1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * 6pack.c	This module implements the 6pack protocol for kernel-based
4   *		devices like TTY. It interfaces between a raw TTY and the
5   *		kernel's AX.25 protocol layers.
6   *
7   * Authors:	Andreas Könsgen <ajk@comnets.uni-bremen.de>
8   *              Ralf Baechle DL5RB <ralf@linux-mips.org>
9   *
10   * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by
11   *
12   *		Laurence Culhane, <loz@holmes.demon.co.uk>
13   *		Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
14   */
15  
16  #include <linux/module.h>
17  #include <linux/uaccess.h>
18  #include <linux/bitops.h>
19  #include <linux/string.h>
20  #include <linux/mm.h>
21  #include <linux/interrupt.h>
22  #include <linux/in.h>
23  #include <linux/tty.h>
24  #include <linux/errno.h>
25  #include <linux/netdevice.h>
26  #include <linux/timer.h>
27  #include <linux/slab.h>
28  #include <net/ax25.h>
29  #include <linux/etherdevice.h>
30  #include <linux/skbuff.h>
31  #include <linux/rtnetlink.h>
32  #include <linux/spinlock.h>
33  #include <linux/if_arp.h>
34  #include <linux/init.h>
35  #include <linux/ip.h>
36  #include <linux/tcp.h>
37  #include <linux/semaphore.h>
38  #include <linux/refcount.h>
39  
40  #define SIXPACK_VERSION    "Revision: 0.3.0"
41  
42  /* sixpack priority commands */
43  #define SIXP_SEOF		0x40	/* start and end of a 6pack frame */
44  #define SIXP_TX_URUN		0x48	/* transmit overrun */
45  #define SIXP_RX_ORUN		0x50	/* receive overrun */
46  #define SIXP_RX_BUF_OVL		0x58	/* receive buffer overflow */
47  
48  #define SIXP_CHKSUM		0xFF	/* valid checksum of a 6pack frame */
49  
50  /* masks to get certain bits out of the status bytes sent by the TNC */
51  
52  #define SIXP_CMD_MASK		0xC0
53  #define SIXP_CHN_MASK		0x07
54  #define SIXP_PRIO_CMD_MASK	0x80
55  #define SIXP_STD_CMD_MASK	0x40
56  #define SIXP_PRIO_DATA_MASK	0x38
57  #define SIXP_TX_MASK		0x20
58  #define SIXP_RX_MASK		0x10
59  #define SIXP_RX_DCD_MASK	0x18
60  #define SIXP_LEDS_ON		0x78
61  #define SIXP_LEDS_OFF		0x60
62  #define SIXP_CON		0x08
63  #define SIXP_STA		0x10
64  
65  #define SIXP_FOUND_TNC		0xe9
66  #define SIXP_CON_ON		0x68
67  #define SIXP_DCD_MASK		0x08
68  #define SIXP_DAMA_OFF		0
69  
70  /* default level 2 parameters */
71  #define SIXP_TXDELAY			25	/* 250 ms */
72  #define SIXP_PERSIST			50	/* in 256ths */
73  #define SIXP_SLOTTIME			10	/* 100 ms */
74  #define SIXP_INIT_RESYNC_TIMEOUT	(3*HZ/2) /* in 1 s */
75  #define SIXP_RESYNC_TIMEOUT		5*HZ	/* in 1 s */
76  
77  /* 6pack configuration. */
78  #define SIXP_NRUNIT			31      /* MAX number of 6pack channels */
79  #define SIXP_MTU			256	/* Default MTU */
80  
81  enum sixpack_flags {
82  	SIXPF_ERROR,	/* Parity, etc. error	*/
83  };
84  
85  struct sixpack {
86  	/* Various fields. */
87  	struct tty_struct	*tty;		/* ptr to TTY structure	*/
88  	struct net_device	*dev;		/* easy for intr handling  */
89  
90  	/* These are pointers to the malloc()ed frame buffers. */
91  	unsigned char		*rbuff;		/* receiver buffer	*/
92  	int			rcount;         /* received chars counter  */
93  	unsigned char		*xbuff;		/* transmitter buffer	*/
94  	unsigned char		*xhead;         /* next byte to XMIT */
95  	int			xleft;          /* bytes left in XMIT queue  */
96  
97  	unsigned char		raw_buf[4];
98  	unsigned char		cooked_buf[400];
99  
100  	unsigned int		rx_count;
101  	unsigned int		rx_count_cooked;
102  	spinlock_t		rxlock;
103  
104  	int			mtu;		/* Our mtu (to spot changes!) */
105  	int			buffsize;       /* Max buffers sizes */
106  
107  	unsigned long		flags;		/* Flag values/ mode etc */
108  	unsigned char		mode;		/* 6pack mode */
109  
110  	/* 6pack stuff */
111  	unsigned char		tx_delay;
112  	unsigned char		persistence;
113  	unsigned char		slottime;
114  	unsigned char		duplex;
115  	unsigned char		led_state;
116  	unsigned char		status;
117  	unsigned char		status1;
118  	unsigned char		status2;
119  	unsigned char		tx_enable;
120  	unsigned char		tnc_state;
121  
122  	struct timer_list	tx_t;
123  	struct timer_list	resync_t;
124  	refcount_t		refcnt;
125  	struct completion	dead;
126  	spinlock_t		lock;
127  };
128  
129  #define AX25_6PACK_HEADER_LEN 0
130  
131  static void sixpack_decode(struct sixpack *, const unsigned char[], int);
132  static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);
133  
134  /*
135   * Perform the persistence/slottime algorithm for CSMA access. If the
136   * persistence check was successful, write the data to the serial driver.
137   * Note that in case of DAMA operation, the data is not sent here.
138   */
139  
sp_xmit_on_air(struct timer_list * t)140  static void sp_xmit_on_air(struct timer_list *t)
141  {
142  	struct sixpack *sp = from_timer(sp, t, tx_t);
143  	int actual, when = sp->slottime;
144  	static unsigned char random;
145  
146  	random = random * 17 + 41;
147  
148  	if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) {
149  		sp->led_state = 0x70;
150  		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
151  		sp->tx_enable = 1;
152  		actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
153  		sp->xleft -= actual;
154  		sp->xhead += actual;
155  		sp->led_state = 0x60;
156  		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
157  		sp->status2 = 0;
158  	} else
159  		mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);
160  }
161  
162  /* ----> 6pack timer interrupt handler and friends. <---- */
163  
164  /* Encapsulate one AX.25 frame and stuff into a TTY queue. */
sp_encaps(struct sixpack * sp,unsigned char * icp,int len)165  static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len)
166  {
167  	unsigned char *msg, *p = icp;
168  	int actual, count;
169  
170  	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
171  		msg = "oversized transmit packet!";
172  		goto out_drop;
173  	}
174  
175  	if (p[0] > 5) {
176  		msg = "invalid KISS command";
177  		goto out_drop;
178  	}
179  
180  	if ((p[0] != 0) && (len > 2)) {
181  		msg = "KISS control packet too long";
182  		goto out_drop;
183  	}
184  
185  	if ((p[0] == 0) && (len < 15)) {
186  		msg = "bad AX.25 packet to transmit";
187  		goto out_drop;
188  	}
189  
190  	count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay);
191  	set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
192  
193  	switch (p[0]) {
194  	case 1:	sp->tx_delay = p[1];
195  		return;
196  	case 2:	sp->persistence = p[1];
197  		return;
198  	case 3:	sp->slottime = p[1];
199  		return;
200  	case 4:	/* ignored */
201  		return;
202  	case 5:	sp->duplex = p[1];
203  		return;
204  	}
205  
206  	if (p[0] != 0)
207  		return;
208  
209  	/*
210  	 * In case of fullduplex or DAMA operation, we don't take care about the
211  	 * state of the DCD or of any timers, as the determination of the
212  	 * correct time to send is the job of the AX.25 layer. We send
213  	 * immediately after data has arrived.
214  	 */
215  	if (sp->duplex == 1) {
216  		sp->led_state = 0x70;
217  		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
218  		sp->tx_enable = 1;
219  		actual = sp->tty->ops->write(sp->tty, sp->xbuff, count);
220  		sp->xleft = count - actual;
221  		sp->xhead = sp->xbuff + actual;
222  		sp->led_state = 0x60;
223  		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
224  	} else {
225  		sp->xleft = count;
226  		sp->xhead = sp->xbuff;
227  		sp->status2 = count;
228  		sp_xmit_on_air(&sp->tx_t);
229  	}
230  
231  	return;
232  
233  out_drop:
234  	sp->dev->stats.tx_dropped++;
235  	netif_start_queue(sp->dev);
236  	if (net_ratelimit())
237  		printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);
238  }
239  
240  /* Encapsulate an IP datagram and kick it into a TTY queue. */
241  
sp_xmit(struct sk_buff * skb,struct net_device * dev)242  static netdev_tx_t sp_xmit(struct sk_buff *skb, struct net_device *dev)
243  {
244  	struct sixpack *sp = netdev_priv(dev);
245  
246  	if (skb->protocol == htons(ETH_P_IP))
247  		return ax25_ip_xmit(skb);
248  
249  	spin_lock_bh(&sp->lock);
250  	/* We were not busy, so we are now... :-) */
251  	netif_stop_queue(dev);
252  	dev->stats.tx_bytes += skb->len;
253  	sp_encaps(sp, skb->data, skb->len);
254  	spin_unlock_bh(&sp->lock);
255  
256  	dev_kfree_skb(skb);
257  
258  	return NETDEV_TX_OK;
259  }
260  
sp_open_dev(struct net_device * dev)261  static int sp_open_dev(struct net_device *dev)
262  {
263  	struct sixpack *sp = netdev_priv(dev);
264  
265  	if (sp->tty == NULL)
266  		return -ENODEV;
267  	return 0;
268  }
269  
270  /* Close the low-level part of the 6pack channel. */
sp_close(struct net_device * dev)271  static int sp_close(struct net_device *dev)
272  {
273  	struct sixpack *sp = netdev_priv(dev);
274  
275  	spin_lock_bh(&sp->lock);
276  	if (sp->tty) {
277  		/* TTY discipline is running. */
278  		clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
279  	}
280  	netif_stop_queue(dev);
281  	spin_unlock_bh(&sp->lock);
282  
283  	return 0;
284  }
285  
sp_set_mac_address(struct net_device * dev,void * addr)286  static int sp_set_mac_address(struct net_device *dev, void *addr)
287  {
288  	struct sockaddr_ax25 *sa = addr;
289  
290  	netif_tx_lock_bh(dev);
291  	netif_addr_lock(dev);
292  	__dev_addr_set(dev, &sa->sax25_call, AX25_ADDR_LEN);
293  	netif_addr_unlock(dev);
294  	netif_tx_unlock_bh(dev);
295  
296  	return 0;
297  }
298  
299  static const struct net_device_ops sp_netdev_ops = {
300  	.ndo_open		= sp_open_dev,
301  	.ndo_stop		= sp_close,
302  	.ndo_start_xmit		= sp_xmit,
303  	.ndo_set_mac_address    = sp_set_mac_address,
304  };
305  
sp_setup(struct net_device * dev)306  static void sp_setup(struct net_device *dev)
307  {
308  	/* Finish setting up the DEVICE info. */
309  	dev->netdev_ops		= &sp_netdev_ops;
310  	dev->mtu		= SIXP_MTU;
311  	dev->hard_header_len	= AX25_MAX_HEADER_LEN;
312  	dev->header_ops 	= &ax25_header_ops;
313  
314  	dev->addr_len		= AX25_ADDR_LEN;
315  	dev->type		= ARPHRD_AX25;
316  	dev->tx_queue_len	= 10;
317  
318  	/* Only activated in AX.25 mode */
319  	memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
320  	dev_addr_set(dev, (u8 *)&ax25_defaddr);
321  
322  	dev->flags		= 0;
323  }
324  
325  /* Send one completely decapsulated IP datagram to the IP layer. */
326  
327  /*
328   * This is the routine that sends the received data to the kernel AX.25.
329   * 'cmd' is the KISS command. For AX.25 data, it is zero.
330   */
331  
sp_bump(struct sixpack * sp,char cmd)332  static void sp_bump(struct sixpack *sp, char cmd)
333  {
334  	struct sk_buff *skb;
335  	int count;
336  	unsigned char *ptr;
337  
338  	count = sp->rcount + 1;
339  
340  	sp->dev->stats.rx_bytes += count;
341  
342  	if ((skb = dev_alloc_skb(count + 1)) == NULL)
343  		goto out_mem;
344  
345  	ptr = skb_put(skb, count + 1);
346  	*ptr++ = cmd;	/* KISS command */
347  
348  	memcpy(ptr, sp->cooked_buf + 1, count);
349  	skb->protocol = ax25_type_trans(skb, sp->dev);
350  	netif_rx(skb);
351  	sp->dev->stats.rx_packets++;
352  
353  	return;
354  
355  out_mem:
356  	sp->dev->stats.rx_dropped++;
357  }
358  
359  
360  /* ----------------------------------------------------------------------- */
361  
362  /*
363   * We have a potential race on dereferencing tty->disc_data, because the tty
364   * layer provides no locking at all - thus one cpu could be running
365   * sixpack_receive_buf while another calls sixpack_close, which zeroes
366   * tty->disc_data and frees the memory that sixpack_receive_buf is using.  The
367   * best way to fix this is to use a rwlock in the tty struct, but for now we
368   * use a single global rwlock for all ttys in ppp line discipline.
369   */
370  static DEFINE_RWLOCK(disc_data_lock);
371  
sp_get(struct tty_struct * tty)372  static struct sixpack *sp_get(struct tty_struct *tty)
373  {
374  	struct sixpack *sp;
375  
376  	read_lock(&disc_data_lock);
377  	sp = tty->disc_data;
378  	if (sp)
379  		refcount_inc(&sp->refcnt);
380  	read_unlock(&disc_data_lock);
381  
382  	return sp;
383  }
384  
sp_put(struct sixpack * sp)385  static void sp_put(struct sixpack *sp)
386  {
387  	if (refcount_dec_and_test(&sp->refcnt))
388  		complete(&sp->dead);
389  }
390  
391  /*
392   * Called by the TTY driver when there's room for more data.  If we have
393   * more packets to send, we send them here.
394   */
sixpack_write_wakeup(struct tty_struct * tty)395  static void sixpack_write_wakeup(struct tty_struct *tty)
396  {
397  	struct sixpack *sp = sp_get(tty);
398  	int actual;
399  
400  	if (!sp)
401  		return;
402  	if (sp->xleft <= 0)  {
403  		/* Now serial buffer is almost free & we can start
404  		 * transmission of another packet */
405  		sp->dev->stats.tx_packets++;
406  		clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
407  		sp->tx_enable = 0;
408  		netif_wake_queue(sp->dev);
409  		goto out;
410  	}
411  
412  	if (sp->tx_enable) {
413  		actual = tty->ops->write(tty, sp->xhead, sp->xleft);
414  		sp->xleft -= actual;
415  		sp->xhead += actual;
416  	}
417  
418  out:
419  	sp_put(sp);
420  }
421  
422  /* ----------------------------------------------------------------------- */
423  
424  /*
425   * Handle the 'receiver data ready' interrupt.
426   * This function is called by the tty module in the kernel when
427   * a block of 6pack data has been received, which can now be decapsulated
428   * and sent on to some IP layer for further processing.
429   */
sixpack_receive_buf(struct tty_struct * tty,const unsigned char * cp,const char * fp,int count)430  static void sixpack_receive_buf(struct tty_struct *tty,
431  	const unsigned char *cp, const char *fp, int count)
432  {
433  	struct sixpack *sp;
434  	int count1;
435  
436  	if (!count)
437  		return;
438  
439  	sp = sp_get(tty);
440  	if (!sp)
441  		return;
442  
443  	/* Read the characters out of the buffer */
444  	count1 = count;
445  	while (count) {
446  		count--;
447  		if (fp && *fp++) {
448  			if (!test_and_set_bit(SIXPF_ERROR, &sp->flags))
449  				sp->dev->stats.rx_errors++;
450  			continue;
451  		}
452  	}
453  	sixpack_decode(sp, cp, count1);
454  
455  	sp_put(sp);
456  	tty_unthrottle(tty);
457  }
458  
459  /*
460   * Try to resync the TNC. Called by the resync timer defined in
461   * decode_prio_command
462   */
463  
464  #define TNC_UNINITIALIZED	0
465  #define TNC_UNSYNC_STARTUP	1
466  #define TNC_UNSYNCED		2
467  #define TNC_IN_SYNC		3
468  
__tnc_set_sync_state(struct sixpack * sp,int new_tnc_state)469  static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
470  {
471  	char *msg;
472  
473  	switch (new_tnc_state) {
474  	default:			/* gcc oh piece-o-crap ... */
475  	case TNC_UNSYNC_STARTUP:
476  		msg = "Synchronizing with TNC";
477  		break;
478  	case TNC_UNSYNCED:
479  		msg = "Lost synchronization with TNC\n";
480  		break;
481  	case TNC_IN_SYNC:
482  		msg = "Found TNC";
483  		break;
484  	}
485  
486  	sp->tnc_state = new_tnc_state;
487  	printk(KERN_INFO "%s: %s\n", sp->dev->name, msg);
488  }
489  
tnc_set_sync_state(struct sixpack * sp,int new_tnc_state)490  static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
491  {
492  	int old_tnc_state = sp->tnc_state;
493  
494  	if (old_tnc_state != new_tnc_state)
495  		__tnc_set_sync_state(sp, new_tnc_state);
496  }
497  
resync_tnc(struct timer_list * t)498  static void resync_tnc(struct timer_list *t)
499  {
500  	struct sixpack *sp = from_timer(sp, t, resync_t);
501  	static char resync_cmd = 0xe8;
502  
503  	/* clear any data that might have been received */
504  
505  	sp->rx_count = 0;
506  	sp->rx_count_cooked = 0;
507  
508  	/* reset state machine */
509  
510  	sp->status = 1;
511  	sp->status1 = 1;
512  	sp->status2 = 0;
513  
514  	/* resync the TNC */
515  
516  	sp->led_state = 0x60;
517  	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
518  	sp->tty->ops->write(sp->tty, &resync_cmd, 1);
519  
520  
521  	/* Start resync timer again -- the TNC might be still absent */
522  	mod_timer(&sp->resync_t, jiffies + SIXP_RESYNC_TIMEOUT);
523  }
524  
tnc_init(struct sixpack * sp)525  static inline int tnc_init(struct sixpack *sp)
526  {
527  	unsigned char inbyte = 0xe8;
528  
529  	tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP);
530  
531  	sp->tty->ops->write(sp->tty, &inbyte, 1);
532  
533  	mod_timer(&sp->resync_t, jiffies + SIXP_RESYNC_TIMEOUT);
534  
535  	return 0;
536  }
537  
538  /*
539   * Open the high-level part of the 6pack channel.
540   * This function is called by the TTY module when the
541   * 6pack line discipline is called for.  Because we are
542   * sure the tty line exists, we only have to link it to
543   * a free 6pcack channel...
544   */
sixpack_open(struct tty_struct * tty)545  static int sixpack_open(struct tty_struct *tty)
546  {
547  	char *rbuff = NULL, *xbuff = NULL;
548  	struct net_device *dev;
549  	struct sixpack *sp;
550  	unsigned long len;
551  	int err = 0;
552  
553  	if (!capable(CAP_NET_ADMIN))
554  		return -EPERM;
555  	if (tty->ops->write == NULL)
556  		return -EOPNOTSUPP;
557  
558  	dev = alloc_netdev(sizeof(struct sixpack), "sp%d", NET_NAME_UNKNOWN,
559  			   sp_setup);
560  	if (!dev) {
561  		err = -ENOMEM;
562  		goto out;
563  	}
564  
565  	sp = netdev_priv(dev);
566  	sp->dev = dev;
567  
568  	spin_lock_init(&sp->lock);
569  	spin_lock_init(&sp->rxlock);
570  	refcount_set(&sp->refcnt, 1);
571  	init_completion(&sp->dead);
572  
573  	/* !!! length of the buffers. MTU is IP MTU, not PACLEN!  */
574  
575  	len = dev->mtu * 2;
576  
577  	rbuff = kmalloc(len + 4, GFP_KERNEL);
578  	xbuff = kmalloc(len + 4, GFP_KERNEL);
579  
580  	if (rbuff == NULL || xbuff == NULL) {
581  		err = -ENOBUFS;
582  		goto out_free;
583  	}
584  
585  	spin_lock_bh(&sp->lock);
586  
587  	sp->tty = tty;
588  
589  	sp->rbuff	= rbuff;
590  	sp->xbuff	= xbuff;
591  
592  	sp->mtu		= AX25_MTU + 73;
593  	sp->buffsize	= len;
594  	sp->rcount	= 0;
595  	sp->rx_count	= 0;
596  	sp->rx_count_cooked = 0;
597  	sp->xleft	= 0;
598  
599  	sp->flags	= 0;		/* Clear ESCAPE & ERROR flags */
600  
601  	sp->duplex	= 0;
602  	sp->tx_delay    = SIXP_TXDELAY;
603  	sp->persistence = SIXP_PERSIST;
604  	sp->slottime    = SIXP_SLOTTIME;
605  	sp->led_state   = 0x60;
606  	sp->status      = 1;
607  	sp->status1     = 1;
608  	sp->status2     = 0;
609  	sp->tx_enable   = 0;
610  
611  	netif_start_queue(dev);
612  
613  	timer_setup(&sp->tx_t, sp_xmit_on_air, 0);
614  
615  	timer_setup(&sp->resync_t, resync_tnc, 0);
616  
617  	spin_unlock_bh(&sp->lock);
618  
619  	/* Done.  We have linked the TTY line to a channel. */
620  	tty->disc_data = sp;
621  	tty->receive_room = 65536;
622  
623  	/* Now we're ready to register. */
624  	err = register_netdev(dev);
625  	if (err)
626  		goto out_free;
627  
628  	tnc_init(sp);
629  
630  	return 0;
631  
632  out_free:
633  	kfree(xbuff);
634  	kfree(rbuff);
635  
636  	free_netdev(dev);
637  
638  out:
639  	return err;
640  }
641  
642  
643  /*
644   * Close down a 6pack channel.
645   * This means flushing out any pending queues, and then restoring the
646   * TTY line discipline to what it was before it got hooked to 6pack
647   * (which usually is TTY again).
648   */
sixpack_close(struct tty_struct * tty)649  static void sixpack_close(struct tty_struct *tty)
650  {
651  	struct sixpack *sp;
652  
653  	write_lock_irq(&disc_data_lock);
654  	sp = tty->disc_data;
655  	tty->disc_data = NULL;
656  	write_unlock_irq(&disc_data_lock);
657  	if (!sp)
658  		return;
659  
660  	/*
661  	 * We have now ensured that nobody can start using ap from now on, but
662  	 * we have to wait for all existing users to finish.
663  	 */
664  	if (!refcount_dec_and_test(&sp->refcnt))
665  		wait_for_completion(&sp->dead);
666  
667  	/* We must stop the queue to avoid potentially scribbling
668  	 * on the free buffers. The sp->dead completion is not sufficient
669  	 * to protect us from sp->xbuff access.
670  	 */
671  	netif_stop_queue(sp->dev);
672  
673  	unregister_netdev(sp->dev);
674  
675  	del_timer_sync(&sp->tx_t);
676  	del_timer_sync(&sp->resync_t);
677  
678  	/* Free all 6pack frame buffers after unreg. */
679  	kfree(sp->rbuff);
680  	kfree(sp->xbuff);
681  
682  	free_netdev(sp->dev);
683  }
684  
685  /* Perform I/O control on an active 6pack channel. */
sixpack_ioctl(struct tty_struct * tty,unsigned int cmd,unsigned long arg)686  static int sixpack_ioctl(struct tty_struct *tty, unsigned int cmd,
687  		unsigned long arg)
688  {
689  	struct sixpack *sp = sp_get(tty);
690  	struct net_device *dev;
691  	unsigned int tmp, err;
692  
693  	if (!sp)
694  		return -ENXIO;
695  	dev = sp->dev;
696  
697  	switch(cmd) {
698  	case SIOCGIFNAME:
699  		err = copy_to_user((void __user *) arg, dev->name,
700  		                   strlen(dev->name) + 1) ? -EFAULT : 0;
701  		break;
702  
703  	case SIOCGIFENCAP:
704  		err = put_user(0, (int __user *) arg);
705  		break;
706  
707  	case SIOCSIFENCAP:
708  		if (get_user(tmp, (int __user *) arg)) {
709  			err = -EFAULT;
710  			break;
711  		}
712  
713  		sp->mode = tmp;
714  		dev->addr_len        = AX25_ADDR_LEN;
715  		dev->hard_header_len = AX25_KISS_HEADER_LEN +
716  		                       AX25_MAX_HEADER_LEN + 3;
717  		dev->type            = ARPHRD_AX25;
718  
719  		err = 0;
720  		break;
721  
722  	case SIOCSIFHWADDR: {
723  			char addr[AX25_ADDR_LEN];
724  
725  			if (copy_from_user(&addr,
726  					   (void __user *)arg, AX25_ADDR_LEN)) {
727  				err = -EFAULT;
728  				break;
729  			}
730  
731  			netif_tx_lock_bh(dev);
732  			__dev_addr_set(dev, &addr, AX25_ADDR_LEN);
733  			netif_tx_unlock_bh(dev);
734  			err = 0;
735  			break;
736  		}
737  	default:
738  		err = tty_mode_ioctl(tty, cmd, arg);
739  	}
740  
741  	sp_put(sp);
742  
743  	return err;
744  }
745  
746  static struct tty_ldisc_ops sp_ldisc = {
747  	.owner		= THIS_MODULE,
748  	.num		= N_6PACK,
749  	.name		= "6pack",
750  	.open		= sixpack_open,
751  	.close		= sixpack_close,
752  	.ioctl		= sixpack_ioctl,
753  	.receive_buf	= sixpack_receive_buf,
754  	.write_wakeup	= sixpack_write_wakeup,
755  };
756  
757  /* Initialize 6pack control device -- register 6pack line discipline */
758  
759  static const char msg_banner[]  __initconst = KERN_INFO \
760  	"AX.25: 6pack driver, " SIXPACK_VERSION "\n";
761  static const char msg_regfail[] __initconst = KERN_ERR  \
762  	"6pack: can't register line discipline (err = %d)\n";
763  
sixpack_init_driver(void)764  static int __init sixpack_init_driver(void)
765  {
766  	int status;
767  
768  	printk(msg_banner);
769  
770  	/* Register the provided line protocol discipline */
771  	status = tty_register_ldisc(&sp_ldisc);
772  	if (status)
773  		printk(msg_regfail, status);
774  
775  	return status;
776  }
777  
sixpack_exit_driver(void)778  static void __exit sixpack_exit_driver(void)
779  {
780  	tty_unregister_ldisc(&sp_ldisc);
781  }
782  
783  /* encode an AX.25 packet into 6pack */
784  
encode_sixpack(unsigned char * tx_buf,unsigned char * tx_buf_raw,int length,unsigned char tx_delay)785  static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw,
786  	int length, unsigned char tx_delay)
787  {
788  	int count = 0;
789  	unsigned char checksum = 0, buf[400];
790  	int raw_count = 0;
791  
792  	tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK;
793  	tx_buf_raw[raw_count++] = SIXP_SEOF;
794  
795  	buf[0] = tx_delay;
796  	for (count = 1; count < length; count++)
797  		buf[count] = tx_buf[count];
798  
799  	for (count = 0; count < length; count++)
800  		checksum += buf[count];
801  	buf[length] = (unsigned char) 0xff - checksum;
802  
803  	for (count = 0; count <= length; count++) {
804  		if ((count % 3) == 0) {
805  			tx_buf_raw[raw_count++] = (buf[count] & 0x3f);
806  			tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30);
807  		} else if ((count % 3) == 1) {
808  			tx_buf_raw[raw_count++] |= (buf[count] & 0x0f);
809  			tx_buf_raw[raw_count] =	((buf[count] >> 2) & 0x3c);
810  		} else {
811  			tx_buf_raw[raw_count++] |= (buf[count] & 0x03);
812  			tx_buf_raw[raw_count++] = (buf[count] >> 2);
813  		}
814  	}
815  	if ((length % 3) != 2)
816  		raw_count++;
817  	tx_buf_raw[raw_count++] = SIXP_SEOF;
818  	return raw_count;
819  }
820  
821  /* decode 4 sixpack-encoded bytes into 3 data bytes */
822  
decode_data(struct sixpack * sp,unsigned char inbyte)823  static void decode_data(struct sixpack *sp, unsigned char inbyte)
824  {
825  	unsigned char *buf;
826  
827  	if (sp->rx_count != 3) {
828  		sp->raw_buf[sp->rx_count++] = inbyte;
829  
830  		return;
831  	}
832  
833  	if (sp->rx_count_cooked + 2 >= sizeof(sp->cooked_buf)) {
834  		pr_err("6pack: cooked buffer overrun, data loss\n");
835  		sp->rx_count = 0;
836  		return;
837  	}
838  
839  	buf = sp->raw_buf;
840  	sp->cooked_buf[sp->rx_count_cooked++] =
841  		buf[0] | ((buf[1] << 2) & 0xc0);
842  	sp->cooked_buf[sp->rx_count_cooked++] =
843  		(buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0);
844  	sp->cooked_buf[sp->rx_count_cooked++] =
845  		(buf[2] & 0x03) | (inbyte << 2);
846  	sp->rx_count = 0;
847  }
848  
849  /* identify and execute a 6pack priority command byte */
850  
decode_prio_command(struct sixpack * sp,unsigned char cmd)851  static void decode_prio_command(struct sixpack *sp, unsigned char cmd)
852  {
853  	int actual;
854  
855  	if ((cmd & SIXP_PRIO_DATA_MASK) != 0) {     /* idle ? */
856  
857  	/* RX and DCD flags can only be set in the same prio command,
858  	   if the DCD flag has been set without the RX flag in the previous
859  	   prio command. If DCD has not been set before, something in the
860  	   transmission has gone wrong. In this case, RX and DCD are
861  	   cleared in order to prevent the decode_data routine from
862  	   reading further data that might be corrupt. */
863  
864  		if (((sp->status & SIXP_DCD_MASK) == 0) &&
865  			((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) {
866  				if (sp->status != 1)
867  					printk(KERN_DEBUG "6pack: protocol violation\n");
868  				else
869  					sp->status = 0;
870  				cmd &= ~SIXP_RX_DCD_MASK;
871  		}
872  		sp->status = cmd & SIXP_PRIO_DATA_MASK;
873  	} else { /* output watchdog char if idle */
874  		if ((sp->status2 != 0) && (sp->duplex == 1)) {
875  			sp->led_state = 0x70;
876  			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
877  			sp->tx_enable = 1;
878  			actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
879  			sp->xleft -= actual;
880  			sp->xhead += actual;
881  			sp->led_state = 0x60;
882  			sp->status2 = 0;
883  
884  		}
885  	}
886  
887  	/* needed to trigger the TNC watchdog */
888  	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
889  
890          /* if the state byte has been received, the TNC is present,
891             so the resync timer can be reset. */
892  
893  	if (sp->tnc_state == TNC_IN_SYNC)
894  		mod_timer(&sp->resync_t, jiffies + SIXP_INIT_RESYNC_TIMEOUT);
895  
896  	sp->status1 = cmd & SIXP_PRIO_DATA_MASK;
897  }
898  
899  /* identify and execute a standard 6pack command byte */
900  
decode_std_command(struct sixpack * sp,unsigned char cmd)901  static void decode_std_command(struct sixpack *sp, unsigned char cmd)
902  {
903  	unsigned char checksum = 0, rest = 0;
904  	short i;
905  
906  	switch (cmd & SIXP_CMD_MASK) {     /* normal command */
907  	case SIXP_SEOF:
908  		if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) {
909  			if ((sp->status & SIXP_RX_DCD_MASK) ==
910  				SIXP_RX_DCD_MASK) {
911  				sp->led_state = 0x68;
912  				sp->tty->ops->write(sp->tty, &sp->led_state, 1);
913  			}
914  		} else {
915  			sp->led_state = 0x60;
916  			/* fill trailing bytes with zeroes */
917  			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
918  			spin_lock_bh(&sp->rxlock);
919  			rest = sp->rx_count;
920  			if (rest != 0)
921  				 for (i = rest; i <= 3; i++)
922  					decode_data(sp, 0);
923  			if (rest == 2)
924  				sp->rx_count_cooked -= 2;
925  			else if (rest == 3)
926  				sp->rx_count_cooked -= 1;
927  			for (i = 0; i < sp->rx_count_cooked; i++)
928  				checksum += sp->cooked_buf[i];
929  			if (checksum != SIXP_CHKSUM) {
930  				printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum);
931  			} else {
932  				sp->rcount = sp->rx_count_cooked-2;
933  				sp_bump(sp, 0);
934  			}
935  			sp->rx_count_cooked = 0;
936  			spin_unlock_bh(&sp->rxlock);
937  		}
938  		break;
939  	case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n");
940  		break;
941  	case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n");
942  		break;
943  	case SIXP_RX_BUF_OVL:
944  		printk(KERN_DEBUG "6pack: RX buffer overflow\n");
945  	}
946  }
947  
948  /* decode a 6pack packet */
949  
950  static void
sixpack_decode(struct sixpack * sp,const unsigned char * pre_rbuff,int count)951  sixpack_decode(struct sixpack *sp, const unsigned char *pre_rbuff, int count)
952  {
953  	unsigned char inbyte;
954  	int count1;
955  
956  	for (count1 = 0; count1 < count; count1++) {
957  		inbyte = pre_rbuff[count1];
958  		if (inbyte == SIXP_FOUND_TNC) {
959  			tnc_set_sync_state(sp, TNC_IN_SYNC);
960  			del_timer(&sp->resync_t);
961  		}
962  		if ((inbyte & SIXP_PRIO_CMD_MASK) != 0)
963  			decode_prio_command(sp, inbyte);
964  		else if ((inbyte & SIXP_STD_CMD_MASK) != 0)
965  			decode_std_command(sp, inbyte);
966  		else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK) {
967  			spin_lock_bh(&sp->rxlock);
968  			decode_data(sp, inbyte);
969  			spin_unlock_bh(&sp->rxlock);
970  		}
971  	}
972  }
973  
974  MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>");
975  MODULE_DESCRIPTION("6pack driver for AX.25");
976  MODULE_LICENSE("GPL");
977  MODULE_ALIAS_LDISC(N_6PACK);
978  
979  module_init(sixpack_init_driver);
980  module_exit(sixpack_exit_driver);
981