1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Driver for Atmel AT32 and AT91 SPI Controllers
4 *
5 * Copyright (C) 2006 Atmel Corporation
6 */
7
8 #include <linux/kernel.h>
9 #include <linux/clk.h>
10 #include <linux/module.h>
11 #include <linux/platform_device.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/spi/spi.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20
21 #include <linux/io.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pinctrl/consumer.h>
24 #include <linux/pm_runtime.h>
25 #include <trace/events/spi.h>
26
27 /* SPI register offsets */
28 #define SPI_CR 0x0000
29 #define SPI_MR 0x0004
30 #define SPI_RDR 0x0008
31 #define SPI_TDR 0x000c
32 #define SPI_SR 0x0010
33 #define SPI_IER 0x0014
34 #define SPI_IDR 0x0018
35 #define SPI_IMR 0x001c
36 #define SPI_CSR0 0x0030
37 #define SPI_CSR1 0x0034
38 #define SPI_CSR2 0x0038
39 #define SPI_CSR3 0x003c
40 #define SPI_FMR 0x0040
41 #define SPI_FLR 0x0044
42 #define SPI_VERSION 0x00fc
43 #define SPI_RPR 0x0100
44 #define SPI_RCR 0x0104
45 #define SPI_TPR 0x0108
46 #define SPI_TCR 0x010c
47 #define SPI_RNPR 0x0110
48 #define SPI_RNCR 0x0114
49 #define SPI_TNPR 0x0118
50 #define SPI_TNCR 0x011c
51 #define SPI_PTCR 0x0120
52 #define SPI_PTSR 0x0124
53
54 /* Bitfields in CR */
55 #define SPI_SPIEN_OFFSET 0
56 #define SPI_SPIEN_SIZE 1
57 #define SPI_SPIDIS_OFFSET 1
58 #define SPI_SPIDIS_SIZE 1
59 #define SPI_SWRST_OFFSET 7
60 #define SPI_SWRST_SIZE 1
61 #define SPI_LASTXFER_OFFSET 24
62 #define SPI_LASTXFER_SIZE 1
63 #define SPI_TXFCLR_OFFSET 16
64 #define SPI_TXFCLR_SIZE 1
65 #define SPI_RXFCLR_OFFSET 17
66 #define SPI_RXFCLR_SIZE 1
67 #define SPI_FIFOEN_OFFSET 30
68 #define SPI_FIFOEN_SIZE 1
69 #define SPI_FIFODIS_OFFSET 31
70 #define SPI_FIFODIS_SIZE 1
71
72 /* Bitfields in MR */
73 #define SPI_MSTR_OFFSET 0
74 #define SPI_MSTR_SIZE 1
75 #define SPI_PS_OFFSET 1
76 #define SPI_PS_SIZE 1
77 #define SPI_PCSDEC_OFFSET 2
78 #define SPI_PCSDEC_SIZE 1
79 #define SPI_FDIV_OFFSET 3
80 #define SPI_FDIV_SIZE 1
81 #define SPI_MODFDIS_OFFSET 4
82 #define SPI_MODFDIS_SIZE 1
83 #define SPI_WDRBT_OFFSET 5
84 #define SPI_WDRBT_SIZE 1
85 #define SPI_LLB_OFFSET 7
86 #define SPI_LLB_SIZE 1
87 #define SPI_PCS_OFFSET 16
88 #define SPI_PCS_SIZE 4
89 #define SPI_DLYBCS_OFFSET 24
90 #define SPI_DLYBCS_SIZE 8
91
92 /* Bitfields in RDR */
93 #define SPI_RD_OFFSET 0
94 #define SPI_RD_SIZE 16
95
96 /* Bitfields in TDR */
97 #define SPI_TD_OFFSET 0
98 #define SPI_TD_SIZE 16
99
100 /* Bitfields in SR */
101 #define SPI_RDRF_OFFSET 0
102 #define SPI_RDRF_SIZE 1
103 #define SPI_TDRE_OFFSET 1
104 #define SPI_TDRE_SIZE 1
105 #define SPI_MODF_OFFSET 2
106 #define SPI_MODF_SIZE 1
107 #define SPI_OVRES_OFFSET 3
108 #define SPI_OVRES_SIZE 1
109 #define SPI_ENDRX_OFFSET 4
110 #define SPI_ENDRX_SIZE 1
111 #define SPI_ENDTX_OFFSET 5
112 #define SPI_ENDTX_SIZE 1
113 #define SPI_RXBUFF_OFFSET 6
114 #define SPI_RXBUFF_SIZE 1
115 #define SPI_TXBUFE_OFFSET 7
116 #define SPI_TXBUFE_SIZE 1
117 #define SPI_NSSR_OFFSET 8
118 #define SPI_NSSR_SIZE 1
119 #define SPI_TXEMPTY_OFFSET 9
120 #define SPI_TXEMPTY_SIZE 1
121 #define SPI_SPIENS_OFFSET 16
122 #define SPI_SPIENS_SIZE 1
123 #define SPI_TXFEF_OFFSET 24
124 #define SPI_TXFEF_SIZE 1
125 #define SPI_TXFFF_OFFSET 25
126 #define SPI_TXFFF_SIZE 1
127 #define SPI_TXFTHF_OFFSET 26
128 #define SPI_TXFTHF_SIZE 1
129 #define SPI_RXFEF_OFFSET 27
130 #define SPI_RXFEF_SIZE 1
131 #define SPI_RXFFF_OFFSET 28
132 #define SPI_RXFFF_SIZE 1
133 #define SPI_RXFTHF_OFFSET 29
134 #define SPI_RXFTHF_SIZE 1
135 #define SPI_TXFPTEF_OFFSET 30
136 #define SPI_TXFPTEF_SIZE 1
137 #define SPI_RXFPTEF_OFFSET 31
138 #define SPI_RXFPTEF_SIZE 1
139
140 /* Bitfields in CSR0 */
141 #define SPI_CPOL_OFFSET 0
142 #define SPI_CPOL_SIZE 1
143 #define SPI_NCPHA_OFFSET 1
144 #define SPI_NCPHA_SIZE 1
145 #define SPI_CSAAT_OFFSET 3
146 #define SPI_CSAAT_SIZE 1
147 #define SPI_BITS_OFFSET 4
148 #define SPI_BITS_SIZE 4
149 #define SPI_SCBR_OFFSET 8
150 #define SPI_SCBR_SIZE 8
151 #define SPI_DLYBS_OFFSET 16
152 #define SPI_DLYBS_SIZE 8
153 #define SPI_DLYBCT_OFFSET 24
154 #define SPI_DLYBCT_SIZE 8
155
156 /* Bitfields in RCR */
157 #define SPI_RXCTR_OFFSET 0
158 #define SPI_RXCTR_SIZE 16
159
160 /* Bitfields in TCR */
161 #define SPI_TXCTR_OFFSET 0
162 #define SPI_TXCTR_SIZE 16
163
164 /* Bitfields in RNCR */
165 #define SPI_RXNCR_OFFSET 0
166 #define SPI_RXNCR_SIZE 16
167
168 /* Bitfields in TNCR */
169 #define SPI_TXNCR_OFFSET 0
170 #define SPI_TXNCR_SIZE 16
171
172 /* Bitfields in PTCR */
173 #define SPI_RXTEN_OFFSET 0
174 #define SPI_RXTEN_SIZE 1
175 #define SPI_RXTDIS_OFFSET 1
176 #define SPI_RXTDIS_SIZE 1
177 #define SPI_TXTEN_OFFSET 8
178 #define SPI_TXTEN_SIZE 1
179 #define SPI_TXTDIS_OFFSET 9
180 #define SPI_TXTDIS_SIZE 1
181
182 /* Bitfields in FMR */
183 #define SPI_TXRDYM_OFFSET 0
184 #define SPI_TXRDYM_SIZE 2
185 #define SPI_RXRDYM_OFFSET 4
186 #define SPI_RXRDYM_SIZE 2
187 #define SPI_TXFTHRES_OFFSET 16
188 #define SPI_TXFTHRES_SIZE 6
189 #define SPI_RXFTHRES_OFFSET 24
190 #define SPI_RXFTHRES_SIZE 6
191
192 /* Bitfields in FLR */
193 #define SPI_TXFL_OFFSET 0
194 #define SPI_TXFL_SIZE 6
195 #define SPI_RXFL_OFFSET 16
196 #define SPI_RXFL_SIZE 6
197
198 /* Constants for BITS */
199 #define SPI_BITS_8_BPT 0
200 #define SPI_BITS_9_BPT 1
201 #define SPI_BITS_10_BPT 2
202 #define SPI_BITS_11_BPT 3
203 #define SPI_BITS_12_BPT 4
204 #define SPI_BITS_13_BPT 5
205 #define SPI_BITS_14_BPT 6
206 #define SPI_BITS_15_BPT 7
207 #define SPI_BITS_16_BPT 8
208 #define SPI_ONE_DATA 0
209 #define SPI_TWO_DATA 1
210 #define SPI_FOUR_DATA 2
211
212 /* Bit manipulation macros */
213 #define SPI_BIT(name) \
214 (1 << SPI_##name##_OFFSET)
215 #define SPI_BF(name, value) \
216 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
217 #define SPI_BFEXT(name, value) \
218 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
219 #define SPI_BFINS(name, value, old) \
220 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
221 | SPI_BF(name, value))
222
223 /* Register access macros */
224 #define spi_readl(port, reg) \
225 readl_relaxed((port)->regs + SPI_##reg)
226 #define spi_writel(port, reg, value) \
227 writel_relaxed((value), (port)->regs + SPI_##reg)
228 #define spi_writew(port, reg, value) \
229 writew_relaxed((value), (port)->regs + SPI_##reg)
230
231 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
232 * cache operations; better heuristics consider wordsize and bitrate.
233 */
234 #define DMA_MIN_BYTES 16
235
236 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
237
238 #define AUTOSUSPEND_TIMEOUT 2000
239
240 struct atmel_spi_caps {
241 bool is_spi2;
242 bool has_wdrbt;
243 bool has_dma_support;
244 bool has_pdc_support;
245 };
246
247 /*
248 * The core SPI transfer engine just talks to a register bank to set up
249 * DMA transfers; transfer queue progress is driven by IRQs. The clock
250 * framework provides the base clock, subdivided for each spi_device.
251 */
252 struct atmel_spi {
253 spinlock_t lock;
254 unsigned long flags;
255
256 phys_addr_t phybase;
257 void __iomem *regs;
258 int irq;
259 struct clk *clk;
260 struct platform_device *pdev;
261 unsigned long spi_clk;
262
263 struct spi_transfer *current_transfer;
264 int current_remaining_bytes;
265 int done_status;
266 dma_addr_t dma_addr_rx_bbuf;
267 dma_addr_t dma_addr_tx_bbuf;
268 void *addr_rx_bbuf;
269 void *addr_tx_bbuf;
270
271 struct completion xfer_completion;
272
273 struct atmel_spi_caps caps;
274
275 bool use_dma;
276 bool use_pdc;
277
278 bool keep_cs;
279
280 u32 fifo_size;
281 u8 native_cs_free;
282 u8 native_cs_for_gpio;
283 };
284
285 /* Controller-specific per-slave state */
286 struct atmel_spi_device {
287 u32 csr;
288 };
289
290 #define SPI_MAX_DMA_XFER 65535 /* true for both PDC and DMA */
291 #define INVALID_DMA_ADDRESS 0xffffffff
292
293 /*
294 * Version 2 of the SPI controller has
295 * - CR.LASTXFER
296 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
297 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
298 * - SPI_CSRx.CSAAT
299 * - SPI_CSRx.SBCR allows faster clocking
300 */
atmel_spi_is_v2(struct atmel_spi * as)301 static bool atmel_spi_is_v2(struct atmel_spi *as)
302 {
303 return as->caps.is_spi2;
304 }
305
306 /*
307 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
308 * they assume that spi slave device state will not change on deselect, so
309 * that automagic deselection is OK. ("NPCSx rises if no data is to be
310 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
311 * controllers have CSAAT and friends.
312 *
313 * Even controller newer than ar91rm9200, using GPIOs can make sens as
314 * it lets us support active-high chipselects despite the controller's
315 * belief that only active-low devices/systems exists.
316 *
317 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
318 * right when driven with GPIO. ("Mode Fault does not allow more than one
319 * Master on Chip Select 0.") No workaround exists for that ... so for
320 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
321 * and (c) will trigger that first erratum in some cases.
322 */
323
cs_activate(struct atmel_spi * as,struct spi_device * spi)324 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
325 {
326 struct atmel_spi_device *asd = spi->controller_state;
327 int chip_select;
328 u32 mr;
329
330 if (spi->cs_gpiod)
331 chip_select = as->native_cs_for_gpio;
332 else
333 chip_select = spi->chip_select;
334
335 if (atmel_spi_is_v2(as)) {
336 spi_writel(as, CSR0 + 4 * chip_select, asd->csr);
337 /* For the low SPI version, there is a issue that PDC transfer
338 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
339 */
340 spi_writel(as, CSR0, asd->csr);
341 if (as->caps.has_wdrbt) {
342 spi_writel(as, MR,
343 SPI_BF(PCS, ~(0x01 << chip_select))
344 | SPI_BIT(WDRBT)
345 | SPI_BIT(MODFDIS)
346 | SPI_BIT(MSTR));
347 } else {
348 spi_writel(as, MR,
349 SPI_BF(PCS, ~(0x01 << chip_select))
350 | SPI_BIT(MODFDIS)
351 | SPI_BIT(MSTR));
352 }
353
354 mr = spi_readl(as, MR);
355 } else {
356 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
357 int i;
358 u32 csr;
359
360 /* Make sure clock polarity is correct */
361 for (i = 0; i < spi->master->num_chipselect; i++) {
362 csr = spi_readl(as, CSR0 + 4 * i);
363 if ((csr ^ cpol) & SPI_BIT(CPOL))
364 spi_writel(as, CSR0 + 4 * i,
365 csr ^ SPI_BIT(CPOL));
366 }
367
368 mr = spi_readl(as, MR);
369 mr = SPI_BFINS(PCS, ~(1 << chip_select), mr);
370 spi_writel(as, MR, mr);
371 }
372
373 dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
374 }
375
cs_deactivate(struct atmel_spi * as,struct spi_device * spi)376 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
377 {
378 int chip_select;
379 u32 mr;
380
381 if (spi->cs_gpiod)
382 chip_select = as->native_cs_for_gpio;
383 else
384 chip_select = spi->chip_select;
385
386 /* only deactivate *this* device; sometimes transfers to
387 * another device may be active when this routine is called.
388 */
389 mr = spi_readl(as, MR);
390 if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) {
391 mr = SPI_BFINS(PCS, 0xf, mr);
392 spi_writel(as, MR, mr);
393 }
394
395 dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
396
397 if (!spi->cs_gpiod)
398 spi_writel(as, CR, SPI_BIT(LASTXFER));
399 }
400
atmel_spi_lock(struct atmel_spi * as)401 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
402 {
403 spin_lock_irqsave(&as->lock, as->flags);
404 }
405
atmel_spi_unlock(struct atmel_spi * as)406 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
407 {
408 spin_unlock_irqrestore(&as->lock, as->flags);
409 }
410
atmel_spi_is_vmalloc_xfer(struct spi_transfer * xfer)411 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
412 {
413 return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
414 }
415
atmel_spi_use_dma(struct atmel_spi * as,struct spi_transfer * xfer)416 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
417 struct spi_transfer *xfer)
418 {
419 return as->use_dma && xfer->len >= DMA_MIN_BYTES;
420 }
421
atmel_spi_can_dma(struct spi_master * master,struct spi_device * spi,struct spi_transfer * xfer)422 static bool atmel_spi_can_dma(struct spi_master *master,
423 struct spi_device *spi,
424 struct spi_transfer *xfer)
425 {
426 struct atmel_spi *as = spi_master_get_devdata(master);
427
428 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
429 return atmel_spi_use_dma(as, xfer) &&
430 !atmel_spi_is_vmalloc_xfer(xfer);
431 else
432 return atmel_spi_use_dma(as, xfer);
433
434 }
435
atmel_spi_dma_slave_config(struct atmel_spi * as,u8 bits_per_word)436 static int atmel_spi_dma_slave_config(struct atmel_spi *as, u8 bits_per_word)
437 {
438 struct spi_master *master = platform_get_drvdata(as->pdev);
439 struct dma_slave_config slave_config;
440 int err = 0;
441
442 if (bits_per_word > 8) {
443 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
444 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
445 } else {
446 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
447 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
448 }
449
450 slave_config.dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
451 slave_config.src_addr = (dma_addr_t)as->phybase + SPI_RDR;
452 slave_config.src_maxburst = 1;
453 slave_config.dst_maxburst = 1;
454 slave_config.device_fc = false;
455
456 /*
457 * This driver uses fixed peripheral select mode (PS bit set to '0' in
458 * the Mode Register).
459 * So according to the datasheet, when FIFOs are available (and
460 * enabled), the Transmit FIFO operates in Multiple Data Mode.
461 * In this mode, up to 2 data, not 4, can be written into the Transmit
462 * Data Register in a single access.
463 * However, the first data has to be written into the lowest 16 bits and
464 * the second data into the highest 16 bits of the Transmit
465 * Data Register. For 8bit data (the most frequent case), it would
466 * require to rework tx_buf so each data would actually fit 16 bits.
467 * So we'd rather write only one data at the time. Hence the transmit
468 * path works the same whether FIFOs are available (and enabled) or not.
469 */
470 if (dmaengine_slave_config(master->dma_tx, &slave_config)) {
471 dev_err(&as->pdev->dev,
472 "failed to configure tx dma channel\n");
473 err = -EINVAL;
474 }
475
476 /*
477 * This driver configures the spi controller for master mode (MSTR bit
478 * set to '1' in the Mode Register).
479 * So according to the datasheet, when FIFOs are available (and
480 * enabled), the Receive FIFO operates in Single Data Mode.
481 * So the receive path works the same whether FIFOs are available (and
482 * enabled) or not.
483 */
484 if (dmaengine_slave_config(master->dma_rx, &slave_config)) {
485 dev_err(&as->pdev->dev,
486 "failed to configure rx dma channel\n");
487 err = -EINVAL;
488 }
489
490 return err;
491 }
492
atmel_spi_configure_dma(struct spi_master * master,struct atmel_spi * as)493 static int atmel_spi_configure_dma(struct spi_master *master,
494 struct atmel_spi *as)
495 {
496 struct device *dev = &as->pdev->dev;
497 int err;
498
499 master->dma_tx = dma_request_chan(dev, "tx");
500 if (IS_ERR(master->dma_tx)) {
501 err = PTR_ERR(master->dma_tx);
502 dev_dbg(dev, "No TX DMA channel, DMA is disabled\n");
503 goto error_clear;
504 }
505
506 master->dma_rx = dma_request_chan(dev, "rx");
507 if (IS_ERR(master->dma_rx)) {
508 err = PTR_ERR(master->dma_rx);
509 /*
510 * No reason to check EPROBE_DEFER here since we have already
511 * requested tx channel.
512 */
513 dev_dbg(dev, "No RX DMA channel, DMA is disabled\n");
514 goto error;
515 }
516
517 err = atmel_spi_dma_slave_config(as, 8);
518 if (err)
519 goto error;
520
521 dev_info(&as->pdev->dev,
522 "Using %s (tx) and %s (rx) for DMA transfers\n",
523 dma_chan_name(master->dma_tx),
524 dma_chan_name(master->dma_rx));
525
526 return 0;
527 error:
528 if (!IS_ERR(master->dma_rx))
529 dma_release_channel(master->dma_rx);
530 if (!IS_ERR(master->dma_tx))
531 dma_release_channel(master->dma_tx);
532 error_clear:
533 master->dma_tx = master->dma_rx = NULL;
534 return err;
535 }
536
atmel_spi_stop_dma(struct spi_master * master)537 static void atmel_spi_stop_dma(struct spi_master *master)
538 {
539 if (master->dma_rx)
540 dmaengine_terminate_all(master->dma_rx);
541 if (master->dma_tx)
542 dmaengine_terminate_all(master->dma_tx);
543 }
544
atmel_spi_release_dma(struct spi_master * master)545 static void atmel_spi_release_dma(struct spi_master *master)
546 {
547 if (master->dma_rx) {
548 dma_release_channel(master->dma_rx);
549 master->dma_rx = NULL;
550 }
551 if (master->dma_tx) {
552 dma_release_channel(master->dma_tx);
553 master->dma_tx = NULL;
554 }
555 }
556
557 /* This function is called by the DMA driver from tasklet context */
dma_callback(void * data)558 static void dma_callback(void *data)
559 {
560 struct spi_master *master = data;
561 struct atmel_spi *as = spi_master_get_devdata(master);
562
563 if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
564 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
565 memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
566 as->current_transfer->len);
567 }
568 complete(&as->xfer_completion);
569 }
570
571 /*
572 * Next transfer using PIO without FIFO.
573 */
atmel_spi_next_xfer_single(struct spi_master * master,struct spi_transfer * xfer)574 static void atmel_spi_next_xfer_single(struct spi_master *master,
575 struct spi_transfer *xfer)
576 {
577 struct atmel_spi *as = spi_master_get_devdata(master);
578 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
579
580 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
581
582 /* Make sure data is not remaining in RDR */
583 spi_readl(as, RDR);
584 while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
585 spi_readl(as, RDR);
586 cpu_relax();
587 }
588
589 if (xfer->bits_per_word > 8)
590 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
591 else
592 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
593
594 dev_dbg(master->dev.parent,
595 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
596 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
597 xfer->bits_per_word);
598
599 /* Enable relevant interrupts */
600 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
601 }
602
603 /*
604 * Next transfer using PIO with FIFO.
605 */
atmel_spi_next_xfer_fifo(struct spi_master * master,struct spi_transfer * xfer)606 static void atmel_spi_next_xfer_fifo(struct spi_master *master,
607 struct spi_transfer *xfer)
608 {
609 struct atmel_spi *as = spi_master_get_devdata(master);
610 u32 current_remaining_data, num_data;
611 u32 offset = xfer->len - as->current_remaining_bytes;
612 const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
613 const u8 *bytes = (const u8 *)((u8 *)xfer->tx_buf + offset);
614 u16 td0, td1;
615 u32 fifomr;
616
617 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
618
619 /* Compute the number of data to transfer in the current iteration */
620 current_remaining_data = ((xfer->bits_per_word > 8) ?
621 ((u32)as->current_remaining_bytes >> 1) :
622 (u32)as->current_remaining_bytes);
623 num_data = min(current_remaining_data, as->fifo_size);
624
625 /* Flush RX and TX FIFOs */
626 spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
627 while (spi_readl(as, FLR))
628 cpu_relax();
629
630 /* Set RX FIFO Threshold to the number of data to transfer */
631 fifomr = spi_readl(as, FMR);
632 spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
633
634 /* Clear FIFO flags in the Status Register, especially RXFTHF */
635 (void)spi_readl(as, SR);
636
637 /* Fill TX FIFO */
638 while (num_data >= 2) {
639 if (xfer->bits_per_word > 8) {
640 td0 = *words++;
641 td1 = *words++;
642 } else {
643 td0 = *bytes++;
644 td1 = *bytes++;
645 }
646
647 spi_writel(as, TDR, (td1 << 16) | td0);
648 num_data -= 2;
649 }
650
651 if (num_data) {
652 if (xfer->bits_per_word > 8)
653 td0 = *words++;
654 else
655 td0 = *bytes++;
656
657 spi_writew(as, TDR, td0);
658 num_data--;
659 }
660
661 dev_dbg(master->dev.parent,
662 " start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
663 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
664 xfer->bits_per_word);
665
666 /*
667 * Enable RX FIFO Threshold Flag interrupt to be notified about
668 * transfer completion.
669 */
670 spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
671 }
672
673 /*
674 * Next transfer using PIO.
675 */
atmel_spi_next_xfer_pio(struct spi_master * master,struct spi_transfer * xfer)676 static void atmel_spi_next_xfer_pio(struct spi_master *master,
677 struct spi_transfer *xfer)
678 {
679 struct atmel_spi *as = spi_master_get_devdata(master);
680
681 if (as->fifo_size)
682 atmel_spi_next_xfer_fifo(master, xfer);
683 else
684 atmel_spi_next_xfer_single(master, xfer);
685 }
686
687 /*
688 * Submit next transfer for DMA.
689 */
atmel_spi_next_xfer_dma_submit(struct spi_master * master,struct spi_transfer * xfer,u32 * plen)690 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
691 struct spi_transfer *xfer,
692 u32 *plen)
693 {
694 struct atmel_spi *as = spi_master_get_devdata(master);
695 struct dma_chan *rxchan = master->dma_rx;
696 struct dma_chan *txchan = master->dma_tx;
697 struct dma_async_tx_descriptor *rxdesc;
698 struct dma_async_tx_descriptor *txdesc;
699 dma_cookie_t cookie;
700
701 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
702
703 /* Check that the channels are available */
704 if (!rxchan || !txchan)
705 return -ENODEV;
706
707
708 *plen = xfer->len;
709
710 if (atmel_spi_dma_slave_config(as, xfer->bits_per_word))
711 goto err_exit;
712
713 /* Send both scatterlists */
714 if (atmel_spi_is_vmalloc_xfer(xfer) &&
715 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
716 rxdesc = dmaengine_prep_slave_single(rxchan,
717 as->dma_addr_rx_bbuf,
718 xfer->len,
719 DMA_DEV_TO_MEM,
720 DMA_PREP_INTERRUPT |
721 DMA_CTRL_ACK);
722 } else {
723 rxdesc = dmaengine_prep_slave_sg(rxchan,
724 xfer->rx_sg.sgl,
725 xfer->rx_sg.nents,
726 DMA_DEV_TO_MEM,
727 DMA_PREP_INTERRUPT |
728 DMA_CTRL_ACK);
729 }
730 if (!rxdesc)
731 goto err_dma;
732
733 if (atmel_spi_is_vmalloc_xfer(xfer) &&
734 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
735 memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
736 txdesc = dmaengine_prep_slave_single(txchan,
737 as->dma_addr_tx_bbuf,
738 xfer->len, DMA_MEM_TO_DEV,
739 DMA_PREP_INTERRUPT |
740 DMA_CTRL_ACK);
741 } else {
742 txdesc = dmaengine_prep_slave_sg(txchan,
743 xfer->tx_sg.sgl,
744 xfer->tx_sg.nents,
745 DMA_MEM_TO_DEV,
746 DMA_PREP_INTERRUPT |
747 DMA_CTRL_ACK);
748 }
749 if (!txdesc)
750 goto err_dma;
751
752 dev_dbg(master->dev.parent,
753 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
754 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
755 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
756
757 /* Enable relevant interrupts */
758 spi_writel(as, IER, SPI_BIT(OVRES));
759
760 /* Put the callback on the RX transfer only, that should finish last */
761 rxdesc->callback = dma_callback;
762 rxdesc->callback_param = master;
763
764 /* Submit and fire RX and TX with TX last so we're ready to read! */
765 cookie = rxdesc->tx_submit(rxdesc);
766 if (dma_submit_error(cookie))
767 goto err_dma;
768 cookie = txdesc->tx_submit(txdesc);
769 if (dma_submit_error(cookie))
770 goto err_dma;
771 rxchan->device->device_issue_pending(rxchan);
772 txchan->device->device_issue_pending(txchan);
773
774 return 0;
775
776 err_dma:
777 spi_writel(as, IDR, SPI_BIT(OVRES));
778 atmel_spi_stop_dma(master);
779 err_exit:
780 return -ENOMEM;
781 }
782
atmel_spi_next_xfer_data(struct spi_master * master,struct spi_transfer * xfer,dma_addr_t * tx_dma,dma_addr_t * rx_dma,u32 * plen)783 static void atmel_spi_next_xfer_data(struct spi_master *master,
784 struct spi_transfer *xfer,
785 dma_addr_t *tx_dma,
786 dma_addr_t *rx_dma,
787 u32 *plen)
788 {
789 *rx_dma = xfer->rx_dma + xfer->len - *plen;
790 *tx_dma = xfer->tx_dma + xfer->len - *plen;
791 if (*plen > master->max_dma_len)
792 *plen = master->max_dma_len;
793 }
794
atmel_spi_set_xfer_speed(struct atmel_spi * as,struct spi_device * spi,struct spi_transfer * xfer)795 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
796 struct spi_device *spi,
797 struct spi_transfer *xfer)
798 {
799 u32 scbr, csr;
800 unsigned long bus_hz;
801 int chip_select;
802
803 if (spi->cs_gpiod)
804 chip_select = as->native_cs_for_gpio;
805 else
806 chip_select = spi->chip_select;
807
808 /* v1 chips start out at half the peripheral bus speed. */
809 bus_hz = as->spi_clk;
810 if (!atmel_spi_is_v2(as))
811 bus_hz /= 2;
812
813 /*
814 * Calculate the lowest divider that satisfies the
815 * constraint, assuming div32/fdiv/mbz == 0.
816 */
817 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
818
819 /*
820 * If the resulting divider doesn't fit into the
821 * register bitfield, we can't satisfy the constraint.
822 */
823 if (scbr >= (1 << SPI_SCBR_SIZE)) {
824 dev_err(&spi->dev,
825 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
826 xfer->speed_hz, scbr, bus_hz/255);
827 return -EINVAL;
828 }
829 if (scbr == 0) {
830 dev_err(&spi->dev,
831 "setup: %d Hz too high, scbr %u; max %ld Hz\n",
832 xfer->speed_hz, scbr, bus_hz);
833 return -EINVAL;
834 }
835 csr = spi_readl(as, CSR0 + 4 * chip_select);
836 csr = SPI_BFINS(SCBR, scbr, csr);
837 spi_writel(as, CSR0 + 4 * chip_select, csr);
838 xfer->effective_speed_hz = bus_hz / scbr;
839
840 return 0;
841 }
842
843 /*
844 * Submit next transfer for PDC.
845 * lock is held, spi irq is blocked
846 */
atmel_spi_pdc_next_xfer(struct spi_master * master,struct spi_transfer * xfer)847 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
848 struct spi_transfer *xfer)
849 {
850 struct atmel_spi *as = spi_master_get_devdata(master);
851 u32 len;
852 dma_addr_t tx_dma, rx_dma;
853
854 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
855
856 len = as->current_remaining_bytes;
857 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
858 as->current_remaining_bytes -= len;
859
860 spi_writel(as, RPR, rx_dma);
861 spi_writel(as, TPR, tx_dma);
862
863 if (xfer->bits_per_word > 8)
864 len >>= 1;
865 spi_writel(as, RCR, len);
866 spi_writel(as, TCR, len);
867
868 dev_dbg(&master->dev,
869 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
870 xfer, xfer->len, xfer->tx_buf,
871 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
872 (unsigned long long)xfer->rx_dma);
873
874 if (as->current_remaining_bytes) {
875 len = as->current_remaining_bytes;
876 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
877 as->current_remaining_bytes -= len;
878
879 spi_writel(as, RNPR, rx_dma);
880 spi_writel(as, TNPR, tx_dma);
881
882 if (xfer->bits_per_word > 8)
883 len >>= 1;
884 spi_writel(as, RNCR, len);
885 spi_writel(as, TNCR, len);
886
887 dev_dbg(&master->dev,
888 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
889 xfer, xfer->len, xfer->tx_buf,
890 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
891 (unsigned long long)xfer->rx_dma);
892 }
893
894 /* REVISIT: We're waiting for RXBUFF before we start the next
895 * transfer because we need to handle some difficult timing
896 * issues otherwise. If we wait for TXBUFE in one transfer and
897 * then starts waiting for RXBUFF in the next, it's difficult
898 * to tell the difference between the RXBUFF interrupt we're
899 * actually waiting for and the RXBUFF interrupt of the
900 * previous transfer.
901 *
902 * It should be doable, though. Just not now...
903 */
904 spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
905 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
906 }
907
908 /*
909 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
910 * - The buffer is either valid for CPU access, else NULL
911 * - If the buffer is valid, so is its DMA address
912 *
913 * This driver manages the dma address unless message->is_dma_mapped.
914 */
915 static int
atmel_spi_dma_map_xfer(struct atmel_spi * as,struct spi_transfer * xfer)916 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
917 {
918 struct device *dev = &as->pdev->dev;
919
920 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
921 if (xfer->tx_buf) {
922 /* tx_buf is a const void* where we need a void * for the dma
923 * mapping */
924 void *nonconst_tx = (void *)xfer->tx_buf;
925
926 xfer->tx_dma = dma_map_single(dev,
927 nonconst_tx, xfer->len,
928 DMA_TO_DEVICE);
929 if (dma_mapping_error(dev, xfer->tx_dma))
930 return -ENOMEM;
931 }
932 if (xfer->rx_buf) {
933 xfer->rx_dma = dma_map_single(dev,
934 xfer->rx_buf, xfer->len,
935 DMA_FROM_DEVICE);
936 if (dma_mapping_error(dev, xfer->rx_dma)) {
937 if (xfer->tx_buf)
938 dma_unmap_single(dev,
939 xfer->tx_dma, xfer->len,
940 DMA_TO_DEVICE);
941 return -ENOMEM;
942 }
943 }
944 return 0;
945 }
946
atmel_spi_dma_unmap_xfer(struct spi_master * master,struct spi_transfer * xfer)947 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
948 struct spi_transfer *xfer)
949 {
950 if (xfer->tx_dma != INVALID_DMA_ADDRESS)
951 dma_unmap_single(master->dev.parent, xfer->tx_dma,
952 xfer->len, DMA_TO_DEVICE);
953 if (xfer->rx_dma != INVALID_DMA_ADDRESS)
954 dma_unmap_single(master->dev.parent, xfer->rx_dma,
955 xfer->len, DMA_FROM_DEVICE);
956 }
957
atmel_spi_disable_pdc_transfer(struct atmel_spi * as)958 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
959 {
960 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
961 }
962
963 static void
atmel_spi_pump_single_data(struct atmel_spi * as,struct spi_transfer * xfer)964 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
965 {
966 u8 *rxp;
967 u16 *rxp16;
968 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
969
970 if (xfer->bits_per_word > 8) {
971 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
972 *rxp16 = spi_readl(as, RDR);
973 } else {
974 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
975 *rxp = spi_readl(as, RDR);
976 }
977 if (xfer->bits_per_word > 8) {
978 if (as->current_remaining_bytes > 2)
979 as->current_remaining_bytes -= 2;
980 else
981 as->current_remaining_bytes = 0;
982 } else {
983 as->current_remaining_bytes--;
984 }
985 }
986
987 static void
atmel_spi_pump_fifo_data(struct atmel_spi * as,struct spi_transfer * xfer)988 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
989 {
990 u32 fifolr = spi_readl(as, FLR);
991 u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
992 u32 offset = xfer->len - as->current_remaining_bytes;
993 u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
994 u8 *bytes = (u8 *)((u8 *)xfer->rx_buf + offset);
995 u16 rd; /* RD field is the lowest 16 bits of RDR */
996
997 /* Update the number of remaining bytes to transfer */
998 num_bytes = ((xfer->bits_per_word > 8) ?
999 (num_data << 1) :
1000 num_data);
1001
1002 if (as->current_remaining_bytes > num_bytes)
1003 as->current_remaining_bytes -= num_bytes;
1004 else
1005 as->current_remaining_bytes = 0;
1006
1007 /* Handle odd number of bytes when data are more than 8bit width */
1008 if (xfer->bits_per_word > 8)
1009 as->current_remaining_bytes &= ~0x1;
1010
1011 /* Read data */
1012 while (num_data) {
1013 rd = spi_readl(as, RDR);
1014 if (xfer->bits_per_word > 8)
1015 *words++ = rd;
1016 else
1017 *bytes++ = rd;
1018 num_data--;
1019 }
1020 }
1021
1022 /* Called from IRQ
1023 *
1024 * Must update "current_remaining_bytes" to keep track of data
1025 * to transfer.
1026 */
1027 static void
atmel_spi_pump_pio_data(struct atmel_spi * as,struct spi_transfer * xfer)1028 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1029 {
1030 if (as->fifo_size)
1031 atmel_spi_pump_fifo_data(as, xfer);
1032 else
1033 atmel_spi_pump_single_data(as, xfer);
1034 }
1035
1036 /* Interrupt
1037 *
1038 */
1039 static irqreturn_t
atmel_spi_pio_interrupt(int irq,void * dev_id)1040 atmel_spi_pio_interrupt(int irq, void *dev_id)
1041 {
1042 struct spi_master *master = dev_id;
1043 struct atmel_spi *as = spi_master_get_devdata(master);
1044 u32 status, pending, imr;
1045 struct spi_transfer *xfer;
1046 int ret = IRQ_NONE;
1047
1048 imr = spi_readl(as, IMR);
1049 status = spi_readl(as, SR);
1050 pending = status & imr;
1051
1052 if (pending & SPI_BIT(OVRES)) {
1053 ret = IRQ_HANDLED;
1054 spi_writel(as, IDR, SPI_BIT(OVRES));
1055 dev_warn(master->dev.parent, "overrun\n");
1056
1057 /*
1058 * When we get an overrun, we disregard the current
1059 * transfer. Data will not be copied back from any
1060 * bounce buffer and msg->actual_len will not be
1061 * updated with the last xfer.
1062 *
1063 * We will also not process any remaning transfers in
1064 * the message.
1065 */
1066 as->done_status = -EIO;
1067 smp_wmb();
1068
1069 /* Clear any overrun happening while cleaning up */
1070 spi_readl(as, SR);
1071
1072 complete(&as->xfer_completion);
1073
1074 } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1075 atmel_spi_lock(as);
1076
1077 if (as->current_remaining_bytes) {
1078 ret = IRQ_HANDLED;
1079 xfer = as->current_transfer;
1080 atmel_spi_pump_pio_data(as, xfer);
1081 if (!as->current_remaining_bytes)
1082 spi_writel(as, IDR, pending);
1083
1084 complete(&as->xfer_completion);
1085 }
1086
1087 atmel_spi_unlock(as);
1088 } else {
1089 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1090 ret = IRQ_HANDLED;
1091 spi_writel(as, IDR, pending);
1092 }
1093
1094 return ret;
1095 }
1096
1097 static irqreturn_t
atmel_spi_pdc_interrupt(int irq,void * dev_id)1098 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1099 {
1100 struct spi_master *master = dev_id;
1101 struct atmel_spi *as = spi_master_get_devdata(master);
1102 u32 status, pending, imr;
1103 int ret = IRQ_NONE;
1104
1105 imr = spi_readl(as, IMR);
1106 status = spi_readl(as, SR);
1107 pending = status & imr;
1108
1109 if (pending & SPI_BIT(OVRES)) {
1110
1111 ret = IRQ_HANDLED;
1112
1113 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1114 | SPI_BIT(OVRES)));
1115
1116 /* Clear any overrun happening while cleaning up */
1117 spi_readl(as, SR);
1118
1119 as->done_status = -EIO;
1120
1121 complete(&as->xfer_completion);
1122
1123 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1124 ret = IRQ_HANDLED;
1125
1126 spi_writel(as, IDR, pending);
1127
1128 complete(&as->xfer_completion);
1129 }
1130
1131 return ret;
1132 }
1133
atmel_word_delay_csr(struct spi_device * spi,struct atmel_spi * as)1134 static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as)
1135 {
1136 struct spi_delay *delay = &spi->word_delay;
1137 u32 value = delay->value;
1138
1139 switch (delay->unit) {
1140 case SPI_DELAY_UNIT_NSECS:
1141 value /= 1000;
1142 break;
1143 case SPI_DELAY_UNIT_USECS:
1144 break;
1145 default:
1146 return -EINVAL;
1147 }
1148
1149 return (as->spi_clk / 1000000 * value) >> 5;
1150 }
1151
initialize_native_cs_for_gpio(struct atmel_spi * as)1152 static void initialize_native_cs_for_gpio(struct atmel_spi *as)
1153 {
1154 int i;
1155 struct spi_master *master = platform_get_drvdata(as->pdev);
1156
1157 if (!as->native_cs_free)
1158 return; /* already initialized */
1159
1160 if (!master->cs_gpiods)
1161 return; /* No CS GPIO */
1162
1163 /*
1164 * On the first version of the controller (AT91RM9200), CS0
1165 * can't be used associated with GPIO
1166 */
1167 if (atmel_spi_is_v2(as))
1168 i = 0;
1169 else
1170 i = 1;
1171
1172 for (; i < 4; i++)
1173 if (master->cs_gpiods[i])
1174 as->native_cs_free |= BIT(i);
1175
1176 if (as->native_cs_free)
1177 as->native_cs_for_gpio = ffs(as->native_cs_free);
1178 }
1179
atmel_spi_setup(struct spi_device * spi)1180 static int atmel_spi_setup(struct spi_device *spi)
1181 {
1182 struct atmel_spi *as;
1183 struct atmel_spi_device *asd;
1184 u32 csr;
1185 unsigned int bits = spi->bits_per_word;
1186 int chip_select;
1187 int word_delay_csr;
1188
1189 as = spi_master_get_devdata(spi->master);
1190
1191 /* see notes above re chipselect */
1192 if (!spi->cs_gpiod && (spi->mode & SPI_CS_HIGH)) {
1193 dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
1194 return -EINVAL;
1195 }
1196
1197 /* Setup() is called during spi_register_controller(aka
1198 * spi_register_master) but after all membmers of the cs_gpiod
1199 * array have been filled, so we can looked for which native
1200 * CS will be free for using with GPIO
1201 */
1202 initialize_native_cs_for_gpio(as);
1203
1204 if (spi->cs_gpiod && as->native_cs_free) {
1205 dev_err(&spi->dev,
1206 "No native CS available to support this GPIO CS\n");
1207 return -EBUSY;
1208 }
1209
1210 if (spi->cs_gpiod)
1211 chip_select = as->native_cs_for_gpio;
1212 else
1213 chip_select = spi->chip_select;
1214
1215 csr = SPI_BF(BITS, bits - 8);
1216 if (spi->mode & SPI_CPOL)
1217 csr |= SPI_BIT(CPOL);
1218 if (!(spi->mode & SPI_CPHA))
1219 csr |= SPI_BIT(NCPHA);
1220
1221 if (!spi->cs_gpiod)
1222 csr |= SPI_BIT(CSAAT);
1223 csr |= SPI_BF(DLYBS, 0);
1224
1225 word_delay_csr = atmel_word_delay_csr(spi, as);
1226 if (word_delay_csr < 0)
1227 return word_delay_csr;
1228
1229 /* DLYBCT adds delays between words. This is useful for slow devices
1230 * that need a bit of time to setup the next transfer.
1231 */
1232 csr |= SPI_BF(DLYBCT, word_delay_csr);
1233
1234 asd = spi->controller_state;
1235 if (!asd) {
1236 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1237 if (!asd)
1238 return -ENOMEM;
1239
1240 spi->controller_state = asd;
1241 }
1242
1243 asd->csr = csr;
1244
1245 dev_dbg(&spi->dev,
1246 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1247 bits, spi->mode, spi->chip_select, csr);
1248
1249 if (!atmel_spi_is_v2(as))
1250 spi_writel(as, CSR0 + 4 * chip_select, csr);
1251
1252 return 0;
1253 }
1254
atmel_spi_set_cs(struct spi_device * spi,bool enable)1255 static void atmel_spi_set_cs(struct spi_device *spi, bool enable)
1256 {
1257 struct atmel_spi *as = spi_master_get_devdata(spi->master);
1258 /* the core doesn't really pass us enable/disable, but CS HIGH vs CS LOW
1259 * since we already have routines for activate/deactivate translate
1260 * high/low to active/inactive
1261 */
1262 enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
1263
1264 if (enable) {
1265 cs_activate(as, spi);
1266 } else {
1267 cs_deactivate(as, spi);
1268 }
1269
1270 }
1271
atmel_spi_one_transfer(struct spi_master * master,struct spi_device * spi,struct spi_transfer * xfer)1272 static int atmel_spi_one_transfer(struct spi_master *master,
1273 struct spi_device *spi,
1274 struct spi_transfer *xfer)
1275 {
1276 struct atmel_spi *as;
1277 u8 bits;
1278 u32 len;
1279 struct atmel_spi_device *asd;
1280 int timeout;
1281 int ret;
1282 unsigned long dma_timeout;
1283
1284 as = spi_master_get_devdata(master);
1285
1286 asd = spi->controller_state;
1287 bits = (asd->csr >> 4) & 0xf;
1288 if (bits != xfer->bits_per_word - 8) {
1289 dev_dbg(&spi->dev,
1290 "you can't yet change bits_per_word in transfers\n");
1291 return -ENOPROTOOPT;
1292 }
1293
1294 /*
1295 * DMA map early, for performance (empties dcache ASAP) and
1296 * better fault reporting.
1297 */
1298 if ((!master->cur_msg->is_dma_mapped)
1299 && as->use_pdc) {
1300 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1301 return -ENOMEM;
1302 }
1303
1304 atmel_spi_set_xfer_speed(as, spi, xfer);
1305
1306 as->done_status = 0;
1307 as->current_transfer = xfer;
1308 as->current_remaining_bytes = xfer->len;
1309 while (as->current_remaining_bytes) {
1310 reinit_completion(&as->xfer_completion);
1311
1312 if (as->use_pdc) {
1313 atmel_spi_lock(as);
1314 atmel_spi_pdc_next_xfer(master, xfer);
1315 atmel_spi_unlock(as);
1316 } else if (atmel_spi_use_dma(as, xfer)) {
1317 len = as->current_remaining_bytes;
1318 ret = atmel_spi_next_xfer_dma_submit(master,
1319 xfer, &len);
1320 if (ret) {
1321 dev_err(&spi->dev,
1322 "unable to use DMA, fallback to PIO\n");
1323 as->done_status = ret;
1324 break;
1325 } else {
1326 as->current_remaining_bytes -= len;
1327 if (as->current_remaining_bytes < 0)
1328 as->current_remaining_bytes = 0;
1329 }
1330 } else {
1331 atmel_spi_lock(as);
1332 atmel_spi_next_xfer_pio(master, xfer);
1333 atmel_spi_unlock(as);
1334 }
1335
1336 dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1337 SPI_DMA_TIMEOUT);
1338 if (WARN_ON(dma_timeout == 0)) {
1339 dev_err(&spi->dev, "spi transfer timeout\n");
1340 as->done_status = -EIO;
1341 }
1342
1343 if (as->done_status)
1344 break;
1345 }
1346
1347 if (as->done_status) {
1348 if (as->use_pdc) {
1349 dev_warn(master->dev.parent,
1350 "overrun (%u/%u remaining)\n",
1351 spi_readl(as, TCR), spi_readl(as, RCR));
1352
1353 /*
1354 * Clean up DMA registers and make sure the data
1355 * registers are empty.
1356 */
1357 spi_writel(as, RNCR, 0);
1358 spi_writel(as, TNCR, 0);
1359 spi_writel(as, RCR, 0);
1360 spi_writel(as, TCR, 0);
1361 for (timeout = 1000; timeout; timeout--)
1362 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1363 break;
1364 if (!timeout)
1365 dev_warn(master->dev.parent,
1366 "timeout waiting for TXEMPTY");
1367 while (spi_readl(as, SR) & SPI_BIT(RDRF))
1368 spi_readl(as, RDR);
1369
1370 /* Clear any overrun happening while cleaning up */
1371 spi_readl(as, SR);
1372
1373 } else if (atmel_spi_use_dma(as, xfer)) {
1374 atmel_spi_stop_dma(master);
1375 }
1376 }
1377
1378 if (!master->cur_msg->is_dma_mapped
1379 && as->use_pdc)
1380 atmel_spi_dma_unmap_xfer(master, xfer);
1381
1382 if (as->use_pdc)
1383 atmel_spi_disable_pdc_transfer(as);
1384
1385 return as->done_status;
1386 }
1387
atmel_spi_cleanup(struct spi_device * spi)1388 static void atmel_spi_cleanup(struct spi_device *spi)
1389 {
1390 struct atmel_spi_device *asd = spi->controller_state;
1391
1392 if (!asd)
1393 return;
1394
1395 spi->controller_state = NULL;
1396 kfree(asd);
1397 }
1398
atmel_get_version(struct atmel_spi * as)1399 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1400 {
1401 return spi_readl(as, VERSION) & 0x00000fff;
1402 }
1403
atmel_get_caps(struct atmel_spi * as)1404 static void atmel_get_caps(struct atmel_spi *as)
1405 {
1406 unsigned int version;
1407
1408 version = atmel_get_version(as);
1409
1410 as->caps.is_spi2 = version > 0x121;
1411 as->caps.has_wdrbt = version >= 0x210;
1412 as->caps.has_dma_support = version >= 0x212;
1413 as->caps.has_pdc_support = version < 0x212;
1414 }
1415
atmel_spi_init(struct atmel_spi * as)1416 static void atmel_spi_init(struct atmel_spi *as)
1417 {
1418 spi_writel(as, CR, SPI_BIT(SWRST));
1419 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1420
1421 /* It is recommended to enable FIFOs first thing after reset */
1422 if (as->fifo_size)
1423 spi_writel(as, CR, SPI_BIT(FIFOEN));
1424
1425 if (as->caps.has_wdrbt) {
1426 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1427 | SPI_BIT(MSTR));
1428 } else {
1429 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1430 }
1431
1432 if (as->use_pdc)
1433 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1434 spi_writel(as, CR, SPI_BIT(SPIEN));
1435 }
1436
atmel_spi_probe(struct platform_device * pdev)1437 static int atmel_spi_probe(struct platform_device *pdev)
1438 {
1439 struct resource *regs;
1440 int irq;
1441 struct clk *clk;
1442 int ret;
1443 struct spi_master *master;
1444 struct atmel_spi *as;
1445
1446 /* Select default pin state */
1447 pinctrl_pm_select_default_state(&pdev->dev);
1448
1449 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1450 if (!regs)
1451 return -ENXIO;
1452
1453 irq = platform_get_irq(pdev, 0);
1454 if (irq < 0)
1455 return irq;
1456
1457 clk = devm_clk_get(&pdev->dev, "spi_clk");
1458 if (IS_ERR(clk))
1459 return PTR_ERR(clk);
1460
1461 /* setup spi core then atmel-specific driver state */
1462 master = spi_alloc_master(&pdev->dev, sizeof(*as));
1463 if (!master)
1464 return -ENOMEM;
1465
1466 /* the spi->mode bits understood by this driver: */
1467 master->use_gpio_descriptors = true;
1468 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1469 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1470 master->dev.of_node = pdev->dev.of_node;
1471 master->bus_num = pdev->id;
1472 master->num_chipselect = 4;
1473 master->setup = atmel_spi_setup;
1474 master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX |
1475 SPI_MASTER_GPIO_SS);
1476 master->transfer_one = atmel_spi_one_transfer;
1477 master->set_cs = atmel_spi_set_cs;
1478 master->cleanup = atmel_spi_cleanup;
1479 master->auto_runtime_pm = true;
1480 master->max_dma_len = SPI_MAX_DMA_XFER;
1481 master->can_dma = atmel_spi_can_dma;
1482 platform_set_drvdata(pdev, master);
1483
1484 as = spi_master_get_devdata(master);
1485
1486 spin_lock_init(&as->lock);
1487
1488 as->pdev = pdev;
1489 as->regs = devm_ioremap_resource(&pdev->dev, regs);
1490 if (IS_ERR(as->regs)) {
1491 ret = PTR_ERR(as->regs);
1492 goto out_unmap_regs;
1493 }
1494 as->phybase = regs->start;
1495 as->irq = irq;
1496 as->clk = clk;
1497
1498 init_completion(&as->xfer_completion);
1499
1500 atmel_get_caps(as);
1501
1502 as->use_dma = false;
1503 as->use_pdc = false;
1504 if (as->caps.has_dma_support) {
1505 ret = atmel_spi_configure_dma(master, as);
1506 if (ret == 0) {
1507 as->use_dma = true;
1508 } else if (ret == -EPROBE_DEFER) {
1509 goto out_unmap_regs;
1510 }
1511 } else if (as->caps.has_pdc_support) {
1512 as->use_pdc = true;
1513 }
1514
1515 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1516 as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1517 SPI_MAX_DMA_XFER,
1518 &as->dma_addr_rx_bbuf,
1519 GFP_KERNEL | GFP_DMA);
1520 if (!as->addr_rx_bbuf) {
1521 as->use_dma = false;
1522 } else {
1523 as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1524 SPI_MAX_DMA_XFER,
1525 &as->dma_addr_tx_bbuf,
1526 GFP_KERNEL | GFP_DMA);
1527 if (!as->addr_tx_bbuf) {
1528 as->use_dma = false;
1529 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1530 as->addr_rx_bbuf,
1531 as->dma_addr_rx_bbuf);
1532 }
1533 }
1534 if (!as->use_dma)
1535 dev_info(master->dev.parent,
1536 " can not allocate dma coherent memory\n");
1537 }
1538
1539 if (as->caps.has_dma_support && !as->use_dma)
1540 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1541
1542 if (as->use_pdc) {
1543 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1544 0, dev_name(&pdev->dev), master);
1545 } else {
1546 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1547 0, dev_name(&pdev->dev), master);
1548 }
1549 if (ret)
1550 goto out_unmap_regs;
1551
1552 /* Initialize the hardware */
1553 ret = clk_prepare_enable(clk);
1554 if (ret)
1555 goto out_free_irq;
1556
1557 as->spi_clk = clk_get_rate(clk);
1558
1559 as->fifo_size = 0;
1560 if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1561 &as->fifo_size)) {
1562 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1563 }
1564
1565 atmel_spi_init(as);
1566
1567 pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1568 pm_runtime_use_autosuspend(&pdev->dev);
1569 pm_runtime_set_active(&pdev->dev);
1570 pm_runtime_enable(&pdev->dev);
1571
1572 ret = devm_spi_register_master(&pdev->dev, master);
1573 if (ret)
1574 goto out_free_dma;
1575
1576 /* go! */
1577 dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1578 atmel_get_version(as), (unsigned long)regs->start,
1579 irq);
1580
1581 return 0;
1582
1583 out_free_dma:
1584 pm_runtime_disable(&pdev->dev);
1585 pm_runtime_set_suspended(&pdev->dev);
1586
1587 if (as->use_dma)
1588 atmel_spi_release_dma(master);
1589
1590 spi_writel(as, CR, SPI_BIT(SWRST));
1591 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1592 clk_disable_unprepare(clk);
1593 out_free_irq:
1594 out_unmap_regs:
1595 spi_master_put(master);
1596 return ret;
1597 }
1598
atmel_spi_remove(struct platform_device * pdev)1599 static int atmel_spi_remove(struct platform_device *pdev)
1600 {
1601 struct spi_master *master = platform_get_drvdata(pdev);
1602 struct atmel_spi *as = spi_master_get_devdata(master);
1603
1604 pm_runtime_get_sync(&pdev->dev);
1605
1606 /* reset the hardware and block queue progress */
1607 if (as->use_dma) {
1608 atmel_spi_stop_dma(master);
1609 atmel_spi_release_dma(master);
1610 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1611 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1612 as->addr_tx_bbuf,
1613 as->dma_addr_tx_bbuf);
1614 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1615 as->addr_rx_bbuf,
1616 as->dma_addr_rx_bbuf);
1617 }
1618 }
1619
1620 spin_lock_irq(&as->lock);
1621 spi_writel(as, CR, SPI_BIT(SWRST));
1622 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1623 spi_readl(as, SR);
1624 spin_unlock_irq(&as->lock);
1625
1626 clk_disable_unprepare(as->clk);
1627
1628 pm_runtime_put_noidle(&pdev->dev);
1629 pm_runtime_disable(&pdev->dev);
1630
1631 return 0;
1632 }
1633
atmel_spi_runtime_suspend(struct device * dev)1634 static int atmel_spi_runtime_suspend(struct device *dev)
1635 {
1636 struct spi_master *master = dev_get_drvdata(dev);
1637 struct atmel_spi *as = spi_master_get_devdata(master);
1638
1639 clk_disable_unprepare(as->clk);
1640 pinctrl_pm_select_sleep_state(dev);
1641
1642 return 0;
1643 }
1644
atmel_spi_runtime_resume(struct device * dev)1645 static int atmel_spi_runtime_resume(struct device *dev)
1646 {
1647 struct spi_master *master = dev_get_drvdata(dev);
1648 struct atmel_spi *as = spi_master_get_devdata(master);
1649
1650 pinctrl_pm_select_default_state(dev);
1651
1652 return clk_prepare_enable(as->clk);
1653 }
1654
atmel_spi_suspend(struct device * dev)1655 static int atmel_spi_suspend(struct device *dev)
1656 {
1657 struct spi_master *master = dev_get_drvdata(dev);
1658 int ret;
1659
1660 /* Stop the queue running */
1661 ret = spi_master_suspend(master);
1662 if (ret)
1663 return ret;
1664
1665 if (!pm_runtime_suspended(dev))
1666 atmel_spi_runtime_suspend(dev);
1667
1668 return 0;
1669 }
1670
atmel_spi_resume(struct device * dev)1671 static int atmel_spi_resume(struct device *dev)
1672 {
1673 struct spi_master *master = dev_get_drvdata(dev);
1674 struct atmel_spi *as = spi_master_get_devdata(master);
1675 int ret;
1676
1677 ret = clk_prepare_enable(as->clk);
1678 if (ret)
1679 return ret;
1680
1681 atmel_spi_init(as);
1682
1683 clk_disable_unprepare(as->clk);
1684
1685 if (!pm_runtime_suspended(dev)) {
1686 ret = atmel_spi_runtime_resume(dev);
1687 if (ret)
1688 return ret;
1689 }
1690
1691 /* Start the queue running */
1692 return spi_master_resume(master);
1693 }
1694
1695 static const struct dev_pm_ops atmel_spi_pm_ops = {
1696 SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1697 RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1698 atmel_spi_runtime_resume, NULL)
1699 };
1700
1701 static const struct of_device_id atmel_spi_dt_ids[] = {
1702 { .compatible = "atmel,at91rm9200-spi" },
1703 { /* sentinel */ }
1704 };
1705
1706 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1707
1708 static struct platform_driver atmel_spi_driver = {
1709 .driver = {
1710 .name = "atmel_spi",
1711 .pm = pm_ptr(&atmel_spi_pm_ops),
1712 .of_match_table = atmel_spi_dt_ids,
1713 },
1714 .probe = atmel_spi_probe,
1715 .remove = atmel_spi_remove,
1716 };
1717 module_platform_driver(atmel_spi_driver);
1718
1719 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1720 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1721 MODULE_LICENSE("GPL");
1722 MODULE_ALIAS("platform:atmel_spi");
1723