1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #ifndef BTRFS_CTREE_H
7 #define BTRFS_CTREE_H
8
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/highmem.h>
12 #include <linux/fs.h>
13 #include <linux/rwsem.h>
14 #include <linux/semaphore.h>
15 #include <linux/completion.h>
16 #include <linux/backing-dev.h>
17 #include <linux/wait.h>
18 #include <linux/slab.h>
19 #include <trace/events/btrfs.h>
20 #include <asm/unaligned.h>
21 #include <linux/pagemap.h>
22 #include <linux/btrfs.h>
23 #include <linux/btrfs_tree.h>
24 #include <linux/workqueue.h>
25 #include <linux/security.h>
26 #include <linux/sizes.h>
27 #include <linux/dynamic_debug.h>
28 #include <linux/refcount.h>
29 #include <linux/crc32c.h>
30 #include <linux/iomap.h>
31 #include "extent-io-tree.h"
32 #include "extent_io.h"
33 #include "extent_map.h"
34 #include "async-thread.h"
35 #include "block-rsv.h"
36 #include "locking.h"
37
38 struct btrfs_trans_handle;
39 struct btrfs_transaction;
40 struct btrfs_pending_snapshot;
41 struct btrfs_delayed_ref_root;
42 struct btrfs_space_info;
43 struct btrfs_block_group;
44 extern struct kmem_cache *btrfs_trans_handle_cachep;
45 extern struct kmem_cache *btrfs_path_cachep;
46 extern struct kmem_cache *btrfs_free_space_cachep;
47 extern struct kmem_cache *btrfs_free_space_bitmap_cachep;
48 struct btrfs_ordered_sum;
49 struct btrfs_ref;
50 struct btrfs_bio;
51 struct btrfs_ioctl_encoded_io_args;
52 struct btrfs_device;
53 struct btrfs_fs_devices;
54 struct btrfs_balance_control;
55 struct btrfs_delayed_root;
56 struct reloc_control;
57
58 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
59
60 /*
61 * Maximum number of mirrors that can be available for all profiles counting
62 * the target device of dev-replace as one. During an active device replace
63 * procedure, the target device of the copy operation is a mirror for the
64 * filesystem data as well that can be used to read data in order to repair
65 * read errors on other disks.
66 *
67 * Current value is derived from RAID1C4 with 4 copies.
68 */
69 #define BTRFS_MAX_MIRRORS (4 + 1)
70
71 #define BTRFS_MAX_LEVEL 8
72
73 #define BTRFS_OLDEST_GENERATION 0ULL
74
75 /*
76 * we can actually store much bigger names, but lets not confuse the rest
77 * of linux
78 */
79 #define BTRFS_NAME_LEN 255
80
81 /*
82 * Theoretical limit is larger, but we keep this down to a sane
83 * value. That should limit greatly the possibility of collisions on
84 * inode ref items.
85 */
86 #define BTRFS_LINK_MAX 65535U
87
88 #define BTRFS_EMPTY_DIR_SIZE 0
89
90 /* ioprio of readahead is set to idle */
91 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
92
93 #define BTRFS_DIRTY_METADATA_THRESH SZ_32M
94
95 /*
96 * Use large batch size to reduce overhead of metadata updates. On the reader
97 * side, we only read it when we are close to ENOSPC and the read overhead is
98 * mostly related to the number of CPUs, so it is OK to use arbitrary large
99 * value here.
100 */
101 #define BTRFS_TOTAL_BYTES_PINNED_BATCH SZ_128M
102
103 #define BTRFS_MAX_EXTENT_SIZE SZ_128M
104
105 /*
106 * Deltas are an effective way to populate global statistics. Give macro names
107 * to make it clear what we're doing. An example is discard_extents in
108 * btrfs_free_space_ctl.
109 */
110 #define BTRFS_STAT_NR_ENTRIES 2
111 #define BTRFS_STAT_CURR 0
112 #define BTRFS_STAT_PREV 1
113
btrfs_chunk_item_size(int num_stripes)114 static inline unsigned long btrfs_chunk_item_size(int num_stripes)
115 {
116 BUG_ON(num_stripes == 0);
117 return sizeof(struct btrfs_chunk) +
118 sizeof(struct btrfs_stripe) * (num_stripes - 1);
119 }
120
121 /*
122 * Runtime (in-memory) states of filesystem
123 */
124 enum {
125 /* Global indicator of serious filesystem errors */
126 BTRFS_FS_STATE_ERROR,
127 /*
128 * Filesystem is being remounted, allow to skip some operations, like
129 * defrag
130 */
131 BTRFS_FS_STATE_REMOUNTING,
132 /* Filesystem in RO mode */
133 BTRFS_FS_STATE_RO,
134 /* Track if a transaction abort has been reported on this filesystem */
135 BTRFS_FS_STATE_TRANS_ABORTED,
136 /*
137 * Bio operations should be blocked on this filesystem because a source
138 * or target device is being destroyed as part of a device replace
139 */
140 BTRFS_FS_STATE_DEV_REPLACING,
141 /* The btrfs_fs_info created for self-tests */
142 BTRFS_FS_STATE_DUMMY_FS_INFO,
143
144 BTRFS_FS_STATE_NO_CSUMS,
145
146 /* Indicates there was an error cleaning up a log tree. */
147 BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
148
149 BTRFS_FS_STATE_COUNT
150 };
151
152 #define BTRFS_BACKREF_REV_MAX 256
153 #define BTRFS_BACKREF_REV_SHIFT 56
154 #define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \
155 BTRFS_BACKREF_REV_SHIFT)
156
157 #define BTRFS_OLD_BACKREF_REV 0
158 #define BTRFS_MIXED_BACKREF_REV 1
159
160 /*
161 * every tree block (leaf or node) starts with this header.
162 */
163 struct btrfs_header {
164 /* these first four must match the super block */
165 u8 csum[BTRFS_CSUM_SIZE];
166 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
167 __le64 bytenr; /* which block this node is supposed to live in */
168 __le64 flags;
169
170 /* allowed to be different from the super from here on down */
171 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
172 __le64 generation;
173 __le64 owner;
174 __le32 nritems;
175 u8 level;
176 } __attribute__ ((__packed__));
177
178 /*
179 * this is a very generous portion of the super block, giving us
180 * room to translate 14 chunks with 3 stripes each.
181 */
182 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
183
184 /*
185 * just in case we somehow lose the roots and are not able to mount,
186 * we store an array of the roots from previous transactions
187 * in the super.
188 */
189 #define BTRFS_NUM_BACKUP_ROOTS 4
190 struct btrfs_root_backup {
191 __le64 tree_root;
192 __le64 tree_root_gen;
193
194 __le64 chunk_root;
195 __le64 chunk_root_gen;
196
197 __le64 extent_root;
198 __le64 extent_root_gen;
199
200 __le64 fs_root;
201 __le64 fs_root_gen;
202
203 __le64 dev_root;
204 __le64 dev_root_gen;
205
206 __le64 csum_root;
207 __le64 csum_root_gen;
208
209 __le64 total_bytes;
210 __le64 bytes_used;
211 __le64 num_devices;
212 /* future */
213 __le64 unused_64[4];
214
215 u8 tree_root_level;
216 u8 chunk_root_level;
217 u8 extent_root_level;
218 u8 fs_root_level;
219 u8 dev_root_level;
220 u8 csum_root_level;
221 /* future and to align */
222 u8 unused_8[10];
223 } __attribute__ ((__packed__));
224
225 #define BTRFS_SUPER_INFO_OFFSET SZ_64K
226 #define BTRFS_SUPER_INFO_SIZE 4096
227
228 /*
229 * The reserved space at the beginning of each device.
230 * It covers the primary super block and leaves space for potential use by other
231 * tools like bootloaders or to lower potential damage of accidental overwrite.
232 */
233 #define BTRFS_DEVICE_RANGE_RESERVED (SZ_1M)
234
235 /*
236 * the super block basically lists the main trees of the FS
237 * it currently lacks any block count etc etc
238 */
239 struct btrfs_super_block {
240 /* the first 4 fields must match struct btrfs_header */
241 u8 csum[BTRFS_CSUM_SIZE];
242 /* FS specific UUID, visible to user */
243 u8 fsid[BTRFS_FSID_SIZE];
244 __le64 bytenr; /* this block number */
245 __le64 flags;
246
247 /* allowed to be different from the btrfs_header from here own down */
248 __le64 magic;
249 __le64 generation;
250 __le64 root;
251 __le64 chunk_root;
252 __le64 log_root;
253
254 /*
255 * This member has never been utilized since the very beginning, thus
256 * it's always 0 regardless of kernel version. We always use
257 * generation + 1 to read log tree root. So here we mark it deprecated.
258 */
259 __le64 __unused_log_root_transid;
260 __le64 total_bytes;
261 __le64 bytes_used;
262 __le64 root_dir_objectid;
263 __le64 num_devices;
264 __le32 sectorsize;
265 __le32 nodesize;
266 __le32 __unused_leafsize;
267 __le32 stripesize;
268 __le32 sys_chunk_array_size;
269 __le64 chunk_root_generation;
270 __le64 compat_flags;
271 __le64 compat_ro_flags;
272 __le64 incompat_flags;
273 __le16 csum_type;
274 u8 root_level;
275 u8 chunk_root_level;
276 u8 log_root_level;
277 struct btrfs_dev_item dev_item;
278
279 char label[BTRFS_LABEL_SIZE];
280
281 __le64 cache_generation;
282 __le64 uuid_tree_generation;
283
284 /* the UUID written into btree blocks */
285 u8 metadata_uuid[BTRFS_FSID_SIZE];
286
287 /* future expansion */
288 u8 reserved8[8];
289 __le64 reserved[27];
290 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
291 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
292
293 /* Padded to 4096 bytes */
294 u8 padding[565];
295 } __attribute__ ((__packed__));
296 static_assert(sizeof(struct btrfs_super_block) == BTRFS_SUPER_INFO_SIZE);
297
298 /*
299 * Compat flags that we support. If any incompat flags are set other than the
300 * ones specified below then we will fail to mount
301 */
302 #define BTRFS_FEATURE_COMPAT_SUPP 0ULL
303 #define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL
304 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL
305
306 #define BTRFS_FEATURE_COMPAT_RO_SUPP \
307 (BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE | \
308 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID | \
309 BTRFS_FEATURE_COMPAT_RO_VERITY | \
310 BTRFS_FEATURE_COMPAT_RO_BLOCK_GROUP_TREE)
311
312 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL
313 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL
314
315 #ifdef CONFIG_BTRFS_DEBUG
316 /*
317 * Extent tree v2 supported only with CONFIG_BTRFS_DEBUG
318 */
319 #define BTRFS_FEATURE_INCOMPAT_SUPP \
320 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \
321 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \
322 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \
323 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \
324 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \
325 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \
326 BTRFS_FEATURE_INCOMPAT_RAID56 | \
327 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \
328 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \
329 BTRFS_FEATURE_INCOMPAT_NO_HOLES | \
330 BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \
331 BTRFS_FEATURE_INCOMPAT_RAID1C34 | \
332 BTRFS_FEATURE_INCOMPAT_ZONED | \
333 BTRFS_FEATURE_INCOMPAT_EXTENT_TREE_V2)
334 #else
335 #define BTRFS_FEATURE_INCOMPAT_SUPP \
336 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \
337 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \
338 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \
339 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \
340 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \
341 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \
342 BTRFS_FEATURE_INCOMPAT_RAID56 | \
343 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \
344 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \
345 BTRFS_FEATURE_INCOMPAT_NO_HOLES | \
346 BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \
347 BTRFS_FEATURE_INCOMPAT_RAID1C34 | \
348 BTRFS_FEATURE_INCOMPAT_ZONED)
349 #endif
350
351 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET \
352 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
353 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL
354
355 /*
356 * A leaf is full of items. offset and size tell us where to find
357 * the item in the leaf (relative to the start of the data area)
358 */
359 struct btrfs_item {
360 struct btrfs_disk_key key;
361 __le32 offset;
362 __le32 size;
363 } __attribute__ ((__packed__));
364
365 /*
366 * leaves have an item area and a data area:
367 * [item0, item1....itemN] [free space] [dataN...data1, data0]
368 *
369 * The data is separate from the items to get the keys closer together
370 * during searches.
371 */
372 struct btrfs_leaf {
373 struct btrfs_header header;
374 struct btrfs_item items[];
375 } __attribute__ ((__packed__));
376
377 /*
378 * all non-leaf blocks are nodes, they hold only keys and pointers to
379 * other blocks
380 */
381 struct btrfs_key_ptr {
382 struct btrfs_disk_key key;
383 __le64 blockptr;
384 __le64 generation;
385 } __attribute__ ((__packed__));
386
387 struct btrfs_node {
388 struct btrfs_header header;
389 struct btrfs_key_ptr ptrs[];
390 } __attribute__ ((__packed__));
391
392 /* Read ahead values for struct btrfs_path.reada */
393 enum {
394 READA_NONE,
395 READA_BACK,
396 READA_FORWARD,
397 /*
398 * Similar to READA_FORWARD but unlike it:
399 *
400 * 1) It will trigger readahead even for leaves that are not close to
401 * each other on disk;
402 * 2) It also triggers readahead for nodes;
403 * 3) During a search, even when a node or leaf is already in memory, it
404 * will still trigger readahead for other nodes and leaves that follow
405 * it.
406 *
407 * This is meant to be used only when we know we are iterating over the
408 * entire tree or a very large part of it.
409 */
410 READA_FORWARD_ALWAYS,
411 };
412
413 /*
414 * btrfs_paths remember the path taken from the root down to the leaf.
415 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
416 * to any other levels that are present.
417 *
418 * The slots array records the index of the item or block pointer
419 * used while walking the tree.
420 */
421 struct btrfs_path {
422 struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
423 int slots[BTRFS_MAX_LEVEL];
424 /* if there is real range locking, this locks field will change */
425 u8 locks[BTRFS_MAX_LEVEL];
426 u8 reada;
427 /* keep some upper locks as we walk down */
428 u8 lowest_level;
429
430 /*
431 * set by btrfs_split_item, tells search_slot to keep all locks
432 * and to force calls to keep space in the nodes
433 */
434 unsigned int search_for_split:1;
435 unsigned int keep_locks:1;
436 unsigned int skip_locking:1;
437 unsigned int search_commit_root:1;
438 unsigned int need_commit_sem:1;
439 unsigned int skip_release_on_error:1;
440 /*
441 * Indicate that new item (btrfs_search_slot) is extending already
442 * existing item and ins_len contains only the data size and not item
443 * header (ie. sizeof(struct btrfs_item) is not included).
444 */
445 unsigned int search_for_extension:1;
446 /* Stop search if any locks need to be taken (for read) */
447 unsigned int nowait:1;
448 };
449
450 struct btrfs_dev_replace {
451 u64 replace_state; /* see #define above */
452 time64_t time_started; /* seconds since 1-Jan-1970 */
453 time64_t time_stopped; /* seconds since 1-Jan-1970 */
454 atomic64_t num_write_errors;
455 atomic64_t num_uncorrectable_read_errors;
456
457 u64 cursor_left;
458 u64 committed_cursor_left;
459 u64 cursor_left_last_write_of_item;
460 u64 cursor_right;
461
462 u64 cont_reading_from_srcdev_mode; /* see #define above */
463
464 int is_valid;
465 int item_needs_writeback;
466 struct btrfs_device *srcdev;
467 struct btrfs_device *tgtdev;
468
469 struct mutex lock_finishing_cancel_unmount;
470 struct rw_semaphore rwsem;
471
472 struct btrfs_scrub_progress scrub_progress;
473
474 struct percpu_counter bio_counter;
475 wait_queue_head_t replace_wait;
476 };
477
478 /*
479 * free clusters are used to claim free space in relatively large chunks,
480 * allowing us to do less seeky writes. They are used for all metadata
481 * allocations. In ssd_spread mode they are also used for data allocations.
482 */
483 struct btrfs_free_cluster {
484 spinlock_t lock;
485 spinlock_t refill_lock;
486 struct rb_root root;
487
488 /* largest extent in this cluster */
489 u64 max_size;
490
491 /* first extent starting offset */
492 u64 window_start;
493
494 /* We did a full search and couldn't create a cluster */
495 bool fragmented;
496
497 struct btrfs_block_group *block_group;
498 /*
499 * when a cluster is allocated from a block group, we put the
500 * cluster onto a list in the block group so that it can
501 * be freed before the block group is freed.
502 */
503 struct list_head block_group_list;
504 };
505
506 /* Discard control. */
507 /*
508 * Async discard uses multiple lists to differentiate the discard filter
509 * parameters. Index 0 is for completely free block groups where we need to
510 * ensure the entire block group is trimmed without being lossy. Indices
511 * afterwards represent monotonically decreasing discard filter sizes to
512 * prioritize what should be discarded next.
513 */
514 #define BTRFS_NR_DISCARD_LISTS 3
515 #define BTRFS_DISCARD_INDEX_UNUSED 0
516 #define BTRFS_DISCARD_INDEX_START 1
517
518 struct btrfs_discard_ctl {
519 struct workqueue_struct *discard_workers;
520 struct delayed_work work;
521 spinlock_t lock;
522 struct btrfs_block_group *block_group;
523 struct list_head discard_list[BTRFS_NR_DISCARD_LISTS];
524 u64 prev_discard;
525 u64 prev_discard_time;
526 atomic_t discardable_extents;
527 atomic64_t discardable_bytes;
528 u64 max_discard_size;
529 u64 delay_ms;
530 u32 iops_limit;
531 u32 kbps_limit;
532 u64 discard_extent_bytes;
533 u64 discard_bitmap_bytes;
534 atomic64_t discard_bytes_saved;
535 };
536
537 enum {
538 BTRFS_FS_CLOSING_START,
539 BTRFS_FS_CLOSING_DONE,
540 BTRFS_FS_LOG_RECOVERING,
541 BTRFS_FS_OPEN,
542 BTRFS_FS_QUOTA_ENABLED,
543 BTRFS_FS_UPDATE_UUID_TREE_GEN,
544 BTRFS_FS_CREATING_FREE_SPACE_TREE,
545 BTRFS_FS_BTREE_ERR,
546 BTRFS_FS_LOG1_ERR,
547 BTRFS_FS_LOG2_ERR,
548 BTRFS_FS_QUOTA_OVERRIDE,
549 /* Used to record internally whether fs has been frozen */
550 BTRFS_FS_FROZEN,
551 /*
552 * Indicate that balance has been set up from the ioctl and is in the
553 * main phase. The fs_info::balance_ctl is initialized.
554 */
555 BTRFS_FS_BALANCE_RUNNING,
556
557 /*
558 * Indicate that relocation of a chunk has started, it's set per chunk
559 * and is toggled between chunks.
560 */
561 BTRFS_FS_RELOC_RUNNING,
562
563 /* Indicate that the cleaner thread is awake and doing something. */
564 BTRFS_FS_CLEANER_RUNNING,
565
566 /*
567 * The checksumming has an optimized version and is considered fast,
568 * so we don't need to offload checksums to workqueues.
569 */
570 BTRFS_FS_CSUM_IMPL_FAST,
571
572 /* Indicate that the discard workqueue can service discards. */
573 BTRFS_FS_DISCARD_RUNNING,
574
575 /* Indicate that we need to cleanup space cache v1 */
576 BTRFS_FS_CLEANUP_SPACE_CACHE_V1,
577
578 /* Indicate that we can't trust the free space tree for caching yet */
579 BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED,
580
581 /* Indicate whether there are any tree modification log users */
582 BTRFS_FS_TREE_MOD_LOG_USERS,
583
584 /* Indicate that we want the transaction kthread to commit right now. */
585 BTRFS_FS_COMMIT_TRANS,
586
587 /* Indicate we have half completed snapshot deletions pending. */
588 BTRFS_FS_UNFINISHED_DROPS,
589
590 /* Indicate we have to finish a zone to do next allocation. */
591 BTRFS_FS_NEED_ZONE_FINISH,
592
593 #if BITS_PER_LONG == 32
594 /* Indicate if we have error/warn message printed on 32bit systems */
595 BTRFS_FS_32BIT_ERROR,
596 BTRFS_FS_32BIT_WARN,
597 #endif
598 };
599
600 /*
601 * Exclusive operations (device replace, resize, device add/remove, balance)
602 */
603 enum btrfs_exclusive_operation {
604 BTRFS_EXCLOP_NONE,
605 BTRFS_EXCLOP_BALANCE_PAUSED,
606 BTRFS_EXCLOP_BALANCE,
607 BTRFS_EXCLOP_DEV_ADD,
608 BTRFS_EXCLOP_DEV_REMOVE,
609 BTRFS_EXCLOP_DEV_REPLACE,
610 BTRFS_EXCLOP_RESIZE,
611 BTRFS_EXCLOP_SWAP_ACTIVATE,
612 };
613
614 /* Store data about transaction commits, exported via sysfs. */
615 struct btrfs_commit_stats {
616 /* Total number of commits */
617 u64 commit_count;
618 /* The maximum commit duration so far in ns */
619 u64 max_commit_dur;
620 /* The last commit duration in ns */
621 u64 last_commit_dur;
622 /* The total commit duration in ns */
623 u64 total_commit_dur;
624 };
625
626 struct btrfs_fs_info {
627 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
628 unsigned long flags;
629 struct btrfs_root *tree_root;
630 struct btrfs_root *chunk_root;
631 struct btrfs_root *dev_root;
632 struct btrfs_root *fs_root;
633 struct btrfs_root *quota_root;
634 struct btrfs_root *uuid_root;
635 struct btrfs_root *data_reloc_root;
636 struct btrfs_root *block_group_root;
637
638 /* the log root tree is a directory of all the other log roots */
639 struct btrfs_root *log_root_tree;
640
641 /* The tree that holds the global roots (csum, extent, etc) */
642 rwlock_t global_root_lock;
643 struct rb_root global_root_tree;
644
645 spinlock_t fs_roots_radix_lock;
646 struct radix_tree_root fs_roots_radix;
647
648 /* block group cache stuff */
649 rwlock_t block_group_cache_lock;
650 struct rb_root_cached block_group_cache_tree;
651
652 /* keep track of unallocated space */
653 atomic64_t free_chunk_space;
654
655 /* Track ranges which are used by log trees blocks/logged data extents */
656 struct extent_io_tree excluded_extents;
657
658 /* logical->physical extent mapping */
659 struct extent_map_tree mapping_tree;
660
661 /*
662 * block reservation for extent, checksum, root tree and
663 * delayed dir index item
664 */
665 struct btrfs_block_rsv global_block_rsv;
666 /* block reservation for metadata operations */
667 struct btrfs_block_rsv trans_block_rsv;
668 /* block reservation for chunk tree */
669 struct btrfs_block_rsv chunk_block_rsv;
670 /* block reservation for delayed operations */
671 struct btrfs_block_rsv delayed_block_rsv;
672 /* block reservation for delayed refs */
673 struct btrfs_block_rsv delayed_refs_rsv;
674
675 struct btrfs_block_rsv empty_block_rsv;
676
677 u64 generation;
678 u64 last_trans_committed;
679 /*
680 * Generation of the last transaction used for block group relocation
681 * since the filesystem was last mounted (or 0 if none happened yet).
682 * Must be written and read while holding btrfs_fs_info::commit_root_sem.
683 */
684 u64 last_reloc_trans;
685 u64 avg_delayed_ref_runtime;
686
687 /*
688 * this is updated to the current trans every time a full commit
689 * is required instead of the faster short fsync log commits
690 */
691 u64 last_trans_log_full_commit;
692 unsigned long mount_opt;
693 /*
694 * Track requests for actions that need to be done during transaction
695 * commit (like for some mount options).
696 */
697 unsigned long pending_changes;
698 unsigned long compress_type:4;
699 unsigned int compress_level;
700 u32 commit_interval;
701 /*
702 * It is a suggestive number, the read side is safe even it gets a
703 * wrong number because we will write out the data into a regular
704 * extent. The write side(mount/remount) is under ->s_umount lock,
705 * so it is also safe.
706 */
707 u64 max_inline;
708
709 struct btrfs_transaction *running_transaction;
710 wait_queue_head_t transaction_throttle;
711 wait_queue_head_t transaction_wait;
712 wait_queue_head_t transaction_blocked_wait;
713 wait_queue_head_t async_submit_wait;
714
715 /*
716 * Used to protect the incompat_flags, compat_flags, compat_ro_flags
717 * when they are updated.
718 *
719 * Because we do not clear the flags for ever, so we needn't use
720 * the lock on the read side.
721 *
722 * We also needn't use the lock when we mount the fs, because
723 * there is no other task which will update the flag.
724 */
725 spinlock_t super_lock;
726 struct btrfs_super_block *super_copy;
727 struct btrfs_super_block *super_for_commit;
728 struct super_block *sb;
729 struct inode *btree_inode;
730 struct mutex tree_log_mutex;
731 struct mutex transaction_kthread_mutex;
732 struct mutex cleaner_mutex;
733 struct mutex chunk_mutex;
734
735 /*
736 * this is taken to make sure we don't set block groups ro after
737 * the free space cache has been allocated on them
738 */
739 struct mutex ro_block_group_mutex;
740
741 /* this is used during read/modify/write to make sure
742 * no two ios are trying to mod the same stripe at the same
743 * time
744 */
745 struct btrfs_stripe_hash_table *stripe_hash_table;
746
747 /*
748 * this protects the ordered operations list only while we are
749 * processing all of the entries on it. This way we make
750 * sure the commit code doesn't find the list temporarily empty
751 * because another function happens to be doing non-waiting preflush
752 * before jumping into the main commit.
753 */
754 struct mutex ordered_operations_mutex;
755
756 struct rw_semaphore commit_root_sem;
757
758 struct rw_semaphore cleanup_work_sem;
759
760 struct rw_semaphore subvol_sem;
761
762 spinlock_t trans_lock;
763 /*
764 * the reloc mutex goes with the trans lock, it is taken
765 * during commit to protect us from the relocation code
766 */
767 struct mutex reloc_mutex;
768
769 struct list_head trans_list;
770 struct list_head dead_roots;
771 struct list_head caching_block_groups;
772
773 spinlock_t delayed_iput_lock;
774 struct list_head delayed_iputs;
775 atomic_t nr_delayed_iputs;
776 wait_queue_head_t delayed_iputs_wait;
777
778 atomic64_t tree_mod_seq;
779
780 /* this protects tree_mod_log and tree_mod_seq_list */
781 rwlock_t tree_mod_log_lock;
782 struct rb_root tree_mod_log;
783 struct list_head tree_mod_seq_list;
784
785 atomic_t async_delalloc_pages;
786
787 /*
788 * this is used to protect the following list -- ordered_roots.
789 */
790 spinlock_t ordered_root_lock;
791
792 /*
793 * all fs/file tree roots in which there are data=ordered extents
794 * pending writeback are added into this list.
795 *
796 * these can span multiple transactions and basically include
797 * every dirty data page that isn't from nodatacow
798 */
799 struct list_head ordered_roots;
800
801 struct mutex delalloc_root_mutex;
802 spinlock_t delalloc_root_lock;
803 /* all fs/file tree roots that have delalloc inodes. */
804 struct list_head delalloc_roots;
805
806 /*
807 * there is a pool of worker threads for checksumming during writes
808 * and a pool for checksumming after reads. This is because readers
809 * can run with FS locks held, and the writers may be waiting for
810 * those locks. We don't want ordering in the pending list to cause
811 * deadlocks, and so the two are serviced separately.
812 *
813 * A third pool does submit_bio to avoid deadlocking with the other
814 * two
815 */
816 struct btrfs_workqueue *workers;
817 struct btrfs_workqueue *hipri_workers;
818 struct btrfs_workqueue *delalloc_workers;
819 struct btrfs_workqueue *flush_workers;
820 struct workqueue_struct *endio_workers;
821 struct workqueue_struct *endio_meta_workers;
822 struct workqueue_struct *endio_raid56_workers;
823 struct workqueue_struct *rmw_workers;
824 struct workqueue_struct *compressed_write_workers;
825 struct btrfs_workqueue *endio_write_workers;
826 struct btrfs_workqueue *endio_freespace_worker;
827 struct btrfs_workqueue *caching_workers;
828
829 /*
830 * fixup workers take dirty pages that didn't properly go through
831 * the cow mechanism and make them safe to write. It happens
832 * for the sys_munmap function call path
833 */
834 struct btrfs_workqueue *fixup_workers;
835 struct btrfs_workqueue *delayed_workers;
836
837 struct task_struct *transaction_kthread;
838 struct task_struct *cleaner_kthread;
839 u32 thread_pool_size;
840
841 struct kobject *space_info_kobj;
842 struct kobject *qgroups_kobj;
843 struct kobject *discard_kobj;
844
845 /* used to keep from writing metadata until there is a nice batch */
846 struct percpu_counter dirty_metadata_bytes;
847 struct percpu_counter delalloc_bytes;
848 struct percpu_counter ordered_bytes;
849 s32 dirty_metadata_batch;
850 s32 delalloc_batch;
851
852 struct list_head dirty_cowonly_roots;
853
854 struct btrfs_fs_devices *fs_devices;
855
856 /*
857 * The space_info list is effectively read only after initial
858 * setup. It is populated at mount time and cleaned up after
859 * all block groups are removed. RCU is used to protect it.
860 */
861 struct list_head space_info;
862
863 struct btrfs_space_info *data_sinfo;
864
865 struct reloc_control *reloc_ctl;
866
867 /* data_alloc_cluster is only used in ssd_spread mode */
868 struct btrfs_free_cluster data_alloc_cluster;
869
870 /* all metadata allocations go through this cluster */
871 struct btrfs_free_cluster meta_alloc_cluster;
872
873 /* auto defrag inodes go here */
874 spinlock_t defrag_inodes_lock;
875 struct rb_root defrag_inodes;
876 atomic_t defrag_running;
877
878 /* Used to protect avail_{data, metadata, system}_alloc_bits */
879 seqlock_t profiles_lock;
880 /*
881 * these three are in extended format (availability of single
882 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
883 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
884 */
885 u64 avail_data_alloc_bits;
886 u64 avail_metadata_alloc_bits;
887 u64 avail_system_alloc_bits;
888
889 /* restriper state */
890 spinlock_t balance_lock;
891 struct mutex balance_mutex;
892 atomic_t balance_pause_req;
893 atomic_t balance_cancel_req;
894 struct btrfs_balance_control *balance_ctl;
895 wait_queue_head_t balance_wait_q;
896
897 /* Cancellation requests for chunk relocation */
898 atomic_t reloc_cancel_req;
899
900 u32 data_chunk_allocations;
901 u32 metadata_ratio;
902
903 void *bdev_holder;
904
905 /* private scrub information */
906 struct mutex scrub_lock;
907 atomic_t scrubs_running;
908 atomic_t scrub_pause_req;
909 atomic_t scrubs_paused;
910 atomic_t scrub_cancel_req;
911 wait_queue_head_t scrub_pause_wait;
912 /*
913 * The worker pointers are NULL iff the refcount is 0, ie. scrub is not
914 * running.
915 */
916 refcount_t scrub_workers_refcnt;
917 struct workqueue_struct *scrub_workers;
918 struct workqueue_struct *scrub_wr_completion_workers;
919 struct workqueue_struct *scrub_parity_workers;
920 struct btrfs_subpage_info *subpage_info;
921
922 struct btrfs_discard_ctl discard_ctl;
923
924 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
925 u32 check_integrity_print_mask;
926 #endif
927 /* is qgroup tracking in a consistent state? */
928 u64 qgroup_flags;
929
930 /* holds configuration and tracking. Protected by qgroup_lock */
931 struct rb_root qgroup_tree;
932 spinlock_t qgroup_lock;
933
934 /*
935 * used to avoid frequently calling ulist_alloc()/ulist_free()
936 * when doing qgroup accounting, it must be protected by qgroup_lock.
937 */
938 struct ulist *qgroup_ulist;
939
940 /*
941 * Protect user change for quota operations. If a transaction is needed,
942 * it must be started before locking this lock.
943 */
944 struct mutex qgroup_ioctl_lock;
945
946 /* list of dirty qgroups to be written at next commit */
947 struct list_head dirty_qgroups;
948
949 /* used by qgroup for an efficient tree traversal */
950 u64 qgroup_seq;
951
952 /* qgroup rescan items */
953 struct mutex qgroup_rescan_lock; /* protects the progress item */
954 struct btrfs_key qgroup_rescan_progress;
955 struct btrfs_workqueue *qgroup_rescan_workers;
956 struct completion qgroup_rescan_completion;
957 struct btrfs_work qgroup_rescan_work;
958 bool qgroup_rescan_running; /* protected by qgroup_rescan_lock */
959 u8 qgroup_drop_subtree_thres;
960
961 /* filesystem state */
962 unsigned long fs_state;
963
964 struct btrfs_delayed_root *delayed_root;
965
966 /* Extent buffer radix tree */
967 spinlock_t buffer_lock;
968 /* Entries are eb->start / sectorsize */
969 struct radix_tree_root buffer_radix;
970
971 /* next backup root to be overwritten */
972 int backup_root_index;
973
974 /* device replace state */
975 struct btrfs_dev_replace dev_replace;
976
977 struct semaphore uuid_tree_rescan_sem;
978
979 /* Used to reclaim the metadata space in the background. */
980 struct work_struct async_reclaim_work;
981 struct work_struct async_data_reclaim_work;
982 struct work_struct preempt_reclaim_work;
983
984 /* Reclaim partially filled block groups in the background */
985 struct work_struct reclaim_bgs_work;
986 struct list_head reclaim_bgs;
987 int bg_reclaim_threshold;
988
989 spinlock_t unused_bgs_lock;
990 struct list_head unused_bgs;
991 struct mutex unused_bg_unpin_mutex;
992 /* Protect block groups that are going to be deleted */
993 struct mutex reclaim_bgs_lock;
994
995 /* Cached block sizes */
996 u32 nodesize;
997 u32 sectorsize;
998 /* ilog2 of sectorsize, use to avoid 64bit division */
999 u32 sectorsize_bits;
1000 u32 csum_size;
1001 u32 csums_per_leaf;
1002 u32 stripesize;
1003
1004 /*
1005 * Maximum size of an extent. BTRFS_MAX_EXTENT_SIZE on regular
1006 * filesystem, on zoned it depends on the device constraints.
1007 */
1008 u64 max_extent_size;
1009
1010 /* Block groups and devices containing active swapfiles. */
1011 spinlock_t swapfile_pins_lock;
1012 struct rb_root swapfile_pins;
1013
1014 struct crypto_shash *csum_shash;
1015
1016 /* Type of exclusive operation running, protected by super_lock */
1017 enum btrfs_exclusive_operation exclusive_operation;
1018
1019 /*
1020 * Zone size > 0 when in ZONED mode, otherwise it's used for a check
1021 * if the mode is enabled
1022 */
1023 u64 zone_size;
1024
1025 /* Max size to emit ZONE_APPEND write command */
1026 u64 max_zone_append_size;
1027 struct mutex zoned_meta_io_lock;
1028 spinlock_t treelog_bg_lock;
1029 u64 treelog_bg;
1030
1031 /*
1032 * Start of the dedicated data relocation block group, protected by
1033 * relocation_bg_lock.
1034 */
1035 spinlock_t relocation_bg_lock;
1036 u64 data_reloc_bg;
1037 struct mutex zoned_data_reloc_io_lock;
1038
1039 u64 nr_global_roots;
1040
1041 spinlock_t zone_active_bgs_lock;
1042 struct list_head zone_active_bgs;
1043
1044 /* Updates are not protected by any lock */
1045 struct btrfs_commit_stats commit_stats;
1046
1047 /*
1048 * Last generation where we dropped a non-relocation root.
1049 * Use btrfs_set_last_root_drop_gen() and btrfs_get_last_root_drop_gen()
1050 * to change it and to read it, respectively.
1051 */
1052 u64 last_root_drop_gen;
1053
1054 /*
1055 * Annotations for transaction events (structures are empty when
1056 * compiled without lockdep).
1057 */
1058 struct lockdep_map btrfs_trans_num_writers_map;
1059 struct lockdep_map btrfs_trans_num_extwriters_map;
1060 struct lockdep_map btrfs_state_change_map[4];
1061 struct lockdep_map btrfs_trans_pending_ordered_map;
1062 struct lockdep_map btrfs_ordered_extent_map;
1063
1064 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
1065 spinlock_t ref_verify_lock;
1066 struct rb_root block_tree;
1067 #endif
1068
1069 #ifdef CONFIG_BTRFS_DEBUG
1070 struct kobject *debug_kobj;
1071 struct list_head allocated_roots;
1072
1073 spinlock_t eb_leak_lock;
1074 struct list_head allocated_ebs;
1075 #endif
1076 };
1077
btrfs_set_last_root_drop_gen(struct btrfs_fs_info * fs_info,u64 gen)1078 static inline void btrfs_set_last_root_drop_gen(struct btrfs_fs_info *fs_info,
1079 u64 gen)
1080 {
1081 WRITE_ONCE(fs_info->last_root_drop_gen, gen);
1082 }
1083
btrfs_get_last_root_drop_gen(const struct btrfs_fs_info * fs_info)1084 static inline u64 btrfs_get_last_root_drop_gen(const struct btrfs_fs_info *fs_info)
1085 {
1086 return READ_ONCE(fs_info->last_root_drop_gen);
1087 }
1088
btrfs_sb(struct super_block * sb)1089 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
1090 {
1091 return sb->s_fs_info;
1092 }
1093
1094 /*
1095 * Take the number of bytes to be checksummed and figure out how many leaves
1096 * it would require to store the csums for that many bytes.
1097 */
btrfs_csum_bytes_to_leaves(const struct btrfs_fs_info * fs_info,u64 csum_bytes)1098 static inline u64 btrfs_csum_bytes_to_leaves(
1099 const struct btrfs_fs_info *fs_info, u64 csum_bytes)
1100 {
1101 const u64 num_csums = csum_bytes >> fs_info->sectorsize_bits;
1102
1103 return DIV_ROUND_UP_ULL(num_csums, fs_info->csums_per_leaf);
1104 }
1105
1106 /*
1107 * Use this if we would be adding new items, as we could split nodes as we cow
1108 * down the tree.
1109 */
btrfs_calc_insert_metadata_size(struct btrfs_fs_info * fs_info,unsigned num_items)1110 static inline u64 btrfs_calc_insert_metadata_size(struct btrfs_fs_info *fs_info,
1111 unsigned num_items)
1112 {
1113 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items;
1114 }
1115
1116 /*
1117 * Doing a truncate or a modification won't result in new nodes or leaves, just
1118 * what we need for COW.
1119 */
btrfs_calc_metadata_size(struct btrfs_fs_info * fs_info,unsigned num_items)1120 static inline u64 btrfs_calc_metadata_size(struct btrfs_fs_info *fs_info,
1121 unsigned num_items)
1122 {
1123 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items;
1124 }
1125
1126 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \
1127 sizeof(struct btrfs_item))
1128
btrfs_is_zoned(const struct btrfs_fs_info * fs_info)1129 static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info)
1130 {
1131 return fs_info->zone_size > 0;
1132 }
1133
1134 /*
1135 * Count how many fs_info->max_extent_size cover the @size
1136 */
count_max_extents(struct btrfs_fs_info * fs_info,u64 size)1137 static inline u32 count_max_extents(struct btrfs_fs_info *fs_info, u64 size)
1138 {
1139 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1140 if (!fs_info)
1141 return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE);
1142 #endif
1143
1144 return div_u64(size + fs_info->max_extent_size - 1, fs_info->max_extent_size);
1145 }
1146
1147 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
1148 enum btrfs_exclusive_operation type);
1149 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
1150 enum btrfs_exclusive_operation type);
1151 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info);
1152 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info);
1153 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
1154 enum btrfs_exclusive_operation op);
1155
1156 /*
1157 * The state of btrfs root
1158 */
1159 enum {
1160 /*
1161 * btrfs_record_root_in_trans is a multi-step process, and it can race
1162 * with the balancing code. But the race is very small, and only the
1163 * first time the root is added to each transaction. So IN_TRANS_SETUP
1164 * is used to tell us when more checks are required
1165 */
1166 BTRFS_ROOT_IN_TRANS_SETUP,
1167
1168 /*
1169 * Set if tree blocks of this root can be shared by other roots.
1170 * Only subvolume trees and their reloc trees have this bit set.
1171 * Conflicts with TRACK_DIRTY bit.
1172 *
1173 * This affects two things:
1174 *
1175 * - How balance works
1176 * For shareable roots, we need to use reloc tree and do path
1177 * replacement for balance, and need various pre/post hooks for
1178 * snapshot creation to handle them.
1179 *
1180 * While for non-shareable trees, we just simply do a tree search
1181 * with COW.
1182 *
1183 * - How dirty roots are tracked
1184 * For shareable roots, btrfs_record_root_in_trans() is needed to
1185 * track them, while non-subvolume roots have TRACK_DIRTY bit, they
1186 * don't need to set this manually.
1187 */
1188 BTRFS_ROOT_SHAREABLE,
1189 BTRFS_ROOT_TRACK_DIRTY,
1190 BTRFS_ROOT_IN_RADIX,
1191 BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
1192 BTRFS_ROOT_DEFRAG_RUNNING,
1193 BTRFS_ROOT_FORCE_COW,
1194 BTRFS_ROOT_MULTI_LOG_TASKS,
1195 BTRFS_ROOT_DIRTY,
1196 BTRFS_ROOT_DELETING,
1197
1198 /*
1199 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
1200 *
1201 * Set for the subvolume tree owning the reloc tree.
1202 */
1203 BTRFS_ROOT_DEAD_RELOC_TREE,
1204 /* Mark dead root stored on device whose cleanup needs to be resumed */
1205 BTRFS_ROOT_DEAD_TREE,
1206 /* The root has a log tree. Used for subvolume roots and the tree root. */
1207 BTRFS_ROOT_HAS_LOG_TREE,
1208 /* Qgroup flushing is in progress */
1209 BTRFS_ROOT_QGROUP_FLUSHING,
1210 /* We started the orphan cleanup for this root. */
1211 BTRFS_ROOT_ORPHAN_CLEANUP,
1212 /* This root has a drop operation that was started previously. */
1213 BTRFS_ROOT_UNFINISHED_DROP,
1214 /* This reloc root needs to have its buffers lockdep class reset. */
1215 BTRFS_ROOT_RESET_LOCKDEP_CLASS,
1216 };
1217
1218 enum btrfs_lockdep_trans_states {
1219 BTRFS_LOCKDEP_TRANS_COMMIT_START,
1220 BTRFS_LOCKDEP_TRANS_UNBLOCKED,
1221 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED,
1222 BTRFS_LOCKDEP_TRANS_COMPLETED,
1223 };
1224
1225 /*
1226 * Lockdep annotation for wait events.
1227 *
1228 * @owner: The struct where the lockdep map is defined
1229 * @lock: The lockdep map corresponding to a wait event
1230 *
1231 * This macro is used to annotate a wait event. In this case a thread acquires
1232 * the lockdep map as writer (exclusive lock) because it has to block until all
1233 * the threads that hold the lock as readers signal the condition for the wait
1234 * event and release their locks.
1235 */
1236 #define btrfs_might_wait_for_event(owner, lock) \
1237 do { \
1238 rwsem_acquire(&owner->lock##_map, 0, 0, _THIS_IP_); \
1239 rwsem_release(&owner->lock##_map, _THIS_IP_); \
1240 } while (0)
1241
1242 /*
1243 * Protection for the resource/condition of a wait event.
1244 *
1245 * @owner: The struct where the lockdep map is defined
1246 * @lock: The lockdep map corresponding to a wait event
1247 *
1248 * Many threads can modify the condition for the wait event at the same time
1249 * and signal the threads that block on the wait event. The threads that modify
1250 * the condition and do the signaling acquire the lock as readers (shared
1251 * lock).
1252 */
1253 #define btrfs_lockdep_acquire(owner, lock) \
1254 rwsem_acquire_read(&owner->lock##_map, 0, 0, _THIS_IP_)
1255
1256 /*
1257 * Used after signaling the condition for a wait event to release the lockdep
1258 * map held by a reader thread.
1259 */
1260 #define btrfs_lockdep_release(owner, lock) \
1261 rwsem_release(&owner->lock##_map, _THIS_IP_)
1262
1263 /*
1264 * Macros for the transaction states wait events, similar to the generic wait
1265 * event macros.
1266 */
1267 #define btrfs_might_wait_for_state(owner, i) \
1268 do { \
1269 rwsem_acquire(&owner->btrfs_state_change_map[i], 0, 0, _THIS_IP_); \
1270 rwsem_release(&owner->btrfs_state_change_map[i], _THIS_IP_); \
1271 } while (0)
1272
1273 #define btrfs_trans_state_lockdep_acquire(owner, i) \
1274 rwsem_acquire_read(&owner->btrfs_state_change_map[i], 0, 0, _THIS_IP_)
1275
1276 #define btrfs_trans_state_lockdep_release(owner, i) \
1277 rwsem_release(&owner->btrfs_state_change_map[i], _THIS_IP_)
1278
1279 /* Initialization of the lockdep map */
1280 #define btrfs_lockdep_init_map(owner, lock) \
1281 do { \
1282 static struct lock_class_key lock##_key; \
1283 lockdep_init_map(&owner->lock##_map, #lock, &lock##_key, 0); \
1284 } while (0)
1285
1286 /* Initialization of the transaction states lockdep maps. */
1287 #define btrfs_state_lockdep_init_map(owner, lock, state) \
1288 do { \
1289 static struct lock_class_key lock##_key; \
1290 lockdep_init_map(&owner->btrfs_state_change_map[state], #lock, \
1291 &lock##_key, 0); \
1292 } while (0)
1293
btrfs_wake_unfinished_drop(struct btrfs_fs_info * fs_info)1294 static inline void btrfs_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1295 {
1296 clear_and_wake_up_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags);
1297 }
1298
1299 /*
1300 * Record swapped tree blocks of a subvolume tree for delayed subtree trace
1301 * code. For detail check comment in fs/btrfs/qgroup.c.
1302 */
1303 struct btrfs_qgroup_swapped_blocks {
1304 spinlock_t lock;
1305 /* RM_EMPTY_ROOT() of above blocks[] */
1306 bool swapped;
1307 struct rb_root blocks[BTRFS_MAX_LEVEL];
1308 };
1309
1310 /*
1311 * in ram representation of the tree. extent_root is used for all allocations
1312 * and for the extent tree extent_root root.
1313 */
1314 struct btrfs_root {
1315 struct rb_node rb_node;
1316
1317 struct extent_buffer *node;
1318
1319 struct extent_buffer *commit_root;
1320 struct btrfs_root *log_root;
1321 struct btrfs_root *reloc_root;
1322
1323 unsigned long state;
1324 struct btrfs_root_item root_item;
1325 struct btrfs_key root_key;
1326 struct btrfs_fs_info *fs_info;
1327 struct extent_io_tree dirty_log_pages;
1328
1329 struct mutex objectid_mutex;
1330
1331 spinlock_t accounting_lock;
1332 struct btrfs_block_rsv *block_rsv;
1333
1334 struct mutex log_mutex;
1335 wait_queue_head_t log_writer_wait;
1336 wait_queue_head_t log_commit_wait[2];
1337 struct list_head log_ctxs[2];
1338 /* Used only for log trees of subvolumes, not for the log root tree */
1339 atomic_t log_writers;
1340 atomic_t log_commit[2];
1341 /* Used only for log trees of subvolumes, not for the log root tree */
1342 atomic_t log_batch;
1343 int log_transid;
1344 /* No matter the commit succeeds or not*/
1345 int log_transid_committed;
1346 /* Just be updated when the commit succeeds. */
1347 int last_log_commit;
1348 pid_t log_start_pid;
1349
1350 u64 last_trans;
1351
1352 u32 type;
1353
1354 u64 free_objectid;
1355
1356 struct btrfs_key defrag_progress;
1357 struct btrfs_key defrag_max;
1358
1359 /* The dirty list is only used by non-shareable roots */
1360 struct list_head dirty_list;
1361
1362 struct list_head root_list;
1363
1364 spinlock_t log_extents_lock[2];
1365 struct list_head logged_list[2];
1366
1367 spinlock_t inode_lock;
1368 /* red-black tree that keeps track of in-memory inodes */
1369 struct rb_root inode_tree;
1370
1371 /*
1372 * radix tree that keeps track of delayed nodes of every inode,
1373 * protected by inode_lock
1374 */
1375 struct radix_tree_root delayed_nodes_tree;
1376 /*
1377 * right now this just gets used so that a root has its own devid
1378 * for stat. It may be used for more later
1379 */
1380 dev_t anon_dev;
1381
1382 spinlock_t root_item_lock;
1383 refcount_t refs;
1384
1385 struct mutex delalloc_mutex;
1386 spinlock_t delalloc_lock;
1387 /*
1388 * all of the inodes that have delalloc bytes. It is possible for
1389 * this list to be empty even when there is still dirty data=ordered
1390 * extents waiting to finish IO.
1391 */
1392 struct list_head delalloc_inodes;
1393 struct list_head delalloc_root;
1394 u64 nr_delalloc_inodes;
1395
1396 struct mutex ordered_extent_mutex;
1397 /*
1398 * this is used by the balancing code to wait for all the pending
1399 * ordered extents
1400 */
1401 spinlock_t ordered_extent_lock;
1402
1403 /*
1404 * all of the data=ordered extents pending writeback
1405 * these can span multiple transactions and basically include
1406 * every dirty data page that isn't from nodatacow
1407 */
1408 struct list_head ordered_extents;
1409 struct list_head ordered_root;
1410 u64 nr_ordered_extents;
1411
1412 /*
1413 * Not empty if this subvolume root has gone through tree block swap
1414 * (relocation)
1415 *
1416 * Will be used by reloc_control::dirty_subvol_roots.
1417 */
1418 struct list_head reloc_dirty_list;
1419
1420 /*
1421 * Number of currently running SEND ioctls to prevent
1422 * manipulation with the read-only status via SUBVOL_SETFLAGS
1423 */
1424 int send_in_progress;
1425 /*
1426 * Number of currently running deduplication operations that have a
1427 * destination inode belonging to this root. Protected by the lock
1428 * root_item_lock.
1429 */
1430 int dedupe_in_progress;
1431 /* For exclusion of snapshot creation and nocow writes */
1432 struct btrfs_drew_lock snapshot_lock;
1433
1434 atomic_t snapshot_force_cow;
1435
1436 /* For qgroup metadata reserved space */
1437 spinlock_t qgroup_meta_rsv_lock;
1438 u64 qgroup_meta_rsv_pertrans;
1439 u64 qgroup_meta_rsv_prealloc;
1440 wait_queue_head_t qgroup_flush_wait;
1441
1442 /* Number of active swapfiles */
1443 atomic_t nr_swapfiles;
1444
1445 /* Record pairs of swapped blocks for qgroup */
1446 struct btrfs_qgroup_swapped_blocks swapped_blocks;
1447
1448 /* Used only by log trees, when logging csum items */
1449 struct extent_io_tree log_csum_range;
1450
1451 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1452 u64 alloc_bytenr;
1453 #endif
1454
1455 #ifdef CONFIG_BTRFS_DEBUG
1456 struct list_head leak_list;
1457 #endif
1458 };
1459
1460 /*
1461 * Structure that conveys information about an extent that is going to replace
1462 * all the extents in a file range.
1463 */
1464 struct btrfs_replace_extent_info {
1465 u64 disk_offset;
1466 u64 disk_len;
1467 u64 data_offset;
1468 u64 data_len;
1469 u64 file_offset;
1470 /* Pointer to a file extent item of type regular or prealloc. */
1471 char *extent_buf;
1472 /*
1473 * Set to true when attempting to replace a file range with a new extent
1474 * described by this structure, set to false when attempting to clone an
1475 * existing extent into a file range.
1476 */
1477 bool is_new_extent;
1478 /* Indicate if we should update the inode's mtime and ctime. */
1479 bool update_times;
1480 /* Meaningful only if is_new_extent is true. */
1481 int qgroup_reserved;
1482 /*
1483 * Meaningful only if is_new_extent is true.
1484 * Used to track how many extent items we have already inserted in a
1485 * subvolume tree that refer to the extent described by this structure,
1486 * so that we know when to create a new delayed ref or update an existing
1487 * one.
1488 */
1489 int insertions;
1490 };
1491
1492 /* Arguments for btrfs_drop_extents() */
1493 struct btrfs_drop_extents_args {
1494 /* Input parameters */
1495
1496 /*
1497 * If NULL, btrfs_drop_extents() will allocate and free its own path.
1498 * If 'replace_extent' is true, this must not be NULL. Also the path
1499 * is always released except if 'replace_extent' is true and
1500 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
1501 * the path is kept locked.
1502 */
1503 struct btrfs_path *path;
1504 /* Start offset of the range to drop extents from */
1505 u64 start;
1506 /* End (exclusive, last byte + 1) of the range to drop extents from */
1507 u64 end;
1508 /* If true drop all the extent maps in the range */
1509 bool drop_cache;
1510 /*
1511 * If true it means we want to insert a new extent after dropping all
1512 * the extents in the range. If this is true, the 'extent_item_size'
1513 * parameter must be set as well and the 'extent_inserted' field will
1514 * be set to true by btrfs_drop_extents() if it could insert the new
1515 * extent.
1516 * Note: when this is set to true the path must not be NULL.
1517 */
1518 bool replace_extent;
1519 /*
1520 * Used if 'replace_extent' is true. Size of the file extent item to
1521 * insert after dropping all existing extents in the range
1522 */
1523 u32 extent_item_size;
1524
1525 /* Output parameters */
1526
1527 /*
1528 * Set to the minimum between the input parameter 'end' and the end
1529 * (exclusive, last byte + 1) of the last dropped extent. This is always
1530 * set even if btrfs_drop_extents() returns an error.
1531 */
1532 u64 drop_end;
1533 /*
1534 * The number of allocated bytes found in the range. This can be smaller
1535 * than the range's length when there are holes in the range.
1536 */
1537 u64 bytes_found;
1538 /*
1539 * Only set if 'replace_extent' is true. Set to true if we were able
1540 * to insert a replacement extent after dropping all extents in the
1541 * range, otherwise set to false by btrfs_drop_extents().
1542 * Also, if btrfs_drop_extents() has set this to true it means it
1543 * returned with the path locked, otherwise if it has set this to
1544 * false it has returned with the path released.
1545 */
1546 bool extent_inserted;
1547 };
1548
1549 struct btrfs_file_private {
1550 void *filldir_buf;
1551 };
1552
1553
BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info * info)1554 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
1555 {
1556
1557 return info->nodesize - sizeof(struct btrfs_header);
1558 }
1559
1560 #define BTRFS_LEAF_DATA_OFFSET offsetof(struct btrfs_leaf, items)
1561
BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info * info)1562 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
1563 {
1564 return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
1565 }
1566
BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info * info)1567 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
1568 {
1569 return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
1570 }
1571
1572 #define BTRFS_FILE_EXTENT_INLINE_DATA_START \
1573 (offsetof(struct btrfs_file_extent_item, disk_bytenr))
BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info * info)1574 static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info)
1575 {
1576 return BTRFS_MAX_ITEM_SIZE(info) -
1577 BTRFS_FILE_EXTENT_INLINE_DATA_START;
1578 }
1579
BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info * info)1580 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
1581 {
1582 return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
1583 }
1584
1585 /*
1586 * Flags for mount options.
1587 *
1588 * Note: don't forget to add new options to btrfs_show_options()
1589 */
1590 enum {
1591 BTRFS_MOUNT_NODATASUM = (1UL << 0),
1592 BTRFS_MOUNT_NODATACOW = (1UL << 1),
1593 BTRFS_MOUNT_NOBARRIER = (1UL << 2),
1594 BTRFS_MOUNT_SSD = (1UL << 3),
1595 BTRFS_MOUNT_DEGRADED = (1UL << 4),
1596 BTRFS_MOUNT_COMPRESS = (1UL << 5),
1597 BTRFS_MOUNT_NOTREELOG = (1UL << 6),
1598 BTRFS_MOUNT_FLUSHONCOMMIT = (1UL << 7),
1599 BTRFS_MOUNT_SSD_SPREAD = (1UL << 8),
1600 BTRFS_MOUNT_NOSSD = (1UL << 9),
1601 BTRFS_MOUNT_DISCARD_SYNC = (1UL << 10),
1602 BTRFS_MOUNT_FORCE_COMPRESS = (1UL << 11),
1603 BTRFS_MOUNT_SPACE_CACHE = (1UL << 12),
1604 BTRFS_MOUNT_CLEAR_CACHE = (1UL << 13),
1605 BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED = (1UL << 14),
1606 BTRFS_MOUNT_ENOSPC_DEBUG = (1UL << 15),
1607 BTRFS_MOUNT_AUTO_DEFRAG = (1UL << 16),
1608 BTRFS_MOUNT_USEBACKUPROOT = (1UL << 17),
1609 BTRFS_MOUNT_SKIP_BALANCE = (1UL << 18),
1610 BTRFS_MOUNT_CHECK_INTEGRITY = (1UL << 19),
1611 BTRFS_MOUNT_CHECK_INTEGRITY_DATA = (1UL << 20),
1612 BTRFS_MOUNT_PANIC_ON_FATAL_ERROR = (1UL << 21),
1613 BTRFS_MOUNT_RESCAN_UUID_TREE = (1UL << 22),
1614 BTRFS_MOUNT_FRAGMENT_DATA = (1UL << 23),
1615 BTRFS_MOUNT_FRAGMENT_METADATA = (1UL << 24),
1616 BTRFS_MOUNT_FREE_SPACE_TREE = (1UL << 25),
1617 BTRFS_MOUNT_NOLOGREPLAY = (1UL << 26),
1618 BTRFS_MOUNT_REF_VERIFY = (1UL << 27),
1619 BTRFS_MOUNT_DISCARD_ASYNC = (1UL << 28),
1620 BTRFS_MOUNT_IGNOREBADROOTS = (1UL << 29),
1621 BTRFS_MOUNT_IGNOREDATACSUMS = (1UL << 30),
1622 };
1623
1624 #define BTRFS_DEFAULT_COMMIT_INTERVAL (30)
1625 #define BTRFS_DEFAULT_MAX_INLINE (2048)
1626
1627 #define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt)
1628 #define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt)
1629 #define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt)
1630 #define btrfs_test_opt(fs_info, opt) ((fs_info)->mount_opt & \
1631 BTRFS_MOUNT_##opt)
1632
1633 #define btrfs_set_and_info(fs_info, opt, fmt, args...) \
1634 do { \
1635 if (!btrfs_test_opt(fs_info, opt)) \
1636 btrfs_info(fs_info, fmt, ##args); \
1637 btrfs_set_opt(fs_info->mount_opt, opt); \
1638 } while (0)
1639
1640 #define btrfs_clear_and_info(fs_info, opt, fmt, args...) \
1641 do { \
1642 if (btrfs_test_opt(fs_info, opt)) \
1643 btrfs_info(fs_info, fmt, ##args); \
1644 btrfs_clear_opt(fs_info->mount_opt, opt); \
1645 } while (0)
1646
1647 /*
1648 * Requests for changes that need to be done during transaction commit.
1649 *
1650 * Internal mount options that are used for special handling of the real
1651 * mount options (eg. cannot be set during remount and have to be set during
1652 * transaction commit)
1653 */
1654
1655 #define BTRFS_PENDING_COMMIT (0)
1656
1657 #define btrfs_test_pending(info, opt) \
1658 test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1659 #define btrfs_set_pending(info, opt) \
1660 set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1661 #define btrfs_clear_pending(info, opt) \
1662 clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1663
1664 /*
1665 * Helpers for setting pending mount option changes.
1666 *
1667 * Expects corresponding macros
1668 * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name
1669 */
1670 #define btrfs_set_pending_and_info(info, opt, fmt, args...) \
1671 do { \
1672 if (!btrfs_raw_test_opt((info)->mount_opt, opt)) { \
1673 btrfs_info((info), fmt, ##args); \
1674 btrfs_set_pending((info), SET_##opt); \
1675 btrfs_clear_pending((info), CLEAR_##opt); \
1676 } \
1677 } while(0)
1678
1679 #define btrfs_clear_pending_and_info(info, opt, fmt, args...) \
1680 do { \
1681 if (btrfs_raw_test_opt((info)->mount_opt, opt)) { \
1682 btrfs_info((info), fmt, ##args); \
1683 btrfs_set_pending((info), CLEAR_##opt); \
1684 btrfs_clear_pending((info), SET_##opt); \
1685 } \
1686 } while(0)
1687
1688 /*
1689 * Inode flags
1690 */
1691 #define BTRFS_INODE_NODATASUM (1U << 0)
1692 #define BTRFS_INODE_NODATACOW (1U << 1)
1693 #define BTRFS_INODE_READONLY (1U << 2)
1694 #define BTRFS_INODE_NOCOMPRESS (1U << 3)
1695 #define BTRFS_INODE_PREALLOC (1U << 4)
1696 #define BTRFS_INODE_SYNC (1U << 5)
1697 #define BTRFS_INODE_IMMUTABLE (1U << 6)
1698 #define BTRFS_INODE_APPEND (1U << 7)
1699 #define BTRFS_INODE_NODUMP (1U << 8)
1700 #define BTRFS_INODE_NOATIME (1U << 9)
1701 #define BTRFS_INODE_DIRSYNC (1U << 10)
1702 #define BTRFS_INODE_COMPRESS (1U << 11)
1703
1704 #define BTRFS_INODE_ROOT_ITEM_INIT (1U << 31)
1705
1706 #define BTRFS_INODE_FLAG_MASK \
1707 (BTRFS_INODE_NODATASUM | \
1708 BTRFS_INODE_NODATACOW | \
1709 BTRFS_INODE_READONLY | \
1710 BTRFS_INODE_NOCOMPRESS | \
1711 BTRFS_INODE_PREALLOC | \
1712 BTRFS_INODE_SYNC | \
1713 BTRFS_INODE_IMMUTABLE | \
1714 BTRFS_INODE_APPEND | \
1715 BTRFS_INODE_NODUMP | \
1716 BTRFS_INODE_NOATIME | \
1717 BTRFS_INODE_DIRSYNC | \
1718 BTRFS_INODE_COMPRESS | \
1719 BTRFS_INODE_ROOT_ITEM_INIT)
1720
1721 #define BTRFS_INODE_RO_VERITY (1U << 0)
1722
1723 #define BTRFS_INODE_RO_FLAG_MASK (BTRFS_INODE_RO_VERITY)
1724
1725 struct btrfs_map_token {
1726 struct extent_buffer *eb;
1727 char *kaddr;
1728 unsigned long offset;
1729 };
1730
1731 #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
1732 ((bytes) >> (fs_info)->sectorsize_bits)
1733
btrfs_init_map_token(struct btrfs_map_token * token,struct extent_buffer * eb)1734 static inline void btrfs_init_map_token(struct btrfs_map_token *token,
1735 struct extent_buffer *eb)
1736 {
1737 token->eb = eb;
1738 token->kaddr = page_address(eb->pages[0]);
1739 token->offset = 0;
1740 }
1741
1742 /* some macros to generate set/get functions for the struct fields. This
1743 * assumes there is a lefoo_to_cpu for every type, so lets make a simple
1744 * one for u8:
1745 */
1746 #define le8_to_cpu(v) (v)
1747 #define cpu_to_le8(v) (v)
1748 #define __le8 u8
1749
get_unaligned_le8(const void * p)1750 static inline u8 get_unaligned_le8(const void *p)
1751 {
1752 return *(u8 *)p;
1753 }
1754
put_unaligned_le8(u8 val,void * p)1755 static inline void put_unaligned_le8(u8 val, void *p)
1756 {
1757 *(u8 *)p = val;
1758 }
1759
1760 #define read_eb_member(eb, ptr, type, member, result) (\
1761 read_extent_buffer(eb, (char *)(result), \
1762 ((unsigned long)(ptr)) + \
1763 offsetof(type, member), \
1764 sizeof(((type *)0)->member)))
1765
1766 #define write_eb_member(eb, ptr, type, member, result) (\
1767 write_extent_buffer(eb, (char *)(result), \
1768 ((unsigned long)(ptr)) + \
1769 offsetof(type, member), \
1770 sizeof(((type *)0)->member)))
1771
1772 #define DECLARE_BTRFS_SETGET_BITS(bits) \
1773 u##bits btrfs_get_token_##bits(struct btrfs_map_token *token, \
1774 const void *ptr, unsigned long off); \
1775 void btrfs_set_token_##bits(struct btrfs_map_token *token, \
1776 const void *ptr, unsigned long off, \
1777 u##bits val); \
1778 u##bits btrfs_get_##bits(const struct extent_buffer *eb, \
1779 const void *ptr, unsigned long off); \
1780 void btrfs_set_##bits(const struct extent_buffer *eb, void *ptr, \
1781 unsigned long off, u##bits val);
1782
1783 DECLARE_BTRFS_SETGET_BITS(8)
1784 DECLARE_BTRFS_SETGET_BITS(16)
1785 DECLARE_BTRFS_SETGET_BITS(32)
1786 DECLARE_BTRFS_SETGET_BITS(64)
1787
1788 #define BTRFS_SETGET_FUNCS(name, type, member, bits) \
1789 static inline u##bits btrfs_##name(const struct extent_buffer *eb, \
1790 const type *s) \
1791 { \
1792 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \
1793 return btrfs_get_##bits(eb, s, offsetof(type, member)); \
1794 } \
1795 static inline void btrfs_set_##name(const struct extent_buffer *eb, type *s, \
1796 u##bits val) \
1797 { \
1798 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \
1799 btrfs_set_##bits(eb, s, offsetof(type, member), val); \
1800 } \
1801 static inline u##bits btrfs_token_##name(struct btrfs_map_token *token, \
1802 const type *s) \
1803 { \
1804 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \
1805 return btrfs_get_token_##bits(token, s, offsetof(type, member));\
1806 } \
1807 static inline void btrfs_set_token_##name(struct btrfs_map_token *token,\
1808 type *s, u##bits val) \
1809 { \
1810 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \
1811 btrfs_set_token_##bits(token, s, offsetof(type, member), val); \
1812 }
1813
1814 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \
1815 static inline u##bits btrfs_##name(const struct extent_buffer *eb) \
1816 { \
1817 const type *p = page_address(eb->pages[0]) + \
1818 offset_in_page(eb->start); \
1819 return get_unaligned_le##bits(&p->member); \
1820 } \
1821 static inline void btrfs_set_##name(const struct extent_buffer *eb, \
1822 u##bits val) \
1823 { \
1824 type *p = page_address(eb->pages[0]) + offset_in_page(eb->start); \
1825 put_unaligned_le##bits(val, &p->member); \
1826 }
1827
1828 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \
1829 static inline u##bits btrfs_##name(const type *s) \
1830 { \
1831 return get_unaligned_le##bits(&s->member); \
1832 } \
1833 static inline void btrfs_set_##name(type *s, u##bits val) \
1834 { \
1835 put_unaligned_le##bits(val, &s->member); \
1836 }
1837
btrfs_device_total_bytes(const struct extent_buffer * eb,struct btrfs_dev_item * s)1838 static inline u64 btrfs_device_total_bytes(const struct extent_buffer *eb,
1839 struct btrfs_dev_item *s)
1840 {
1841 static_assert(sizeof(u64) ==
1842 sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1843 return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item,
1844 total_bytes));
1845 }
btrfs_set_device_total_bytes(const struct extent_buffer * eb,struct btrfs_dev_item * s,u64 val)1846 static inline void btrfs_set_device_total_bytes(const struct extent_buffer *eb,
1847 struct btrfs_dev_item *s,
1848 u64 val)
1849 {
1850 static_assert(sizeof(u64) ==
1851 sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1852 WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize));
1853 btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val);
1854 }
1855
1856
1857 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
1858 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
1859 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
1860 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
1861 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
1862 start_offset, 64);
1863 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
1864 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
1865 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
1866 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
1867 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
1868 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
1869
1870 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
1871 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
1872 total_bytes, 64);
1873 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
1874 bytes_used, 64);
1875 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
1876 io_align, 32);
1877 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
1878 io_width, 32);
1879 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
1880 sector_size, 32);
1881 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
1882 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
1883 dev_group, 32);
1884 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
1885 seek_speed, 8);
1886 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
1887 bandwidth, 8);
1888 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
1889 generation, 64);
1890
btrfs_device_uuid(struct btrfs_dev_item * d)1891 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d)
1892 {
1893 return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid);
1894 }
1895
btrfs_device_fsid(struct btrfs_dev_item * d)1896 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d)
1897 {
1898 return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid);
1899 }
1900
1901 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
1902 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
1903 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
1904 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
1905 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
1906 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
1907 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
1908 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
1909 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
1910 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
1911 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
1912
btrfs_stripe_dev_uuid(struct btrfs_stripe * s)1913 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
1914 {
1915 return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
1916 }
1917
1918 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
1919 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
1920 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
1921 stripe_len, 64);
1922 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
1923 io_align, 32);
1924 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
1925 io_width, 32);
1926 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
1927 sector_size, 32);
1928 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
1929 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
1930 num_stripes, 16);
1931 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
1932 sub_stripes, 16);
1933 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
1934 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
1935
btrfs_stripe_nr(struct btrfs_chunk * c,int nr)1936 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
1937 int nr)
1938 {
1939 unsigned long offset = (unsigned long)c;
1940 offset += offsetof(struct btrfs_chunk, stripe);
1941 offset += nr * sizeof(struct btrfs_stripe);
1942 return (struct btrfs_stripe *)offset;
1943 }
1944
btrfs_stripe_dev_uuid_nr(struct btrfs_chunk * c,int nr)1945 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
1946 {
1947 return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
1948 }
1949
btrfs_stripe_offset_nr(const struct extent_buffer * eb,struct btrfs_chunk * c,int nr)1950 static inline u64 btrfs_stripe_offset_nr(const struct extent_buffer *eb,
1951 struct btrfs_chunk *c, int nr)
1952 {
1953 return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
1954 }
1955
btrfs_stripe_devid_nr(const struct extent_buffer * eb,struct btrfs_chunk * c,int nr)1956 static inline u64 btrfs_stripe_devid_nr(const struct extent_buffer *eb,
1957 struct btrfs_chunk *c, int nr)
1958 {
1959 return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
1960 }
1961
1962 /* struct btrfs_block_group_item */
1963 BTRFS_SETGET_STACK_FUNCS(stack_block_group_used, struct btrfs_block_group_item,
1964 used, 64);
1965 BTRFS_SETGET_FUNCS(block_group_used, struct btrfs_block_group_item,
1966 used, 64);
1967 BTRFS_SETGET_STACK_FUNCS(stack_block_group_chunk_objectid,
1968 struct btrfs_block_group_item, chunk_objectid, 64);
1969
1970 BTRFS_SETGET_FUNCS(block_group_chunk_objectid,
1971 struct btrfs_block_group_item, chunk_objectid, 64);
1972 BTRFS_SETGET_FUNCS(block_group_flags,
1973 struct btrfs_block_group_item, flags, 64);
1974 BTRFS_SETGET_STACK_FUNCS(stack_block_group_flags,
1975 struct btrfs_block_group_item, flags, 64);
1976
1977 /* struct btrfs_free_space_info */
1978 BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info,
1979 extent_count, 32);
1980 BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32);
1981
1982 /* struct btrfs_inode_ref */
1983 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
1984 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
1985
1986 /* struct btrfs_inode_extref */
1987 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref,
1988 parent_objectid, 64);
1989 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref,
1990 name_len, 16);
1991 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64);
1992
1993 /* struct btrfs_inode_item */
1994 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
1995 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
1996 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
1997 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
1998 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
1999 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
2000 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
2001 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
2002 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
2003 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
2004 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
2005 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
2006 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
2007 generation, 64);
2008 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
2009 sequence, 64);
2010 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
2011 transid, 64);
2012 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
2013 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
2014 nbytes, 64);
2015 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
2016 block_group, 64);
2017 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
2018 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
2019 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
2020 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
2021 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
2022 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
2023 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
2024 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
2025 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
2026 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
2027
2028 /* struct btrfs_dev_extent */
2029 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
2030 chunk_tree, 64);
2031 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
2032 chunk_objectid, 64);
2033 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
2034 chunk_offset, 64);
2035 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
2036 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
2037 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
2038 generation, 64);
2039 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
2040
2041 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
2042
btrfs_tree_block_key(const struct extent_buffer * eb,struct btrfs_tree_block_info * item,struct btrfs_disk_key * key)2043 static inline void btrfs_tree_block_key(const struct extent_buffer *eb,
2044 struct btrfs_tree_block_info *item,
2045 struct btrfs_disk_key *key)
2046 {
2047 read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
2048 }
2049
btrfs_set_tree_block_key(const struct extent_buffer * eb,struct btrfs_tree_block_info * item,struct btrfs_disk_key * key)2050 static inline void btrfs_set_tree_block_key(const struct extent_buffer *eb,
2051 struct btrfs_tree_block_info *item,
2052 struct btrfs_disk_key *key)
2053 {
2054 write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
2055 }
2056
2057 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
2058 root, 64);
2059 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
2060 objectid, 64);
2061 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
2062 offset, 64);
2063 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
2064 count, 32);
2065
2066 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
2067 count, 32);
2068
2069 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
2070 type, 8);
2071 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
2072 offset, 64);
2073
btrfs_extent_inline_ref_size(int type)2074 static inline u32 btrfs_extent_inline_ref_size(int type)
2075 {
2076 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
2077 type == BTRFS_SHARED_BLOCK_REF_KEY)
2078 return sizeof(struct btrfs_extent_inline_ref);
2079 if (type == BTRFS_SHARED_DATA_REF_KEY)
2080 return sizeof(struct btrfs_shared_data_ref) +
2081 sizeof(struct btrfs_extent_inline_ref);
2082 if (type == BTRFS_EXTENT_DATA_REF_KEY)
2083 return sizeof(struct btrfs_extent_data_ref) +
2084 offsetof(struct btrfs_extent_inline_ref, offset);
2085 return 0;
2086 }
2087
2088 /* struct btrfs_node */
2089 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
2090 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
2091 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr,
2092 blockptr, 64);
2093 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr,
2094 generation, 64);
2095
btrfs_node_blockptr(const struct extent_buffer * eb,int nr)2096 static inline u64 btrfs_node_blockptr(const struct extent_buffer *eb, int nr)
2097 {
2098 unsigned long ptr;
2099 ptr = offsetof(struct btrfs_node, ptrs) +
2100 sizeof(struct btrfs_key_ptr) * nr;
2101 return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
2102 }
2103
btrfs_set_node_blockptr(const struct extent_buffer * eb,int nr,u64 val)2104 static inline void btrfs_set_node_blockptr(const struct extent_buffer *eb,
2105 int nr, u64 val)
2106 {
2107 unsigned long ptr;
2108 ptr = offsetof(struct btrfs_node, ptrs) +
2109 sizeof(struct btrfs_key_ptr) * nr;
2110 btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
2111 }
2112
btrfs_node_ptr_generation(const struct extent_buffer * eb,int nr)2113 static inline u64 btrfs_node_ptr_generation(const struct extent_buffer *eb, int nr)
2114 {
2115 unsigned long ptr;
2116 ptr = offsetof(struct btrfs_node, ptrs) +
2117 sizeof(struct btrfs_key_ptr) * nr;
2118 return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
2119 }
2120
btrfs_set_node_ptr_generation(const struct extent_buffer * eb,int nr,u64 val)2121 static inline void btrfs_set_node_ptr_generation(const struct extent_buffer *eb,
2122 int nr, u64 val)
2123 {
2124 unsigned long ptr;
2125 ptr = offsetof(struct btrfs_node, ptrs) +
2126 sizeof(struct btrfs_key_ptr) * nr;
2127 btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
2128 }
2129
btrfs_node_key_ptr_offset(int nr)2130 static inline unsigned long btrfs_node_key_ptr_offset(int nr)
2131 {
2132 return offsetof(struct btrfs_node, ptrs) +
2133 sizeof(struct btrfs_key_ptr) * nr;
2134 }
2135
2136 void btrfs_node_key(const struct extent_buffer *eb,
2137 struct btrfs_disk_key *disk_key, int nr);
2138
btrfs_set_node_key(const struct extent_buffer * eb,struct btrfs_disk_key * disk_key,int nr)2139 static inline void btrfs_set_node_key(const struct extent_buffer *eb,
2140 struct btrfs_disk_key *disk_key, int nr)
2141 {
2142 unsigned long ptr;
2143 ptr = btrfs_node_key_ptr_offset(nr);
2144 write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
2145 struct btrfs_key_ptr, key, disk_key);
2146 }
2147
2148 /* struct btrfs_item */
2149 BTRFS_SETGET_FUNCS(raw_item_offset, struct btrfs_item, offset, 32);
2150 BTRFS_SETGET_FUNCS(raw_item_size, struct btrfs_item, size, 32);
2151 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32);
2152 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32);
2153
btrfs_item_nr_offset(int nr)2154 static inline unsigned long btrfs_item_nr_offset(int nr)
2155 {
2156 return offsetof(struct btrfs_leaf, items) +
2157 sizeof(struct btrfs_item) * nr;
2158 }
2159
btrfs_item_nr(int nr)2160 static inline struct btrfs_item *btrfs_item_nr(int nr)
2161 {
2162 return (struct btrfs_item *)btrfs_item_nr_offset(nr);
2163 }
2164
2165 #define BTRFS_ITEM_SETGET_FUNCS(member) \
2166 static inline u32 btrfs_item_##member(const struct extent_buffer *eb, \
2167 int slot) \
2168 { \
2169 return btrfs_raw_item_##member(eb, btrfs_item_nr(slot)); \
2170 } \
2171 static inline void btrfs_set_item_##member(const struct extent_buffer *eb, \
2172 int slot, u32 val) \
2173 { \
2174 btrfs_set_raw_item_##member(eb, btrfs_item_nr(slot), val); \
2175 } \
2176 static inline u32 btrfs_token_item_##member(struct btrfs_map_token *token, \
2177 int slot) \
2178 { \
2179 struct btrfs_item *item = btrfs_item_nr(slot); \
2180 return btrfs_token_raw_item_##member(token, item); \
2181 } \
2182 static inline void btrfs_set_token_item_##member(struct btrfs_map_token *token, \
2183 int slot, u32 val) \
2184 { \
2185 struct btrfs_item *item = btrfs_item_nr(slot); \
2186 btrfs_set_token_raw_item_##member(token, item, val); \
2187 }
2188
2189 BTRFS_ITEM_SETGET_FUNCS(offset)
2190 BTRFS_ITEM_SETGET_FUNCS(size);
2191
btrfs_item_data_end(const struct extent_buffer * eb,int nr)2192 static inline u32 btrfs_item_data_end(const struct extent_buffer *eb, int nr)
2193 {
2194 return btrfs_item_offset(eb, nr) + btrfs_item_size(eb, nr);
2195 }
2196
btrfs_item_key(const struct extent_buffer * eb,struct btrfs_disk_key * disk_key,int nr)2197 static inline void btrfs_item_key(const struct extent_buffer *eb,
2198 struct btrfs_disk_key *disk_key, int nr)
2199 {
2200 struct btrfs_item *item = btrfs_item_nr(nr);
2201 read_eb_member(eb, item, struct btrfs_item, key, disk_key);
2202 }
2203
btrfs_set_item_key(struct extent_buffer * eb,struct btrfs_disk_key * disk_key,int nr)2204 static inline void btrfs_set_item_key(struct extent_buffer *eb,
2205 struct btrfs_disk_key *disk_key, int nr)
2206 {
2207 struct btrfs_item *item = btrfs_item_nr(nr);
2208 write_eb_member(eb, item, struct btrfs_item, key, disk_key);
2209 }
2210
2211 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
2212
2213 /*
2214 * struct btrfs_root_ref
2215 */
2216 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
2217 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
2218 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
2219
2220 /* struct btrfs_dir_item */
2221 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
2222 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
2223 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
2224 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
2225 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8);
2226 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item,
2227 data_len, 16);
2228 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item,
2229 name_len, 16);
2230 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item,
2231 transid, 64);
2232
btrfs_dir_item_key(const struct extent_buffer * eb,const struct btrfs_dir_item * item,struct btrfs_disk_key * key)2233 static inline void btrfs_dir_item_key(const struct extent_buffer *eb,
2234 const struct btrfs_dir_item *item,
2235 struct btrfs_disk_key *key)
2236 {
2237 read_eb_member(eb, item, struct btrfs_dir_item, location, key);
2238 }
2239
btrfs_set_dir_item_key(struct extent_buffer * eb,struct btrfs_dir_item * item,const struct btrfs_disk_key * key)2240 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
2241 struct btrfs_dir_item *item,
2242 const struct btrfs_disk_key *key)
2243 {
2244 write_eb_member(eb, item, struct btrfs_dir_item, location, key);
2245 }
2246
2247 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
2248 num_entries, 64);
2249 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
2250 num_bitmaps, 64);
2251 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
2252 generation, 64);
2253
btrfs_free_space_key(const struct extent_buffer * eb,const struct btrfs_free_space_header * h,struct btrfs_disk_key * key)2254 static inline void btrfs_free_space_key(const struct extent_buffer *eb,
2255 const struct btrfs_free_space_header *h,
2256 struct btrfs_disk_key *key)
2257 {
2258 read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2259 }
2260
btrfs_set_free_space_key(struct extent_buffer * eb,struct btrfs_free_space_header * h,const struct btrfs_disk_key * key)2261 static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
2262 struct btrfs_free_space_header *h,
2263 const struct btrfs_disk_key *key)
2264 {
2265 write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2266 }
2267
2268 /* struct btrfs_disk_key */
2269 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
2270 objectid, 64);
2271 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
2272 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
2273
2274 #ifdef __LITTLE_ENDIAN
2275
2276 /*
2277 * Optimized helpers for little-endian architectures where CPU and on-disk
2278 * structures have the same endianness and we can skip conversions.
2279 */
2280
btrfs_disk_key_to_cpu(struct btrfs_key * cpu_key,const struct btrfs_disk_key * disk_key)2281 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu_key,
2282 const struct btrfs_disk_key *disk_key)
2283 {
2284 memcpy(cpu_key, disk_key, sizeof(struct btrfs_key));
2285 }
2286
btrfs_cpu_key_to_disk(struct btrfs_disk_key * disk_key,const struct btrfs_key * cpu_key)2287 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk_key,
2288 const struct btrfs_key *cpu_key)
2289 {
2290 memcpy(disk_key, cpu_key, sizeof(struct btrfs_key));
2291 }
2292
btrfs_node_key_to_cpu(const struct extent_buffer * eb,struct btrfs_key * cpu_key,int nr)2293 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2294 struct btrfs_key *cpu_key, int nr)
2295 {
2296 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2297
2298 btrfs_node_key(eb, disk_key, nr);
2299 }
2300
btrfs_item_key_to_cpu(const struct extent_buffer * eb,struct btrfs_key * cpu_key,int nr)2301 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2302 struct btrfs_key *cpu_key, int nr)
2303 {
2304 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2305
2306 btrfs_item_key(eb, disk_key, nr);
2307 }
2308
btrfs_dir_item_key_to_cpu(const struct extent_buffer * eb,const struct btrfs_dir_item * item,struct btrfs_key * cpu_key)2309 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2310 const struct btrfs_dir_item *item,
2311 struct btrfs_key *cpu_key)
2312 {
2313 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2314
2315 btrfs_dir_item_key(eb, item, disk_key);
2316 }
2317
2318 #else
2319
btrfs_disk_key_to_cpu(struct btrfs_key * cpu,const struct btrfs_disk_key * disk)2320 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
2321 const struct btrfs_disk_key *disk)
2322 {
2323 cpu->offset = le64_to_cpu(disk->offset);
2324 cpu->type = disk->type;
2325 cpu->objectid = le64_to_cpu(disk->objectid);
2326 }
2327
btrfs_cpu_key_to_disk(struct btrfs_disk_key * disk,const struct btrfs_key * cpu)2328 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
2329 const struct btrfs_key *cpu)
2330 {
2331 disk->offset = cpu_to_le64(cpu->offset);
2332 disk->type = cpu->type;
2333 disk->objectid = cpu_to_le64(cpu->objectid);
2334 }
2335
btrfs_node_key_to_cpu(const struct extent_buffer * eb,struct btrfs_key * key,int nr)2336 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2337 struct btrfs_key *key, int nr)
2338 {
2339 struct btrfs_disk_key disk_key;
2340 btrfs_node_key(eb, &disk_key, nr);
2341 btrfs_disk_key_to_cpu(key, &disk_key);
2342 }
2343
btrfs_item_key_to_cpu(const struct extent_buffer * eb,struct btrfs_key * key,int nr)2344 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2345 struct btrfs_key *key, int nr)
2346 {
2347 struct btrfs_disk_key disk_key;
2348 btrfs_item_key(eb, &disk_key, nr);
2349 btrfs_disk_key_to_cpu(key, &disk_key);
2350 }
2351
btrfs_dir_item_key_to_cpu(const struct extent_buffer * eb,const struct btrfs_dir_item * item,struct btrfs_key * key)2352 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2353 const struct btrfs_dir_item *item,
2354 struct btrfs_key *key)
2355 {
2356 struct btrfs_disk_key disk_key;
2357 btrfs_dir_item_key(eb, item, &disk_key);
2358 btrfs_disk_key_to_cpu(key, &disk_key);
2359 }
2360
2361 #endif
2362
2363 /* struct btrfs_header */
2364 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
2365 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
2366 generation, 64);
2367 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
2368 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
2369 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
2370 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
2371 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header,
2372 generation, 64);
2373 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64);
2374 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header,
2375 nritems, 32);
2376 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64);
2377
btrfs_header_flag(const struct extent_buffer * eb,u64 flag)2378 static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag)
2379 {
2380 return (btrfs_header_flags(eb) & flag) == flag;
2381 }
2382
btrfs_set_header_flag(struct extent_buffer * eb,u64 flag)2383 static inline void btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
2384 {
2385 u64 flags = btrfs_header_flags(eb);
2386 btrfs_set_header_flags(eb, flags | flag);
2387 }
2388
btrfs_clear_header_flag(struct extent_buffer * eb,u64 flag)2389 static inline void btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
2390 {
2391 u64 flags = btrfs_header_flags(eb);
2392 btrfs_set_header_flags(eb, flags & ~flag);
2393 }
2394
btrfs_header_backref_rev(const struct extent_buffer * eb)2395 static inline int btrfs_header_backref_rev(const struct extent_buffer *eb)
2396 {
2397 u64 flags = btrfs_header_flags(eb);
2398 return flags >> BTRFS_BACKREF_REV_SHIFT;
2399 }
2400
btrfs_set_header_backref_rev(struct extent_buffer * eb,int rev)2401 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
2402 int rev)
2403 {
2404 u64 flags = btrfs_header_flags(eb);
2405 flags &= ~BTRFS_BACKREF_REV_MASK;
2406 flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
2407 btrfs_set_header_flags(eb, flags);
2408 }
2409
btrfs_is_leaf(const struct extent_buffer * eb)2410 static inline int btrfs_is_leaf(const struct extent_buffer *eb)
2411 {
2412 return btrfs_header_level(eb) == 0;
2413 }
2414
2415 /* struct btrfs_root_item */
2416 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
2417 generation, 64);
2418 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
2419 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
2420 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
2421
2422 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
2423 generation, 64);
2424 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
2425 BTRFS_SETGET_STACK_FUNCS(root_drop_level, struct btrfs_root_item, drop_level, 8);
2426 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
2427 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
2428 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
2429 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
2430 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
2431 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
2432 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
2433 last_snapshot, 64);
2434 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item,
2435 generation_v2, 64);
2436 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item,
2437 ctransid, 64);
2438 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item,
2439 otransid, 64);
2440 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item,
2441 stransid, 64);
2442 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item,
2443 rtransid, 64);
2444
btrfs_root_readonly(const struct btrfs_root * root)2445 static inline bool btrfs_root_readonly(const struct btrfs_root *root)
2446 {
2447 /* Byte-swap the constant at compile time, root_item::flags is LE */
2448 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
2449 }
2450
btrfs_root_dead(const struct btrfs_root * root)2451 static inline bool btrfs_root_dead(const struct btrfs_root *root)
2452 {
2453 /* Byte-swap the constant at compile time, root_item::flags is LE */
2454 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
2455 }
2456
btrfs_root_id(const struct btrfs_root * root)2457 static inline u64 btrfs_root_id(const struct btrfs_root *root)
2458 {
2459 return root->root_key.objectid;
2460 }
2461
2462 /* struct btrfs_root_backup */
2463 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
2464 tree_root, 64);
2465 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
2466 tree_root_gen, 64);
2467 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
2468 tree_root_level, 8);
2469
2470 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
2471 chunk_root, 64);
2472 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
2473 chunk_root_gen, 64);
2474 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
2475 chunk_root_level, 8);
2476
2477 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
2478 extent_root, 64);
2479 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
2480 extent_root_gen, 64);
2481 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
2482 extent_root_level, 8);
2483
2484 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
2485 fs_root, 64);
2486 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
2487 fs_root_gen, 64);
2488 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
2489 fs_root_level, 8);
2490
2491 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
2492 dev_root, 64);
2493 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
2494 dev_root_gen, 64);
2495 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
2496 dev_root_level, 8);
2497
2498 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
2499 csum_root, 64);
2500 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
2501 csum_root_gen, 64);
2502 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
2503 csum_root_level, 8);
2504 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
2505 total_bytes, 64);
2506 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
2507 bytes_used, 64);
2508 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
2509 num_devices, 64);
2510
2511 /* struct btrfs_balance_item */
2512 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
2513
btrfs_balance_data(const struct extent_buffer * eb,const struct btrfs_balance_item * bi,struct btrfs_disk_balance_args * ba)2514 static inline void btrfs_balance_data(const struct extent_buffer *eb,
2515 const struct btrfs_balance_item *bi,
2516 struct btrfs_disk_balance_args *ba)
2517 {
2518 read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2519 }
2520
btrfs_set_balance_data(struct extent_buffer * eb,struct btrfs_balance_item * bi,const struct btrfs_disk_balance_args * ba)2521 static inline void btrfs_set_balance_data(struct extent_buffer *eb,
2522 struct btrfs_balance_item *bi,
2523 const struct btrfs_disk_balance_args *ba)
2524 {
2525 write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2526 }
2527
btrfs_balance_meta(const struct extent_buffer * eb,const struct btrfs_balance_item * bi,struct btrfs_disk_balance_args * ba)2528 static inline void btrfs_balance_meta(const struct extent_buffer *eb,
2529 const struct btrfs_balance_item *bi,
2530 struct btrfs_disk_balance_args *ba)
2531 {
2532 read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2533 }
2534
btrfs_set_balance_meta(struct extent_buffer * eb,struct btrfs_balance_item * bi,const struct btrfs_disk_balance_args * ba)2535 static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
2536 struct btrfs_balance_item *bi,
2537 const struct btrfs_disk_balance_args *ba)
2538 {
2539 write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2540 }
2541
btrfs_balance_sys(const struct extent_buffer * eb,const struct btrfs_balance_item * bi,struct btrfs_disk_balance_args * ba)2542 static inline void btrfs_balance_sys(const struct extent_buffer *eb,
2543 const struct btrfs_balance_item *bi,
2544 struct btrfs_disk_balance_args *ba)
2545 {
2546 read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2547 }
2548
btrfs_set_balance_sys(struct extent_buffer * eb,struct btrfs_balance_item * bi,const struct btrfs_disk_balance_args * ba)2549 static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
2550 struct btrfs_balance_item *bi,
2551 const struct btrfs_disk_balance_args *ba)
2552 {
2553 write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2554 }
2555
2556 static inline void
btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args * cpu,const struct btrfs_disk_balance_args * disk)2557 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
2558 const struct btrfs_disk_balance_args *disk)
2559 {
2560 memset(cpu, 0, sizeof(*cpu));
2561
2562 cpu->profiles = le64_to_cpu(disk->profiles);
2563 cpu->usage = le64_to_cpu(disk->usage);
2564 cpu->devid = le64_to_cpu(disk->devid);
2565 cpu->pstart = le64_to_cpu(disk->pstart);
2566 cpu->pend = le64_to_cpu(disk->pend);
2567 cpu->vstart = le64_to_cpu(disk->vstart);
2568 cpu->vend = le64_to_cpu(disk->vend);
2569 cpu->target = le64_to_cpu(disk->target);
2570 cpu->flags = le64_to_cpu(disk->flags);
2571 cpu->limit = le64_to_cpu(disk->limit);
2572 cpu->stripes_min = le32_to_cpu(disk->stripes_min);
2573 cpu->stripes_max = le32_to_cpu(disk->stripes_max);
2574 }
2575
2576 static inline void
btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args * disk,const struct btrfs_balance_args * cpu)2577 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
2578 const struct btrfs_balance_args *cpu)
2579 {
2580 memset(disk, 0, sizeof(*disk));
2581
2582 disk->profiles = cpu_to_le64(cpu->profiles);
2583 disk->usage = cpu_to_le64(cpu->usage);
2584 disk->devid = cpu_to_le64(cpu->devid);
2585 disk->pstart = cpu_to_le64(cpu->pstart);
2586 disk->pend = cpu_to_le64(cpu->pend);
2587 disk->vstart = cpu_to_le64(cpu->vstart);
2588 disk->vend = cpu_to_le64(cpu->vend);
2589 disk->target = cpu_to_le64(cpu->target);
2590 disk->flags = cpu_to_le64(cpu->flags);
2591 disk->limit = cpu_to_le64(cpu->limit);
2592 disk->stripes_min = cpu_to_le32(cpu->stripes_min);
2593 disk->stripes_max = cpu_to_le32(cpu->stripes_max);
2594 }
2595
2596 /* struct btrfs_super_block */
2597 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
2598 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
2599 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
2600 generation, 64);
2601 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
2602 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
2603 struct btrfs_super_block, sys_chunk_array_size, 32);
2604 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
2605 struct btrfs_super_block, chunk_root_generation, 64);
2606 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
2607 root_level, 8);
2608 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
2609 chunk_root, 64);
2610 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
2611 chunk_root_level, 8);
2612 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
2613 log_root, 64);
2614 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
2615 log_root_level, 8);
2616 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
2617 total_bytes, 64);
2618 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
2619 bytes_used, 64);
2620 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
2621 sectorsize, 32);
2622 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
2623 nodesize, 32);
2624 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
2625 stripesize, 32);
2626 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
2627 root_dir_objectid, 64);
2628 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
2629 num_devices, 64);
2630 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
2631 compat_flags, 64);
2632 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
2633 compat_ro_flags, 64);
2634 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
2635 incompat_flags, 64);
2636 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
2637 csum_type, 16);
2638 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
2639 cache_generation, 64);
2640 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64);
2641 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block,
2642 uuid_tree_generation, 64);
2643
2644 int btrfs_super_csum_size(const struct btrfs_super_block *s);
2645 const char *btrfs_super_csum_name(u16 csum_type);
2646 const char *btrfs_super_csum_driver(u16 csum_type);
2647 size_t __attribute_const__ btrfs_get_num_csums(void);
2648
2649
2650 /*
2651 * The leaf data grows from end-to-front in the node.
2652 * this returns the address of the start of the last item,
2653 * which is the stop of the leaf data stack
2654 */
leaf_data_end(const struct extent_buffer * leaf)2655 static inline unsigned int leaf_data_end(const struct extent_buffer *leaf)
2656 {
2657 u32 nr = btrfs_header_nritems(leaf);
2658
2659 if (nr == 0)
2660 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
2661 return btrfs_item_offset(leaf, nr - 1);
2662 }
2663
2664 /* struct btrfs_file_extent_item */
2665 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_type, struct btrfs_file_extent_item,
2666 type, 8);
2667 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr,
2668 struct btrfs_file_extent_item, disk_bytenr, 64);
2669 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset,
2670 struct btrfs_file_extent_item, offset, 64);
2671 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation,
2672 struct btrfs_file_extent_item, generation, 64);
2673 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes,
2674 struct btrfs_file_extent_item, num_bytes, 64);
2675 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_ram_bytes,
2676 struct btrfs_file_extent_item, ram_bytes, 64);
2677 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes,
2678 struct btrfs_file_extent_item, disk_num_bytes, 64);
2679 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression,
2680 struct btrfs_file_extent_item, compression, 8);
2681
2682 static inline unsigned long
btrfs_file_extent_inline_start(const struct btrfs_file_extent_item * e)2683 btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e)
2684 {
2685 return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START;
2686 }
2687
btrfs_file_extent_calc_inline_size(u32 datasize)2688 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
2689 {
2690 return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize;
2691 }
2692
2693 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
2694 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
2695 disk_bytenr, 64);
2696 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
2697 generation, 64);
2698 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
2699 disk_num_bytes, 64);
2700 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
2701 offset, 64);
2702 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
2703 num_bytes, 64);
2704 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
2705 ram_bytes, 64);
2706 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
2707 compression, 8);
2708 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
2709 encryption, 8);
2710 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
2711 other_encoding, 16);
2712
2713 /*
2714 * this returns the number of bytes used by the item on disk, minus the
2715 * size of any extent headers. If a file is compressed on disk, this is
2716 * the compressed size
2717 */
btrfs_file_extent_inline_item_len(const struct extent_buffer * eb,int nr)2718 static inline u32 btrfs_file_extent_inline_item_len(
2719 const struct extent_buffer *eb,
2720 int nr)
2721 {
2722 return btrfs_item_size(eb, nr) - BTRFS_FILE_EXTENT_INLINE_DATA_START;
2723 }
2724
2725 /* btrfs_qgroup_status_item */
2726 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item,
2727 generation, 64);
2728 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item,
2729 version, 64);
2730 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item,
2731 flags, 64);
2732 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item,
2733 rescan, 64);
2734
2735 /* btrfs_qgroup_info_item */
2736 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item,
2737 generation, 64);
2738 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64);
2739 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item,
2740 rfer_cmpr, 64);
2741 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64);
2742 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item,
2743 excl_cmpr, 64);
2744
2745 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation,
2746 struct btrfs_qgroup_info_item, generation, 64);
2747 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item,
2748 rfer, 64);
2749 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr,
2750 struct btrfs_qgroup_info_item, rfer_cmpr, 64);
2751 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item,
2752 excl, 64);
2753 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr,
2754 struct btrfs_qgroup_info_item, excl_cmpr, 64);
2755
2756 /* btrfs_qgroup_limit_item */
2757 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item,
2758 flags, 64);
2759 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item,
2760 max_rfer, 64);
2761 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item,
2762 max_excl, 64);
2763 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item,
2764 rsv_rfer, 64);
2765 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item,
2766 rsv_excl, 64);
2767
2768 /* btrfs_dev_replace_item */
2769 BTRFS_SETGET_FUNCS(dev_replace_src_devid,
2770 struct btrfs_dev_replace_item, src_devid, 64);
2771 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode,
2772 struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode,
2773 64);
2774 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item,
2775 replace_state, 64);
2776 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item,
2777 time_started, 64);
2778 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item,
2779 time_stopped, 64);
2780 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item,
2781 num_write_errors, 64);
2782 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors,
2783 struct btrfs_dev_replace_item, num_uncorrectable_read_errors,
2784 64);
2785 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item,
2786 cursor_left, 64);
2787 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item,
2788 cursor_right, 64);
2789
2790 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid,
2791 struct btrfs_dev_replace_item, src_devid, 64);
2792 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode,
2793 struct btrfs_dev_replace_item,
2794 cont_reading_from_srcdev_mode, 64);
2795 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state,
2796 struct btrfs_dev_replace_item, replace_state, 64);
2797 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started,
2798 struct btrfs_dev_replace_item, time_started, 64);
2799 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped,
2800 struct btrfs_dev_replace_item, time_stopped, 64);
2801 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors,
2802 struct btrfs_dev_replace_item, num_write_errors, 64);
2803 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors,
2804 struct btrfs_dev_replace_item,
2805 num_uncorrectable_read_errors, 64);
2806 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left,
2807 struct btrfs_dev_replace_item, cursor_left, 64);
2808 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right,
2809 struct btrfs_dev_replace_item, cursor_right, 64);
2810
2811 /* helper function to cast into the data area of the leaf. */
2812 #define btrfs_item_ptr(leaf, slot, type) \
2813 ((type *)(BTRFS_LEAF_DATA_OFFSET + \
2814 btrfs_item_offset(leaf, slot)))
2815
2816 #define btrfs_item_ptr_offset(leaf, slot) \
2817 ((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \
2818 btrfs_item_offset(leaf, slot)))
2819
btrfs_crc32c(u32 crc,const void * address,unsigned length)2820 static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length)
2821 {
2822 return crc32c(crc, address, length);
2823 }
2824
btrfs_crc32c_final(u32 crc,u8 * result)2825 static inline void btrfs_crc32c_final(u32 crc, u8 *result)
2826 {
2827 put_unaligned_le32(~crc, result);
2828 }
2829
btrfs_name_hash(const char * name,int len)2830 static inline u64 btrfs_name_hash(const char *name, int len)
2831 {
2832 return crc32c((u32)~1, name, len);
2833 }
2834
2835 /*
2836 * Figure the key offset of an extended inode ref
2837 */
btrfs_extref_hash(u64 parent_objectid,const char * name,int len)2838 static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name,
2839 int len)
2840 {
2841 return (u64) crc32c(parent_objectid, name, len);
2842 }
2843
btrfs_alloc_write_mask(struct address_space * mapping)2844 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
2845 {
2846 return mapping_gfp_constraint(mapping, ~__GFP_FS);
2847 }
2848
2849 /* extent-tree.c */
2850
2851 enum btrfs_inline_ref_type {
2852 BTRFS_REF_TYPE_INVALID,
2853 BTRFS_REF_TYPE_BLOCK,
2854 BTRFS_REF_TYPE_DATA,
2855 BTRFS_REF_TYPE_ANY,
2856 };
2857
2858 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
2859 struct btrfs_extent_inline_ref *iref,
2860 enum btrfs_inline_ref_type is_data);
2861 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset);
2862
2863
2864 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
2865 u64 start, u64 num_bytes);
2866 void btrfs_free_excluded_extents(struct btrfs_block_group *cache);
2867 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2868 unsigned long count);
2869 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
2870 struct btrfs_delayed_ref_root *delayed_refs,
2871 struct btrfs_delayed_ref_head *head);
2872 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len);
2873 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2874 struct btrfs_fs_info *fs_info, u64 bytenr,
2875 u64 offset, int metadata, u64 *refs, u64 *flags);
2876 int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num,
2877 int reserved);
2878 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2879 u64 bytenr, u64 num_bytes);
2880 int btrfs_exclude_logged_extents(struct extent_buffer *eb);
2881 int btrfs_cross_ref_exist(struct btrfs_root *root,
2882 u64 objectid, u64 offset, u64 bytenr, bool strict,
2883 struct btrfs_path *path);
2884 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
2885 struct btrfs_root *root,
2886 u64 parent, u64 root_objectid,
2887 const struct btrfs_disk_key *key,
2888 int level, u64 hint,
2889 u64 empty_size,
2890 enum btrfs_lock_nesting nest);
2891 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
2892 u64 root_id,
2893 struct extent_buffer *buf,
2894 u64 parent, int last_ref);
2895 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2896 struct btrfs_root *root, u64 owner,
2897 u64 offset, u64 ram_bytes,
2898 struct btrfs_key *ins);
2899 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2900 u64 root_objectid, u64 owner, u64 offset,
2901 struct btrfs_key *ins);
2902 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes,
2903 u64 min_alloc_size, u64 empty_size, u64 hint_byte,
2904 struct btrfs_key *ins, int is_data, int delalloc);
2905 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2906 struct extent_buffer *buf, int full_backref);
2907 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2908 struct extent_buffer *buf, int full_backref);
2909 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2910 struct extent_buffer *eb, u64 flags, int level);
2911 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref);
2912
2913 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
2914 u64 start, u64 len, int delalloc);
2915 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
2916 u64 len);
2917 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans);
2918 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2919 struct btrfs_ref *generic_ref);
2920
2921 void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
2922
2923 /*
2924 * Different levels for to flush space when doing space reservations.
2925 *
2926 * The higher the level, the more methods we try to reclaim space.
2927 */
2928 enum btrfs_reserve_flush_enum {
2929 /* If we are in the transaction, we can't flush anything.*/
2930 BTRFS_RESERVE_NO_FLUSH,
2931
2932 /*
2933 * Flush space by:
2934 * - Running delayed inode items
2935 * - Allocating a new chunk
2936 */
2937 BTRFS_RESERVE_FLUSH_LIMIT,
2938
2939 /*
2940 * Flush space by:
2941 * - Running delayed inode items
2942 * - Running delayed refs
2943 * - Running delalloc and waiting for ordered extents
2944 * - Allocating a new chunk
2945 */
2946 BTRFS_RESERVE_FLUSH_EVICT,
2947
2948 /*
2949 * Flush space by above mentioned methods and by:
2950 * - Running delayed iputs
2951 * - Committing transaction
2952 *
2953 * Can be interrupted by a fatal signal.
2954 */
2955 BTRFS_RESERVE_FLUSH_DATA,
2956 BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE,
2957 BTRFS_RESERVE_FLUSH_ALL,
2958
2959 /*
2960 * Pretty much the same as FLUSH_ALL, but can also steal space from
2961 * global rsv.
2962 *
2963 * Can be interrupted by a fatal signal.
2964 */
2965 BTRFS_RESERVE_FLUSH_ALL_STEAL,
2966 };
2967
2968 enum btrfs_flush_state {
2969 FLUSH_DELAYED_ITEMS_NR = 1,
2970 FLUSH_DELAYED_ITEMS = 2,
2971 FLUSH_DELAYED_REFS_NR = 3,
2972 FLUSH_DELAYED_REFS = 4,
2973 FLUSH_DELALLOC = 5,
2974 FLUSH_DELALLOC_WAIT = 6,
2975 FLUSH_DELALLOC_FULL = 7,
2976 ALLOC_CHUNK = 8,
2977 ALLOC_CHUNK_FORCE = 9,
2978 RUN_DELAYED_IPUTS = 10,
2979 COMMIT_TRANS = 11,
2980 };
2981
2982 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
2983 struct btrfs_block_rsv *rsv,
2984 int nitems, bool use_global_rsv);
2985 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
2986 struct btrfs_block_rsv *rsv);
2987 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes);
2988
2989 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes,
2990 u64 disk_num_bytes, bool noflush);
2991 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
2992 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
2993 u64 start, u64 end);
2994 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2995 u64 num_bytes, u64 *actual_bytes);
2996 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
2997
2998 int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
2999 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
3000 struct btrfs_fs_info *fs_info);
3001 int btrfs_start_write_no_snapshotting(struct btrfs_root *root);
3002 void btrfs_end_write_no_snapshotting(struct btrfs_root *root);
3003 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root);
3004
3005 /* ctree.c */
3006 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
3007 int *slot);
3008 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
3009 int btrfs_previous_item(struct btrfs_root *root,
3010 struct btrfs_path *path, u64 min_objectid,
3011 int type);
3012 int btrfs_previous_extent_item(struct btrfs_root *root,
3013 struct btrfs_path *path, u64 min_objectid);
3014 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3015 struct btrfs_path *path,
3016 const struct btrfs_key *new_key);
3017 struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
3018 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
3019 struct btrfs_key *key, int lowest_level,
3020 u64 min_trans);
3021 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3022 struct btrfs_path *path,
3023 u64 min_trans);
3024 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
3025 int slot);
3026
3027 int btrfs_cow_block(struct btrfs_trans_handle *trans,
3028 struct btrfs_root *root, struct extent_buffer *buf,
3029 struct extent_buffer *parent, int parent_slot,
3030 struct extent_buffer **cow_ret,
3031 enum btrfs_lock_nesting nest);
3032 int btrfs_copy_root(struct btrfs_trans_handle *trans,
3033 struct btrfs_root *root,
3034 struct extent_buffer *buf,
3035 struct extent_buffer **cow_ret, u64 new_root_objectid);
3036 int btrfs_block_can_be_shared(struct btrfs_root *root,
3037 struct extent_buffer *buf);
3038 void btrfs_extend_item(struct btrfs_path *path, u32 data_size);
3039 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end);
3040 int btrfs_split_item(struct btrfs_trans_handle *trans,
3041 struct btrfs_root *root,
3042 struct btrfs_path *path,
3043 const struct btrfs_key *new_key,
3044 unsigned long split_offset);
3045 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3046 struct btrfs_root *root,
3047 struct btrfs_path *path,
3048 const struct btrfs_key *new_key);
3049 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
3050 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
3051 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3052 const struct btrfs_key *key, struct btrfs_path *p,
3053 int ins_len, int cow);
3054 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
3055 struct btrfs_path *p, u64 time_seq);
3056 int btrfs_search_slot_for_read(struct btrfs_root *root,
3057 const struct btrfs_key *key,
3058 struct btrfs_path *p, int find_higher,
3059 int return_any);
3060 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
3061 struct btrfs_root *root, struct extent_buffer *parent,
3062 int start_slot, u64 *last_ret,
3063 struct btrfs_key *progress);
3064 void btrfs_release_path(struct btrfs_path *p);
3065 struct btrfs_path *btrfs_alloc_path(void);
3066 void btrfs_free_path(struct btrfs_path *p);
3067
3068 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3069 struct btrfs_path *path, int slot, int nr);
btrfs_del_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path)3070 static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
3071 struct btrfs_root *root,
3072 struct btrfs_path *path)
3073 {
3074 return btrfs_del_items(trans, root, path, path->slots[0], 1);
3075 }
3076
3077 /*
3078 * Describes a batch of items to insert in a btree. This is used by
3079 * btrfs_insert_empty_items().
3080 */
3081 struct btrfs_item_batch {
3082 /*
3083 * Pointer to an array containing the keys of the items to insert (in
3084 * sorted order).
3085 */
3086 const struct btrfs_key *keys;
3087 /* Pointer to an array containing the data size for each item to insert. */
3088 const u32 *data_sizes;
3089 /*
3090 * The sum of data sizes for all items. The caller can compute this while
3091 * setting up the data_sizes array, so it ends up being more efficient
3092 * than having btrfs_insert_empty_items() or setup_item_for_insert()
3093 * doing it, as it would avoid an extra loop over a potentially large
3094 * array, and in the case of setup_item_for_insert(), we would be doing
3095 * it while holding a write lock on a leaf and often on upper level nodes
3096 * too, unnecessarily increasing the size of a critical section.
3097 */
3098 u32 total_data_size;
3099 /* Size of the keys and data_sizes arrays (number of items in the batch). */
3100 int nr;
3101 };
3102
3103 void btrfs_setup_item_for_insert(struct btrfs_root *root,
3104 struct btrfs_path *path,
3105 const struct btrfs_key *key,
3106 u32 data_size);
3107 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3108 const struct btrfs_key *key, void *data, u32 data_size);
3109 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3110 struct btrfs_root *root,
3111 struct btrfs_path *path,
3112 const struct btrfs_item_batch *batch);
3113
btrfs_insert_empty_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * key,u32 data_size)3114 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
3115 struct btrfs_root *root,
3116 struct btrfs_path *path,
3117 const struct btrfs_key *key,
3118 u32 data_size)
3119 {
3120 struct btrfs_item_batch batch;
3121
3122 batch.keys = key;
3123 batch.data_sizes = &data_size;
3124 batch.total_data_size = data_size;
3125 batch.nr = 1;
3126
3127 return btrfs_insert_empty_items(trans, root, path, &batch);
3128 }
3129
3130 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
3131 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
3132 u64 time_seq);
3133
3134 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
3135 struct btrfs_path *path);
3136
3137 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
3138 struct btrfs_path *path);
3139
3140 /*
3141 * Search in @root for a given @key, and store the slot found in @found_key.
3142 *
3143 * @root: The root node of the tree.
3144 * @key: The key we are looking for.
3145 * @found_key: Will hold the found item.
3146 * @path: Holds the current slot/leaf.
3147 * @iter_ret: Contains the value returned from btrfs_search_slot or
3148 * btrfs_get_next_valid_item, whichever was executed last.
3149 *
3150 * The @iter_ret is an output variable that will contain the return value of
3151 * btrfs_search_slot, if it encountered an error, or the value returned from
3152 * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid
3153 * slot was found, 1 if there were no more leaves, and <0 if there was an error.
3154 *
3155 * It's recommended to use a separate variable for iter_ret and then use it to
3156 * set the function return value so there's no confusion of the 0/1/errno
3157 * values stemming from btrfs_search_slot.
3158 */
3159 #define btrfs_for_each_slot(root, key, found_key, path, iter_ret) \
3160 for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0); \
3161 (iter_ret) >= 0 && \
3162 (iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \
3163 (path)->slots[0]++ \
3164 )
3165
btrfs_next_old_item(struct btrfs_root * root,struct btrfs_path * p,u64 time_seq)3166 static inline int btrfs_next_old_item(struct btrfs_root *root,
3167 struct btrfs_path *p, u64 time_seq)
3168 {
3169 ++p->slots[0];
3170 if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
3171 return btrfs_next_old_leaf(root, p, time_seq);
3172 return 0;
3173 }
3174
3175 /*
3176 * Search the tree again to find a leaf with greater keys.
3177 *
3178 * Returns 0 if it found something or 1 if there are no greater leaves.
3179 * Returns < 0 on error.
3180 */
btrfs_next_leaf(struct btrfs_root * root,struct btrfs_path * path)3181 static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3182 {
3183 return btrfs_next_old_leaf(root, path, 0);
3184 }
3185
btrfs_next_item(struct btrfs_root * root,struct btrfs_path * p)3186 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
3187 {
3188 return btrfs_next_old_item(root, p, 0);
3189 }
3190 int btrfs_leaf_free_space(struct extent_buffer *leaf);
3191 int __must_check btrfs_drop_snapshot(struct btrfs_root *root, int update_ref,
3192 int for_reloc);
3193 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
3194 struct btrfs_root *root,
3195 struct extent_buffer *node,
3196 struct extent_buffer *parent);
btrfs_fs_closing(struct btrfs_fs_info * fs_info)3197 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
3198 {
3199 /*
3200 * Do it this way so we only ever do one test_bit in the normal case.
3201 */
3202 if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) {
3203 if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags))
3204 return 2;
3205 return 1;
3206 }
3207 return 0;
3208 }
3209
3210 /*
3211 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
3212 * anything except sleeping. This function is used to check the status of
3213 * the fs.
3214 * We check for BTRFS_FS_STATE_RO to avoid races with a concurrent remount,
3215 * since setting and checking for SB_RDONLY in the superblock's flags is not
3216 * atomic.
3217 */
btrfs_need_cleaner_sleep(struct btrfs_fs_info * fs_info)3218 static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info)
3219 {
3220 return test_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state) ||
3221 btrfs_fs_closing(fs_info);
3222 }
3223
btrfs_set_sb_rdonly(struct super_block * sb)3224 static inline void btrfs_set_sb_rdonly(struct super_block *sb)
3225 {
3226 sb->s_flags |= SB_RDONLY;
3227 set_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
3228 }
3229
btrfs_clear_sb_rdonly(struct super_block * sb)3230 static inline void btrfs_clear_sb_rdonly(struct super_block *sb)
3231 {
3232 sb->s_flags &= ~SB_RDONLY;
3233 clear_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
3234 }
3235
3236 /* root-item.c */
3237 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
3238 u64 ref_id, u64 dirid, u64 sequence, const char *name,
3239 int name_len);
3240 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
3241 u64 ref_id, u64 dirid, u64 *sequence, const char *name,
3242 int name_len);
3243 int btrfs_del_root(struct btrfs_trans_handle *trans,
3244 const struct btrfs_key *key);
3245 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3246 const struct btrfs_key *key,
3247 struct btrfs_root_item *item);
3248 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
3249 struct btrfs_root *root,
3250 struct btrfs_key *key,
3251 struct btrfs_root_item *item);
3252 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
3253 struct btrfs_path *path, struct btrfs_root_item *root_item,
3254 struct btrfs_key *root_key);
3255 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info);
3256 void btrfs_set_root_node(struct btrfs_root_item *item,
3257 struct extent_buffer *node);
3258 void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
3259 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
3260 struct btrfs_root *root);
3261
3262 /* uuid-tree.c */
3263 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
3264 u64 subid);
3265 int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
3266 u64 subid);
3267 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info);
3268
3269 /* dir-item.c */
3270 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir,
3271 const char *name, int name_len);
3272 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, const char *name,
3273 int name_len, struct btrfs_inode *dir,
3274 struct btrfs_key *location, u8 type, u64 index);
3275 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
3276 struct btrfs_root *root,
3277 struct btrfs_path *path, u64 dir,
3278 const char *name, int name_len,
3279 int mod);
3280 struct btrfs_dir_item *
3281 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
3282 struct btrfs_root *root,
3283 struct btrfs_path *path, u64 dir,
3284 u64 index, const char *name, int name_len,
3285 int mod);
3286 struct btrfs_dir_item *
3287 btrfs_search_dir_index_item(struct btrfs_root *root,
3288 struct btrfs_path *path, u64 dirid,
3289 const char *name, int name_len);
3290 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
3291 struct btrfs_root *root,
3292 struct btrfs_path *path,
3293 struct btrfs_dir_item *di);
3294 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
3295 struct btrfs_root *root,
3296 struct btrfs_path *path, u64 objectid,
3297 const char *name, u16 name_len,
3298 const void *data, u16 data_len);
3299 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
3300 struct btrfs_root *root,
3301 struct btrfs_path *path, u64 dir,
3302 const char *name, u16 name_len,
3303 int mod);
3304 struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info,
3305 struct btrfs_path *path,
3306 const char *name,
3307 int name_len);
3308
3309 /* orphan.c */
3310 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
3311 struct btrfs_root *root, u64 offset);
3312 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
3313 struct btrfs_root *root, u64 offset);
3314 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
3315
3316 /* file-item.c */
3317 int btrfs_del_csums(struct btrfs_trans_handle *trans,
3318 struct btrfs_root *root, u64 bytenr, u64 len);
3319 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst);
3320 int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans,
3321 struct btrfs_root *root, u64 objectid, u64 pos,
3322 u64 num_bytes);
3323 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
3324 struct btrfs_root *root,
3325 struct btrfs_path *path, u64 objectid,
3326 u64 bytenr, int mod);
3327 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
3328 struct btrfs_root *root,
3329 struct btrfs_ordered_sum *sums);
3330 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
3331 u64 offset, bool one_ordered);
3332 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
3333 struct list_head *list, int search_commit,
3334 bool nowait);
3335 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
3336 const struct btrfs_path *path,
3337 struct btrfs_file_extent_item *fi,
3338 const bool new_inline,
3339 struct extent_map *em);
3340 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
3341 u64 len);
3342 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
3343 u64 len);
3344 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size);
3345 u64 btrfs_file_extent_end(const struct btrfs_path *path);
3346
3347 /* inode.c */
3348 void btrfs_submit_data_write_bio(struct inode *inode, struct bio *bio, int mirror_num);
3349 void btrfs_submit_data_read_bio(struct inode *inode, struct bio *bio,
3350 int mirror_num, enum btrfs_compression_type compress_type);
3351 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3352 u32 pgoff, u8 *csum, const u8 * const csum_expected);
3353 int btrfs_check_data_csum(struct inode *inode, struct btrfs_bio *bbio,
3354 u32 bio_offset, struct page *page, u32 pgoff);
3355 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio,
3356 u32 bio_offset, struct page *page,
3357 u64 start, u64 end);
3358 int btrfs_check_data_csum(struct inode *inode, struct btrfs_bio *bbio,
3359 u32 bio_offset, struct page *page, u32 pgoff);
3360 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
3361 u64 *orig_start, u64 *orig_block_len,
3362 u64 *ram_bytes, bool nowait, bool strict);
3363
3364 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
3365 struct btrfs_inode *inode);
3366 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
3367 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index);
3368 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3369 struct btrfs_inode *dir, struct btrfs_inode *inode,
3370 const char *name, int name_len);
3371 int btrfs_add_link(struct btrfs_trans_handle *trans,
3372 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
3373 const char *name, int name_len, int add_backref, u64 index);
3374 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry);
3375 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
3376 int front);
3377
3378 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context);
3379 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
3380 bool in_reclaim_context);
3381 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
3382 unsigned int extra_bits,
3383 struct extent_state **cached_state);
3384 struct btrfs_new_inode_args {
3385 /* Input */
3386 struct inode *dir;
3387 struct dentry *dentry;
3388 struct inode *inode;
3389 bool orphan;
3390 bool subvol;
3391
3392 /*
3393 * Output from btrfs_new_inode_prepare(), input to
3394 * btrfs_create_new_inode().
3395 */
3396 struct posix_acl *default_acl;
3397 struct posix_acl *acl;
3398 };
3399 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
3400 unsigned int *trans_num_items);
3401 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
3402 struct btrfs_new_inode_args *args);
3403 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args);
3404 struct inode *btrfs_new_subvol_inode(struct user_namespace *mnt_userns,
3405 struct inode *dir);
3406 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
3407 u32 bits);
3408 void btrfs_clear_delalloc_extent(struct inode *inode,
3409 struct extent_state *state, u32 bits);
3410 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
3411 struct extent_state *other);
3412 void btrfs_split_delalloc_extent(struct inode *inode,
3413 struct extent_state *orig, u64 split);
3414 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end);
3415 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf);
3416 void btrfs_evict_inode(struct inode *inode);
3417 struct inode *btrfs_alloc_inode(struct super_block *sb);
3418 void btrfs_destroy_inode(struct inode *inode);
3419 void btrfs_free_inode(struct inode *inode);
3420 int btrfs_drop_inode(struct inode *inode);
3421 int __init btrfs_init_cachep(void);
3422 void __cold btrfs_destroy_cachep(void);
3423 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
3424 struct btrfs_root *root, struct btrfs_path *path);
3425 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root);
3426 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
3427 struct page *page, size_t pg_offset,
3428 u64 start, u64 end);
3429 int btrfs_update_inode(struct btrfs_trans_handle *trans,
3430 struct btrfs_root *root, struct btrfs_inode *inode);
3431 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3432 struct btrfs_root *root, struct btrfs_inode *inode);
3433 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3434 struct btrfs_inode *inode);
3435 int btrfs_orphan_cleanup(struct btrfs_root *root);
3436 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size);
3437 void btrfs_add_delayed_iput(struct inode *inode);
3438 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info);
3439 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info);
3440 int btrfs_prealloc_file_range(struct inode *inode, int mode,
3441 u64 start, u64 num_bytes, u64 min_size,
3442 loff_t actual_len, u64 *alloc_hint);
3443 int btrfs_prealloc_file_range_trans(struct inode *inode,
3444 struct btrfs_trans_handle *trans, int mode,
3445 u64 start, u64 num_bytes, u64 min_size,
3446 loff_t actual_len, u64 *alloc_hint);
3447 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
3448 u64 start, u64 end, int *page_started, unsigned long *nr_written,
3449 struct writeback_control *wbc);
3450 int btrfs_writepage_cow_fixup(struct page *page);
3451 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3452 struct page *page, u64 start,
3453 u64 end, bool uptodate);
3454 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
3455 int compress_type);
3456 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
3457 u64 file_offset, u64 disk_bytenr,
3458 u64 disk_io_size,
3459 struct page **pages);
3460 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
3461 struct btrfs_ioctl_encoded_io_args *encoded);
3462 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
3463 const struct btrfs_ioctl_encoded_io_args *encoded);
3464
3465 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter,
3466 size_t done_before);
3467 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter,
3468 size_t done_before);
3469
3470 extern const struct dentry_operations btrfs_dentry_operations;
3471
3472 /* Inode locking type flags, by default the exclusive lock is taken */
3473 #define BTRFS_ILOCK_SHARED (1U << 0)
3474 #define BTRFS_ILOCK_TRY (1U << 1)
3475 #define BTRFS_ILOCK_MMAP (1U << 2)
3476
3477 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags);
3478 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags);
3479 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
3480 const u64 add_bytes,
3481 const u64 del_bytes);
3482 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end);
3483
3484 /* ioctl.c */
3485 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3486 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3487 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3488 int btrfs_fileattr_set(struct user_namespace *mnt_userns,
3489 struct dentry *dentry, struct fileattr *fa);
3490 int btrfs_ioctl_get_supported_features(void __user *arg);
3491 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode);
3492 int __pure btrfs_is_empty_uuid(u8 *uuid);
3493 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
3494 struct btrfs_ioctl_defrag_range_args *range,
3495 u64 newer_than, unsigned long max_to_defrag);
3496 void btrfs_get_block_group_info(struct list_head *groups_list,
3497 struct btrfs_ioctl_space_info *space);
3498 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3499 struct btrfs_ioctl_balance_args *bargs);
3500
3501 /* file.c */
3502 int __init btrfs_auto_defrag_init(void);
3503 void __cold btrfs_auto_defrag_exit(void);
3504 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
3505 struct btrfs_inode *inode, u32 extent_thresh);
3506 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
3507 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info);
3508 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3509 extern const struct file_operations btrfs_file_operations;
3510 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
3511 struct btrfs_root *root, struct btrfs_inode *inode,
3512 struct btrfs_drop_extents_args *args);
3513 int btrfs_replace_file_extents(struct btrfs_inode *inode,
3514 struct btrfs_path *path, const u64 start,
3515 const u64 end,
3516 struct btrfs_replace_extent_info *extent_info,
3517 struct btrfs_trans_handle **trans_out);
3518 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
3519 struct btrfs_inode *inode, u64 start, u64 end);
3520 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
3521 const struct btrfs_ioctl_encoded_io_args *encoded);
3522 int btrfs_release_file(struct inode *inode, struct file *file);
3523 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
3524 size_t num_pages, loff_t pos, size_t write_bytes,
3525 struct extent_state **cached, bool noreserve);
3526 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end);
3527 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
3528 size_t *write_bytes, bool nowait);
3529 void btrfs_check_nocow_unlock(struct btrfs_inode *inode);
3530 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
3531 u64 *delalloc_start_ret, u64 *delalloc_end_ret);
3532
3533 /* tree-defrag.c */
3534 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
3535 struct btrfs_root *root);
3536
3537 /* super.c */
3538 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
3539 unsigned long new_flags);
3540 int btrfs_sync_fs(struct super_block *sb, int wait);
3541 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
3542 u64 subvol_objectid);
3543
3544 static inline __printf(2, 3) __cold
btrfs_no_printk(const struct btrfs_fs_info * fs_info,const char * fmt,...)3545 void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
3546 {
3547 }
3548
3549 #ifdef CONFIG_PRINTK_INDEX
3550
3551 #define btrfs_printk(fs_info, fmt, args...) \
3552 do { \
3553 printk_index_subsys_emit("%sBTRFS %s (device %s): ", NULL, fmt); \
3554 _btrfs_printk(fs_info, fmt, ##args); \
3555 } while (0)
3556
3557 __printf(2, 3)
3558 __cold
3559 void _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3560
3561 #elif defined(CONFIG_PRINTK)
3562
3563 #define btrfs_printk(fs_info, fmt, args...) \
3564 _btrfs_printk(fs_info, fmt, ##args)
3565
3566 __printf(2, 3)
3567 __cold
3568 void _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3569
3570 #else
3571
3572 #define btrfs_printk(fs_info, fmt, args...) \
3573 btrfs_no_printk(fs_info, fmt, ##args)
3574 #endif
3575
3576 #define btrfs_emerg(fs_info, fmt, args...) \
3577 btrfs_printk(fs_info, KERN_EMERG fmt, ##args)
3578 #define btrfs_alert(fs_info, fmt, args...) \
3579 btrfs_printk(fs_info, KERN_ALERT fmt, ##args)
3580 #define btrfs_crit(fs_info, fmt, args...) \
3581 btrfs_printk(fs_info, KERN_CRIT fmt, ##args)
3582 #define btrfs_err(fs_info, fmt, args...) \
3583 btrfs_printk(fs_info, KERN_ERR fmt, ##args)
3584 #define btrfs_warn(fs_info, fmt, args...) \
3585 btrfs_printk(fs_info, KERN_WARNING fmt, ##args)
3586 #define btrfs_notice(fs_info, fmt, args...) \
3587 btrfs_printk(fs_info, KERN_NOTICE fmt, ##args)
3588 #define btrfs_info(fs_info, fmt, args...) \
3589 btrfs_printk(fs_info, KERN_INFO fmt, ##args)
3590
3591 /*
3592 * Wrappers that use printk_in_rcu
3593 */
3594 #define btrfs_emerg_in_rcu(fs_info, fmt, args...) \
3595 btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3596 #define btrfs_alert_in_rcu(fs_info, fmt, args...) \
3597 btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3598 #define btrfs_crit_in_rcu(fs_info, fmt, args...) \
3599 btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3600 #define btrfs_err_in_rcu(fs_info, fmt, args...) \
3601 btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args)
3602 #define btrfs_warn_in_rcu(fs_info, fmt, args...) \
3603 btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3604 #define btrfs_notice_in_rcu(fs_info, fmt, args...) \
3605 btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3606 #define btrfs_info_in_rcu(fs_info, fmt, args...) \
3607 btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args)
3608
3609 /*
3610 * Wrappers that use a ratelimited printk_in_rcu
3611 */
3612 #define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \
3613 btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3614 #define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \
3615 btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3616 #define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \
3617 btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3618 #define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \
3619 btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args)
3620 #define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \
3621 btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3622 #define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \
3623 btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3624 #define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \
3625 btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args)
3626
3627 /*
3628 * Wrappers that use a ratelimited printk
3629 */
3630 #define btrfs_emerg_rl(fs_info, fmt, args...) \
3631 btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args)
3632 #define btrfs_alert_rl(fs_info, fmt, args...) \
3633 btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args)
3634 #define btrfs_crit_rl(fs_info, fmt, args...) \
3635 btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args)
3636 #define btrfs_err_rl(fs_info, fmt, args...) \
3637 btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args)
3638 #define btrfs_warn_rl(fs_info, fmt, args...) \
3639 btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args)
3640 #define btrfs_notice_rl(fs_info, fmt, args...) \
3641 btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args)
3642 #define btrfs_info_rl(fs_info, fmt, args...) \
3643 btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args)
3644
3645 #if defined(CONFIG_DYNAMIC_DEBUG)
3646 #define btrfs_debug(fs_info, fmt, args...) \
3647 _dynamic_func_call_no_desc(fmt, btrfs_printk, \
3648 fs_info, KERN_DEBUG fmt, ##args)
3649 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3650 _dynamic_func_call_no_desc(fmt, btrfs_printk_in_rcu, \
3651 fs_info, KERN_DEBUG fmt, ##args)
3652 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3653 _dynamic_func_call_no_desc(fmt, btrfs_printk_rl_in_rcu, \
3654 fs_info, KERN_DEBUG fmt, ##args)
3655 #define btrfs_debug_rl(fs_info, fmt, args...) \
3656 _dynamic_func_call_no_desc(fmt, btrfs_printk_ratelimited, \
3657 fs_info, KERN_DEBUG fmt, ##args)
3658 #elif defined(DEBUG)
3659 #define btrfs_debug(fs_info, fmt, args...) \
3660 btrfs_printk(fs_info, KERN_DEBUG fmt, ##args)
3661 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3662 btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3663 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3664 btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3665 #define btrfs_debug_rl(fs_info, fmt, args...) \
3666 btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args)
3667 #else
3668 #define btrfs_debug(fs_info, fmt, args...) \
3669 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3670 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3671 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3672 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3673 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3674 #define btrfs_debug_rl(fs_info, fmt, args...) \
3675 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3676 #endif
3677
3678 #define btrfs_printk_in_rcu(fs_info, fmt, args...) \
3679 do { \
3680 rcu_read_lock(); \
3681 btrfs_printk(fs_info, fmt, ##args); \
3682 rcu_read_unlock(); \
3683 } while (0)
3684
3685 #define btrfs_no_printk_in_rcu(fs_info, fmt, args...) \
3686 do { \
3687 rcu_read_lock(); \
3688 btrfs_no_printk(fs_info, fmt, ##args); \
3689 rcu_read_unlock(); \
3690 } while (0)
3691
3692 #define btrfs_printk_ratelimited(fs_info, fmt, args...) \
3693 do { \
3694 static DEFINE_RATELIMIT_STATE(_rs, \
3695 DEFAULT_RATELIMIT_INTERVAL, \
3696 DEFAULT_RATELIMIT_BURST); \
3697 if (__ratelimit(&_rs)) \
3698 btrfs_printk(fs_info, fmt, ##args); \
3699 } while (0)
3700
3701 #define btrfs_printk_rl_in_rcu(fs_info, fmt, args...) \
3702 do { \
3703 rcu_read_lock(); \
3704 btrfs_printk_ratelimited(fs_info, fmt, ##args); \
3705 rcu_read_unlock(); \
3706 } while (0)
3707
3708 #ifdef CONFIG_BTRFS_ASSERT
3709 __cold __noreturn
assertfail(const char * expr,const char * file,int line)3710 static inline void assertfail(const char *expr, const char *file, int line)
3711 {
3712 pr_err("assertion failed: %s, in %s:%d\n", expr, file, line);
3713 BUG();
3714 }
3715
3716 #define ASSERT(expr) \
3717 (likely(expr) ? (void)0 : assertfail(#expr, __FILE__, __LINE__))
3718
3719 #else
assertfail(const char * expr,const char * file,int line)3720 static inline void assertfail(const char *expr, const char* file, int line) { }
3721 #define ASSERT(expr) (void)(expr)
3722 #endif
3723
3724 #if BITS_PER_LONG == 32
3725 #define BTRFS_32BIT_MAX_FILE_SIZE (((u64)ULONG_MAX + 1) << PAGE_SHIFT)
3726 /*
3727 * The warning threshold is 5/8th of the MAX_LFS_FILESIZE that limits the logical
3728 * addresses of extents.
3729 *
3730 * For 4K page size it's about 10T, for 64K it's 160T.
3731 */
3732 #define BTRFS_32BIT_EARLY_WARN_THRESHOLD (BTRFS_32BIT_MAX_FILE_SIZE * 5 / 8)
3733 void btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info);
3734 void btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info);
3735 #endif
3736
3737 /*
3738 * Get the correct offset inside the page of extent buffer.
3739 *
3740 * @eb: target extent buffer
3741 * @start: offset inside the extent buffer
3742 *
3743 * Will handle both sectorsize == PAGE_SIZE and sectorsize < PAGE_SIZE cases.
3744 */
get_eb_offset_in_page(const struct extent_buffer * eb,unsigned long offset)3745 static inline size_t get_eb_offset_in_page(const struct extent_buffer *eb,
3746 unsigned long offset)
3747 {
3748 /*
3749 * For sectorsize == PAGE_SIZE case, eb->start will always be aligned
3750 * to PAGE_SIZE, thus adding it won't cause any difference.
3751 *
3752 * For sectorsize < PAGE_SIZE, we must only read the data that belongs
3753 * to the eb, thus we have to take the eb->start into consideration.
3754 */
3755 return offset_in_page(offset + eb->start);
3756 }
3757
get_eb_page_index(unsigned long offset)3758 static inline unsigned long get_eb_page_index(unsigned long offset)
3759 {
3760 /*
3761 * For sectorsize == PAGE_SIZE case, plain >> PAGE_SHIFT is enough.
3762 *
3763 * For sectorsize < PAGE_SIZE case, we only support 64K PAGE_SIZE,
3764 * and have ensured that all tree blocks are contained in one page,
3765 * thus we always get index == 0.
3766 */
3767 return offset >> PAGE_SHIFT;
3768 }
3769
3770 /*
3771 * Use that for functions that are conditionally exported for sanity tests but
3772 * otherwise static
3773 */
3774 #ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3775 #define EXPORT_FOR_TESTS static
3776 #else
3777 #define EXPORT_FOR_TESTS
3778 #endif
3779
3780 __cold
btrfs_print_v0_err(struct btrfs_fs_info * fs_info)3781 static inline void btrfs_print_v0_err(struct btrfs_fs_info *fs_info)
3782 {
3783 btrfs_err(fs_info,
3784 "Unsupported V0 extent filesystem detected. Aborting. Please re-create your filesystem with a newer kernel");
3785 }
3786
3787 __printf(5, 6)
3788 __cold
3789 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
3790 unsigned int line, int errno, const char *fmt, ...);
3791
3792 const char * __attribute_const__ btrfs_decode_error(int errno);
3793
3794 __cold
3795 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
3796 const char *function,
3797 unsigned int line, int errno, bool first_hit);
3798
3799 bool __cold abort_should_print_stack(int errno);
3800
3801 /*
3802 * Call btrfs_abort_transaction as early as possible when an error condition is
3803 * detected, that way the exact stack trace is reported for some errors.
3804 */
3805 #define btrfs_abort_transaction(trans, errno) \
3806 do { \
3807 bool first = false; \
3808 /* Report first abort since mount */ \
3809 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, \
3810 &((trans)->fs_info->fs_state))) { \
3811 first = true; \
3812 if (WARN(abort_should_print_stack(errno), \
3813 KERN_DEBUG \
3814 "BTRFS: Transaction aborted (error %d)\n", \
3815 (errno))) { \
3816 /* Stack trace printed. */ \
3817 } else { \
3818 btrfs_debug((trans)->fs_info, \
3819 "Transaction aborted (error %d)", \
3820 (errno)); \
3821 } \
3822 } \
3823 __btrfs_abort_transaction((trans), __func__, \
3824 __LINE__, (errno), first); \
3825 } while (0)
3826
3827 #ifdef CONFIG_PRINTK_INDEX
3828
3829 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...) \
3830 do { \
3831 printk_index_subsys_emit( \
3832 "BTRFS: error (device %s%s) in %s:%d: errno=%d %s", \
3833 KERN_CRIT, fmt); \
3834 __btrfs_handle_fs_error((fs_info), __func__, __LINE__, \
3835 (errno), fmt, ##args); \
3836 } while (0)
3837
3838 #else
3839
3840 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...) \
3841 __btrfs_handle_fs_error((fs_info), __func__, __LINE__, \
3842 (errno), fmt, ##args)
3843
3844 #endif
3845
3846 #define BTRFS_FS_ERROR(fs_info) (unlikely(test_bit(BTRFS_FS_STATE_ERROR, \
3847 &(fs_info)->fs_state)))
3848 #define BTRFS_FS_LOG_CLEANUP_ERROR(fs_info) \
3849 (unlikely(test_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR, \
3850 &(fs_info)->fs_state)))
3851
3852 __printf(5, 6)
3853 __cold
3854 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
3855 unsigned int line, int errno, const char *fmt, ...);
3856 /*
3857 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic
3858 * will panic(). Otherwise we BUG() here.
3859 */
3860 #define btrfs_panic(fs_info, errno, fmt, args...) \
3861 do { \
3862 __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \
3863 BUG(); \
3864 } while (0)
3865
3866
3867 /* compatibility and incompatibility defines */
3868
3869 #define btrfs_set_fs_incompat(__fs_info, opt) \
3870 __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3871 #opt)
3872
__btrfs_set_fs_incompat(struct btrfs_fs_info * fs_info,u64 flag,const char * name)3873 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info,
3874 u64 flag, const char* name)
3875 {
3876 struct btrfs_super_block *disk_super;
3877 u64 features;
3878
3879 disk_super = fs_info->super_copy;
3880 features = btrfs_super_incompat_flags(disk_super);
3881 if (!(features & flag)) {
3882 spin_lock(&fs_info->super_lock);
3883 features = btrfs_super_incompat_flags(disk_super);
3884 if (!(features & flag)) {
3885 features |= flag;
3886 btrfs_set_super_incompat_flags(disk_super, features);
3887 btrfs_info(fs_info,
3888 "setting incompat feature flag for %s (0x%llx)",
3889 name, flag);
3890 }
3891 spin_unlock(&fs_info->super_lock);
3892 }
3893 }
3894
3895 #define btrfs_clear_fs_incompat(__fs_info, opt) \
3896 __btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3897 #opt)
3898
__btrfs_clear_fs_incompat(struct btrfs_fs_info * fs_info,u64 flag,const char * name)3899 static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info,
3900 u64 flag, const char* name)
3901 {
3902 struct btrfs_super_block *disk_super;
3903 u64 features;
3904
3905 disk_super = fs_info->super_copy;
3906 features = btrfs_super_incompat_flags(disk_super);
3907 if (features & flag) {
3908 spin_lock(&fs_info->super_lock);
3909 features = btrfs_super_incompat_flags(disk_super);
3910 if (features & flag) {
3911 features &= ~flag;
3912 btrfs_set_super_incompat_flags(disk_super, features);
3913 btrfs_info(fs_info,
3914 "clearing incompat feature flag for %s (0x%llx)",
3915 name, flag);
3916 }
3917 spin_unlock(&fs_info->super_lock);
3918 }
3919 }
3920
3921 #define btrfs_fs_incompat(fs_info, opt) \
3922 __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3923
__btrfs_fs_incompat(struct btrfs_fs_info * fs_info,u64 flag)3924 static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag)
3925 {
3926 struct btrfs_super_block *disk_super;
3927 disk_super = fs_info->super_copy;
3928 return !!(btrfs_super_incompat_flags(disk_super) & flag);
3929 }
3930
3931 #define btrfs_set_fs_compat_ro(__fs_info, opt) \
3932 __btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3933 #opt)
3934
__btrfs_set_fs_compat_ro(struct btrfs_fs_info * fs_info,u64 flag,const char * name)3935 static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info,
3936 u64 flag, const char *name)
3937 {
3938 struct btrfs_super_block *disk_super;
3939 u64 features;
3940
3941 disk_super = fs_info->super_copy;
3942 features = btrfs_super_compat_ro_flags(disk_super);
3943 if (!(features & flag)) {
3944 spin_lock(&fs_info->super_lock);
3945 features = btrfs_super_compat_ro_flags(disk_super);
3946 if (!(features & flag)) {
3947 features |= flag;
3948 btrfs_set_super_compat_ro_flags(disk_super, features);
3949 btrfs_info(fs_info,
3950 "setting compat-ro feature flag for %s (0x%llx)",
3951 name, flag);
3952 }
3953 spin_unlock(&fs_info->super_lock);
3954 }
3955 }
3956
3957 #define btrfs_clear_fs_compat_ro(__fs_info, opt) \
3958 __btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3959 #opt)
3960
__btrfs_clear_fs_compat_ro(struct btrfs_fs_info * fs_info,u64 flag,const char * name)3961 static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info,
3962 u64 flag, const char *name)
3963 {
3964 struct btrfs_super_block *disk_super;
3965 u64 features;
3966
3967 disk_super = fs_info->super_copy;
3968 features = btrfs_super_compat_ro_flags(disk_super);
3969 if (features & flag) {
3970 spin_lock(&fs_info->super_lock);
3971 features = btrfs_super_compat_ro_flags(disk_super);
3972 if (features & flag) {
3973 features &= ~flag;
3974 btrfs_set_super_compat_ro_flags(disk_super, features);
3975 btrfs_info(fs_info,
3976 "clearing compat-ro feature flag for %s (0x%llx)",
3977 name, flag);
3978 }
3979 spin_unlock(&fs_info->super_lock);
3980 }
3981 }
3982
3983 #define btrfs_fs_compat_ro(fs_info, opt) \
3984 __btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt)
3985
__btrfs_fs_compat_ro(struct btrfs_fs_info * fs_info,u64 flag)3986 static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag)
3987 {
3988 struct btrfs_super_block *disk_super;
3989 disk_super = fs_info->super_copy;
3990 return !!(btrfs_super_compat_ro_flags(disk_super) & flag);
3991 }
3992
3993 /* acl.c */
3994 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
3995 struct posix_acl *btrfs_get_acl(struct inode *inode, int type, bool rcu);
3996 int btrfs_set_acl(struct user_namespace *mnt_userns, struct inode *inode,
3997 struct posix_acl *acl, int type);
3998 int __btrfs_set_acl(struct btrfs_trans_handle *trans, struct inode *inode,
3999 struct posix_acl *acl, int type);
4000 #else
4001 #define btrfs_get_acl NULL
4002 #define btrfs_set_acl NULL
__btrfs_set_acl(struct btrfs_trans_handle * trans,struct inode * inode,struct posix_acl * acl,int type)4003 static inline int __btrfs_set_acl(struct btrfs_trans_handle *trans,
4004 struct inode *inode, struct posix_acl *acl,
4005 int type)
4006 {
4007 return -EOPNOTSUPP;
4008 }
4009 #endif
4010
4011 /* relocation.c */
4012 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start);
4013 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
4014 struct btrfs_root *root);
4015 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
4016 struct btrfs_root *root);
4017 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info);
4018 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len);
4019 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4020 struct btrfs_root *root, struct extent_buffer *buf,
4021 struct extent_buffer *cow);
4022 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4023 u64 *bytes_to_reserve);
4024 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4025 struct btrfs_pending_snapshot *pending);
4026 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info);
4027 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info,
4028 u64 bytenr);
4029 int btrfs_should_ignore_reloc_root(struct btrfs_root *root);
4030
4031 /* scrub.c */
4032 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4033 u64 end, struct btrfs_scrub_progress *progress,
4034 int readonly, int is_dev_replace);
4035 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info);
4036 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info);
4037 int btrfs_scrub_cancel(struct btrfs_fs_info *info);
4038 int btrfs_scrub_cancel_dev(struct btrfs_device *dev);
4039 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4040 struct btrfs_scrub_progress *progress);
4041
4042 /* dev-replace.c */
4043 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info);
4044 void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount);
4045
btrfs_bio_counter_dec(struct btrfs_fs_info * fs_info)4046 static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info)
4047 {
4048 btrfs_bio_counter_sub(fs_info, 1);
4049 }
4050
is_fstree(u64 rootid)4051 static inline int is_fstree(u64 rootid)
4052 {
4053 if (rootid == BTRFS_FS_TREE_OBJECTID ||
4054 ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
4055 !btrfs_qgroup_level(rootid)))
4056 return 1;
4057 return 0;
4058 }
4059
btrfs_defrag_cancelled(struct btrfs_fs_info * fs_info)4060 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info)
4061 {
4062 return signal_pending(current);
4063 }
4064
4065 /* verity.c */
4066 #ifdef CONFIG_FS_VERITY
4067
4068 extern const struct fsverity_operations btrfs_verityops;
4069 int btrfs_drop_verity_items(struct btrfs_inode *inode);
4070 int btrfs_get_verity_descriptor(struct inode *inode, void *buf, size_t buf_size);
4071
4072 BTRFS_SETGET_FUNCS(verity_descriptor_encryption, struct btrfs_verity_descriptor_item,
4073 encryption, 8);
4074 BTRFS_SETGET_FUNCS(verity_descriptor_size, struct btrfs_verity_descriptor_item,
4075 size, 64);
4076 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_encryption,
4077 struct btrfs_verity_descriptor_item, encryption, 8);
4078 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_size,
4079 struct btrfs_verity_descriptor_item, size, 64);
4080
4081 #else
4082
btrfs_drop_verity_items(struct btrfs_inode * inode)4083 static inline int btrfs_drop_verity_items(struct btrfs_inode *inode)
4084 {
4085 return 0;
4086 }
4087
btrfs_get_verity_descriptor(struct inode * inode,void * buf,size_t buf_size)4088 static inline int btrfs_get_verity_descriptor(struct inode *inode, void *buf,
4089 size_t buf_size)
4090 {
4091 return -EPERM;
4092 }
4093
4094 #endif
4095
4096 /* Sanity test specific functions */
4097 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4098 void btrfs_test_destroy_inode(struct inode *inode);
btrfs_is_testing(struct btrfs_fs_info * fs_info)4099 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
4100 {
4101 return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
4102 }
4103 #else
btrfs_is_testing(struct btrfs_fs_info * fs_info)4104 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
4105 {
4106 return 0;
4107 }
4108 #endif
4109
btrfs_is_data_reloc_root(const struct btrfs_root * root)4110 static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
4111 {
4112 return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
4113 }
4114
4115 /*
4116 * We use page status Private2 to indicate there is an ordered extent with
4117 * unfinished IO.
4118 *
4119 * Rename the Private2 accessors to Ordered, to improve readability.
4120 */
4121 #define PageOrdered(page) PagePrivate2(page)
4122 #define SetPageOrdered(page) SetPagePrivate2(page)
4123 #define ClearPageOrdered(page) ClearPagePrivate2(page)
4124 #define folio_test_ordered(folio) folio_test_private_2(folio)
4125 #define folio_set_ordered(folio) folio_set_private_2(folio)
4126 #define folio_clear_ordered(folio) folio_clear_private_2(folio)
4127
4128 #endif
4129