1 /*
2  * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3  * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4  * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5  *
6  * May be copied or modified under the terms of the GNU General Public
7  * License.  See linux/COPYING for more information.
8  *
9  * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10  * DVD-RAM devices.
11  *
12  * Theory of operation:
13  *
14  * At the lowest level, there is the standard driver for the CD/DVD device,
15  * such as drivers/scsi/sr.c. This driver can handle read and write requests,
16  * but it doesn't know anything about the special restrictions that apply to
17  * packet writing. One restriction is that write requests must be aligned to
18  * packet boundaries on the physical media, and the size of a write request
19  * must be equal to the packet size. Another restriction is that a
20  * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21  * command, if the previous command was a write.
22  *
23  * The purpose of the packet writing driver is to hide these restrictions from
24  * higher layers, such as file systems, and present a block device that can be
25  * randomly read and written using 2kB-sized blocks.
26  *
27  * The lowest layer in the packet writing driver is the packet I/O scheduler.
28  * Its data is defined by the struct packet_iosched and includes two bio
29  * queues with pending read and write requests. These queues are processed
30  * by the pkt_iosched_process_queue() function. The write requests in this
31  * queue are already properly aligned and sized. This layer is responsible for
32  * issuing the flush cache commands and scheduling the I/O in a good order.
33  *
34  * The next layer transforms unaligned write requests to aligned writes. This
35  * transformation requires reading missing pieces of data from the underlying
36  * block device, assembling the pieces to full packets and queuing them to the
37  * packet I/O scheduler.
38  *
39  * At the top layer there is a custom ->submit_bio function that forwards
40  * read requests directly to the iosched queue and puts write requests in the
41  * unaligned write queue. A kernel thread performs the necessary read
42  * gathering to convert the unaligned writes to aligned writes and then feeds
43  * them to the packet I/O scheduler.
44  *
45  *************************************************************************/
46 
47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48 
49 #include <linux/pktcdvd.h>
50 #include <linux/module.h>
51 #include <linux/types.h>
52 #include <linux/kernel.h>
53 #include <linux/compat.h>
54 #include <linux/kthread.h>
55 #include <linux/errno.h>
56 #include <linux/spinlock.h>
57 #include <linux/file.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/miscdevice.h>
61 #include <linux/freezer.h>
62 #include <linux/mutex.h>
63 #include <linux/slab.h>
64 #include <linux/backing-dev.h>
65 #include <scsi/scsi_cmnd.h>
66 #include <scsi/scsi_ioctl.h>
67 #include <scsi/scsi.h>
68 #include <linux/debugfs.h>
69 #include <linux/device.h>
70 #include <linux/nospec.h>
71 #include <linux/uaccess.h>
72 
73 #define DRIVER_NAME	"pktcdvd"
74 
75 #define pkt_err(pd, fmt, ...)						\
76 	pr_err("%s: " fmt, pd->name, ##__VA_ARGS__)
77 #define pkt_notice(pd, fmt, ...)					\
78 	pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__)
79 #define pkt_info(pd, fmt, ...)						\
80 	pr_info("%s: " fmt, pd->name, ##__VA_ARGS__)
81 
82 #define pkt_dbg(level, pd, fmt, ...)					\
83 do {									\
84 	if (level == 2 && PACKET_DEBUG >= 2)				\
85 		pr_notice("%s: %s():" fmt,				\
86 			  pd->name, __func__, ##__VA_ARGS__);		\
87 	else if (level == 1 && PACKET_DEBUG >= 1)			\
88 		pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__);		\
89 } while (0)
90 
91 #define MAX_SPEED 0xffff
92 
93 static DEFINE_MUTEX(pktcdvd_mutex);
94 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
95 static struct proc_dir_entry *pkt_proc;
96 static int pktdev_major;
97 static int write_congestion_on  = PKT_WRITE_CONGESTION_ON;
98 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
99 static struct mutex ctl_mutex;	/* Serialize open/close/setup/teardown */
100 static mempool_t psd_pool;
101 static struct bio_set pkt_bio_set;
102 
103 static struct class	*class_pktcdvd = NULL;    /* /sys/class/pktcdvd */
104 static struct dentry	*pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
105 
106 /* forward declaration */
107 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
108 static int pkt_remove_dev(dev_t pkt_dev);
109 static int pkt_seq_show(struct seq_file *m, void *p);
110 
get_zone(sector_t sector,struct pktcdvd_device * pd)111 static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd)
112 {
113 	return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1);
114 }
115 
116 /**********************************************************
117  * sysfs interface for pktcdvd
118  * by (C) 2006  Thomas Maier <balagi@justmail.de>
119 
120   /sys/class/pktcdvd/pktcdvd[0-7]/
121                      stat/reset
122                      stat/packets_started
123                      stat/packets_finished
124                      stat/kb_written
125                      stat/kb_read
126                      stat/kb_read_gather
127                      write_queue/size
128                      write_queue/congestion_off
129                      write_queue/congestion_on
130  **********************************************************/
131 
packets_started_show(struct device * dev,struct device_attribute * attr,char * buf)132 static ssize_t packets_started_show(struct device *dev,
133 				    struct device_attribute *attr, char *buf)
134 {
135 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
136 
137 	return sysfs_emit(buf, "%lu\n", pd->stats.pkt_started);
138 }
139 static DEVICE_ATTR_RO(packets_started);
140 
packets_finished_show(struct device * dev,struct device_attribute * attr,char * buf)141 static ssize_t packets_finished_show(struct device *dev,
142 				     struct device_attribute *attr, char *buf)
143 {
144 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
145 
146 	return sysfs_emit(buf, "%lu\n", pd->stats.pkt_ended);
147 }
148 static DEVICE_ATTR_RO(packets_finished);
149 
kb_written_show(struct device * dev,struct device_attribute * attr,char * buf)150 static ssize_t kb_written_show(struct device *dev,
151 			       struct device_attribute *attr, char *buf)
152 {
153 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
154 
155 	return sysfs_emit(buf, "%lu\n", pd->stats.secs_w >> 1);
156 }
157 static DEVICE_ATTR_RO(kb_written);
158 
kb_read_show(struct device * dev,struct device_attribute * attr,char * buf)159 static ssize_t kb_read_show(struct device *dev,
160 			    struct device_attribute *attr, char *buf)
161 {
162 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
163 
164 	return sysfs_emit(buf, "%lu\n", pd->stats.secs_r >> 1);
165 }
166 static DEVICE_ATTR_RO(kb_read);
167 
kb_read_gather_show(struct device * dev,struct device_attribute * attr,char * buf)168 static ssize_t kb_read_gather_show(struct device *dev,
169 				   struct device_attribute *attr, char *buf)
170 {
171 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
172 
173 	return sysfs_emit(buf, "%lu\n", pd->stats.secs_rg >> 1);
174 }
175 static DEVICE_ATTR_RO(kb_read_gather);
176 
reset_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)177 static ssize_t reset_store(struct device *dev, struct device_attribute *attr,
178 			   const char *buf, size_t len)
179 {
180 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
181 
182 	if (len > 0) {
183 		pd->stats.pkt_started = 0;
184 		pd->stats.pkt_ended = 0;
185 		pd->stats.secs_w = 0;
186 		pd->stats.secs_rg = 0;
187 		pd->stats.secs_r = 0;
188 	}
189 	return len;
190 }
191 static DEVICE_ATTR_WO(reset);
192 
193 static struct attribute *pkt_stat_attrs[] = {
194 	&dev_attr_packets_finished.attr,
195 	&dev_attr_packets_started.attr,
196 	&dev_attr_kb_read.attr,
197 	&dev_attr_kb_written.attr,
198 	&dev_attr_kb_read_gather.attr,
199 	&dev_attr_reset.attr,
200 	NULL,
201 };
202 
203 static const struct attribute_group pkt_stat_group = {
204 	.name = "stat",
205 	.attrs = pkt_stat_attrs,
206 };
207 
size_show(struct device * dev,struct device_attribute * attr,char * buf)208 static ssize_t size_show(struct device *dev,
209 			 struct device_attribute *attr, char *buf)
210 {
211 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
212 	int n;
213 
214 	spin_lock(&pd->lock);
215 	n = sysfs_emit(buf, "%d\n", pd->bio_queue_size);
216 	spin_unlock(&pd->lock);
217 	return n;
218 }
219 static DEVICE_ATTR_RO(size);
220 
init_write_congestion_marks(int * lo,int * hi)221 static void init_write_congestion_marks(int* lo, int* hi)
222 {
223 	if (*hi > 0) {
224 		*hi = max(*hi, 500);
225 		*hi = min(*hi, 1000000);
226 		if (*lo <= 0)
227 			*lo = *hi - 100;
228 		else {
229 			*lo = min(*lo, *hi - 100);
230 			*lo = max(*lo, 100);
231 		}
232 	} else {
233 		*hi = -1;
234 		*lo = -1;
235 	}
236 }
237 
congestion_off_show(struct device * dev,struct device_attribute * attr,char * buf)238 static ssize_t congestion_off_show(struct device *dev,
239 				   struct device_attribute *attr, char *buf)
240 {
241 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
242 	int n;
243 
244 	spin_lock(&pd->lock);
245 	n = sysfs_emit(buf, "%d\n", pd->write_congestion_off);
246 	spin_unlock(&pd->lock);
247 	return n;
248 }
249 
congestion_off_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)250 static ssize_t congestion_off_store(struct device *dev,
251 				    struct device_attribute *attr,
252 				    const char *buf, size_t len)
253 {
254 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
255 	int val;
256 
257 	if (sscanf(buf, "%d", &val) == 1) {
258 		spin_lock(&pd->lock);
259 		pd->write_congestion_off = val;
260 		init_write_congestion_marks(&pd->write_congestion_off,
261 					&pd->write_congestion_on);
262 		spin_unlock(&pd->lock);
263 	}
264 	return len;
265 }
266 static DEVICE_ATTR_RW(congestion_off);
267 
congestion_on_show(struct device * dev,struct device_attribute * attr,char * buf)268 static ssize_t congestion_on_show(struct device *dev,
269 				  struct device_attribute *attr, char *buf)
270 {
271 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
272 	int n;
273 
274 	spin_lock(&pd->lock);
275 	n = sysfs_emit(buf, "%d\n", pd->write_congestion_on);
276 	spin_unlock(&pd->lock);
277 	return n;
278 }
279 
congestion_on_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)280 static ssize_t congestion_on_store(struct device *dev,
281 				   struct device_attribute *attr,
282 				   const char *buf, size_t len)
283 {
284 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
285 	int val;
286 
287 	if (sscanf(buf, "%d", &val) == 1) {
288 		spin_lock(&pd->lock);
289 		pd->write_congestion_on = val;
290 		init_write_congestion_marks(&pd->write_congestion_off,
291 					&pd->write_congestion_on);
292 		spin_unlock(&pd->lock);
293 	}
294 	return len;
295 }
296 static DEVICE_ATTR_RW(congestion_on);
297 
298 static struct attribute *pkt_wq_attrs[] = {
299 	&dev_attr_congestion_on.attr,
300 	&dev_attr_congestion_off.attr,
301 	&dev_attr_size.attr,
302 	NULL,
303 };
304 
305 static const struct attribute_group pkt_wq_group = {
306 	.name = "write_queue",
307 	.attrs = pkt_wq_attrs,
308 };
309 
310 static const struct attribute_group *pkt_groups[] = {
311 	&pkt_stat_group,
312 	&pkt_wq_group,
313 	NULL,
314 };
315 
pkt_sysfs_dev_new(struct pktcdvd_device * pd)316 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
317 {
318 	if (class_pktcdvd) {
319 		pd->dev = device_create_with_groups(class_pktcdvd, NULL,
320 						    MKDEV(0, 0), pd, pkt_groups,
321 						    "%s", pd->name);
322 		if (IS_ERR(pd->dev))
323 			pd->dev = NULL;
324 	}
325 }
326 
pkt_sysfs_dev_remove(struct pktcdvd_device * pd)327 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
328 {
329 	if (class_pktcdvd)
330 		device_unregister(pd->dev);
331 }
332 
333 
334 /********************************************************************
335   /sys/class/pktcdvd/
336                      add            map block device
337                      remove         unmap packet dev
338                      device_map     show mappings
339  *******************************************************************/
340 
class_pktcdvd_release(struct class * cls)341 static void class_pktcdvd_release(struct class *cls)
342 {
343 	kfree(cls);
344 }
345 
device_map_show(struct class * c,struct class_attribute * attr,char * data)346 static ssize_t device_map_show(struct class *c, struct class_attribute *attr,
347 			       char *data)
348 {
349 	int n = 0;
350 	int idx;
351 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
352 	for (idx = 0; idx < MAX_WRITERS; idx++) {
353 		struct pktcdvd_device *pd = pkt_devs[idx];
354 		if (!pd)
355 			continue;
356 		n += sprintf(data+n, "%s %u:%u %u:%u\n",
357 			pd->name,
358 			MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
359 			MAJOR(pd->bdev->bd_dev),
360 			MINOR(pd->bdev->bd_dev));
361 	}
362 	mutex_unlock(&ctl_mutex);
363 	return n;
364 }
365 static CLASS_ATTR_RO(device_map);
366 
add_store(struct class * c,struct class_attribute * attr,const char * buf,size_t count)367 static ssize_t add_store(struct class *c, struct class_attribute *attr,
368 			 const char *buf, size_t count)
369 {
370 	unsigned int major, minor;
371 
372 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
373 		/* pkt_setup_dev() expects caller to hold reference to self */
374 		if (!try_module_get(THIS_MODULE))
375 			return -ENODEV;
376 
377 		pkt_setup_dev(MKDEV(major, minor), NULL);
378 
379 		module_put(THIS_MODULE);
380 
381 		return count;
382 	}
383 
384 	return -EINVAL;
385 }
386 static CLASS_ATTR_WO(add);
387 
remove_store(struct class * c,struct class_attribute * attr,const char * buf,size_t count)388 static ssize_t remove_store(struct class *c, struct class_attribute *attr,
389 			    const char *buf, size_t count)
390 {
391 	unsigned int major, minor;
392 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
393 		pkt_remove_dev(MKDEV(major, minor));
394 		return count;
395 	}
396 	return -EINVAL;
397 }
398 static CLASS_ATTR_WO(remove);
399 
400 static struct attribute *class_pktcdvd_attrs[] = {
401 	&class_attr_add.attr,
402 	&class_attr_remove.attr,
403 	&class_attr_device_map.attr,
404 	NULL,
405 };
406 ATTRIBUTE_GROUPS(class_pktcdvd);
407 
pkt_sysfs_init(void)408 static int pkt_sysfs_init(void)
409 {
410 	int ret = 0;
411 
412 	/*
413 	 * create control files in sysfs
414 	 * /sys/class/pktcdvd/...
415 	 */
416 	class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
417 	if (!class_pktcdvd)
418 		return -ENOMEM;
419 	class_pktcdvd->name = DRIVER_NAME;
420 	class_pktcdvd->owner = THIS_MODULE;
421 	class_pktcdvd->class_release = class_pktcdvd_release;
422 	class_pktcdvd->class_groups = class_pktcdvd_groups;
423 	ret = class_register(class_pktcdvd);
424 	if (ret) {
425 		kfree(class_pktcdvd);
426 		class_pktcdvd = NULL;
427 		pr_err("failed to create class pktcdvd\n");
428 		return ret;
429 	}
430 	return 0;
431 }
432 
pkt_sysfs_cleanup(void)433 static void pkt_sysfs_cleanup(void)
434 {
435 	if (class_pktcdvd)
436 		class_destroy(class_pktcdvd);
437 	class_pktcdvd = NULL;
438 }
439 
440 /********************************************************************
441   entries in debugfs
442 
443   /sys/kernel/debug/pktcdvd[0-7]/
444 			info
445 
446  *******************************************************************/
447 
pkt_debugfs_seq_show(struct seq_file * m,void * p)448 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
449 {
450 	return pkt_seq_show(m, p);
451 }
452 
pkt_debugfs_fops_open(struct inode * inode,struct file * file)453 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
454 {
455 	return single_open(file, pkt_debugfs_seq_show, inode->i_private);
456 }
457 
458 static const struct file_operations debug_fops = {
459 	.open		= pkt_debugfs_fops_open,
460 	.read		= seq_read,
461 	.llseek		= seq_lseek,
462 	.release	= single_release,
463 	.owner		= THIS_MODULE,
464 };
465 
pkt_debugfs_dev_new(struct pktcdvd_device * pd)466 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
467 {
468 	if (!pkt_debugfs_root)
469 		return;
470 	pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
471 	if (!pd->dfs_d_root)
472 		return;
473 
474 	pd->dfs_f_info = debugfs_create_file("info", 0444,
475 					     pd->dfs_d_root, pd, &debug_fops);
476 }
477 
pkt_debugfs_dev_remove(struct pktcdvd_device * pd)478 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
479 {
480 	if (!pkt_debugfs_root)
481 		return;
482 	debugfs_remove(pd->dfs_f_info);
483 	debugfs_remove(pd->dfs_d_root);
484 	pd->dfs_f_info = NULL;
485 	pd->dfs_d_root = NULL;
486 }
487 
pkt_debugfs_init(void)488 static void pkt_debugfs_init(void)
489 {
490 	pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
491 }
492 
pkt_debugfs_cleanup(void)493 static void pkt_debugfs_cleanup(void)
494 {
495 	debugfs_remove(pkt_debugfs_root);
496 	pkt_debugfs_root = NULL;
497 }
498 
499 /* ----------------------------------------------------------*/
500 
501 
pkt_bio_finished(struct pktcdvd_device * pd)502 static void pkt_bio_finished(struct pktcdvd_device *pd)
503 {
504 	BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
505 	if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
506 		pkt_dbg(2, pd, "queue empty\n");
507 		atomic_set(&pd->iosched.attention, 1);
508 		wake_up(&pd->wqueue);
509 	}
510 }
511 
512 /*
513  * Allocate a packet_data struct
514  */
pkt_alloc_packet_data(int frames)515 static struct packet_data *pkt_alloc_packet_data(int frames)
516 {
517 	int i;
518 	struct packet_data *pkt;
519 
520 	pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
521 	if (!pkt)
522 		goto no_pkt;
523 
524 	pkt->frames = frames;
525 	pkt->w_bio = bio_kmalloc(frames, GFP_KERNEL);
526 	if (!pkt->w_bio)
527 		goto no_bio;
528 
529 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
530 		pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
531 		if (!pkt->pages[i])
532 			goto no_page;
533 	}
534 
535 	spin_lock_init(&pkt->lock);
536 	bio_list_init(&pkt->orig_bios);
537 
538 	for (i = 0; i < frames; i++) {
539 		pkt->r_bios[i] = bio_kmalloc(1, GFP_KERNEL);
540 		if (!pkt->r_bios[i])
541 			goto no_rd_bio;
542 	}
543 
544 	return pkt;
545 
546 no_rd_bio:
547 	for (i = 0; i < frames; i++)
548 		kfree(pkt->r_bios[i]);
549 no_page:
550 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
551 		if (pkt->pages[i])
552 			__free_page(pkt->pages[i]);
553 	kfree(pkt->w_bio);
554 no_bio:
555 	kfree(pkt);
556 no_pkt:
557 	return NULL;
558 }
559 
560 /*
561  * Free a packet_data struct
562  */
pkt_free_packet_data(struct packet_data * pkt)563 static void pkt_free_packet_data(struct packet_data *pkt)
564 {
565 	int i;
566 
567 	for (i = 0; i < pkt->frames; i++)
568 		kfree(pkt->r_bios[i]);
569 	for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
570 		__free_page(pkt->pages[i]);
571 	kfree(pkt->w_bio);
572 	kfree(pkt);
573 }
574 
pkt_shrink_pktlist(struct pktcdvd_device * pd)575 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
576 {
577 	struct packet_data *pkt, *next;
578 
579 	BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
580 
581 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
582 		pkt_free_packet_data(pkt);
583 	}
584 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
585 }
586 
pkt_grow_pktlist(struct pktcdvd_device * pd,int nr_packets)587 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
588 {
589 	struct packet_data *pkt;
590 
591 	BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
592 
593 	while (nr_packets > 0) {
594 		pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
595 		if (!pkt) {
596 			pkt_shrink_pktlist(pd);
597 			return 0;
598 		}
599 		pkt->id = nr_packets;
600 		pkt->pd = pd;
601 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
602 		nr_packets--;
603 	}
604 	return 1;
605 }
606 
pkt_rbtree_next(struct pkt_rb_node * node)607 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
608 {
609 	struct rb_node *n = rb_next(&node->rb_node);
610 	if (!n)
611 		return NULL;
612 	return rb_entry(n, struct pkt_rb_node, rb_node);
613 }
614 
pkt_rbtree_erase(struct pktcdvd_device * pd,struct pkt_rb_node * node)615 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
616 {
617 	rb_erase(&node->rb_node, &pd->bio_queue);
618 	mempool_free(node, &pd->rb_pool);
619 	pd->bio_queue_size--;
620 	BUG_ON(pd->bio_queue_size < 0);
621 }
622 
623 /*
624  * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
625  */
pkt_rbtree_find(struct pktcdvd_device * pd,sector_t s)626 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
627 {
628 	struct rb_node *n = pd->bio_queue.rb_node;
629 	struct rb_node *next;
630 	struct pkt_rb_node *tmp;
631 
632 	if (!n) {
633 		BUG_ON(pd->bio_queue_size > 0);
634 		return NULL;
635 	}
636 
637 	for (;;) {
638 		tmp = rb_entry(n, struct pkt_rb_node, rb_node);
639 		if (s <= tmp->bio->bi_iter.bi_sector)
640 			next = n->rb_left;
641 		else
642 			next = n->rb_right;
643 		if (!next)
644 			break;
645 		n = next;
646 	}
647 
648 	if (s > tmp->bio->bi_iter.bi_sector) {
649 		tmp = pkt_rbtree_next(tmp);
650 		if (!tmp)
651 			return NULL;
652 	}
653 	BUG_ON(s > tmp->bio->bi_iter.bi_sector);
654 	return tmp;
655 }
656 
657 /*
658  * Insert a node into the pd->bio_queue rb tree.
659  */
pkt_rbtree_insert(struct pktcdvd_device * pd,struct pkt_rb_node * node)660 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
661 {
662 	struct rb_node **p = &pd->bio_queue.rb_node;
663 	struct rb_node *parent = NULL;
664 	sector_t s = node->bio->bi_iter.bi_sector;
665 	struct pkt_rb_node *tmp;
666 
667 	while (*p) {
668 		parent = *p;
669 		tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
670 		if (s < tmp->bio->bi_iter.bi_sector)
671 			p = &(*p)->rb_left;
672 		else
673 			p = &(*p)->rb_right;
674 	}
675 	rb_link_node(&node->rb_node, parent, p);
676 	rb_insert_color(&node->rb_node, &pd->bio_queue);
677 	pd->bio_queue_size++;
678 }
679 
680 /*
681  * Send a packet_command to the underlying block device and
682  * wait for completion.
683  */
pkt_generic_packet(struct pktcdvd_device * pd,struct packet_command * cgc)684 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
685 {
686 	struct request_queue *q = bdev_get_queue(pd->bdev);
687 	struct scsi_cmnd *scmd;
688 	struct request *rq;
689 	int ret = 0;
690 
691 	rq = scsi_alloc_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
692 			     REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
693 	if (IS_ERR(rq))
694 		return PTR_ERR(rq);
695 	scmd = blk_mq_rq_to_pdu(rq);
696 
697 	if (cgc->buflen) {
698 		ret = blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen,
699 				      GFP_NOIO);
700 		if (ret)
701 			goto out;
702 	}
703 
704 	scmd->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
705 	memcpy(scmd->cmnd, cgc->cmd, CDROM_PACKET_SIZE);
706 
707 	rq->timeout = 60*HZ;
708 	if (cgc->quiet)
709 		rq->rq_flags |= RQF_QUIET;
710 
711 	blk_execute_rq(rq, false);
712 	if (scmd->result)
713 		ret = -EIO;
714 out:
715 	blk_mq_free_request(rq);
716 	return ret;
717 }
718 
sense_key_string(__u8 index)719 static const char *sense_key_string(__u8 index)
720 {
721 	static const char * const info[] = {
722 		"No sense", "Recovered error", "Not ready",
723 		"Medium error", "Hardware error", "Illegal request",
724 		"Unit attention", "Data protect", "Blank check",
725 	};
726 
727 	return index < ARRAY_SIZE(info) ? info[index] : "INVALID";
728 }
729 
730 /*
731  * A generic sense dump / resolve mechanism should be implemented across
732  * all ATAPI + SCSI devices.
733  */
pkt_dump_sense(struct pktcdvd_device * pd,struct packet_command * cgc)734 static void pkt_dump_sense(struct pktcdvd_device *pd,
735 			   struct packet_command *cgc)
736 {
737 	struct scsi_sense_hdr *sshdr = cgc->sshdr;
738 
739 	if (sshdr)
740 		pkt_err(pd, "%*ph - sense %02x.%02x.%02x (%s)\n",
741 			CDROM_PACKET_SIZE, cgc->cmd,
742 			sshdr->sense_key, sshdr->asc, sshdr->ascq,
743 			sense_key_string(sshdr->sense_key));
744 	else
745 		pkt_err(pd, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd);
746 }
747 
748 /*
749  * flush the drive cache to media
750  */
pkt_flush_cache(struct pktcdvd_device * pd)751 static int pkt_flush_cache(struct pktcdvd_device *pd)
752 {
753 	struct packet_command cgc;
754 
755 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
756 	cgc.cmd[0] = GPCMD_FLUSH_CACHE;
757 	cgc.quiet = 1;
758 
759 	/*
760 	 * the IMMED bit -- we default to not setting it, although that
761 	 * would allow a much faster close, this is safer
762 	 */
763 #if 0
764 	cgc.cmd[1] = 1 << 1;
765 #endif
766 	return pkt_generic_packet(pd, &cgc);
767 }
768 
769 /*
770  * speed is given as the normal factor, e.g. 4 for 4x
771  */
pkt_set_speed(struct pktcdvd_device * pd,unsigned write_speed,unsigned read_speed)772 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
773 				unsigned write_speed, unsigned read_speed)
774 {
775 	struct packet_command cgc;
776 	struct scsi_sense_hdr sshdr;
777 	int ret;
778 
779 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
780 	cgc.sshdr = &sshdr;
781 	cgc.cmd[0] = GPCMD_SET_SPEED;
782 	cgc.cmd[2] = (read_speed >> 8) & 0xff;
783 	cgc.cmd[3] = read_speed & 0xff;
784 	cgc.cmd[4] = (write_speed >> 8) & 0xff;
785 	cgc.cmd[5] = write_speed & 0xff;
786 
787 	ret = pkt_generic_packet(pd, &cgc);
788 	if (ret)
789 		pkt_dump_sense(pd, &cgc);
790 
791 	return ret;
792 }
793 
794 /*
795  * Queue a bio for processing by the low-level CD device. Must be called
796  * from process context.
797  */
pkt_queue_bio(struct pktcdvd_device * pd,struct bio * bio)798 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
799 {
800 	spin_lock(&pd->iosched.lock);
801 	if (bio_data_dir(bio) == READ)
802 		bio_list_add(&pd->iosched.read_queue, bio);
803 	else
804 		bio_list_add(&pd->iosched.write_queue, bio);
805 	spin_unlock(&pd->iosched.lock);
806 
807 	atomic_set(&pd->iosched.attention, 1);
808 	wake_up(&pd->wqueue);
809 }
810 
811 /*
812  * Process the queued read/write requests. This function handles special
813  * requirements for CDRW drives:
814  * - A cache flush command must be inserted before a read request if the
815  *   previous request was a write.
816  * - Switching between reading and writing is slow, so don't do it more often
817  *   than necessary.
818  * - Optimize for throughput at the expense of latency. This means that streaming
819  *   writes will never be interrupted by a read, but if the drive has to seek
820  *   before the next write, switch to reading instead if there are any pending
821  *   read requests.
822  * - Set the read speed according to current usage pattern. When only reading
823  *   from the device, it's best to use the highest possible read speed, but
824  *   when switching often between reading and writing, it's better to have the
825  *   same read and write speeds.
826  */
pkt_iosched_process_queue(struct pktcdvd_device * pd)827 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
828 {
829 
830 	if (atomic_read(&pd->iosched.attention) == 0)
831 		return;
832 	atomic_set(&pd->iosched.attention, 0);
833 
834 	for (;;) {
835 		struct bio *bio;
836 		int reads_queued, writes_queued;
837 
838 		spin_lock(&pd->iosched.lock);
839 		reads_queued = !bio_list_empty(&pd->iosched.read_queue);
840 		writes_queued = !bio_list_empty(&pd->iosched.write_queue);
841 		spin_unlock(&pd->iosched.lock);
842 
843 		if (!reads_queued && !writes_queued)
844 			break;
845 
846 		if (pd->iosched.writing) {
847 			int need_write_seek = 1;
848 			spin_lock(&pd->iosched.lock);
849 			bio = bio_list_peek(&pd->iosched.write_queue);
850 			spin_unlock(&pd->iosched.lock);
851 			if (bio && (bio->bi_iter.bi_sector ==
852 				    pd->iosched.last_write))
853 				need_write_seek = 0;
854 			if (need_write_seek && reads_queued) {
855 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
856 					pkt_dbg(2, pd, "write, waiting\n");
857 					break;
858 				}
859 				pkt_flush_cache(pd);
860 				pd->iosched.writing = 0;
861 			}
862 		} else {
863 			if (!reads_queued && writes_queued) {
864 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
865 					pkt_dbg(2, pd, "read, waiting\n");
866 					break;
867 				}
868 				pd->iosched.writing = 1;
869 			}
870 		}
871 
872 		spin_lock(&pd->iosched.lock);
873 		if (pd->iosched.writing)
874 			bio = bio_list_pop(&pd->iosched.write_queue);
875 		else
876 			bio = bio_list_pop(&pd->iosched.read_queue);
877 		spin_unlock(&pd->iosched.lock);
878 
879 		if (!bio)
880 			continue;
881 
882 		if (bio_data_dir(bio) == READ)
883 			pd->iosched.successive_reads +=
884 				bio->bi_iter.bi_size >> 10;
885 		else {
886 			pd->iosched.successive_reads = 0;
887 			pd->iosched.last_write = bio_end_sector(bio);
888 		}
889 		if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
890 			if (pd->read_speed == pd->write_speed) {
891 				pd->read_speed = MAX_SPEED;
892 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
893 			}
894 		} else {
895 			if (pd->read_speed != pd->write_speed) {
896 				pd->read_speed = pd->write_speed;
897 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
898 			}
899 		}
900 
901 		atomic_inc(&pd->cdrw.pending_bios);
902 		submit_bio_noacct(bio);
903 	}
904 }
905 
906 /*
907  * Special care is needed if the underlying block device has a small
908  * max_phys_segments value.
909  */
pkt_set_segment_merging(struct pktcdvd_device * pd,struct request_queue * q)910 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
911 {
912 	if ((pd->settings.size << 9) / CD_FRAMESIZE
913 	    <= queue_max_segments(q)) {
914 		/*
915 		 * The cdrom device can handle one segment/frame
916 		 */
917 		clear_bit(PACKET_MERGE_SEGS, &pd->flags);
918 		return 0;
919 	} else if ((pd->settings.size << 9) / PAGE_SIZE
920 		   <= queue_max_segments(q)) {
921 		/*
922 		 * We can handle this case at the expense of some extra memory
923 		 * copies during write operations
924 		 */
925 		set_bit(PACKET_MERGE_SEGS, &pd->flags);
926 		return 0;
927 	} else {
928 		pkt_err(pd, "cdrom max_phys_segments too small\n");
929 		return -EIO;
930 	}
931 }
932 
pkt_end_io_read(struct bio * bio)933 static void pkt_end_io_read(struct bio *bio)
934 {
935 	struct packet_data *pkt = bio->bi_private;
936 	struct pktcdvd_device *pd = pkt->pd;
937 	BUG_ON(!pd);
938 
939 	pkt_dbg(2, pd, "bio=%p sec0=%llx sec=%llx err=%d\n",
940 		bio, (unsigned long long)pkt->sector,
941 		(unsigned long long)bio->bi_iter.bi_sector, bio->bi_status);
942 
943 	if (bio->bi_status)
944 		atomic_inc(&pkt->io_errors);
945 	bio_uninit(bio);
946 	if (atomic_dec_and_test(&pkt->io_wait)) {
947 		atomic_inc(&pkt->run_sm);
948 		wake_up(&pd->wqueue);
949 	}
950 	pkt_bio_finished(pd);
951 }
952 
pkt_end_io_packet_write(struct bio * bio)953 static void pkt_end_io_packet_write(struct bio *bio)
954 {
955 	struct packet_data *pkt = bio->bi_private;
956 	struct pktcdvd_device *pd = pkt->pd;
957 	BUG_ON(!pd);
958 
959 	pkt_dbg(2, pd, "id=%d, err=%d\n", pkt->id, bio->bi_status);
960 
961 	pd->stats.pkt_ended++;
962 
963 	bio_uninit(bio);
964 	pkt_bio_finished(pd);
965 	atomic_dec(&pkt->io_wait);
966 	atomic_inc(&pkt->run_sm);
967 	wake_up(&pd->wqueue);
968 }
969 
970 /*
971  * Schedule reads for the holes in a packet
972  */
pkt_gather_data(struct pktcdvd_device * pd,struct packet_data * pkt)973 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
974 {
975 	int frames_read = 0;
976 	struct bio *bio;
977 	int f;
978 	char written[PACKET_MAX_SIZE];
979 
980 	BUG_ON(bio_list_empty(&pkt->orig_bios));
981 
982 	atomic_set(&pkt->io_wait, 0);
983 	atomic_set(&pkt->io_errors, 0);
984 
985 	/*
986 	 * Figure out which frames we need to read before we can write.
987 	 */
988 	memset(written, 0, sizeof(written));
989 	spin_lock(&pkt->lock);
990 	bio_list_for_each(bio, &pkt->orig_bios) {
991 		int first_frame = (bio->bi_iter.bi_sector - pkt->sector) /
992 			(CD_FRAMESIZE >> 9);
993 		int num_frames = bio->bi_iter.bi_size / CD_FRAMESIZE;
994 		pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
995 		BUG_ON(first_frame < 0);
996 		BUG_ON(first_frame + num_frames > pkt->frames);
997 		for (f = first_frame; f < first_frame + num_frames; f++)
998 			written[f] = 1;
999 	}
1000 	spin_unlock(&pkt->lock);
1001 
1002 	if (pkt->cache_valid) {
1003 		pkt_dbg(2, pd, "zone %llx cached\n",
1004 			(unsigned long long)pkt->sector);
1005 		goto out_account;
1006 	}
1007 
1008 	/*
1009 	 * Schedule reads for missing parts of the packet.
1010 	 */
1011 	for (f = 0; f < pkt->frames; f++) {
1012 		int p, offset;
1013 
1014 		if (written[f])
1015 			continue;
1016 
1017 		bio = pkt->r_bios[f];
1018 		bio_init(bio, pd->bdev, bio->bi_inline_vecs, 1, REQ_OP_READ);
1019 		bio->bi_iter.bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1020 		bio->bi_end_io = pkt_end_io_read;
1021 		bio->bi_private = pkt;
1022 
1023 		p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1024 		offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1025 		pkt_dbg(2, pd, "Adding frame %d, page:%p offs:%d\n",
1026 			f, pkt->pages[p], offset);
1027 		if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1028 			BUG();
1029 
1030 		atomic_inc(&pkt->io_wait);
1031 		pkt_queue_bio(pd, bio);
1032 		frames_read++;
1033 	}
1034 
1035 out_account:
1036 	pkt_dbg(2, pd, "need %d frames for zone %llx\n",
1037 		frames_read, (unsigned long long)pkt->sector);
1038 	pd->stats.pkt_started++;
1039 	pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1040 }
1041 
1042 /*
1043  * Find a packet matching zone, or the least recently used packet if
1044  * there is no match.
1045  */
pkt_get_packet_data(struct pktcdvd_device * pd,int zone)1046 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1047 {
1048 	struct packet_data *pkt;
1049 
1050 	list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1051 		if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1052 			list_del_init(&pkt->list);
1053 			if (pkt->sector != zone)
1054 				pkt->cache_valid = 0;
1055 			return pkt;
1056 		}
1057 	}
1058 	BUG();
1059 	return NULL;
1060 }
1061 
pkt_put_packet_data(struct pktcdvd_device * pd,struct packet_data * pkt)1062 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1063 {
1064 	if (pkt->cache_valid) {
1065 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1066 	} else {
1067 		list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1068 	}
1069 }
1070 
pkt_set_state(struct packet_data * pkt,enum packet_data_state state)1071 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1072 {
1073 #if PACKET_DEBUG > 1
1074 	static const char *state_name[] = {
1075 		"IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1076 	};
1077 	enum packet_data_state old_state = pkt->state;
1078 	pkt_dbg(2, pd, "pkt %2d : s=%6llx %s -> %s\n",
1079 		pkt->id, (unsigned long long)pkt->sector,
1080 		state_name[old_state], state_name[state]);
1081 #endif
1082 	pkt->state = state;
1083 }
1084 
1085 /*
1086  * Scan the work queue to see if we can start a new packet.
1087  * returns non-zero if any work was done.
1088  */
pkt_handle_queue(struct pktcdvd_device * pd)1089 static int pkt_handle_queue(struct pktcdvd_device *pd)
1090 {
1091 	struct packet_data *pkt, *p;
1092 	struct bio *bio = NULL;
1093 	sector_t zone = 0; /* Suppress gcc warning */
1094 	struct pkt_rb_node *node, *first_node;
1095 	struct rb_node *n;
1096 
1097 	atomic_set(&pd->scan_queue, 0);
1098 
1099 	if (list_empty(&pd->cdrw.pkt_free_list)) {
1100 		pkt_dbg(2, pd, "no pkt\n");
1101 		return 0;
1102 	}
1103 
1104 	/*
1105 	 * Try to find a zone we are not already working on.
1106 	 */
1107 	spin_lock(&pd->lock);
1108 	first_node = pkt_rbtree_find(pd, pd->current_sector);
1109 	if (!first_node) {
1110 		n = rb_first(&pd->bio_queue);
1111 		if (n)
1112 			first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1113 	}
1114 	node = first_node;
1115 	while (node) {
1116 		bio = node->bio;
1117 		zone = get_zone(bio->bi_iter.bi_sector, pd);
1118 		list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1119 			if (p->sector == zone) {
1120 				bio = NULL;
1121 				goto try_next_bio;
1122 			}
1123 		}
1124 		break;
1125 try_next_bio:
1126 		node = pkt_rbtree_next(node);
1127 		if (!node) {
1128 			n = rb_first(&pd->bio_queue);
1129 			if (n)
1130 				node = rb_entry(n, struct pkt_rb_node, rb_node);
1131 		}
1132 		if (node == first_node)
1133 			node = NULL;
1134 	}
1135 	spin_unlock(&pd->lock);
1136 	if (!bio) {
1137 		pkt_dbg(2, pd, "no bio\n");
1138 		return 0;
1139 	}
1140 
1141 	pkt = pkt_get_packet_data(pd, zone);
1142 
1143 	pd->current_sector = zone + pd->settings.size;
1144 	pkt->sector = zone;
1145 	BUG_ON(pkt->frames != pd->settings.size >> 2);
1146 	pkt->write_size = 0;
1147 
1148 	/*
1149 	 * Scan work queue for bios in the same zone and link them
1150 	 * to this packet.
1151 	 */
1152 	spin_lock(&pd->lock);
1153 	pkt_dbg(2, pd, "looking for zone %llx\n", (unsigned long long)zone);
1154 	while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1155 		bio = node->bio;
1156 		pkt_dbg(2, pd, "found zone=%llx\n", (unsigned long long)
1157 			get_zone(bio->bi_iter.bi_sector, pd));
1158 		if (get_zone(bio->bi_iter.bi_sector, pd) != zone)
1159 			break;
1160 		pkt_rbtree_erase(pd, node);
1161 		spin_lock(&pkt->lock);
1162 		bio_list_add(&pkt->orig_bios, bio);
1163 		pkt->write_size += bio->bi_iter.bi_size / CD_FRAMESIZE;
1164 		spin_unlock(&pkt->lock);
1165 	}
1166 	/* check write congestion marks, and if bio_queue_size is
1167 	 * below, wake up any waiters
1168 	 */
1169 	if (pd->congested &&
1170 	    pd->bio_queue_size <= pd->write_congestion_off) {
1171 		pd->congested = false;
1172 		wake_up_var(&pd->congested);
1173 	}
1174 	spin_unlock(&pd->lock);
1175 
1176 	pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1177 	pkt_set_state(pkt, PACKET_WAITING_STATE);
1178 	atomic_set(&pkt->run_sm, 1);
1179 
1180 	spin_lock(&pd->cdrw.active_list_lock);
1181 	list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1182 	spin_unlock(&pd->cdrw.active_list_lock);
1183 
1184 	return 1;
1185 }
1186 
1187 /**
1188  * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1189  * another
1190  * @src: source bio list
1191  * @dst: destination bio list
1192  *
1193  * Stops when it reaches the end of either the @src list or @dst list - that is,
1194  * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1195  * bios).
1196  */
bio_list_copy_data(struct bio * dst,struct bio * src)1197 static void bio_list_copy_data(struct bio *dst, struct bio *src)
1198 {
1199 	struct bvec_iter src_iter = src->bi_iter;
1200 	struct bvec_iter dst_iter = dst->bi_iter;
1201 
1202 	while (1) {
1203 		if (!src_iter.bi_size) {
1204 			src = src->bi_next;
1205 			if (!src)
1206 				break;
1207 
1208 			src_iter = src->bi_iter;
1209 		}
1210 
1211 		if (!dst_iter.bi_size) {
1212 			dst = dst->bi_next;
1213 			if (!dst)
1214 				break;
1215 
1216 			dst_iter = dst->bi_iter;
1217 		}
1218 
1219 		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1220 	}
1221 }
1222 
1223 /*
1224  * Assemble a bio to write one packet and queue the bio for processing
1225  * by the underlying block device.
1226  */
pkt_start_write(struct pktcdvd_device * pd,struct packet_data * pkt)1227 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1228 {
1229 	int f;
1230 
1231 	bio_init(pkt->w_bio, pd->bdev, pkt->w_bio->bi_inline_vecs, pkt->frames,
1232 		 REQ_OP_WRITE);
1233 	pkt->w_bio->bi_iter.bi_sector = pkt->sector;
1234 	pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1235 	pkt->w_bio->bi_private = pkt;
1236 
1237 	/* XXX: locking? */
1238 	for (f = 0; f < pkt->frames; f++) {
1239 		struct page *page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1240 		unsigned offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1241 
1242 		if (!bio_add_page(pkt->w_bio, page, CD_FRAMESIZE, offset))
1243 			BUG();
1244 	}
1245 	pkt_dbg(2, pd, "vcnt=%d\n", pkt->w_bio->bi_vcnt);
1246 
1247 	/*
1248 	 * Fill-in bvec with data from orig_bios.
1249 	 */
1250 	spin_lock(&pkt->lock);
1251 	bio_list_copy_data(pkt->w_bio, pkt->orig_bios.head);
1252 
1253 	pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1254 	spin_unlock(&pkt->lock);
1255 
1256 	pkt_dbg(2, pd, "Writing %d frames for zone %llx\n",
1257 		pkt->write_size, (unsigned long long)pkt->sector);
1258 
1259 	if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames))
1260 		pkt->cache_valid = 1;
1261 	else
1262 		pkt->cache_valid = 0;
1263 
1264 	/* Start the write request */
1265 	atomic_set(&pkt->io_wait, 1);
1266 	pkt_queue_bio(pd, pkt->w_bio);
1267 }
1268 
pkt_finish_packet(struct packet_data * pkt,blk_status_t status)1269 static void pkt_finish_packet(struct packet_data *pkt, blk_status_t status)
1270 {
1271 	struct bio *bio;
1272 
1273 	if (status)
1274 		pkt->cache_valid = 0;
1275 
1276 	/* Finish all bios corresponding to this packet */
1277 	while ((bio = bio_list_pop(&pkt->orig_bios))) {
1278 		bio->bi_status = status;
1279 		bio_endio(bio);
1280 	}
1281 }
1282 
pkt_run_state_machine(struct pktcdvd_device * pd,struct packet_data * pkt)1283 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1284 {
1285 	pkt_dbg(2, pd, "pkt %d\n", pkt->id);
1286 
1287 	for (;;) {
1288 		switch (pkt->state) {
1289 		case PACKET_WAITING_STATE:
1290 			if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1291 				return;
1292 
1293 			pkt->sleep_time = 0;
1294 			pkt_gather_data(pd, pkt);
1295 			pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1296 			break;
1297 
1298 		case PACKET_READ_WAIT_STATE:
1299 			if (atomic_read(&pkt->io_wait) > 0)
1300 				return;
1301 
1302 			if (atomic_read(&pkt->io_errors) > 0) {
1303 				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1304 			} else {
1305 				pkt_start_write(pd, pkt);
1306 			}
1307 			break;
1308 
1309 		case PACKET_WRITE_WAIT_STATE:
1310 			if (atomic_read(&pkt->io_wait) > 0)
1311 				return;
1312 
1313 			if (!pkt->w_bio->bi_status) {
1314 				pkt_set_state(pkt, PACKET_FINISHED_STATE);
1315 			} else {
1316 				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1317 			}
1318 			break;
1319 
1320 		case PACKET_RECOVERY_STATE:
1321 			pkt_dbg(2, pd, "No recovery possible\n");
1322 			pkt_set_state(pkt, PACKET_FINISHED_STATE);
1323 			break;
1324 
1325 		case PACKET_FINISHED_STATE:
1326 			pkt_finish_packet(pkt, pkt->w_bio->bi_status);
1327 			return;
1328 
1329 		default:
1330 			BUG();
1331 			break;
1332 		}
1333 	}
1334 }
1335 
pkt_handle_packets(struct pktcdvd_device * pd)1336 static void pkt_handle_packets(struct pktcdvd_device *pd)
1337 {
1338 	struct packet_data *pkt, *next;
1339 
1340 	/*
1341 	 * Run state machine for active packets
1342 	 */
1343 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1344 		if (atomic_read(&pkt->run_sm) > 0) {
1345 			atomic_set(&pkt->run_sm, 0);
1346 			pkt_run_state_machine(pd, pkt);
1347 		}
1348 	}
1349 
1350 	/*
1351 	 * Move no longer active packets to the free list
1352 	 */
1353 	spin_lock(&pd->cdrw.active_list_lock);
1354 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1355 		if (pkt->state == PACKET_FINISHED_STATE) {
1356 			list_del(&pkt->list);
1357 			pkt_put_packet_data(pd, pkt);
1358 			pkt_set_state(pkt, PACKET_IDLE_STATE);
1359 			atomic_set(&pd->scan_queue, 1);
1360 		}
1361 	}
1362 	spin_unlock(&pd->cdrw.active_list_lock);
1363 }
1364 
pkt_count_states(struct pktcdvd_device * pd,int * states)1365 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1366 {
1367 	struct packet_data *pkt;
1368 	int i;
1369 
1370 	for (i = 0; i < PACKET_NUM_STATES; i++)
1371 		states[i] = 0;
1372 
1373 	spin_lock(&pd->cdrw.active_list_lock);
1374 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1375 		states[pkt->state]++;
1376 	}
1377 	spin_unlock(&pd->cdrw.active_list_lock);
1378 }
1379 
1380 /*
1381  * kcdrwd is woken up when writes have been queued for one of our
1382  * registered devices
1383  */
kcdrwd(void * foobar)1384 static int kcdrwd(void *foobar)
1385 {
1386 	struct pktcdvd_device *pd = foobar;
1387 	struct packet_data *pkt;
1388 	long min_sleep_time, residue;
1389 
1390 	set_user_nice(current, MIN_NICE);
1391 	set_freezable();
1392 
1393 	for (;;) {
1394 		DECLARE_WAITQUEUE(wait, current);
1395 
1396 		/*
1397 		 * Wait until there is something to do
1398 		 */
1399 		add_wait_queue(&pd->wqueue, &wait);
1400 		for (;;) {
1401 			set_current_state(TASK_INTERRUPTIBLE);
1402 
1403 			/* Check if we need to run pkt_handle_queue */
1404 			if (atomic_read(&pd->scan_queue) > 0)
1405 				goto work_to_do;
1406 
1407 			/* Check if we need to run the state machine for some packet */
1408 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1409 				if (atomic_read(&pkt->run_sm) > 0)
1410 					goto work_to_do;
1411 			}
1412 
1413 			/* Check if we need to process the iosched queues */
1414 			if (atomic_read(&pd->iosched.attention) != 0)
1415 				goto work_to_do;
1416 
1417 			/* Otherwise, go to sleep */
1418 			if (PACKET_DEBUG > 1) {
1419 				int states[PACKET_NUM_STATES];
1420 				pkt_count_states(pd, states);
1421 				pkt_dbg(2, pd, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1422 					states[0], states[1], states[2],
1423 					states[3], states[4], states[5]);
1424 			}
1425 
1426 			min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1427 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1428 				if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1429 					min_sleep_time = pkt->sleep_time;
1430 			}
1431 
1432 			pkt_dbg(2, pd, "sleeping\n");
1433 			residue = schedule_timeout(min_sleep_time);
1434 			pkt_dbg(2, pd, "wake up\n");
1435 
1436 			/* make swsusp happy with our thread */
1437 			try_to_freeze();
1438 
1439 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1440 				if (!pkt->sleep_time)
1441 					continue;
1442 				pkt->sleep_time -= min_sleep_time - residue;
1443 				if (pkt->sleep_time <= 0) {
1444 					pkt->sleep_time = 0;
1445 					atomic_inc(&pkt->run_sm);
1446 				}
1447 			}
1448 
1449 			if (kthread_should_stop())
1450 				break;
1451 		}
1452 work_to_do:
1453 		set_current_state(TASK_RUNNING);
1454 		remove_wait_queue(&pd->wqueue, &wait);
1455 
1456 		if (kthread_should_stop())
1457 			break;
1458 
1459 		/*
1460 		 * if pkt_handle_queue returns true, we can queue
1461 		 * another request.
1462 		 */
1463 		while (pkt_handle_queue(pd))
1464 			;
1465 
1466 		/*
1467 		 * Handle packet state machine
1468 		 */
1469 		pkt_handle_packets(pd);
1470 
1471 		/*
1472 		 * Handle iosched queues
1473 		 */
1474 		pkt_iosched_process_queue(pd);
1475 	}
1476 
1477 	return 0;
1478 }
1479 
pkt_print_settings(struct pktcdvd_device * pd)1480 static void pkt_print_settings(struct pktcdvd_device *pd)
1481 {
1482 	pkt_info(pd, "%s packets, %u blocks, Mode-%c disc\n",
1483 		 pd->settings.fp ? "Fixed" : "Variable",
1484 		 pd->settings.size >> 2,
1485 		 pd->settings.block_mode == 8 ? '1' : '2');
1486 }
1487 
pkt_mode_sense(struct pktcdvd_device * pd,struct packet_command * cgc,int page_code,int page_control)1488 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1489 {
1490 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1491 
1492 	cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1493 	cgc->cmd[2] = page_code | (page_control << 6);
1494 	cgc->cmd[7] = cgc->buflen >> 8;
1495 	cgc->cmd[8] = cgc->buflen & 0xff;
1496 	cgc->data_direction = CGC_DATA_READ;
1497 	return pkt_generic_packet(pd, cgc);
1498 }
1499 
pkt_mode_select(struct pktcdvd_device * pd,struct packet_command * cgc)1500 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1501 {
1502 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1503 	memset(cgc->buffer, 0, 2);
1504 	cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1505 	cgc->cmd[1] = 0x10;		/* PF */
1506 	cgc->cmd[7] = cgc->buflen >> 8;
1507 	cgc->cmd[8] = cgc->buflen & 0xff;
1508 	cgc->data_direction = CGC_DATA_WRITE;
1509 	return pkt_generic_packet(pd, cgc);
1510 }
1511 
pkt_get_disc_info(struct pktcdvd_device * pd,disc_information * di)1512 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1513 {
1514 	struct packet_command cgc;
1515 	int ret;
1516 
1517 	/* set up command and get the disc info */
1518 	init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1519 	cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1520 	cgc.cmd[8] = cgc.buflen = 2;
1521 	cgc.quiet = 1;
1522 
1523 	ret = pkt_generic_packet(pd, &cgc);
1524 	if (ret)
1525 		return ret;
1526 
1527 	/* not all drives have the same disc_info length, so requeue
1528 	 * packet with the length the drive tells us it can supply
1529 	 */
1530 	cgc.buflen = be16_to_cpu(di->disc_information_length) +
1531 		     sizeof(di->disc_information_length);
1532 
1533 	if (cgc.buflen > sizeof(disc_information))
1534 		cgc.buflen = sizeof(disc_information);
1535 
1536 	cgc.cmd[8] = cgc.buflen;
1537 	return pkt_generic_packet(pd, &cgc);
1538 }
1539 
pkt_get_track_info(struct pktcdvd_device * pd,__u16 track,__u8 type,track_information * ti)1540 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1541 {
1542 	struct packet_command cgc;
1543 	int ret;
1544 
1545 	init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1546 	cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1547 	cgc.cmd[1] = type & 3;
1548 	cgc.cmd[4] = (track & 0xff00) >> 8;
1549 	cgc.cmd[5] = track & 0xff;
1550 	cgc.cmd[8] = 8;
1551 	cgc.quiet = 1;
1552 
1553 	ret = pkt_generic_packet(pd, &cgc);
1554 	if (ret)
1555 		return ret;
1556 
1557 	cgc.buflen = be16_to_cpu(ti->track_information_length) +
1558 		     sizeof(ti->track_information_length);
1559 
1560 	if (cgc.buflen > sizeof(track_information))
1561 		cgc.buflen = sizeof(track_information);
1562 
1563 	cgc.cmd[8] = cgc.buflen;
1564 	return pkt_generic_packet(pd, &cgc);
1565 }
1566 
pkt_get_last_written(struct pktcdvd_device * pd,long * last_written)1567 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1568 						long *last_written)
1569 {
1570 	disc_information di;
1571 	track_information ti;
1572 	__u32 last_track;
1573 	int ret;
1574 
1575 	ret = pkt_get_disc_info(pd, &di);
1576 	if (ret)
1577 		return ret;
1578 
1579 	last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1580 	ret = pkt_get_track_info(pd, last_track, 1, &ti);
1581 	if (ret)
1582 		return ret;
1583 
1584 	/* if this track is blank, try the previous. */
1585 	if (ti.blank) {
1586 		last_track--;
1587 		ret = pkt_get_track_info(pd, last_track, 1, &ti);
1588 		if (ret)
1589 			return ret;
1590 	}
1591 
1592 	/* if last recorded field is valid, return it. */
1593 	if (ti.lra_v) {
1594 		*last_written = be32_to_cpu(ti.last_rec_address);
1595 	} else {
1596 		/* make it up instead */
1597 		*last_written = be32_to_cpu(ti.track_start) +
1598 				be32_to_cpu(ti.track_size);
1599 		if (ti.free_blocks)
1600 			*last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1601 	}
1602 	return 0;
1603 }
1604 
1605 /*
1606  * write mode select package based on pd->settings
1607  */
pkt_set_write_settings(struct pktcdvd_device * pd)1608 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1609 {
1610 	struct packet_command cgc;
1611 	struct scsi_sense_hdr sshdr;
1612 	write_param_page *wp;
1613 	char buffer[128];
1614 	int ret, size;
1615 
1616 	/* doesn't apply to DVD+RW or DVD-RAM */
1617 	if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1618 		return 0;
1619 
1620 	memset(buffer, 0, sizeof(buffer));
1621 	init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1622 	cgc.sshdr = &sshdr;
1623 	ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0);
1624 	if (ret) {
1625 		pkt_dump_sense(pd, &cgc);
1626 		return ret;
1627 	}
1628 
1629 	size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1630 	pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1631 	if (size > sizeof(buffer))
1632 		size = sizeof(buffer);
1633 
1634 	/*
1635 	 * now get it all
1636 	 */
1637 	init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1638 	cgc.sshdr = &sshdr;
1639 	ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0);
1640 	if (ret) {
1641 		pkt_dump_sense(pd, &cgc);
1642 		return ret;
1643 	}
1644 
1645 	/*
1646 	 * write page is offset header + block descriptor length
1647 	 */
1648 	wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1649 
1650 	wp->fp = pd->settings.fp;
1651 	wp->track_mode = pd->settings.track_mode;
1652 	wp->write_type = pd->settings.write_type;
1653 	wp->data_block_type = pd->settings.block_mode;
1654 
1655 	wp->multi_session = 0;
1656 
1657 #ifdef PACKET_USE_LS
1658 	wp->link_size = 7;
1659 	wp->ls_v = 1;
1660 #endif
1661 
1662 	if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1663 		wp->session_format = 0;
1664 		wp->subhdr2 = 0x20;
1665 	} else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1666 		wp->session_format = 0x20;
1667 		wp->subhdr2 = 8;
1668 #if 0
1669 		wp->mcn[0] = 0x80;
1670 		memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1671 #endif
1672 	} else {
1673 		/*
1674 		 * paranoia
1675 		 */
1676 		pkt_err(pd, "write mode wrong %d\n", wp->data_block_type);
1677 		return 1;
1678 	}
1679 	wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1680 
1681 	cgc.buflen = cgc.cmd[8] = size;
1682 	ret = pkt_mode_select(pd, &cgc);
1683 	if (ret) {
1684 		pkt_dump_sense(pd, &cgc);
1685 		return ret;
1686 	}
1687 
1688 	pkt_print_settings(pd);
1689 	return 0;
1690 }
1691 
1692 /*
1693  * 1 -- we can write to this track, 0 -- we can't
1694  */
pkt_writable_track(struct pktcdvd_device * pd,track_information * ti)1695 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1696 {
1697 	switch (pd->mmc3_profile) {
1698 		case 0x1a: /* DVD+RW */
1699 		case 0x12: /* DVD-RAM */
1700 			/* The track is always writable on DVD+RW/DVD-RAM */
1701 			return 1;
1702 		default:
1703 			break;
1704 	}
1705 
1706 	if (!ti->packet || !ti->fp)
1707 		return 0;
1708 
1709 	/*
1710 	 * "good" settings as per Mt Fuji.
1711 	 */
1712 	if (ti->rt == 0 && ti->blank == 0)
1713 		return 1;
1714 
1715 	if (ti->rt == 0 && ti->blank == 1)
1716 		return 1;
1717 
1718 	if (ti->rt == 1 && ti->blank == 0)
1719 		return 1;
1720 
1721 	pkt_err(pd, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1722 	return 0;
1723 }
1724 
1725 /*
1726  * 1 -- we can write to this disc, 0 -- we can't
1727  */
pkt_writable_disc(struct pktcdvd_device * pd,disc_information * di)1728 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1729 {
1730 	switch (pd->mmc3_profile) {
1731 		case 0x0a: /* CD-RW */
1732 		case 0xffff: /* MMC3 not supported */
1733 			break;
1734 		case 0x1a: /* DVD+RW */
1735 		case 0x13: /* DVD-RW */
1736 		case 0x12: /* DVD-RAM */
1737 			return 1;
1738 		default:
1739 			pkt_dbg(2, pd, "Wrong disc profile (%x)\n",
1740 				pd->mmc3_profile);
1741 			return 0;
1742 	}
1743 
1744 	/*
1745 	 * for disc type 0xff we should probably reserve a new track.
1746 	 * but i'm not sure, should we leave this to user apps? probably.
1747 	 */
1748 	if (di->disc_type == 0xff) {
1749 		pkt_notice(pd, "unknown disc - no track?\n");
1750 		return 0;
1751 	}
1752 
1753 	if (di->disc_type != 0x20 && di->disc_type != 0) {
1754 		pkt_err(pd, "wrong disc type (%x)\n", di->disc_type);
1755 		return 0;
1756 	}
1757 
1758 	if (di->erasable == 0) {
1759 		pkt_notice(pd, "disc not erasable\n");
1760 		return 0;
1761 	}
1762 
1763 	if (di->border_status == PACKET_SESSION_RESERVED) {
1764 		pkt_err(pd, "can't write to last track (reserved)\n");
1765 		return 0;
1766 	}
1767 
1768 	return 1;
1769 }
1770 
pkt_probe_settings(struct pktcdvd_device * pd)1771 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1772 {
1773 	struct packet_command cgc;
1774 	unsigned char buf[12];
1775 	disc_information di;
1776 	track_information ti;
1777 	int ret, track;
1778 
1779 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1780 	cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1781 	cgc.cmd[8] = 8;
1782 	ret = pkt_generic_packet(pd, &cgc);
1783 	pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1784 
1785 	memset(&di, 0, sizeof(disc_information));
1786 	memset(&ti, 0, sizeof(track_information));
1787 
1788 	ret = pkt_get_disc_info(pd, &di);
1789 	if (ret) {
1790 		pkt_err(pd, "failed get_disc\n");
1791 		return ret;
1792 	}
1793 
1794 	if (!pkt_writable_disc(pd, &di))
1795 		return -EROFS;
1796 
1797 	pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1798 
1799 	track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1800 	ret = pkt_get_track_info(pd, track, 1, &ti);
1801 	if (ret) {
1802 		pkt_err(pd, "failed get_track\n");
1803 		return ret;
1804 	}
1805 
1806 	if (!pkt_writable_track(pd, &ti)) {
1807 		pkt_err(pd, "can't write to this track\n");
1808 		return -EROFS;
1809 	}
1810 
1811 	/*
1812 	 * we keep packet size in 512 byte units, makes it easier to
1813 	 * deal with request calculations.
1814 	 */
1815 	pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1816 	if (pd->settings.size == 0) {
1817 		pkt_notice(pd, "detected zero packet size!\n");
1818 		return -ENXIO;
1819 	}
1820 	if (pd->settings.size > PACKET_MAX_SECTORS) {
1821 		pkt_err(pd, "packet size is too big\n");
1822 		return -EROFS;
1823 	}
1824 	pd->settings.fp = ti.fp;
1825 	pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1826 
1827 	if (ti.nwa_v) {
1828 		pd->nwa = be32_to_cpu(ti.next_writable);
1829 		set_bit(PACKET_NWA_VALID, &pd->flags);
1830 	}
1831 
1832 	/*
1833 	 * in theory we could use lra on -RW media as well and just zero
1834 	 * blocks that haven't been written yet, but in practice that
1835 	 * is just a no-go. we'll use that for -R, naturally.
1836 	 */
1837 	if (ti.lra_v) {
1838 		pd->lra = be32_to_cpu(ti.last_rec_address);
1839 		set_bit(PACKET_LRA_VALID, &pd->flags);
1840 	} else {
1841 		pd->lra = 0xffffffff;
1842 		set_bit(PACKET_LRA_VALID, &pd->flags);
1843 	}
1844 
1845 	/*
1846 	 * fine for now
1847 	 */
1848 	pd->settings.link_loss = 7;
1849 	pd->settings.write_type = 0;	/* packet */
1850 	pd->settings.track_mode = ti.track_mode;
1851 
1852 	/*
1853 	 * mode1 or mode2 disc
1854 	 */
1855 	switch (ti.data_mode) {
1856 		case PACKET_MODE1:
1857 			pd->settings.block_mode = PACKET_BLOCK_MODE1;
1858 			break;
1859 		case PACKET_MODE2:
1860 			pd->settings.block_mode = PACKET_BLOCK_MODE2;
1861 			break;
1862 		default:
1863 			pkt_err(pd, "unknown data mode\n");
1864 			return -EROFS;
1865 	}
1866 	return 0;
1867 }
1868 
1869 /*
1870  * enable/disable write caching on drive
1871  */
pkt_write_caching(struct pktcdvd_device * pd,int set)1872 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
1873 						int set)
1874 {
1875 	struct packet_command cgc;
1876 	struct scsi_sense_hdr sshdr;
1877 	unsigned char buf[64];
1878 	int ret;
1879 
1880 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1881 	cgc.sshdr = &sshdr;
1882 	cgc.buflen = pd->mode_offset + 12;
1883 
1884 	/*
1885 	 * caching mode page might not be there, so quiet this command
1886 	 */
1887 	cgc.quiet = 1;
1888 
1889 	ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0);
1890 	if (ret)
1891 		return ret;
1892 
1893 	buf[pd->mode_offset + 10] |= (!!set << 2);
1894 
1895 	cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1896 	ret = pkt_mode_select(pd, &cgc);
1897 	if (ret) {
1898 		pkt_err(pd, "write caching control failed\n");
1899 		pkt_dump_sense(pd, &cgc);
1900 	} else if (!ret && set)
1901 		pkt_notice(pd, "enabled write caching\n");
1902 	return ret;
1903 }
1904 
pkt_lock_door(struct pktcdvd_device * pd,int lockflag)1905 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1906 {
1907 	struct packet_command cgc;
1908 
1909 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1910 	cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1911 	cgc.cmd[4] = lockflag ? 1 : 0;
1912 	return pkt_generic_packet(pd, &cgc);
1913 }
1914 
1915 /*
1916  * Returns drive maximum write speed
1917  */
pkt_get_max_speed(struct pktcdvd_device * pd,unsigned * write_speed)1918 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
1919 						unsigned *write_speed)
1920 {
1921 	struct packet_command cgc;
1922 	struct scsi_sense_hdr sshdr;
1923 	unsigned char buf[256+18];
1924 	unsigned char *cap_buf;
1925 	int ret, offset;
1926 
1927 	cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1928 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1929 	cgc.sshdr = &sshdr;
1930 
1931 	ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1932 	if (ret) {
1933 		cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
1934 			     sizeof(struct mode_page_header);
1935 		ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1936 		if (ret) {
1937 			pkt_dump_sense(pd, &cgc);
1938 			return ret;
1939 		}
1940 	}
1941 
1942 	offset = 20;			    /* Obsoleted field, used by older drives */
1943 	if (cap_buf[1] >= 28)
1944 		offset = 28;		    /* Current write speed selected */
1945 	if (cap_buf[1] >= 30) {
1946 		/* If the drive reports at least one "Logical Unit Write
1947 		 * Speed Performance Descriptor Block", use the information
1948 		 * in the first block. (contains the highest speed)
1949 		 */
1950 		int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
1951 		if (num_spdb > 0)
1952 			offset = 34;
1953 	}
1954 
1955 	*write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
1956 	return 0;
1957 }
1958 
1959 /* These tables from cdrecord - I don't have orange book */
1960 /* standard speed CD-RW (1-4x) */
1961 static char clv_to_speed[16] = {
1962 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
1963 	   0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1964 };
1965 /* high speed CD-RW (-10x) */
1966 static char hs_clv_to_speed[16] = {
1967 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
1968 	   0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1969 };
1970 /* ultra high speed CD-RW */
1971 static char us_clv_to_speed[16] = {
1972 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
1973 	   0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
1974 };
1975 
1976 /*
1977  * reads the maximum media speed from ATIP
1978  */
pkt_media_speed(struct pktcdvd_device * pd,unsigned * speed)1979 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
1980 						unsigned *speed)
1981 {
1982 	struct packet_command cgc;
1983 	struct scsi_sense_hdr sshdr;
1984 	unsigned char buf[64];
1985 	unsigned int size, st, sp;
1986 	int ret;
1987 
1988 	init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
1989 	cgc.sshdr = &sshdr;
1990 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
1991 	cgc.cmd[1] = 2;
1992 	cgc.cmd[2] = 4; /* READ ATIP */
1993 	cgc.cmd[8] = 2;
1994 	ret = pkt_generic_packet(pd, &cgc);
1995 	if (ret) {
1996 		pkt_dump_sense(pd, &cgc);
1997 		return ret;
1998 	}
1999 	size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2000 	if (size > sizeof(buf))
2001 		size = sizeof(buf);
2002 
2003 	init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2004 	cgc.sshdr = &sshdr;
2005 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2006 	cgc.cmd[1] = 2;
2007 	cgc.cmd[2] = 4;
2008 	cgc.cmd[8] = size;
2009 	ret = pkt_generic_packet(pd, &cgc);
2010 	if (ret) {
2011 		pkt_dump_sense(pd, &cgc);
2012 		return ret;
2013 	}
2014 
2015 	if (!(buf[6] & 0x40)) {
2016 		pkt_notice(pd, "disc type is not CD-RW\n");
2017 		return 1;
2018 	}
2019 	if (!(buf[6] & 0x4)) {
2020 		pkt_notice(pd, "A1 values on media are not valid, maybe not CDRW?\n");
2021 		return 1;
2022 	}
2023 
2024 	st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2025 
2026 	sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2027 
2028 	/* Info from cdrecord */
2029 	switch (st) {
2030 		case 0: /* standard speed */
2031 			*speed = clv_to_speed[sp];
2032 			break;
2033 		case 1: /* high speed */
2034 			*speed = hs_clv_to_speed[sp];
2035 			break;
2036 		case 2: /* ultra high speed */
2037 			*speed = us_clv_to_speed[sp];
2038 			break;
2039 		default:
2040 			pkt_notice(pd, "unknown disc sub-type %d\n", st);
2041 			return 1;
2042 	}
2043 	if (*speed) {
2044 		pkt_info(pd, "maximum media speed: %d\n", *speed);
2045 		return 0;
2046 	} else {
2047 		pkt_notice(pd, "unknown speed %d for sub-type %d\n", sp, st);
2048 		return 1;
2049 	}
2050 }
2051 
pkt_perform_opc(struct pktcdvd_device * pd)2052 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2053 {
2054 	struct packet_command cgc;
2055 	struct scsi_sense_hdr sshdr;
2056 	int ret;
2057 
2058 	pkt_dbg(2, pd, "Performing OPC\n");
2059 
2060 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2061 	cgc.sshdr = &sshdr;
2062 	cgc.timeout = 60*HZ;
2063 	cgc.cmd[0] = GPCMD_SEND_OPC;
2064 	cgc.cmd[1] = 1;
2065 	ret = pkt_generic_packet(pd, &cgc);
2066 	if (ret)
2067 		pkt_dump_sense(pd, &cgc);
2068 	return ret;
2069 }
2070 
pkt_open_write(struct pktcdvd_device * pd)2071 static int pkt_open_write(struct pktcdvd_device *pd)
2072 {
2073 	int ret;
2074 	unsigned int write_speed, media_write_speed, read_speed;
2075 
2076 	ret = pkt_probe_settings(pd);
2077 	if (ret) {
2078 		pkt_dbg(2, pd, "failed probe\n");
2079 		return ret;
2080 	}
2081 
2082 	ret = pkt_set_write_settings(pd);
2083 	if (ret) {
2084 		pkt_dbg(1, pd, "failed saving write settings\n");
2085 		return -EIO;
2086 	}
2087 
2088 	pkt_write_caching(pd, USE_WCACHING);
2089 
2090 	ret = pkt_get_max_speed(pd, &write_speed);
2091 	if (ret)
2092 		write_speed = 16 * 177;
2093 	switch (pd->mmc3_profile) {
2094 		case 0x13: /* DVD-RW */
2095 		case 0x1a: /* DVD+RW */
2096 		case 0x12: /* DVD-RAM */
2097 			pkt_dbg(1, pd, "write speed %ukB/s\n", write_speed);
2098 			break;
2099 		default:
2100 			ret = pkt_media_speed(pd, &media_write_speed);
2101 			if (ret)
2102 				media_write_speed = 16;
2103 			write_speed = min(write_speed, media_write_speed * 177);
2104 			pkt_dbg(1, pd, "write speed %ux\n", write_speed / 176);
2105 			break;
2106 	}
2107 	read_speed = write_speed;
2108 
2109 	ret = pkt_set_speed(pd, write_speed, read_speed);
2110 	if (ret) {
2111 		pkt_dbg(1, pd, "couldn't set write speed\n");
2112 		return -EIO;
2113 	}
2114 	pd->write_speed = write_speed;
2115 	pd->read_speed = read_speed;
2116 
2117 	ret = pkt_perform_opc(pd);
2118 	if (ret) {
2119 		pkt_dbg(1, pd, "Optimum Power Calibration failed\n");
2120 	}
2121 
2122 	return 0;
2123 }
2124 
2125 /*
2126  * called at open time.
2127  */
pkt_open_dev(struct pktcdvd_device * pd,fmode_t write)2128 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2129 {
2130 	int ret;
2131 	long lba;
2132 	struct request_queue *q;
2133 	struct block_device *bdev;
2134 
2135 	/*
2136 	 * We need to re-open the cdrom device without O_NONBLOCK to be able
2137 	 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2138 	 * so open should not fail.
2139 	 */
2140 	bdev = blkdev_get_by_dev(pd->bdev->bd_dev, FMODE_READ | FMODE_EXCL, pd);
2141 	if (IS_ERR(bdev)) {
2142 		ret = PTR_ERR(bdev);
2143 		goto out;
2144 	}
2145 
2146 	ret = pkt_get_last_written(pd, &lba);
2147 	if (ret) {
2148 		pkt_err(pd, "pkt_get_last_written failed\n");
2149 		goto out_putdev;
2150 	}
2151 
2152 	set_capacity(pd->disk, lba << 2);
2153 	set_capacity_and_notify(pd->bdev->bd_disk, lba << 2);
2154 
2155 	q = bdev_get_queue(pd->bdev);
2156 	if (write) {
2157 		ret = pkt_open_write(pd);
2158 		if (ret)
2159 			goto out_putdev;
2160 		/*
2161 		 * Some CDRW drives can not handle writes larger than one packet,
2162 		 * even if the size is a multiple of the packet size.
2163 		 */
2164 		blk_queue_max_hw_sectors(q, pd->settings.size);
2165 		set_bit(PACKET_WRITABLE, &pd->flags);
2166 	} else {
2167 		pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2168 		clear_bit(PACKET_WRITABLE, &pd->flags);
2169 	}
2170 
2171 	ret = pkt_set_segment_merging(pd, q);
2172 	if (ret)
2173 		goto out_putdev;
2174 
2175 	if (write) {
2176 		if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2177 			pkt_err(pd, "not enough memory for buffers\n");
2178 			ret = -ENOMEM;
2179 			goto out_putdev;
2180 		}
2181 		pkt_info(pd, "%lukB available on disc\n", lba << 1);
2182 	}
2183 
2184 	return 0;
2185 
2186 out_putdev:
2187 	blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
2188 out:
2189 	return ret;
2190 }
2191 
2192 /*
2193  * called when the device is closed. makes sure that the device flushes
2194  * the internal cache before we close.
2195  */
pkt_release_dev(struct pktcdvd_device * pd,int flush)2196 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2197 {
2198 	if (flush && pkt_flush_cache(pd))
2199 		pkt_dbg(1, pd, "not flushing cache\n");
2200 
2201 	pkt_lock_door(pd, 0);
2202 
2203 	pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2204 	blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2205 
2206 	pkt_shrink_pktlist(pd);
2207 }
2208 
pkt_find_dev_from_minor(unsigned int dev_minor)2209 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2210 {
2211 	if (dev_minor >= MAX_WRITERS)
2212 		return NULL;
2213 
2214 	dev_minor = array_index_nospec(dev_minor, MAX_WRITERS);
2215 	return pkt_devs[dev_minor];
2216 }
2217 
pkt_open(struct block_device * bdev,fmode_t mode)2218 static int pkt_open(struct block_device *bdev, fmode_t mode)
2219 {
2220 	struct pktcdvd_device *pd = NULL;
2221 	int ret;
2222 
2223 	mutex_lock(&pktcdvd_mutex);
2224 	mutex_lock(&ctl_mutex);
2225 	pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2226 	if (!pd) {
2227 		ret = -ENODEV;
2228 		goto out;
2229 	}
2230 	BUG_ON(pd->refcnt < 0);
2231 
2232 	pd->refcnt++;
2233 	if (pd->refcnt > 1) {
2234 		if ((mode & FMODE_WRITE) &&
2235 		    !test_bit(PACKET_WRITABLE, &pd->flags)) {
2236 			ret = -EBUSY;
2237 			goto out_dec;
2238 		}
2239 	} else {
2240 		ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2241 		if (ret)
2242 			goto out_dec;
2243 		/*
2244 		 * needed here as well, since ext2 (among others) may change
2245 		 * the blocksize at mount time
2246 		 */
2247 		set_blocksize(bdev, CD_FRAMESIZE);
2248 	}
2249 
2250 	mutex_unlock(&ctl_mutex);
2251 	mutex_unlock(&pktcdvd_mutex);
2252 	return 0;
2253 
2254 out_dec:
2255 	pd->refcnt--;
2256 out:
2257 	mutex_unlock(&ctl_mutex);
2258 	mutex_unlock(&pktcdvd_mutex);
2259 	return ret;
2260 }
2261 
pkt_close(struct gendisk * disk,fmode_t mode)2262 static void pkt_close(struct gendisk *disk, fmode_t mode)
2263 {
2264 	struct pktcdvd_device *pd = disk->private_data;
2265 
2266 	mutex_lock(&pktcdvd_mutex);
2267 	mutex_lock(&ctl_mutex);
2268 	pd->refcnt--;
2269 	BUG_ON(pd->refcnt < 0);
2270 	if (pd->refcnt == 0) {
2271 		int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2272 		pkt_release_dev(pd, flush);
2273 	}
2274 	mutex_unlock(&ctl_mutex);
2275 	mutex_unlock(&pktcdvd_mutex);
2276 }
2277 
2278 
pkt_end_io_read_cloned(struct bio * bio)2279 static void pkt_end_io_read_cloned(struct bio *bio)
2280 {
2281 	struct packet_stacked_data *psd = bio->bi_private;
2282 	struct pktcdvd_device *pd = psd->pd;
2283 
2284 	psd->bio->bi_status = bio->bi_status;
2285 	bio_put(bio);
2286 	bio_endio(psd->bio);
2287 	mempool_free(psd, &psd_pool);
2288 	pkt_bio_finished(pd);
2289 }
2290 
pkt_make_request_read(struct pktcdvd_device * pd,struct bio * bio)2291 static void pkt_make_request_read(struct pktcdvd_device *pd, struct bio *bio)
2292 {
2293 	struct bio *cloned_bio =
2294 		bio_alloc_clone(pd->bdev, bio, GFP_NOIO, &pkt_bio_set);
2295 	struct packet_stacked_data *psd = mempool_alloc(&psd_pool, GFP_NOIO);
2296 
2297 	psd->pd = pd;
2298 	psd->bio = bio;
2299 	cloned_bio->bi_private = psd;
2300 	cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2301 	pd->stats.secs_r += bio_sectors(bio);
2302 	pkt_queue_bio(pd, cloned_bio);
2303 }
2304 
pkt_make_request_write(struct request_queue * q,struct bio * bio)2305 static void pkt_make_request_write(struct request_queue *q, struct bio *bio)
2306 {
2307 	struct pktcdvd_device *pd = q->queuedata;
2308 	sector_t zone;
2309 	struct packet_data *pkt;
2310 	int was_empty, blocked_bio;
2311 	struct pkt_rb_node *node;
2312 
2313 	zone = get_zone(bio->bi_iter.bi_sector, pd);
2314 
2315 	/*
2316 	 * If we find a matching packet in state WAITING or READ_WAIT, we can
2317 	 * just append this bio to that packet.
2318 	 */
2319 	spin_lock(&pd->cdrw.active_list_lock);
2320 	blocked_bio = 0;
2321 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2322 		if (pkt->sector == zone) {
2323 			spin_lock(&pkt->lock);
2324 			if ((pkt->state == PACKET_WAITING_STATE) ||
2325 			    (pkt->state == PACKET_READ_WAIT_STATE)) {
2326 				bio_list_add(&pkt->orig_bios, bio);
2327 				pkt->write_size +=
2328 					bio->bi_iter.bi_size / CD_FRAMESIZE;
2329 				if ((pkt->write_size >= pkt->frames) &&
2330 				    (pkt->state == PACKET_WAITING_STATE)) {
2331 					atomic_inc(&pkt->run_sm);
2332 					wake_up(&pd->wqueue);
2333 				}
2334 				spin_unlock(&pkt->lock);
2335 				spin_unlock(&pd->cdrw.active_list_lock);
2336 				return;
2337 			} else {
2338 				blocked_bio = 1;
2339 			}
2340 			spin_unlock(&pkt->lock);
2341 		}
2342 	}
2343 	spin_unlock(&pd->cdrw.active_list_lock);
2344 
2345 	/*
2346 	 * Test if there is enough room left in the bio work queue
2347 	 * (queue size >= congestion on mark).
2348 	 * If not, wait till the work queue size is below the congestion off mark.
2349 	 */
2350 	spin_lock(&pd->lock);
2351 	if (pd->write_congestion_on > 0
2352 	    && pd->bio_queue_size >= pd->write_congestion_on) {
2353 		struct wait_bit_queue_entry wqe;
2354 
2355 		init_wait_var_entry(&wqe, &pd->congested, 0);
2356 		for (;;) {
2357 			prepare_to_wait_event(__var_waitqueue(&pd->congested),
2358 					      &wqe.wq_entry,
2359 					      TASK_UNINTERRUPTIBLE);
2360 			if (pd->bio_queue_size <= pd->write_congestion_off)
2361 				break;
2362 			pd->congested = true;
2363 			spin_unlock(&pd->lock);
2364 			schedule();
2365 			spin_lock(&pd->lock);
2366 		}
2367 	}
2368 	spin_unlock(&pd->lock);
2369 
2370 	/*
2371 	 * No matching packet found. Store the bio in the work queue.
2372 	 */
2373 	node = mempool_alloc(&pd->rb_pool, GFP_NOIO);
2374 	node->bio = bio;
2375 	spin_lock(&pd->lock);
2376 	BUG_ON(pd->bio_queue_size < 0);
2377 	was_empty = (pd->bio_queue_size == 0);
2378 	pkt_rbtree_insert(pd, node);
2379 	spin_unlock(&pd->lock);
2380 
2381 	/*
2382 	 * Wake up the worker thread.
2383 	 */
2384 	atomic_set(&pd->scan_queue, 1);
2385 	if (was_empty) {
2386 		/* This wake_up is required for correct operation */
2387 		wake_up(&pd->wqueue);
2388 	} else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2389 		/*
2390 		 * This wake up is not required for correct operation,
2391 		 * but improves performance in some cases.
2392 		 */
2393 		wake_up(&pd->wqueue);
2394 	}
2395 }
2396 
pkt_submit_bio(struct bio * bio)2397 static void pkt_submit_bio(struct bio *bio)
2398 {
2399 	struct pktcdvd_device *pd = bio->bi_bdev->bd_disk->queue->queuedata;
2400 	struct bio *split;
2401 
2402 	bio = bio_split_to_limits(bio);
2403 
2404 	pkt_dbg(2, pd, "start = %6llx stop = %6llx\n",
2405 		(unsigned long long)bio->bi_iter.bi_sector,
2406 		(unsigned long long)bio_end_sector(bio));
2407 
2408 	/*
2409 	 * Clone READ bios so we can have our own bi_end_io callback.
2410 	 */
2411 	if (bio_data_dir(bio) == READ) {
2412 		pkt_make_request_read(pd, bio);
2413 		return;
2414 	}
2415 
2416 	if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2417 		pkt_notice(pd, "WRITE for ro device (%llu)\n",
2418 			   (unsigned long long)bio->bi_iter.bi_sector);
2419 		goto end_io;
2420 	}
2421 
2422 	if (!bio->bi_iter.bi_size || (bio->bi_iter.bi_size % CD_FRAMESIZE)) {
2423 		pkt_err(pd, "wrong bio size\n");
2424 		goto end_io;
2425 	}
2426 
2427 	do {
2428 		sector_t zone = get_zone(bio->bi_iter.bi_sector, pd);
2429 		sector_t last_zone = get_zone(bio_end_sector(bio) - 1, pd);
2430 
2431 		if (last_zone != zone) {
2432 			BUG_ON(last_zone != zone + pd->settings.size);
2433 
2434 			split = bio_split(bio, last_zone -
2435 					  bio->bi_iter.bi_sector,
2436 					  GFP_NOIO, &pkt_bio_set);
2437 			bio_chain(split, bio);
2438 		} else {
2439 			split = bio;
2440 		}
2441 
2442 		pkt_make_request_write(bio->bi_bdev->bd_disk->queue, split);
2443 	} while (split != bio);
2444 
2445 	return;
2446 end_io:
2447 	bio_io_error(bio);
2448 }
2449 
pkt_init_queue(struct pktcdvd_device * pd)2450 static void pkt_init_queue(struct pktcdvd_device *pd)
2451 {
2452 	struct request_queue *q = pd->disk->queue;
2453 
2454 	blk_queue_logical_block_size(q, CD_FRAMESIZE);
2455 	blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2456 	q->queuedata = pd;
2457 }
2458 
pkt_seq_show(struct seq_file * m,void * p)2459 static int pkt_seq_show(struct seq_file *m, void *p)
2460 {
2461 	struct pktcdvd_device *pd = m->private;
2462 	char *msg;
2463 	int states[PACKET_NUM_STATES];
2464 
2465 	seq_printf(m, "Writer %s mapped to %pg:\n", pd->name, pd->bdev);
2466 
2467 	seq_printf(m, "\nSettings:\n");
2468 	seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2469 
2470 	if (pd->settings.write_type == 0)
2471 		msg = "Packet";
2472 	else
2473 		msg = "Unknown";
2474 	seq_printf(m, "\twrite type:\t\t%s\n", msg);
2475 
2476 	seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2477 	seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2478 
2479 	seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2480 
2481 	if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2482 		msg = "Mode 1";
2483 	else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2484 		msg = "Mode 2";
2485 	else
2486 		msg = "Unknown";
2487 	seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2488 
2489 	seq_printf(m, "\nStatistics:\n");
2490 	seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2491 	seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2492 	seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2493 	seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2494 	seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2495 
2496 	seq_printf(m, "\nMisc:\n");
2497 	seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2498 	seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2499 	seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2500 	seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2501 	seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2502 	seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2503 
2504 	seq_printf(m, "\nQueue state:\n");
2505 	seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2506 	seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2507 	seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2508 
2509 	pkt_count_states(pd, states);
2510 	seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2511 		   states[0], states[1], states[2], states[3], states[4], states[5]);
2512 
2513 	seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2514 			pd->write_congestion_off,
2515 			pd->write_congestion_on);
2516 	return 0;
2517 }
2518 
pkt_new_dev(struct pktcdvd_device * pd,dev_t dev)2519 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2520 {
2521 	int i;
2522 	struct block_device *bdev;
2523 	struct scsi_device *sdev;
2524 
2525 	if (pd->pkt_dev == dev) {
2526 		pkt_err(pd, "recursive setup not allowed\n");
2527 		return -EBUSY;
2528 	}
2529 	for (i = 0; i < MAX_WRITERS; i++) {
2530 		struct pktcdvd_device *pd2 = pkt_devs[i];
2531 		if (!pd2)
2532 			continue;
2533 		if (pd2->bdev->bd_dev == dev) {
2534 			pkt_err(pd, "%pg already setup\n", pd2->bdev);
2535 			return -EBUSY;
2536 		}
2537 		if (pd2->pkt_dev == dev) {
2538 			pkt_err(pd, "can't chain pktcdvd devices\n");
2539 			return -EBUSY;
2540 		}
2541 	}
2542 
2543 	bdev = blkdev_get_by_dev(dev, FMODE_READ | FMODE_NDELAY, NULL);
2544 	if (IS_ERR(bdev))
2545 		return PTR_ERR(bdev);
2546 	sdev = scsi_device_from_queue(bdev->bd_disk->queue);
2547 	if (!sdev) {
2548 		blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2549 		return -EINVAL;
2550 	}
2551 	put_device(&sdev->sdev_gendev);
2552 
2553 	/* This is safe, since we have a reference from open(). */
2554 	__module_get(THIS_MODULE);
2555 
2556 	pd->bdev = bdev;
2557 	set_blocksize(bdev, CD_FRAMESIZE);
2558 
2559 	pkt_init_queue(pd);
2560 
2561 	atomic_set(&pd->cdrw.pending_bios, 0);
2562 	pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2563 	if (IS_ERR(pd->cdrw.thread)) {
2564 		pkt_err(pd, "can't start kernel thread\n");
2565 		goto out_mem;
2566 	}
2567 
2568 	proc_create_single_data(pd->name, 0, pkt_proc, pkt_seq_show, pd);
2569 	pkt_dbg(1, pd, "writer mapped to %pg\n", bdev);
2570 	return 0;
2571 
2572 out_mem:
2573 	blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2574 	/* This is safe: open() is still holding a reference. */
2575 	module_put(THIS_MODULE);
2576 	return -ENOMEM;
2577 }
2578 
pkt_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)2579 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2580 {
2581 	struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2582 	int ret;
2583 
2584 	pkt_dbg(2, pd, "cmd %x, dev %d:%d\n",
2585 		cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2586 
2587 	mutex_lock(&pktcdvd_mutex);
2588 	switch (cmd) {
2589 	case CDROMEJECT:
2590 		/*
2591 		 * The door gets locked when the device is opened, so we
2592 		 * have to unlock it or else the eject command fails.
2593 		 */
2594 		if (pd->refcnt == 1)
2595 			pkt_lock_door(pd, 0);
2596 		fallthrough;
2597 	/*
2598 	 * forward selected CDROM ioctls to CD-ROM, for UDF
2599 	 */
2600 	case CDROMMULTISESSION:
2601 	case CDROMREADTOCENTRY:
2602 	case CDROM_LAST_WRITTEN:
2603 	case CDROM_SEND_PACKET:
2604 	case SCSI_IOCTL_SEND_COMMAND:
2605 		if (!bdev->bd_disk->fops->ioctl)
2606 			ret = -ENOTTY;
2607 		else
2608 			ret = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
2609 		break;
2610 	default:
2611 		pkt_dbg(2, pd, "Unknown ioctl (%x)\n", cmd);
2612 		ret = -ENOTTY;
2613 	}
2614 	mutex_unlock(&pktcdvd_mutex);
2615 
2616 	return ret;
2617 }
2618 
pkt_check_events(struct gendisk * disk,unsigned int clearing)2619 static unsigned int pkt_check_events(struct gendisk *disk,
2620 				     unsigned int clearing)
2621 {
2622 	struct pktcdvd_device *pd = disk->private_data;
2623 	struct gendisk *attached_disk;
2624 
2625 	if (!pd)
2626 		return 0;
2627 	if (!pd->bdev)
2628 		return 0;
2629 	attached_disk = pd->bdev->bd_disk;
2630 	if (!attached_disk || !attached_disk->fops->check_events)
2631 		return 0;
2632 	return attached_disk->fops->check_events(attached_disk, clearing);
2633 }
2634 
pkt_devnode(struct gendisk * disk,umode_t * mode)2635 static char *pkt_devnode(struct gendisk *disk, umode_t *mode)
2636 {
2637 	return kasprintf(GFP_KERNEL, "pktcdvd/%s", disk->disk_name);
2638 }
2639 
2640 static const struct block_device_operations pktcdvd_ops = {
2641 	.owner =		THIS_MODULE,
2642 	.submit_bio =		pkt_submit_bio,
2643 	.open =			pkt_open,
2644 	.release =		pkt_close,
2645 	.ioctl =		pkt_ioctl,
2646 	.compat_ioctl =		blkdev_compat_ptr_ioctl,
2647 	.check_events =		pkt_check_events,
2648 	.devnode =		pkt_devnode,
2649 };
2650 
2651 /*
2652  * Set up mapping from pktcdvd device to CD-ROM device.
2653  */
pkt_setup_dev(dev_t dev,dev_t * pkt_dev)2654 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2655 {
2656 	int idx;
2657 	int ret = -ENOMEM;
2658 	struct pktcdvd_device *pd;
2659 	struct gendisk *disk;
2660 
2661 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2662 
2663 	for (idx = 0; idx < MAX_WRITERS; idx++)
2664 		if (!pkt_devs[idx])
2665 			break;
2666 	if (idx == MAX_WRITERS) {
2667 		pr_err("max %d writers supported\n", MAX_WRITERS);
2668 		ret = -EBUSY;
2669 		goto out_mutex;
2670 	}
2671 
2672 	pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2673 	if (!pd)
2674 		goto out_mutex;
2675 
2676 	ret = mempool_init_kmalloc_pool(&pd->rb_pool, PKT_RB_POOL_SIZE,
2677 					sizeof(struct pkt_rb_node));
2678 	if (ret)
2679 		goto out_mem;
2680 
2681 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2682 	INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2683 	spin_lock_init(&pd->cdrw.active_list_lock);
2684 
2685 	spin_lock_init(&pd->lock);
2686 	spin_lock_init(&pd->iosched.lock);
2687 	bio_list_init(&pd->iosched.read_queue);
2688 	bio_list_init(&pd->iosched.write_queue);
2689 	sprintf(pd->name, DRIVER_NAME"%d", idx);
2690 	init_waitqueue_head(&pd->wqueue);
2691 	pd->bio_queue = RB_ROOT;
2692 
2693 	pd->write_congestion_on  = write_congestion_on;
2694 	pd->write_congestion_off = write_congestion_off;
2695 
2696 	ret = -ENOMEM;
2697 	disk = blk_alloc_disk(NUMA_NO_NODE);
2698 	if (!disk)
2699 		goto out_mem;
2700 	pd->disk = disk;
2701 	disk->major = pktdev_major;
2702 	disk->first_minor = idx;
2703 	disk->minors = 1;
2704 	disk->fops = &pktcdvd_ops;
2705 	disk->flags = GENHD_FL_REMOVABLE | GENHD_FL_NO_PART;
2706 	strcpy(disk->disk_name, pd->name);
2707 	disk->private_data = pd;
2708 
2709 	pd->pkt_dev = MKDEV(pktdev_major, idx);
2710 	ret = pkt_new_dev(pd, dev);
2711 	if (ret)
2712 		goto out_mem2;
2713 
2714 	/* inherit events of the host device */
2715 	disk->events = pd->bdev->bd_disk->events;
2716 
2717 	ret = add_disk(disk);
2718 	if (ret)
2719 		goto out_mem2;
2720 
2721 	pkt_sysfs_dev_new(pd);
2722 	pkt_debugfs_dev_new(pd);
2723 
2724 	pkt_devs[idx] = pd;
2725 	if (pkt_dev)
2726 		*pkt_dev = pd->pkt_dev;
2727 
2728 	mutex_unlock(&ctl_mutex);
2729 	return 0;
2730 
2731 out_mem2:
2732 	put_disk(disk);
2733 out_mem:
2734 	mempool_exit(&pd->rb_pool);
2735 	kfree(pd);
2736 out_mutex:
2737 	mutex_unlock(&ctl_mutex);
2738 	pr_err("setup of pktcdvd device failed\n");
2739 	return ret;
2740 }
2741 
2742 /*
2743  * Tear down mapping from pktcdvd device to CD-ROM device.
2744  */
pkt_remove_dev(dev_t pkt_dev)2745 static int pkt_remove_dev(dev_t pkt_dev)
2746 {
2747 	struct pktcdvd_device *pd;
2748 	int idx;
2749 	int ret = 0;
2750 
2751 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2752 
2753 	for (idx = 0; idx < MAX_WRITERS; idx++) {
2754 		pd = pkt_devs[idx];
2755 		if (pd && (pd->pkt_dev == pkt_dev))
2756 			break;
2757 	}
2758 	if (idx == MAX_WRITERS) {
2759 		pr_debug("dev not setup\n");
2760 		ret = -ENXIO;
2761 		goto out;
2762 	}
2763 
2764 	if (pd->refcnt > 0) {
2765 		ret = -EBUSY;
2766 		goto out;
2767 	}
2768 	if (!IS_ERR(pd->cdrw.thread))
2769 		kthread_stop(pd->cdrw.thread);
2770 
2771 	pkt_devs[idx] = NULL;
2772 
2773 	pkt_debugfs_dev_remove(pd);
2774 	pkt_sysfs_dev_remove(pd);
2775 
2776 	blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2777 
2778 	remove_proc_entry(pd->name, pkt_proc);
2779 	pkt_dbg(1, pd, "writer unmapped\n");
2780 
2781 	del_gendisk(pd->disk);
2782 	put_disk(pd->disk);
2783 
2784 	mempool_exit(&pd->rb_pool);
2785 	kfree(pd);
2786 
2787 	/* This is safe: open() is still holding a reference. */
2788 	module_put(THIS_MODULE);
2789 
2790 out:
2791 	mutex_unlock(&ctl_mutex);
2792 	return ret;
2793 }
2794 
pkt_get_status(struct pkt_ctrl_command * ctrl_cmd)2795 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2796 {
2797 	struct pktcdvd_device *pd;
2798 
2799 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2800 
2801 	pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2802 	if (pd) {
2803 		ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2804 		ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2805 	} else {
2806 		ctrl_cmd->dev = 0;
2807 		ctrl_cmd->pkt_dev = 0;
2808 	}
2809 	ctrl_cmd->num_devices = MAX_WRITERS;
2810 
2811 	mutex_unlock(&ctl_mutex);
2812 }
2813 
pkt_ctl_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2814 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2815 {
2816 	void __user *argp = (void __user *)arg;
2817 	struct pkt_ctrl_command ctrl_cmd;
2818 	int ret = 0;
2819 	dev_t pkt_dev = 0;
2820 
2821 	if (cmd != PACKET_CTRL_CMD)
2822 		return -ENOTTY;
2823 
2824 	if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2825 		return -EFAULT;
2826 
2827 	switch (ctrl_cmd.command) {
2828 	case PKT_CTRL_CMD_SETUP:
2829 		if (!capable(CAP_SYS_ADMIN))
2830 			return -EPERM;
2831 		ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2832 		ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
2833 		break;
2834 	case PKT_CTRL_CMD_TEARDOWN:
2835 		if (!capable(CAP_SYS_ADMIN))
2836 			return -EPERM;
2837 		ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
2838 		break;
2839 	case PKT_CTRL_CMD_STATUS:
2840 		pkt_get_status(&ctrl_cmd);
2841 		break;
2842 	default:
2843 		return -ENOTTY;
2844 	}
2845 
2846 	if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2847 		return -EFAULT;
2848 	return ret;
2849 }
2850 
2851 #ifdef CONFIG_COMPAT
pkt_ctl_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2852 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2853 {
2854 	return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2855 }
2856 #endif
2857 
2858 static const struct file_operations pkt_ctl_fops = {
2859 	.open		= nonseekable_open,
2860 	.unlocked_ioctl	= pkt_ctl_ioctl,
2861 #ifdef CONFIG_COMPAT
2862 	.compat_ioctl	= pkt_ctl_compat_ioctl,
2863 #endif
2864 	.owner		= THIS_MODULE,
2865 	.llseek		= no_llseek,
2866 };
2867 
2868 static struct miscdevice pkt_misc = {
2869 	.minor 		= MISC_DYNAMIC_MINOR,
2870 	.name  		= DRIVER_NAME,
2871 	.nodename	= "pktcdvd/control",
2872 	.fops  		= &pkt_ctl_fops
2873 };
2874 
pkt_init(void)2875 static int __init pkt_init(void)
2876 {
2877 	int ret;
2878 
2879 	mutex_init(&ctl_mutex);
2880 
2881 	ret = mempool_init_kmalloc_pool(&psd_pool, PSD_POOL_SIZE,
2882 				    sizeof(struct packet_stacked_data));
2883 	if (ret)
2884 		return ret;
2885 	ret = bioset_init(&pkt_bio_set, BIO_POOL_SIZE, 0, 0);
2886 	if (ret) {
2887 		mempool_exit(&psd_pool);
2888 		return ret;
2889 	}
2890 
2891 	ret = register_blkdev(pktdev_major, DRIVER_NAME);
2892 	if (ret < 0) {
2893 		pr_err("unable to register block device\n");
2894 		goto out2;
2895 	}
2896 	if (!pktdev_major)
2897 		pktdev_major = ret;
2898 
2899 	ret = pkt_sysfs_init();
2900 	if (ret)
2901 		goto out;
2902 
2903 	pkt_debugfs_init();
2904 
2905 	ret = misc_register(&pkt_misc);
2906 	if (ret) {
2907 		pr_err("unable to register misc device\n");
2908 		goto out_misc;
2909 	}
2910 
2911 	pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
2912 
2913 	return 0;
2914 
2915 out_misc:
2916 	pkt_debugfs_cleanup();
2917 	pkt_sysfs_cleanup();
2918 out:
2919 	unregister_blkdev(pktdev_major, DRIVER_NAME);
2920 out2:
2921 	mempool_exit(&psd_pool);
2922 	bioset_exit(&pkt_bio_set);
2923 	return ret;
2924 }
2925 
pkt_exit(void)2926 static void __exit pkt_exit(void)
2927 {
2928 	remove_proc_entry("driver/"DRIVER_NAME, NULL);
2929 	misc_deregister(&pkt_misc);
2930 
2931 	pkt_debugfs_cleanup();
2932 	pkt_sysfs_cleanup();
2933 
2934 	unregister_blkdev(pktdev_major, DRIVER_NAME);
2935 	mempool_exit(&psd_pool);
2936 	bioset_exit(&pkt_bio_set);
2937 }
2938 
2939 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
2940 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
2941 MODULE_LICENSE("GPL");
2942 
2943 module_init(pkt_init);
2944 module_exit(pkt_exit);
2945