1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Copyright (C) 2012 Texas Instruments
4   * Author: Rob Clark <robdclark@gmail.com>
5   */
6  
7  #include <linux/component.h>
8  #include <linux/gpio/consumer.h>
9  #include <linux/hdmi.h>
10  #include <linux/i2c.h>
11  #include <linux/module.h>
12  #include <linux/platform_data/tda9950.h>
13  #include <linux/irq.h>
14  #include <sound/asoundef.h>
15  #include <sound/hdmi-codec.h>
16  
17  #include <drm/drm_atomic_helper.h>
18  #include <drm/drm_bridge.h>
19  #include <drm/drm_edid.h>
20  #include <drm/drm_of.h>
21  #include <drm/drm_print.h>
22  #include <drm/drm_probe_helper.h>
23  #include <drm/drm_simple_kms_helper.h>
24  #include <drm/i2c/tda998x.h>
25  
26  #include <media/cec-notifier.h>
27  
28  #define DBG(fmt, ...) DRM_DEBUG(fmt"\n", ##__VA_ARGS__)
29  
30  enum {
31  	AUDIO_ROUTE_I2S,
32  	AUDIO_ROUTE_SPDIF,
33  	AUDIO_ROUTE_NUM
34  };
35  
36  struct tda998x_audio_route {
37  	u8 ena_aclk;
38  	u8 mux_ap;
39  	u8 aip_clksel;
40  };
41  
42  struct tda998x_audio_settings {
43  	const struct tda998x_audio_route *route;
44  	struct hdmi_audio_infoframe cea;
45  	unsigned int sample_rate;
46  	u8 status[5];
47  	u8 ena_ap;
48  	u8 i2s_format;
49  	u8 cts_n;
50  };
51  
52  struct tda998x_priv {
53  	struct i2c_client *cec;
54  	struct i2c_client *hdmi;
55  	struct mutex mutex;
56  	u16 rev;
57  	u8 cec_addr;
58  	u8 current_page;
59  	bool is_on;
60  	bool supports_infoframes;
61  	bool sink_has_audio;
62  	enum hdmi_quantization_range rgb_quant_range;
63  	u8 vip_cntrl_0;
64  	u8 vip_cntrl_1;
65  	u8 vip_cntrl_2;
66  	unsigned long tmds_clock;
67  	struct tda998x_audio_settings audio;
68  
69  	struct platform_device *audio_pdev;
70  	struct mutex audio_mutex;
71  
72  	struct mutex edid_mutex;
73  	wait_queue_head_t wq_edid;
74  	volatile int wq_edid_wait;
75  
76  	struct work_struct detect_work;
77  	struct timer_list edid_delay_timer;
78  	wait_queue_head_t edid_delay_waitq;
79  	bool edid_delay_active;
80  
81  	struct drm_encoder encoder;
82  	struct drm_bridge bridge;
83  	struct drm_connector connector;
84  
85  	u8 audio_port_enable[AUDIO_ROUTE_NUM];
86  	struct tda9950_glue cec_glue;
87  	struct gpio_desc *calib;
88  	struct cec_notifier *cec_notify;
89  };
90  
91  #define conn_to_tda998x_priv(x) \
92  	container_of(x, struct tda998x_priv, connector)
93  #define enc_to_tda998x_priv(x) \
94  	container_of(x, struct tda998x_priv, encoder)
95  #define bridge_to_tda998x_priv(x) \
96  	container_of(x, struct tda998x_priv, bridge)
97  
98  /* The TDA9988 series of devices use a paged register scheme.. to simplify
99   * things we encode the page # in upper bits of the register #.  To read/
100   * write a given register, we need to make sure CURPAGE register is set
101   * appropriately.  Which implies reads/writes are not atomic.  Fun!
102   */
103  
104  #define REG(page, addr) (((page) << 8) | (addr))
105  #define REG2ADDR(reg)   ((reg) & 0xff)
106  #define REG2PAGE(reg)   (((reg) >> 8) & 0xff)
107  
108  #define REG_CURPAGE               0xff                /* write */
109  
110  
111  /* Page 00h: General Control */
112  #define REG_VERSION_LSB           REG(0x00, 0x00)     /* read */
113  #define REG_MAIN_CNTRL0           REG(0x00, 0x01)     /* read/write */
114  # define MAIN_CNTRL0_SR           (1 << 0)
115  # define MAIN_CNTRL0_DECS         (1 << 1)
116  # define MAIN_CNTRL0_DEHS         (1 << 2)
117  # define MAIN_CNTRL0_CECS         (1 << 3)
118  # define MAIN_CNTRL0_CEHS         (1 << 4)
119  # define MAIN_CNTRL0_SCALER       (1 << 7)
120  #define REG_VERSION_MSB           REG(0x00, 0x02)     /* read */
121  #define REG_SOFTRESET             REG(0x00, 0x0a)     /* write */
122  # define SOFTRESET_AUDIO          (1 << 0)
123  # define SOFTRESET_I2C_MASTER     (1 << 1)
124  #define REG_DDC_DISABLE           REG(0x00, 0x0b)     /* read/write */
125  #define REG_CCLK_ON               REG(0x00, 0x0c)     /* read/write */
126  #define REG_I2C_MASTER            REG(0x00, 0x0d)     /* read/write */
127  # define I2C_MASTER_DIS_MM        (1 << 0)
128  # define I2C_MASTER_DIS_FILT      (1 << 1)
129  # define I2C_MASTER_APP_STRT_LAT  (1 << 2)
130  #define REG_FEAT_POWERDOWN        REG(0x00, 0x0e)     /* read/write */
131  # define FEAT_POWERDOWN_PREFILT   BIT(0)
132  # define FEAT_POWERDOWN_CSC       BIT(1)
133  # define FEAT_POWERDOWN_SPDIF     (1 << 3)
134  #define REG_INT_FLAGS_0           REG(0x00, 0x0f)     /* read/write */
135  #define REG_INT_FLAGS_1           REG(0x00, 0x10)     /* read/write */
136  #define REG_INT_FLAGS_2           REG(0x00, 0x11)     /* read/write */
137  # define INT_FLAGS_2_EDID_BLK_RD  (1 << 1)
138  #define REG_ENA_ACLK              REG(0x00, 0x16)     /* read/write */
139  #define REG_ENA_VP_0              REG(0x00, 0x18)     /* read/write */
140  #define REG_ENA_VP_1              REG(0x00, 0x19)     /* read/write */
141  #define REG_ENA_VP_2              REG(0x00, 0x1a)     /* read/write */
142  #define REG_ENA_AP                REG(0x00, 0x1e)     /* read/write */
143  #define REG_VIP_CNTRL_0           REG(0x00, 0x20)     /* write */
144  # define VIP_CNTRL_0_MIRR_A       (1 << 7)
145  # define VIP_CNTRL_0_SWAP_A(x)    (((x) & 7) << 4)
146  # define VIP_CNTRL_0_MIRR_B       (1 << 3)
147  # define VIP_CNTRL_0_SWAP_B(x)    (((x) & 7) << 0)
148  #define REG_VIP_CNTRL_1           REG(0x00, 0x21)     /* write */
149  # define VIP_CNTRL_1_MIRR_C       (1 << 7)
150  # define VIP_CNTRL_1_SWAP_C(x)    (((x) & 7) << 4)
151  # define VIP_CNTRL_1_MIRR_D       (1 << 3)
152  # define VIP_CNTRL_1_SWAP_D(x)    (((x) & 7) << 0)
153  #define REG_VIP_CNTRL_2           REG(0x00, 0x22)     /* write */
154  # define VIP_CNTRL_2_MIRR_E       (1 << 7)
155  # define VIP_CNTRL_2_SWAP_E(x)    (((x) & 7) << 4)
156  # define VIP_CNTRL_2_MIRR_F       (1 << 3)
157  # define VIP_CNTRL_2_SWAP_F(x)    (((x) & 7) << 0)
158  #define REG_VIP_CNTRL_3           REG(0x00, 0x23)     /* write */
159  # define VIP_CNTRL_3_X_TGL        (1 << 0)
160  # define VIP_CNTRL_3_H_TGL        (1 << 1)
161  # define VIP_CNTRL_3_V_TGL        (1 << 2)
162  # define VIP_CNTRL_3_EMB          (1 << 3)
163  # define VIP_CNTRL_3_SYNC_DE      (1 << 4)
164  # define VIP_CNTRL_3_SYNC_HS      (1 << 5)
165  # define VIP_CNTRL_3_DE_INT       (1 << 6)
166  # define VIP_CNTRL_3_EDGE         (1 << 7)
167  #define REG_VIP_CNTRL_4           REG(0x00, 0x24)     /* write */
168  # define VIP_CNTRL_4_BLC(x)       (((x) & 3) << 0)
169  # define VIP_CNTRL_4_BLANKIT(x)   (((x) & 3) << 2)
170  # define VIP_CNTRL_4_CCIR656      (1 << 4)
171  # define VIP_CNTRL_4_656_ALT      (1 << 5)
172  # define VIP_CNTRL_4_TST_656      (1 << 6)
173  # define VIP_CNTRL_4_TST_PAT      (1 << 7)
174  #define REG_VIP_CNTRL_5           REG(0x00, 0x25)     /* write */
175  # define VIP_CNTRL_5_CKCASE       (1 << 0)
176  # define VIP_CNTRL_5_SP_CNT(x)    (((x) & 3) << 1)
177  #define REG_MUX_AP                REG(0x00, 0x26)     /* read/write */
178  # define MUX_AP_SELECT_I2S	  0x64
179  # define MUX_AP_SELECT_SPDIF	  0x40
180  #define REG_MUX_VP_VIP_OUT        REG(0x00, 0x27)     /* read/write */
181  #define REG_MAT_CONTRL            REG(0x00, 0x80)     /* write */
182  # define MAT_CONTRL_MAT_SC(x)     (((x) & 3) << 0)
183  # define MAT_CONTRL_MAT_BP        (1 << 2)
184  #define REG_VIDFORMAT             REG(0x00, 0xa0)     /* write */
185  #define REG_REFPIX_MSB            REG(0x00, 0xa1)     /* write */
186  #define REG_REFPIX_LSB            REG(0x00, 0xa2)     /* write */
187  #define REG_REFLINE_MSB           REG(0x00, 0xa3)     /* write */
188  #define REG_REFLINE_LSB           REG(0x00, 0xa4)     /* write */
189  #define REG_NPIX_MSB              REG(0x00, 0xa5)     /* write */
190  #define REG_NPIX_LSB              REG(0x00, 0xa6)     /* write */
191  #define REG_NLINE_MSB             REG(0x00, 0xa7)     /* write */
192  #define REG_NLINE_LSB             REG(0x00, 0xa8)     /* write */
193  #define REG_VS_LINE_STRT_1_MSB    REG(0x00, 0xa9)     /* write */
194  #define REG_VS_LINE_STRT_1_LSB    REG(0x00, 0xaa)     /* write */
195  #define REG_VS_PIX_STRT_1_MSB     REG(0x00, 0xab)     /* write */
196  #define REG_VS_PIX_STRT_1_LSB     REG(0x00, 0xac)     /* write */
197  #define REG_VS_LINE_END_1_MSB     REG(0x00, 0xad)     /* write */
198  #define REG_VS_LINE_END_1_LSB     REG(0x00, 0xae)     /* write */
199  #define REG_VS_PIX_END_1_MSB      REG(0x00, 0xaf)     /* write */
200  #define REG_VS_PIX_END_1_LSB      REG(0x00, 0xb0)     /* write */
201  #define REG_VS_LINE_STRT_2_MSB    REG(0x00, 0xb1)     /* write */
202  #define REG_VS_LINE_STRT_2_LSB    REG(0x00, 0xb2)     /* write */
203  #define REG_VS_PIX_STRT_2_MSB     REG(0x00, 0xb3)     /* write */
204  #define REG_VS_PIX_STRT_2_LSB     REG(0x00, 0xb4)     /* write */
205  #define REG_VS_LINE_END_2_MSB     REG(0x00, 0xb5)     /* write */
206  #define REG_VS_LINE_END_2_LSB     REG(0x00, 0xb6)     /* write */
207  #define REG_VS_PIX_END_2_MSB      REG(0x00, 0xb7)     /* write */
208  #define REG_VS_PIX_END_2_LSB      REG(0x00, 0xb8)     /* write */
209  #define REG_HS_PIX_START_MSB      REG(0x00, 0xb9)     /* write */
210  #define REG_HS_PIX_START_LSB      REG(0x00, 0xba)     /* write */
211  #define REG_HS_PIX_STOP_MSB       REG(0x00, 0xbb)     /* write */
212  #define REG_HS_PIX_STOP_LSB       REG(0x00, 0xbc)     /* write */
213  #define REG_VWIN_START_1_MSB      REG(0x00, 0xbd)     /* write */
214  #define REG_VWIN_START_1_LSB      REG(0x00, 0xbe)     /* write */
215  #define REG_VWIN_END_1_MSB        REG(0x00, 0xbf)     /* write */
216  #define REG_VWIN_END_1_LSB        REG(0x00, 0xc0)     /* write */
217  #define REG_VWIN_START_2_MSB      REG(0x00, 0xc1)     /* write */
218  #define REG_VWIN_START_2_LSB      REG(0x00, 0xc2)     /* write */
219  #define REG_VWIN_END_2_MSB        REG(0x00, 0xc3)     /* write */
220  #define REG_VWIN_END_2_LSB        REG(0x00, 0xc4)     /* write */
221  #define REG_DE_START_MSB          REG(0x00, 0xc5)     /* write */
222  #define REG_DE_START_LSB          REG(0x00, 0xc6)     /* write */
223  #define REG_DE_STOP_MSB           REG(0x00, 0xc7)     /* write */
224  #define REG_DE_STOP_LSB           REG(0x00, 0xc8)     /* write */
225  #define REG_TBG_CNTRL_0           REG(0x00, 0xca)     /* write */
226  # define TBG_CNTRL_0_TOP_TGL      (1 << 0)
227  # define TBG_CNTRL_0_TOP_SEL      (1 << 1)
228  # define TBG_CNTRL_0_DE_EXT       (1 << 2)
229  # define TBG_CNTRL_0_TOP_EXT      (1 << 3)
230  # define TBG_CNTRL_0_FRAME_DIS    (1 << 5)
231  # define TBG_CNTRL_0_SYNC_MTHD    (1 << 6)
232  # define TBG_CNTRL_0_SYNC_ONCE    (1 << 7)
233  #define REG_TBG_CNTRL_1           REG(0x00, 0xcb)     /* write */
234  # define TBG_CNTRL_1_H_TGL        (1 << 0)
235  # define TBG_CNTRL_1_V_TGL        (1 << 1)
236  # define TBG_CNTRL_1_TGL_EN       (1 << 2)
237  # define TBG_CNTRL_1_X_EXT        (1 << 3)
238  # define TBG_CNTRL_1_H_EXT        (1 << 4)
239  # define TBG_CNTRL_1_V_EXT        (1 << 5)
240  # define TBG_CNTRL_1_DWIN_DIS     (1 << 6)
241  #define REG_ENABLE_SPACE          REG(0x00, 0xd6)     /* write */
242  #define REG_HVF_CNTRL_0           REG(0x00, 0xe4)     /* write */
243  # define HVF_CNTRL_0_SM           (1 << 7)
244  # define HVF_CNTRL_0_RWB          (1 << 6)
245  # define HVF_CNTRL_0_PREFIL(x)    (((x) & 3) << 2)
246  # define HVF_CNTRL_0_INTPOL(x)    (((x) & 3) << 0)
247  #define REG_HVF_CNTRL_1           REG(0x00, 0xe5)     /* write */
248  # define HVF_CNTRL_1_FOR          (1 << 0)
249  # define HVF_CNTRL_1_YUVBLK       (1 << 1)
250  # define HVF_CNTRL_1_VQR(x)       (((x) & 3) << 2)
251  # define HVF_CNTRL_1_PAD(x)       (((x) & 3) << 4)
252  # define HVF_CNTRL_1_SEMI_PLANAR  (1 << 6)
253  #define REG_RPT_CNTRL             REG(0x00, 0xf0)     /* write */
254  # define RPT_CNTRL_REPEAT(x)      ((x) & 15)
255  #define REG_I2S_FORMAT            REG(0x00, 0xfc)     /* read/write */
256  # define I2S_FORMAT_PHILIPS       (0 << 0)
257  # define I2S_FORMAT_LEFT_J        (2 << 0)
258  # define I2S_FORMAT_RIGHT_J       (3 << 0)
259  #define REG_AIP_CLKSEL            REG(0x00, 0xfd)     /* write */
260  # define AIP_CLKSEL_AIP_SPDIF	  (0 << 3)
261  # define AIP_CLKSEL_AIP_I2S	  (1 << 3)
262  # define AIP_CLKSEL_FS_ACLK	  (0 << 0)
263  # define AIP_CLKSEL_FS_MCLK	  (1 << 0)
264  # define AIP_CLKSEL_FS_FS64SPDIF  (2 << 0)
265  
266  /* Page 02h: PLL settings */
267  #define REG_PLL_SERIAL_1          REG(0x02, 0x00)     /* read/write */
268  # define PLL_SERIAL_1_SRL_FDN     (1 << 0)
269  # define PLL_SERIAL_1_SRL_IZ(x)   (((x) & 3) << 1)
270  # define PLL_SERIAL_1_SRL_MAN_IZ  (1 << 6)
271  #define REG_PLL_SERIAL_2          REG(0x02, 0x01)     /* read/write */
272  # define PLL_SERIAL_2_SRL_NOSC(x) ((x) << 0)
273  # define PLL_SERIAL_2_SRL_PR(x)   (((x) & 0xf) << 4)
274  #define REG_PLL_SERIAL_3          REG(0x02, 0x02)     /* read/write */
275  # define PLL_SERIAL_3_SRL_CCIR    (1 << 0)
276  # define PLL_SERIAL_3_SRL_DE      (1 << 2)
277  # define PLL_SERIAL_3_SRL_PXIN_SEL (1 << 4)
278  #define REG_SERIALIZER            REG(0x02, 0x03)     /* read/write */
279  #define REG_BUFFER_OUT            REG(0x02, 0x04)     /* read/write */
280  #define REG_PLL_SCG1              REG(0x02, 0x05)     /* read/write */
281  #define REG_PLL_SCG2              REG(0x02, 0x06)     /* read/write */
282  #define REG_PLL_SCGN1             REG(0x02, 0x07)     /* read/write */
283  #define REG_PLL_SCGN2             REG(0x02, 0x08)     /* read/write */
284  #define REG_PLL_SCGR1             REG(0x02, 0x09)     /* read/write */
285  #define REG_PLL_SCGR2             REG(0x02, 0x0a)     /* read/write */
286  #define REG_AUDIO_DIV             REG(0x02, 0x0e)     /* read/write */
287  # define AUDIO_DIV_SERCLK_1       0
288  # define AUDIO_DIV_SERCLK_2       1
289  # define AUDIO_DIV_SERCLK_4       2
290  # define AUDIO_DIV_SERCLK_8       3
291  # define AUDIO_DIV_SERCLK_16      4
292  # define AUDIO_DIV_SERCLK_32      5
293  #define REG_SEL_CLK               REG(0x02, 0x11)     /* read/write */
294  # define SEL_CLK_SEL_CLK1         (1 << 0)
295  # define SEL_CLK_SEL_VRF_CLK(x)   (((x) & 3) << 1)
296  # define SEL_CLK_ENA_SC_CLK       (1 << 3)
297  #define REG_ANA_GENERAL           REG(0x02, 0x12)     /* read/write */
298  
299  
300  /* Page 09h: EDID Control */
301  #define REG_EDID_DATA_0           REG(0x09, 0x00)     /* read */
302  /* next 127 successive registers are the EDID block */
303  #define REG_EDID_CTRL             REG(0x09, 0xfa)     /* read/write */
304  #define REG_DDC_ADDR              REG(0x09, 0xfb)     /* read/write */
305  #define REG_DDC_OFFS              REG(0x09, 0xfc)     /* read/write */
306  #define REG_DDC_SEGM_ADDR         REG(0x09, 0xfd)     /* read/write */
307  #define REG_DDC_SEGM              REG(0x09, 0xfe)     /* read/write */
308  
309  
310  /* Page 10h: information frames and packets */
311  #define REG_IF1_HB0               REG(0x10, 0x20)     /* read/write */
312  #define REG_IF2_HB0               REG(0x10, 0x40)     /* read/write */
313  #define REG_IF3_HB0               REG(0x10, 0x60)     /* read/write */
314  #define REG_IF4_HB0               REG(0x10, 0x80)     /* read/write */
315  #define REG_IF5_HB0               REG(0x10, 0xa0)     /* read/write */
316  
317  
318  /* Page 11h: audio settings and content info packets */
319  #define REG_AIP_CNTRL_0           REG(0x11, 0x00)     /* read/write */
320  # define AIP_CNTRL_0_RST_FIFO     (1 << 0)
321  # define AIP_CNTRL_0_SWAP         (1 << 1)
322  # define AIP_CNTRL_0_LAYOUT       (1 << 2)
323  # define AIP_CNTRL_0_ACR_MAN      (1 << 5)
324  # define AIP_CNTRL_0_RST_CTS      (1 << 6)
325  #define REG_CA_I2S                REG(0x11, 0x01)     /* read/write */
326  # define CA_I2S_CA_I2S(x)         (((x) & 31) << 0)
327  # define CA_I2S_HBR_CHSTAT        (1 << 6)
328  #define REG_LATENCY_RD            REG(0x11, 0x04)     /* read/write */
329  #define REG_ACR_CTS_0             REG(0x11, 0x05)     /* read/write */
330  #define REG_ACR_CTS_1             REG(0x11, 0x06)     /* read/write */
331  #define REG_ACR_CTS_2             REG(0x11, 0x07)     /* read/write */
332  #define REG_ACR_N_0               REG(0x11, 0x08)     /* read/write */
333  #define REG_ACR_N_1               REG(0x11, 0x09)     /* read/write */
334  #define REG_ACR_N_2               REG(0x11, 0x0a)     /* read/write */
335  #define REG_CTS_N                 REG(0x11, 0x0c)     /* read/write */
336  # define CTS_N_K(x)               (((x) & 7) << 0)
337  # define CTS_N_M(x)               (((x) & 3) << 4)
338  #define REG_ENC_CNTRL             REG(0x11, 0x0d)     /* read/write */
339  # define ENC_CNTRL_RST_ENC        (1 << 0)
340  # define ENC_CNTRL_RST_SEL        (1 << 1)
341  # define ENC_CNTRL_CTL_CODE(x)    (((x) & 3) << 2)
342  #define REG_DIP_FLAGS             REG(0x11, 0x0e)     /* read/write */
343  # define DIP_FLAGS_ACR            (1 << 0)
344  # define DIP_FLAGS_GC             (1 << 1)
345  #define REG_DIP_IF_FLAGS          REG(0x11, 0x0f)     /* read/write */
346  # define DIP_IF_FLAGS_IF1         (1 << 1)
347  # define DIP_IF_FLAGS_IF2         (1 << 2)
348  # define DIP_IF_FLAGS_IF3         (1 << 3)
349  # define DIP_IF_FLAGS_IF4         (1 << 4)
350  # define DIP_IF_FLAGS_IF5         (1 << 5)
351  #define REG_CH_STAT_B(x)          REG(0x11, 0x14 + (x)) /* read/write */
352  
353  
354  /* Page 12h: HDCP and OTP */
355  #define REG_TX3                   REG(0x12, 0x9a)     /* read/write */
356  #define REG_TX4                   REG(0x12, 0x9b)     /* read/write */
357  # define TX4_PD_RAM               (1 << 1)
358  #define REG_TX33                  REG(0x12, 0xb8)     /* read/write */
359  # define TX33_HDMI                (1 << 1)
360  
361  
362  /* Page 13h: Gamut related metadata packets */
363  
364  
365  
366  /* CEC registers: (not paged)
367   */
368  #define REG_CEC_INTSTATUS	  0xee		      /* read */
369  # define CEC_INTSTATUS_CEC	  (1 << 0)
370  # define CEC_INTSTATUS_HDMI	  (1 << 1)
371  #define REG_CEC_CAL_XOSC_CTRL1    0xf2
372  # define CEC_CAL_XOSC_CTRL1_ENA_CAL	BIT(0)
373  #define REG_CEC_DES_FREQ2         0xf5
374  # define CEC_DES_FREQ2_DIS_AUTOCAL BIT(7)
375  #define REG_CEC_CLK               0xf6
376  # define CEC_CLK_FRO              0x11
377  #define REG_CEC_FRO_IM_CLK_CTRL   0xfb                /* read/write */
378  # define CEC_FRO_IM_CLK_CTRL_GHOST_DIS (1 << 7)
379  # define CEC_FRO_IM_CLK_CTRL_ENA_OTP   (1 << 6)
380  # define CEC_FRO_IM_CLK_CTRL_IMCLK_SEL (1 << 1)
381  # define CEC_FRO_IM_CLK_CTRL_FRO_DIV   (1 << 0)
382  #define REG_CEC_RXSHPDINTENA	  0xfc		      /* read/write */
383  #define REG_CEC_RXSHPDINT	  0xfd		      /* read */
384  # define CEC_RXSHPDINT_RXSENS     BIT(0)
385  # define CEC_RXSHPDINT_HPD        BIT(1)
386  #define REG_CEC_RXSHPDLEV         0xfe                /* read */
387  # define CEC_RXSHPDLEV_RXSENS     (1 << 0)
388  # define CEC_RXSHPDLEV_HPD        (1 << 1)
389  
390  #define REG_CEC_ENAMODS           0xff                /* read/write */
391  # define CEC_ENAMODS_EN_CEC_CLK   (1 << 7)
392  # define CEC_ENAMODS_DIS_FRO      (1 << 6)
393  # define CEC_ENAMODS_DIS_CCLK     (1 << 5)
394  # define CEC_ENAMODS_EN_RXSENS    (1 << 2)
395  # define CEC_ENAMODS_EN_HDMI      (1 << 1)
396  # define CEC_ENAMODS_EN_CEC       (1 << 0)
397  
398  
399  /* Device versions: */
400  #define TDA9989N2                 0x0101
401  #define TDA19989                  0x0201
402  #define TDA19989N2                0x0202
403  #define TDA19988                  0x0301
404  
405  static void
cec_write(struct tda998x_priv * priv,u16 addr,u8 val)406  cec_write(struct tda998x_priv *priv, u16 addr, u8 val)
407  {
408  	u8 buf[] = {addr, val};
409  	struct i2c_msg msg = {
410  		.addr = priv->cec_addr,
411  		.len = 2,
412  		.buf = buf,
413  	};
414  	int ret;
415  
416  	ret = i2c_transfer(priv->hdmi->adapter, &msg, 1);
417  	if (ret < 0)
418  		dev_err(&priv->hdmi->dev, "Error %d writing to cec:0x%x\n",
419  			ret, addr);
420  }
421  
422  static u8
cec_read(struct tda998x_priv * priv,u8 addr)423  cec_read(struct tda998x_priv *priv, u8 addr)
424  {
425  	u8 val;
426  	struct i2c_msg msg[2] = {
427  		{
428  			.addr = priv->cec_addr,
429  			.len = 1,
430  			.buf = &addr,
431  		}, {
432  			.addr = priv->cec_addr,
433  			.flags = I2C_M_RD,
434  			.len = 1,
435  			.buf = &val,
436  		},
437  	};
438  	int ret;
439  
440  	ret = i2c_transfer(priv->hdmi->adapter, msg, ARRAY_SIZE(msg));
441  	if (ret < 0) {
442  		dev_err(&priv->hdmi->dev, "Error %d reading from cec:0x%x\n",
443  			ret, addr);
444  		val = 0;
445  	}
446  
447  	return val;
448  }
449  
cec_enamods(struct tda998x_priv * priv,u8 mods,bool enable)450  static void cec_enamods(struct tda998x_priv *priv, u8 mods, bool enable)
451  {
452  	int val = cec_read(priv, REG_CEC_ENAMODS);
453  
454  	if (val < 0)
455  		return;
456  
457  	if (enable)
458  		val |= mods;
459  	else
460  		val &= ~mods;
461  
462  	cec_write(priv, REG_CEC_ENAMODS, val);
463  }
464  
tda998x_cec_set_calibration(struct tda998x_priv * priv,bool enable)465  static void tda998x_cec_set_calibration(struct tda998x_priv *priv, bool enable)
466  {
467  	if (enable) {
468  		u8 val;
469  
470  		cec_write(priv, 0xf3, 0xc0);
471  		cec_write(priv, 0xf4, 0xd4);
472  
473  		/* Enable automatic calibration mode */
474  		val = cec_read(priv, REG_CEC_DES_FREQ2);
475  		val &= ~CEC_DES_FREQ2_DIS_AUTOCAL;
476  		cec_write(priv, REG_CEC_DES_FREQ2, val);
477  
478  		/* Enable free running oscillator */
479  		cec_write(priv, REG_CEC_CLK, CEC_CLK_FRO);
480  		cec_enamods(priv, CEC_ENAMODS_DIS_FRO, false);
481  
482  		cec_write(priv, REG_CEC_CAL_XOSC_CTRL1,
483  			  CEC_CAL_XOSC_CTRL1_ENA_CAL);
484  	} else {
485  		cec_write(priv, REG_CEC_CAL_XOSC_CTRL1, 0);
486  	}
487  }
488  
489  /*
490   * Calibration for the internal oscillator: we need to set calibration mode,
491   * and then pulse the IRQ line low for a 10ms ± 1% period.
492   */
tda998x_cec_calibration(struct tda998x_priv * priv)493  static void tda998x_cec_calibration(struct tda998x_priv *priv)
494  {
495  	struct gpio_desc *calib = priv->calib;
496  
497  	mutex_lock(&priv->edid_mutex);
498  	if (priv->hdmi->irq > 0)
499  		disable_irq(priv->hdmi->irq);
500  	gpiod_direction_output(calib, 1);
501  	tda998x_cec_set_calibration(priv, true);
502  
503  	local_irq_disable();
504  	gpiod_set_value(calib, 0);
505  	mdelay(10);
506  	gpiod_set_value(calib, 1);
507  	local_irq_enable();
508  
509  	tda998x_cec_set_calibration(priv, false);
510  	gpiod_direction_input(calib);
511  	if (priv->hdmi->irq > 0)
512  		enable_irq(priv->hdmi->irq);
513  	mutex_unlock(&priv->edid_mutex);
514  }
515  
tda998x_cec_hook_init(void * data)516  static int tda998x_cec_hook_init(void *data)
517  {
518  	struct tda998x_priv *priv = data;
519  	struct gpio_desc *calib;
520  
521  	calib = gpiod_get(&priv->hdmi->dev, "nxp,calib", GPIOD_ASIS);
522  	if (IS_ERR(calib)) {
523  		dev_warn(&priv->hdmi->dev, "failed to get calibration gpio: %ld\n",
524  			 PTR_ERR(calib));
525  		return PTR_ERR(calib);
526  	}
527  
528  	priv->calib = calib;
529  
530  	return 0;
531  }
532  
tda998x_cec_hook_exit(void * data)533  static void tda998x_cec_hook_exit(void *data)
534  {
535  	struct tda998x_priv *priv = data;
536  
537  	gpiod_put(priv->calib);
538  	priv->calib = NULL;
539  }
540  
tda998x_cec_hook_open(void * data)541  static int tda998x_cec_hook_open(void *data)
542  {
543  	struct tda998x_priv *priv = data;
544  
545  	cec_enamods(priv, CEC_ENAMODS_EN_CEC_CLK | CEC_ENAMODS_EN_CEC, true);
546  	tda998x_cec_calibration(priv);
547  
548  	return 0;
549  }
550  
tda998x_cec_hook_release(void * data)551  static void tda998x_cec_hook_release(void *data)
552  {
553  	struct tda998x_priv *priv = data;
554  
555  	cec_enamods(priv, CEC_ENAMODS_EN_CEC_CLK | CEC_ENAMODS_EN_CEC, false);
556  }
557  
558  static int
set_page(struct tda998x_priv * priv,u16 reg)559  set_page(struct tda998x_priv *priv, u16 reg)
560  {
561  	if (REG2PAGE(reg) != priv->current_page) {
562  		struct i2c_client *client = priv->hdmi;
563  		u8 buf[] = {
564  				REG_CURPAGE, REG2PAGE(reg)
565  		};
566  		int ret = i2c_master_send(client, buf, sizeof(buf));
567  		if (ret < 0) {
568  			dev_err(&client->dev, "%s %04x err %d\n", __func__,
569  					reg, ret);
570  			return ret;
571  		}
572  
573  		priv->current_page = REG2PAGE(reg);
574  	}
575  	return 0;
576  }
577  
578  static int
reg_read_range(struct tda998x_priv * priv,u16 reg,char * buf,int cnt)579  reg_read_range(struct tda998x_priv *priv, u16 reg, char *buf, int cnt)
580  {
581  	struct i2c_client *client = priv->hdmi;
582  	u8 addr = REG2ADDR(reg);
583  	int ret;
584  
585  	mutex_lock(&priv->mutex);
586  	ret = set_page(priv, reg);
587  	if (ret < 0)
588  		goto out;
589  
590  	ret = i2c_master_send(client, &addr, sizeof(addr));
591  	if (ret < 0)
592  		goto fail;
593  
594  	ret = i2c_master_recv(client, buf, cnt);
595  	if (ret < 0)
596  		goto fail;
597  
598  	goto out;
599  
600  fail:
601  	dev_err(&client->dev, "Error %d reading from 0x%x\n", ret, reg);
602  out:
603  	mutex_unlock(&priv->mutex);
604  	return ret;
605  }
606  
607  #define MAX_WRITE_RANGE_BUF 32
608  
609  static void
reg_write_range(struct tda998x_priv * priv,u16 reg,u8 * p,int cnt)610  reg_write_range(struct tda998x_priv *priv, u16 reg, u8 *p, int cnt)
611  {
612  	struct i2c_client *client = priv->hdmi;
613  	/* This is the maximum size of the buffer passed in */
614  	u8 buf[MAX_WRITE_RANGE_BUF + 1];
615  	int ret;
616  
617  	if (cnt > MAX_WRITE_RANGE_BUF) {
618  		dev_err(&client->dev, "Fixed write buffer too small (%d)\n",
619  				MAX_WRITE_RANGE_BUF);
620  		return;
621  	}
622  
623  	buf[0] = REG2ADDR(reg);
624  	memcpy(&buf[1], p, cnt);
625  
626  	mutex_lock(&priv->mutex);
627  	ret = set_page(priv, reg);
628  	if (ret < 0)
629  		goto out;
630  
631  	ret = i2c_master_send(client, buf, cnt + 1);
632  	if (ret < 0)
633  		dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
634  out:
635  	mutex_unlock(&priv->mutex);
636  }
637  
638  static int
reg_read(struct tda998x_priv * priv,u16 reg)639  reg_read(struct tda998x_priv *priv, u16 reg)
640  {
641  	u8 val = 0;
642  	int ret;
643  
644  	ret = reg_read_range(priv, reg, &val, sizeof(val));
645  	if (ret < 0)
646  		return ret;
647  	return val;
648  }
649  
650  static void
reg_write(struct tda998x_priv * priv,u16 reg,u8 val)651  reg_write(struct tda998x_priv *priv, u16 reg, u8 val)
652  {
653  	struct i2c_client *client = priv->hdmi;
654  	u8 buf[] = {REG2ADDR(reg), val};
655  	int ret;
656  
657  	mutex_lock(&priv->mutex);
658  	ret = set_page(priv, reg);
659  	if (ret < 0)
660  		goto out;
661  
662  	ret = i2c_master_send(client, buf, sizeof(buf));
663  	if (ret < 0)
664  		dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
665  out:
666  	mutex_unlock(&priv->mutex);
667  }
668  
669  static void
reg_write16(struct tda998x_priv * priv,u16 reg,u16 val)670  reg_write16(struct tda998x_priv *priv, u16 reg, u16 val)
671  {
672  	struct i2c_client *client = priv->hdmi;
673  	u8 buf[] = {REG2ADDR(reg), val >> 8, val};
674  	int ret;
675  
676  	mutex_lock(&priv->mutex);
677  	ret = set_page(priv, reg);
678  	if (ret < 0)
679  		goto out;
680  
681  	ret = i2c_master_send(client, buf, sizeof(buf));
682  	if (ret < 0)
683  		dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
684  out:
685  	mutex_unlock(&priv->mutex);
686  }
687  
688  static void
reg_set(struct tda998x_priv * priv,u16 reg,u8 val)689  reg_set(struct tda998x_priv *priv, u16 reg, u8 val)
690  {
691  	int old_val;
692  
693  	old_val = reg_read(priv, reg);
694  	if (old_val >= 0)
695  		reg_write(priv, reg, old_val | val);
696  }
697  
698  static void
reg_clear(struct tda998x_priv * priv,u16 reg,u8 val)699  reg_clear(struct tda998x_priv *priv, u16 reg, u8 val)
700  {
701  	int old_val;
702  
703  	old_val = reg_read(priv, reg);
704  	if (old_val >= 0)
705  		reg_write(priv, reg, old_val & ~val);
706  }
707  
708  static void
tda998x_reset(struct tda998x_priv * priv)709  tda998x_reset(struct tda998x_priv *priv)
710  {
711  	/* reset audio and i2c master: */
712  	reg_write(priv, REG_SOFTRESET, SOFTRESET_AUDIO | SOFTRESET_I2C_MASTER);
713  	msleep(50);
714  	reg_write(priv, REG_SOFTRESET, 0);
715  	msleep(50);
716  
717  	/* reset transmitter: */
718  	reg_set(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
719  	reg_clear(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
720  
721  	/* PLL registers common configuration */
722  	reg_write(priv, REG_PLL_SERIAL_1, 0x00);
723  	reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(1));
724  	reg_write(priv, REG_PLL_SERIAL_3, 0x00);
725  	reg_write(priv, REG_SERIALIZER,   0x00);
726  	reg_write(priv, REG_BUFFER_OUT,   0x00);
727  	reg_write(priv, REG_PLL_SCG1,     0x00);
728  	reg_write(priv, REG_AUDIO_DIV,    AUDIO_DIV_SERCLK_8);
729  	reg_write(priv, REG_SEL_CLK,      SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK);
730  	reg_write(priv, REG_PLL_SCGN1,    0xfa);
731  	reg_write(priv, REG_PLL_SCGN2,    0x00);
732  	reg_write(priv, REG_PLL_SCGR1,    0x5b);
733  	reg_write(priv, REG_PLL_SCGR2,    0x00);
734  	reg_write(priv, REG_PLL_SCG2,     0x10);
735  
736  	/* Write the default value MUX register */
737  	reg_write(priv, REG_MUX_VP_VIP_OUT, 0x24);
738  }
739  
740  /*
741   * The TDA998x has a problem when trying to read the EDID close to a
742   * HPD assertion: it needs a delay of 100ms to avoid timing out while
743   * trying to read EDID data.
744   *
745   * However, tda998x_connector_get_modes() may be called at any moment
746   * after tda998x_connector_detect() indicates that we are connected, so
747   * we need to delay probing modes in tda998x_connector_get_modes() after
748   * we have seen a HPD inactive->active transition.  This code implements
749   * that delay.
750   */
tda998x_edid_delay_done(struct timer_list * t)751  static void tda998x_edid_delay_done(struct timer_list *t)
752  {
753  	struct tda998x_priv *priv = from_timer(priv, t, edid_delay_timer);
754  
755  	priv->edid_delay_active = false;
756  	wake_up(&priv->edid_delay_waitq);
757  	schedule_work(&priv->detect_work);
758  }
759  
tda998x_edid_delay_start(struct tda998x_priv * priv)760  static void tda998x_edid_delay_start(struct tda998x_priv *priv)
761  {
762  	priv->edid_delay_active = true;
763  	mod_timer(&priv->edid_delay_timer, jiffies + HZ/10);
764  }
765  
tda998x_edid_delay_wait(struct tda998x_priv * priv)766  static int tda998x_edid_delay_wait(struct tda998x_priv *priv)
767  {
768  	return wait_event_killable(priv->edid_delay_waitq, !priv->edid_delay_active);
769  }
770  
771  /*
772   * We need to run the KMS hotplug event helper outside of our threaded
773   * interrupt routine as this can call back into our get_modes method,
774   * which will want to make use of interrupts.
775   */
tda998x_detect_work(struct work_struct * work)776  static void tda998x_detect_work(struct work_struct *work)
777  {
778  	struct tda998x_priv *priv =
779  		container_of(work, struct tda998x_priv, detect_work);
780  	struct drm_device *dev = priv->connector.dev;
781  
782  	if (dev)
783  		drm_kms_helper_hotplug_event(dev);
784  }
785  
786  /*
787   * only 2 interrupts may occur: screen plug/unplug and EDID read
788   */
tda998x_irq_thread(int irq,void * data)789  static irqreturn_t tda998x_irq_thread(int irq, void *data)
790  {
791  	struct tda998x_priv *priv = data;
792  	u8 sta, cec, lvl, flag0, flag1, flag2;
793  	bool handled = false;
794  
795  	sta = cec_read(priv, REG_CEC_INTSTATUS);
796  	if (sta & CEC_INTSTATUS_HDMI) {
797  		cec = cec_read(priv, REG_CEC_RXSHPDINT);
798  		lvl = cec_read(priv, REG_CEC_RXSHPDLEV);
799  		flag0 = reg_read(priv, REG_INT_FLAGS_0);
800  		flag1 = reg_read(priv, REG_INT_FLAGS_1);
801  		flag2 = reg_read(priv, REG_INT_FLAGS_2);
802  		DRM_DEBUG_DRIVER(
803  			"tda irq sta %02x cec %02x lvl %02x f0 %02x f1 %02x f2 %02x\n",
804  			sta, cec, lvl, flag0, flag1, flag2);
805  
806  		if (cec & CEC_RXSHPDINT_HPD) {
807  			if (lvl & CEC_RXSHPDLEV_HPD) {
808  				tda998x_edid_delay_start(priv);
809  			} else {
810  				schedule_work(&priv->detect_work);
811  				cec_notifier_phys_addr_invalidate(
812  						priv->cec_notify);
813  			}
814  
815  			handled = true;
816  		}
817  
818  		if ((flag2 & INT_FLAGS_2_EDID_BLK_RD) && priv->wq_edid_wait) {
819  			priv->wq_edid_wait = 0;
820  			wake_up(&priv->wq_edid);
821  			handled = true;
822  		}
823  	}
824  
825  	return IRQ_RETVAL(handled);
826  }
827  
828  static void
tda998x_write_if(struct tda998x_priv * priv,u8 bit,u16 addr,union hdmi_infoframe * frame)829  tda998x_write_if(struct tda998x_priv *priv, u8 bit, u16 addr,
830  		 union hdmi_infoframe *frame)
831  {
832  	u8 buf[MAX_WRITE_RANGE_BUF];
833  	ssize_t len;
834  
835  	len = hdmi_infoframe_pack(frame, buf, sizeof(buf));
836  	if (len < 0) {
837  		dev_err(&priv->hdmi->dev,
838  			"hdmi_infoframe_pack() type=0x%02x failed: %zd\n",
839  			frame->any.type, len);
840  		return;
841  	}
842  
843  	reg_clear(priv, REG_DIP_IF_FLAGS, bit);
844  	reg_write_range(priv, addr, buf, len);
845  	reg_set(priv, REG_DIP_IF_FLAGS, bit);
846  }
847  
tda998x_write_aif(struct tda998x_priv * priv,const struct hdmi_audio_infoframe * cea)848  static void tda998x_write_aif(struct tda998x_priv *priv,
849  			      const struct hdmi_audio_infoframe *cea)
850  {
851  	union hdmi_infoframe frame;
852  
853  	frame.audio = *cea;
854  
855  	tda998x_write_if(priv, DIP_IF_FLAGS_IF4, REG_IF4_HB0, &frame);
856  }
857  
858  static void
tda998x_write_avi(struct tda998x_priv * priv,const struct drm_display_mode * mode)859  tda998x_write_avi(struct tda998x_priv *priv, const struct drm_display_mode *mode)
860  {
861  	union hdmi_infoframe frame;
862  
863  	drm_hdmi_avi_infoframe_from_display_mode(&frame.avi,
864  						 &priv->connector, mode);
865  	frame.avi.quantization_range = HDMI_QUANTIZATION_RANGE_FULL;
866  	drm_hdmi_avi_infoframe_quant_range(&frame.avi, &priv->connector, mode,
867  					   priv->rgb_quant_range);
868  
869  	tda998x_write_if(priv, DIP_IF_FLAGS_IF2, REG_IF2_HB0, &frame);
870  }
871  
tda998x_write_vsi(struct tda998x_priv * priv,const struct drm_display_mode * mode)872  static void tda998x_write_vsi(struct tda998x_priv *priv,
873  			      const struct drm_display_mode *mode)
874  {
875  	union hdmi_infoframe frame;
876  
877  	if (drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi,
878  							&priv->connector,
879  							mode))
880  		reg_clear(priv, REG_DIP_IF_FLAGS, DIP_IF_FLAGS_IF1);
881  	else
882  		tda998x_write_if(priv, DIP_IF_FLAGS_IF1, REG_IF1_HB0, &frame);
883  }
884  
885  /* Audio support */
886  
887  static const struct tda998x_audio_route tda998x_audio_route[AUDIO_ROUTE_NUM] = {
888  	[AUDIO_ROUTE_I2S] = {
889  		.ena_aclk = 1,
890  		.mux_ap = MUX_AP_SELECT_I2S,
891  		.aip_clksel = AIP_CLKSEL_AIP_I2S | AIP_CLKSEL_FS_ACLK,
892  	},
893  	[AUDIO_ROUTE_SPDIF] = {
894  		.ena_aclk = 0,
895  		.mux_ap = MUX_AP_SELECT_SPDIF,
896  		.aip_clksel = AIP_CLKSEL_AIP_SPDIF | AIP_CLKSEL_FS_FS64SPDIF,
897  	},
898  };
899  
900  /* Configure the TDA998x audio data and clock routing. */
tda998x_derive_routing(struct tda998x_priv * priv,struct tda998x_audio_settings * s,unsigned int route)901  static int tda998x_derive_routing(struct tda998x_priv *priv,
902  				  struct tda998x_audio_settings *s,
903  				  unsigned int route)
904  {
905  	s->route = &tda998x_audio_route[route];
906  	s->ena_ap = priv->audio_port_enable[route];
907  	if (s->ena_ap == 0) {
908  		dev_err(&priv->hdmi->dev, "no audio configuration found\n");
909  		return -EINVAL;
910  	}
911  
912  	return 0;
913  }
914  
915  /*
916   * The audio clock divisor register controls a divider producing Audio_Clk_Out
917   * from SERclk by dividing it by 2^n where 0 <= n <= 5.  We don't know what
918   * Audio_Clk_Out or SERclk are. We guess SERclk is the same as TMDS clock.
919   *
920   * It seems that Audio_Clk_Out must be the smallest value that is greater
921   * than 128*fs, otherwise audio does not function. There is some suggestion
922   * that 126*fs is a better value.
923   */
tda998x_get_adiv(struct tda998x_priv * priv,unsigned int fs)924  static u8 tda998x_get_adiv(struct tda998x_priv *priv, unsigned int fs)
925  {
926  	unsigned long min_audio_clk = fs * 128;
927  	unsigned long ser_clk = priv->tmds_clock * 1000;
928  	u8 adiv;
929  
930  	for (adiv = AUDIO_DIV_SERCLK_32; adiv != AUDIO_DIV_SERCLK_1; adiv--)
931  		if (ser_clk > min_audio_clk << adiv)
932  			break;
933  
934  	dev_dbg(&priv->hdmi->dev,
935  		"ser_clk=%luHz fs=%uHz min_aclk=%luHz adiv=%d\n",
936  		ser_clk, fs, min_audio_clk, adiv);
937  
938  	return adiv;
939  }
940  
941  /*
942   * In auto-CTS mode, the TDA998x uses a "measured time stamp" counter to
943   * generate the CTS value.  It appears that the "measured time stamp" is
944   * the number of TDMS clock cycles within a number of audio input clock
945   * cycles defined by the k and N parameters defined below, in a similar
946   * way to that which is set out in the CTS generation in the HDMI spec.
947   *
948   *  tmdsclk ----> mts -> /m ---> CTS
949   *                 ^
950   *  sclk -> /k -> /N
951   *
952   * CTS = mts / m, where m is 2^M.
953   * /k is a divider based on the K value below, K+1 for K < 4, or 8 for K >= 4
954   * /N is a divider based on the HDMI specified N value.
955   *
956   * This produces the following equation:
957   *  CTS = tmds_clock * k * N / (sclk * m)
958   *
959   * When combined with the sink-side equation, and realising that sclk is
960   * bclk_ratio * fs, we end up with:
961   *  k = m * bclk_ratio / 128.
962   *
963   * Note: S/PDIF always uses a bclk_ratio of 64.
964   */
tda998x_derive_cts_n(struct tda998x_priv * priv,struct tda998x_audio_settings * settings,unsigned int ratio)965  static int tda998x_derive_cts_n(struct tda998x_priv *priv,
966  				struct tda998x_audio_settings *settings,
967  				unsigned int ratio)
968  {
969  	switch (ratio) {
970  	case 16:
971  		settings->cts_n = CTS_N_M(3) | CTS_N_K(0);
972  		break;
973  	case 32:
974  		settings->cts_n = CTS_N_M(3) | CTS_N_K(1);
975  		break;
976  	case 48:
977  		settings->cts_n = CTS_N_M(3) | CTS_N_K(2);
978  		break;
979  	case 64:
980  		settings->cts_n = CTS_N_M(3) | CTS_N_K(3);
981  		break;
982  	case 128:
983  		settings->cts_n = CTS_N_M(0) | CTS_N_K(0);
984  		break;
985  	default:
986  		dev_err(&priv->hdmi->dev, "unsupported bclk ratio %ufs\n",
987  			ratio);
988  		return -EINVAL;
989  	}
990  	return 0;
991  }
992  
tda998x_audio_mute(struct tda998x_priv * priv,bool on)993  static void tda998x_audio_mute(struct tda998x_priv *priv, bool on)
994  {
995  	if (on) {
996  		reg_set(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
997  		reg_clear(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
998  		reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
999  	} else {
1000  		reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
1001  	}
1002  }
1003  
tda998x_configure_audio(struct tda998x_priv * priv)1004  static void tda998x_configure_audio(struct tda998x_priv *priv)
1005  {
1006  	const struct tda998x_audio_settings *settings = &priv->audio;
1007  	u8 buf[6], adiv;
1008  	u32 n;
1009  
1010  	/* If audio is not configured, there is nothing to do. */
1011  	if (settings->ena_ap == 0)
1012  		return;
1013  
1014  	adiv = tda998x_get_adiv(priv, settings->sample_rate);
1015  
1016  	/* Enable audio ports */
1017  	reg_write(priv, REG_ENA_AP, settings->ena_ap);
1018  	reg_write(priv, REG_ENA_ACLK, settings->route->ena_aclk);
1019  	reg_write(priv, REG_MUX_AP, settings->route->mux_ap);
1020  	reg_write(priv, REG_I2S_FORMAT, settings->i2s_format);
1021  	reg_write(priv, REG_AIP_CLKSEL, settings->route->aip_clksel);
1022  	reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_LAYOUT |
1023  					AIP_CNTRL_0_ACR_MAN);	/* auto CTS */
1024  	reg_write(priv, REG_CTS_N, settings->cts_n);
1025  	reg_write(priv, REG_AUDIO_DIV, adiv);
1026  
1027  	/*
1028  	 * This is the approximate value of N, which happens to be
1029  	 * the recommended values for non-coherent clocks.
1030  	 */
1031  	n = 128 * settings->sample_rate / 1000;
1032  
1033  	/* Write the CTS and N values */
1034  	buf[0] = 0x44;
1035  	buf[1] = 0x42;
1036  	buf[2] = 0x01;
1037  	buf[3] = n;
1038  	buf[4] = n >> 8;
1039  	buf[5] = n >> 16;
1040  	reg_write_range(priv, REG_ACR_CTS_0, buf, 6);
1041  
1042  	/* Reset CTS generator */
1043  	reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
1044  	reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
1045  
1046  	/* Write the channel status
1047  	 * The REG_CH_STAT_B-registers skip IEC958 AES2 byte, because
1048  	 * there is a separate register for each I2S wire.
1049  	 */
1050  	buf[0] = settings->status[0];
1051  	buf[1] = settings->status[1];
1052  	buf[2] = settings->status[3];
1053  	buf[3] = settings->status[4];
1054  	reg_write_range(priv, REG_CH_STAT_B(0), buf, 4);
1055  
1056  	tda998x_audio_mute(priv, true);
1057  	msleep(20);
1058  	tda998x_audio_mute(priv, false);
1059  
1060  	tda998x_write_aif(priv, &settings->cea);
1061  }
1062  
tda998x_audio_hw_params(struct device * dev,void * data,struct hdmi_codec_daifmt * daifmt,struct hdmi_codec_params * params)1063  static int tda998x_audio_hw_params(struct device *dev, void *data,
1064  				   struct hdmi_codec_daifmt *daifmt,
1065  				   struct hdmi_codec_params *params)
1066  {
1067  	struct tda998x_priv *priv = dev_get_drvdata(dev);
1068  	unsigned int bclk_ratio;
1069  	bool spdif = daifmt->fmt == HDMI_SPDIF;
1070  	int ret;
1071  	struct tda998x_audio_settings audio = {
1072  		.sample_rate = params->sample_rate,
1073  		.cea = params->cea,
1074  	};
1075  
1076  	memcpy(audio.status, params->iec.status,
1077  	       min(sizeof(audio.status), sizeof(params->iec.status)));
1078  
1079  	switch (daifmt->fmt) {
1080  	case HDMI_I2S:
1081  		audio.i2s_format = I2S_FORMAT_PHILIPS;
1082  		break;
1083  	case HDMI_LEFT_J:
1084  		audio.i2s_format = I2S_FORMAT_LEFT_J;
1085  		break;
1086  	case HDMI_RIGHT_J:
1087  		audio.i2s_format = I2S_FORMAT_RIGHT_J;
1088  		break;
1089  	case HDMI_SPDIF:
1090  		audio.i2s_format = 0;
1091  		break;
1092  	default:
1093  		dev_err(dev, "%s: Invalid format %d\n", __func__, daifmt->fmt);
1094  		return -EINVAL;
1095  	}
1096  
1097  	if (!spdif &&
1098  	    (daifmt->bit_clk_inv || daifmt->frame_clk_inv ||
1099  	     daifmt->bit_clk_provider || daifmt->frame_clk_provider)) {
1100  		dev_err(dev, "%s: Bad flags %d %d %d %d\n", __func__,
1101  			daifmt->bit_clk_inv, daifmt->frame_clk_inv,
1102  			daifmt->bit_clk_provider,
1103  			daifmt->frame_clk_provider);
1104  		return -EINVAL;
1105  	}
1106  
1107  	ret = tda998x_derive_routing(priv, &audio, AUDIO_ROUTE_I2S + spdif);
1108  	if (ret < 0)
1109  		return ret;
1110  
1111  	bclk_ratio = spdif ? 64 : params->sample_width * 2;
1112  	ret = tda998x_derive_cts_n(priv, &audio, bclk_ratio);
1113  	if (ret < 0)
1114  		return ret;
1115  
1116  	mutex_lock(&priv->audio_mutex);
1117  	priv->audio = audio;
1118  	if (priv->supports_infoframes && priv->sink_has_audio)
1119  		tda998x_configure_audio(priv);
1120  	mutex_unlock(&priv->audio_mutex);
1121  
1122  	return 0;
1123  }
1124  
tda998x_audio_shutdown(struct device * dev,void * data)1125  static void tda998x_audio_shutdown(struct device *dev, void *data)
1126  {
1127  	struct tda998x_priv *priv = dev_get_drvdata(dev);
1128  
1129  	mutex_lock(&priv->audio_mutex);
1130  
1131  	reg_write(priv, REG_ENA_AP, 0);
1132  	priv->audio.ena_ap = 0;
1133  
1134  	mutex_unlock(&priv->audio_mutex);
1135  }
1136  
tda998x_audio_mute_stream(struct device * dev,void * data,bool enable,int direction)1137  static int tda998x_audio_mute_stream(struct device *dev, void *data,
1138  				     bool enable, int direction)
1139  {
1140  	struct tda998x_priv *priv = dev_get_drvdata(dev);
1141  
1142  	mutex_lock(&priv->audio_mutex);
1143  
1144  	tda998x_audio_mute(priv, enable);
1145  
1146  	mutex_unlock(&priv->audio_mutex);
1147  	return 0;
1148  }
1149  
tda998x_audio_get_eld(struct device * dev,void * data,uint8_t * buf,size_t len)1150  static int tda998x_audio_get_eld(struct device *dev, void *data,
1151  				 uint8_t *buf, size_t len)
1152  {
1153  	struct tda998x_priv *priv = dev_get_drvdata(dev);
1154  
1155  	mutex_lock(&priv->audio_mutex);
1156  	memcpy(buf, priv->connector.eld,
1157  	       min(sizeof(priv->connector.eld), len));
1158  	mutex_unlock(&priv->audio_mutex);
1159  
1160  	return 0;
1161  }
1162  
1163  static const struct hdmi_codec_ops audio_codec_ops = {
1164  	.hw_params = tda998x_audio_hw_params,
1165  	.audio_shutdown = tda998x_audio_shutdown,
1166  	.mute_stream = tda998x_audio_mute_stream,
1167  	.get_eld = tda998x_audio_get_eld,
1168  	.no_capture_mute = 1,
1169  };
1170  
tda998x_audio_codec_init(struct tda998x_priv * priv,struct device * dev)1171  static int tda998x_audio_codec_init(struct tda998x_priv *priv,
1172  				    struct device *dev)
1173  {
1174  	struct hdmi_codec_pdata codec_data = {
1175  		.ops = &audio_codec_ops,
1176  		.max_i2s_channels = 2,
1177  	};
1178  
1179  	if (priv->audio_port_enable[AUDIO_ROUTE_I2S])
1180  		codec_data.i2s = 1;
1181  	if (priv->audio_port_enable[AUDIO_ROUTE_SPDIF])
1182  		codec_data.spdif = 1;
1183  
1184  	priv->audio_pdev = platform_device_register_data(
1185  		dev, HDMI_CODEC_DRV_NAME, PLATFORM_DEVID_AUTO,
1186  		&codec_data, sizeof(codec_data));
1187  
1188  	return PTR_ERR_OR_ZERO(priv->audio_pdev);
1189  }
1190  
1191  /* DRM connector functions */
1192  
1193  static enum drm_connector_status
tda998x_connector_detect(struct drm_connector * connector,bool force)1194  tda998x_connector_detect(struct drm_connector *connector, bool force)
1195  {
1196  	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1197  	u8 val = cec_read(priv, REG_CEC_RXSHPDLEV);
1198  
1199  	return (val & CEC_RXSHPDLEV_HPD) ? connector_status_connected :
1200  			connector_status_disconnected;
1201  }
1202  
tda998x_connector_destroy(struct drm_connector * connector)1203  static void tda998x_connector_destroy(struct drm_connector *connector)
1204  {
1205  	drm_connector_cleanup(connector);
1206  }
1207  
1208  static const struct drm_connector_funcs tda998x_connector_funcs = {
1209  	.reset = drm_atomic_helper_connector_reset,
1210  	.fill_modes = drm_helper_probe_single_connector_modes,
1211  	.detect = tda998x_connector_detect,
1212  	.destroy = tda998x_connector_destroy,
1213  	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
1214  	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
1215  };
1216  
read_edid_block(void * data,u8 * buf,unsigned int blk,size_t length)1217  static int read_edid_block(void *data, u8 *buf, unsigned int blk, size_t length)
1218  {
1219  	struct tda998x_priv *priv = data;
1220  	u8 offset, segptr;
1221  	int ret, i;
1222  
1223  	offset = (blk & 1) ? 128 : 0;
1224  	segptr = blk / 2;
1225  
1226  	mutex_lock(&priv->edid_mutex);
1227  
1228  	reg_write(priv, REG_DDC_ADDR, 0xa0);
1229  	reg_write(priv, REG_DDC_OFFS, offset);
1230  	reg_write(priv, REG_DDC_SEGM_ADDR, 0x60);
1231  	reg_write(priv, REG_DDC_SEGM, segptr);
1232  
1233  	/* enable reading EDID: */
1234  	priv->wq_edid_wait = 1;
1235  	reg_write(priv, REG_EDID_CTRL, 0x1);
1236  
1237  	/* flag must be cleared by sw: */
1238  	reg_write(priv, REG_EDID_CTRL, 0x0);
1239  
1240  	/* wait for block read to complete: */
1241  	if (priv->hdmi->irq) {
1242  		i = wait_event_timeout(priv->wq_edid,
1243  					!priv->wq_edid_wait,
1244  					msecs_to_jiffies(100));
1245  		if (i < 0) {
1246  			dev_err(&priv->hdmi->dev, "read edid wait err %d\n", i);
1247  			ret = i;
1248  			goto failed;
1249  		}
1250  	} else {
1251  		for (i = 100; i > 0; i--) {
1252  			msleep(1);
1253  			ret = reg_read(priv, REG_INT_FLAGS_2);
1254  			if (ret < 0)
1255  				goto failed;
1256  			if (ret & INT_FLAGS_2_EDID_BLK_RD)
1257  				break;
1258  		}
1259  	}
1260  
1261  	if (i == 0) {
1262  		dev_err(&priv->hdmi->dev, "read edid timeout\n");
1263  		ret = -ETIMEDOUT;
1264  		goto failed;
1265  	}
1266  
1267  	ret = reg_read_range(priv, REG_EDID_DATA_0, buf, length);
1268  	if (ret != length) {
1269  		dev_err(&priv->hdmi->dev, "failed to read edid block %d: %d\n",
1270  			blk, ret);
1271  		goto failed;
1272  	}
1273  
1274  	ret = 0;
1275  
1276   failed:
1277  	mutex_unlock(&priv->edid_mutex);
1278  	return ret;
1279  }
1280  
tda998x_connector_get_modes(struct drm_connector * connector)1281  static int tda998x_connector_get_modes(struct drm_connector *connector)
1282  {
1283  	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1284  	struct edid *edid;
1285  	int n;
1286  
1287  	/*
1288  	 * If we get killed while waiting for the HPD timeout, return
1289  	 * no modes found: we are not in a restartable path, so we
1290  	 * can't handle signals gracefully.
1291  	 */
1292  	if (tda998x_edid_delay_wait(priv))
1293  		return 0;
1294  
1295  	if (priv->rev == TDA19988)
1296  		reg_clear(priv, REG_TX4, TX4_PD_RAM);
1297  
1298  	edid = drm_do_get_edid(connector, read_edid_block, priv);
1299  
1300  	if (priv->rev == TDA19988)
1301  		reg_set(priv, REG_TX4, TX4_PD_RAM);
1302  
1303  	if (!edid) {
1304  		dev_warn(&priv->hdmi->dev, "failed to read EDID\n");
1305  		return 0;
1306  	}
1307  
1308  	drm_connector_update_edid_property(connector, edid);
1309  	cec_notifier_set_phys_addr_from_edid(priv->cec_notify, edid);
1310  
1311  	mutex_lock(&priv->audio_mutex);
1312  	n = drm_add_edid_modes(connector, edid);
1313  	priv->sink_has_audio = drm_detect_monitor_audio(edid);
1314  	mutex_unlock(&priv->audio_mutex);
1315  
1316  	kfree(edid);
1317  
1318  	return n;
1319  }
1320  
1321  static struct drm_encoder *
tda998x_connector_best_encoder(struct drm_connector * connector)1322  tda998x_connector_best_encoder(struct drm_connector *connector)
1323  {
1324  	struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1325  
1326  	return priv->bridge.encoder;
1327  }
1328  
1329  static
1330  const struct drm_connector_helper_funcs tda998x_connector_helper_funcs = {
1331  	.get_modes = tda998x_connector_get_modes,
1332  	.best_encoder = tda998x_connector_best_encoder,
1333  };
1334  
tda998x_connector_init(struct tda998x_priv * priv,struct drm_device * drm)1335  static int tda998x_connector_init(struct tda998x_priv *priv,
1336  				  struct drm_device *drm)
1337  {
1338  	struct drm_connector *connector = &priv->connector;
1339  	int ret;
1340  
1341  	connector->interlace_allowed = 1;
1342  
1343  	if (priv->hdmi->irq)
1344  		connector->polled = DRM_CONNECTOR_POLL_HPD;
1345  	else
1346  		connector->polled = DRM_CONNECTOR_POLL_CONNECT |
1347  			DRM_CONNECTOR_POLL_DISCONNECT;
1348  
1349  	drm_connector_helper_add(connector, &tda998x_connector_helper_funcs);
1350  	ret = drm_connector_init(drm, connector, &tda998x_connector_funcs,
1351  				 DRM_MODE_CONNECTOR_HDMIA);
1352  	if (ret)
1353  		return ret;
1354  
1355  	drm_connector_attach_encoder(&priv->connector,
1356  				     priv->bridge.encoder);
1357  
1358  	return 0;
1359  }
1360  
1361  /* DRM bridge functions */
1362  
tda998x_bridge_attach(struct drm_bridge * bridge,enum drm_bridge_attach_flags flags)1363  static int tda998x_bridge_attach(struct drm_bridge *bridge,
1364  				 enum drm_bridge_attach_flags flags)
1365  {
1366  	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1367  
1368  	if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR) {
1369  		DRM_ERROR("Fix bridge driver to make connector optional!");
1370  		return -EINVAL;
1371  	}
1372  
1373  	return tda998x_connector_init(priv, bridge->dev);
1374  }
1375  
tda998x_bridge_detach(struct drm_bridge * bridge)1376  static void tda998x_bridge_detach(struct drm_bridge *bridge)
1377  {
1378  	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1379  
1380  	drm_connector_cleanup(&priv->connector);
1381  }
1382  
tda998x_bridge_mode_valid(struct drm_bridge * bridge,const struct drm_display_info * info,const struct drm_display_mode * mode)1383  static enum drm_mode_status tda998x_bridge_mode_valid(struct drm_bridge *bridge,
1384  				     const struct drm_display_info *info,
1385  				     const struct drm_display_mode *mode)
1386  {
1387  	/* TDA19988 dotclock can go up to 165MHz */
1388  	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1389  
1390  	if (mode->clock > ((priv->rev == TDA19988) ? 165000 : 150000))
1391  		return MODE_CLOCK_HIGH;
1392  	if (mode->htotal >= BIT(13))
1393  		return MODE_BAD_HVALUE;
1394  	if (mode->vtotal >= BIT(11))
1395  		return MODE_BAD_VVALUE;
1396  	return MODE_OK;
1397  }
1398  
tda998x_bridge_enable(struct drm_bridge * bridge)1399  static void tda998x_bridge_enable(struct drm_bridge *bridge)
1400  {
1401  	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1402  
1403  	if (!priv->is_on) {
1404  		/* enable video ports, audio will be enabled later */
1405  		reg_write(priv, REG_ENA_VP_0, 0xff);
1406  		reg_write(priv, REG_ENA_VP_1, 0xff);
1407  		reg_write(priv, REG_ENA_VP_2, 0xff);
1408  		/* set muxing after enabling ports: */
1409  		reg_write(priv, REG_VIP_CNTRL_0, priv->vip_cntrl_0);
1410  		reg_write(priv, REG_VIP_CNTRL_1, priv->vip_cntrl_1);
1411  		reg_write(priv, REG_VIP_CNTRL_2, priv->vip_cntrl_2);
1412  
1413  		priv->is_on = true;
1414  	}
1415  }
1416  
tda998x_bridge_disable(struct drm_bridge * bridge)1417  static void tda998x_bridge_disable(struct drm_bridge *bridge)
1418  {
1419  	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1420  
1421  	if (priv->is_on) {
1422  		/* disable video ports */
1423  		reg_write(priv, REG_ENA_VP_0, 0x00);
1424  		reg_write(priv, REG_ENA_VP_1, 0x00);
1425  		reg_write(priv, REG_ENA_VP_2, 0x00);
1426  
1427  		priv->is_on = false;
1428  	}
1429  }
1430  
tda998x_bridge_mode_set(struct drm_bridge * bridge,const struct drm_display_mode * mode,const struct drm_display_mode * adjusted_mode)1431  static void tda998x_bridge_mode_set(struct drm_bridge *bridge,
1432  				    const struct drm_display_mode *mode,
1433  				    const struct drm_display_mode *adjusted_mode)
1434  {
1435  	struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1436  	unsigned long tmds_clock;
1437  	u16 ref_pix, ref_line, n_pix, n_line;
1438  	u16 hs_pix_s, hs_pix_e;
1439  	u16 vs1_pix_s, vs1_pix_e, vs1_line_s, vs1_line_e;
1440  	u16 vs2_pix_s, vs2_pix_e, vs2_line_s, vs2_line_e;
1441  	u16 vwin1_line_s, vwin1_line_e;
1442  	u16 vwin2_line_s, vwin2_line_e;
1443  	u16 de_pix_s, de_pix_e;
1444  	u8 reg, div, rep, sel_clk;
1445  
1446  	/*
1447  	 * Since we are "computer" like, our source invariably produces
1448  	 * full-range RGB.  If the monitor supports full-range, then use
1449  	 * it, otherwise reduce to limited-range.
1450  	 */
1451  	priv->rgb_quant_range =
1452  		priv->connector.display_info.rgb_quant_range_selectable ?
1453  		HDMI_QUANTIZATION_RANGE_FULL :
1454  		drm_default_rgb_quant_range(adjusted_mode);
1455  
1456  	/*
1457  	 * Internally TDA998x is using ITU-R BT.656 style sync but
1458  	 * we get VESA style sync. TDA998x is using a reference pixel
1459  	 * relative to ITU to sync to the input frame and for output
1460  	 * sync generation. Currently, we are using reference detection
1461  	 * from HS/VS, i.e. REFPIX/REFLINE denote frame start sync point
1462  	 * which is position of rising VS with coincident rising HS.
1463  	 *
1464  	 * Now there is some issues to take care of:
1465  	 * - HDMI data islands require sync-before-active
1466  	 * - TDA998x register values must be > 0 to be enabled
1467  	 * - REFLINE needs an additional offset of +1
1468  	 * - REFPIX needs an addtional offset of +1 for UYUV and +3 for RGB
1469  	 *
1470  	 * So we add +1 to all horizontal and vertical register values,
1471  	 * plus an additional +3 for REFPIX as we are using RGB input only.
1472  	 */
1473  	n_pix        = mode->htotal;
1474  	n_line       = mode->vtotal;
1475  
1476  	hs_pix_e     = mode->hsync_end - mode->hdisplay;
1477  	hs_pix_s     = mode->hsync_start - mode->hdisplay;
1478  	de_pix_e     = mode->htotal;
1479  	de_pix_s     = mode->htotal - mode->hdisplay;
1480  	ref_pix      = 3 + hs_pix_s;
1481  
1482  	/*
1483  	 * Attached LCD controllers may generate broken sync. Allow
1484  	 * those to adjust the position of the rising VS edge by adding
1485  	 * HSKEW to ref_pix.
1486  	 */
1487  	if (adjusted_mode->flags & DRM_MODE_FLAG_HSKEW)
1488  		ref_pix += adjusted_mode->hskew;
1489  
1490  	if ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0) {
1491  		ref_line     = 1 + mode->vsync_start - mode->vdisplay;
1492  		vwin1_line_s = mode->vtotal - mode->vdisplay - 1;
1493  		vwin1_line_e = vwin1_line_s + mode->vdisplay;
1494  		vs1_pix_s    = vs1_pix_e = hs_pix_s;
1495  		vs1_line_s   = mode->vsync_start - mode->vdisplay;
1496  		vs1_line_e   = vs1_line_s +
1497  			       mode->vsync_end - mode->vsync_start;
1498  		vwin2_line_s = vwin2_line_e = 0;
1499  		vs2_pix_s    = vs2_pix_e  = 0;
1500  		vs2_line_s   = vs2_line_e = 0;
1501  	} else {
1502  		ref_line     = 1 + (mode->vsync_start - mode->vdisplay)/2;
1503  		vwin1_line_s = (mode->vtotal - mode->vdisplay)/2;
1504  		vwin1_line_e = vwin1_line_s + mode->vdisplay/2;
1505  		vs1_pix_s    = vs1_pix_e = hs_pix_s;
1506  		vs1_line_s   = (mode->vsync_start - mode->vdisplay)/2;
1507  		vs1_line_e   = vs1_line_s +
1508  			       (mode->vsync_end - mode->vsync_start)/2;
1509  		vwin2_line_s = vwin1_line_s + mode->vtotal/2;
1510  		vwin2_line_e = vwin2_line_s + mode->vdisplay/2;
1511  		vs2_pix_s    = vs2_pix_e = hs_pix_s + mode->htotal/2;
1512  		vs2_line_s   = vs1_line_s + mode->vtotal/2 ;
1513  		vs2_line_e   = vs2_line_s +
1514  			       (mode->vsync_end - mode->vsync_start)/2;
1515  	}
1516  
1517  	/*
1518  	 * Select pixel repeat depending on the double-clock flag
1519  	 * (which means we have to repeat each pixel once.)
1520  	 */
1521  	rep = mode->flags & DRM_MODE_FLAG_DBLCLK ? 1 : 0;
1522  	sel_clk = SEL_CLK_ENA_SC_CLK | SEL_CLK_SEL_CLK1 |
1523  		  SEL_CLK_SEL_VRF_CLK(rep ? 2 : 0);
1524  
1525  	/* the TMDS clock is scaled up by the pixel repeat */
1526  	tmds_clock = mode->clock * (1 + rep);
1527  
1528  	/*
1529  	 * The divisor is power-of-2. The TDA9983B datasheet gives
1530  	 * this as ranges of Msample/s, which is 10x the TMDS clock:
1531  	 *   0 - 800 to 1500 Msample/s
1532  	 *   1 - 400 to 800 Msample/s
1533  	 *   2 - 200 to 400 Msample/s
1534  	 *   3 - as 2 above
1535  	 */
1536  	for (div = 0; div < 3; div++)
1537  		if (80000 >> div <= tmds_clock)
1538  			break;
1539  
1540  	mutex_lock(&priv->audio_mutex);
1541  
1542  	priv->tmds_clock = tmds_clock;
1543  
1544  	/* mute the audio FIFO: */
1545  	reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
1546  
1547  	/* set HDMI HDCP mode off: */
1548  	reg_write(priv, REG_TBG_CNTRL_1, TBG_CNTRL_1_DWIN_DIS);
1549  	reg_clear(priv, REG_TX33, TX33_HDMI);
1550  	reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(0));
1551  
1552  	/* no pre-filter or interpolator: */
1553  	reg_write(priv, REG_HVF_CNTRL_0, HVF_CNTRL_0_PREFIL(0) |
1554  			HVF_CNTRL_0_INTPOL(0));
1555  	reg_set(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_PREFILT);
1556  	reg_write(priv, REG_VIP_CNTRL_5, VIP_CNTRL_5_SP_CNT(0));
1557  	reg_write(priv, REG_VIP_CNTRL_4, VIP_CNTRL_4_BLANKIT(0) |
1558  			VIP_CNTRL_4_BLC(0));
1559  
1560  	reg_clear(priv, REG_PLL_SERIAL_1, PLL_SERIAL_1_SRL_MAN_IZ);
1561  	reg_clear(priv, REG_PLL_SERIAL_3, PLL_SERIAL_3_SRL_CCIR |
1562  					  PLL_SERIAL_3_SRL_DE);
1563  	reg_write(priv, REG_SERIALIZER, 0);
1564  	reg_write(priv, REG_HVF_CNTRL_1, HVF_CNTRL_1_VQR(0));
1565  
1566  	reg_write(priv, REG_RPT_CNTRL, RPT_CNTRL_REPEAT(rep));
1567  	reg_write(priv, REG_SEL_CLK, sel_clk);
1568  	reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(div) |
1569  			PLL_SERIAL_2_SRL_PR(rep));
1570  
1571  	/* set color matrix according to output rgb quant range */
1572  	if (priv->rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED) {
1573  		static u8 tda998x_full_to_limited_range[] = {
1574  			MAT_CONTRL_MAT_SC(2),
1575  			0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1576  			0x03, 0x6f, 0x00, 0x00, 0x00, 0x00,
1577  			0x00, 0x00, 0x03, 0x6f, 0x00, 0x00,
1578  			0x00, 0x00, 0x00, 0x00, 0x03, 0x6f,
1579  			0x00, 0x40, 0x00, 0x40, 0x00, 0x40
1580  		};
1581  		reg_clear(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_CSC);
1582  		reg_write_range(priv, REG_MAT_CONTRL,
1583  				tda998x_full_to_limited_range,
1584  				sizeof(tda998x_full_to_limited_range));
1585  	} else {
1586  		reg_write(priv, REG_MAT_CONTRL, MAT_CONTRL_MAT_BP |
1587  					MAT_CONTRL_MAT_SC(1));
1588  		reg_set(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_CSC);
1589  	}
1590  
1591  	/* set BIAS tmds value: */
1592  	reg_write(priv, REG_ANA_GENERAL, 0x09);
1593  
1594  	/*
1595  	 * Sync on rising HSYNC/VSYNC
1596  	 */
1597  	reg = VIP_CNTRL_3_SYNC_HS;
1598  
1599  	/*
1600  	 * TDA19988 requires high-active sync at input stage,
1601  	 * so invert low-active sync provided by master encoder here
1602  	 */
1603  	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1604  		reg |= VIP_CNTRL_3_H_TGL;
1605  	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1606  		reg |= VIP_CNTRL_3_V_TGL;
1607  	reg_write(priv, REG_VIP_CNTRL_3, reg);
1608  
1609  	reg_write(priv, REG_VIDFORMAT, 0x00);
1610  	reg_write16(priv, REG_REFPIX_MSB, ref_pix);
1611  	reg_write16(priv, REG_REFLINE_MSB, ref_line);
1612  	reg_write16(priv, REG_NPIX_MSB, n_pix);
1613  	reg_write16(priv, REG_NLINE_MSB, n_line);
1614  	reg_write16(priv, REG_VS_LINE_STRT_1_MSB, vs1_line_s);
1615  	reg_write16(priv, REG_VS_PIX_STRT_1_MSB, vs1_pix_s);
1616  	reg_write16(priv, REG_VS_LINE_END_1_MSB, vs1_line_e);
1617  	reg_write16(priv, REG_VS_PIX_END_1_MSB, vs1_pix_e);
1618  	reg_write16(priv, REG_VS_LINE_STRT_2_MSB, vs2_line_s);
1619  	reg_write16(priv, REG_VS_PIX_STRT_2_MSB, vs2_pix_s);
1620  	reg_write16(priv, REG_VS_LINE_END_2_MSB, vs2_line_e);
1621  	reg_write16(priv, REG_VS_PIX_END_2_MSB, vs2_pix_e);
1622  	reg_write16(priv, REG_HS_PIX_START_MSB, hs_pix_s);
1623  	reg_write16(priv, REG_HS_PIX_STOP_MSB, hs_pix_e);
1624  	reg_write16(priv, REG_VWIN_START_1_MSB, vwin1_line_s);
1625  	reg_write16(priv, REG_VWIN_END_1_MSB, vwin1_line_e);
1626  	reg_write16(priv, REG_VWIN_START_2_MSB, vwin2_line_s);
1627  	reg_write16(priv, REG_VWIN_END_2_MSB, vwin2_line_e);
1628  	reg_write16(priv, REG_DE_START_MSB, de_pix_s);
1629  	reg_write16(priv, REG_DE_STOP_MSB, de_pix_e);
1630  
1631  	if (priv->rev == TDA19988) {
1632  		/* let incoming pixels fill the active space (if any) */
1633  		reg_write(priv, REG_ENABLE_SPACE, 0x00);
1634  	}
1635  
1636  	/*
1637  	 * Always generate sync polarity relative to input sync and
1638  	 * revert input stage toggled sync at output stage
1639  	 */
1640  	reg = TBG_CNTRL_1_DWIN_DIS | TBG_CNTRL_1_TGL_EN;
1641  	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1642  		reg |= TBG_CNTRL_1_H_TGL;
1643  	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1644  		reg |= TBG_CNTRL_1_V_TGL;
1645  	reg_write(priv, REG_TBG_CNTRL_1, reg);
1646  
1647  	/* must be last register set: */
1648  	reg_write(priv, REG_TBG_CNTRL_0, 0);
1649  
1650  	/* CEA-861B section 6 says that:
1651  	 * CEA version 1 (CEA-861) has no support for infoframes.
1652  	 * CEA version 2 (CEA-861A) supports version 1 AVI infoframes,
1653  	 * and optional basic audio.
1654  	 * CEA version 3 (CEA-861B) supports version 1 and 2 AVI infoframes,
1655  	 * and optional digital audio, with audio infoframes.
1656  	 *
1657  	 * Since we only support generation of version 2 AVI infoframes,
1658  	 * ignore CEA version 2 and below (iow, behave as if we're a
1659  	 * CEA-861 source.)
1660  	 */
1661  	priv->supports_infoframes = priv->connector.display_info.cea_rev >= 3;
1662  
1663  	if (priv->supports_infoframes) {
1664  		/* We need to turn HDMI HDCP stuff on to get audio through */
1665  		reg &= ~TBG_CNTRL_1_DWIN_DIS;
1666  		reg_write(priv, REG_TBG_CNTRL_1, reg);
1667  		reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(1));
1668  		reg_set(priv, REG_TX33, TX33_HDMI);
1669  
1670  		tda998x_write_avi(priv, adjusted_mode);
1671  		tda998x_write_vsi(priv, adjusted_mode);
1672  
1673  		if (priv->sink_has_audio)
1674  			tda998x_configure_audio(priv);
1675  	}
1676  
1677  	mutex_unlock(&priv->audio_mutex);
1678  }
1679  
1680  static const struct drm_bridge_funcs tda998x_bridge_funcs = {
1681  	.attach = tda998x_bridge_attach,
1682  	.detach = tda998x_bridge_detach,
1683  	.mode_valid = tda998x_bridge_mode_valid,
1684  	.disable = tda998x_bridge_disable,
1685  	.mode_set = tda998x_bridge_mode_set,
1686  	.enable = tda998x_bridge_enable,
1687  };
1688  
1689  /* I2C driver functions */
1690  
tda998x_get_audio_ports(struct tda998x_priv * priv,struct device_node * np)1691  static int tda998x_get_audio_ports(struct tda998x_priv *priv,
1692  				   struct device_node *np)
1693  {
1694  	const u32 *port_data;
1695  	u32 size;
1696  	int i;
1697  
1698  	port_data = of_get_property(np, "audio-ports", &size);
1699  	if (!port_data)
1700  		return 0;
1701  
1702  	size /= sizeof(u32);
1703  	if (size > 2 * ARRAY_SIZE(priv->audio_port_enable) || size % 2 != 0) {
1704  		dev_err(&priv->hdmi->dev,
1705  			"Bad number of elements in audio-ports dt-property\n");
1706  		return -EINVAL;
1707  	}
1708  
1709  	size /= 2;
1710  
1711  	for (i = 0; i < size; i++) {
1712  		unsigned int route;
1713  		u8 afmt = be32_to_cpup(&port_data[2*i]);
1714  		u8 ena_ap = be32_to_cpup(&port_data[2*i+1]);
1715  
1716  		switch (afmt) {
1717  		case AFMT_I2S:
1718  			route = AUDIO_ROUTE_I2S;
1719  			break;
1720  		case AFMT_SPDIF:
1721  			route = AUDIO_ROUTE_SPDIF;
1722  			break;
1723  		default:
1724  			dev_err(&priv->hdmi->dev,
1725  				"Bad audio format %u\n", afmt);
1726  			return -EINVAL;
1727  		}
1728  
1729  		if (!ena_ap) {
1730  			dev_err(&priv->hdmi->dev, "invalid zero port config\n");
1731  			continue;
1732  		}
1733  
1734  		if (priv->audio_port_enable[route]) {
1735  			dev_err(&priv->hdmi->dev,
1736  				"%s format already configured\n",
1737  				route == AUDIO_ROUTE_SPDIF ? "SPDIF" : "I2S");
1738  			return -EINVAL;
1739  		}
1740  
1741  		priv->audio_port_enable[route] = ena_ap;
1742  	}
1743  	return 0;
1744  }
1745  
tda998x_set_config(struct tda998x_priv * priv,const struct tda998x_encoder_params * p)1746  static int tda998x_set_config(struct tda998x_priv *priv,
1747  			      const struct tda998x_encoder_params *p)
1748  {
1749  	priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(p->swap_a) |
1750  			    (p->mirr_a ? VIP_CNTRL_0_MIRR_A : 0) |
1751  			    VIP_CNTRL_0_SWAP_B(p->swap_b) |
1752  			    (p->mirr_b ? VIP_CNTRL_0_MIRR_B : 0);
1753  	priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(p->swap_c) |
1754  			    (p->mirr_c ? VIP_CNTRL_1_MIRR_C : 0) |
1755  			    VIP_CNTRL_1_SWAP_D(p->swap_d) |
1756  			    (p->mirr_d ? VIP_CNTRL_1_MIRR_D : 0);
1757  	priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(p->swap_e) |
1758  			    (p->mirr_e ? VIP_CNTRL_2_MIRR_E : 0) |
1759  			    VIP_CNTRL_2_SWAP_F(p->swap_f) |
1760  			    (p->mirr_f ? VIP_CNTRL_2_MIRR_F : 0);
1761  
1762  	if (p->audio_params.format != AFMT_UNUSED) {
1763  		unsigned int ratio, route;
1764  		bool spdif = p->audio_params.format == AFMT_SPDIF;
1765  
1766  		route = AUDIO_ROUTE_I2S + spdif;
1767  
1768  		priv->audio.route = &tda998x_audio_route[route];
1769  		priv->audio.cea = p->audio_params.cea;
1770  		priv->audio.sample_rate = p->audio_params.sample_rate;
1771  		memcpy(priv->audio.status, p->audio_params.status,
1772  		       min(sizeof(priv->audio.status),
1773  			   sizeof(p->audio_params.status)));
1774  		priv->audio.ena_ap = p->audio_params.config;
1775  		priv->audio.i2s_format = I2S_FORMAT_PHILIPS;
1776  
1777  		ratio = spdif ? 64 : p->audio_params.sample_width * 2;
1778  		return tda998x_derive_cts_n(priv, &priv->audio, ratio);
1779  	}
1780  
1781  	return 0;
1782  }
1783  
tda998x_destroy(struct device * dev)1784  static void tda998x_destroy(struct device *dev)
1785  {
1786  	struct tda998x_priv *priv = dev_get_drvdata(dev);
1787  
1788  	drm_bridge_remove(&priv->bridge);
1789  
1790  	/* disable all IRQs and free the IRQ handler */
1791  	cec_write(priv, REG_CEC_RXSHPDINTENA, 0);
1792  	reg_clear(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1793  
1794  	if (priv->audio_pdev)
1795  		platform_device_unregister(priv->audio_pdev);
1796  
1797  	if (priv->hdmi->irq)
1798  		free_irq(priv->hdmi->irq, priv);
1799  
1800  	del_timer_sync(&priv->edid_delay_timer);
1801  	cancel_work_sync(&priv->detect_work);
1802  
1803  	i2c_unregister_device(priv->cec);
1804  
1805  	cec_notifier_conn_unregister(priv->cec_notify);
1806  }
1807  
tda998x_create(struct device * dev)1808  static int tda998x_create(struct device *dev)
1809  {
1810  	struct i2c_client *client = to_i2c_client(dev);
1811  	struct device_node *np = client->dev.of_node;
1812  	struct i2c_board_info cec_info;
1813  	struct tda998x_priv *priv;
1814  	u32 video;
1815  	int rev_lo, rev_hi, ret;
1816  
1817  	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
1818  	if (!priv)
1819  		return -ENOMEM;
1820  
1821  	dev_set_drvdata(dev, priv);
1822  
1823  	mutex_init(&priv->mutex);	/* protect the page access */
1824  	mutex_init(&priv->audio_mutex); /* protect access from audio thread */
1825  	mutex_init(&priv->edid_mutex);
1826  	INIT_LIST_HEAD(&priv->bridge.list);
1827  	init_waitqueue_head(&priv->edid_delay_waitq);
1828  	timer_setup(&priv->edid_delay_timer, tda998x_edid_delay_done, 0);
1829  	INIT_WORK(&priv->detect_work, tda998x_detect_work);
1830  
1831  	priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(2) | VIP_CNTRL_0_SWAP_B(3);
1832  	priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(0) | VIP_CNTRL_1_SWAP_D(1);
1833  	priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(4) | VIP_CNTRL_2_SWAP_F(5);
1834  
1835  	/* CEC I2C address bound to TDA998x I2C addr by configuration pins */
1836  	priv->cec_addr = 0x34 + (client->addr & 0x03);
1837  	priv->current_page = 0xff;
1838  	priv->hdmi = client;
1839  
1840  	/* wake up the device: */
1841  	cec_write(priv, REG_CEC_ENAMODS,
1842  			CEC_ENAMODS_EN_RXSENS | CEC_ENAMODS_EN_HDMI);
1843  
1844  	tda998x_reset(priv);
1845  
1846  	/* read version: */
1847  	rev_lo = reg_read(priv, REG_VERSION_LSB);
1848  	if (rev_lo < 0) {
1849  		dev_err(dev, "failed to read version: %d\n", rev_lo);
1850  		return rev_lo;
1851  	}
1852  
1853  	rev_hi = reg_read(priv, REG_VERSION_MSB);
1854  	if (rev_hi < 0) {
1855  		dev_err(dev, "failed to read version: %d\n", rev_hi);
1856  		return rev_hi;
1857  	}
1858  
1859  	priv->rev = rev_lo | rev_hi << 8;
1860  
1861  	/* mask off feature bits: */
1862  	priv->rev &= ~0x30; /* not-hdcp and not-scalar bit */
1863  
1864  	switch (priv->rev) {
1865  	case TDA9989N2:
1866  		dev_info(dev, "found TDA9989 n2");
1867  		break;
1868  	case TDA19989:
1869  		dev_info(dev, "found TDA19989");
1870  		break;
1871  	case TDA19989N2:
1872  		dev_info(dev, "found TDA19989 n2");
1873  		break;
1874  	case TDA19988:
1875  		dev_info(dev, "found TDA19988");
1876  		break;
1877  	default:
1878  		dev_err(dev, "found unsupported device: %04x\n", priv->rev);
1879  		return -ENXIO;
1880  	}
1881  
1882  	/* after reset, enable DDC: */
1883  	reg_write(priv, REG_DDC_DISABLE, 0x00);
1884  
1885  	/* set clock on DDC channel: */
1886  	reg_write(priv, REG_TX3, 39);
1887  
1888  	/* if necessary, disable multi-master: */
1889  	if (priv->rev == TDA19989)
1890  		reg_set(priv, REG_I2C_MASTER, I2C_MASTER_DIS_MM);
1891  
1892  	cec_write(priv, REG_CEC_FRO_IM_CLK_CTRL,
1893  			CEC_FRO_IM_CLK_CTRL_GHOST_DIS | CEC_FRO_IM_CLK_CTRL_IMCLK_SEL);
1894  
1895  	/* ensure interrupts are disabled */
1896  	cec_write(priv, REG_CEC_RXSHPDINTENA, 0);
1897  
1898  	/* clear pending interrupts */
1899  	cec_read(priv, REG_CEC_RXSHPDINT);
1900  	reg_read(priv, REG_INT_FLAGS_0);
1901  	reg_read(priv, REG_INT_FLAGS_1);
1902  	reg_read(priv, REG_INT_FLAGS_2);
1903  
1904  	/* initialize the optional IRQ */
1905  	if (client->irq) {
1906  		unsigned long irq_flags;
1907  
1908  		/* init read EDID waitqueue and HDP work */
1909  		init_waitqueue_head(&priv->wq_edid);
1910  
1911  		irq_flags =
1912  			irqd_get_trigger_type(irq_get_irq_data(client->irq));
1913  
1914  		priv->cec_glue.irq_flags = irq_flags;
1915  
1916  		irq_flags |= IRQF_SHARED | IRQF_ONESHOT;
1917  		ret = request_threaded_irq(client->irq, NULL,
1918  					   tda998x_irq_thread, irq_flags,
1919  					   "tda998x", priv);
1920  		if (ret) {
1921  			dev_err(dev, "failed to request IRQ#%u: %d\n",
1922  				client->irq, ret);
1923  			goto err_irq;
1924  		}
1925  
1926  		/* enable HPD irq */
1927  		cec_write(priv, REG_CEC_RXSHPDINTENA, CEC_RXSHPDLEV_HPD);
1928  	}
1929  
1930  	priv->cec_notify = cec_notifier_conn_register(dev, NULL, NULL);
1931  	if (!priv->cec_notify) {
1932  		ret = -ENOMEM;
1933  		goto fail;
1934  	}
1935  
1936  	priv->cec_glue.parent = dev;
1937  	priv->cec_glue.data = priv;
1938  	priv->cec_glue.init = tda998x_cec_hook_init;
1939  	priv->cec_glue.exit = tda998x_cec_hook_exit;
1940  	priv->cec_glue.open = tda998x_cec_hook_open;
1941  	priv->cec_glue.release = tda998x_cec_hook_release;
1942  
1943  	/*
1944  	 * Some TDA998x are actually two I2C devices merged onto one piece
1945  	 * of silicon: TDA9989 and TDA19989 combine the HDMI transmitter
1946  	 * with a slightly modified TDA9950 CEC device.  The CEC device
1947  	 * is at the TDA9950 address, with the address pins strapped across
1948  	 * to the TDA998x address pins.  Hence, it always has the same
1949  	 * offset.
1950  	 */
1951  	memset(&cec_info, 0, sizeof(cec_info));
1952  	strlcpy(cec_info.type, "tda9950", sizeof(cec_info.type));
1953  	cec_info.addr = priv->cec_addr;
1954  	cec_info.platform_data = &priv->cec_glue;
1955  	cec_info.irq = client->irq;
1956  
1957  	priv->cec = i2c_new_client_device(client->adapter, &cec_info);
1958  	if (IS_ERR(priv->cec)) {
1959  		ret = PTR_ERR(priv->cec);
1960  		goto fail;
1961  	}
1962  
1963  	/* enable EDID read irq: */
1964  	reg_set(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1965  
1966  	if (np) {
1967  		/* get the device tree parameters */
1968  		ret = of_property_read_u32(np, "video-ports", &video);
1969  		if (ret == 0) {
1970  			priv->vip_cntrl_0 = video >> 16;
1971  			priv->vip_cntrl_1 = video >> 8;
1972  			priv->vip_cntrl_2 = video;
1973  		}
1974  
1975  		ret = tda998x_get_audio_ports(priv, np);
1976  		if (ret)
1977  			goto fail;
1978  
1979  		if (priv->audio_port_enable[AUDIO_ROUTE_I2S] ||
1980  		    priv->audio_port_enable[AUDIO_ROUTE_SPDIF])
1981  			tda998x_audio_codec_init(priv, &client->dev);
1982  	} else if (dev->platform_data) {
1983  		ret = tda998x_set_config(priv, dev->platform_data);
1984  		if (ret)
1985  			goto fail;
1986  	}
1987  
1988  	priv->bridge.funcs = &tda998x_bridge_funcs;
1989  #ifdef CONFIG_OF
1990  	priv->bridge.of_node = dev->of_node;
1991  #endif
1992  
1993  	drm_bridge_add(&priv->bridge);
1994  
1995  	return 0;
1996  
1997  fail:
1998  	tda998x_destroy(dev);
1999  err_irq:
2000  	return ret;
2001  }
2002  
2003  /* DRM encoder functions */
2004  
tda998x_encoder_init(struct device * dev,struct drm_device * drm)2005  static int tda998x_encoder_init(struct device *dev, struct drm_device *drm)
2006  {
2007  	struct tda998x_priv *priv = dev_get_drvdata(dev);
2008  	u32 crtcs = 0;
2009  	int ret;
2010  
2011  	if (dev->of_node)
2012  		crtcs = drm_of_find_possible_crtcs(drm, dev->of_node);
2013  
2014  	/* If no CRTCs were found, fall back to our old behaviour */
2015  	if (crtcs == 0) {
2016  		dev_warn(dev, "Falling back to first CRTC\n");
2017  		crtcs = 1 << 0;
2018  	}
2019  
2020  	priv->encoder.possible_crtcs = crtcs;
2021  
2022  	ret = drm_simple_encoder_init(drm, &priv->encoder,
2023  				      DRM_MODE_ENCODER_TMDS);
2024  	if (ret)
2025  		goto err_encoder;
2026  
2027  	ret = drm_bridge_attach(&priv->encoder, &priv->bridge, NULL, 0);
2028  	if (ret)
2029  		goto err_bridge;
2030  
2031  	return 0;
2032  
2033  err_bridge:
2034  	drm_encoder_cleanup(&priv->encoder);
2035  err_encoder:
2036  	return ret;
2037  }
2038  
tda998x_bind(struct device * dev,struct device * master,void * data)2039  static int tda998x_bind(struct device *dev, struct device *master, void *data)
2040  {
2041  	struct drm_device *drm = data;
2042  
2043  	return tda998x_encoder_init(dev, drm);
2044  }
2045  
tda998x_unbind(struct device * dev,struct device * master,void * data)2046  static void tda998x_unbind(struct device *dev, struct device *master,
2047  			   void *data)
2048  {
2049  	struct tda998x_priv *priv = dev_get_drvdata(dev);
2050  
2051  	drm_encoder_cleanup(&priv->encoder);
2052  }
2053  
2054  static const struct component_ops tda998x_ops = {
2055  	.bind = tda998x_bind,
2056  	.unbind = tda998x_unbind,
2057  };
2058  
2059  static int
tda998x_probe(struct i2c_client * client,const struct i2c_device_id * id)2060  tda998x_probe(struct i2c_client *client, const struct i2c_device_id *id)
2061  {
2062  	int ret;
2063  
2064  	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
2065  		dev_warn(&client->dev, "adapter does not support I2C\n");
2066  		return -EIO;
2067  	}
2068  
2069  	ret = tda998x_create(&client->dev);
2070  	if (ret)
2071  		return ret;
2072  
2073  	ret = component_add(&client->dev, &tda998x_ops);
2074  	if (ret)
2075  		tda998x_destroy(&client->dev);
2076  	return ret;
2077  }
2078  
tda998x_remove(struct i2c_client * client)2079  static void tda998x_remove(struct i2c_client *client)
2080  {
2081  	component_del(&client->dev, &tda998x_ops);
2082  	tda998x_destroy(&client->dev);
2083  }
2084  
2085  #ifdef CONFIG_OF
2086  static const struct of_device_id tda998x_dt_ids[] = {
2087  	{ .compatible = "nxp,tda998x", },
2088  	{ }
2089  };
2090  MODULE_DEVICE_TABLE(of, tda998x_dt_ids);
2091  #endif
2092  
2093  static const struct i2c_device_id tda998x_ids[] = {
2094  	{ "tda998x", 0 },
2095  	{ }
2096  };
2097  MODULE_DEVICE_TABLE(i2c, tda998x_ids);
2098  
2099  static struct i2c_driver tda998x_driver = {
2100  	.probe = tda998x_probe,
2101  	.remove = tda998x_remove,
2102  	.driver = {
2103  		.name = "tda998x",
2104  		.of_match_table = of_match_ptr(tda998x_dt_ids),
2105  	},
2106  	.id_table = tda998x_ids,
2107  };
2108  
2109  module_i2c_driver(tda998x_driver);
2110  
2111  MODULE_AUTHOR("Rob Clark <robdclark@gmail.com");
2112  MODULE_DESCRIPTION("NXP Semiconductors TDA998X HDMI Encoder");
2113  MODULE_LICENSE("GPL");
2114