1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2020 MaxLinear, Inc.
4  *
5  * This driver is a hardware monitoring driver for PVT controller
6  * (MR75203) which is used to configure & control Moortec embedded
7  * analog IP to enable multiple embedded temperature sensor(TS),
8  * voltage monitor(VM) & process detector(PD) modules.
9  */
10 #include <linux/bits.h>
11 #include <linux/clk.h>
12 #include <linux/debugfs.h>
13 #include <linux/hwmon.h>
14 #include <linux/module.h>
15 #include <linux/mod_devicetable.h>
16 #include <linux/mutex.h>
17 #include <linux/platform_device.h>
18 #include <linux/property.h>
19 #include <linux/regmap.h>
20 #include <linux/reset.h>
21 #include <linux/slab.h>
22 #include <linux/units.h>
23 
24 /* PVT Common register */
25 #define PVT_IP_CONFIG	0x04
26 #define TS_NUM_MSK	GENMASK(4, 0)
27 #define TS_NUM_SFT	0
28 #define PD_NUM_MSK	GENMASK(12, 8)
29 #define PD_NUM_SFT	8
30 #define VM_NUM_MSK	GENMASK(20, 16)
31 #define VM_NUM_SFT	16
32 #define CH_NUM_MSK	GENMASK(31, 24)
33 #define CH_NUM_SFT	24
34 
35 #define VM_NUM_MAX	(VM_NUM_MSK >> VM_NUM_SFT)
36 
37 /* Macro Common Register */
38 #define CLK_SYNTH		0x00
39 #define CLK_SYNTH_LO_SFT	0
40 #define CLK_SYNTH_HI_SFT	8
41 #define CLK_SYNTH_HOLD_SFT	16
42 #define CLK_SYNTH_EN		BIT(24)
43 #define CLK_SYS_CYCLES_MAX	514
44 #define CLK_SYS_CYCLES_MIN	2
45 
46 #define SDIF_DISABLE	0x04
47 
48 #define SDIF_STAT	0x08
49 #define SDIF_BUSY	BIT(0)
50 #define SDIF_LOCK	BIT(1)
51 
52 #define SDIF_W		0x0c
53 #define SDIF_PROG	BIT(31)
54 #define SDIF_WRN_W	BIT(27)
55 #define SDIF_WRN_R	0x00
56 #define SDIF_ADDR_SFT	24
57 
58 #define SDIF_HALT	0x10
59 #define SDIF_CTRL	0x14
60 #define SDIF_SMPL_CTRL	0x20
61 
62 /* TS & PD Individual Macro Register */
63 #define COM_REG_SIZE	0x40
64 
65 #define SDIF_DONE(n)	(COM_REG_SIZE + 0x14 + 0x40 * (n))
66 #define SDIF_SMPL_DONE	BIT(0)
67 
68 #define SDIF_DATA(n)	(COM_REG_SIZE + 0x18 + 0x40 * (n))
69 #define SAMPLE_DATA_MSK	GENMASK(15, 0)
70 
71 #define HILO_RESET(n)	(COM_REG_SIZE + 0x2c + 0x40 * (n))
72 
73 /* VM Individual Macro Register */
74 #define VM_COM_REG_SIZE	0x200
75 #define VM_SDIF_DONE(vm)	(VM_COM_REG_SIZE + 0x34 + 0x200 * (vm))
76 #define VM_SDIF_DATA(vm, ch)	\
77 	(VM_COM_REG_SIZE + 0x40 + 0x200 * (vm) + 0x4 * (ch))
78 
79 /* SDA Slave Register */
80 #define IP_CTRL			0x00
81 #define IP_RST_REL		BIT(1)
82 #define IP_RUN_CONT		BIT(3)
83 #define IP_AUTO			BIT(8)
84 #define IP_VM_MODE		BIT(10)
85 
86 #define IP_CFG			0x01
87 #define CFG0_MODE_2		BIT(0)
88 #define CFG0_PARALLEL_OUT	0
89 #define CFG0_12_BIT		0
90 #define CFG1_VOL_MEAS_MODE	0
91 #define CFG1_PARALLEL_OUT	0
92 #define CFG1_14_BIT		0
93 
94 #define IP_DATA		0x03
95 
96 #define IP_POLL		0x04
97 #define VM_CH_INIT	BIT(20)
98 #define VM_CH_REQ	BIT(21)
99 
100 #define IP_TMR			0x05
101 #define POWER_DELAY_CYCLE_256	0x100
102 #define POWER_DELAY_CYCLE_64	0x40
103 
104 #define PVT_POLL_DELAY_US	20
105 #define PVT_POLL_TIMEOUT_US	20000
106 #define PVT_CONV_BITS		10
107 #define PVT_N_CONST		90
108 #define PVT_R_CONST		245805
109 
110 #define PVT_TEMP_MIN_mC		-40000
111 #define PVT_TEMP_MAX_mC		125000
112 
113 /* Temperature coefficients for series 5 */
114 #define PVT_SERIES5_H_CONST	200000
115 #define PVT_SERIES5_G_CONST	60000
116 #define PVT_SERIES5_J_CONST	-100
117 #define PVT_SERIES5_CAL5_CONST	4094
118 
119 /* Temperature coefficients for series 6 */
120 #define PVT_SERIES6_H_CONST	249400
121 #define PVT_SERIES6_G_CONST	57400
122 #define PVT_SERIES6_J_CONST	0
123 #define PVT_SERIES6_CAL5_CONST	4096
124 
125 #define TEMPERATURE_SENSOR_SERIES_5	5
126 #define TEMPERATURE_SENSOR_SERIES_6	6
127 
128 #define PRE_SCALER_X1	1
129 #define PRE_SCALER_X2	2
130 
131 /**
132  * struct voltage_device - VM single input parameters.
133  * @vm_map: Map channel number to VM index.
134  * @ch_map: Map channel number to channel index.
135  * @pre_scaler: Pre scaler value (1 or 2) used to normalize the voltage output
136  *              result.
137  *
138  * The structure provides mapping between channel-number (0..N-1) to VM-index
139  * (0..num_vm-1) and channel-index (0..ch_num-1) where N = num_vm * ch_num.
140  * It also provides normalization factor for the VM equation.
141  */
142 struct voltage_device {
143 	u32 vm_map;
144 	u32 ch_map;
145 	u32 pre_scaler;
146 };
147 
148 /**
149  * struct voltage_channels - VM channel count.
150  * @total: Total number of channels in all VMs.
151  * @max: Maximum number of channels among all VMs.
152  *
153  * The structure provides channel count information across all VMs.
154  */
155 struct voltage_channels {
156 	u32 total;
157 	u8 max;
158 };
159 
160 struct temp_coeff {
161 	u32 h;
162 	u32 g;
163 	u32 cal5;
164 	s32 j;
165 };
166 
167 struct pvt_device {
168 	struct regmap		*c_map;
169 	struct regmap		*t_map;
170 	struct regmap		*p_map;
171 	struct regmap		*v_map;
172 	struct clk		*clk;
173 	struct reset_control	*rst;
174 	struct dentry		*dbgfs_dir;
175 	struct voltage_device	*vd;
176 	struct voltage_channels	vm_channels;
177 	struct temp_coeff	ts_coeff;
178 	u32			t_num;
179 	u32			p_num;
180 	u32			v_num;
181 	u32			ip_freq;
182 };
183 
pvt_ts_coeff_j_read(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)184 static ssize_t pvt_ts_coeff_j_read(struct file *file, char __user *user_buf,
185 				   size_t count, loff_t *ppos)
186 {
187 	struct pvt_device *pvt = file->private_data;
188 	unsigned int len;
189 	char buf[13];
190 
191 	len = scnprintf(buf, sizeof(buf), "%d\n", pvt->ts_coeff.j);
192 
193 	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
194 }
195 
pvt_ts_coeff_j_write(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)196 static ssize_t pvt_ts_coeff_j_write(struct file *file,
197 				    const char __user *user_buf,
198 				    size_t count, loff_t *ppos)
199 {
200 	struct pvt_device *pvt = file->private_data;
201 	int ret;
202 
203 	ret = kstrtos32_from_user(user_buf, count, 0, &pvt->ts_coeff.j);
204 	if (ret)
205 		return ret;
206 
207 	return count;
208 }
209 
210 static const struct file_operations pvt_ts_coeff_j_fops = {
211 	.read = pvt_ts_coeff_j_read,
212 	.write = pvt_ts_coeff_j_write,
213 	.open = simple_open,
214 	.owner = THIS_MODULE,
215 	.llseek = default_llseek,
216 };
217 
devm_pvt_ts_dbgfs_remove(void * data)218 static void devm_pvt_ts_dbgfs_remove(void *data)
219 {
220 	struct pvt_device *pvt = (struct pvt_device *)data;
221 
222 	debugfs_remove_recursive(pvt->dbgfs_dir);
223 	pvt->dbgfs_dir = NULL;
224 }
225 
pvt_ts_dbgfs_create(struct pvt_device * pvt,struct device * dev)226 static int pvt_ts_dbgfs_create(struct pvt_device *pvt, struct device *dev)
227 {
228 	pvt->dbgfs_dir = debugfs_create_dir(dev_name(dev), NULL);
229 
230 	debugfs_create_u32("ts_coeff_h", 0644, pvt->dbgfs_dir,
231 			   &pvt->ts_coeff.h);
232 	debugfs_create_u32("ts_coeff_g", 0644, pvt->dbgfs_dir,
233 			   &pvt->ts_coeff.g);
234 	debugfs_create_u32("ts_coeff_cal5", 0644, pvt->dbgfs_dir,
235 			   &pvt->ts_coeff.cal5);
236 	debugfs_create_file("ts_coeff_j", 0644, pvt->dbgfs_dir, pvt,
237 			    &pvt_ts_coeff_j_fops);
238 
239 	return devm_add_action_or_reset(dev, devm_pvt_ts_dbgfs_remove, pvt);
240 }
241 
pvt_is_visible(const void * data,enum hwmon_sensor_types type,u32 attr,int channel)242 static umode_t pvt_is_visible(const void *data, enum hwmon_sensor_types type,
243 			      u32 attr, int channel)
244 {
245 	switch (type) {
246 	case hwmon_temp:
247 		if (attr == hwmon_temp_input)
248 			return 0444;
249 		break;
250 	case hwmon_in:
251 		if (attr == hwmon_in_input)
252 			return 0444;
253 		break;
254 	default:
255 		break;
256 	}
257 	return 0;
258 }
259 
pvt_calc_temp(struct pvt_device * pvt,u32 nbs)260 static long pvt_calc_temp(struct pvt_device *pvt, u32 nbs)
261 {
262 	/*
263 	 * Convert the register value to degrees centigrade temperature:
264 	 * T = G + H * (n / cal5 - 0.5) + J * F
265 	 */
266 	struct temp_coeff *ts_coeff = &pvt->ts_coeff;
267 
268 	s64 tmp = ts_coeff->g +
269 		div_s64(ts_coeff->h * (s64)nbs, ts_coeff->cal5) -
270 		ts_coeff->h / 2 +
271 		div_s64(ts_coeff->j * (s64)pvt->ip_freq, HZ_PER_MHZ);
272 
273 	return clamp_val(tmp, PVT_TEMP_MIN_mC, PVT_TEMP_MAX_mC);
274 }
275 
pvt_read_temp(struct device * dev,u32 attr,int channel,long * val)276 static int pvt_read_temp(struct device *dev, u32 attr, int channel, long *val)
277 {
278 	struct pvt_device *pvt = dev_get_drvdata(dev);
279 	struct regmap *t_map = pvt->t_map;
280 	u32 stat, nbs;
281 	int ret;
282 
283 	switch (attr) {
284 	case hwmon_temp_input:
285 		ret = regmap_read_poll_timeout(t_map, SDIF_DONE(channel),
286 					       stat, stat & SDIF_SMPL_DONE,
287 					       PVT_POLL_DELAY_US,
288 					       PVT_POLL_TIMEOUT_US);
289 		if (ret)
290 			return ret;
291 
292 		ret = regmap_read(t_map, SDIF_DATA(channel), &nbs);
293 		if (ret < 0)
294 			return ret;
295 
296 		nbs &= SAMPLE_DATA_MSK;
297 
298 		/*
299 		 * Convert the register value to
300 		 * degrees centigrade temperature
301 		 */
302 		*val = pvt_calc_temp(pvt, nbs);
303 
304 		return 0;
305 	default:
306 		return -EOPNOTSUPP;
307 	}
308 }
309 
pvt_read_in(struct device * dev,u32 attr,int channel,long * val)310 static int pvt_read_in(struct device *dev, u32 attr, int channel, long *val)
311 {
312 	struct pvt_device *pvt = dev_get_drvdata(dev);
313 	struct regmap *v_map = pvt->v_map;
314 	u32 n, stat, pre_scaler;
315 	u8 vm_idx, ch_idx;
316 	int ret;
317 
318 	if (channel >= pvt->vm_channels.total)
319 		return -EINVAL;
320 
321 	vm_idx = pvt->vd[channel].vm_map;
322 	ch_idx = pvt->vd[channel].ch_map;
323 
324 	switch (attr) {
325 	case hwmon_in_input:
326 		ret = regmap_read_poll_timeout(v_map, VM_SDIF_DONE(vm_idx),
327 					       stat, stat & SDIF_SMPL_DONE,
328 					       PVT_POLL_DELAY_US,
329 					       PVT_POLL_TIMEOUT_US);
330 		if (ret)
331 			return ret;
332 
333 		ret = regmap_read(v_map, VM_SDIF_DATA(vm_idx, ch_idx), &n);
334 		if (ret < 0)
335 			return ret;
336 
337 		n &= SAMPLE_DATA_MSK;
338 		pre_scaler = pvt->vd[channel].pre_scaler;
339 		/*
340 		 * Convert the N bitstream count into voltage.
341 		 * To support negative voltage calculation for 64bit machines
342 		 * n must be cast to long, since n and *val differ both in
343 		 * signedness and in size.
344 		 * Division is used instead of right shift, because for signed
345 		 * numbers, the sign bit is used to fill the vacated bit
346 		 * positions, and if the number is negative, 1 is used.
347 		 * BIT(x) may not be used instead of (1 << x) because it's
348 		 * unsigned.
349 		 */
350 		*val = pre_scaler * (PVT_N_CONST * (long)n - PVT_R_CONST) /
351 			(1 << PVT_CONV_BITS);
352 
353 		return 0;
354 	default:
355 		return -EOPNOTSUPP;
356 	}
357 }
358 
pvt_read(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long * val)359 static int pvt_read(struct device *dev, enum hwmon_sensor_types type,
360 		    u32 attr, int channel, long *val)
361 {
362 	switch (type) {
363 	case hwmon_temp:
364 		return pvt_read_temp(dev, attr, channel, val);
365 	case hwmon_in:
366 		return pvt_read_in(dev, attr, channel, val);
367 	default:
368 		return -EOPNOTSUPP;
369 	}
370 }
371 
372 static struct hwmon_channel_info pvt_temp = {
373 	.type = hwmon_temp,
374 };
375 
376 static struct hwmon_channel_info pvt_in = {
377 	.type = hwmon_in,
378 };
379 
380 static const struct hwmon_ops pvt_hwmon_ops = {
381 	.is_visible = pvt_is_visible,
382 	.read = pvt_read,
383 };
384 
385 static struct hwmon_chip_info pvt_chip_info = {
386 	.ops = &pvt_hwmon_ops,
387 };
388 
pvt_init(struct pvt_device * pvt)389 static int pvt_init(struct pvt_device *pvt)
390 {
391 	u16 sys_freq, key, middle, low = 4, high = 8;
392 	struct regmap *t_map = pvt->t_map;
393 	struct regmap *p_map = pvt->p_map;
394 	struct regmap *v_map = pvt->v_map;
395 	u32 t_num = pvt->t_num;
396 	u32 p_num = pvt->p_num;
397 	u32 v_num = pvt->v_num;
398 	u32 clk_synth, val;
399 	int ret;
400 
401 	sys_freq = clk_get_rate(pvt->clk) / HZ_PER_MHZ;
402 	while (high >= low) {
403 		middle = (low + high + 1) / 2;
404 		key = DIV_ROUND_CLOSEST(sys_freq, middle);
405 		if (key > CLK_SYS_CYCLES_MAX) {
406 			low = middle + 1;
407 			continue;
408 		} else if (key < CLK_SYS_CYCLES_MIN) {
409 			high = middle - 1;
410 			continue;
411 		} else {
412 			break;
413 		}
414 	}
415 
416 	/*
417 	 * The system supports 'clk_sys' to 'clk_ip' frequency ratios
418 	 * from 2:1 to 512:1
419 	 */
420 	key = clamp_val(key, CLK_SYS_CYCLES_MIN, CLK_SYS_CYCLES_MAX) - 2;
421 
422 	clk_synth = ((key + 1) >> 1) << CLK_SYNTH_LO_SFT |
423 		    (key >> 1) << CLK_SYNTH_HI_SFT |
424 		    (key >> 1) << CLK_SYNTH_HOLD_SFT | CLK_SYNTH_EN;
425 
426 	pvt->ip_freq = clk_get_rate(pvt->clk) / (key + 2);
427 
428 	if (t_num) {
429 		ret = regmap_write(t_map, SDIF_SMPL_CTRL, 0x0);
430 		if (ret < 0)
431 			return ret;
432 
433 		ret = regmap_write(t_map, SDIF_HALT, 0x0);
434 		if (ret < 0)
435 			return ret;
436 
437 		ret = regmap_write(t_map, CLK_SYNTH, clk_synth);
438 		if (ret < 0)
439 			return ret;
440 
441 		ret = regmap_write(t_map, SDIF_DISABLE, 0x0);
442 		if (ret < 0)
443 			return ret;
444 
445 		ret = regmap_read_poll_timeout(t_map, SDIF_STAT,
446 					       val, !(val & SDIF_BUSY),
447 					       PVT_POLL_DELAY_US,
448 					       PVT_POLL_TIMEOUT_US);
449 		if (ret)
450 			return ret;
451 
452 		val = CFG0_MODE_2 | CFG0_PARALLEL_OUT | CFG0_12_BIT |
453 		      IP_CFG << SDIF_ADDR_SFT | SDIF_WRN_W | SDIF_PROG;
454 		ret = regmap_write(t_map, SDIF_W, val);
455 		if (ret < 0)
456 			return ret;
457 
458 		ret = regmap_read_poll_timeout(t_map, SDIF_STAT,
459 					       val, !(val & SDIF_BUSY),
460 					       PVT_POLL_DELAY_US,
461 					       PVT_POLL_TIMEOUT_US);
462 		if (ret)
463 			return ret;
464 
465 		val = POWER_DELAY_CYCLE_256 | IP_TMR << SDIF_ADDR_SFT |
466 			      SDIF_WRN_W | SDIF_PROG;
467 		ret = regmap_write(t_map, SDIF_W, val);
468 		if (ret < 0)
469 			return ret;
470 
471 		ret = regmap_read_poll_timeout(t_map, SDIF_STAT,
472 					       val, !(val & SDIF_BUSY),
473 					       PVT_POLL_DELAY_US,
474 					       PVT_POLL_TIMEOUT_US);
475 		if (ret)
476 			return ret;
477 
478 		val = IP_RST_REL | IP_RUN_CONT | IP_AUTO |
479 		      IP_CTRL << SDIF_ADDR_SFT |
480 		      SDIF_WRN_W | SDIF_PROG;
481 		ret = regmap_write(t_map, SDIF_W, val);
482 		if (ret < 0)
483 			return ret;
484 	}
485 
486 	if (p_num) {
487 		ret = regmap_write(p_map, SDIF_HALT, 0x0);
488 		if (ret < 0)
489 			return ret;
490 
491 		ret = regmap_write(p_map, SDIF_DISABLE, BIT(p_num) - 1);
492 		if (ret < 0)
493 			return ret;
494 
495 		ret = regmap_write(p_map, CLK_SYNTH, clk_synth);
496 		if (ret < 0)
497 			return ret;
498 	}
499 
500 	if (v_num) {
501 		ret = regmap_write(v_map, SDIF_SMPL_CTRL, 0x0);
502 		if (ret < 0)
503 			return ret;
504 
505 		ret = regmap_write(v_map, SDIF_HALT, 0x0);
506 		if (ret < 0)
507 			return ret;
508 
509 		ret = regmap_write(v_map, CLK_SYNTH, clk_synth);
510 		if (ret < 0)
511 			return ret;
512 
513 		ret = regmap_write(v_map, SDIF_DISABLE, 0x0);
514 		if (ret < 0)
515 			return ret;
516 
517 		ret = regmap_read_poll_timeout(v_map, SDIF_STAT,
518 					       val, !(val & SDIF_BUSY),
519 					       PVT_POLL_DELAY_US,
520 					       PVT_POLL_TIMEOUT_US);
521 		if (ret)
522 			return ret;
523 
524 		val = (BIT(pvt->vm_channels.max) - 1) | VM_CH_INIT |
525 		      IP_POLL << SDIF_ADDR_SFT | SDIF_WRN_W | SDIF_PROG;
526 		ret = regmap_write(v_map, SDIF_W, val);
527 		if (ret < 0)
528 			return ret;
529 
530 		ret = regmap_read_poll_timeout(v_map, SDIF_STAT,
531 					       val, !(val & SDIF_BUSY),
532 					       PVT_POLL_DELAY_US,
533 					       PVT_POLL_TIMEOUT_US);
534 		if (ret)
535 			return ret;
536 
537 		val = CFG1_VOL_MEAS_MODE | CFG1_PARALLEL_OUT |
538 		      CFG1_14_BIT | IP_CFG << SDIF_ADDR_SFT |
539 		      SDIF_WRN_W | SDIF_PROG;
540 		ret = regmap_write(v_map, SDIF_W, val);
541 		if (ret < 0)
542 			return ret;
543 
544 		ret = regmap_read_poll_timeout(v_map, SDIF_STAT,
545 					       val, !(val & SDIF_BUSY),
546 					       PVT_POLL_DELAY_US,
547 					       PVT_POLL_TIMEOUT_US);
548 		if (ret)
549 			return ret;
550 
551 		val = POWER_DELAY_CYCLE_64 | IP_TMR << SDIF_ADDR_SFT |
552 		      SDIF_WRN_W | SDIF_PROG;
553 		ret = regmap_write(v_map, SDIF_W, val);
554 		if (ret < 0)
555 			return ret;
556 
557 		ret = regmap_read_poll_timeout(v_map, SDIF_STAT,
558 					       val, !(val & SDIF_BUSY),
559 					       PVT_POLL_DELAY_US,
560 					       PVT_POLL_TIMEOUT_US);
561 		if (ret)
562 			return ret;
563 
564 		val = IP_RST_REL | IP_RUN_CONT | IP_AUTO | IP_VM_MODE |
565 		      IP_CTRL << SDIF_ADDR_SFT |
566 		      SDIF_WRN_W | SDIF_PROG;
567 		ret = regmap_write(v_map, SDIF_W, val);
568 		if (ret < 0)
569 			return ret;
570 	}
571 
572 	return 0;
573 }
574 
575 static struct regmap_config pvt_regmap_config = {
576 	.reg_bits = 32,
577 	.reg_stride = 4,
578 	.val_bits = 32,
579 };
580 
pvt_get_regmap(struct platform_device * pdev,char * reg_name,struct pvt_device * pvt)581 static int pvt_get_regmap(struct platform_device *pdev, char *reg_name,
582 			  struct pvt_device *pvt)
583 {
584 	struct device *dev = &pdev->dev;
585 	struct regmap **reg_map;
586 	void __iomem *io_base;
587 
588 	if (!strcmp(reg_name, "common"))
589 		reg_map = &pvt->c_map;
590 	else if (!strcmp(reg_name, "ts"))
591 		reg_map = &pvt->t_map;
592 	else if (!strcmp(reg_name, "pd"))
593 		reg_map = &pvt->p_map;
594 	else if (!strcmp(reg_name, "vm"))
595 		reg_map = &pvt->v_map;
596 	else
597 		return -EINVAL;
598 
599 	io_base = devm_platform_ioremap_resource_byname(pdev, reg_name);
600 	if (IS_ERR(io_base))
601 		return PTR_ERR(io_base);
602 
603 	pvt_regmap_config.name = reg_name;
604 	*reg_map = devm_regmap_init_mmio(dev, io_base, &pvt_regmap_config);
605 	if (IS_ERR(*reg_map)) {
606 		dev_err(dev, "failed to init register map\n");
607 		return PTR_ERR(*reg_map);
608 	}
609 
610 	return 0;
611 }
612 
pvt_reset_control_assert(void * data)613 static void pvt_reset_control_assert(void *data)
614 {
615 	struct pvt_device *pvt = data;
616 
617 	reset_control_assert(pvt->rst);
618 }
619 
pvt_reset_control_deassert(struct device * dev,struct pvt_device * pvt)620 static int pvt_reset_control_deassert(struct device *dev, struct pvt_device *pvt)
621 {
622 	int ret;
623 
624 	ret = reset_control_deassert(pvt->rst);
625 	if (ret)
626 		return ret;
627 
628 	return devm_add_action_or_reset(dev, pvt_reset_control_assert, pvt);
629 }
630 
pvt_get_active_channel(struct device * dev,struct pvt_device * pvt,u32 vm_num,u32 ch_num,u8 * vm_idx)631 static int pvt_get_active_channel(struct device *dev, struct pvt_device *pvt,
632 				  u32 vm_num, u32 ch_num, u8 *vm_idx)
633 {
634 	u8 vm_active_ch[VM_NUM_MAX];
635 	int ret, i, j, k;
636 
637 	ret = device_property_read_u8_array(dev, "moortec,vm-active-channels",
638 					    vm_active_ch, vm_num);
639 	if (ret) {
640 		/*
641 		 * Incase "moortec,vm-active-channels" property is not defined,
642 		 * we assume each VM sensor has all of its channels active.
643 		 */
644 		memset(vm_active_ch, ch_num, vm_num);
645 		pvt->vm_channels.max = ch_num;
646 		pvt->vm_channels.total = ch_num * vm_num;
647 	} else {
648 		for (i = 0; i < vm_num; i++) {
649 			if (vm_active_ch[i] > ch_num) {
650 				dev_err(dev, "invalid active channels: %u\n",
651 					vm_active_ch[i]);
652 				return -EINVAL;
653 			}
654 
655 			pvt->vm_channels.total += vm_active_ch[i];
656 
657 			if (vm_active_ch[i] > pvt->vm_channels.max)
658 				pvt->vm_channels.max = vm_active_ch[i];
659 		}
660 	}
661 
662 	/*
663 	 * Map between the channel-number to VM-index and channel-index.
664 	 * Example - 3 VMs, "moortec,vm_active_ch" = <5 2 4>:
665 	 * vm_map = [0 0 0 0 0 1 1 2 2 2 2]
666 	 * ch_map = [0 1 2 3 4 0 1 0 1 2 3]
667 	 */
668 	pvt->vd = devm_kcalloc(dev, pvt->vm_channels.total, sizeof(*pvt->vd),
669 			       GFP_KERNEL);
670 	if (!pvt->vd)
671 		return -ENOMEM;
672 
673 	k = 0;
674 	for (i = 0; i < vm_num; i++) {
675 		for (j = 0; j < vm_active_ch[i]; j++) {
676 			pvt->vd[k].vm_map = vm_idx[i];
677 			pvt->vd[k].ch_map = j;
678 			k++;
679 		}
680 	}
681 
682 	return 0;
683 }
684 
pvt_get_pre_scaler(struct device * dev,struct pvt_device * pvt)685 static int pvt_get_pre_scaler(struct device *dev, struct pvt_device *pvt)
686 {
687 	u8 *pre_scaler_ch_list;
688 	int i, ret, num_ch;
689 	u32 channel;
690 
691 	/* Set default pre-scaler value to be 1. */
692 	for (i = 0; i < pvt->vm_channels.total; i++)
693 		pvt->vd[i].pre_scaler = PRE_SCALER_X1;
694 
695 	/* Get number of channels configured in "moortec,vm-pre-scaler-x2". */
696 	num_ch = device_property_count_u8(dev, "moortec,vm-pre-scaler-x2");
697 	if (num_ch <= 0)
698 		return 0;
699 
700 	pre_scaler_ch_list = kcalloc(num_ch, sizeof(*pre_scaler_ch_list),
701 				     GFP_KERNEL);
702 	if (!pre_scaler_ch_list)
703 		return -ENOMEM;
704 
705 	/* Get list of all channels that have pre-scaler of 2. */
706 	ret = device_property_read_u8_array(dev, "moortec,vm-pre-scaler-x2",
707 					    pre_scaler_ch_list, num_ch);
708 	if (ret)
709 		goto out;
710 
711 	for (i = 0; i < num_ch; i++) {
712 		channel = pre_scaler_ch_list[i];
713 		pvt->vd[channel].pre_scaler = PRE_SCALER_X2;
714 	}
715 
716 out:
717 	kfree(pre_scaler_ch_list);
718 
719 	return ret;
720 }
721 
pvt_set_temp_coeff(struct device * dev,struct pvt_device * pvt)722 static int pvt_set_temp_coeff(struct device *dev, struct pvt_device *pvt)
723 {
724 	struct temp_coeff *ts_coeff = &pvt->ts_coeff;
725 	u32 series;
726 	int ret;
727 
728 	/* Incase ts-series property is not defined, use default 5. */
729 	ret = device_property_read_u32(dev, "moortec,ts-series", &series);
730 	if (ret)
731 		series = TEMPERATURE_SENSOR_SERIES_5;
732 
733 	switch (series) {
734 	case TEMPERATURE_SENSOR_SERIES_5:
735 		ts_coeff->h = PVT_SERIES5_H_CONST;
736 		ts_coeff->g = PVT_SERIES5_G_CONST;
737 		ts_coeff->j = PVT_SERIES5_J_CONST;
738 		ts_coeff->cal5 = PVT_SERIES5_CAL5_CONST;
739 		break;
740 	case TEMPERATURE_SENSOR_SERIES_6:
741 		ts_coeff->h = PVT_SERIES6_H_CONST;
742 		ts_coeff->g = PVT_SERIES6_G_CONST;
743 		ts_coeff->j = PVT_SERIES6_J_CONST;
744 		ts_coeff->cal5 = PVT_SERIES6_CAL5_CONST;
745 		break;
746 	default:
747 		dev_err(dev, "invalid temperature sensor series (%u)\n",
748 			series);
749 		return -EINVAL;
750 	}
751 
752 	dev_dbg(dev, "temperature sensor series = %u\n", series);
753 
754 	/* Override ts-coeff-h/g/j/cal5 if they are defined. */
755 	device_property_read_u32(dev, "moortec,ts-coeff-h", &ts_coeff->h);
756 	device_property_read_u32(dev, "moortec,ts-coeff-g", &ts_coeff->g);
757 	device_property_read_u32(dev, "moortec,ts-coeff-j", &ts_coeff->j);
758 	device_property_read_u32(dev, "moortec,ts-coeff-cal5", &ts_coeff->cal5);
759 
760 	dev_dbg(dev, "ts-coeff: h = %u, g = %u, j = %d, cal5 = %u\n",
761 		ts_coeff->h, ts_coeff->g, ts_coeff->j, ts_coeff->cal5);
762 
763 	return 0;
764 }
765 
mr75203_probe(struct platform_device * pdev)766 static int mr75203_probe(struct platform_device *pdev)
767 {
768 	u32 ts_num, vm_num, pd_num, ch_num, val, index, i;
769 	const struct hwmon_channel_info **pvt_info;
770 	struct device *dev = &pdev->dev;
771 	u32 *temp_config, *in_config;
772 	struct device *hwmon_dev;
773 	struct pvt_device *pvt;
774 	int ret;
775 
776 	pvt = devm_kzalloc(dev, sizeof(*pvt), GFP_KERNEL);
777 	if (!pvt)
778 		return -ENOMEM;
779 
780 	ret = pvt_get_regmap(pdev, "common", pvt);
781 	if (ret)
782 		return ret;
783 
784 	pvt->clk = devm_clk_get_enabled(dev, NULL);
785 	if (IS_ERR(pvt->clk))
786 		return dev_err_probe(dev, PTR_ERR(pvt->clk), "failed to get clock\n");
787 
788 	pvt->rst = devm_reset_control_get_optional_exclusive(dev, NULL);
789 	if (IS_ERR(pvt->rst))
790 		return dev_err_probe(dev, PTR_ERR(pvt->rst),
791 				     "failed to get reset control\n");
792 
793 	if (pvt->rst) {
794 		ret = pvt_reset_control_deassert(dev, pvt);
795 		if (ret)
796 			return dev_err_probe(dev, ret,
797 					     "cannot deassert reset control\n");
798 	}
799 
800 	ret = regmap_read(pvt->c_map, PVT_IP_CONFIG, &val);
801 	if (ret < 0)
802 		return ret;
803 
804 	ts_num = (val & TS_NUM_MSK) >> TS_NUM_SFT;
805 	pd_num = (val & PD_NUM_MSK) >> PD_NUM_SFT;
806 	vm_num = (val & VM_NUM_MSK) >> VM_NUM_SFT;
807 	ch_num = (val & CH_NUM_MSK) >> CH_NUM_SFT;
808 	pvt->t_num = ts_num;
809 	pvt->p_num = pd_num;
810 	pvt->v_num = vm_num;
811 	val = 0;
812 	if (ts_num)
813 		val++;
814 	if (vm_num)
815 		val++;
816 	if (!val)
817 		return -ENODEV;
818 
819 	pvt_info = devm_kcalloc(dev, val + 2, sizeof(*pvt_info), GFP_KERNEL);
820 	if (!pvt_info)
821 		return -ENOMEM;
822 	pvt_info[0] = HWMON_CHANNEL_INFO(chip, HWMON_C_REGISTER_TZ);
823 	index = 1;
824 
825 	if (ts_num) {
826 		ret = pvt_get_regmap(pdev, "ts", pvt);
827 		if (ret)
828 			return ret;
829 
830 		ret = pvt_set_temp_coeff(dev, pvt);
831 		if (ret)
832 			return ret;
833 
834 		temp_config = devm_kcalloc(dev, ts_num + 1,
835 					   sizeof(*temp_config), GFP_KERNEL);
836 		if (!temp_config)
837 			return -ENOMEM;
838 
839 		memset32(temp_config, HWMON_T_INPUT, ts_num);
840 		pvt_temp.config = temp_config;
841 		pvt_info[index++] = &pvt_temp;
842 
843 		pvt_ts_dbgfs_create(pvt, dev);
844 	}
845 
846 	if (pd_num) {
847 		ret = pvt_get_regmap(pdev, "pd", pvt);
848 		if (ret)
849 			return ret;
850 	}
851 
852 	if (vm_num) {
853 		u8 vm_idx[VM_NUM_MAX];
854 
855 		ret = pvt_get_regmap(pdev, "vm", pvt);
856 		if (ret)
857 			return ret;
858 
859 		ret = device_property_read_u8_array(dev, "intel,vm-map", vm_idx,
860 						    vm_num);
861 		if (ret) {
862 			/*
863 			 * Incase intel,vm-map property is not defined, we
864 			 * assume incremental channel numbers.
865 			 */
866 			for (i = 0; i < vm_num; i++)
867 				vm_idx[i] = i;
868 		} else {
869 			for (i = 0; i < vm_num; i++)
870 				if (vm_idx[i] >= vm_num || vm_idx[i] == 0xff) {
871 					pvt->v_num = i;
872 					vm_num = i;
873 					break;
874 				}
875 		}
876 
877 		ret = pvt_get_active_channel(dev, pvt, vm_num, ch_num, vm_idx);
878 		if (ret)
879 			return ret;
880 
881 		ret = pvt_get_pre_scaler(dev, pvt);
882 		if (ret)
883 			return ret;
884 
885 		in_config = devm_kcalloc(dev, pvt->vm_channels.total + 1,
886 					 sizeof(*in_config), GFP_KERNEL);
887 		if (!in_config)
888 			return -ENOMEM;
889 
890 		memset32(in_config, HWMON_I_INPUT, pvt->vm_channels.total);
891 		in_config[pvt->vm_channels.total] = 0;
892 		pvt_in.config = in_config;
893 
894 		pvt_info[index++] = &pvt_in;
895 	}
896 
897 	ret = pvt_init(pvt);
898 	if (ret) {
899 		dev_err(dev, "failed to init pvt: %d\n", ret);
900 		return ret;
901 	}
902 
903 	pvt_chip_info.info = pvt_info;
904 	hwmon_dev = devm_hwmon_device_register_with_info(dev, "pvt",
905 							 pvt,
906 							 &pvt_chip_info,
907 							 NULL);
908 
909 	return PTR_ERR_OR_ZERO(hwmon_dev);
910 }
911 
912 static const struct of_device_id moortec_pvt_of_match[] = {
913 	{ .compatible = "moortec,mr75203" },
914 	{ }
915 };
916 MODULE_DEVICE_TABLE(of, moortec_pvt_of_match);
917 
918 static struct platform_driver moortec_pvt_driver = {
919 	.driver = {
920 		.name = "moortec-pvt",
921 		.of_match_table = moortec_pvt_of_match,
922 	},
923 	.probe = mr75203_probe,
924 };
925 module_platform_driver(moortec_pvt_driver);
926 
927 MODULE_LICENSE("GPL v2");
928