPW_CH_PASSIVE_ONLY ?
6240 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6241 : scan_type);
6242 }
6243 }
6244
6245 if (start != channel_index) {
6246 scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6247 (channel_index - start);
6248 }
6249 }
6250 }
6251
ipw_passive_dwell_time(struct ipw_priv * priv)6252 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6253 {
6254 /* staying on passive channels longer than the DTIM interval during a
6255 * scan, while associated, causes the firmware to cancel the scan
6256 * without notification. Hence, don't stay on passive channels longer
6257 * than the beacon interval.
6258 */
6259 if (priv->status & STATUS_ASSOCIATED
6260 && priv->assoc_network->beacon_interval > 10)
6261 return priv->assoc_network->beacon_interval - 10;
6262 else
6263 return 120;
6264 }
6265
ipw_request_scan_helper(struct ipw_priv * priv,int type,int direct)6266 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6267 {
6268 struct ipw_scan_request_ext scan;
6269 int err = 0, scan_type;
6270
6271 if (!(priv->status & STATUS_INIT) ||
6272 (priv->status & STATUS_EXIT_PENDING))
6273 return 0;
6274
6275 mutex_lock(&priv->mutex);
6276
6277 if (direct && (priv->direct_scan_ssid_len == 0)) {
6278 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6279 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6280 goto done;
6281 }
6282
6283 if (priv->status & STATUS_SCANNING) {
6284 IPW_DEBUG_HC("Concurrent scan requested. Queuing.\n");
6285 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6286 STATUS_SCAN_PENDING;
6287 goto done;
6288 }
6289
6290 if (!(priv->status & STATUS_SCAN_FORCED) &&
6291 priv->status & STATUS_SCAN_ABORTING) {
6292 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
6293 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6294 STATUS_SCAN_PENDING;
6295 goto done;
6296 }
6297
6298 if (priv->status & STATUS_RF_KILL_MASK) {
6299 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6300 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6301 STATUS_SCAN_PENDING;
6302 goto done;
6303 }
6304
6305 memset(&scan, 0, sizeof(scan));
6306 scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee));
6307
6308 if (type == IW_SCAN_TYPE_PASSIVE) {
6309 IPW_DEBUG_WX("use passive scanning\n");
6310 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6311 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6312 cpu_to_le16(ipw_passive_dwell_time(priv));
6313 ipw_add_scan_channels(priv, &scan, scan_type);
6314 goto send_request;
6315 }
6316
6317 /* Use active scan by default. */
6318 if (priv->config & CFG_SPEED_SCAN)
6319 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6320 cpu_to_le16(30);
6321 else
6322 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6323 cpu_to_le16(20);
6324
6325 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6326 cpu_to_le16(20);
6327
6328 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6329 cpu_to_le16(ipw_passive_dwell_time(priv));
6330 scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6331
6332 #ifdef CONFIG_IPW2200_MONITOR
6333 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6334 u8 channel;
6335 u8 band = 0;
6336
6337 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
6338 case LIBIPW_52GHZ_BAND:
6339 band = (u8) (IPW_A_MODE << 6) | 1;
6340 channel = priv->channel;
6341 break;
6342
6343 case LIBIPW_24GHZ_BAND:
6344 band = (u8) (IPW_B_MODE << 6) | 1;
6345 channel = priv->channel;
6346 break;
6347
6348 default:
6349 band = (u8) (IPW_B_MODE << 6) | 1;
6350 channel = 9;
6351 break;
6352 }
6353
6354 scan.channels_list[0] = band;
6355 scan.channels_list[1] = channel;
6356 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6357
6358 /* NOTE: The card will sit on this channel for this time
6359 * period. Scan aborts are timing sensitive and frequently
6360 * result in firmware restarts. As such, it is best to
6361 * set a small dwell_time here and just keep re-issuing
6362 * scans. Otherwise fast channel hopping will not actually
6363 * hop channels.
6364 *
6365 * TODO: Move SPEED SCAN support to all modes and bands */
6366 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6367 cpu_to_le16(2000);
6368 } else {
6369 #endif /* CONFIG_IPW2200_MONITOR */
6370 /* Honor direct scans first, otherwise if we are roaming make
6371 * this a direct scan for the current network. Finally,
6372 * ensure that every other scan is a fast channel hop scan */
6373 if (direct) {
6374 err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6375 priv->direct_scan_ssid_len);
6376 if (err) {
6377 IPW_DEBUG_HC("Attempt to send SSID command "
6378 "failed\n");
6379 goto done;
6380 }
6381
6382 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6383 } else if ((priv->status & STATUS_ROAMING)
6384 || (!(priv->status & STATUS_ASSOCIATED)
6385 && (priv->config & CFG_STATIC_ESSID)
6386 && (le32_to_cpu(scan.full_scan_index) % 2))) {
6387 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6388 if (err) {
6389 IPW_DEBUG_HC("Attempt to send SSID command "
6390 "failed.\n");
6391 goto done;
6392 }
6393
6394 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6395 } else
6396 scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6397
6398 ipw_add_scan_channels(priv, &scan, scan_type);
6399 #ifdef CONFIG_IPW2200_MONITOR
6400 }
6401 #endif
6402
6403 send_request:
6404 err = ipw_send_scan_request_ext(priv, &scan);
6405 if (err) {
6406 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6407 goto done;
6408 }
6409
6410 priv->status |= STATUS_SCANNING;
6411 if (direct) {
6412 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6413 priv->direct_scan_ssid_len = 0;
6414 } else
6415 priv->status &= ~STATUS_SCAN_PENDING;
6416
6417 schedule_delayed_work(&priv->scan_check, IPW_SCAN_CHECK_WATCHDOG);
6418 done:
6419 mutex_unlock(&priv->mutex);
6420 return err;
6421 }
6422
ipw_request_passive_scan(struct work_struct * work)6423 static void ipw_request_passive_scan(struct work_struct *work)
6424 {
6425 struct ipw_priv *priv =
6426 container_of(work, struct ipw_priv, request_passive_scan.work);
6427 ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6428 }
6429
ipw_request_scan(struct work_struct * work)6430 static void ipw_request_scan(struct work_struct *work)
6431 {
6432 struct ipw_priv *priv =
6433 container_of(work, struct ipw_priv, request_scan.work);
6434 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6435 }
6436
ipw_request_direct_scan(struct work_struct * work)6437 static void ipw_request_direct_scan(struct work_struct *work)
6438 {
6439 struct ipw_priv *priv =
6440 container_of(work, struct ipw_priv, request_direct_scan.work);
6441 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6442 }
6443
ipw_bg_abort_scan(struct work_struct * work)6444 static void ipw_bg_abort_scan(struct work_struct *work)
6445 {
6446 struct ipw_priv *priv =
6447 container_of(work, struct ipw_priv, abort_scan);
6448 mutex_lock(&priv->mutex);
6449 ipw_abort_scan(priv);
6450 mutex_unlock(&priv->mutex);
6451 }
6452
ipw_wpa_enable(struct ipw_priv * priv,int value)6453 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6454 {
6455 /* This is called when wpa_supplicant loads and closes the driver
6456 * interface. */
6457 priv->ieee->wpa_enabled = value;
6458 return 0;
6459 }
6460
ipw_wpa_set_auth_algs(struct ipw_priv * priv,int value)6461 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6462 {
6463 struct libipw_device *ieee = priv->ieee;
6464 struct libipw_security sec = {
6465 .flags = SEC_AUTH_MODE,
6466 };
6467 int ret = 0;
6468
6469 if (value & IW_AUTH_ALG_SHARED_KEY) {
6470 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6471 ieee->open_wep = 0;
6472 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6473 sec.auth_mode = WLAN_AUTH_OPEN;
6474 ieee->open_wep = 1;
6475 } else if (value & IW_AUTH_ALG_LEAP) {
6476 sec.auth_mode = WLAN_AUTH_LEAP;
6477 ieee->open_wep = 1;
6478 } else
6479 return -EINVAL;
6480
6481 if (ieee->set_security)
6482 ieee->set_security(ieee->dev, &sec);
6483 else
6484 ret = -EOPNOTSUPP;
6485
6486 return ret;
6487 }
6488
ipw_wpa_assoc_frame(struct ipw_priv * priv,char * wpa_ie,int wpa_ie_len)6489 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6490 int wpa_ie_len)
6491 {
6492 /* make sure WPA is enabled */
6493 ipw_wpa_enable(priv, 1);
6494 }
6495
ipw_set_rsn_capa(struct ipw_priv * priv,char * capabilities,int length)6496 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6497 char *capabilities, int length)
6498 {
6499 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6500
6501 return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6502 capabilities);
6503 }
6504
6505 /*
6506 * WE-18 support
6507 */
6508
6509 /* SIOCSIWGENIE */
ipw_wx_set_genie(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6510 static int ipw_wx_set_genie(struct net_device *dev,
6511 struct iw_request_info *info,
6512 union iwreq_data *wrqu, char *extra)
6513 {
6514 struct ipw_priv *priv = libipw_priv(dev);
6515 struct libipw_device *ieee = priv->ieee;
6516 u8 *buf;
6517 int err = 0;
6518
6519 if (wrqu->data.length > MAX_WPA_IE_LEN ||
6520 (wrqu->data.length && extra == NULL))
6521 return -EINVAL;
6522
6523 if (wrqu->data.length) {
6524 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
6525 if (buf == NULL) {
6526 err = -ENOMEM;
6527 goto out;
6528 }
6529
6530 kfree(ieee->wpa_ie);
6531 ieee->wpa_ie = buf;
6532 ieee->wpa_ie_len = wrqu->data.length;
6533 } else {
6534 kfree(ieee->wpa_ie);
6535 ieee->wpa_ie = NULL;
6536 ieee->wpa_ie_len = 0;
6537 }
6538
6539 ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6540 out:
6541 return err;
6542 }
6543
6544 /* SIOCGIWGENIE */
ipw_wx_get_genie(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6545 static int ipw_wx_get_genie(struct net_device *dev,
6546 struct iw_request_info *info,
6547 union iwreq_data *wrqu, char *extra)
6548 {
6549 struct ipw_priv *priv = libipw_priv(dev);
6550 struct libipw_device *ieee = priv->ieee;
6551 int err = 0;
6552
6553 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6554 wrqu->data.length = 0;
6555 goto out;
6556 }
6557
6558 if (wrqu->data.length < ieee->wpa_ie_len) {
6559 err = -E2BIG;
6560 goto out;
6561 }
6562
6563 wrqu->data.length = ieee->wpa_ie_len;
6564 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6565
6566 out:
6567 return err;
6568 }
6569
wext_cipher2level(int cipher)6570 static int wext_cipher2level(int cipher)
6571 {
6572 switch (cipher) {
6573 case IW_AUTH_CIPHER_NONE:
6574 return SEC_LEVEL_0;
6575 case IW_AUTH_CIPHER_WEP40:
6576 case IW_AUTH_CIPHER_WEP104:
6577 return SEC_LEVEL_1;
6578 case IW_AUTH_CIPHER_TKIP:
6579 return SEC_LEVEL_2;
6580 case IW_AUTH_CIPHER_CCMP:
6581 return SEC_LEVEL_3;
6582 default:
6583 return -1;
6584 }
6585 }
6586
6587 /* SIOCSIWAUTH */
ipw_wx_set_auth(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6588 static int ipw_wx_set_auth(struct net_device *dev,
6589 struct iw_request_info *info,
6590 union iwreq_data *wrqu, char *extra)
6591 {
6592 struct ipw_priv *priv = libipw_priv(dev);
6593 struct libipw_device *ieee = priv->ieee;
6594 struct iw_param *param = &wrqu->param;
6595 struct lib80211_crypt_data *crypt;
6596 unsigned long flags;
6597 int ret = 0;
6598
6599 switch (param->flags & IW_AUTH_INDEX) {
6600 case IW_AUTH_WPA_VERSION:
6601 break;
6602 case IW_AUTH_CIPHER_PAIRWISE:
6603 ipw_set_hw_decrypt_unicast(priv,
6604 wext_cipher2level(param->value));
6605 break;
6606 case IW_AUTH_CIPHER_GROUP:
6607 ipw_set_hw_decrypt_multicast(priv,
6608 wext_cipher2level(param->value));
6609 break;
6610 case IW_AUTH_KEY_MGMT:
6611 /*
6612 * ipw2200 does not use these parameters
6613 */
6614 break;
6615
6616 case IW_AUTH_TKIP_COUNTERMEASURES:
6617 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6618 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6619 break;
6620
6621 flags = crypt->ops->get_flags(crypt->priv);
6622
6623 if (param->value)
6624 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6625 else
6626 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6627
6628 crypt->ops->set_flags(flags, crypt->priv);
6629
6630 break;
6631
6632 case IW_AUTH_DROP_UNENCRYPTED:{
6633 /* HACK:
6634 *
6635 * wpa_supplicant calls set_wpa_enabled when the driver
6636 * is loaded and unloaded, regardless of if WPA is being
6637 * used. No other calls are made which can be used to
6638 * determine if encryption will be used or not prior to
6639 * association being expected. If encryption is not being
6640 * used, drop_unencrypted is set to false, else true -- we
6641 * can use this to determine if the CAP_PRIVACY_ON bit should
6642 * be set.
6643 */
6644 struct libipw_security sec = {
6645 .flags = SEC_ENABLED,
6646 .enabled = param->value,
6647 };
6648 priv->ieee->drop_unencrypted = param->value;
6649 /* We only change SEC_LEVEL for open mode. Others
6650 * are set by ipw_wpa_set_encryption.
6651 */
6652 if (!param->value) {
6653 sec.flags |= SEC_LEVEL;
6654 sec.level = SEC_LEVEL_0;
6655 } else {
6656 sec.flags |= SEC_LEVEL;
6657 sec.level = SEC_LEVEL_1;
6658 }
6659 if (priv->ieee->set_security)
6660 priv->ieee->set_security(priv->ieee->dev, &sec);
6661 break;
6662 }
6663
6664 case IW_AUTH_80211_AUTH_ALG:
6665 ret = ipw_wpa_set_auth_algs(priv, param->value);
6666 break;
6667
6668 case IW_AUTH_WPA_ENABLED:
6669 ret = ipw_wpa_enable(priv, param->value);
6670 ipw_disassociate(priv);
6671 break;
6672
6673 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6674 ieee->ieee802_1x = param->value;
6675 break;
6676
6677 case IW_AUTH_PRIVACY_INVOKED:
6678 ieee->privacy_invoked = param->value;
6679 break;
6680
6681 default:
6682 return -EOPNOTSUPP;
6683 }
6684 return ret;
6685 }
6686
6687 /* SIOCGIWAUTH */
ipw_wx_get_auth(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6688 static int ipw_wx_get_auth(struct net_device *dev,
6689 struct iw_request_info *info,
6690 union iwreq_data *wrqu, char *extra)
6691 {
6692 struct ipw_priv *priv = libipw_priv(dev);
6693 struct libipw_device *ieee = priv->ieee;
6694 struct lib80211_crypt_data *crypt;
6695 struct iw_param *param = &wrqu->param;
6696
6697 switch (param->flags & IW_AUTH_INDEX) {
6698 case IW_AUTH_WPA_VERSION:
6699 case IW_AUTH_CIPHER_PAIRWISE:
6700 case IW_AUTH_CIPHER_GROUP:
6701 case IW_AUTH_KEY_MGMT:
6702 /*
6703 * wpa_supplicant will control these internally
6704 */
6705 return -EOPNOTSUPP;
6706
6707 case IW_AUTH_TKIP_COUNTERMEASURES:
6708 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6709 if (!crypt || !crypt->ops->get_flags)
6710 break;
6711
6712 param->value = (crypt->ops->get_flags(crypt->priv) &
6713 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6714
6715 break;
6716
6717 case IW_AUTH_DROP_UNENCRYPTED:
6718 param->value = ieee->drop_unencrypted;
6719 break;
6720
6721 case IW_AUTH_80211_AUTH_ALG:
6722 param->value = ieee->sec.auth_mode;
6723 break;
6724
6725 case IW_AUTH_WPA_ENABLED:
6726 param->value = ieee->wpa_enabled;
6727 break;
6728
6729 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6730 param->value = ieee->ieee802_1x;
6731 break;
6732
6733 case IW_AUTH_ROAMING_CONTROL:
6734 case IW_AUTH_PRIVACY_INVOKED:
6735 param->value = ieee->privacy_invoked;
6736 break;
6737
6738 default:
6739 return -EOPNOTSUPP;
6740 }
6741 return 0;
6742 }
6743
6744 /* SIOCSIWENCODEEXT */
ipw_wx_set_encodeext(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6745 static int ipw_wx_set_encodeext(struct net_device *dev,
6746 struct iw_request_info *info,
6747 union iwreq_data *wrqu, char *extra)
6748 {
6749 struct ipw_priv *priv = libipw_priv(dev);
6750 struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6751
6752 if (hwcrypto) {
6753 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6754 /* IPW HW can't build TKIP MIC,
6755 host decryption still needed */
6756 if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6757 priv->ieee->host_mc_decrypt = 1;
6758 else {
6759 priv->ieee->host_encrypt = 0;
6760 priv->ieee->host_encrypt_msdu = 1;
6761 priv->ieee->host_decrypt = 1;
6762 }
6763 } else {
6764 priv->ieee->host_encrypt = 0;
6765 priv->ieee->host_encrypt_msdu = 0;
6766 priv->ieee->host_decrypt = 0;
6767 priv->ieee->host_mc_decrypt = 0;
6768 }
6769 }
6770
6771 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6772 }
6773
6774 /* SIOCGIWENCODEEXT */
ipw_wx_get_encodeext(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6775 static int ipw_wx_get_encodeext(struct net_device *dev,
6776 struct iw_request_info *info,
6777 union iwreq_data *wrqu, char *extra)
6778 {
6779 struct ipw_priv *priv = libipw_priv(dev);
6780 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6781 }
6782
6783 /* SIOCSIWMLME */
ipw_wx_set_mlme(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6784 static int ipw_wx_set_mlme(struct net_device *dev,
6785 struct iw_request_info *info,
6786 union iwreq_data *wrqu, char *extra)
6787 {
6788 struct ipw_priv *priv = libipw_priv(dev);
6789 struct iw_mlme *mlme = (struct iw_mlme *)extra;
6790
6791 switch (mlme->cmd) {
6792 case IW_MLME_DEAUTH:
6793 /* silently ignore */
6794 break;
6795
6796 case IW_MLME_DISASSOC:
6797 ipw_disassociate(priv);
6798 break;
6799
6800 default:
6801 return -EOPNOTSUPP;
6802 }
6803 return 0;
6804 }
6805
6806 #ifdef CONFIG_IPW2200_QOS
6807
6808 /* QoS */
6809 /*
6810 * get the modulation type of the current network or
6811 * the card current mode
6812 */
ipw_qos_current_mode(struct ipw_priv * priv)6813 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6814 {
6815 u8 mode = 0;
6816
6817 if (priv->status & STATUS_ASSOCIATED) {
6818 unsigned long flags;
6819
6820 spin_lock_irqsave(&priv->ieee->lock, flags);
6821 mode = priv->assoc_network->mode;
6822 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6823 } else {
6824 mode = priv->ieee->mode;
6825 }
6826 IPW_DEBUG_QOS("QoS network/card mode %d\n", mode);
6827 return mode;
6828 }
6829
6830 /*
6831 * Handle management frame beacon and probe response
6832 */
ipw_qos_handle_probe_response(struct ipw_priv * priv,int active_network,struct libipw_network * network)6833 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6834 int active_network,
6835 struct libipw_network *network)
6836 {
6837 u32 size = sizeof(struct libipw_qos_parameters);
6838
6839 if (network->capability & WLAN_CAPABILITY_IBSS)
6840 network->qos_data.active = network->qos_data.supported;
6841
6842 if (network->flags & NETWORK_HAS_QOS_MASK) {
6843 if (active_network &&
6844 (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6845 network->qos_data.active = network->qos_data.supported;
6846
6847 if ((network->qos_data.active == 1) && (active_network == 1) &&
6848 (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6849 (network->qos_data.old_param_count !=
6850 network->qos_data.param_count)) {
6851 network->qos_data.old_param_count =
6852 network->qos_data.param_count;
6853 schedule_work(&priv->qos_activate);
6854 IPW_DEBUG_QOS("QoS parameters change call "
6855 "qos_activate\n");
6856 }
6857 } else {
6858 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6859 memcpy(&network->qos_data.parameters,
6860 &def_parameters_CCK, size);
6861 else
6862 memcpy(&network->qos_data.parameters,
6863 &def_parameters_OFDM, size);
6864
6865 if ((network->qos_data.active == 1) && (active_network == 1)) {
6866 IPW_DEBUG_QOS("QoS was disabled call qos_activate\n");
6867 schedule_work(&priv->qos_activate);
6868 }
6869
6870 network->qos_data.active = 0;
6871 network->qos_data.supported = 0;
6872 }
6873 if ((priv->status & STATUS_ASSOCIATED) &&
6874 (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6875 if (!ether_addr_equal(network->bssid, priv->bssid))
6876 if (network->capability & WLAN_CAPABILITY_IBSS)
6877 if ((network->ssid_len ==
6878 priv->assoc_network->ssid_len) &&
6879 !memcmp(network->ssid,
6880 priv->assoc_network->ssid,
6881 network->ssid_len)) {
6882 schedule_work(&priv->merge_networks);
6883 }
6884 }
6885
6886 return 0;
6887 }
6888
6889 /*
6890 * This function set up the firmware to support QoS. It sends
6891 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6892 */
ipw_qos_activate(struct ipw_priv * priv,struct libipw_qos_data * qos_network_data)6893 static int ipw_qos_activate(struct ipw_priv *priv,
6894 struct libipw_qos_data *qos_network_data)
6895 {
6896 int err;
6897 struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS];
6898 struct libipw_qos_parameters *active_one = NULL;
6899 u32 size = sizeof(struct libipw_qos_parameters);
6900 u32 burst_duration;
6901 int i;
6902 u8 type;
6903
6904 type = ipw_qos_current_mode(priv);
6905
6906 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6907 memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6908 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6909 memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6910
6911 if (qos_network_data == NULL) {
6912 if (type == IEEE_B) {
6913 IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6914 active_one = &def_parameters_CCK;
6915 } else
6916 active_one = &def_parameters_OFDM;
6917
6918 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6919 burst_duration = ipw_qos_get_burst_duration(priv);
6920 for (i = 0; i < QOS_QUEUE_NUM; i++)
6921 qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6922 cpu_to_le16(burst_duration);
6923 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6924 if (type == IEEE_B) {
6925 IPW_DEBUG_QOS("QoS activate IBSS network mode %d\n",
6926 type);
6927 if (priv->qos_data.qos_enable == 0)
6928 active_one = &def_parameters_CCK;
6929 else
6930 active_one = priv->qos_data.def_qos_parm_CCK;
6931 } else {
6932 if (priv->qos_data.qos_enable == 0)
6933 active_one = &def_parameters_OFDM;
6934 else
6935 active_one = priv->qos_data.def_qos_parm_OFDM;
6936 }
6937 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6938 } else {
6939 unsigned long flags;
6940 int active;
6941
6942 spin_lock_irqsave(&priv->ieee->lock, flags);
6943 active_one = &(qos_network_data->parameters);
6944 qos_network_data->old_param_count =
6945 qos_network_data->param_count;
6946 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6947 active = qos_network_data->supported;
6948 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6949
6950 if (active == 0) {
6951 burst_duration = ipw_qos_get_burst_duration(priv);
6952 for (i = 0; i < QOS_QUEUE_NUM; i++)
6953 qos_parameters[QOS_PARAM_SET_ACTIVE].
6954 tx_op_limit[i] = cpu_to_le16(burst_duration);
6955 }
6956 }
6957
6958 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6959 err = ipw_send_qos_params_command(priv, &qos_parameters[0]);
6960 if (err)
6961 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6962
6963 return err;
6964 }
6965
6966 /*
6967 * send IPW_CMD_WME_INFO to the firmware
6968 */
ipw_qos_set_info_element(struct ipw_priv * priv)6969 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6970 {
6971 int ret = 0;
6972 struct libipw_qos_information_element qos_info;
6973
6974 if (priv == NULL)
6975 return -1;
6976
6977 qos_info.elementID = QOS_ELEMENT_ID;
6978 qos_info.length = sizeof(struct libipw_qos_information_element) - 2;
6979
6980 qos_info.version = QOS_VERSION_1;
6981 qos_info.ac_info = 0;
6982
6983 memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6984 qos_info.qui_type = QOS_OUI_TYPE;
6985 qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6986
6987 ret = ipw_send_qos_info_command(priv, &qos_info);
6988 if (ret != 0) {
6989 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6990 }
6991 return ret;
6992 }
6993
6994 /*
6995 * Set the QoS parameter with the association request structure
6996 */
ipw_qos_association(struct ipw_priv * priv,struct libipw_network * network)6997 static int ipw_qos_association(struct ipw_priv *priv,
6998 struct libipw_network *network)
6999 {
7000 int err = 0;
7001 struct libipw_qos_data *qos_data = NULL;
7002 struct libipw_qos_data ibss_data = {
7003 .supported = 1,
7004 .active = 1,
7005 };
7006
7007 switch (priv->ieee->iw_mode) {
7008 case IW_MODE_ADHOC:
7009 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7010
7011 qos_data = &ibss_data;
7012 break;
7013
7014 case IW_MODE_INFRA:
7015 qos_data = &network->qos_data;
7016 break;
7017
7018 default:
7019 BUG();
7020 break;
7021 }
7022
7023 err = ipw_qos_activate(priv, qos_data);
7024 if (err) {
7025 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7026 return err;
7027 }
7028
7029 if (priv->qos_data.qos_enable && qos_data->supported) {
7030 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7031 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7032 return ipw_qos_set_info_element(priv);
7033 }
7034
7035 return 0;
7036 }
7037
7038 /*
7039 * handling the beaconing responses. if we get different QoS setting
7040 * off the network from the associated setting, adjust the QoS
7041 * setting
7042 */
ipw_qos_association_resp(struct ipw_priv * priv,struct libipw_network * network)7043 static void ipw_qos_association_resp(struct ipw_priv *priv,
7044 struct libipw_network *network)
7045 {
7046 unsigned long flags;
7047 u32 size = sizeof(struct libipw_qos_parameters);
7048 int set_qos_param = 0;
7049
7050 if ((priv == NULL) || (network == NULL) ||
7051 (priv->assoc_network == NULL))
7052 return;
7053
7054 if (!(priv->status & STATUS_ASSOCIATED))
7055 return;
7056
7057 if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7058 return;
7059
7060 spin_lock_irqsave(&priv->ieee->lock, flags);
7061 if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7062 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7063 sizeof(struct libipw_qos_data));
7064 priv->assoc_network->qos_data.active = 1;
7065 if ((network->qos_data.old_param_count !=
7066 network->qos_data.param_count)) {
7067 set_qos_param = 1;
7068 network->qos_data.old_param_count =
7069 network->qos_data.param_count;
7070 }
7071
7072 } else {
7073 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7074 memcpy(&priv->assoc_network->qos_data.parameters,
7075 &def_parameters_CCK, size);
7076 else
7077 memcpy(&priv->assoc_network->qos_data.parameters,
7078 &def_parameters_OFDM, size);
7079 priv->assoc_network->qos_data.active = 0;
7080 priv->assoc_network->qos_data.supported = 0;
7081 set_qos_param = 1;
7082 }
7083
7084 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7085
7086 if (set_qos_param == 1)
7087 schedule_work(&priv->qos_activate);
7088 }
7089
ipw_qos_get_burst_duration(struct ipw_priv * priv)7090 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7091 {
7092 u32 ret = 0;
7093
7094 if (!priv)
7095 return 0;
7096
7097 if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION))
7098 ret = priv->qos_data.burst_duration_CCK;
7099 else
7100 ret = priv->qos_data.burst_duration_OFDM;
7101
7102 return ret;
7103 }
7104
7105 /*
7106 * Initialize the setting of QoS global
7107 */
ipw_qos_init(struct ipw_priv * priv,int enable,int burst_enable,u32 burst_duration_CCK,u32 burst_duration_OFDM)7108 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7109 int burst_enable, u32 burst_duration_CCK,
7110 u32 burst_duration_OFDM)
7111 {
7112 priv->qos_data.qos_enable = enable;
7113
7114 if (priv->qos_data.qos_enable) {
7115 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7116 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7117 IPW_DEBUG_QOS("QoS is enabled\n");
7118 } else {
7119 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7120 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7121 IPW_DEBUG_QOS("QoS is not enabled\n");
7122 }
7123
7124 priv->qos_data.burst_enable = burst_enable;
7125
7126 if (burst_enable) {
7127 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7128 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7129 } else {
7130 priv->qos_data.burst_duration_CCK = 0;
7131 priv->qos_data.burst_duration_OFDM = 0;
7132 }
7133 }
7134
7135 /*
7136 * map the packet priority to the right TX Queue
7137 */
ipw_get_tx_queue_number(struct ipw_priv * priv,u16 priority)7138 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7139 {
7140 if (priority > 7 || !priv->qos_data.qos_enable)
7141 priority = 0;
7142
7143 return from_priority_to_tx_queue[priority] - 1;
7144 }
7145
ipw_is_qos_active(struct net_device * dev,struct sk_buff * skb)7146 static int ipw_is_qos_active(struct net_device *dev,
7147 struct sk_buff *skb)
7148 {
7149 struct ipw_priv *priv = libipw_priv(dev);
7150 struct libipw_qos_data *qos_data = NULL;
7151 int active, supported;
7152 u8 *daddr = skb->data + ETH_ALEN;
7153 int unicast = !is_multicast_ether_addr(daddr);
7154
7155 if (!(priv->status & STATUS_ASSOCIATED))
7156 return 0;
7157
7158 qos_data = &priv->assoc_network->qos_data;
7159
7160 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7161 if (unicast == 0)
7162 qos_data->active = 0;
7163 else
7164 qos_data->active = qos_data->supported;
7165 }
7166 active = qos_data->active;
7167 supported = qos_data->supported;
7168 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d "
7169 "unicast %d\n",
7170 priv->qos_data.qos_enable, active, supported, unicast);
7171 if (active && priv->qos_data.qos_enable)
7172 return 1;
7173
7174 return 0;
7175
7176 }
7177 /*
7178 * add QoS parameter to the TX command
7179 */
ipw_qos_set_tx_queue_command(struct ipw_priv * priv,u16 priority,struct tfd_data * tfd)7180 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7181 u16 priority,
7182 struct tfd_data *tfd)
7183 {
7184 int tx_queue_id = 0;
7185
7186
7187 tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7188 tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7189
7190 if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7191 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7192 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7193 }
7194 return 0;
7195 }
7196
7197 /*
7198 * background support to run QoS activate functionality
7199 */
ipw_bg_qos_activate(struct work_struct * work)7200 static void ipw_bg_qos_activate(struct work_struct *work)
7201 {
7202 struct ipw_priv *priv =
7203 container_of(work, struct ipw_priv, qos_activate);
7204
7205 mutex_lock(&priv->mutex);
7206
7207 if (priv->status & STATUS_ASSOCIATED)
7208 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7209
7210 mutex_unlock(&priv->mutex);
7211 }
7212
ipw_handle_probe_response(struct net_device * dev,struct libipw_probe_response * resp,struct libipw_network * network)7213 static int ipw_handle_probe_response(struct net_device *dev,
7214 struct libipw_probe_response *resp,
7215 struct libipw_network *network)
7216 {
7217 struct ipw_priv *priv = libipw_priv(dev);
7218 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7219 (network == priv->assoc_network));
7220
7221 ipw_qos_handle_probe_response(priv, active_network, network);
7222
7223 return 0;
7224 }
7225
ipw_handle_beacon(struct net_device * dev,struct libipw_beacon * resp,struct libipw_network * network)7226 static int ipw_handle_beacon(struct net_device *dev,
7227 struct libipw_beacon *resp,
7228 struct libipw_network *network)
7229 {
7230 struct ipw_priv *priv = libipw_priv(dev);
7231 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7232 (network == priv->assoc_network));
7233
7234 ipw_qos_handle_probe_response(priv, active_network, network);
7235
7236 return 0;
7237 }
7238
ipw_handle_assoc_response(struct net_device * dev,struct libipw_assoc_response * resp,struct libipw_network * network)7239 static int ipw_handle_assoc_response(struct net_device *dev,
7240 struct libipw_assoc_response *resp,
7241 struct libipw_network *network)
7242 {
7243 struct ipw_priv *priv = libipw_priv(dev);
7244 ipw_qos_association_resp(priv, network);
7245 return 0;
7246 }
7247
ipw_send_qos_params_command(struct ipw_priv * priv,struct libipw_qos_parameters * qos_param)7248 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
7249 *qos_param)
7250 {
7251 return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7252 sizeof(*qos_param) * 3, qos_param);
7253 }
7254
ipw_send_qos_info_command(struct ipw_priv * priv,struct libipw_qos_information_element * qos_param)7255 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
7256 *qos_param)
7257 {
7258 return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7259 qos_param);
7260 }
7261
7262 #endif /* CONFIG_IPW2200_QOS */
7263
ipw_associate_network(struct ipw_priv * priv,struct libipw_network * network,struct ipw_supported_rates * rates,int roaming)7264 static int ipw_associate_network(struct ipw_priv *priv,
7265 struct libipw_network *network,
7266 struct ipw_supported_rates *rates, int roaming)
7267 {
7268 int err;
7269
7270 if (priv->config & CFG_FIXED_RATE)
7271 ipw_set_fixed_rate(priv, network->mode);
7272
7273 if (!(priv->config & CFG_STATIC_ESSID)) {
7274 priv->essid_len = min(network->ssid_len,
7275 (u8) IW_ESSID_MAX_SIZE);
7276 memcpy(priv->essid, network->ssid, priv->essid_len);
7277 }
7278
7279 network->last_associate = jiffies;
7280
7281 memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7282 priv->assoc_request.channel = network->channel;
7283 priv->assoc_request.auth_key = 0;
7284
7285 if ((priv->capability & CAP_PRIVACY_ON) &&
7286 (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7287 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7288 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7289
7290 if (priv->ieee->sec.level == SEC_LEVEL_1)
7291 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7292
7293 } else if ((priv->capability & CAP_PRIVACY_ON) &&
7294 (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7295 priv->assoc_request.auth_type = AUTH_LEAP;
7296 else
7297 priv->assoc_request.auth_type = AUTH_OPEN;
7298
7299 if (priv->ieee->wpa_ie_len) {
7300 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7301 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7302 priv->ieee->wpa_ie_len);
7303 }
7304
7305 /*
7306 * It is valid for our ieee device to support multiple modes, but
7307 * when it comes to associating to a given network we have to choose
7308 * just one mode.
7309 */
7310 if (network->mode & priv->ieee->mode & IEEE_A)
7311 priv->assoc_request.ieee_mode = IPW_A_MODE;
7312 else if (network->mode & priv->ieee->mode & IEEE_G)
7313 priv->assoc_request.ieee_mode = IPW_G_MODE;
7314 else if (network->mode & priv->ieee->mode & IEEE_B)
7315 priv->assoc_request.ieee_mode = IPW_B_MODE;
7316
7317 priv->assoc_request.capability = cpu_to_le16(network->capability);
7318 if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7319 && !(priv->config & CFG_PREAMBLE_LONG)) {
7320 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7321 } else {
7322 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7323
7324 /* Clear the short preamble if we won't be supporting it */
7325 priv->assoc_request.capability &=
7326 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7327 }
7328
7329 /* Clear capability bits that aren't used in Ad Hoc */
7330 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7331 priv->assoc_request.capability &=
7332 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7333
7334 IPW_DEBUG_ASSOC("%ssociation attempt: '%*pE', channel %d, 802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7335 roaming ? "Rea" : "A",
7336 priv->essid_len, priv->essid,
7337 network->channel,
7338 ipw_modes[priv->assoc_request.ieee_mode],
7339 rates->num_rates,
7340 (priv->assoc_request.preamble_length ==
7341 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7342 network->capability &
7343 WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7344 priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7345 priv->capability & CAP_PRIVACY_ON ?
7346 (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7347 "(open)") : "",
7348 priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7349 priv->capability & CAP_PRIVACY_ON ?
7350 '1' + priv->ieee->sec.active_key : '.',
7351 priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7352
7353 priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7354 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7355 (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7356 priv->assoc_request.assoc_type = HC_IBSS_START;
7357 priv->assoc_request.assoc_tsf_msw = 0;
7358 priv->assoc_request.assoc_tsf_lsw = 0;
7359 } else {
7360 if (unlikely(roaming))
7361 priv->assoc_request.assoc_type = HC_REASSOCIATE;
7362 else
7363 priv->assoc_request.assoc_type = HC_ASSOCIATE;
7364 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7365 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7366 }
7367
7368 memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7369
7370 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7371 eth_broadcast_addr(priv->assoc_request.dest);
7372 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7373 } else {
7374 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7375 priv->assoc_request.atim_window = 0;
7376 }
7377
7378 priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7379
7380 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7381 if (err) {
7382 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7383 return err;
7384 }
7385
7386 rates->ieee_mode = priv->assoc_request.ieee_mode;
7387 rates->purpose = IPW_RATE_CONNECT;
7388 ipw_send_supported_rates(priv, rates);
7389
7390 if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7391 priv->sys_config.dot11g_auto_detection = 1;
7392 else
7393 priv->sys_config.dot11g_auto_detection = 0;
7394
7395 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7396 priv->sys_config.answer_broadcast_ssid_probe = 1;
7397 else
7398 priv->sys_config.answer_broadcast_ssid_probe = 0;
7399
7400 err = ipw_send_system_config(priv);
7401 if (err) {
7402 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7403 return err;
7404 }
7405
7406 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7407 err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7408 if (err) {
7409 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7410 return err;
7411 }
7412
7413 /*
7414 * If preemption is enabled, it is possible for the association
7415 * to complete before we return from ipw_send_associate. Therefore
7416 * we have to be sure and update our priviate data first.
7417 */
7418 priv->channel = network->channel;
7419 memcpy(priv->bssid, network->bssid, ETH_ALEN);
7420 priv->status |= STATUS_ASSOCIATING;
7421 priv->status &= ~STATUS_SECURITY_UPDATED;
7422
7423 priv->assoc_network = network;
7424
7425 #ifdef CONFIG_IPW2200_QOS
7426 ipw_qos_association(priv, network);
7427 #endif
7428
7429 err = ipw_send_associate(priv, &priv->assoc_request);
7430 if (err) {
7431 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7432 return err;
7433 }
7434
7435 IPW_DEBUG(IPW_DL_STATE, "associating: '%*pE' %pM\n",
7436 priv->essid_len, priv->essid, priv->bssid);
7437
7438 return 0;
7439 }
7440
ipw_roam(void * data)7441 static void ipw_roam(void *data)
7442 {
7443 struct ipw_priv *priv = data;
7444 struct libipw_network *network = NULL;
7445 struct ipw_network_match match = {
7446 .network = priv->assoc_network
7447 };
7448
7449 /* The roaming process is as follows:
7450 *
7451 * 1. Missed beacon threshold triggers the roaming process by
7452 * setting the status ROAM bit and requesting a scan.
7453 * 2. When the scan completes, it schedules the ROAM work
7454 * 3. The ROAM work looks at all of the known networks for one that
7455 * is a better network than the currently associated. If none
7456 * found, the ROAM process is over (ROAM bit cleared)
7457 * 4. If a better network is found, a disassociation request is
7458 * sent.
7459 * 5. When the disassociation completes, the roam work is again
7460 * scheduled. The second time through, the driver is no longer
7461 * associated, and the newly selected network is sent an
7462 * association request.
7463 * 6. At this point ,the roaming process is complete and the ROAM
7464 * status bit is cleared.
7465 */
7466
7467 /* If we are no longer associated, and the roaming bit is no longer
7468 * set, then we are not actively roaming, so just return */
7469 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7470 return;
7471
7472 if (priv->status & STATUS_ASSOCIATED) {
7473 /* First pass through ROAM process -- look for a better
7474 * network */
7475 unsigned long flags;
7476 u8 rssi = priv->assoc_network->stats.rssi;
7477 priv->assoc_network->stats.rssi = -128;
7478 spin_lock_irqsave(&priv->ieee->lock, flags);
7479 list_for_each_entry(network, &priv->ieee->network_list, list) {
7480 if (network != priv->assoc_network)
7481 ipw_best_network(priv, &match, network, 1);
7482 }
7483 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7484 priv->assoc_network->stats.rssi = rssi;
7485
7486 if (match.network == priv->assoc_network) {
7487 IPW_DEBUG_ASSOC("No better APs in this network to "
7488 "roam to.\n");
7489 priv->status &= ~STATUS_ROAMING;
7490 ipw_debug_config(priv);
7491 return;
7492 }
7493
7494 ipw_send_disassociate(priv, 1);
7495 priv->assoc_network = match.network;
7496
7497 return;
7498 }
7499
7500 /* Second pass through ROAM process -- request association */
7501 ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7502 ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7503 priv->status &= ~STATUS_ROAMING;
7504 }
7505
ipw_bg_roam(struct work_struct * work)7506 static void ipw_bg_roam(struct work_struct *work)
7507 {
7508 struct ipw_priv *priv =
7509 container_of(work, struct ipw_priv, roam);
7510 mutex_lock(&priv->mutex);
7511 ipw_roam(priv);
7512 mutex_unlock(&priv->mutex);
7513 }
7514
ipw_associate(void * data)7515 static int ipw_associate(void *data)
7516 {
7517 struct ipw_priv *priv = data;
7518
7519 struct libipw_network *network = NULL;
7520 struct ipw_network_match match = {
7521 .network = NULL
7522 };
7523 struct ipw_supported_rates *rates;
7524 struct list_head *element;
7525 unsigned long flags;
7526
7527 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7528 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7529 return 0;
7530 }
7531
7532 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7533 IPW_DEBUG_ASSOC("Not attempting association (already in "
7534 "progress)\n");
7535 return 0;
7536 }
7537
7538 if (priv->status & STATUS_DISASSOCIATING) {
7539 IPW_DEBUG_ASSOC("Not attempting association (in disassociating)\n");
7540 schedule_work(&priv->associate);
7541 return 0;
7542 }
7543
7544 if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7545 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7546 "initialized)\n");
7547 return 0;
7548 }
7549
7550 if (!(priv->config & CFG_ASSOCIATE) &&
7551 !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7552 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7553 return 0;
7554 }
7555
7556 /* Protect our use of the network_list */
7557 spin_lock_irqsave(&priv->ieee->lock, flags);
7558 list_for_each_entry(network, &priv->ieee->network_list, list)
7559 ipw_best_network(priv, &match, network, 0);
7560
7561 network = match.network;
7562 rates = &match.rates;
7563
7564 if (network == NULL &&
7565 priv->ieee->iw_mode == IW_MODE_ADHOC &&
7566 priv->config & CFG_ADHOC_CREATE &&
7567 priv->config & CFG_STATIC_ESSID &&
7568 priv->config & CFG_STATIC_CHANNEL) {
7569 /* Use oldest network if the free list is empty */
7570 if (list_empty(&priv->ieee->network_free_list)) {
7571 struct libipw_network *oldest = NULL;
7572 struct libipw_network *target;
7573
7574 list_for_each_entry(target, &priv->ieee->network_list, list) {
7575 if ((oldest == NULL) ||
7576 (target->last_scanned < oldest->last_scanned))
7577 oldest = target;
7578 }
7579
7580 /* If there are no more slots, expire the oldest */
7581 list_del(&oldest->list);
7582 target = oldest;
7583 IPW_DEBUG_ASSOC("Expired '%*pE' (%pM) from network list.\n",
7584 target->ssid_len, target->ssid,
7585 target->bssid);
7586 list_add_tail(&target->list,
7587 &priv->ieee->network_free_list);
7588 }
7589
7590 element = priv->ieee->network_free_list.next;
7591 network = list_entry(element, struct libipw_network, list);
7592 ipw_adhoc_create(priv, network);
7593 rates = &priv->rates;
7594 list_del(element);
7595 list_add_tail(&network->list, &priv->ieee->network_list);
7596 }
7597 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7598
7599 /* If we reached the end of the list, then we don't have any valid
7600 * matching APs */
7601 if (!network) {
7602 ipw_debug_config(priv);
7603
7604 if (!(priv->status & STATUS_SCANNING)) {
7605 if (!(priv->config & CFG_SPEED_SCAN))
7606 schedule_delayed_work(&priv->request_scan,
7607 SCAN_INTERVAL);
7608 else
7609 schedule_delayed_work(&priv->request_scan, 0);
7610 }
7611
7612 return 0;
7613 }
7614
7615 ipw_associate_network(priv, network, rates, 0);
7616
7617 return 1;
7618 }
7619
ipw_bg_associate(struct work_struct * work)7620 static void ipw_bg_associate(struct work_struct *work)
7621 {
7622 struct ipw_priv *priv =
7623 container_of(work, struct ipw_priv, associate);
7624 mutex_lock(&priv->mutex);
7625 ipw_associate(priv);
7626 mutex_unlock(&priv->mutex);
7627 }
7628
ipw_rebuild_decrypted_skb(struct ipw_priv * priv,struct sk_buff * skb)7629 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7630 struct sk_buff *skb)
7631 {
7632 struct ieee80211_hdr *hdr;
7633 u16 fc;
7634
7635 hdr = (struct ieee80211_hdr *)skb->data;
7636 fc = le16_to_cpu(hdr->frame_control);
7637 if (!(fc & IEEE80211_FCTL_PROTECTED))
7638 return;
7639
7640 fc &= ~IEEE80211_FCTL_PROTECTED;
7641 hdr->frame_control = cpu_to_le16(fc);
7642 switch (priv->ieee->sec.level) {
7643 case SEC_LEVEL_3:
7644 /* Remove CCMP HDR */
7645 memmove(skb->data + LIBIPW_3ADDR_LEN,
7646 skb->data + LIBIPW_3ADDR_LEN + 8,
7647 skb->len - LIBIPW_3ADDR_LEN - 8);
7648 skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7649 break;
7650 case SEC_LEVEL_2:
7651 break;
7652 case SEC_LEVEL_1:
7653 /* Remove IV */
7654 memmove(skb->data + LIBIPW_3ADDR_LEN,
7655 skb->data + LIBIPW_3ADDR_LEN + 4,
7656 skb->len - LIBIPW_3ADDR_LEN - 4);
7657 skb_trim(skb, skb->len - 8); /* IV + ICV */
7658 break;
7659 case SEC_LEVEL_0:
7660 break;
7661 default:
7662 printk(KERN_ERR "Unknown security level %d\n",
7663 priv->ieee->sec.level);
7664 break;
7665 }
7666 }
7667
ipw_handle_data_packet(struct ipw_priv * priv,struct ipw_rx_mem_buffer * rxb,struct libipw_rx_stats * stats)7668 static void ipw_handle_data_packet(struct ipw_priv *priv,
7669 struct ipw_rx_mem_buffer *rxb,
7670 struct libipw_rx_stats *stats)
7671 {
7672 struct net_device *dev = priv->net_dev;
7673 struct libipw_hdr_4addr *hdr;
7674 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7675
7676 /* We received data from the HW, so stop the watchdog */
7677 netif_trans_update(dev);
7678
7679 /* We only process data packets if the
7680 * interface is open */
7681 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7682 skb_tailroom(rxb->skb))) {
7683 dev->stats.rx_errors++;
7684 priv->wstats.discard.misc++;
7685 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7686 return;
7687 } else if (unlikely(!netif_running(priv->net_dev))) {
7688 dev->stats.rx_dropped++;
7689 priv->wstats.discard.misc++;
7690 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7691 return;
7692 }
7693
7694 /* Advance skb->data to the start of the actual payload */
7695 skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7696
7697 /* Set the size of the skb to the size of the frame */
7698 skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7699
7700 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7701
7702 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7703 hdr = (struct libipw_hdr_4addr *)rxb->skb->data;
7704 if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7705 (is_multicast_ether_addr(hdr->addr1) ?
7706 !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7707 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7708
7709 if (!libipw_rx(priv->ieee, rxb->skb, stats))
7710 dev->stats.rx_errors++;
7711 else { /* libipw_rx succeeded, so it now owns the SKB */
7712 rxb->skb = NULL;
7713 __ipw_led_activity_on(priv);
7714 }
7715 }
7716
7717 #ifdef CONFIG_IPW2200_RADIOTAP
ipw_handle_data_packet_monitor(struct ipw_priv * priv,struct ipw_rx_mem_buffer * rxb,struct libipw_rx_stats * stats)7718 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7719 struct ipw_rx_mem_buffer *rxb,
7720 struct libipw_rx_stats *stats)
7721 {
7722 struct net_device *dev = priv->net_dev;
7723 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7724 struct ipw_rx_frame *frame = &pkt->u.frame;
7725
7726 /* initial pull of some data */
7727 u16 received_channel = frame->received_channel;
7728 u8 antennaAndPhy = frame->antennaAndPhy;
7729 s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM; /* call it signed anyhow */
7730 u16 pktrate = frame->rate;
7731
7732 /* Magic struct that slots into the radiotap header -- no reason
7733 * to build this manually element by element, we can write it much
7734 * more efficiently than we can parse it. ORDER MATTERS HERE */
7735 struct ipw_rt_hdr *ipw_rt;
7736
7737 unsigned short len = le16_to_cpu(pkt->u.frame.length);
7738
7739 /* We received data from the HW, so stop the watchdog */
7740 netif_trans_update(dev);
7741
7742 /* We only process data packets if the
7743 * interface is open */
7744 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7745 skb_tailroom(rxb->skb))) {
7746 dev->stats.rx_errors++;
7747 priv->wstats.discard.misc++;
7748 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7749 return;
7750 } else if (unlikely(!netif_running(priv->net_dev))) {
7751 dev->stats.rx_dropped++;
7752 priv->wstats.discard.misc++;
7753 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7754 return;
7755 }
7756
7757 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7758 * that now */
7759 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7760 /* FIXME: Should alloc bigger skb instead */
7761 dev->stats.rx_dropped++;
7762 priv->wstats.discard.misc++;
7763 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7764 return;
7765 }
7766
7767 /* copy the frame itself */
7768 memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7769 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7770
7771 ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7772
7773 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7774 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7775 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7776
7777 /* Big bitfield of all the fields we provide in radiotap */
7778 ipw_rt->rt_hdr.it_present = cpu_to_le32(
7779 (1 << IEEE80211_RADIOTAP_TSFT) |
7780 (1 << IEEE80211_RADIOTAP_FLAGS) |
7781 (1 << IEEE80211_RADIOTAP_RATE) |
7782 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7783 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7784 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7785 (1 << IEEE80211_RADIOTAP_ANTENNA));
7786
7787 /* Zero the flags, we'll add to them as we go */
7788 ipw_rt->rt_flags = 0;
7789 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7790 frame->parent_tsf[2] << 16 |
7791 frame->parent_tsf[1] << 8 |
7792 frame->parent_tsf[0]);
7793
7794 /* Convert signal to DBM */
7795 ipw_rt->rt_dbmsignal = antsignal;
7796 ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise);
7797
7798 /* Convert the channel data and set the flags */
7799 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7800 if (received_channel > 14) { /* 802.11a */
7801 ipw_rt->rt_chbitmask =
7802 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7803 } else if (antennaAndPhy & 32) { /* 802.11b */
7804 ipw_rt->rt_chbitmask =
7805 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7806 } else { /* 802.11g */
7807 ipw_rt->rt_chbitmask =
7808 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7809 }
7810
7811 /* set the rate in multiples of 500k/s */
7812 switch (pktrate) {
7813 case IPW_TX_RATE_1MB:
7814 ipw_rt->rt_rate = 2;
7815 break;
7816 case IPW_TX_RATE_2MB:
7817 ipw_rt->rt_rate = 4;
7818 break;
7819 case IPW_TX_RATE_5MB:
7820 ipw_rt->rt_rate = 10;
7821 break;
7822 case IPW_TX_RATE_6MB:
7823 ipw_rt->rt_rate = 12;
7824 break;
7825 case IPW_TX_RATE_9MB:
7826 ipw_rt->rt_rate = 18;
7827 break;
7828 case IPW_TX_RATE_11MB:
7829 ipw_rt->rt_rate = 22;
7830 break;
7831 case IPW_TX_RATE_12MB:
7832 ipw_rt->rt_rate = 24;
7833 break;
7834 case IPW_TX_RATE_18MB:
7835 ipw_rt->rt_rate = 36;
7836 break;
7837 case IPW_TX_RATE_24MB:
7838 ipw_rt->rt_rate = 48;
7839 break;
7840 case IPW_TX_RATE_36MB:
7841 ipw_rt->rt_rate = 72;
7842 break;
7843 case IPW_TX_RATE_48MB:
7844 ipw_rt->rt_rate = 96;
7845 break;
7846 case IPW_TX_RATE_54MB:
7847 ipw_rt->rt_rate = 108;
7848 break;
7849 default:
7850 ipw_rt->rt_rate = 0;
7851 break;
7852 }
7853
7854 /* antenna number */
7855 ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */
7856
7857 /* set the preamble flag if we have it */
7858 if ((antennaAndPhy & 64))
7859 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7860
7861 /* Set the size of the skb to the size of the frame */
7862 skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7863
7864 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7865
7866 if (!libipw_rx(priv->ieee, rxb->skb, stats))
7867 dev->stats.rx_errors++;
7868 else { /* libipw_rx succeeded, so it now owns the SKB */
7869 rxb->skb = NULL;
7870 /* no LED during capture */
7871 }
7872 }
7873 #endif
7874
7875 #ifdef CONFIG_IPW2200_PROMISCUOUS
7876 #define libipw_is_probe_response(fc) \
7877 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7878 (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7879
7880 #define libipw_is_management(fc) \
7881 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7882
7883 #define libipw_is_control(fc) \
7884 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7885
7886 #define libipw_is_data(fc) \
7887 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7888
7889 #define libipw_is_assoc_request(fc) \
7890 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7891
7892 #define libipw_is_reassoc_request(fc) \
7893 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7894
ipw_handle_promiscuous_rx(struct ipw_priv * priv,struct ipw_rx_mem_buffer * rxb,struct libipw_rx_stats * stats)7895 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7896 struct ipw_rx_mem_buffer *rxb,
7897 struct libipw_rx_stats *stats)
7898 {
7899 struct net_device *dev = priv->prom_net_dev;
7900 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7901 struct ipw_rx_frame *frame = &pkt->u.frame;
7902 struct ipw_rt_hdr *ipw_rt;
7903
7904 /* First cache any information we need before we overwrite
7905 * the information provided in the skb from the hardware */
7906 struct ieee80211_hdr *hdr;
7907 u16 channel = frame->received_channel;
7908 u8 phy_flags = frame->antennaAndPhy;
7909 s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7910 s8 noise = (s8) le16_to_cpu(frame->noise);
7911 u8 rate = frame->rate;
7912 unsigned short len = le16_to_cpu(pkt->u.frame.length);
7913 struct sk_buff *skb;
7914 int hdr_only = 0;
7915 u16 filter = priv->prom_priv->filter;
7916
7917 /* If the filter is set to not include Rx frames then return */
7918 if (filter & IPW_PROM_NO_RX)
7919 return;
7920
7921 /* We received data from the HW, so stop the watchdog */
7922 netif_trans_update(dev);
7923
7924 if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7925 dev->stats.rx_errors++;
7926 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7927 return;
7928 }
7929
7930 /* We only process data packets if the interface is open */
7931 if (unlikely(!netif_running(dev))) {
7932 dev->stats.rx_dropped++;
7933 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7934 return;
7935 }
7936
7937 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7938 * that now */
7939 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7940 /* FIXME: Should alloc bigger skb instead */
7941 dev->stats.rx_dropped++;
7942 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7943 return;
7944 }
7945
7946 hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7947 if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
7948 if (filter & IPW_PROM_NO_MGMT)
7949 return;
7950 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7951 hdr_only = 1;
7952 } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
7953 if (filter & IPW_PROM_NO_CTL)
7954 return;
7955 if (filter & IPW_PROM_CTL_HEADER_ONLY)
7956 hdr_only = 1;
7957 } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
7958 if (filter & IPW_PROM_NO_DATA)
7959 return;
7960 if (filter & IPW_PROM_DATA_HEADER_ONLY)
7961 hdr_only = 1;
7962 }
7963
7964 /* Copy the SKB since this is for the promiscuous side */
7965 skb = skb_copy(rxb->skb, GFP_ATOMIC);
7966 if (skb == NULL) {
7967 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
7968 return;
7969 }
7970
7971 /* copy the frame data to write after where the radiotap header goes */
7972 ipw_rt = (void *)skb->data;
7973
7974 if (hdr_only)
7975 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
7976
7977 memcpy(ipw_rt->payload, hdr, len);
7978
7979 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7980 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7981 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt)); /* total header+data */
7982
7983 /* Set the size of the skb to the size of the frame */
7984 skb_put(skb, sizeof(*ipw_rt) + len);
7985
7986 /* Big bitfield of all the fields we provide in radiotap */
7987 ipw_rt->rt_hdr.it_present = cpu_to_le32(
7988 (1 << IEEE80211_RADIOTAP_TSFT) |
7989 (1 << IEEE80211_RADIOTAP_FLAGS) |
7990 (1 << IEEE80211_RADIOTAP_RATE) |
7991 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7992 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7993 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7994 (1 << IEEE80211_RADIOTAP_ANTENNA));
7995
7996 /* Zero the flags, we'll add to them as we go */
7997 ipw_rt->rt_flags = 0;
7998 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7999 frame->parent_tsf[2] << 16 |
8000 frame->parent_tsf[1] << 8 |
8001 frame->parent_tsf[0]);
8002
8003 /* Convert to DBM */
8004 ipw_rt->rt_dbmsignal = signal;
8005 ipw_rt->rt_dbmnoise = noise;
8006
8007 /* Convert the channel data and set the flags */
8008 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8009 if (channel > 14) { /* 802.11a */
8010 ipw_rt->rt_chbitmask =
8011 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8012 } else if (phy_flags & (1 << 5)) { /* 802.11b */
8013 ipw_rt->rt_chbitmask =
8014 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8015 } else { /* 802.11g */
8016 ipw_rt->rt_chbitmask =
8017 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8018 }
8019
8020 /* set the rate in multiples of 500k/s */
8021 switch (rate) {
8022 case IPW_TX_RATE_1MB:
8023 ipw_rt->rt_rate = 2;
8024 break;
8025 case IPW_TX_RATE_2MB:
8026 ipw_rt->rt_rate = 4;
8027 break;
8028 case IPW_TX_RATE_5MB:
8029 ipw_rt->rt_rate = 10;
8030 break;
8031 case IPW_TX_RATE_6MB:
8032 ipw_rt->rt_rate = 12;
8033 break;
8034 case IPW_TX_RATE_9MB:
8035 ipw_rt->rt_rate = 18;
8036 break;
8037 case IPW_TX_RATE_11MB:
8038 ipw_rt->rt_rate = 22;
8039 break;
8040 case IPW_TX_RATE_12MB:
8041 ipw_rt->rt_rate = 24;
8042 break;
8043 case IPW_TX_RATE_18MB:
8044 ipw_rt->rt_rate = 36;
8045 break;
8046 case IPW_TX_RATE_24MB:
8047 ipw_rt->rt_rate = 48;
8048 break;
8049 case IPW_TX_RATE_36MB:
8050 ipw_rt->rt_rate = 72;
8051 break;
8052 case IPW_TX_RATE_48MB:
8053 ipw_rt->rt_rate = 96;
8054 break;
8055 case IPW_TX_RATE_54MB:
8056 ipw_rt->rt_rate = 108;
8057 break;
8058 default:
8059 ipw_rt->rt_rate = 0;
8060 break;
8061 }
8062
8063 /* antenna number */
8064 ipw_rt->rt_antenna = (phy_flags & 3);
8065
8066 /* set the preamble flag if we have it */
8067 if (phy_flags & (1 << 6))
8068 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8069
8070 IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8071
8072 if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) {
8073 dev->stats.rx_errors++;
8074 dev_kfree_skb_any(skb);
8075 }
8076 }
8077 #endif
8078
is_network_packet(struct ipw_priv * priv,struct libipw_hdr_4addr * header)8079 static int is_network_packet(struct ipw_priv *priv,
8080 struct libipw_hdr_4addr *header)
8081 {
8082 /* Filter incoming packets to determine if they are targeted toward
8083 * this network, discarding packets coming from ourselves */
8084 switch (priv->ieee->iw_mode) {
8085 case IW_MODE_ADHOC: /* Header: Dest. | Source | BSSID */
8086 /* packets from our adapter are dropped (echo) */
8087 if (ether_addr_equal(header->addr2, priv->net_dev->dev_addr))
8088 return 0;
8089
8090 /* {broad,multi}cast packets to our BSSID go through */
8091 if (is_multicast_ether_addr(header->addr1))
8092 return ether_addr_equal(header->addr3, priv->bssid);
8093
8094 /* packets to our adapter go through */
8095 return ether_addr_equal(header->addr1,
8096 priv->net_dev->dev_addr);
8097
8098 case IW_MODE_INFRA: /* Header: Dest. | BSSID | Source */
8099 /* packets from our adapter are dropped (echo) */
8100 if (ether_addr_equal(header->addr3, priv->net_dev->dev_addr))
8101 return 0;
8102
8103 /* {broad,multi}cast packets to our BSS go through */
8104 if (is_multicast_ether_addr(header->addr1))
8105 return ether_addr_equal(header->addr2, priv->bssid);
8106
8107 /* packets to our adapter go through */
8108 return ether_addr_equal(header->addr1,
8109 priv->net_dev->dev_addr);
8110 }
8111
8112 return 1;
8113 }
8114
8115 #define IPW_PACKET_RETRY_TIME HZ
8116
is_duplicate_packet(struct ipw_priv * priv,struct libipw_hdr_4addr * header)8117 static int is_duplicate_packet(struct ipw_priv *priv,
8118 struct libipw_hdr_4addr *header)
8119 {
8120 u16 sc = le16_to_cpu(header->seq_ctl);
8121 u16 seq = WLAN_GET_SEQ_SEQ(sc);
8122 u16 frag = WLAN_GET_SEQ_FRAG(sc);
8123 u16 *last_seq, *last_frag;
8124 unsigned long *last_time;
8125
8126 switch (priv->ieee->iw_mode) {
8127 case IW_MODE_ADHOC:
8128 {
8129 struct list_head *p;
8130 struct ipw_ibss_seq *entry = NULL;
8131 u8 *mac = header->addr2;
8132 int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8133
8134 list_for_each(p, &priv->ibss_mac_hash[index]) {
8135 entry =
8136 list_entry(p, struct ipw_ibss_seq, list);
8137 if (ether_addr_equal(entry->mac, mac))
8138 break;
8139 }
8140 if (p == &priv->ibss_mac_hash[index]) {
8141 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8142 if (!entry) {
8143 IPW_ERROR
8144 ("Cannot malloc new mac entry\n");
8145 return 0;
8146 }
8147 memcpy(entry->mac, mac, ETH_ALEN);
8148 entry->seq_num = seq;
8149 entry->frag_num = frag;
8150 entry->packet_time = jiffies;
8151 list_add(&entry->list,
8152 &priv->ibss_mac_hash[index]);
8153 return 0;
8154 }
8155 last_seq = &entry->seq_num;
8156 last_frag = &entry->frag_num;
8157 last_time = &entry->packet_time;
8158 break;
8159 }
8160 case IW_MODE_INFRA:
8161 last_seq = &priv->last_seq_num;
8162 last_frag = &priv->last_frag_num;
8163 last_time = &priv->last_packet_time;
8164 break;
8165 default:
8166 return 0;
8167 }
8168 if ((*last_seq == seq) &&
8169 time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8170 if (*last_frag == frag)
8171 goto drop;
8172 if (*last_frag + 1 != frag)
8173 /* out-of-order fragment */
8174 goto drop;
8175 } else
8176 *last_seq = seq;
8177
8178 *last_frag = frag;
8179 *last_time = jiffies;
8180 return 0;
8181
8182 drop:
8183 /* Comment this line now since we observed the card receives
8184 * duplicate packets but the FCTL_RETRY bit is not set in the
8185 * IBSS mode with fragmentation enabled.
8186 BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8187 return 1;
8188 }
8189
ipw_handle_mgmt_packet(struct ipw_priv * priv,struct ipw_rx_mem_buffer * rxb,struct libipw_rx_stats * stats)8190 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8191 struct ipw_rx_mem_buffer *rxb,
8192 struct libipw_rx_stats *stats)
8193 {
8194 struct sk_buff *skb = rxb->skb;
8195 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8196 struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *)
8197 (skb->data + IPW_RX_FRAME_SIZE);
8198
8199 libipw_rx_mgt(priv->ieee, header, stats);
8200
8201 if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8202 ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8203 IEEE80211_STYPE_PROBE_RESP) ||
8204 (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8205 IEEE80211_STYPE_BEACON))) {
8206 if (ether_addr_equal(header->addr3, priv->bssid))
8207 ipw_add_station(priv, header->addr2);
8208 }
8209
8210 if (priv->config & CFG_NET_STATS) {
8211 IPW_DEBUG_HC("sending stat packet\n");
8212
8213 /* Set the size of the skb to the size of the full
8214 * ipw header and 802.11 frame */
8215 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8216 IPW_RX_FRAME_SIZE);
8217
8218 /* Advance past the ipw packet header to the 802.11 frame */
8219 skb_pull(skb, IPW_RX_FRAME_SIZE);
8220
8221 /* Push the libipw_rx_stats before the 802.11 frame */
8222 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8223
8224 skb->dev = priv->ieee->dev;
8225
8226 /* Point raw at the libipw_stats */
8227 skb_reset_mac_header(skb);
8228
8229 skb->pkt_type = PACKET_OTHERHOST;
8230 skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8231 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8232 netif_rx(skb);
8233 rxb->skb = NULL;
8234 }
8235 }
8236
8237 /*
8238 * Main entry function for receiving a packet with 80211 headers. This
8239 * should be called when ever the FW has notified us that there is a new
8240 * skb in the receive queue.
8241 */
ipw_rx(struct ipw_priv * priv)8242 static void ipw_rx(struct ipw_priv *priv)
8243 {
8244 struct ipw_rx_mem_buffer *rxb;
8245 struct ipw_rx_packet *pkt;
8246 struct libipw_hdr_4addr *header;
8247 u32 r, i;
8248 u8 network_packet;
8249 u8 fill_rx = 0;
8250
8251 r = ipw_read32(priv, IPW_RX_READ_INDEX);
8252 ipw_read32(priv, IPW_RX_WRITE_INDEX);
8253 i = priv->rxq->read;
8254
8255 if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8256 fill_rx = 1;
8257
8258 while (i != r) {
8259 rxb = priv->rxq->queue[i];
8260 if (unlikely(rxb == NULL)) {
8261 printk(KERN_CRIT "Queue not allocated!\n");
8262 break;
8263 }
8264 priv->rxq->queue[i] = NULL;
8265
8266 dma_sync_single_for_cpu(&priv->pci_dev->dev, rxb->dma_addr,
8267 IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
8268
8269 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8270 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8271 pkt->header.message_type,
8272 pkt->header.rx_seq_num, pkt->header.control_bits);
8273
8274 switch (pkt->header.message_type) {
8275 case RX_FRAME_TYPE: /* 802.11 frame */ {
8276 struct libipw_rx_stats stats = {
8277 .rssi = pkt->u.frame.rssi_dbm -
8278 IPW_RSSI_TO_DBM,
8279 .signal =
8280 pkt->u.frame.rssi_dbm -
8281 IPW_RSSI_TO_DBM + 0x100,
8282 .noise =
8283 le16_to_cpu(pkt->u.frame.noise),
8284 .rate = pkt->u.frame.rate,
8285 .mac_time = jiffies,
8286 .received_channel =
8287 pkt->u.frame.received_channel,
8288 .freq =
8289 (pkt->u.frame.
8290 control & (1 << 0)) ?
8291 LIBIPW_24GHZ_BAND :
8292 LIBIPW_52GHZ_BAND,
8293 .len = le16_to_cpu(pkt->u.frame.length),
8294 };
8295
8296 if (stats.rssi != 0)
8297 stats.mask |= LIBIPW_STATMASK_RSSI;
8298 if (stats.signal != 0)
8299 stats.mask |= LIBIPW_STATMASK_SIGNAL;
8300 if (stats.noise != 0)
8301 stats.mask |= LIBIPW_STATMASK_NOISE;
8302 if (stats.rate != 0)
8303 stats.mask |= LIBIPW_STATMASK_RATE;
8304
8305 priv->rx_packets++;
8306
8307 #ifdef CONFIG_IPW2200_PROMISCUOUS
8308 if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8309 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8310 #endif
8311
8312 #ifdef CONFIG_IPW2200_MONITOR
8313 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8314 #ifdef CONFIG_IPW2200_RADIOTAP
8315
8316 ipw_handle_data_packet_monitor(priv,
8317 rxb,
8318 &stats);
8319 #else
8320 ipw_handle_data_packet(priv, rxb,
8321 &stats);
8322 #endif
8323 break;
8324 }
8325 #endif
8326
8327 header =
8328 (struct libipw_hdr_4addr *)(rxb->skb->
8329 data +
8330 IPW_RX_FRAME_SIZE);
8331 /* TODO: Check Ad-Hoc dest/source and make sure
8332 * that we are actually parsing these packets
8333 * correctly -- we should probably use the
8334 * frame control of the packet and disregard
8335 * the current iw_mode */
8336
8337 network_packet =
8338 is_network_packet(priv, header);
8339 if (network_packet && priv->assoc_network) {
8340 priv->assoc_network->stats.rssi =
8341 stats.rssi;
8342 priv->exp_avg_rssi =
8343 exponential_average(priv->exp_avg_rssi,
8344 stats.rssi, DEPTH_RSSI);
8345 }
8346
8347 IPW_DEBUG_RX("Frame: len=%u\n",
8348 le16_to_cpu(pkt->u.frame.length));
8349
8350 if (le16_to_cpu(pkt->u.frame.length) <
8351 libipw_get_hdrlen(le16_to_cpu(
8352 header->frame_ctl))) {
8353 IPW_DEBUG_DROP
8354 ("Received packet is too small. "
8355 "Dropping.\n");
8356 priv->net_dev->stats.rx_errors++;
8357 priv->wstats.discard.misc++;
8358 break;
8359 }
8360
8361 switch (WLAN_FC_GET_TYPE
8362 (le16_to_cpu(header->frame_ctl))) {
8363
8364 case IEEE80211_FTYPE_MGMT:
8365 ipw_handle_mgmt_packet(priv, rxb,
8366 &stats);
8367 break;
8368
8369 case IEEE80211_FTYPE_CTL:
8370 break;
8371
8372 case IEEE80211_FTYPE_DATA:
8373 if (unlikely(!network_packet ||
8374 is_duplicate_packet(priv,
8375 header)))
8376 {
8377 IPW_DEBUG_DROP("Dropping: "
8378 "%pM, "
8379 "%pM, "
8380 "%pM\n",
8381 header->addr1,
8382 header->addr2,
8383 header->addr3);
8384 break;
8385 }
8386
8387 ipw_handle_data_packet(priv, rxb,
8388 &stats);
8389
8390 break;
8391 }
8392 break;
8393 }
8394
8395 case RX_HOST_NOTIFICATION_TYPE:{
8396 IPW_DEBUG_RX
8397 ("Notification: subtype=%02X flags=%02X size=%d\n",
8398 pkt->u.notification.subtype,
8399 pkt->u.notification.flags,
8400 le16_to_cpu(pkt->u.notification.size));
8401 ipw_rx_notification(priv, &pkt->u.notification);
8402 break;
8403 }
8404
8405 default:
8406 IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8407 pkt->header.message_type);
8408 break;
8409 }
8410
8411 /* For now we just don't re-use anything. We can tweak this
8412 * later to try and re-use notification packets and SKBs that
8413 * fail to Rx correctly */
8414 if (rxb->skb != NULL) {
8415 dev_kfree_skb_any(rxb->skb);
8416 rxb->skb = NULL;
8417 }
8418
8419 dma_unmap_single(&priv->pci_dev->dev, rxb->dma_addr,
8420 IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
8421 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8422
8423 i = (i + 1) % RX_QUEUE_SIZE;
8424
8425 /* If there are a lot of unsued frames, restock the Rx queue
8426 * so the ucode won't assert */
8427 if (fill_rx) {
8428 priv->rxq->read = i;
8429 ipw_rx_queue_replenish(priv);
8430 }
8431 }
8432
8433 /* Backtrack one entry */
8434 priv->rxq->read = i;
8435 ipw_rx_queue_restock(priv);
8436 }
8437
8438 #define DEFAULT_RTS_THRESHOLD 2304U
8439 #define MIN_RTS_THRESHOLD 1U
8440 #define MAX_RTS_THRESHOLD 2304U
8441 #define DEFAULT_BEACON_INTERVAL 100U
8442 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8443 #define DEFAULT_LONG_RETRY_LIMIT 4U
8444
8445 /*
8446 * ipw_sw_reset
8447 * @option: options to control different reset behaviour
8448 * 0 = reset everything except the 'disable' module_param
8449 * 1 = reset everything and print out driver info (for probe only)
8450 * 2 = reset everything
8451 */
ipw_sw_reset(struct ipw_priv * priv,int option)8452 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8453 {
8454 int band, modulation;
8455 int old_mode = priv->ieee->iw_mode;
8456
8457 /* Initialize module parameter values here */
8458 priv->config = 0;
8459
8460 /* We default to disabling the LED code as right now it causes
8461 * too many systems to lock up... */
8462 if (!led_support)
8463 priv->config |= CFG_NO_LED;
8464
8465 if (associate)
8466 priv->config |= CFG_ASSOCIATE;
8467 else
8468 IPW_DEBUG_INFO("Auto associate disabled.\n");
8469
8470 if (auto_create)
8471 priv->config |= CFG_ADHOC_CREATE;
8472 else
8473 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8474
8475 priv->config &= ~CFG_STATIC_ESSID;
8476 priv->essid_len = 0;
8477 memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8478
8479 if (disable && option) {
8480 priv->status |= STATUS_RF_KILL_SW;
8481 IPW_DEBUG_INFO("Radio disabled.\n");
8482 }
8483
8484 if (default_channel != 0) {
8485 priv->config |= CFG_STATIC_CHANNEL;
8486 priv->channel = default_channel;
8487 IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel);
8488 /* TODO: Validate that provided channel is in range */
8489 }
8490 #ifdef CONFIG_IPW2200_QOS
8491 ipw_qos_init(priv, qos_enable, qos_burst_enable,
8492 burst_duration_CCK, burst_duration_OFDM);
8493 #endif /* CONFIG_IPW2200_QOS */
8494
8495 switch (network_mode) {
8496 case 1:
8497 priv->ieee->iw_mode = IW_MODE_ADHOC;
8498 priv->net_dev->type = ARPHRD_ETHER;
8499
8500 break;
8501 #ifdef CONFIG_IPW2200_MONITOR
8502 case 2:
8503 priv->ieee->iw_mode = IW_MODE_MONITOR;
8504 #ifdef CONFIG_IPW2200_RADIOTAP
8505 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8506 #else
8507 priv->net_dev->type = ARPHRD_IEEE80211;
8508 #endif
8509 break;
8510 #endif
8511 default:
8512 case 0:
8513 priv->net_dev->type = ARPHRD_ETHER;
8514 priv->ieee->iw_mode = IW_MODE_INFRA;
8515 break;
8516 }
8517
8518 if (hwcrypto) {
8519 priv->ieee->host_encrypt = 0;
8520 priv->ieee->host_encrypt_msdu = 0;
8521 priv->ieee->host_decrypt = 0;
8522 priv->ieee->host_mc_decrypt = 0;
8523 }
8524 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8525
8526 /* IPW2200/2915 is abled to do hardware fragmentation. */
8527 priv->ieee->host_open_frag = 0;
8528
8529 if ((priv->pci_dev->device == 0x4223) ||
8530 (priv->pci_dev->device == 0x4224)) {
8531 if (option == 1)
8532 printk(KERN_INFO DRV_NAME
8533 ": Detected Intel PRO/Wireless 2915ABG Network "
8534 "Connection\n");
8535 priv->ieee->abg_true = 1;
8536 band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND;
8537 modulation = LIBIPW_OFDM_MODULATION |
8538 LIBIPW_CCK_MODULATION;
8539 priv->adapter = IPW_2915ABG;
8540 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8541 } else {
8542 if (option == 1)
8543 printk(KERN_INFO DRV_NAME
8544 ": Detected Intel PRO/Wireless 2200BG Network "
8545 "Connection\n");
8546
8547 priv->ieee->abg_true = 0;
8548 band = LIBIPW_24GHZ_BAND;
8549 modulation = LIBIPW_OFDM_MODULATION |
8550 LIBIPW_CCK_MODULATION;
8551 priv->adapter = IPW_2200BG;
8552 priv->ieee->mode = IEEE_G | IEEE_B;
8553 }
8554
8555 priv->ieee->freq_band = band;
8556 priv->ieee->modulation = modulation;
8557
8558 priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK;
8559
8560 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8561 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8562
8563 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8564 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8565 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8566
8567 /* If power management is turned on, default to AC mode */
8568 priv->power_mode = IPW_POWER_AC;
8569 priv->tx_power = IPW_TX_POWER_DEFAULT;
8570
8571 return old_mode == priv->ieee->iw_mode;
8572 }
8573
8574 /*
8575 * This file defines the Wireless Extension handlers. It does not
8576 * define any methods of hardware manipulation and relies on the
8577 * functions defined in ipw_main to provide the HW interaction.
8578 *
8579 * The exception to this is the use of the ipw_get_ordinal()
8580 * function used to poll the hardware vs. making unnecessary calls.
8581 *
8582 */
8583
ipw_set_channel(struct ipw_priv * priv,u8 channel)8584 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8585 {
8586 if (channel == 0) {
8587 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8588 priv->config &= ~CFG_STATIC_CHANNEL;
8589 IPW_DEBUG_ASSOC("Attempting to associate with new "
8590 "parameters.\n");
8591 ipw_associate(priv);
8592 return 0;
8593 }
8594
8595 priv->config |= CFG_STATIC_CHANNEL;
8596
8597 if (priv->channel == channel) {
8598 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8599 channel);
8600 return 0;
8601 }
8602
8603 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8604 priv->channel = channel;
8605
8606 #ifdef CONFIG_IPW2200_MONITOR
8607 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8608 int i;
8609 if (priv->status & STATUS_SCANNING) {
8610 IPW_DEBUG_SCAN("Scan abort triggered due to "
8611 "channel change.\n");
8612 ipw_abort_scan(priv);
8613 }
8614
8615 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8616 udelay(10);
8617
8618 if (priv->status & STATUS_SCANNING)
8619 IPW_DEBUG_SCAN("Still scanning...\n");
8620 else
8621 IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8622 1000 - i);
8623
8624 return 0;
8625 }
8626 #endif /* CONFIG_IPW2200_MONITOR */
8627
8628 /* Network configuration changed -- force [re]association */
8629 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8630 if (!ipw_disassociate(priv))
8631 ipw_associate(priv);
8632
8633 return 0;
8634 }
8635
ipw_wx_set_freq(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8636 static int ipw_wx_set_freq(struct net_device *dev,
8637 struct iw_request_info *info,
8638 union iwreq_data *wrqu, char *extra)
8639 {
8640 struct ipw_priv *priv = libipw_priv(dev);
8641 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8642 struct iw_freq *fwrq = &wrqu->freq;
8643 int ret = 0, i;
8644 u8 channel, flags;
8645 int band;
8646
8647 if (fwrq->m == 0) {
8648 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8649 mutex_lock(&priv->mutex);
8650 ret = ipw_set_channel(priv, 0);
8651 mutex_unlock(&priv->mutex);
8652 return ret;
8653 }
8654 /* if setting by freq convert to channel */
8655 if (fwrq->e == 1) {
8656 channel = libipw_freq_to_channel(priv->ieee, fwrq->m);
8657 if (channel == 0)
8658 return -EINVAL;
8659 } else
8660 channel = fwrq->m;
8661
8662 if (!(band = libipw_is_valid_channel(priv->ieee, channel)))
8663 return -EINVAL;
8664
8665 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8666 i = libipw_channel_to_index(priv->ieee, channel);
8667 if (i == -1)
8668 return -EINVAL;
8669
8670 flags = (band == LIBIPW_24GHZ_BAND) ?
8671 geo->bg[i].flags : geo->a[i].flags;
8672 if (flags & LIBIPW_CH_PASSIVE_ONLY) {
8673 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8674 return -EINVAL;
8675 }
8676 }
8677
8678 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
8679 mutex_lock(&priv->mutex);
8680 ret = ipw_set_channel(priv, channel);
8681 mutex_unlock(&priv->mutex);
8682 return ret;
8683 }
8684
ipw_wx_get_freq(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8685 static int ipw_wx_get_freq(struct net_device *dev,
8686 struct iw_request_info *info,
8687 union iwreq_data *wrqu, char *extra)
8688 {
8689 struct ipw_priv *priv = libipw_priv(dev);
8690
8691 wrqu->freq.e = 0;
8692
8693 /* If we are associated, trying to associate, or have a statically
8694 * configured CHANNEL then return that; otherwise return ANY */
8695 mutex_lock(&priv->mutex);
8696 if (priv->config & CFG_STATIC_CHANNEL ||
8697 priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8698 int i;
8699
8700 i = libipw_channel_to_index(priv->ieee, priv->channel);
8701 BUG_ON(i == -1);
8702 wrqu->freq.e = 1;
8703
8704 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
8705 case LIBIPW_52GHZ_BAND:
8706 wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8707 break;
8708
8709 case LIBIPW_24GHZ_BAND:
8710 wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8711 break;
8712
8713 default:
8714 BUG();
8715 }
8716 } else
8717 wrqu->freq.m = 0;
8718
8719 mutex_unlock(&priv->mutex);
8720 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
8721 return 0;
8722 }
8723
ipw_wx_set_mode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8724 static int ipw_wx_set_mode(struct net_device *dev,
8725 struct iw_request_info *info,
8726 union iwreq_data *wrqu, char *extra)
8727 {
8728 struct ipw_priv *priv = libipw_priv(dev);
8729 int err = 0;
8730
8731 IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8732
8733 switch (wrqu->mode) {
8734 #ifdef CONFIG_IPW2200_MONITOR
8735 case IW_MODE_MONITOR:
8736 #endif
8737 case IW_MODE_ADHOC:
8738 case IW_MODE_INFRA:
8739 break;
8740 case IW_MODE_AUTO:
8741 wrqu->mode = IW_MODE_INFRA;
8742 break;
8743 default:
8744 return -EINVAL;
8745 }
8746 if (wrqu->mode == priv->ieee->iw_mode)
8747 return 0;
8748
8749 mutex_lock(&priv->mutex);
8750
8751 ipw_sw_reset(priv, 0);
8752
8753 #ifdef CONFIG_IPW2200_MONITOR
8754 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8755 priv->net_dev->type = ARPHRD_ETHER;
8756
8757 if (wrqu->mode == IW_MODE_MONITOR)
8758 #ifdef CONFIG_IPW2200_RADIOTAP
8759 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8760 #else
8761 priv->net_dev->type = ARPHRD_IEEE80211;
8762 #endif
8763 #endif /* CONFIG_IPW2200_MONITOR */
8764
8765 /* Free the existing firmware and reset the fw_loaded
8766 * flag so ipw_load() will bring in the new firmware */
8767 free_firmware();
8768
8769 priv->ieee->iw_mode = wrqu->mode;
8770
8771 schedule_work(&priv->adapter_restart);
8772 mutex_unlock(&priv->mutex);
8773 return err;
8774 }
8775
ipw_wx_get_mode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8776 static int ipw_wx_get_mode(struct net_device *dev,
8777 struct iw_request_info *info,
8778 union iwreq_data *wrqu, char *extra)
8779 {
8780 struct ipw_priv *priv = libipw_priv(dev);
8781 mutex_lock(&priv->mutex);
8782 wrqu->mode = priv->ieee->iw_mode;
8783 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8784 mutex_unlock(&priv->mutex);
8785 return 0;
8786 }
8787
8788 /* Values are in microsecond */
8789 static const s32 timeout_duration[] = {
8790 350000,
8791 250000,
8792 75000,
8793 37000,
8794 25000,
8795 };
8796
8797 static const s32 period_duration[] = {
8798 400000,
8799 700000,
8800 1000000,
8801 1000000,
8802 1000000
8803 };
8804
ipw_wx_get_range(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8805 static int ipw_wx_get_range(struct net_device *dev,
8806 struct iw_request_info *info,
8807 union iwreq_data *wrqu, char *extra)
8808 {
8809 struct ipw_priv *priv = libipw_priv(dev);
8810 struct iw_range *range = (struct iw_range *)extra;
8811 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8812 int i = 0, j;
8813
8814 wrqu->data.length = sizeof(*range);
8815 memset(range, 0, sizeof(*range));
8816
8817 /* 54Mbs == ~27 Mb/s real (802.11g) */
8818 range->throughput = 27 * 1000 * 1000;
8819
8820 range->max_qual.qual = 100;
8821 /* TODO: Find real max RSSI and stick here */
8822 range->max_qual.level = 0;
8823 range->max_qual.noise = 0;
8824 range->max_qual.updated = 7; /* Updated all three */
8825
8826 range->avg_qual.qual = 70;
8827 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
8828 range->avg_qual.level = 0; /* FIXME to real average level */
8829 range->avg_qual.noise = 0;
8830 range->avg_qual.updated = 7; /* Updated all three */
8831 mutex_lock(&priv->mutex);
8832 range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8833
8834 for (i = 0; i < range->num_bitrates; i++)
8835 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8836 500000;
8837
8838 range->max_rts = DEFAULT_RTS_THRESHOLD;
8839 range->min_frag = MIN_FRAG_THRESHOLD;
8840 range->max_frag = MAX_FRAG_THRESHOLD;
8841
8842 range->encoding_size[0] = 5;
8843 range->encoding_size[1] = 13;
8844 range->num_encoding_sizes = 2;
8845 range->max_encoding_tokens = WEP_KEYS;
8846
8847 /* Set the Wireless Extension versions */
8848 range->we_version_compiled = WIRELESS_EXT;
8849 range->we_version_source = 18;
8850
8851 i = 0;
8852 if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8853 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8854 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8855 (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8856 continue;
8857
8858 range->freq[i].i = geo->bg[j].channel;
8859 range->freq[i].m = geo->bg[j].freq * 100000;
8860 range->freq[i].e = 1;
8861 i++;
8862 }
8863 }
8864
8865 if (priv->ieee->mode & IEEE_A) {
8866 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8867 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8868 (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8869 continue;
8870
8871 range->freq[i].i = geo->a[j].channel;
8872 range->freq[i].m = geo->a[j].freq * 100000;
8873 range->freq[i].e = 1;
8874 i++;
8875 }
8876 }
8877
8878 range->num_channels = i;
8879 range->num_frequency = i;
8880
8881 mutex_unlock(&priv->mutex);
8882
8883 /* Event capability (kernel + driver) */
8884 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8885 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8886 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8887 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8888 range->event_capa[1] = IW_EVENT_CAPA_K_1;
8889
8890 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8891 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8892
8893 range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8894
8895 IPW_DEBUG_WX("GET Range\n");
8896 return 0;
8897 }
8898
ipw_wx_set_wap(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8899 static int ipw_wx_set_wap(struct net_device *dev,
8900 struct iw_request_info *info,
8901 union iwreq_data *wrqu, char *extra)
8902 {
8903 struct ipw_priv *priv = libipw_priv(dev);
8904
8905 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8906 return -EINVAL;
8907 mutex_lock(&priv->mutex);
8908 if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
8909 is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
8910 /* we disable mandatory BSSID association */
8911 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8912 priv->config &= ~CFG_STATIC_BSSID;
8913 IPW_DEBUG_ASSOC("Attempting to associate with new "
8914 "parameters.\n");
8915 ipw_associate(priv);
8916 mutex_unlock(&priv->mutex);
8917 return 0;
8918 }
8919
8920 priv->config |= CFG_STATIC_BSSID;
8921 if (ether_addr_equal(priv->bssid, wrqu->ap_addr.sa_data)) {
8922 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8923 mutex_unlock(&priv->mutex);
8924 return 0;
8925 }
8926
8927 IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
8928 wrqu->ap_addr.sa_data);
8929
8930 memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8931
8932 /* Network configuration changed -- force [re]association */
8933 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8934 if (!ipw_disassociate(priv))
8935 ipw_associate(priv);
8936
8937 mutex_unlock(&priv->mutex);
8938 return 0;
8939 }
8940
ipw_wx_get_wap(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8941 static int ipw_wx_get_wap(struct net_device *dev,
8942 struct iw_request_info *info,
8943 union iwreq_data *wrqu, char *extra)
8944 {
8945 struct ipw_priv *priv = libipw_priv(dev);
8946
8947 /* If we are associated, trying to associate, or have a statically
8948 * configured BSSID then return that; otherwise return ANY */
8949 mutex_lock(&priv->mutex);
8950 if (priv->config & CFG_STATIC_BSSID ||
8951 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8952 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8953 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8954 } else
8955 eth_zero_addr(wrqu->ap_addr.sa_data);
8956
8957 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
8958 wrqu->ap_addr.sa_data);
8959 mutex_unlock(&priv->mutex);
8960 return 0;
8961 }
8962
ipw_wx_set_essid(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8963 static int ipw_wx_set_essid(struct net_device *dev,
8964 struct iw_request_info *info,
8965 union iwreq_data *wrqu, char *extra)
8966 {
8967 struct ipw_priv *priv = libipw_priv(dev);
8968 int length;
8969
8970 mutex_lock(&priv->mutex);
8971
8972 if (!wrqu->essid.flags)
8973 {
8974 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8975 ipw_disassociate(priv);
8976 priv->config &= ~CFG_STATIC_ESSID;
8977 ipw_associate(priv);
8978 mutex_unlock(&priv->mutex);
8979 return 0;
8980 }
8981
8982 length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
8983
8984 priv->config |= CFG_STATIC_ESSID;
8985
8986 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
8987 && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
8988 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
8989 mutex_unlock(&priv->mutex);
8990 return 0;
8991 }
8992
8993 IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, extra, length);
8994
8995 priv->essid_len = length;
8996 memcpy(priv->essid, extra, priv->essid_len);
8997
8998 /* Network configuration changed -- force [re]association */
8999 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9000 if (!ipw_disassociate(priv))
9001 ipw_associate(priv);
9002
9003 mutex_unlock(&priv->mutex);
9004 return 0;
9005 }
9006
ipw_wx_get_essid(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9007 static int ipw_wx_get_essid(struct net_device *dev,
9008 struct iw_request_info *info,
9009 union iwreq_data *wrqu, char *extra)
9010 {
9011 struct ipw_priv *priv = libipw_priv(dev);
9012
9013 /* If we are associated, trying to associate, or have a statically
9014 * configured ESSID then return that; otherwise return ANY */
9015 mutex_lock(&priv->mutex);
9016 if (priv->config & CFG_STATIC_ESSID ||
9017 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9018 IPW_DEBUG_WX("Getting essid: '%*pE'\n",
9019 priv->essid_len, priv->essid);
9020 memcpy(extra, priv->essid, priv->essid_len);
9021 wrqu->essid.length = priv->essid_len;
9022 wrqu->essid.flags = 1; /* active */
9023 } else {
9024 IPW_DEBUG_WX("Getting essid: ANY\n");
9025 wrqu->essid.length = 0;
9026 wrqu->essid.flags = 0; /* active */
9027 }
9028 mutex_unlock(&priv->mutex);
9029 return 0;
9030 }
9031
ipw_wx_set_nick(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9032 static int ipw_wx_set_nick(struct net_device *dev,
9033 struct iw_request_info *info,
9034 union iwreq_data *wrqu, char *extra)
9035 {
9036 struct ipw_priv *priv = libipw_priv(dev);
9037
9038 IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9039 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9040 return -E2BIG;
9041 mutex_lock(&priv->mutex);
9042 wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
9043 memset(priv->nick, 0, sizeof(priv->nick));
9044 memcpy(priv->nick, extra, wrqu->data.length);
9045 IPW_DEBUG_TRACE("<<\n");
9046 mutex_unlock(&priv->mutex);
9047 return 0;
9048
9049 }
9050
ipw_wx_get_nick(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9051 static int ipw_wx_get_nick(struct net_device *dev,
9052 struct iw_request_info *info,
9053 union iwreq_data *wrqu, char *extra)
9054 {
9055 struct ipw_priv *priv = libipw_priv(dev);
9056 IPW_DEBUG_WX("Getting nick\n");
9057 mutex_lock(&priv->mutex);
9058 wrqu->data.length = strlen(priv->nick);
9059 memcpy(extra, priv->nick, wrqu->data.length);
9060 wrqu->data.flags = 1; /* active */
9061 mutex_unlock(&priv->mutex);
9062 return 0;
9063 }
9064
ipw_wx_set_sens(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9065 static int ipw_wx_set_sens(struct net_device *dev,
9066 struct iw_request_info *info,
9067 union iwreq_data *wrqu, char *extra)
9068 {
9069 struct ipw_priv *priv = libipw_priv(dev);
9070 int err = 0;
9071
9072 IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9073 IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9074 mutex_lock(&priv->mutex);
9075
9076 if (wrqu->sens.fixed == 0)
9077 {
9078 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9079 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9080 goto out;
9081 }
9082 if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9083 (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9084 err = -EINVAL;
9085 goto out;
9086 }
9087
9088 priv->roaming_threshold = wrqu->sens.value;
9089 priv->disassociate_threshold = 3*wrqu->sens.value;
9090 out:
9091 mutex_unlock(&priv->mutex);
9092 return err;
9093 }
9094
ipw_wx_get_sens(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9095 static int ipw_wx_get_sens(struct net_device *dev,
9096 struct iw_request_info *info,
9097 union iwreq_data *wrqu, char *extra)
9098 {
9099 struct ipw_priv *priv = libipw_priv(dev);
9100 mutex_lock(&priv->mutex);
9101 wrqu->sens.fixed = 1;
9102 wrqu->sens.value = priv->roaming_threshold;
9103 mutex_unlock(&priv->mutex);
9104
9105 IPW_DEBUG_WX("GET roaming threshold -> %s %d\n",
9106 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9107
9108 return 0;
9109 }
9110
ipw_wx_set_rate(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9111 static int ipw_wx_set_rate(struct net_device *dev,
9112 struct iw_request_info *info,
9113 union iwreq_data *wrqu, char *extra)
9114 {
9115 /* TODO: We should use semaphores or locks for access to priv */
9116 struct ipw_priv *priv = libipw_priv(dev);
9117 u32 target_rate = wrqu->bitrate.value;
9118 u32 fixed, mask;
9119
9120 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9121 /* value = X, fixed = 1 means only rate X */
9122 /* value = X, fixed = 0 means all rates lower equal X */
9123
9124 if (target_rate == -1) {
9125 fixed = 0;
9126 mask = LIBIPW_DEFAULT_RATES_MASK;
9127 /* Now we should reassociate */
9128 goto apply;
9129 }
9130
9131 mask = 0;
9132 fixed = wrqu->bitrate.fixed;
9133
9134 if (target_rate == 1000000 || !fixed)
9135 mask |= LIBIPW_CCK_RATE_1MB_MASK;
9136 if (target_rate == 1000000)
9137 goto apply;
9138
9139 if (target_rate == 2000000 || !fixed)
9140 mask |= LIBIPW_CCK_RATE_2MB_MASK;
9141 if (target_rate == 2000000)
9142 goto apply;
9143
9144 if (target_rate == 5500000 || !fixed)
9145 mask |= LIBIPW_CCK_RATE_5MB_MASK;
9146 if (target_rate == 5500000)
9147 goto apply;
9148
9149 if (target_rate == 6000000 || !fixed)
9150 mask |= LIBIPW_OFDM_RATE_6MB_MASK;
9151 if (target_rate == 6000000)
9152 goto apply;
9153
9154 if (target_rate == 9000000 || !fixed)
9155 mask |= LIBIPW_OFDM_RATE_9MB_MASK;
9156 if (target_rate == 9000000)
9157 goto apply;
9158
9159 if (target_rate == 11000000 || !fixed)
9160 mask |= LIBIPW_CCK_RATE_11MB_MASK;
9161 if (target_rate == 11000000)
9162 goto apply;
9163
9164 if (target_rate == 12000000 || !fixed)
9165 mask |= LIBIPW_OFDM_RATE_12MB_MASK;
9166 if (target_rate == 12000000)
9167 goto apply;
9168
9169 if (target_rate == 18000000 || !fixed)
9170 mask |= LIBIPW_OFDM_RATE_18MB_MASK;
9171 if (target_rate == 18000000)
9172 goto apply;
9173
9174 if (target_rate == 24000000 || !fixed)
9175 mask |= LIBIPW_OFDM_RATE_24MB_MASK;
9176 if (target_rate == 24000000)
9177 goto apply;
9178
9179 if (target_rate == 36000000 || !fixed)
9180 mask |= LIBIPW_OFDM_RATE_36MB_MASK;
9181 if (target_rate == 36000000)
9182 goto apply;
9183
9184 if (target_rate == 48000000 || !fixed)
9185 mask |= LIBIPW_OFDM_RATE_48MB_MASK;
9186 if (target_rate == 48000000)
9187 goto apply;
9188
9189 if (target_rate == 54000000 || !fixed)
9190 mask |= LIBIPW_OFDM_RATE_54MB_MASK;
9191 if (target_rate == 54000000)
9192 goto apply;
9193
9194 IPW_DEBUG_WX("invalid rate specified, returning error\n");
9195 return -EINVAL;
9196
9197 apply:
9198 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9199 mask, fixed ? "fixed" : "sub-rates");
9200 mutex_lock(&priv->mutex);
9201 if (mask == LIBIPW_DEFAULT_RATES_MASK) {
9202 priv->config &= ~CFG_FIXED_RATE;
9203 ipw_set_fixed_rate(priv, priv->ieee->mode);
9204 } else
9205 priv->config |= CFG_FIXED_RATE;
9206
9207 if (priv->rates_mask == mask) {
9208 IPW_DEBUG_WX("Mask set to current mask.\n");
9209 mutex_unlock(&priv->mutex);
9210 return 0;
9211 }
9212
9213 priv->rates_mask = mask;
9214
9215 /* Network configuration changed -- force [re]association */
9216 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9217 if (!ipw_disassociate(priv))
9218 ipw_associate(priv);
9219
9220 mutex_unlock(&priv->mutex);
9221 return 0;
9222 }
9223
ipw_wx_get_rate(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9224 static int ipw_wx_get_rate(struct net_device *dev,
9225 struct iw_request_info *info,
9226 union iwreq_data *wrqu, char *extra)
9227 {
9228 struct ipw_priv *priv = libipw_priv(dev);
9229 mutex_lock(&priv->mutex);
9230 wrqu->bitrate.value = priv->last_rate;
9231 wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9232 mutex_unlock(&priv->mutex);
9233 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
9234 return 0;
9235 }
9236
ipw_wx_set_rts(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9237 static int ipw_wx_set_rts(struct net_device *dev,
9238 struct iw_request_info *info,
9239 union iwreq_data *wrqu, char *extra)
9240 {
9241 struct ipw_priv *priv = libipw_priv(dev);
9242 mutex_lock(&priv->mutex);
9243 if (wrqu->rts.disabled || !wrqu->rts.fixed)
9244 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9245 else {
9246 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9247 wrqu->rts.value > MAX_RTS_THRESHOLD) {
9248 mutex_unlock(&priv->mutex);
9249 return -EINVAL;
9250 }
9251 priv->rts_threshold = wrqu->rts.value;
9252 }
9253
9254 ipw_send_rts_threshold(priv, priv->rts_threshold);
9255 mutex_unlock(&priv->mutex);
9256 IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv->rts_threshold);
9257 return 0;
9258 }
9259
ipw_wx_get_rts(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9260 static int ipw_wx_get_rts(struct net_device *dev,
9261 struct iw_request_info *info,
9262 union iwreq_data *wrqu, char *extra)
9263 {
9264 struct ipw_priv *priv = libipw_priv(dev);
9265 mutex_lock(&priv->mutex);
9266 wrqu->rts.value = priv->rts_threshold;
9267 wrqu->rts.fixed = 0; /* no auto select */
9268 wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9269 mutex_unlock(&priv->mutex);
9270 IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu->rts.value);
9271 return 0;
9272 }
9273
ipw_wx_set_txpow(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9274 static int ipw_wx_set_txpow(struct net_device *dev,
9275 struct iw_request_info *info,
9276 union iwreq_data *wrqu, char *extra)
9277 {
9278 struct ipw_priv *priv = libipw_priv(dev);
9279 int err = 0;
9280
9281 mutex_lock(&priv->mutex);
9282 if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9283 err = -EINPROGRESS;
9284 goto out;
9285 }
9286
9287 if (!wrqu->power.fixed)
9288 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9289
9290 if (wrqu->power.flags != IW_TXPOW_DBM) {
9291 err = -EINVAL;
9292 goto out;
9293 }
9294
9295 if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9296 (wrqu->power.value < IPW_TX_POWER_MIN)) {
9297 err = -EINVAL;
9298 goto out;
9299 }
9300
9301 priv->tx_power = wrqu->power.value;
9302 err = ipw_set_tx_power(priv);
9303 out:
9304 mutex_unlock(&priv->mutex);
9305 return err;
9306 }
9307
ipw_wx_get_txpow(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9308 static int ipw_wx_get_txpow(struct net_device *dev,
9309 struct iw_request_info *info,
9310 union iwreq_data *wrqu, char *extra)
9311 {
9312 struct ipw_priv *priv = libipw_priv(dev);
9313 mutex_lock(&priv->mutex);
9314 wrqu->power.value = priv->tx_power;
9315 wrqu->power.fixed = 1;
9316 wrqu->power.flags = IW_TXPOW_DBM;
9317 wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9318 mutex_unlock(&priv->mutex);
9319
9320 IPW_DEBUG_WX("GET TX Power -> %s %d\n",
9321 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9322
9323 return 0;
9324 }
9325
ipw_wx_set_frag(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9326 static int ipw_wx_set_frag(struct net_device *dev,
9327 struct iw_request_info *info,
9328 union iwreq_data *wrqu, char *extra)
9329 {
9330 struct ipw_priv *priv = libipw_priv(dev);
9331 mutex_lock(&priv->mutex);
9332 if (wrqu->frag.disabled || !wrqu->frag.fixed)
9333 priv->ieee->fts = DEFAULT_FTS;
9334 else {
9335 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9336 wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9337 mutex_unlock(&priv->mutex);
9338 return -EINVAL;
9339 }
9340
9341 priv->ieee->fts = wrqu->frag.value & ~0x1;
9342 }
9343
9344 ipw_send_frag_threshold(priv, wrqu->frag.value);
9345 mutex_unlock(&priv->mutex);
9346 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu->frag.value);
9347 return 0;
9348 }
9349
ipw_wx_get_frag(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9350 static int ipw_wx_get_frag(struct net_device *dev,
9351 struct iw_request_info *info,
9352 union iwreq_data *wrqu, char *extra)
9353 {
9354 struct ipw_priv *priv = libipw_priv(dev);
9355 mutex_lock(&priv->mutex);
9356 wrqu->frag.value = priv->ieee->fts;
9357 wrqu->frag.fixed = 0; /* no auto select */
9358 wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9359 mutex_unlock(&priv->mutex);
9360 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
9361
9362 return 0;
9363 }
9364
ipw_wx_set_retry(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9365 static int ipw_wx_set_retry(struct net_device *dev,
9366 struct iw_request_info *info,
9367 union iwreq_data *wrqu, char *extra)
9368 {
9369 struct ipw_priv *priv = libipw_priv(dev);
9370
9371 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9372 return -EINVAL;
9373
9374 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9375 return 0;
9376
9377 if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9378 return -EINVAL;
9379
9380 mutex_lock(&priv->mutex);
9381 if (wrqu->retry.flags & IW_RETRY_SHORT)
9382 priv->short_retry_limit = (u8) wrqu->retry.value;
9383 else if (wrqu->retry.flags & IW_RETRY_LONG)
9384 priv->long_retry_limit = (u8) wrqu->retry.value;
9385 else {
9386 priv->short_retry_limit = (u8) wrqu->retry.value;
9387 priv->long_retry_limit = (u8) wrqu->retry.value;
9388 }
9389
9390 ipw_send_retry_limit(priv, priv->short_retry_limit,
9391 priv->long_retry_limit);
9392 mutex_unlock(&priv->mutex);
9393 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9394 priv->short_retry_limit, priv->long_retry_limit);
9395 return 0;
9396 }
9397
ipw_wx_get_retry(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9398 static int ipw_wx_get_retry(struct net_device *dev,
9399 struct iw_request_info *info,
9400 union iwreq_data *wrqu, char *extra)
9401 {
9402 struct ipw_priv *priv = libipw_priv(dev);
9403
9404 mutex_lock(&priv->mutex);
9405 wrqu->retry.disabled = 0;
9406
9407 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9408 mutex_unlock(&priv->mutex);
9409 return -EINVAL;
9410 }
9411
9412 if (wrqu->retry.flags & IW_RETRY_LONG) {
9413 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9414 wrqu->retry.value = priv->long_retry_limit;
9415 } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9416 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9417 wrqu->retry.value = priv->short_retry_limit;
9418 } else {
9419 wrqu->retry.flags = IW_RETRY_LIMIT;
9420 wrqu->retry.value = priv->short_retry_limit;
9421 }
9422 mutex_unlock(&priv->mutex);
9423
9424 IPW_DEBUG_WX("GET retry -> %d\n", wrqu->retry.value);
9425
9426 return 0;
9427 }
9428
ipw_wx_set_scan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9429 static int ipw_wx_set_scan(struct net_device *dev,
9430 struct iw_request_info *info,
9431 union iwreq_data *wrqu, char *extra)
9432 {
9433 struct ipw_priv *priv = libipw_priv(dev);
9434 struct iw_scan_req *req = (struct iw_scan_req *)extra;
9435 struct delayed_work *work = NULL;
9436
9437 mutex_lock(&priv->mutex);
9438
9439 priv->user_requested_scan = 1;
9440
9441 if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9442 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9443 int len = min((int)req->essid_len,
9444 (int)sizeof(priv->direct_scan_ssid));
9445 memcpy(priv->direct_scan_ssid, req->essid, len);
9446 priv->direct_scan_ssid_len = len;
9447 work = &priv->request_direct_scan;
9448 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9449 work = &priv->request_passive_scan;
9450 }
9451 } else {
9452 /* Normal active broadcast scan */
9453 work = &priv->request_scan;
9454 }
9455
9456 mutex_unlock(&priv->mutex);
9457
9458 IPW_DEBUG_WX("Start scan\n");
9459
9460 schedule_delayed_work(work, 0);
9461
9462 return 0;
9463 }
9464
ipw_wx_get_scan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9465 static int ipw_wx_get_scan(struct net_device *dev,
9466 struct iw_request_info *info,
9467 union iwreq_data *wrqu, char *extra)
9468 {
9469 struct ipw_priv *priv = libipw_priv(dev);
9470 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
9471 }
9472
ipw_wx_set_encode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * key)9473 static int ipw_wx_set_encode(struct net_device *dev,
9474 struct iw_request_info *info,
9475 union iwreq_data *wrqu, char *key)
9476 {
9477 struct ipw_priv *priv = libipw_priv(dev);
9478 int ret;
9479 u32 cap = priv->capability;
9480
9481 mutex_lock(&priv->mutex);
9482 ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key);
9483
9484 /* In IBSS mode, we need to notify the firmware to update
9485 * the beacon info after we changed the capability. */
9486 if (cap != priv->capability &&
9487 priv->ieee->iw_mode == IW_MODE_ADHOC &&
9488 priv->status & STATUS_ASSOCIATED)
9489 ipw_disassociate(priv);
9490
9491 mutex_unlock(&priv->mutex);
9492 return ret;
9493 }
9494
ipw_wx_get_encode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * key)9495 static int ipw_wx_get_encode(struct net_device *dev,
9496 struct iw_request_info *info,
9497 union iwreq_data *wrqu, char *key)
9498 {
9499 struct ipw_priv *priv = libipw_priv(dev);
9500 return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
9501 }
9502
ipw_wx_set_power(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9503 static int ipw_wx_set_power(struct net_device *dev,
9504 struct iw_request_info *info,
9505 union iwreq_data *wrqu, char *extra)
9506 {
9507 struct ipw_priv *priv = libipw_priv(dev);
9508 int err;
9509 mutex_lock(&priv->mutex);
9510 if (wrqu->power.disabled) {
9511 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9512 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9513 if (err) {
9514 IPW_DEBUG_WX("failed setting power mode.\n");
9515 mutex_unlock(&priv->mutex);
9516 return err;
9517 }
9518 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9519 mutex_unlock(&priv->mutex);
9520 return 0;
9521 }
9522
9523 switch (wrqu->power.flags & IW_POWER_MODE) {
9524 case IW_POWER_ON: /* If not specified */
9525 case IW_POWER_MODE: /* If set all mask */
9526 case IW_POWER_ALL_R: /* If explicitly state all */
9527 break;
9528 default: /* Otherwise we don't support it */
9529 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9530 wrqu->power.flags);
9531 mutex_unlock(&priv->mutex);
9532 return -EOPNOTSUPP;
9533 }
9534
9535 /* If the user hasn't specified a power management mode yet, default
9536 * to BATTERY */
9537 if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9538 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9539 else
9540 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9541
9542 err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9543 if (err) {
9544 IPW_DEBUG_WX("failed setting power mode.\n");
9545 mutex_unlock(&priv->mutex);
9546 return err;
9547 }
9548
9549 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9550 mutex_unlock(&priv->mutex);
9551 return 0;
9552 }
9553
ipw_wx_get_power(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9554 static int ipw_wx_get_power(struct net_device *dev,
9555 struct iw_request_info *info,
9556 union iwreq_data *wrqu, char *extra)
9557 {
9558 struct ipw_priv *priv = libipw_priv(dev);
9559 mutex_lock(&priv->mutex);
9560 if (!(priv->power_mode & IPW_POWER_ENABLED))
9561 wrqu->power.disabled = 1;
9562 else
9563 wrqu->power.disabled = 0;
9564
9565 mutex_unlock(&priv->mutex);
9566 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9567
9568 return 0;
9569 }
9570
ipw_wx_set_powermode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9571 static int ipw_wx_set_powermode(struct net_device *dev,
9572 struct iw_request_info *info,
9573 union iwreq_data *wrqu, char *extra)
9574 {
9575 struct ipw_priv *priv = libipw_priv(dev);
9576 int mode = *(int *)extra;
9577 int err;
9578
9579 mutex_lock(&priv->mutex);
9580 if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9581 mode = IPW_POWER_AC;
9582
9583 if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9584 err = ipw_send_power_mode(priv, mode);
9585 if (err) {
9586 IPW_DEBUG_WX("failed setting power mode.\n");
9587 mutex_unlock(&priv->mutex);
9588 return err;
9589 }
9590 priv->power_mode = IPW_POWER_ENABLED | mode;
9591 }
9592 mutex_unlock(&priv->mutex);
9593 return 0;
9594 }
9595
9596 #define MAX_WX_STRING 80
ipw_wx_get_powermode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9597 static int ipw_wx_get_powermode(struct net_device *dev,
9598 struct iw_request_info *info,
9599 union iwreq_data *wrqu, char *extra)
9600 {
9601 struct ipw_priv *priv = libipw_priv(dev);
9602 int level = IPW_POWER_LEVEL(priv->power_mode);
9603 char *p = extra;
9604
9605 p += scnprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9606
9607 switch (level) {
9608 case IPW_POWER_AC:
9609 p += scnprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9610 break;
9611 case IPW_POWER_BATTERY:
9612 p += scnprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9613 break;
9614 default:
9615 p += scnprintf(p, MAX_WX_STRING - (p - extra),
9616 "(Timeout %dms, Period %dms)",
9617 timeout_duration[level - 1] / 1000,
9618 period_duration[level - 1] / 1000);
9619 }
9620
9621 if (!(priv->power_mode & IPW_POWER_ENABLED))
9622 p += scnprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9623
9624 wrqu->data.length = p - extra + 1;
9625
9626 return 0;
9627 }
9628
ipw_wx_set_wireless_mode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9629 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9630 struct iw_request_info *info,
9631 union iwreq_data *wrqu, char *extra)
9632 {
9633 struct ipw_priv *priv = libipw_priv(dev);
9634 int mode = *(int *)extra;
9635 u8 band = 0, modulation = 0;
9636
9637 if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9638 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9639 return -EINVAL;
9640 }
9641 mutex_lock(&priv->mutex);
9642 if (priv->adapter == IPW_2915ABG) {
9643 priv->ieee->abg_true = 1;
9644 if (mode & IEEE_A) {
9645 band |= LIBIPW_52GHZ_BAND;
9646 modulation |= LIBIPW_OFDM_MODULATION;
9647 } else
9648 priv->ieee->abg_true = 0;
9649 } else {
9650 if (mode & IEEE_A) {
9651 IPW_WARNING("Attempt to set 2200BG into "
9652 "802.11a mode\n");
9653 mutex_unlock(&priv->mutex);
9654 return -EINVAL;
9655 }
9656
9657 priv->ieee->abg_true = 0;
9658 }
9659
9660 if (mode & IEEE_B) {
9661 band |= LIBIPW_24GHZ_BAND;
9662 modulation |= LIBIPW_CCK_MODULATION;
9663 } else
9664 priv->ieee->abg_true = 0;
9665
9666 if (mode & IEEE_G) {
9667 band |= LIBIPW_24GHZ_BAND;
9668 modulation |= LIBIPW_OFDM_MODULATION;
9669 } else
9670 priv->ieee->abg_true = 0;
9671
9672 priv->ieee->mode = mode;
9673 priv->ieee->freq_band = band;
9674 priv->ieee->modulation = modulation;
9675 init_supported_rates(priv, &priv->rates);
9676
9677 /* Network configuration changed -- force [re]association */
9678 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9679 if (!ipw_disassociate(priv)) {
9680 ipw_send_supported_rates(priv, &priv->rates);
9681 ipw_associate(priv);
9682 }
9683
9684 /* Update the band LEDs */
9685 ipw_led_band_on(priv);
9686
9687 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9688 mode & IEEE_A ? 'a' : '.',
9689 mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9690 mutex_unlock(&priv->mutex);
9691 return 0;
9692 }
9693
ipw_wx_get_wireless_mode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9694 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9695 struct iw_request_info *info,
9696 union iwreq_data *wrqu, char *extra)
9697 {
9698 struct ipw_priv *priv = libipw_priv(dev);
9699 mutex_lock(&priv->mutex);
9700 switch (priv->ieee->mode) {
9701 case IEEE_A:
9702 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9703 break;
9704 case IEEE_B:
9705 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9706 break;
9707 case IEEE_A | IEEE_B:
9708 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9709 break;
9710 case IEEE_G:
9711 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9712 break;
9713 case IEEE_A | IEEE_G:
9714 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9715 break;
9716 case IEEE_B | IEEE_G:
9717 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9718 break;
9719 case IEEE_A | IEEE_B | IEEE_G:
9720 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9721 break;
9722 default:
9723 strncpy(extra, "unknown", MAX_WX_STRING);
9724 break;
9725 }
9726 extra[MAX_WX_STRING - 1] = '\0';
9727
9728 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9729
9730 wrqu->data.length = strlen(extra) + 1;
9731 mutex_unlock(&priv->mutex);
9732
9733 return 0;
9734 }
9735
ipw_wx_set_preamble(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9736 static int ipw_wx_set_preamble(struct net_device *dev,
9737 struct iw_request_info *info,
9738 union iwreq_data *wrqu, char *extra)
9739 {
9740 struct ipw_priv *priv = libipw_priv(dev);
9741 int mode = *(int *)extra;
9742 mutex_lock(&priv->mutex);
9743 /* Switching from SHORT -> LONG requires a disassociation */
9744 if (mode == 1) {
9745 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9746 priv->config |= CFG_PREAMBLE_LONG;
9747
9748 /* Network configuration changed -- force [re]association */
9749 IPW_DEBUG_ASSOC
9750 ("[re]association triggered due to preamble change.\n");
9751 if (!ipw_disassociate(priv))
9752 ipw_associate(priv);
9753 }
9754 goto done;
9755 }
9756
9757 if (mode == 0) {
9758 priv->config &= ~CFG_PREAMBLE_LONG;
9759 goto done;
9760 }
9761 mutex_unlock(&priv->mutex);
9762 return -EINVAL;
9763
9764 done:
9765 mutex_unlock(&priv->mutex);
9766 return 0;
9767 }
9768
ipw_wx_get_preamble(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9769 static int ipw_wx_get_preamble(struct net_device *dev,
9770 struct iw_request_info *info,
9771 union iwreq_data *wrqu, char *extra)
9772 {
9773 struct ipw_priv *priv = libipw_priv(dev);
9774 mutex_lock(&priv->mutex);
9775 if (priv->config & CFG_PREAMBLE_LONG)
9776 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9777 else
9778 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9779 mutex_unlock(&priv->mutex);
9780 return 0;
9781 }
9782
9783 #ifdef CONFIG_IPW2200_MONITOR
ipw_wx_set_monitor(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9784 static int ipw_wx_set_monitor(struct net_device *dev,
9785 struct iw_request_info *info,
9786 union iwreq_data *wrqu, char *extra)
9787 {
9788 struct ipw_priv *priv = libipw_priv(dev);
9789 int *parms = (int *)extra;
9790 int enable = (parms[0] > 0);
9791 mutex_lock(&priv->mutex);
9792 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9793 if (enable) {
9794 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9795 #ifdef CONFIG_IPW2200_RADIOTAP
9796 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9797 #else
9798 priv->net_dev->type = ARPHRD_IEEE80211;
9799 #endif
9800 schedule_work(&priv->adapter_restart);
9801 }
9802
9803 ipw_set_channel(priv, parms[1]);
9804 } else {
9805 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9806 mutex_unlock(&priv->mutex);
9807 return 0;
9808 }
9809 priv->net_dev->type = ARPHRD_ETHER;
9810 schedule_work(&priv->adapter_restart);
9811 }
9812 mutex_unlock(&priv->mutex);
9813 return 0;
9814 }
9815
9816 #endif /* CONFIG_IPW2200_MONITOR */
9817
ipw_wx_reset(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9818 static int ipw_wx_reset(struct net_device *dev,
9819 struct iw_request_info *info,
9820 union iwreq_data *wrqu, char *extra)
9821 {
9822 struct ipw_priv *priv = libipw_priv(dev);
9823 IPW_DEBUG_WX("RESET\n");
9824 schedule_work(&priv->adapter_restart);
9825 return 0;
9826 }
9827
ipw_wx_sw_reset(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9828 static int ipw_wx_sw_reset(struct net_device *dev,
9829 struct iw_request_info *info,
9830 union iwreq_data *wrqu, char *extra)
9831 {
9832 struct ipw_priv *priv = libipw_priv(dev);
9833 union iwreq_data wrqu_sec = {
9834 .encoding = {
9835 .flags = IW_ENCODE_DISABLED,
9836 },
9837 };
9838 int ret;
9839
9840 IPW_DEBUG_WX("SW_RESET\n");
9841
9842 mutex_lock(&priv->mutex);
9843
9844 ret = ipw_sw_reset(priv, 2);
9845 if (!ret) {
9846 free_firmware();
9847 ipw_adapter_restart(priv);
9848 }
9849
9850 /* The SW reset bit might have been toggled on by the 'disable'
9851 * module parameter, so take appropriate action */
9852 ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9853
9854 mutex_unlock(&priv->mutex);
9855 libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9856 mutex_lock(&priv->mutex);
9857
9858 if (!(priv->status & STATUS_RF_KILL_MASK)) {
9859 /* Configuration likely changed -- force [re]association */
9860 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9861 "reset.\n");
9862 if (!ipw_disassociate(priv))
9863 ipw_associate(priv);
9864 }
9865
9866 mutex_unlock(&priv->mutex);
9867
9868 return 0;
9869 }
9870
9871 /* Rebase the WE IOCTLs to zero for the handler array */
9872 static iw_handler ipw_wx_handlers[] = {
9873 IW_HANDLER(SIOCGIWNAME, (iw_handler)cfg80211_wext_giwname),
9874 IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq),
9875 IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq),
9876 IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode),
9877 IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode),
9878 IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens),
9879 IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens),
9880 IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range),
9881 IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap),
9882 IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap),
9883 IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan),
9884 IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan),
9885 IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid),
9886 IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid),
9887 IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick),
9888 IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick),
9889 IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate),
9890 IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate),
9891 IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts),
9892 IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts),
9893 IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag),
9894 IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag),
9895 IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow),
9896 IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow),
9897 IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry),
9898 IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry),
9899 IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode),
9900 IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode),
9901 IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power),
9902 IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power),
9903 IW_HANDLER(SIOCSIWSPY, iw_handler_set_spy),
9904 IW_HANDLER(SIOCGIWSPY, iw_handler_get_spy),
9905 IW_HANDLER(SIOCSIWTHRSPY, iw_handler_set_thrspy),
9906 IW_HANDLER(SIOCGIWTHRSPY, iw_handler_get_thrspy),
9907 IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie),
9908 IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie),
9909 IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme),
9910 IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth),
9911 IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth),
9912 IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext),
9913 IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext),
9914 };
9915
9916 enum {
9917 IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9918 IPW_PRIV_GET_POWER,
9919 IPW_PRIV_SET_MODE,
9920 IPW_PRIV_GET_MODE,
9921 IPW_PRIV_SET_PREAMBLE,
9922 IPW_PRIV_GET_PREAMBLE,
9923 IPW_PRIV_RESET,
9924 IPW_PRIV_SW_RESET,
9925 #ifdef CONFIG_IPW2200_MONITOR
9926 IPW_PRIV_SET_MONITOR,
9927 #endif
9928 };
9929
9930 static struct iw_priv_args ipw_priv_args[] = {
9931 {
9932 .cmd = IPW_PRIV_SET_POWER,
9933 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9934 .name = "set_power"},
9935 {
9936 .cmd = IPW_PRIV_GET_POWER,
9937 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9938 .name = "get_power"},
9939 {
9940 .cmd = IPW_PRIV_SET_MODE,
9941 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9942 .name = "set_mode"},
9943 {
9944 .cmd = IPW_PRIV_GET_MODE,
9945 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9946 .name = "get_mode"},
9947 {
9948 .cmd = IPW_PRIV_SET_PREAMBLE,
9949 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9950 .name = "set_preamble"},
9951 {
9952 .cmd = IPW_PRIV_GET_PREAMBLE,
9953 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9954 .name = "get_preamble"},
9955 {
9956 IPW_PRIV_RESET,
9957 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9958 {
9959 IPW_PRIV_SW_RESET,
9960 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9961 #ifdef CONFIG_IPW2200_MONITOR
9962 {
9963 IPW_PRIV_SET_MONITOR,
9964 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9965 #endif /* CONFIG_IPW2200_MONITOR */
9966 };
9967
9968 static iw_handler ipw_priv_handler[] = {
9969 ipw_wx_set_powermode,
9970 ipw_wx_get_powermode,
9971 ipw_wx_set_wireless_mode,
9972 ipw_wx_get_wireless_mode,
9973 ipw_wx_set_preamble,
9974 ipw_wx_get_preamble,
9975 ipw_wx_reset,
9976 ipw_wx_sw_reset,
9977 #ifdef CONFIG_IPW2200_MONITOR
9978 ipw_wx_set_monitor,
9979 #endif
9980 };
9981
9982 static const struct iw_handler_def ipw_wx_handler_def = {
9983 .standard = ipw_wx_handlers,
9984 .num_standard = ARRAY_SIZE(ipw_wx_handlers),
9985 .num_private = ARRAY_SIZE(ipw_priv_handler),
9986 .num_private_args = ARRAY_SIZE(ipw_priv_args),
9987 .private = ipw_priv_handler,
9988 .private_args = ipw_priv_args,
9989 .get_wireless_stats = ipw_get_wireless_stats,
9990 };
9991
9992 /*
9993 * Get wireless statistics.
9994 * Called by /proc/net/wireless
9995 * Also called by SIOCGIWSTATS
9996 */
ipw_get_wireless_stats(struct net_device * dev)9997 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
9998 {
9999 struct ipw_priv *priv = libipw_priv(dev);
10000 struct iw_statistics *wstats;
10001
10002 wstats = &priv->wstats;
10003
10004 /* if hw is disabled, then ipw_get_ordinal() can't be called.
10005 * netdev->get_wireless_stats seems to be called before fw is
10006 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
10007 * and associated; if not associcated, the values are all meaningless
10008 * anyway, so set them all to NULL and INVALID */
10009 if (!(priv->status & STATUS_ASSOCIATED)) {
10010 wstats->miss.beacon = 0;
10011 wstats->discard.retries = 0;
10012 wstats->qual.qual = 0;
10013 wstats->qual.level = 0;
10014 wstats->qual.noise = 0;
10015 wstats->qual.updated = 7;
10016 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10017 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10018 return wstats;
10019 }
10020
10021 wstats->qual.qual = priv->quality;
10022 wstats->qual.level = priv->exp_avg_rssi;
10023 wstats->qual.noise = priv->exp_avg_noise;
10024 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10025 IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10026
10027 wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10028 wstats->discard.retries = priv->last_tx_failures;
10029 wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10030
10031 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10032 goto fail_get_ordinal;
10033 wstats->discard.retries += tx_retry; */
10034
10035 return wstats;
10036 }
10037
10038 /* net device stuff */
10039
init_sys_config(struct ipw_sys_config * sys_config)10040 static void init_sys_config(struct ipw_sys_config *sys_config)
10041 {
10042 memset(sys_config, 0, sizeof(struct ipw_sys_config));
10043 sys_config->bt_coexistence = 0;
10044 sys_config->answer_broadcast_ssid_probe = 0;
10045 sys_config->accept_all_data_frames = 0;
10046 sys_config->accept_non_directed_frames = 1;
10047 sys_config->exclude_unicast_unencrypted = 0;
10048 sys_config->disable_unicast_decryption = 1;
10049 sys_config->exclude_multicast_unencrypted = 0;
10050 sys_config->disable_multicast_decryption = 1;
10051 if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10052 antenna = CFG_SYS_ANTENNA_BOTH;
10053 sys_config->antenna_diversity = antenna;
10054 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */
10055 sys_config->dot11g_auto_detection = 0;
10056 sys_config->enable_cts_to_self = 0;
10057 sys_config->bt_coexist_collision_thr = 0;
10058 sys_config->pass_noise_stats_to_host = 1; /* 1 -- fix for 256 */
10059 sys_config->silence_threshold = 0x1e;
10060 }
10061
ipw_net_open(struct net_device * dev)10062 static int ipw_net_open(struct net_device *dev)
10063 {
10064 IPW_DEBUG_INFO("dev->open\n");
10065 netif_start_queue(dev);
10066 return 0;
10067 }
10068
ipw_net_stop(struct net_device * dev)10069 static int ipw_net_stop(struct net_device *dev)
10070 {
10071 IPW_DEBUG_INFO("dev->close\n");
10072 netif_stop_queue(dev);
10073 return 0;
10074 }
10075
10076 /*
10077 todo:
10078
10079 modify to send one tfd per fragment instead of using chunking. otherwise
10080 we need to heavily modify the libipw_skb_to_txb.
10081 */
10082
ipw_tx_skb(struct ipw_priv * priv,struct libipw_txb * txb,int pri)10083 static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb,
10084 int pri)
10085 {
10086 struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *)
10087 txb->fragments[0]->data;
10088 int i = 0;
10089 struct tfd_frame *tfd;
10090 #ifdef CONFIG_IPW2200_QOS
10091 int tx_id = ipw_get_tx_queue_number(priv, pri);
10092 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10093 #else
10094 struct clx2_tx_queue *txq = &priv->txq[0];
10095 #endif
10096 struct clx2_queue *q = &txq->q;
10097 u8 id, hdr_len, unicast;
10098 int fc;
10099
10100 if (!(priv->status & STATUS_ASSOCIATED))
10101 goto drop;
10102
10103 hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10104 switch (priv->ieee->iw_mode) {
10105 case IW_MODE_ADHOC:
10106 unicast = !is_multicast_ether_addr(hdr->addr1);
10107 id = ipw_find_station(priv, hdr->addr1);
10108 if (id == IPW_INVALID_STATION) {
10109 id = ipw_add_station(priv, hdr->addr1);
10110 if (id == IPW_INVALID_STATION) {
10111 IPW_WARNING("Attempt to send data to "
10112 "invalid cell: %pM\n",
10113 hdr->addr1);
10114 goto drop;
10115 }
10116 }
10117 break;
10118
10119 case IW_MODE_INFRA:
10120 default:
10121 unicast = !is_multicast_ether_addr(hdr->addr3);
10122 id = 0;
10123 break;
10124 }
10125
10126 tfd = &txq->bd[q->first_empty];
10127 txq->txb[q->first_empty] = txb;
10128 memset(tfd, 0, sizeof(*tfd));
10129 tfd->u.data.station_number = id;
10130
10131 tfd->control_flags.message_type = TX_FRAME_TYPE;
10132 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10133
10134 tfd->u.data.cmd_id = DINO_CMD_TX;
10135 tfd->u.data.len = cpu_to_le16(txb->payload_size);
10136
10137 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10138 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10139 else
10140 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10141
10142 if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10143 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10144
10145 fc = le16_to_cpu(hdr->frame_ctl);
10146 hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10147
10148 memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10149
10150 if (likely(unicast))
10151 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10152
10153 if (txb->encrypted && !priv->ieee->host_encrypt) {
10154 switch (priv->ieee->sec.level) {
10155 case SEC_LEVEL_3:
10156 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10157 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10158 /* XXX: ACK flag must be set for CCMP even if it
10159 * is a multicast/broadcast packet, because CCMP
10160 * group communication encrypted by GTK is
10161 * actually done by the AP. */
10162 if (!unicast)
10163 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10164
10165 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10166 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10167 tfd->u.data.key_index = 0;
10168 tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10169 break;
10170 case SEC_LEVEL_2:
10171 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10172 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10173 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10174 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10175 tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10176 break;
10177 case SEC_LEVEL_1:
10178 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10179 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10180 tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10181 if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10182 40)
10183 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10184 else
10185 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10186 break;
10187 case SEC_LEVEL_0:
10188 break;
10189 default:
10190 printk(KERN_ERR "Unknown security level %d\n",
10191 priv->ieee->sec.level);
10192 break;
10193 }
10194 } else
10195 /* No hardware encryption */
10196 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10197
10198 #ifdef CONFIG_IPW2200_QOS
10199 if (fc & IEEE80211_STYPE_QOS_DATA)
10200 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10201 #endif /* CONFIG_IPW2200_QOS */
10202
10203 /* payload */
10204 tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10205 txb->nr_frags));
10206 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10207 txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10208 for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10209 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10210 i, le32_to_cpu(tfd->u.data.num_chunks),
10211 txb->fragments[i]->len - hdr_len);
10212 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10213 i, tfd->u.data.num_chunks,
10214 txb->fragments[i]->len - hdr_len);
10215 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10216 txb->fragments[i]->len - hdr_len);
10217
10218 tfd->u.data.chunk_ptr[i] =
10219 cpu_to_le32(dma_map_single(&priv->pci_dev->dev,
10220 txb->fragments[i]->data + hdr_len,
10221 txb->fragments[i]->len - hdr_len,
10222 DMA_TO_DEVICE));
10223 tfd->u.data.chunk_len[i] =
10224 cpu_to_le16(txb->fragments[i]->len - hdr_len);
10225 }
10226
10227 if (i != txb->nr_frags) {
10228 struct sk_buff *skb;
10229 u16 remaining_bytes = 0;
10230 int j;
10231
10232 for (j = i; j < txb->nr_frags; j++)
10233 remaining_bytes += txb->fragments[j]->len - hdr_len;
10234
10235 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10236 remaining_bytes);
10237 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10238 if (skb != NULL) {
10239 tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10240 for (j = i; j < txb->nr_frags; j++) {
10241 int size = txb->fragments[j]->len - hdr_len;
10242
10243 printk(KERN_INFO "Adding frag %d %d...\n",
10244 j, size);
10245 skb_put_data(skb,
10246 txb->fragments[j]->data + hdr_len,
10247 size);
10248 }
10249 dev_kfree_skb_any(txb->fragments[i]);
10250 txb->fragments[i] = skb;
10251 tfd->u.data.chunk_ptr[i] =
10252 cpu_to_le32(dma_map_single(&priv->pci_dev->dev,
10253 skb->data,
10254 remaining_bytes,
10255 DMA_TO_DEVICE));
10256
10257 le32_add_cpu(&tfd->u.data.num_chunks, 1);
10258 }
10259 }
10260
10261 /* kick DMA */
10262 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10263 ipw_write32(priv, q->reg_w, q->first_empty);
10264
10265 if (ipw_tx_queue_space(q) < q->high_mark)
10266 netif_stop_queue(priv->net_dev);
10267
10268 return NETDEV_TX_OK;
10269
10270 drop:
10271 IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10272 libipw_txb_free(txb);
10273 return NETDEV_TX_OK;
10274 }
10275
ipw_net_is_queue_full(struct net_device * dev,int pri)10276 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10277 {
10278 struct ipw_priv *priv = libipw_priv(dev);
10279 #ifdef CONFIG_IPW2200_QOS
10280 int tx_id = ipw_get_tx_queue_number(priv, pri);
10281 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10282 #else
10283 struct clx2_tx_queue *txq = &priv->txq[0];
10284 #endif /* CONFIG_IPW2200_QOS */
10285
10286 if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10287 return 1;
10288
10289 return 0;
10290 }
10291
10292 #ifdef CONFIG_IPW2200_PROMISCUOUS
ipw_handle_promiscuous_tx(struct ipw_priv * priv,struct libipw_txb * txb)10293 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10294 struct libipw_txb *txb)
10295 {
10296 struct libipw_rx_stats dummystats;
10297 struct ieee80211_hdr *hdr;
10298 u8 n;
10299 u16 filter = priv->prom_priv->filter;
10300 int hdr_only = 0;
10301
10302 if (filter & IPW_PROM_NO_TX)
10303 return;
10304
10305 memset(&dummystats, 0, sizeof(dummystats));
10306
10307 /* Filtering of fragment chains is done against the first fragment */
10308 hdr = (void *)txb->fragments[0]->data;
10309 if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
10310 if (filter & IPW_PROM_NO_MGMT)
10311 return;
10312 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10313 hdr_only = 1;
10314 } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
10315 if (filter & IPW_PROM_NO_CTL)
10316 return;
10317 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10318 hdr_only = 1;
10319 } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
10320 if (filter & IPW_PROM_NO_DATA)
10321 return;
10322 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10323 hdr_only = 1;
10324 }
10325
10326 for(n=0; n<txb->nr_frags; ++n) {
10327 struct sk_buff *src = txb->fragments[n];
10328 struct sk_buff *dst;
10329 struct ieee80211_radiotap_header *rt_hdr;
10330 int len;
10331
10332 if (hdr_only) {
10333 hdr = (void *)src->data;
10334 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
10335 } else
10336 len = src->len;
10337
10338 dst = alloc_skb(len + sizeof(*rt_hdr) + sizeof(u16)*2, GFP_ATOMIC);
10339 if (!dst)
10340 continue;
10341
10342 rt_hdr = skb_put(dst, sizeof(*rt_hdr));
10343
10344 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10345 rt_hdr->it_pad = 0;
10346 rt_hdr->it_present = 0; /* after all, it's just an idea */
10347 rt_hdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10348
10349 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10350 ieee80211chan2mhz(priv->channel));
10351 if (priv->channel > 14) /* 802.11a */
10352 *(__le16*)skb_put(dst, sizeof(u16)) =
10353 cpu_to_le16(IEEE80211_CHAN_OFDM |
10354 IEEE80211_CHAN_5GHZ);
10355 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10356 *(__le16*)skb_put(dst, sizeof(u16)) =
10357 cpu_to_le16(IEEE80211_CHAN_CCK |
10358 IEEE80211_CHAN_2GHZ);
10359 else /* 802.11g */
10360 *(__le16*)skb_put(dst, sizeof(u16)) =
10361 cpu_to_le16(IEEE80211_CHAN_OFDM |
10362 IEEE80211_CHAN_2GHZ);
10363
10364 rt_hdr->it_len = cpu_to_le16(dst->len);
10365
10366 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10367
10368 if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats))
10369 dev_kfree_skb_any(dst);
10370 }
10371 }
10372 #endif
10373
ipw_net_hard_start_xmit(struct libipw_txb * txb,struct net_device * dev,int pri)10374 static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb,
10375 struct net_device *dev, int pri)
10376 {
10377 struct ipw_priv *priv = libipw_priv(dev);
10378 unsigned long flags;
10379 netdev_tx_t ret;
10380
10381 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10382 spin_lock_irqsave(&priv->lock, flags);
10383
10384 #ifdef CONFIG_IPW2200_PROMISCUOUS
10385 if (rtap_iface && netif_running(priv->prom_net_dev))
10386 ipw_handle_promiscuous_tx(priv, txb);
10387 #endif
10388
10389 ret = ipw_tx_skb(priv, txb, pri);
10390 if (ret == NETDEV_TX_OK)
10391 __ipw_led_activity_on(priv);
10392 spin_unlock_irqrestore(&priv->lock, flags);
10393
10394 return ret;
10395 }
10396
ipw_net_set_multicast_list(struct net_device * dev)10397 static void ipw_net_set_multicast_list(struct net_device *dev)
10398 {
10399
10400 }
10401
ipw_net_set_mac_address(struct net_device * dev,void * p)10402 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10403 {
10404 struct ipw_priv *priv = libipw_priv(dev);
10405 struct sockaddr *addr = p;
10406
10407 if (!is_valid_ether_addr(addr->sa_data))
10408 return -EADDRNOTAVAIL;
10409 mutex_lock(&priv->mutex);
10410 priv->config |= CFG_CUSTOM_MAC;
10411 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10412 printk(KERN_INFO "%s: Setting MAC to %pM\n",
10413 priv->net_dev->name, priv->mac_addr);
10414 schedule_work(&priv->adapter_restart);
10415 mutex_unlock(&priv->mutex);
10416 return 0;
10417 }
10418
ipw_ethtool_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)10419 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10420 struct ethtool_drvinfo *info)
10421 {
10422 struct ipw_priv *p = libipw_priv(dev);
10423 char vers[64];
10424 char date[32];
10425 u32 len;
10426
10427 strscpy(info->driver, DRV_NAME, sizeof(info->driver));
10428 strscpy(info->version, DRV_VERSION, sizeof(info->version));
10429
10430 len = sizeof(vers);
10431 ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10432 len = sizeof(date);
10433 ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10434
10435 snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10436 vers, date);
10437 strscpy(info->bus_info, pci_name(p->pci_dev),
10438 sizeof(info->bus_info));
10439 }
10440
ipw_ethtool_get_link(struct net_device * dev)10441 static u32 ipw_ethtool_get_link(struct net_device *dev)
10442 {
10443 struct ipw_priv *priv = libipw_priv(dev);
10444 return (priv->status & STATUS_ASSOCIATED) != 0;
10445 }
10446
ipw_ethtool_get_eeprom_len(struct net_device * dev)10447 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10448 {
10449 return IPW_EEPROM_IMAGE_SIZE;
10450 }
10451
ipw_ethtool_get_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * bytes)10452 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10453 struct ethtool_eeprom *eeprom, u8 * bytes)
10454 {
10455 struct ipw_priv *p = libipw_priv(dev);
10456
10457 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10458 return -EINVAL;
10459 mutex_lock(&p->mutex);
10460 memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10461 mutex_unlock(&p->mutex);
10462 return 0;
10463 }
10464
ipw_ethtool_set_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * bytes)10465 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10466 struct ethtool_eeprom *eeprom, u8 * bytes)
10467 {
10468 struct ipw_priv *p = libipw_priv(dev);
10469 int i;
10470
10471 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10472 return -EINVAL;
10473 mutex_lock(&p->mutex);
10474 memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10475 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10476 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10477 mutex_unlock(&p->mutex);
10478 return 0;
10479 }
10480
10481 static const struct ethtool_ops ipw_ethtool_ops = {
10482 .get_link = ipw_ethtool_get_link,
10483 .get_drvinfo = ipw_ethtool_get_drvinfo,
10484 .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10485 .get_eeprom = ipw_ethtool_get_eeprom,
10486 .set_eeprom = ipw_ethtool_set_eeprom,
10487 };
10488
ipw_isr(int irq,void * data)10489 static irqreturn_t ipw_isr(int irq, void *data)
10490 {
10491 struct ipw_priv *priv = data;
10492 u32 inta, inta_mask;
10493
10494 if (!priv)
10495 return IRQ_NONE;
10496
10497 spin_lock(&priv->irq_lock);
10498
10499 if (!(priv->status & STATUS_INT_ENABLED)) {
10500 /* IRQ is disabled */
10501 goto none;
10502 }
10503
10504 inta = ipw_read32(priv, IPW_INTA_RW);
10505 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10506
10507 if (inta == 0xFFFFFFFF) {
10508 /* Hardware disappeared */
10509 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10510 goto none;
10511 }
10512
10513 if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10514 /* Shared interrupt */
10515 goto none;
10516 }
10517
10518 /* tell the device to stop sending interrupts */
10519 __ipw_disable_interrupts(priv);
10520
10521 /* ack current interrupts */
10522 inta &= (IPW_INTA_MASK_ALL & inta_mask);
10523 ipw_write32(priv, IPW_INTA_RW, inta);
10524
10525 /* Cache INTA value for our tasklet */
10526 priv->isr_inta = inta;
10527
10528 tasklet_schedule(&priv->irq_tasklet);
10529
10530 spin_unlock(&priv->irq_lock);
10531
10532 return IRQ_HANDLED;
10533 none:
10534 spin_unlock(&priv->irq_lock);
10535 return IRQ_NONE;
10536 }
10537
ipw_rf_kill(void * adapter)10538 static void ipw_rf_kill(void *adapter)
10539 {
10540 struct ipw_priv *priv = adapter;
10541 unsigned long flags;
10542
10543 spin_lock_irqsave(&priv->lock, flags);
10544
10545 if (rf_kill_active(priv)) {
10546 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10547 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
10548 goto exit_unlock;
10549 }
10550
10551 /* RF Kill is now disabled, so bring the device back up */
10552
10553 if (!(priv->status & STATUS_RF_KILL_MASK)) {
10554 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10555 "device\n");
10556
10557 /* we can not do an adapter restart while inside an irq lock */
10558 schedule_work(&priv->adapter_restart);
10559 } else
10560 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
10561 "enabled\n");
10562
10563 exit_unlock:
10564 spin_unlock_irqrestore(&priv->lock, flags);
10565 }
10566
ipw_bg_rf_kill(struct work_struct * work)10567 static void ipw_bg_rf_kill(struct work_struct *work)
10568 {
10569 struct ipw_priv *priv =
10570 container_of(work, struct ipw_priv, rf_kill.work);
10571 mutex_lock(&priv->mutex);
10572 ipw_rf_kill(priv);
10573 mutex_unlock(&priv->mutex);
10574 }
10575
ipw_link_up(struct ipw_priv * priv)10576 static void ipw_link_up(struct ipw_priv *priv)
10577 {
10578 priv->last_seq_num = -1;
10579 priv->last_frag_num = -1;
10580 priv->last_packet_time = 0;
10581
10582 netif_carrier_on(priv->net_dev);
10583
10584 cancel_delayed_work(&priv->request_scan);
10585 cancel_delayed_work(&priv->request_direct_scan);
10586 cancel_delayed_work(&priv->request_passive_scan);
10587 cancel_delayed_work(&priv->scan_event);
10588 ipw_reset_stats(priv);
10589 /* Ensure the rate is updated immediately */
10590 priv->last_rate = ipw_get_current_rate(priv);
10591 ipw_gather_stats(priv);
10592 ipw_led_link_up(priv);
10593 notify_wx_assoc_event(priv);
10594
10595 if (priv->config & CFG_BACKGROUND_SCAN)
10596 schedule_delayed_work(&priv->request_scan, HZ);
10597 }
10598
ipw_bg_link_up(struct work_struct * work)10599 static void ipw_bg_link_up(struct work_struct *work)
10600 {
10601 struct ipw_priv *priv =
10602 container_of(work, struct ipw_priv, link_up);
10603 mutex_lock(&priv->mutex);
10604 ipw_link_up(priv);
10605 mutex_unlock(&priv->mutex);
10606 }
10607
ipw_link_down(struct ipw_priv * priv)10608 static void ipw_link_down(struct ipw_priv *priv)
10609 {
10610 ipw_led_link_down(priv);
10611 netif_carrier_off(priv->net_dev);
10612 notify_wx_assoc_event(priv);
10613
10614 /* Cancel any queued work ... */
10615 cancel_delayed_work(&priv->request_scan);
10616 cancel_delayed_work(&priv->request_direct_scan);
10617 cancel_delayed_work(&priv->request_passive_scan);
10618 cancel_delayed_work(&priv->adhoc_check);
10619 cancel_delayed_work(&priv->gather_stats);
10620
10621 ipw_reset_stats(priv);
10622
10623 if (!(priv->status & STATUS_EXIT_PENDING)) {
10624 /* Queue up another scan... */
10625 schedule_delayed_work(&priv->request_scan, 0);
10626 } else
10627 cancel_delayed_work(&priv->scan_event);
10628 }
10629
ipw_bg_link_down(struct work_struct * work)10630 static void ipw_bg_link_down(struct work_struct *work)
10631 {
10632 struct ipw_priv *priv =
10633 container_of(work, struct ipw_priv, link_down);
10634 mutex_lock(&priv->mutex);
10635 ipw_link_down(priv);
10636 mutex_unlock(&priv->mutex);
10637 }
10638
ipw_setup_deferred_work(struct ipw_priv * priv)10639 static void ipw_setup_deferred_work(struct ipw_priv *priv)
10640 {
10641 init_waitqueue_head(&priv->wait_command_queue);
10642 init_waitqueue_head(&priv->wait_state);
10643
10644 INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10645 INIT_WORK(&priv->associate, ipw_bg_associate);
10646 INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10647 INIT_WORK(&priv->system_config, ipw_system_config);
10648 INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10649 INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10650 INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10651 INIT_WORK(&priv->up, ipw_bg_up);
10652 INIT_WORK(&priv->down, ipw_bg_down);
10653 INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10654 INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10655 INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10656 INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10657 INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10658 INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10659 INIT_WORK(&priv->roam, ipw_bg_roam);
10660 INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10661 INIT_WORK(&priv->link_up, ipw_bg_link_up);
10662 INIT_WORK(&priv->link_down, ipw_bg_link_down);
10663 INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10664 INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10665 INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10666 INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10667
10668 #ifdef CONFIG_IPW2200_QOS
10669 INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10670 #endif /* CONFIG_IPW2200_QOS */
10671
10672 tasklet_setup(&priv->irq_tasklet, ipw_irq_tasklet);
10673 }
10674
shim__set_security(struct net_device * dev,struct libipw_security * sec)10675 static void shim__set_security(struct net_device *dev,
10676 struct libipw_security *sec)
10677 {
10678 struct ipw_priv *priv = libipw_priv(dev);
10679 int i;
10680 for (i = 0; i < 4; i++) {
10681 if (sec->flags & (1 << i)) {
10682 priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10683 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10684 if (sec->key_sizes[i] == 0)
10685 priv->ieee->sec.flags &= ~(1 << i);
10686 else {
10687 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10688 sec->key_sizes[i]);
10689 priv->ieee->sec.flags |= (1 << i);
10690 }
10691 priv->status |= STATUS_SECURITY_UPDATED;
10692 } else if (sec->level != SEC_LEVEL_1)
10693 priv->ieee->sec.flags &= ~(1 << i);
10694 }
10695
10696 if (sec->flags & SEC_ACTIVE_KEY) {
10697 priv->ieee->sec.active_key = sec->active_key;
10698 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10699 priv->status |= STATUS_SECURITY_UPDATED;
10700 } else
10701 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10702
10703 if ((sec->flags & SEC_AUTH_MODE) &&
10704 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10705 priv->ieee->sec.auth_mode = sec->auth_mode;
10706 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10707 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10708 priv->capability |= CAP_SHARED_KEY;
10709 else
10710 priv->capability &= ~CAP_SHARED_KEY;
10711 priv->status |= STATUS_SECURITY_UPDATED;
10712 }
10713
10714 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10715 priv->ieee->sec.flags |= SEC_ENABLED;
10716 priv->ieee->sec.enabled = sec->enabled;
10717 priv->status |= STATUS_SECURITY_UPDATED;
10718 if (sec->enabled)
10719 priv->capability |= CAP_PRIVACY_ON;
10720 else
10721 priv->capability &= ~CAP_PRIVACY_ON;
10722 }
10723
10724 if (sec->flags & SEC_ENCRYPT)
10725 priv->ieee->sec.encrypt = sec->encrypt;
10726
10727 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10728 priv->ieee->sec.level = sec->level;
10729 priv->ieee->sec.flags |= SEC_LEVEL;
10730 priv->status |= STATUS_SECURITY_UPDATED;
10731 }
10732
10733 if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10734 ipw_set_hwcrypto_keys(priv);
10735
10736 /* To match current functionality of ipw2100 (which works well w/
10737 * various supplicants, we don't force a disassociate if the
10738 * privacy capability changes ... */
10739 #if 0
10740 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10741 (((priv->assoc_request.capability &
10742 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10743 (!(priv->assoc_request.capability &
10744 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10745 IPW_DEBUG_ASSOC("Disassociating due to capability "
10746 "change.\n");
10747 ipw_disassociate(priv);
10748 }
10749 #endif
10750 }
10751
init_supported_rates(struct ipw_priv * priv,struct ipw_supported_rates * rates)10752 static int init_supported_rates(struct ipw_priv *priv,
10753 struct ipw_supported_rates *rates)
10754 {
10755 /* TODO: Mask out rates based on priv->rates_mask */
10756
10757 memset(rates, 0, sizeof(*rates));
10758 /* configure supported rates */
10759 switch (priv->ieee->freq_band) {
10760 case LIBIPW_52GHZ_BAND:
10761 rates->ieee_mode = IPW_A_MODE;
10762 rates->purpose = IPW_RATE_CAPABILITIES;
10763 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10764 LIBIPW_OFDM_DEFAULT_RATES_MASK);
10765 break;
10766
10767 default: /* Mixed or 2.4Ghz */
10768 rates->ieee_mode = IPW_G_MODE;
10769 rates->purpose = IPW_RATE_CAPABILITIES;
10770 ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION,
10771 LIBIPW_CCK_DEFAULT_RATES_MASK);
10772 if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) {
10773 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10774 LIBIPW_OFDM_DEFAULT_RATES_MASK);
10775 }
10776 break;
10777 }
10778
10779 return 0;
10780 }
10781
ipw_config(struct ipw_priv * priv)10782 static int ipw_config(struct ipw_priv *priv)
10783 {
10784 /* This is only called from ipw_up, which resets/reloads the firmware
10785 so, we don't need to first disable the card before we configure
10786 it */
10787 if (ipw_set_tx_power(priv))
10788 goto error;
10789
10790 /* initialize adapter address */
10791 if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10792 goto error;
10793
10794 /* set basic system config settings */
10795 init_sys_config(&priv->sys_config);
10796
10797 /* Support Bluetooth if we have BT h/w on board, and user wants to.
10798 * Does not support BT priority yet (don't abort or defer our Tx) */
10799 if (bt_coexist) {
10800 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10801
10802 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10803 priv->sys_config.bt_coexistence
10804 |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10805 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10806 priv->sys_config.bt_coexistence
10807 |= CFG_BT_COEXISTENCE_OOB;
10808 }
10809
10810 #ifdef CONFIG_IPW2200_PROMISCUOUS
10811 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10812 priv->sys_config.accept_all_data_frames = 1;
10813 priv->sys_config.accept_non_directed_frames = 1;
10814 priv->sys_config.accept_all_mgmt_bcpr = 1;
10815 priv->sys_config.accept_all_mgmt_frames = 1;
10816 }
10817 #endif
10818
10819 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10820 priv->sys_config.answer_broadcast_ssid_probe = 1;
10821 else
10822 priv->sys_config.answer_broadcast_ssid_probe = 0;
10823
10824 if (ipw_send_system_config(priv))
10825 goto error;
10826
10827 init_supported_rates(priv, &priv->rates);
10828 if (ipw_send_supported_rates(priv, &priv->rates))
10829 goto error;
10830
10831 /* Set request-to-send threshold */
10832 if (priv->rts_threshold) {
10833 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10834 goto error;
10835 }
10836 #ifdef CONFIG_IPW2200_QOS
10837 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10838 ipw_qos_activate(priv, NULL);
10839 #endif /* CONFIG_IPW2200_QOS */
10840
10841 if (ipw_set_random_seed(priv))
10842 goto error;
10843
10844 /* final state transition to the RUN state */
10845 if (ipw_send_host_complete(priv))
10846 goto error;
10847
10848 priv->status |= STATUS_INIT;
10849
10850 ipw_led_init(priv);
10851 ipw_led_radio_on(priv);
10852 priv->notif_missed_beacons = 0;
10853
10854 /* Set hardware WEP key if it is configured. */
10855 if ((priv->capability & CAP_PRIVACY_ON) &&
10856 (priv->ieee->sec.level == SEC_LEVEL_1) &&
10857 !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10858 ipw_set_hwcrypto_keys(priv);
10859
10860 return 0;
10861
10862 error:
10863 return -EIO;
10864 }
10865
10866 /*
10867 * NOTE:
10868 *
10869 * These tables have been tested in conjunction with the
10870 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10871 *
10872 * Altering this values, using it on other hardware, or in geographies
10873 * not intended for resale of the above mentioned Intel adapters has
10874 * not been tested.
10875 *
10876 * Remember to update the table in README.ipw2200 when changing this
10877 * table.
10878 *
10879 */
10880 static const struct libipw_geo ipw_geos[] = {
10881 { /* Restricted */
10882 "---",
10883 .bg_channels = 11,
10884 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10885 {2427, 4}, {2432, 5}, {2437, 6},
10886 {2442, 7}, {2447, 8}, {2452, 9},
10887 {2457, 10}, {2462, 11}},
10888 },
10889
10890 { /* Custom US/Canada */
10891 "ZZF",
10892 .bg_channels = 11,
10893 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10894 {2427, 4}, {2432, 5}, {2437, 6},
10895 {2442, 7}, {2447, 8}, {2452, 9},
10896 {2457, 10}, {2462, 11}},
10897 .a_channels = 8,
10898 .a = {{5180, 36},
10899 {5200, 40},
10900 {5220, 44},
10901 {5240, 48},
10902 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10903 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10904 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10905 {5320, 64, LIBIPW_CH_PASSIVE_ONLY}},
10906 },
10907
10908 { /* Rest of World */
10909 "ZZD",
10910 .bg_channels = 13,
10911 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10912 {2427, 4}, {2432, 5}, {2437, 6},
10913 {2442, 7}, {2447, 8}, {2452, 9},
10914 {2457, 10}, {2462, 11}, {2467, 12},
10915 {2472, 13}},
10916 },
10917
10918 { /* Custom USA & Europe & High */
10919 "ZZA",
10920 .bg_channels = 11,
10921 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10922 {2427, 4}, {2432, 5}, {2437, 6},
10923 {2442, 7}, {2447, 8}, {2452, 9},
10924 {2457, 10}, {2462, 11}},
10925 .a_channels = 13,
10926 .a = {{5180, 36},
10927 {5200, 40},
10928 {5220, 44},
10929 {5240, 48},
10930 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10931 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10932 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10933 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10934 {5745, 149},
10935 {5765, 153},
10936 {5785, 157},
10937 {5805, 161},
10938 {5825, 165}},
10939 },
10940
10941 { /* Custom NA & Europe */
10942 "ZZB",
10943 .bg_channels = 11,
10944 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10945 {2427, 4}, {2432, 5}, {2437, 6},
10946 {2442, 7}, {2447, 8}, {2452, 9},
10947 {2457, 10}, {2462, 11}},
10948 .a_channels = 13,
10949 .a = {{5180, 36},
10950 {5200, 40},
10951 {5220, 44},
10952 {5240, 48},
10953 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10954 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10955 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10956 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10957 {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
10958 {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
10959 {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
10960 {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
10961 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
10962 },
10963
10964 { /* Custom Japan */
10965 "ZZC",
10966 .bg_channels = 11,
10967 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10968 {2427, 4}, {2432, 5}, {2437, 6},
10969 {2442, 7}, {2447, 8}, {2452, 9},
10970 {2457, 10}, {2462, 11}},
10971 .a_channels = 4,
10972 .a = {{5170, 34}, {5190, 38},
10973 {5210, 42}, {5230, 46}},
10974 },
10975
10976 { /* Custom */
10977 "ZZM",
10978 .bg_channels = 11,
10979 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10980 {2427, 4}, {2432, 5}, {2437, 6},
10981 {2442, 7}, {2447, 8}, {2452, 9},
10982 {2457, 10}, {2462, 11}},
10983 },
10984
10985 { /* Europe */
10986 "ZZE",
10987 .bg_channels = 13,
10988 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10989 {2427, 4}, {2432, 5}, {2437, 6},
10990 {2442, 7}, {2447, 8}, {2452, 9},
10991 {2457, 10}, {2462, 11}, {2467, 12},
10992 {2472, 13}},
10993 .a_channels = 19,
10994 .a = {{5180, 36},
10995 {5200, 40},
10996 {5220, 44},
10997 {5240, 48},
10998 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10999 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11000 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11001 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11002 {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11003 {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11004 {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11005 {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11006 {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11007 {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11008 {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11009 {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11010 {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11011 {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11012 {5700, 140, LIBIPW_CH_PASSIVE_ONLY}},
11013 },
11014
11015 { /* Custom Japan */
11016 "ZZJ",
11017 .bg_channels = 14,
11018 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11019 {2427, 4}, {2432, 5}, {2437, 6},
11020 {2442, 7}, {2447, 8}, {2452, 9},
11021 {2457, 10}, {2462, 11}, {2467, 12},
11022 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}},
11023 .a_channels = 4,
11024 .a = {{5170, 34}, {5190, 38},
11025 {5210, 42}, {5230, 46}},
11026 },
11027
11028 { /* Rest of World */
11029 "ZZR",
11030 .bg_channels = 14,
11031 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11032 {2427, 4}, {2432, 5}, {2437, 6},
11033 {2442, 7}, {2447, 8}, {2452, 9},
11034 {2457, 10}, {2462, 11}, {2467, 12},
11035 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY |
11036 LIBIPW_CH_PASSIVE_ONLY}},
11037 },
11038
11039 { /* High Band */
11040 "ZZH",
11041 .bg_channels = 13,
11042 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11043 {2427, 4}, {2432, 5}, {2437, 6},
11044 {2442, 7}, {2447, 8}, {2452, 9},
11045 {2457, 10}, {2462, 11},
11046 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11047 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11048 .a_channels = 4,
11049 .a = {{5745, 149}, {5765, 153},
11050 {5785, 157}, {5805, 161}},
11051 },
11052
11053 { /* Custom Europe */
11054 "ZZG",
11055 .bg_channels = 13,
11056 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11057 {2427, 4}, {2432, 5}, {2437, 6},
11058 {2442, 7}, {2447, 8}, {2452, 9},
11059 {2457, 10}, {2462, 11},
11060 {2467, 12}, {2472, 13}},
11061 .a_channels = 4,
11062 .a = {{5180, 36}, {5200, 40},
11063 {5220, 44}, {5240, 48}},
11064 },
11065
11066 { /* Europe */
11067 "ZZK",
11068 .bg_channels = 13,
11069 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11070 {2427, 4}, {2432, 5}, {2437, 6},
11071 {2442, 7}, {2447, 8}, {2452, 9},
11072 {2457, 10}, {2462, 11},
11073 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11074 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11075 .a_channels = 24,
11076 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11077 {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11078 {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11079 {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11080 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11081 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11082 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11083 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11084 {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11085 {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11086 {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11087 {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11088 {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11089 {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11090 {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11091 {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11092 {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11093 {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11094 {5700, 140, LIBIPW_CH_PASSIVE_ONLY},
11095 {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11096 {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11097 {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11098 {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11099 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11100 },
11101
11102 { /* Europe */
11103 "ZZL",
11104 .bg_channels = 11,
11105 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11106 {2427, 4}, {2432, 5}, {2437, 6},
11107 {2442, 7}, {2447, 8}, {2452, 9},
11108 {2457, 10}, {2462, 11}},
11109 .a_channels = 13,
11110 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11111 {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11112 {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11113 {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11114 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11115 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11116 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11117 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11118 {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11119 {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11120 {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11121 {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11122 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11123 }
11124 };
11125
ipw_set_geo(struct ipw_priv * priv)11126 static void ipw_set_geo(struct ipw_priv *priv)
11127 {
11128 int j;
11129
11130 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11131 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11132 ipw_geos[j].name, 3))
11133 break;
11134 }
11135
11136 if (j == ARRAY_SIZE(ipw_geos)) {
11137 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11138 priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11139 priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11140 priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11141 j = 0;
11142 }
11143
11144 libipw_set_geo(priv->ieee, &ipw_geos[j]);
11145 }
11146
11147 #define MAX_HW_RESTARTS 5
ipw_up(struct ipw_priv * priv)11148 static int ipw_up(struct ipw_priv *priv)
11149 {
11150 int rc, i;
11151
11152 /* Age scan list entries found before suspend */
11153 if (priv->suspend_time) {
11154 libipw_networks_age(priv->ieee, priv->suspend_time);
11155 priv->suspend_time = 0;
11156 }
11157
11158 if (priv->status & STATUS_EXIT_PENDING)
11159 return -EIO;
11160
11161 if (cmdlog && !priv->cmdlog) {
11162 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11163 GFP_KERNEL);
11164 if (priv->cmdlog == NULL) {
11165 IPW_ERROR("Error allocating %d command log entries.\n",
11166 cmdlog);
11167 return -ENOMEM;
11168 } else {
11169 priv->cmdlog_len = cmdlog;
11170 }
11171 }
11172
11173 for (i = 0; i < MAX_HW_RESTARTS; i++) {
11174 /* Load the microcode, firmware, and eeprom.
11175 * Also start the clocks. */
11176 rc = ipw_load(priv);
11177 if (rc) {
11178 IPW_ERROR("Unable to load firmware: %d\n", rc);
11179 return rc;
11180 }
11181
11182 ipw_init_ordinals(priv);
11183 if (!(priv->config & CFG_CUSTOM_MAC))
11184 eeprom_parse_mac(priv, priv->mac_addr);
11185 eth_hw_addr_set(priv->net_dev, priv->mac_addr);
11186
11187 ipw_set_geo(priv);
11188
11189 if (priv->status & STATUS_RF_KILL_SW) {
11190 IPW_WARNING("Radio disabled by module parameter.\n");
11191 return 0;
11192 } else if (rf_kill_active(priv)) {
11193 IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11194 "Kill switch must be turned off for "
11195 "wireless networking to work.\n");
11196 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
11197 return 0;
11198 }
11199
11200 rc = ipw_config(priv);
11201 if (!rc) {
11202 IPW_DEBUG_INFO("Configured device on count %i\n", i);
11203
11204 /* If configure to try and auto-associate, kick
11205 * off a scan. */
11206 schedule_delayed_work(&priv->request_scan, 0);
11207
11208 return 0;
11209 }
11210
11211 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11212 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11213 i, MAX_HW_RESTARTS);
11214
11215 /* We had an error bringing up the hardware, so take it
11216 * all the way back down so we can try again */
11217 ipw_down(priv);
11218 }
11219
11220 /* tried to restart and config the device for as long as our
11221 * patience could withstand */
11222 IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11223
11224 return -EIO;
11225 }
11226
ipw_bg_up(struct work_struct * work)11227 static void ipw_bg_up(struct work_struct *work)
11228 {
11229 struct ipw_priv *priv =
11230 container_of(work, struct ipw_priv, up);
11231 mutex_lock(&priv->mutex);
11232 ipw_up(priv);
11233 mutex_unlock(&priv->mutex);
11234 }
11235
ipw_deinit(struct ipw_priv * priv)11236 static void ipw_deinit(struct ipw_priv *priv)
11237 {
11238 int i;
11239
11240 if (priv->status & STATUS_SCANNING) {
11241 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11242 ipw_abort_scan(priv);
11243 }
11244
11245 if (priv->status & STATUS_ASSOCIATED) {
11246 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11247 ipw_disassociate(priv);
11248 }
11249
11250 ipw_led_shutdown(priv);
11251
11252 /* Wait up to 1s for status to change to not scanning and not
11253 * associated (disassociation can take a while for a ful 802.11
11254 * exchange */
11255 for (i = 1000; i && (priv->status &
11256 (STATUS_DISASSOCIATING |
11257 STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11258 udelay(10);
11259
11260 if (priv->status & (STATUS_DISASSOCIATING |
11261 STATUS_ASSOCIATED | STATUS_SCANNING))
11262 IPW_DEBUG_INFO("Still associated or scanning...\n");
11263 else
11264 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11265
11266 /* Attempt to disable the card */
11267 ipw_send_card_disable(priv, 0);
11268
11269 priv->status &= ~STATUS_INIT;
11270 }
11271
ipw_down(struct ipw_priv * priv)11272 static void ipw_down(struct ipw_priv *priv)
11273 {
11274 int exit_pending = priv->status & STATUS_EXIT_PENDING;
11275
11276 priv->status |= STATUS_EXIT_PENDING;
11277
11278 if (ipw_is_init(priv))
11279 ipw_deinit(priv);
11280
11281 /* Wipe out the EXIT_PENDING status bit if we are not actually
11282 * exiting the module */
11283 if (!exit_pending)
11284 priv->status &= ~STATUS_EXIT_PENDING;
11285
11286 /* tell the device to stop sending interrupts */
11287 ipw_disable_interrupts(priv);
11288
11289 /* Clear all bits but the RF Kill */
11290 priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11291 netif_carrier_off(priv->net_dev);
11292
11293 ipw_stop_nic(priv);
11294
11295 ipw_led_radio_off(priv);
11296 }
11297
ipw_bg_down(struct work_struct * work)11298 static void ipw_bg_down(struct work_struct *work)
11299 {
11300 struct ipw_priv *priv =
11301 container_of(work, struct ipw_priv, down);
11302 mutex_lock(&priv->mutex);
11303 ipw_down(priv);
11304 mutex_unlock(&priv->mutex);
11305 }
11306
ipw_wdev_init(struct net_device * dev)11307 static int ipw_wdev_init(struct net_device *dev)
11308 {
11309 int i, rc = 0;
11310 struct ipw_priv *priv = libipw_priv(dev);
11311 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
11312 struct wireless_dev *wdev = &priv->ieee->wdev;
11313
11314 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
11315
11316 /* fill-out priv->ieee->bg_band */
11317 if (geo->bg_channels) {
11318 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
11319
11320 bg_band->band = NL80211_BAND_2GHZ;
11321 bg_band->n_channels = geo->bg_channels;
11322 bg_band->channels = kcalloc(geo->bg_channels,
11323 sizeof(struct ieee80211_channel),
11324 GFP_KERNEL);
11325 if (!bg_band->channels) {
11326 rc = -ENOMEM;
11327 goto out;
11328 }
11329 /* translate geo->bg to bg_band.channels */
11330 for (i = 0; i < geo->bg_channels; i++) {
11331 bg_band->channels[i].band = NL80211_BAND_2GHZ;
11332 bg_band->channels[i].center_freq = geo->bg[i].freq;
11333 bg_band->channels[i].hw_value = geo->bg[i].channel;
11334 bg_band->channels[i].max_power = geo->bg[i].max_power;
11335 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11336 bg_band->channels[i].flags |=
11337 IEEE80211_CHAN_NO_IR;
11338 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
11339 bg_band->channels[i].flags |=
11340 IEEE80211_CHAN_NO_IR;
11341 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
11342 bg_band->channels[i].flags |=
11343 IEEE80211_CHAN_RADAR;
11344 /* No equivalent for LIBIPW_CH_80211H_RULES,
11345 LIBIPW_CH_UNIFORM_SPREADING, or
11346 LIBIPW_CH_B_ONLY... */
11347 }
11348 /* point at bitrate info */
11349 bg_band->bitrates = ipw2200_bg_rates;
11350 bg_band->n_bitrates = ipw2200_num_bg_rates;
11351
11352 wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band;
11353 }
11354
11355 /* fill-out priv->ieee->a_band */
11356 if (geo->a_channels) {
11357 struct ieee80211_supported_band *a_band = &priv->ieee->a_band;
11358
11359 a_band->band = NL80211_BAND_5GHZ;
11360 a_band->n_channels = geo->a_channels;
11361 a_band->channels = kcalloc(geo->a_channels,
11362 sizeof(struct ieee80211_channel),
11363 GFP_KERNEL);
11364 if (!a_band->channels) {
11365 rc = -ENOMEM;
11366 goto out;
11367 }
11368 /* translate geo->a to a_band.channels */
11369 for (i = 0; i < geo->a_channels; i++) {
11370 a_band->channels[i].band = NL80211_BAND_5GHZ;
11371 a_band->channels[i].center_freq = geo->a[i].freq;
11372 a_band->channels[i].hw_value = geo->a[i].channel;
11373 a_band->channels[i].max_power = geo->a[i].max_power;
11374 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11375 a_band->channels[i].flags |=
11376 IEEE80211_CHAN_NO_IR;
11377 if (geo->a[i].flags & LIBIPW_CH_NO_IBSS)
11378 a_band->channels[i].flags |=
11379 IEEE80211_CHAN_NO_IR;
11380 if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)
11381 a_band->channels[i].flags |=
11382 IEEE80211_CHAN_RADAR;
11383 /* No equivalent for LIBIPW_CH_80211H_RULES,
11384 LIBIPW_CH_UNIFORM_SPREADING, or
11385 LIBIPW_CH_B_ONLY... */
11386 }
11387 /* point at bitrate info */
11388 a_band->bitrates = ipw2200_a_rates;
11389 a_band->n_bitrates = ipw2200_num_a_rates;
11390
11391 wdev->wiphy->bands[NL80211_BAND_5GHZ] = a_band;
11392 }
11393
11394 wdev->wiphy->cipher_suites = ipw_cipher_suites;
11395 wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
11396
11397 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
11398
11399 /* With that information in place, we can now register the wiphy... */
11400 if (wiphy_register(wdev->wiphy))
11401 rc = -EIO;
11402 out:
11403 return rc;
11404 }
11405
11406 /* PCI driver stuff */
11407 static const struct pci_device_id card_ids[] = {
11408 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11409 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11410 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11411 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11412 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11413 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11414 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11415 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11416 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11417 {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11418 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11419 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11420 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11421 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11422 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11423 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11424 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11425 {PCI_VDEVICE(INTEL, 0x104f), 0},
11426 {PCI_VDEVICE(INTEL, 0x4220), 0}, /* BG */
11427 {PCI_VDEVICE(INTEL, 0x4221), 0}, /* BG */
11428 {PCI_VDEVICE(INTEL, 0x4223), 0}, /* ABG */
11429 {PCI_VDEVICE(INTEL, 0x4224), 0}, /* ABG */
11430
11431 /* required last entry */
11432 {0,}
11433 };
11434
11435 MODULE_DEVICE_TABLE(pci, card_ids);
11436
11437 static struct attribute *ipw_sysfs_entries[] = {
11438 &dev_attr_rf_kill.attr,
11439 &dev_attr_direct_dword.attr,
11440 &dev_attr_indirect_byte.attr,
11441 &dev_attr_indirect_dword.attr,
11442 &dev_attr_mem_gpio_reg.attr,
11443 &dev_attr_command_event_reg.attr,
11444 &dev_attr_nic_type.attr,
11445 &dev_attr_status.attr,
11446 &dev_attr_cfg.attr,
11447 &dev_attr_error.attr,
11448 &dev_attr_event_log.attr,
11449 &dev_attr_cmd_log.attr,
11450 &dev_attr_eeprom_delay.attr,
11451 &dev_attr_ucode_version.attr,
11452 &dev_attr_rtc.attr,
11453 &dev_attr_scan_age.attr,
11454 &dev_attr_led.attr,
11455 &dev_attr_speed_scan.attr,
11456 &dev_attr_net_stats.attr,
11457 &dev_attr_channels.attr,
11458 #ifdef CONFIG_IPW2200_PROMISCUOUS
11459 &dev_attr_rtap_iface.attr,
11460 &dev_attr_rtap_filter.attr,
11461 #endif
11462 NULL
11463 };
11464
11465 static const struct attribute_group ipw_attribute_group = {
11466 .name = NULL, /* put in device directory */
11467 .attrs = ipw_sysfs_entries,
11468 };
11469
11470 #ifdef CONFIG_IPW2200_PROMISCUOUS
ipw_prom_open(struct net_device * dev)11471 static int ipw_prom_open(struct net_device *dev)
11472 {
11473 struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11474 struct ipw_priv *priv = prom_priv->priv;
11475
11476 IPW_DEBUG_INFO("prom dev->open\n");
11477 netif_carrier_off(dev);
11478
11479 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11480 priv->sys_config.accept_all_data_frames = 1;
11481 priv->sys_config.accept_non_directed_frames = 1;
11482 priv->sys_config.accept_all_mgmt_bcpr = 1;
11483 priv->sys_config.accept_all_mgmt_frames = 1;
11484
11485 ipw_send_system_config(priv);
11486 }
11487
11488 return 0;
11489 }
11490
ipw_prom_stop(struct net_device * dev)11491 static int ipw_prom_stop(struct net_device *dev)
11492 {
11493 struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11494 struct ipw_priv *priv = prom_priv->priv;
11495
11496 IPW_DEBUG_INFO("prom dev->stop\n");
11497
11498 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11499 priv->sys_config.accept_all_data_frames = 0;
11500 priv->sys_config.accept_non_directed_frames = 0;
11501 priv->sys_config.accept_all_mgmt_bcpr = 0;
11502 priv->sys_config.accept_all_mgmt_frames = 0;
11503
11504 ipw_send_system_config(priv);
11505 }
11506
11507 return 0;
11508 }
11509
ipw_prom_hard_start_xmit(struct sk_buff * skb,struct net_device * dev)11510 static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb,
11511 struct net_device *dev)
11512 {
11513 IPW_DEBUG_INFO("prom dev->xmit\n");
11514 dev_kfree_skb(skb);
11515 return NETDEV_TX_OK;
11516 }
11517
11518 static const struct net_device_ops ipw_prom_netdev_ops = {
11519 .ndo_open = ipw_prom_open,
11520 .ndo_stop = ipw_prom_stop,
11521 .ndo_start_xmit = ipw_prom_hard_start_xmit,
11522 .ndo_set_mac_address = eth_mac_addr,
11523 .ndo_validate_addr = eth_validate_addr,
11524 };
11525
ipw_prom_alloc(struct ipw_priv * priv)11526 static int ipw_prom_alloc(struct ipw_priv *priv)
11527 {
11528 int rc = 0;
11529
11530 if (priv->prom_net_dev)
11531 return -EPERM;
11532
11533 priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1);
11534 if (priv->prom_net_dev == NULL)
11535 return -ENOMEM;
11536
11537 priv->prom_priv = libipw_priv(priv->prom_net_dev);
11538 priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11539 priv->prom_priv->priv = priv;
11540
11541 strcpy(priv->prom_net_dev->name, "rtap%d");
11542 eth_hw_addr_set(priv->prom_net_dev, priv->mac_addr);
11543
11544 priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11545 priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11546
11547 priv->prom_net_dev->min_mtu = 68;
11548 priv->prom_net_dev->max_mtu = LIBIPW_DATA_LEN;
11549
11550 priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11551 SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11552
11553 rc = register_netdev(priv->prom_net_dev);
11554 if (rc) {
11555 free_libipw(priv->prom_net_dev, 1);
11556 priv->prom_net_dev = NULL;
11557 return rc;
11558 }
11559
11560 return 0;
11561 }
11562
ipw_prom_free(struct ipw_priv * priv)11563 static void ipw_prom_free(struct ipw_priv *priv)
11564 {
11565 if (!priv->prom_net_dev)
11566 return;
11567
11568 unregister_netdev(priv->prom_net_dev);
11569 free_libipw(priv->prom_net_dev, 1);
11570
11571 priv->prom_net_dev = NULL;
11572 }
11573
11574 #endif
11575
11576 static const struct net_device_ops ipw_netdev_ops = {
11577 .ndo_open = ipw_net_open,
11578 .ndo_stop = ipw_net_stop,
11579 .ndo_set_rx_mode = ipw_net_set_multicast_list,
11580 .ndo_set_mac_address = ipw_net_set_mac_address,
11581 .ndo_start_xmit = libipw_xmit,
11582 .ndo_validate_addr = eth_validate_addr,
11583 };
11584
ipw_pci_probe(struct pci_dev * pdev,const struct pci_device_id * ent)11585 static int ipw_pci_probe(struct pci_dev *pdev,
11586 const struct pci_device_id *ent)
11587 {
11588 int err = 0;
11589 struct net_device *net_dev;
11590 void __iomem *base;
11591 u32 length, val;
11592 struct ipw_priv *priv;
11593 int i;
11594
11595 net_dev = alloc_libipw(sizeof(struct ipw_priv), 0);
11596 if (net_dev == NULL) {
11597 err = -ENOMEM;
11598 goto out;
11599 }
11600
11601 priv = libipw_priv(net_dev);
11602 priv->ieee = netdev_priv(net_dev);
11603
11604 priv->net_dev = net_dev;
11605 priv->pci_dev = pdev;
11606 ipw_debug_level = debug;
11607 spin_lock_init(&priv->irq_lock);
11608 spin_lock_init(&priv->lock);
11609 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11610 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11611
11612 mutex_init(&priv->mutex);
11613 if (pci_enable_device(pdev)) {
11614 err = -ENODEV;
11615 goto out_free_libipw;
11616 }
11617
11618 pci_set_master(pdev);
11619
11620 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
11621 if (!err)
11622 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
11623 if (err) {
11624 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11625 goto out_pci_disable_device;
11626 }
11627
11628 pci_set_drvdata(pdev, priv);
11629
11630 err = pci_request_regions(pdev, DRV_NAME);
11631 if (err)
11632 goto out_pci_disable_device;
11633
11634 /* We disable the RETRY_TIMEOUT register (0x41) to keep
11635 * PCI Tx retries from interfering with C3 CPU state */
11636 pci_read_config_dword(pdev, 0x40, &val);
11637 if ((val & 0x0000ff00) != 0)
11638 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11639
11640 length = pci_resource_len(pdev, 0);
11641 priv->hw_len = length;
11642
11643 base = pci_ioremap_bar(pdev, 0);
11644 if (!base) {
11645 err = -ENODEV;
11646 goto out_pci_release_regions;
11647 }
11648
11649 priv->hw_base = base;
11650 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11651 IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11652
11653 ipw_setup_deferred_work(priv);
11654
11655 ipw_sw_reset(priv, 1);
11656
11657 err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11658 if (err) {
11659 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11660 goto out_iounmap;
11661 }
11662
11663 SET_NETDEV_DEV(net_dev, &pdev->dev);
11664
11665 mutex_lock(&priv->mutex);
11666
11667 priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11668 priv->ieee->set_security = shim__set_security;
11669 priv->ieee->is_queue_full = ipw_net_is_queue_full;
11670
11671 #ifdef CONFIG_IPW2200_QOS
11672 priv->ieee->is_qos_active = ipw_is_qos_active;
11673 priv->ieee->handle_probe_response = ipw_handle_beacon;
11674 priv->ieee->handle_beacon = ipw_handle_probe_response;
11675 priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11676 #endif /* CONFIG_IPW2200_QOS */
11677
11678 priv->ieee->perfect_rssi = -20;
11679 priv->ieee->worst_rssi = -85;
11680
11681 net_dev->netdev_ops = &ipw_netdev_ops;
11682 priv->wireless_data.spy_data = &priv->ieee->spy_data;
11683 net_dev->wireless_data = &priv->wireless_data;
11684 net_dev->wireless_handlers = &ipw_wx_handler_def;
11685 net_dev->ethtool_ops = &ipw_ethtool_ops;
11686
11687 net_dev->min_mtu = 68;
11688 net_dev->max_mtu = LIBIPW_DATA_LEN;
11689
11690 err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11691 if (err) {
11692 IPW_ERROR("failed to create sysfs device attributes\n");
11693 mutex_unlock(&priv->mutex);
11694 goto out_release_irq;
11695 }
11696
11697 if (ipw_up(priv)) {
11698 mutex_unlock(&priv->mutex);
11699 err = -EIO;
11700 goto out_remove_sysfs;
11701 }
11702
11703 mutex_unlock(&priv->mutex);
11704
11705 err = ipw_wdev_init(net_dev);
11706 if (err) {
11707 IPW_ERROR("failed to register wireless device\n");
11708 goto out_remove_sysfs;
11709 }
11710
11711 err = register_netdev(net_dev);
11712 if (err) {
11713 IPW_ERROR("failed to register network device\n");
11714 goto out_unregister_wiphy;
11715 }
11716
11717 #ifdef CONFIG_IPW2200_PROMISCUOUS
11718 if (rtap_iface) {
11719 err = ipw_prom_alloc(priv);
11720 if (err) {
11721 IPW_ERROR("Failed to register promiscuous network "
11722 "device (error %d).\n", err);
11723 unregister_netdev(priv->net_dev);
11724 goto out_unregister_wiphy;
11725 }
11726 }
11727 #endif
11728
11729 printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11730 "channels, %d 802.11a channels)\n",
11731 priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11732 priv->ieee->geo.a_channels);
11733
11734 return 0;
11735
11736 out_unregister_wiphy:
11737 wiphy_unregister(priv->ieee->wdev.wiphy);
11738 kfree(priv->ieee->a_band.channels);
11739 kfree(priv->ieee->bg_band.channels);
11740 out_remove_sysfs:
11741 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11742 out_release_irq:
11743 free_irq(pdev->irq, priv);
11744 out_iounmap:
11745 iounmap(priv->hw_base);
11746 out_pci_release_regions:
11747 pci_release_regions(pdev);
11748 out_pci_disable_device:
11749 pci_disable_device(pdev);
11750 out_free_libipw:
11751 free_libipw(priv->net_dev, 0);
11752 out:
11753 return err;
11754 }
11755
ipw_pci_remove(struct pci_dev * pdev)11756 static void ipw_pci_remove(struct pci_dev *pdev)
11757 {
11758 struct ipw_priv *priv = pci_get_drvdata(pdev);
11759 struct list_head *p, *q;
11760 int i;
11761
11762 if (!priv)
11763 return;
11764
11765 mutex_lock(&priv->mutex);
11766
11767 priv->status |= STATUS_EXIT_PENDING;
11768 ipw_down(priv);
11769 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11770
11771 mutex_unlock(&priv->mutex);
11772
11773 unregister_netdev(priv->net_dev);
11774
11775 if (priv->rxq) {
11776 ipw_rx_queue_free(priv, priv->rxq);
11777 priv->rxq = NULL;
11778 }
11779 ipw_tx_queue_free(priv);
11780
11781 if (priv->cmdlog) {
11782 kfree(priv->cmdlog);
11783 priv->cmdlog = NULL;
11784 }
11785
11786 /* make sure all works are inactive */
11787 cancel_delayed_work_sync(&priv->adhoc_check);
11788 cancel_work_sync(&priv->associate);
11789 cancel_work_sync(&priv->disassociate);
11790 cancel_work_sync(&priv->system_config);
11791 cancel_work_sync(&priv->rx_replenish);
11792 cancel_work_sync(&priv->adapter_restart);
11793 cancel_delayed_work_sync(&priv->rf_kill);
11794 cancel_work_sync(&priv->up);
11795 cancel_work_sync(&priv->down);
11796 cancel_delayed_work_sync(&priv->request_scan);
11797 cancel_delayed_work_sync(&priv->request_direct_scan);
11798 cancel_delayed_work_sync(&priv->request_passive_scan);
11799 cancel_delayed_work_sync(&priv->scan_event);
11800 cancel_delayed_work_sync(&priv->gather_stats);
11801 cancel_work_sync(&priv->abort_scan);
11802 cancel_work_sync(&priv->roam);
11803 cancel_delayed_work_sync(&priv->scan_check);
11804 cancel_work_sync(&priv->link_up);
11805 cancel_work_sync(&priv->link_down);
11806 cancel_delayed_work_sync(&priv->led_link_on);
11807 cancel_delayed_work_sync(&priv->led_link_off);
11808 cancel_delayed_work_sync(&priv->led_act_off);
11809 cancel_work_sync(&priv->merge_networks);
11810
11811 /* Free MAC hash list for ADHOC */
11812 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11813 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11814 list_del(p);
11815 kfree(list_entry(p, struct ipw_ibss_seq, list));
11816 }
11817 }
11818
11819 kfree(priv->error);
11820 priv->error = NULL;
11821
11822 #ifdef CONFIG_IPW2200_PROMISCUOUS
11823 ipw_prom_free(priv);
11824 #endif
11825
11826 free_irq(pdev->irq, priv);
11827 iounmap(priv->hw_base);
11828 pci_release_regions(pdev);
11829 pci_disable_device(pdev);
11830 /* wiphy_unregister needs to be here, before free_libipw */
11831 wiphy_unregister(priv->ieee->wdev.wiphy);
11832 kfree(priv->ieee->a_band.channels);
11833 kfree(priv->ieee->bg_band.channels);
11834 free_libipw(priv->net_dev, 0);
11835 free_firmware();
11836 }
11837
ipw_pci_suspend(struct device * dev_d)11838 static int __maybe_unused ipw_pci_suspend(struct device *dev_d)
11839 {
11840 struct ipw_priv *priv = dev_get_drvdata(dev_d);
11841 struct net_device *dev = priv->net_dev;
11842
11843 printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11844
11845 /* Take down the device; powers it off, etc. */
11846 ipw_down(priv);
11847
11848 /* Remove the PRESENT state of the device */
11849 netif_device_detach(dev);
11850
11851 priv->suspend_at = ktime_get_boottime_seconds();
11852
11853 return 0;
11854 }
11855
ipw_pci_resume(struct device * dev_d)11856 static int __maybe_unused ipw_pci_resume(struct device *dev_d)
11857 {
11858 struct pci_dev *pdev = to_pci_dev(dev_d);
11859 struct ipw_priv *priv = pci_get_drvdata(pdev);
11860 struct net_device *dev = priv->net_dev;
11861 u32 val;
11862
11863 printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11864
11865 /*
11866 * Suspend/Resume resets the PCI configuration space, so we have to
11867 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11868 * from interfering with C3 CPU state. pci_restore_state won't help
11869 * here since it only restores the first 64 bytes pci config header.
11870 */
11871 pci_read_config_dword(pdev, 0x40, &val);
11872 if ((val & 0x0000ff00) != 0)
11873 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11874
11875 /* Set the device back into the PRESENT state; this will also wake
11876 * the queue of needed */
11877 netif_device_attach(dev);
11878
11879 priv->suspend_time = ktime_get_boottime_seconds() - priv->suspend_at;
11880
11881 /* Bring the device back up */
11882 schedule_work(&priv->up);
11883
11884 return 0;
11885 }
11886
ipw_pci_shutdown(struct pci_dev * pdev)11887 static void ipw_pci_shutdown(struct pci_dev *pdev)
11888 {
11889 struct ipw_priv *priv = pci_get_drvdata(pdev);
11890
11891 /* Take down the device; powers it off, etc. */
11892 ipw_down(priv);
11893
11894 pci_disable_device(pdev);
11895 }
11896
11897 static SIMPLE_DEV_PM_OPS(ipw_pci_pm_ops, ipw_pci_suspend, ipw_pci_resume);
11898
11899 /* driver initialization stuff */
11900 static struct pci_driver ipw_driver = {
11901 .name = DRV_NAME,
11902 .id_table = card_ids,
11903 .probe = ipw_pci_probe,
11904 .remove = ipw_pci_remove,
11905 .driver.pm = &ipw_pci_pm_ops,
11906 .shutdown = ipw_pci_shutdown,
11907 };
11908
ipw_init(void)11909 static int __init ipw_init(void)
11910 {
11911 int ret;
11912
11913 printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11914 printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11915
11916 ret = pci_register_driver(&ipw_driver);
11917 if (ret) {
11918 IPW_ERROR("Unable to initialize PCI module\n");
11919 return ret;
11920 }
11921
11922 ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11923 if (ret) {
11924 IPW_ERROR("Unable to create driver sysfs file\n");
11925 pci_unregister_driver(&ipw_driver);
11926 return ret;
11927 }
11928
11929 return ret;
11930 }
11931
ipw_exit(void)11932 static void __exit ipw_exit(void)
11933 {
11934 driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11935 pci_unregister_driver(&ipw_driver);
11936 }
11937
11938 module_param(disable, int, 0444);
11939 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11940
11941 module_param(associate, int, 0444);
11942 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
11943
11944 module_param(auto_create, int, 0444);
11945 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11946
11947 module_param_named(led, led_support, int, 0444);
11948 MODULE_PARM_DESC(led, "enable led control on some systems (default 1 on)");
11949
11950 module_param(debug, int, 0444);
11951 MODULE_PARM_DESC(debug, "debug output mask");
11952
11953 module_param_named(channel, default_channel, int, 0444);
11954 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11955
11956 #ifdef CONFIG_IPW2200_PROMISCUOUS
11957 module_param(rtap_iface, int, 0444);
11958 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11959 #endif
11960
11961 #ifdef CONFIG_IPW2200_QOS
11962 module_param(qos_enable, int, 0444);
11963 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalities");
11964
11965 module_param(qos_burst_enable, int, 0444);
11966 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11967
11968 module_param(qos_no_ack_mask, int, 0444);
11969 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11970
11971 module_param(burst_duration_CCK, int, 0444);
11972 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11973
11974 module_param(burst_duration_OFDM, int, 0444);
11975 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11976 #endif /* CONFIG_IPW2200_QOS */
11977
11978 #ifdef CONFIG_IPW2200_MONITOR
11979 module_param_named(mode, network_mode, int, 0444);
11980 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11981 #else
11982 module_param_named(mode, network_mode, int, 0444);
11983 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11984 #endif
11985
11986 module_param(bt_coexist, int, 0444);
11987 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11988
11989 module_param(hwcrypto, int, 0444);
11990 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11991
11992 module_param(cmdlog, int, 0444);
11993 MODULE_PARM_DESC(cmdlog,
11994 "allocate a ring buffer for logging firmware commands");
11995
11996 module_param(roaming, int, 0444);
11997 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
11998
11999 module_param(antenna, int, 0444);
12000 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12001
12002 module_exit(ipw_exit);
12003 module_init(ipw_init);
12004