1 /*
2 * Intel 5400 class Memory Controllers kernel module (Seaburg)
3 *
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Copyright (c) 2008 by:
8 * Ben Woodard <woodard@redhat.com>
9 * Mauro Carvalho Chehab
10 *
11 * Red Hat Inc. https://www.redhat.com
12 *
13 * Forked and adapted from the i5000_edac driver which was
14 * written by Douglas Thompson Linux Networx <norsk5@xmission.com>
15 *
16 * This module is based on the following document:
17 *
18 * Intel 5400 Chipset Memory Controller Hub (MCH) - Datasheet
19 * http://developer.intel.com/design/chipsets/datashts/313070.htm
20 *
21 * This Memory Controller manages DDR2 FB-DIMMs. It has 2 branches, each with
22 * 2 channels operating in lockstep no-mirror mode. Each channel can have up to
23 * 4 dimm's, each with up to 8GB.
24 *
25 */
26
27 #include <linux/module.h>
28 #include <linux/init.h>
29 #include <linux/pci.h>
30 #include <linux/pci_ids.h>
31 #include <linux/slab.h>
32 #include <linux/edac.h>
33 #include <linux/mmzone.h>
34
35 #include "edac_module.h"
36
37 /*
38 * Alter this version for the I5400 module when modifications are made
39 */
40 #define I5400_REVISION " Ver: 1.0.0"
41
42 #define EDAC_MOD_STR "i5400_edac"
43
44 #define i5400_printk(level, fmt, arg...) \
45 edac_printk(level, "i5400", fmt, ##arg)
46
47 #define i5400_mc_printk(mci, level, fmt, arg...) \
48 edac_mc_chipset_printk(mci, level, "i5400", fmt, ##arg)
49
50 /* Limits for i5400 */
51 #define MAX_BRANCHES 2
52 #define CHANNELS_PER_BRANCH 2
53 #define DIMMS_PER_CHANNEL 4
54 #define MAX_CHANNELS (MAX_BRANCHES * CHANNELS_PER_BRANCH)
55
56 /* Device 16,
57 * Function 0: System Address
58 * Function 1: Memory Branch Map, Control, Errors Register
59 * Function 2: FSB Error Registers
60 *
61 * All 3 functions of Device 16 (0,1,2) share the SAME DID and
62 * uses PCI_DEVICE_ID_INTEL_5400_ERR for device 16 (0,1,2),
63 * PCI_DEVICE_ID_INTEL_5400_FBD0 and PCI_DEVICE_ID_INTEL_5400_FBD1
64 * for device 21 (0,1).
65 */
66
67 /* OFFSETS for Function 0 */
68 #define AMBASE 0x48 /* AMB Mem Mapped Reg Region Base */
69 #define MAXCH 0x56 /* Max Channel Number */
70 #define MAXDIMMPERCH 0x57 /* Max DIMM PER Channel Number */
71
72 /* OFFSETS for Function 1 */
73 #define TOLM 0x6C
74 #define REDMEMB 0x7C
75 #define REC_ECC_LOCATOR_ODD(x) ((x) & 0x3fe00) /* bits [17:9] indicate ODD, [8:0] indicate EVEN */
76 #define MIR0 0x80
77 #define MIR1 0x84
78 #define AMIR0 0x8c
79 #define AMIR1 0x90
80
81 /* Fatal error registers */
82 #define FERR_FAT_FBD 0x98 /* also called as FERR_FAT_FB_DIMM at datasheet */
83 #define FERR_FAT_FBDCHAN (3<<28) /* channel index where the highest-order error occurred */
84
85 #define NERR_FAT_FBD 0x9c
86 #define FERR_NF_FBD 0xa0 /* also called as FERR_NFAT_FB_DIMM at datasheet */
87
88 /* Non-fatal error register */
89 #define NERR_NF_FBD 0xa4
90
91 /* Enable error mask */
92 #define EMASK_FBD 0xa8
93
94 #define ERR0_FBD 0xac
95 #define ERR1_FBD 0xb0
96 #define ERR2_FBD 0xb4
97 #define MCERR_FBD 0xb8
98
99 /* No OFFSETS for Device 16 Function 2 */
100
101 /*
102 * Device 21,
103 * Function 0: Memory Map Branch 0
104 *
105 * Device 22,
106 * Function 0: Memory Map Branch 1
107 */
108
109 /* OFFSETS for Function 0 */
110 #define AMBPRESENT_0 0x64
111 #define AMBPRESENT_1 0x66
112 #define MTR0 0x80
113 #define MTR1 0x82
114 #define MTR2 0x84
115 #define MTR3 0x86
116
117 /* OFFSETS for Function 1 */
118 #define NRECFGLOG 0x74
119 #define RECFGLOG 0x78
120 #define NRECMEMA 0xbe
121 #define NRECMEMB 0xc0
122 #define NRECFB_DIMMA 0xc4
123 #define NRECFB_DIMMB 0xc8
124 #define NRECFB_DIMMC 0xcc
125 #define NRECFB_DIMMD 0xd0
126 #define NRECFB_DIMME 0xd4
127 #define NRECFB_DIMMF 0xd8
128 #define REDMEMA 0xdC
129 #define RECMEMA 0xf0
130 #define RECMEMB 0xf4
131 #define RECFB_DIMMA 0xf8
132 #define RECFB_DIMMB 0xec
133 #define RECFB_DIMMC 0xf0
134 #define RECFB_DIMMD 0xf4
135 #define RECFB_DIMME 0xf8
136 #define RECFB_DIMMF 0xfC
137
138 /*
139 * Error indicator bits and masks
140 * Error masks are according with Table 5-17 of i5400 datasheet
141 */
142
143 enum error_mask {
144 EMASK_M1 = 1<<0, /* Memory Write error on non-redundant retry */
145 EMASK_M2 = 1<<1, /* Memory or FB-DIMM configuration CRC read error */
146 EMASK_M3 = 1<<2, /* Reserved */
147 EMASK_M4 = 1<<3, /* Uncorrectable Data ECC on Replay */
148 EMASK_M5 = 1<<4, /* Aliased Uncorrectable Non-Mirrored Demand Data ECC */
149 EMASK_M6 = 1<<5, /* Unsupported on i5400 */
150 EMASK_M7 = 1<<6, /* Aliased Uncorrectable Resilver- or Spare-Copy Data ECC */
151 EMASK_M8 = 1<<7, /* Aliased Uncorrectable Patrol Data ECC */
152 EMASK_M9 = 1<<8, /* Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC */
153 EMASK_M10 = 1<<9, /* Unsupported on i5400 */
154 EMASK_M11 = 1<<10, /* Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC */
155 EMASK_M12 = 1<<11, /* Non-Aliased Uncorrectable Patrol Data ECC */
156 EMASK_M13 = 1<<12, /* Memory Write error on first attempt */
157 EMASK_M14 = 1<<13, /* FB-DIMM Configuration Write error on first attempt */
158 EMASK_M15 = 1<<14, /* Memory or FB-DIMM configuration CRC read error */
159 EMASK_M16 = 1<<15, /* Channel Failed-Over Occurred */
160 EMASK_M17 = 1<<16, /* Correctable Non-Mirrored Demand Data ECC */
161 EMASK_M18 = 1<<17, /* Unsupported on i5400 */
162 EMASK_M19 = 1<<18, /* Correctable Resilver- or Spare-Copy Data ECC */
163 EMASK_M20 = 1<<19, /* Correctable Patrol Data ECC */
164 EMASK_M21 = 1<<20, /* FB-DIMM Northbound parity error on FB-DIMM Sync Status */
165 EMASK_M22 = 1<<21, /* SPD protocol Error */
166 EMASK_M23 = 1<<22, /* Non-Redundant Fast Reset Timeout */
167 EMASK_M24 = 1<<23, /* Refresh error */
168 EMASK_M25 = 1<<24, /* Memory Write error on redundant retry */
169 EMASK_M26 = 1<<25, /* Redundant Fast Reset Timeout */
170 EMASK_M27 = 1<<26, /* Correctable Counter Threshold Exceeded */
171 EMASK_M28 = 1<<27, /* DIMM-Spare Copy Completed */
172 EMASK_M29 = 1<<28, /* DIMM-Isolation Completed */
173 };
174
175 /*
176 * Names to translate bit error into something useful
177 */
178 static const char *error_name[] = {
179 [0] = "Memory Write error on non-redundant retry",
180 [1] = "Memory or FB-DIMM configuration CRC read error",
181 /* Reserved */
182 [3] = "Uncorrectable Data ECC on Replay",
183 [4] = "Aliased Uncorrectable Non-Mirrored Demand Data ECC",
184 /* M6 Unsupported on i5400 */
185 [6] = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
186 [7] = "Aliased Uncorrectable Patrol Data ECC",
187 [8] = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC",
188 /* M10 Unsupported on i5400 */
189 [10] = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
190 [11] = "Non-Aliased Uncorrectable Patrol Data ECC",
191 [12] = "Memory Write error on first attempt",
192 [13] = "FB-DIMM Configuration Write error on first attempt",
193 [14] = "Memory or FB-DIMM configuration CRC read error",
194 [15] = "Channel Failed-Over Occurred",
195 [16] = "Correctable Non-Mirrored Demand Data ECC",
196 /* M18 Unsupported on i5400 */
197 [18] = "Correctable Resilver- or Spare-Copy Data ECC",
198 [19] = "Correctable Patrol Data ECC",
199 [20] = "FB-DIMM Northbound parity error on FB-DIMM Sync Status",
200 [21] = "SPD protocol Error",
201 [22] = "Non-Redundant Fast Reset Timeout",
202 [23] = "Refresh error",
203 [24] = "Memory Write error on redundant retry",
204 [25] = "Redundant Fast Reset Timeout",
205 [26] = "Correctable Counter Threshold Exceeded",
206 [27] = "DIMM-Spare Copy Completed",
207 [28] = "DIMM-Isolation Completed",
208 };
209
210 /* Fatal errors */
211 #define ERROR_FAT_MASK (EMASK_M1 | \
212 EMASK_M2 | \
213 EMASK_M23)
214
215 /* Correctable errors */
216 #define ERROR_NF_CORRECTABLE (EMASK_M27 | \
217 EMASK_M20 | \
218 EMASK_M19 | \
219 EMASK_M18 | \
220 EMASK_M17 | \
221 EMASK_M16)
222 #define ERROR_NF_DIMM_SPARE (EMASK_M29 | \
223 EMASK_M28)
224 #define ERROR_NF_SPD_PROTOCOL (EMASK_M22)
225 #define ERROR_NF_NORTH_CRC (EMASK_M21)
226
227 /* Recoverable errors */
228 #define ERROR_NF_RECOVERABLE (EMASK_M26 | \
229 EMASK_M25 | \
230 EMASK_M24 | \
231 EMASK_M15 | \
232 EMASK_M14 | \
233 EMASK_M13 | \
234 EMASK_M12 | \
235 EMASK_M11 | \
236 EMASK_M9 | \
237 EMASK_M8 | \
238 EMASK_M7 | \
239 EMASK_M5)
240
241 /* uncorrectable errors */
242 #define ERROR_NF_UNCORRECTABLE (EMASK_M4)
243
244 /* mask to all non-fatal errors */
245 #define ERROR_NF_MASK (ERROR_NF_CORRECTABLE | \
246 ERROR_NF_UNCORRECTABLE | \
247 ERROR_NF_RECOVERABLE | \
248 ERROR_NF_DIMM_SPARE | \
249 ERROR_NF_SPD_PROTOCOL | \
250 ERROR_NF_NORTH_CRC)
251
252 /*
253 * Define error masks for the several registers
254 */
255
256 /* Enable all fatal and non fatal errors */
257 #define ENABLE_EMASK_ALL (ERROR_FAT_MASK | ERROR_NF_MASK)
258
259 /* mask for fatal error registers */
260 #define FERR_FAT_MASK ERROR_FAT_MASK
261
262 /* masks for non-fatal error register */
to_nf_mask(unsigned int mask)263 static inline int to_nf_mask(unsigned int mask)
264 {
265 return (mask & EMASK_M29) | (mask >> 3);
266 };
267
from_nf_ferr(unsigned int mask)268 static inline int from_nf_ferr(unsigned int mask)
269 {
270 return (mask & EMASK_M29) | /* Bit 28 */
271 (mask & ((1 << 28) - 1) << 3); /* Bits 0 to 27 */
272 };
273
274 #define FERR_NF_MASK to_nf_mask(ERROR_NF_MASK)
275 #define FERR_NF_CORRECTABLE to_nf_mask(ERROR_NF_CORRECTABLE)
276 #define FERR_NF_DIMM_SPARE to_nf_mask(ERROR_NF_DIMM_SPARE)
277 #define FERR_NF_SPD_PROTOCOL to_nf_mask(ERROR_NF_SPD_PROTOCOL)
278 #define FERR_NF_NORTH_CRC to_nf_mask(ERROR_NF_NORTH_CRC)
279 #define FERR_NF_RECOVERABLE to_nf_mask(ERROR_NF_RECOVERABLE)
280 #define FERR_NF_UNCORRECTABLE to_nf_mask(ERROR_NF_UNCORRECTABLE)
281
282 /* Defines to extract the vaious fields from the
283 * MTRx - Memory Technology Registers
284 */
285 #define MTR_DIMMS_PRESENT(mtr) ((mtr) & (1 << 10))
286 #define MTR_DIMMS_ETHROTTLE(mtr) ((mtr) & (1 << 9))
287 #define MTR_DRAM_WIDTH(mtr) (((mtr) & (1 << 8)) ? 8 : 4)
288 #define MTR_DRAM_BANKS(mtr) (((mtr) & (1 << 6)) ? 8 : 4)
289 #define MTR_DRAM_BANKS_ADDR_BITS(mtr) ((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
290 #define MTR_DIMM_RANK(mtr) (((mtr) >> 5) & 0x1)
291 #define MTR_DIMM_RANK_ADDR_BITS(mtr) (MTR_DIMM_RANK(mtr) ? 2 : 1)
292 #define MTR_DIMM_ROWS(mtr) (((mtr) >> 2) & 0x3)
293 #define MTR_DIMM_ROWS_ADDR_BITS(mtr) (MTR_DIMM_ROWS(mtr) + 13)
294 #define MTR_DIMM_COLS(mtr) ((mtr) & 0x3)
295 #define MTR_DIMM_COLS_ADDR_BITS(mtr) (MTR_DIMM_COLS(mtr) + 10)
296
297 /* This applies to FERR_NF_FB-DIMM as well as FERR_FAT_FB-DIMM */
extract_fbdchan_indx(u32 x)298 static inline int extract_fbdchan_indx(u32 x)
299 {
300 return (x>>28) & 0x3;
301 }
302
303 /* Device name and register DID (Device ID) */
304 struct i5400_dev_info {
305 const char *ctl_name; /* name for this device */
306 u16 fsb_mapping_errors; /* DID for the branchmap,control */
307 };
308
309 /* Table of devices attributes supported by this driver */
310 static const struct i5400_dev_info i5400_devs[] = {
311 {
312 .ctl_name = "I5400",
313 .fsb_mapping_errors = PCI_DEVICE_ID_INTEL_5400_ERR,
314 },
315 };
316
317 struct i5400_dimm_info {
318 int megabytes; /* size, 0 means not present */
319 };
320
321 /* driver private data structure */
322 struct i5400_pvt {
323 struct pci_dev *system_address; /* 16.0 */
324 struct pci_dev *branchmap_werrors; /* 16.1 */
325 struct pci_dev *fsb_error_regs; /* 16.2 */
326 struct pci_dev *branch_0; /* 21.0 */
327 struct pci_dev *branch_1; /* 22.0 */
328
329 u16 tolm; /* top of low memory */
330 union {
331 u64 ambase; /* AMB BAR */
332 struct {
333 u32 ambase_bottom;
334 u32 ambase_top;
335 } u __packed;
336 };
337
338 u16 mir0, mir1;
339
340 u16 b0_mtr[DIMMS_PER_CHANNEL]; /* Memory Technlogy Reg */
341 u16 b0_ambpresent0; /* Branch 0, Channel 0 */
342 u16 b0_ambpresent1; /* Brnach 0, Channel 1 */
343
344 u16 b1_mtr[DIMMS_PER_CHANNEL]; /* Memory Technlogy Reg */
345 u16 b1_ambpresent0; /* Branch 1, Channel 8 */
346 u16 b1_ambpresent1; /* Branch 1, Channel 1 */
347
348 /* DIMM information matrix, allocating architecture maximums */
349 struct i5400_dimm_info dimm_info[DIMMS_PER_CHANNEL][MAX_CHANNELS];
350
351 /* Actual values for this controller */
352 int maxch; /* Max channels */
353 int maxdimmperch; /* Max DIMMs per channel */
354 };
355
356 /* I5400 MCH error information retrieved from Hardware */
357 struct i5400_error_info {
358 /* These registers are always read from the MC */
359 u32 ferr_fat_fbd; /* First Errors Fatal */
360 u32 nerr_fat_fbd; /* Next Errors Fatal */
361 u32 ferr_nf_fbd; /* First Errors Non-Fatal */
362 u32 nerr_nf_fbd; /* Next Errors Non-Fatal */
363
364 /* These registers are input ONLY if there was a Recoverable Error */
365 u32 redmemb; /* Recoverable Mem Data Error log B */
366 u16 recmema; /* Recoverable Mem Error log A */
367 u32 recmemb; /* Recoverable Mem Error log B */
368
369 /* These registers are input ONLY if there was a Non-Rec Error */
370 u16 nrecmema; /* Non-Recoverable Mem log A */
371 u32 nrecmemb; /* Non-Recoverable Mem log B */
372
373 };
374
375 /* note that nrec_rdwr changed from NRECMEMA to NRECMEMB between the 5000 and
376 5400 better to use an inline function than a macro in this case */
nrec_bank(struct i5400_error_info * info)377 static inline int nrec_bank(struct i5400_error_info *info)
378 {
379 return ((info->nrecmema) >> 12) & 0x7;
380 }
nrec_rank(struct i5400_error_info * info)381 static inline int nrec_rank(struct i5400_error_info *info)
382 {
383 return ((info->nrecmema) >> 8) & 0xf;
384 }
nrec_buf_id(struct i5400_error_info * info)385 static inline int nrec_buf_id(struct i5400_error_info *info)
386 {
387 return ((info->nrecmema)) & 0xff;
388 }
nrec_rdwr(struct i5400_error_info * info)389 static inline int nrec_rdwr(struct i5400_error_info *info)
390 {
391 return (info->nrecmemb) >> 31;
392 }
393 /* This applies to both NREC and REC string so it can be used with nrec_rdwr
394 and rec_rdwr */
rdwr_str(int rdwr)395 static inline const char *rdwr_str(int rdwr)
396 {
397 return rdwr ? "Write" : "Read";
398 }
nrec_cas(struct i5400_error_info * info)399 static inline int nrec_cas(struct i5400_error_info *info)
400 {
401 return ((info->nrecmemb) >> 16) & 0x1fff;
402 }
nrec_ras(struct i5400_error_info * info)403 static inline int nrec_ras(struct i5400_error_info *info)
404 {
405 return (info->nrecmemb) & 0xffff;
406 }
rec_bank(struct i5400_error_info * info)407 static inline int rec_bank(struct i5400_error_info *info)
408 {
409 return ((info->recmema) >> 12) & 0x7;
410 }
rec_rank(struct i5400_error_info * info)411 static inline int rec_rank(struct i5400_error_info *info)
412 {
413 return ((info->recmema) >> 8) & 0xf;
414 }
rec_rdwr(struct i5400_error_info * info)415 static inline int rec_rdwr(struct i5400_error_info *info)
416 {
417 return (info->recmemb) >> 31;
418 }
rec_cas(struct i5400_error_info * info)419 static inline int rec_cas(struct i5400_error_info *info)
420 {
421 return ((info->recmemb) >> 16) & 0x1fff;
422 }
rec_ras(struct i5400_error_info * info)423 static inline int rec_ras(struct i5400_error_info *info)
424 {
425 return (info->recmemb) & 0xffff;
426 }
427
428 static struct edac_pci_ctl_info *i5400_pci;
429
430 /*
431 * i5400_get_error_info Retrieve the hardware error information from
432 * the hardware and cache it in the 'info'
433 * structure
434 */
i5400_get_error_info(struct mem_ctl_info * mci,struct i5400_error_info * info)435 static void i5400_get_error_info(struct mem_ctl_info *mci,
436 struct i5400_error_info *info)
437 {
438 struct i5400_pvt *pvt;
439 u32 value;
440
441 pvt = mci->pvt_info;
442
443 /* read in the 1st FATAL error register */
444 pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);
445
446 /* Mask only the bits that the doc says are valid
447 */
448 value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);
449
450 /* If there is an error, then read in the
451 NEXT FATAL error register and the Memory Error Log Register A
452 */
453 if (value & FERR_FAT_MASK) {
454 info->ferr_fat_fbd = value;
455
456 /* harvest the various error data we need */
457 pci_read_config_dword(pvt->branchmap_werrors,
458 NERR_FAT_FBD, &info->nerr_fat_fbd);
459 pci_read_config_word(pvt->branchmap_werrors,
460 NRECMEMA, &info->nrecmema);
461 pci_read_config_dword(pvt->branchmap_werrors,
462 NRECMEMB, &info->nrecmemb);
463
464 /* Clear the error bits, by writing them back */
465 pci_write_config_dword(pvt->branchmap_werrors,
466 FERR_FAT_FBD, value);
467 } else {
468 info->ferr_fat_fbd = 0;
469 info->nerr_fat_fbd = 0;
470 info->nrecmema = 0;
471 info->nrecmemb = 0;
472 }
473
474 /* read in the 1st NON-FATAL error register */
475 pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);
476
477 /* If there is an error, then read in the 1st NON-FATAL error
478 * register as well */
479 if (value & FERR_NF_MASK) {
480 info->ferr_nf_fbd = value;
481
482 /* harvest the various error data we need */
483 pci_read_config_dword(pvt->branchmap_werrors,
484 NERR_NF_FBD, &info->nerr_nf_fbd);
485 pci_read_config_word(pvt->branchmap_werrors,
486 RECMEMA, &info->recmema);
487 pci_read_config_dword(pvt->branchmap_werrors,
488 RECMEMB, &info->recmemb);
489 pci_read_config_dword(pvt->branchmap_werrors,
490 REDMEMB, &info->redmemb);
491
492 /* Clear the error bits, by writing them back */
493 pci_write_config_dword(pvt->branchmap_werrors,
494 FERR_NF_FBD, value);
495 } else {
496 info->ferr_nf_fbd = 0;
497 info->nerr_nf_fbd = 0;
498 info->recmema = 0;
499 info->recmemb = 0;
500 info->redmemb = 0;
501 }
502 }
503
504 /*
505 * i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci,
506 * struct i5400_error_info *info,
507 * int handle_errors);
508 *
509 * handle the Intel FATAL and unrecoverable errors, if any
510 */
i5400_proccess_non_recoverable_info(struct mem_ctl_info * mci,struct i5400_error_info * info,unsigned long allErrors)511 static void i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci,
512 struct i5400_error_info *info,
513 unsigned long allErrors)
514 {
515 char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80];
516 int branch;
517 int channel;
518 int bank;
519 int buf_id;
520 int rank;
521 int rdwr;
522 int ras, cas;
523 int errnum;
524 char *type = NULL;
525 enum hw_event_mc_err_type tp_event = HW_EVENT_ERR_UNCORRECTED;
526
527 if (!allErrors)
528 return; /* if no error, return now */
529
530 if (allErrors & ERROR_FAT_MASK) {
531 type = "FATAL";
532 tp_event = HW_EVENT_ERR_FATAL;
533 } else if (allErrors & FERR_NF_UNCORRECTABLE)
534 type = "NON-FATAL uncorrected";
535 else
536 type = "NON-FATAL recoverable";
537
538 /* ONLY ONE of the possible error bits will be set, as per the docs */
539
540 branch = extract_fbdchan_indx(info->ferr_fat_fbd);
541 channel = branch;
542
543 /* Use the NON-Recoverable macros to extract data */
544 bank = nrec_bank(info);
545 rank = nrec_rank(info);
546 buf_id = nrec_buf_id(info);
547 rdwr = nrec_rdwr(info);
548 ras = nrec_ras(info);
549 cas = nrec_cas(info);
550
551 edac_dbg(0, "\t\t%s DIMM= %d Channels= %d,%d (Branch= %d DRAM Bank= %d Buffer ID = %d rdwr= %s ras= %d cas= %d)\n",
552 type, rank, channel, channel + 1, branch >> 1, bank,
553 buf_id, rdwr_str(rdwr), ras, cas);
554
555 /* Only 1 bit will be on */
556 errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
557
558 /* Form out message */
559 snprintf(msg, sizeof(msg),
560 "Bank=%d Buffer ID = %d RAS=%d CAS=%d Err=0x%lx (%s)",
561 bank, buf_id, ras, cas, allErrors, error_name[errnum]);
562
563 edac_mc_handle_error(tp_event, mci, 1, 0, 0, 0,
564 branch >> 1, -1, rank,
565 rdwr ? "Write error" : "Read error",
566 msg);
567 }
568
569 /*
570 * i5400_process_fatal_error_info(struct mem_ctl_info *mci,
571 * struct i5400_error_info *info,
572 * int handle_errors);
573 *
574 * handle the Intel NON-FATAL errors, if any
575 */
i5400_process_nonfatal_error_info(struct mem_ctl_info * mci,struct i5400_error_info * info)576 static void i5400_process_nonfatal_error_info(struct mem_ctl_info *mci,
577 struct i5400_error_info *info)
578 {
579 char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80];
580 unsigned long allErrors;
581 int branch;
582 int channel;
583 int bank;
584 int rank;
585 int rdwr;
586 int ras, cas;
587 int errnum;
588
589 /* mask off the Error bits that are possible */
590 allErrors = from_nf_ferr(info->ferr_nf_fbd & FERR_NF_MASK);
591 if (!allErrors)
592 return; /* if no error, return now */
593
594 /* ONLY ONE of the possible error bits will be set, as per the docs */
595
596 if (allErrors & (ERROR_NF_UNCORRECTABLE | ERROR_NF_RECOVERABLE)) {
597 i5400_proccess_non_recoverable_info(mci, info, allErrors);
598 return;
599 }
600
601 /* Correctable errors */
602 if (allErrors & ERROR_NF_CORRECTABLE) {
603 edac_dbg(0, "\tCorrected bits= 0x%lx\n", allErrors);
604
605 branch = extract_fbdchan_indx(info->ferr_nf_fbd);
606
607 channel = 0;
608 if (REC_ECC_LOCATOR_ODD(info->redmemb))
609 channel = 1;
610
611 /* Convert channel to be based from zero, instead of
612 * from branch base of 0 */
613 channel += branch;
614
615 bank = rec_bank(info);
616 rank = rec_rank(info);
617 rdwr = rec_rdwr(info);
618 ras = rec_ras(info);
619 cas = rec_cas(info);
620
621 /* Only 1 bit will be on */
622 errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
623
624 edac_dbg(0, "\t\tDIMM= %d Channel= %d (Branch %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
625 rank, channel, branch >> 1, bank,
626 rdwr_str(rdwr), ras, cas);
627
628 /* Form out message */
629 snprintf(msg, sizeof(msg),
630 "Corrected error (Branch=%d DRAM-Bank=%d RDWR=%s "
631 "RAS=%d CAS=%d, CE Err=0x%lx (%s))",
632 branch >> 1, bank, rdwr_str(rdwr), ras, cas,
633 allErrors, error_name[errnum]);
634
635 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0,
636 branch >> 1, channel % 2, rank,
637 rdwr ? "Write error" : "Read error",
638 msg);
639
640 return;
641 }
642
643 /* Miscellaneous errors */
644 errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
645
646 branch = extract_fbdchan_indx(info->ferr_nf_fbd);
647
648 i5400_mc_printk(mci, KERN_EMERG,
649 "Non-Fatal misc error (Branch=%d Err=%#lx (%s))",
650 branch >> 1, allErrors, error_name[errnum]);
651 }
652
653 /*
654 * i5400_process_error_info Process the error info that is
655 * in the 'info' structure, previously retrieved from hardware
656 */
i5400_process_error_info(struct mem_ctl_info * mci,struct i5400_error_info * info)657 static void i5400_process_error_info(struct mem_ctl_info *mci,
658 struct i5400_error_info *info)
659 { u32 allErrors;
660
661 /* First handle any fatal errors that occurred */
662 allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
663 i5400_proccess_non_recoverable_info(mci, info, allErrors);
664
665 /* now handle any non-fatal errors that occurred */
666 i5400_process_nonfatal_error_info(mci, info);
667 }
668
669 /*
670 * i5400_clear_error Retrieve any error from the hardware
671 * but do NOT process that error.
672 * Used for 'clearing' out of previous errors
673 * Called by the Core module.
674 */
i5400_clear_error(struct mem_ctl_info * mci)675 static void i5400_clear_error(struct mem_ctl_info *mci)
676 {
677 struct i5400_error_info info;
678
679 i5400_get_error_info(mci, &info);
680 }
681
682 /*
683 * i5400_check_error Retrieve and process errors reported by the
684 * hardware. Called by the Core module.
685 */
i5400_check_error(struct mem_ctl_info * mci)686 static void i5400_check_error(struct mem_ctl_info *mci)
687 {
688 struct i5400_error_info info;
689
690 i5400_get_error_info(mci, &info);
691 i5400_process_error_info(mci, &info);
692 }
693
694 /*
695 * i5400_put_devices 'put' all the devices that we have
696 * reserved via 'get'
697 */
i5400_put_devices(struct mem_ctl_info * mci)698 static void i5400_put_devices(struct mem_ctl_info *mci)
699 {
700 struct i5400_pvt *pvt;
701
702 pvt = mci->pvt_info;
703
704 /* Decrement usage count for devices */
705 pci_dev_put(pvt->branch_1);
706 pci_dev_put(pvt->branch_0);
707 pci_dev_put(pvt->fsb_error_regs);
708 pci_dev_put(pvt->branchmap_werrors);
709 }
710
711 /*
712 * i5400_get_devices Find and perform 'get' operation on the MCH's
713 * device/functions we want to reference for this driver
714 *
715 * Need to 'get' device 16 func 1 and func 2
716 */
i5400_get_devices(struct mem_ctl_info * mci,int dev_idx)717 static int i5400_get_devices(struct mem_ctl_info *mci, int dev_idx)
718 {
719 struct i5400_pvt *pvt;
720 struct pci_dev *pdev;
721
722 pvt = mci->pvt_info;
723 pvt->branchmap_werrors = NULL;
724 pvt->fsb_error_regs = NULL;
725 pvt->branch_0 = NULL;
726 pvt->branch_1 = NULL;
727
728 /* Attempt to 'get' the MCH register we want */
729 pdev = NULL;
730 while (1) {
731 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
732 PCI_DEVICE_ID_INTEL_5400_ERR, pdev);
733 if (!pdev) {
734 /* End of list, leave */
735 i5400_printk(KERN_ERR,
736 "'system address,Process Bus' "
737 "device not found:"
738 "vendor 0x%x device 0x%x ERR func 1 "
739 "(broken BIOS?)\n",
740 PCI_VENDOR_ID_INTEL,
741 PCI_DEVICE_ID_INTEL_5400_ERR);
742 return -ENODEV;
743 }
744
745 /* Store device 16 func 1 */
746 if (PCI_FUNC(pdev->devfn) == 1)
747 break;
748 }
749 pvt->branchmap_werrors = pdev;
750
751 pdev = NULL;
752 while (1) {
753 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
754 PCI_DEVICE_ID_INTEL_5400_ERR, pdev);
755 if (!pdev) {
756 /* End of list, leave */
757 i5400_printk(KERN_ERR,
758 "'system address,Process Bus' "
759 "device not found:"
760 "vendor 0x%x device 0x%x ERR func 2 "
761 "(broken BIOS?)\n",
762 PCI_VENDOR_ID_INTEL,
763 PCI_DEVICE_ID_INTEL_5400_ERR);
764
765 pci_dev_put(pvt->branchmap_werrors);
766 return -ENODEV;
767 }
768
769 /* Store device 16 func 2 */
770 if (PCI_FUNC(pdev->devfn) == 2)
771 break;
772 }
773 pvt->fsb_error_regs = pdev;
774
775 edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s %x:%x\n",
776 pci_name(pvt->system_address),
777 pvt->system_address->vendor, pvt->system_address->device);
778 edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s %x:%x\n",
779 pci_name(pvt->branchmap_werrors),
780 pvt->branchmap_werrors->vendor,
781 pvt->branchmap_werrors->device);
782 edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s %x:%x\n",
783 pci_name(pvt->fsb_error_regs),
784 pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
785
786 pvt->branch_0 = pci_get_device(PCI_VENDOR_ID_INTEL,
787 PCI_DEVICE_ID_INTEL_5400_FBD0, NULL);
788 if (!pvt->branch_0) {
789 i5400_printk(KERN_ERR,
790 "MC: 'BRANCH 0' device not found:"
791 "vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
792 PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_FBD0);
793
794 pci_dev_put(pvt->fsb_error_regs);
795 pci_dev_put(pvt->branchmap_werrors);
796 return -ENODEV;
797 }
798
799 /* If this device claims to have more than 2 channels then
800 * fetch Branch 1's information
801 */
802 if (pvt->maxch < CHANNELS_PER_BRANCH)
803 return 0;
804
805 pvt->branch_1 = pci_get_device(PCI_VENDOR_ID_INTEL,
806 PCI_DEVICE_ID_INTEL_5400_FBD1, NULL);
807 if (!pvt->branch_1) {
808 i5400_printk(KERN_ERR,
809 "MC: 'BRANCH 1' device not found:"
810 "vendor 0x%x device 0x%x Func 0 "
811 "(broken BIOS?)\n",
812 PCI_VENDOR_ID_INTEL,
813 PCI_DEVICE_ID_INTEL_5400_FBD1);
814
815 pci_dev_put(pvt->branch_0);
816 pci_dev_put(pvt->fsb_error_regs);
817 pci_dev_put(pvt->branchmap_werrors);
818 return -ENODEV;
819 }
820
821 return 0;
822 }
823
824 /*
825 * determine_amb_present
826 *
827 * the information is contained in DIMMS_PER_CHANNEL different
828 * registers determining which of the DIMMS_PER_CHANNEL requires
829 * knowing which channel is in question
830 *
831 * 2 branches, each with 2 channels
832 * b0_ambpresent0 for channel '0'
833 * b0_ambpresent1 for channel '1'
834 * b1_ambpresent0 for channel '2'
835 * b1_ambpresent1 for channel '3'
836 */
determine_amb_present_reg(struct i5400_pvt * pvt,int channel)837 static int determine_amb_present_reg(struct i5400_pvt *pvt, int channel)
838 {
839 int amb_present;
840
841 if (channel < CHANNELS_PER_BRANCH) {
842 if (channel & 0x1)
843 amb_present = pvt->b0_ambpresent1;
844 else
845 amb_present = pvt->b0_ambpresent0;
846 } else {
847 if (channel & 0x1)
848 amb_present = pvt->b1_ambpresent1;
849 else
850 amb_present = pvt->b1_ambpresent0;
851 }
852
853 return amb_present;
854 }
855
856 /*
857 * determine_mtr(pvt, dimm, channel)
858 *
859 * return the proper MTR register as determine by the dimm and desired channel
860 */
determine_mtr(struct i5400_pvt * pvt,int dimm,int channel)861 static int determine_mtr(struct i5400_pvt *pvt, int dimm, int channel)
862 {
863 int mtr;
864 int n;
865
866 /* There is one MTR for each slot pair of FB-DIMMs,
867 Each slot pair may be at branch 0 or branch 1.
868 */
869 n = dimm;
870
871 if (n >= DIMMS_PER_CHANNEL) {
872 edac_dbg(0, "ERROR: trying to access an invalid dimm: %d\n",
873 dimm);
874 return 0;
875 }
876
877 if (channel < CHANNELS_PER_BRANCH)
878 mtr = pvt->b0_mtr[n];
879 else
880 mtr = pvt->b1_mtr[n];
881
882 return mtr;
883 }
884
885 /*
886 */
decode_mtr(int slot_row,u16 mtr)887 static void decode_mtr(int slot_row, u16 mtr)
888 {
889 int ans;
890
891 ans = MTR_DIMMS_PRESENT(mtr);
892
893 edac_dbg(2, "\tMTR%d=0x%x: DIMMs are %sPresent\n",
894 slot_row, mtr, ans ? "" : "NOT ");
895 if (!ans)
896 return;
897
898 edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
899
900 edac_dbg(2, "\t\tELECTRICAL THROTTLING is %s\n",
901 MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled");
902
903 edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
904 edac_dbg(2, "\t\tNUMRANK: %s\n",
905 MTR_DIMM_RANK(mtr) ? "double" : "single");
906 edac_dbg(2, "\t\tNUMROW: %s\n",
907 MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" :
908 MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" :
909 MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" :
910 "65,536 - 16 rows");
911 edac_dbg(2, "\t\tNUMCOL: %s\n",
912 MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" :
913 MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" :
914 MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" :
915 "reserved");
916 }
917
handle_channel(struct i5400_pvt * pvt,int dimm,int channel,struct i5400_dimm_info * dinfo)918 static void handle_channel(struct i5400_pvt *pvt, int dimm, int channel,
919 struct i5400_dimm_info *dinfo)
920 {
921 int mtr;
922 int amb_present_reg;
923 int addrBits;
924
925 mtr = determine_mtr(pvt, dimm, channel);
926 if (MTR_DIMMS_PRESENT(mtr)) {
927 amb_present_reg = determine_amb_present_reg(pvt, channel);
928
929 /* Determine if there is a DIMM present in this DIMM slot */
930 if (amb_present_reg & (1 << dimm)) {
931 /* Start with the number of bits for a Bank
932 * on the DRAM */
933 addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
934 /* Add thenumber of ROW bits */
935 addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
936 /* add the number of COLUMN bits */
937 addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
938 /* add the number of RANK bits */
939 addrBits += MTR_DIMM_RANK(mtr);
940
941 addrBits += 6; /* add 64 bits per DIMM */
942 addrBits -= 20; /* divide by 2^^20 */
943 addrBits -= 3; /* 8 bits per bytes */
944
945 dinfo->megabytes = 1 << addrBits;
946 }
947 }
948 }
949
950 /*
951 * calculate_dimm_size
952 *
953 * also will output a DIMM matrix map, if debug is enabled, for viewing
954 * how the DIMMs are populated
955 */
calculate_dimm_size(struct i5400_pvt * pvt)956 static void calculate_dimm_size(struct i5400_pvt *pvt)
957 {
958 struct i5400_dimm_info *dinfo;
959 int dimm, max_dimms;
960 char *p, *mem_buffer;
961 int space, n;
962 int channel, branch;
963
964 /* ================= Generate some debug output ================= */
965 space = PAGE_SIZE;
966 mem_buffer = p = kmalloc(space, GFP_KERNEL);
967 if (p == NULL) {
968 i5400_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
969 __FILE__, __func__);
970 return;
971 }
972
973 /* Scan all the actual DIMMS
974 * and calculate the information for each DIMM
975 * Start with the highest dimm first, to display it first
976 * and work toward the 0th dimm
977 */
978 max_dimms = pvt->maxdimmperch;
979 for (dimm = max_dimms - 1; dimm >= 0; dimm--) {
980
981 /* on an odd dimm, first output a 'boundary' marker,
982 * then reset the message buffer */
983 if (dimm & 0x1) {
984 n = snprintf(p, space, "---------------------------"
985 "-------------------------------");
986 p += n;
987 space -= n;
988 edac_dbg(2, "%s\n", mem_buffer);
989 p = mem_buffer;
990 space = PAGE_SIZE;
991 }
992 n = snprintf(p, space, "dimm %2d ", dimm);
993 p += n;
994 space -= n;
995
996 for (channel = 0; channel < pvt->maxch; channel++) {
997 dinfo = &pvt->dimm_info[dimm][channel];
998 handle_channel(pvt, dimm, channel, dinfo);
999 n = snprintf(p, space, "%4d MB | ", dinfo->megabytes);
1000 p += n;
1001 space -= n;
1002 }
1003 edac_dbg(2, "%s\n", mem_buffer);
1004 p = mem_buffer;
1005 space = PAGE_SIZE;
1006 }
1007
1008 /* Output the last bottom 'boundary' marker */
1009 n = snprintf(p, space, "---------------------------"
1010 "-------------------------------");
1011 p += n;
1012 space -= n;
1013 edac_dbg(2, "%s\n", mem_buffer);
1014 p = mem_buffer;
1015 space = PAGE_SIZE;
1016
1017 /* now output the 'channel' labels */
1018 n = snprintf(p, space, " ");
1019 p += n;
1020 space -= n;
1021 for (channel = 0; channel < pvt->maxch; channel++) {
1022 n = snprintf(p, space, "channel %d | ", channel);
1023 p += n;
1024 space -= n;
1025 }
1026
1027 space -= n;
1028 edac_dbg(2, "%s\n", mem_buffer);
1029 p = mem_buffer;
1030 space = PAGE_SIZE;
1031
1032 n = snprintf(p, space, " ");
1033 p += n;
1034 for (branch = 0; branch < MAX_BRANCHES; branch++) {
1035 n = snprintf(p, space, " branch %d | ", branch);
1036 p += n;
1037 space -= n;
1038 }
1039
1040 /* output the last message and free buffer */
1041 edac_dbg(2, "%s\n", mem_buffer);
1042 kfree(mem_buffer);
1043 }
1044
1045 /*
1046 * i5400_get_mc_regs read in the necessary registers and
1047 * cache locally
1048 *
1049 * Fills in the private data members
1050 */
i5400_get_mc_regs(struct mem_ctl_info * mci)1051 static void i5400_get_mc_regs(struct mem_ctl_info *mci)
1052 {
1053 struct i5400_pvt *pvt;
1054 u32 actual_tolm;
1055 u16 limit;
1056 int slot_row;
1057 int way0, way1;
1058
1059 pvt = mci->pvt_info;
1060
1061 pci_read_config_dword(pvt->system_address, AMBASE,
1062 &pvt->u.ambase_bottom);
1063 pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
1064 &pvt->u.ambase_top);
1065
1066 edac_dbg(2, "AMBASE= 0x%lx MAXCH= %d MAX-DIMM-Per-CH= %d\n",
1067 (long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
1068
1069 /* Get the Branch Map regs */
1070 pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
1071 pvt->tolm >>= 12;
1072 edac_dbg(2, "\nTOLM (number of 256M regions) =%u (0x%x)\n",
1073 pvt->tolm, pvt->tolm);
1074
1075 actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28));
1076 edac_dbg(2, "Actual TOLM byte addr=%u.%03u GB (0x%x)\n",
1077 actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28);
1078
1079 pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
1080 pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
1081
1082 /* Get the MIR[0-1] regs */
1083 limit = (pvt->mir0 >> 4) & 0x0fff;
1084 way0 = pvt->mir0 & 0x1;
1085 way1 = pvt->mir0 & 0x2;
1086 edac_dbg(2, "MIR0: limit= 0x%x WAY1= %u WAY0= %x\n",
1087 limit, way1, way0);
1088 limit = (pvt->mir1 >> 4) & 0xfff;
1089 way0 = pvt->mir1 & 0x1;
1090 way1 = pvt->mir1 & 0x2;
1091 edac_dbg(2, "MIR1: limit= 0x%x WAY1= %u WAY0= %x\n",
1092 limit, way1, way0);
1093
1094 /* Get the set of MTR[0-3] regs by each branch */
1095 for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++) {
1096 int where = MTR0 + (slot_row * sizeof(u16));
1097
1098 /* Branch 0 set of MTR registers */
1099 pci_read_config_word(pvt->branch_0, where,
1100 &pvt->b0_mtr[slot_row]);
1101
1102 edac_dbg(2, "MTR%d where=0x%x B0 value=0x%x\n",
1103 slot_row, where, pvt->b0_mtr[slot_row]);
1104
1105 if (pvt->maxch < CHANNELS_PER_BRANCH) {
1106 pvt->b1_mtr[slot_row] = 0;
1107 continue;
1108 }
1109
1110 /* Branch 1 set of MTR registers */
1111 pci_read_config_word(pvt->branch_1, where,
1112 &pvt->b1_mtr[slot_row]);
1113 edac_dbg(2, "MTR%d where=0x%x B1 value=0x%x\n",
1114 slot_row, where, pvt->b1_mtr[slot_row]);
1115 }
1116
1117 /* Read and dump branch 0's MTRs */
1118 edac_dbg(2, "Memory Technology Registers:\n");
1119 edac_dbg(2, " Branch 0:\n");
1120 for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++)
1121 decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
1122
1123 pci_read_config_word(pvt->branch_0, AMBPRESENT_0,
1124 &pvt->b0_ambpresent0);
1125 edac_dbg(2, "\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
1126 pci_read_config_word(pvt->branch_0, AMBPRESENT_1,
1127 &pvt->b0_ambpresent1);
1128 edac_dbg(2, "\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
1129
1130 /* Only if we have 2 branchs (4 channels) */
1131 if (pvt->maxch < CHANNELS_PER_BRANCH) {
1132 pvt->b1_ambpresent0 = 0;
1133 pvt->b1_ambpresent1 = 0;
1134 } else {
1135 /* Read and dump branch 1's MTRs */
1136 edac_dbg(2, " Branch 1:\n");
1137 for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++)
1138 decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
1139
1140 pci_read_config_word(pvt->branch_1, AMBPRESENT_0,
1141 &pvt->b1_ambpresent0);
1142 edac_dbg(2, "\t\tAMB-Branch 1-present0 0x%x:\n",
1143 pvt->b1_ambpresent0);
1144 pci_read_config_word(pvt->branch_1, AMBPRESENT_1,
1145 &pvt->b1_ambpresent1);
1146 edac_dbg(2, "\t\tAMB-Branch 1-present1 0x%x:\n",
1147 pvt->b1_ambpresent1);
1148 }
1149
1150 /* Go and determine the size of each DIMM and place in an
1151 * orderly matrix */
1152 calculate_dimm_size(pvt);
1153 }
1154
1155 /*
1156 * i5400_init_dimms Initialize the 'dimms' table within
1157 * the mci control structure with the
1158 * addressing of memory.
1159 *
1160 * return:
1161 * 0 success
1162 * 1 no actual memory found on this MC
1163 */
i5400_init_dimms(struct mem_ctl_info * mci)1164 static int i5400_init_dimms(struct mem_ctl_info *mci)
1165 {
1166 struct i5400_pvt *pvt;
1167 struct dimm_info *dimm;
1168 int ndimms;
1169 int mtr;
1170 int size_mb;
1171 int channel, slot;
1172
1173 pvt = mci->pvt_info;
1174
1175 ndimms = 0;
1176
1177 /*
1178 * FIXME: remove pvt->dimm_info[slot][channel] and use the 3
1179 * layers here.
1180 */
1181 for (channel = 0; channel < mci->layers[0].size * mci->layers[1].size;
1182 channel++) {
1183 for (slot = 0; slot < mci->layers[2].size; slot++) {
1184 mtr = determine_mtr(pvt, slot, channel);
1185
1186 /* if no DIMMS on this slot, continue */
1187 if (!MTR_DIMMS_PRESENT(mtr))
1188 continue;
1189
1190 dimm = edac_get_dimm(mci, channel / 2, channel % 2, slot);
1191
1192 size_mb = pvt->dimm_info[slot][channel].megabytes;
1193
1194 edac_dbg(2, "dimm (branch %d channel %d slot %d): %d.%03d GB\n",
1195 channel / 2, channel % 2, slot,
1196 size_mb / 1000, size_mb % 1000);
1197
1198 dimm->nr_pages = size_mb << 8;
1199 dimm->grain = 8;
1200 dimm->dtype = MTR_DRAM_WIDTH(mtr) == 8 ?
1201 DEV_X8 : DEV_X4;
1202 dimm->mtype = MEM_FB_DDR2;
1203 /*
1204 * The eccc mechanism is SDDC (aka SECC), with
1205 * is similar to Chipkill.
1206 */
1207 dimm->edac_mode = MTR_DRAM_WIDTH(mtr) == 8 ?
1208 EDAC_S8ECD8ED : EDAC_S4ECD4ED;
1209 ndimms++;
1210 }
1211 }
1212
1213 /*
1214 * When just one memory is provided, it should be at location (0,0,0).
1215 * With such single-DIMM mode, the SDCC algorithm degrades to SECDEC+.
1216 */
1217 if (ndimms == 1)
1218 mci->dimms[0]->edac_mode = EDAC_SECDED;
1219
1220 return (ndimms == 0);
1221 }
1222
1223 /*
1224 * i5400_enable_error_reporting
1225 * Turn on the memory reporting features of the hardware
1226 */
i5400_enable_error_reporting(struct mem_ctl_info * mci)1227 static void i5400_enable_error_reporting(struct mem_ctl_info *mci)
1228 {
1229 struct i5400_pvt *pvt;
1230 u32 fbd_error_mask;
1231
1232 pvt = mci->pvt_info;
1233
1234 /* Read the FBD Error Mask Register */
1235 pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1236 &fbd_error_mask);
1237
1238 /* Enable with a '0' */
1239 fbd_error_mask &= ~(ENABLE_EMASK_ALL);
1240
1241 pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1242 fbd_error_mask);
1243 }
1244
1245 /*
1246 * i5400_probe1 Probe for ONE instance of device to see if it is
1247 * present.
1248 * return:
1249 * 0 for FOUND a device
1250 * < 0 for error code
1251 */
i5400_probe1(struct pci_dev * pdev,int dev_idx)1252 static int i5400_probe1(struct pci_dev *pdev, int dev_idx)
1253 {
1254 struct mem_ctl_info *mci;
1255 struct i5400_pvt *pvt;
1256 struct edac_mc_layer layers[3];
1257
1258 if (dev_idx >= ARRAY_SIZE(i5400_devs))
1259 return -EINVAL;
1260
1261 edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n",
1262 pdev->bus->number,
1263 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1264
1265 /* We only are looking for func 0 of the set */
1266 if (PCI_FUNC(pdev->devfn) != 0)
1267 return -ENODEV;
1268
1269 /*
1270 * allocate a new MC control structure
1271 *
1272 * This drivers uses the DIMM slot as "csrow" and the rest as "channel".
1273 */
1274 layers[0].type = EDAC_MC_LAYER_BRANCH;
1275 layers[0].size = MAX_BRANCHES;
1276 layers[0].is_virt_csrow = false;
1277 layers[1].type = EDAC_MC_LAYER_CHANNEL;
1278 layers[1].size = CHANNELS_PER_BRANCH;
1279 layers[1].is_virt_csrow = false;
1280 layers[2].type = EDAC_MC_LAYER_SLOT;
1281 layers[2].size = DIMMS_PER_CHANNEL;
1282 layers[2].is_virt_csrow = true;
1283 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
1284 if (mci == NULL)
1285 return -ENOMEM;
1286
1287 edac_dbg(0, "MC: mci = %p\n", mci);
1288
1289 mci->pdev = &pdev->dev; /* record ptr to the generic device */
1290
1291 pvt = mci->pvt_info;
1292 pvt->system_address = pdev; /* Record this device in our private */
1293 pvt->maxch = MAX_CHANNELS;
1294 pvt->maxdimmperch = DIMMS_PER_CHANNEL;
1295
1296 /* 'get' the pci devices we want to reserve for our use */
1297 if (i5400_get_devices(mci, dev_idx))
1298 goto fail0;
1299
1300 /* Time to get serious */
1301 i5400_get_mc_regs(mci); /* retrieve the hardware registers */
1302
1303 mci->mc_idx = 0;
1304 mci->mtype_cap = MEM_FLAG_FB_DDR2;
1305 mci->edac_ctl_cap = EDAC_FLAG_NONE;
1306 mci->edac_cap = EDAC_FLAG_NONE;
1307 mci->mod_name = "i5400_edac.c";
1308 mci->ctl_name = i5400_devs[dev_idx].ctl_name;
1309 mci->dev_name = pci_name(pdev);
1310 mci->ctl_page_to_phys = NULL;
1311
1312 /* Set the function pointer to an actual operation function */
1313 mci->edac_check = i5400_check_error;
1314
1315 /* initialize the MC control structure 'dimms' table
1316 * with the mapping and control information */
1317 if (i5400_init_dimms(mci)) {
1318 edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i5400_init_dimms() returned nonzero value\n");
1319 mci->edac_cap = EDAC_FLAG_NONE; /* no dimms found */
1320 } else {
1321 edac_dbg(1, "MC: Enable error reporting now\n");
1322 i5400_enable_error_reporting(mci);
1323 }
1324
1325 /* add this new MC control structure to EDAC's list of MCs */
1326 if (edac_mc_add_mc(mci)) {
1327 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
1328 /* FIXME: perhaps some code should go here that disables error
1329 * reporting if we just enabled it
1330 */
1331 goto fail1;
1332 }
1333
1334 i5400_clear_error(mci);
1335
1336 /* allocating generic PCI control info */
1337 i5400_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
1338 if (!i5400_pci) {
1339 printk(KERN_WARNING
1340 "%s(): Unable to create PCI control\n",
1341 __func__);
1342 printk(KERN_WARNING
1343 "%s(): PCI error report via EDAC not setup\n",
1344 __func__);
1345 }
1346
1347 return 0;
1348
1349 /* Error exit unwinding stack */
1350 fail1:
1351
1352 i5400_put_devices(mci);
1353
1354 fail0:
1355 edac_mc_free(mci);
1356 return -ENODEV;
1357 }
1358
1359 /*
1360 * i5400_init_one constructor for one instance of device
1361 *
1362 * returns:
1363 * negative on error
1364 * count (>= 0)
1365 */
i5400_init_one(struct pci_dev * pdev,const struct pci_device_id * id)1366 static int i5400_init_one(struct pci_dev *pdev, const struct pci_device_id *id)
1367 {
1368 int rc;
1369
1370 edac_dbg(0, "MC:\n");
1371
1372 /* wake up device */
1373 rc = pci_enable_device(pdev);
1374 if (rc)
1375 return rc;
1376
1377 /* now probe and enable the device */
1378 return i5400_probe1(pdev, id->driver_data);
1379 }
1380
1381 /*
1382 * i5400_remove_one destructor for one instance of device
1383 *
1384 */
i5400_remove_one(struct pci_dev * pdev)1385 static void i5400_remove_one(struct pci_dev *pdev)
1386 {
1387 struct mem_ctl_info *mci;
1388
1389 edac_dbg(0, "\n");
1390
1391 if (i5400_pci)
1392 edac_pci_release_generic_ctl(i5400_pci);
1393
1394 mci = edac_mc_del_mc(&pdev->dev);
1395 if (!mci)
1396 return;
1397
1398 /* retrieve references to resources, and free those resources */
1399 i5400_put_devices(mci);
1400
1401 pci_disable_device(pdev);
1402
1403 edac_mc_free(mci);
1404 }
1405
1406 /*
1407 * pci_device_id table for which devices we are looking for
1408 *
1409 * The "E500P" device is the first device supported.
1410 */
1411 static const struct pci_device_id i5400_pci_tbl[] = {
1412 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_ERR)},
1413 {0,} /* 0 terminated list. */
1414 };
1415
1416 MODULE_DEVICE_TABLE(pci, i5400_pci_tbl);
1417
1418 /*
1419 * i5400_driver pci_driver structure for this module
1420 *
1421 */
1422 static struct pci_driver i5400_driver = {
1423 .name = "i5400_edac",
1424 .probe = i5400_init_one,
1425 .remove = i5400_remove_one,
1426 .id_table = i5400_pci_tbl,
1427 };
1428
1429 /*
1430 * i5400_init Module entry function
1431 * Try to initialize this module for its devices
1432 */
i5400_init(void)1433 static int __init i5400_init(void)
1434 {
1435 int pci_rc;
1436
1437 edac_dbg(2, "MC:\n");
1438
1439 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
1440 opstate_init();
1441
1442 pci_rc = pci_register_driver(&i5400_driver);
1443
1444 return (pci_rc < 0) ? pci_rc : 0;
1445 }
1446
1447 /*
1448 * i5400_exit() Module exit function
1449 * Unregister the driver
1450 */
i5400_exit(void)1451 static void __exit i5400_exit(void)
1452 {
1453 edac_dbg(2, "MC:\n");
1454 pci_unregister_driver(&i5400_driver);
1455 }
1456
1457 module_init(i5400_init);
1458 module_exit(i5400_exit);
1459
1460 MODULE_LICENSE("GPL");
1461 MODULE_AUTHOR("Ben Woodard <woodard@redhat.com>");
1462 MODULE_AUTHOR("Mauro Carvalho Chehab");
1463 MODULE_AUTHOR("Red Hat Inc. (https://www.redhat.com)");
1464 MODULE_DESCRIPTION("MC Driver for Intel I5400 memory controllers - "
1465 I5400_REVISION);
1466
1467 module_param(edac_op_state, int, 0444);
1468 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1469