1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * mlx90632.c - Melexis MLX90632 contactless IR temperature sensor
4 *
5 * Copyright (c) 2017 Melexis <cmo@melexis.com>
6 *
7 * Driver for the Melexis MLX90632 I2C 16-bit IR thermopile sensor
8 */
9 #include <linux/delay.h>
10 #include <linux/err.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/i2c.h>
13 #include <linux/iopoll.h>
14 #include <linux/kernel.h>
15 #include <linux/limits.h>
16 #include <linux/mod_devicetable.h>
17 #include <linux/module.h>
18 #include <linux/math64.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/regmap.h>
21 #include <linux/regulator/consumer.h>
22
23 #include <linux/iio/iio.h>
24 #include <linux/iio/sysfs.h>
25
26 /* Memory sections addresses */
27 #define MLX90632_ADDR_RAM 0x4000 /* Start address of ram */
28 #define MLX90632_ADDR_EEPROM 0x2480 /* Start address of user eeprom */
29
30 /* EEPROM addresses - used at startup */
31 #define MLX90632_EE_CTRL 0x24d4 /* Control register initial value */
32 #define MLX90632_EE_I2C_ADDR 0x24d5 /* I2C address register initial value */
33 #define MLX90632_EE_VERSION 0x240b /* EEPROM version reg address */
34 #define MLX90632_EE_P_R 0x240c /* P_R calibration register 32bit */
35 #define MLX90632_EE_P_G 0x240e /* P_G calibration register 32bit */
36 #define MLX90632_EE_P_T 0x2410 /* P_T calibration register 32bit */
37 #define MLX90632_EE_P_O 0x2412 /* P_O calibration register 32bit */
38 #define MLX90632_EE_Aa 0x2414 /* Aa calibration register 32bit */
39 #define MLX90632_EE_Ab 0x2416 /* Ab calibration register 32bit */
40 #define MLX90632_EE_Ba 0x2418 /* Ba calibration register 32bit */
41 #define MLX90632_EE_Bb 0x241a /* Bb calibration register 32bit */
42 #define MLX90632_EE_Ca 0x241c /* Ca calibration register 32bit */
43 #define MLX90632_EE_Cb 0x241e /* Cb calibration register 32bit */
44 #define MLX90632_EE_Da 0x2420 /* Da calibration register 32bit */
45 #define MLX90632_EE_Db 0x2422 /* Db calibration register 32bit */
46 #define MLX90632_EE_Ea 0x2424 /* Ea calibration register 32bit */
47 #define MLX90632_EE_Eb 0x2426 /* Eb calibration register 32bit */
48 #define MLX90632_EE_Fa 0x2428 /* Fa calibration register 32bit */
49 #define MLX90632_EE_Fb 0x242a /* Fb calibration register 32bit */
50 #define MLX90632_EE_Ga 0x242c /* Ga calibration register 32bit */
51
52 #define MLX90632_EE_Gb 0x242e /* Gb calibration register 16bit */
53 #define MLX90632_EE_Ka 0x242f /* Ka calibration register 16bit */
54
55 #define MLX90632_EE_Ha 0x2481 /* Ha customer calib value reg 16bit */
56 #define MLX90632_EE_Hb 0x2482 /* Hb customer calib value reg 16bit */
57
58 /* Register addresses - volatile */
59 #define MLX90632_REG_I2C_ADDR 0x3000 /* Chip I2C address register */
60
61 /* Control register address - volatile */
62 #define MLX90632_REG_CONTROL 0x3001 /* Control Register address */
63 #define MLX90632_CFG_PWR_MASK GENMASK(2, 1) /* PowerMode Mask */
64 #define MLX90632_CFG_MTYP_MASK GENMASK(8, 4) /* Meas select Mask */
65
66 /* PowerModes statuses */
67 #define MLX90632_PWR_STATUS(ctrl_val) (ctrl_val << 1)
68 #define MLX90632_PWR_STATUS_HALT MLX90632_PWR_STATUS(0) /* hold */
69 #define MLX90632_PWR_STATUS_SLEEP_STEP MLX90632_PWR_STATUS(1) /* sleep step*/
70 #define MLX90632_PWR_STATUS_STEP MLX90632_PWR_STATUS(2) /* step */
71 #define MLX90632_PWR_STATUS_CONTINUOUS MLX90632_PWR_STATUS(3) /* continuous*/
72
73 /* Measurement types */
74 #define MLX90632_MTYP_MEDICAL 0
75 #define MLX90632_MTYP_EXTENDED 17
76
77 /* Measurement type select*/
78 #define MLX90632_MTYP_STATUS(ctrl_val) (ctrl_val << 4)
79 #define MLX90632_MTYP_STATUS_MEDICAL MLX90632_MTYP_STATUS(MLX90632_MTYP_MEDICAL)
80 #define MLX90632_MTYP_STATUS_EXTENDED MLX90632_MTYP_STATUS(MLX90632_MTYP_EXTENDED)
81
82 /* I2C command register - volatile */
83 #define MLX90632_REG_I2C_CMD 0x3005 /* I2C command Register address */
84
85 /* Device status register - volatile */
86 #define MLX90632_REG_STATUS 0x3fff /* Device status register */
87 #define MLX90632_STAT_BUSY BIT(10) /* Device busy indicator */
88 #define MLX90632_STAT_EE_BUSY BIT(9) /* EEPROM busy indicator */
89 #define MLX90632_STAT_BRST BIT(8) /* Brown out reset indicator */
90 #define MLX90632_STAT_CYCLE_POS GENMASK(6, 2) /* Data position */
91 #define MLX90632_STAT_DATA_RDY BIT(0) /* Data ready indicator */
92
93 /* RAM_MEAS address-es for each channel */
94 #define MLX90632_RAM_1(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num)
95 #define MLX90632_RAM_2(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num + 1)
96 #define MLX90632_RAM_3(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num + 2)
97
98 /* Name important RAM_MEAS channels */
99 #define MLX90632_RAM_DSP5_EXTENDED_AMBIENT_1 MLX90632_RAM_3(17)
100 #define MLX90632_RAM_DSP5_EXTENDED_AMBIENT_2 MLX90632_RAM_3(18)
101 #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_1 MLX90632_RAM_1(17)
102 #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_2 MLX90632_RAM_2(17)
103 #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_3 MLX90632_RAM_1(18)
104 #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_4 MLX90632_RAM_2(18)
105 #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_5 MLX90632_RAM_1(19)
106 #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_6 MLX90632_RAM_2(19)
107
108 /* Magic constants */
109 #define MLX90632_ID_MEDICAL 0x0105 /* EEPROM DSPv5 Medical device id */
110 #define MLX90632_ID_CONSUMER 0x0205 /* EEPROM DSPv5 Consumer device id */
111 #define MLX90632_ID_EXTENDED 0x0505 /* EEPROM DSPv5 Extended range device id */
112 #define MLX90632_ID_MASK GENMASK(14, 0) /* DSP version and device ID in EE_VERSION */
113 #define MLX90632_DSP_VERSION 5 /* DSP version */
114 #define MLX90632_DSP_MASK GENMASK(7, 0) /* DSP version in EE_VERSION */
115 #define MLX90632_RESET_CMD 0x0006 /* Reset sensor (address or global) */
116 #define MLX90632_REF_12 12LL /* ResCtrlRef value of Ch 1 or Ch 2 */
117 #define MLX90632_REF_3 12LL /* ResCtrlRef value of Channel 3 */
118 #define MLX90632_MAX_MEAS_NUM 31 /* Maximum measurements in list */
119 #define MLX90632_SLEEP_DELAY_MS 3000 /* Autosleep delay */
120 #define MLX90632_EXTENDED_LIMIT 27000 /* Extended mode raw value limit */
121
122 /**
123 * struct mlx90632_data - private data for the MLX90632 device
124 * @client: I2C client of the device
125 * @lock: Internal mutex for multiple reads for single measurement
126 * @regmap: Regmap of the device
127 * @emissivity: Object emissivity from 0 to 1000 where 1000 = 1.
128 * @mtyp: Measurement type physical sensor configuration for extended range
129 * calculations
130 * @object_ambient_temperature: Ambient temperature at object (might differ of
131 * the ambient temperature of sensor.
132 * @regulator: Regulator of the device
133 */
134 struct mlx90632_data {
135 struct i2c_client *client;
136 struct mutex lock;
137 struct regmap *regmap;
138 u16 emissivity;
139 u8 mtyp;
140 u32 object_ambient_temperature;
141 struct regulator *regulator;
142 };
143
144 static const struct regmap_range mlx90632_volatile_reg_range[] = {
145 regmap_reg_range(MLX90632_REG_I2C_ADDR, MLX90632_REG_CONTROL),
146 regmap_reg_range(MLX90632_REG_I2C_CMD, MLX90632_REG_I2C_CMD),
147 regmap_reg_range(MLX90632_REG_STATUS, MLX90632_REG_STATUS),
148 regmap_reg_range(MLX90632_RAM_1(0),
149 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
150 };
151
152 static const struct regmap_access_table mlx90632_volatile_regs_tbl = {
153 .yes_ranges = mlx90632_volatile_reg_range,
154 .n_yes_ranges = ARRAY_SIZE(mlx90632_volatile_reg_range),
155 };
156
157 static const struct regmap_range mlx90632_read_reg_range[] = {
158 regmap_reg_range(MLX90632_EE_VERSION, MLX90632_EE_Ka),
159 regmap_reg_range(MLX90632_EE_CTRL, MLX90632_EE_I2C_ADDR),
160 regmap_reg_range(MLX90632_EE_Ha, MLX90632_EE_Hb),
161 regmap_reg_range(MLX90632_REG_I2C_ADDR, MLX90632_REG_CONTROL),
162 regmap_reg_range(MLX90632_REG_I2C_CMD, MLX90632_REG_I2C_CMD),
163 regmap_reg_range(MLX90632_REG_STATUS, MLX90632_REG_STATUS),
164 regmap_reg_range(MLX90632_RAM_1(0),
165 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
166 };
167
168 static const struct regmap_access_table mlx90632_readable_regs_tbl = {
169 .yes_ranges = mlx90632_read_reg_range,
170 .n_yes_ranges = ARRAY_SIZE(mlx90632_read_reg_range),
171 };
172
173 static const struct regmap_range mlx90632_no_write_reg_range[] = {
174 regmap_reg_range(MLX90632_EE_VERSION, MLX90632_EE_Ka),
175 regmap_reg_range(MLX90632_RAM_1(0),
176 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
177 };
178
179 static const struct regmap_access_table mlx90632_writeable_regs_tbl = {
180 .no_ranges = mlx90632_no_write_reg_range,
181 .n_no_ranges = ARRAY_SIZE(mlx90632_no_write_reg_range),
182 };
183
184 static const struct regmap_config mlx90632_regmap = {
185 .reg_bits = 16,
186 .val_bits = 16,
187
188 .volatile_table = &mlx90632_volatile_regs_tbl,
189 .rd_table = &mlx90632_readable_regs_tbl,
190 .wr_table = &mlx90632_writeable_regs_tbl,
191
192 .use_single_read = true,
193 .use_single_write = true,
194 .reg_format_endian = REGMAP_ENDIAN_BIG,
195 .val_format_endian = REGMAP_ENDIAN_BIG,
196 .cache_type = REGCACHE_RBTREE,
197 };
198
mlx90632_pwr_set_sleep_step(struct regmap * regmap)199 static s32 mlx90632_pwr_set_sleep_step(struct regmap *regmap)
200 {
201 return regmap_update_bits(regmap, MLX90632_REG_CONTROL,
202 MLX90632_CFG_PWR_MASK,
203 MLX90632_PWR_STATUS_SLEEP_STEP);
204 }
205
mlx90632_pwr_continuous(struct regmap * regmap)206 static s32 mlx90632_pwr_continuous(struct regmap *regmap)
207 {
208 return regmap_update_bits(regmap, MLX90632_REG_CONTROL,
209 MLX90632_CFG_PWR_MASK,
210 MLX90632_PWR_STATUS_CONTINUOUS);
211 }
212
213 /**
214 * mlx90632_reset_delay() - Give the mlx90632 some time to reset properly
215 * If this is not done, the following I2C command(s) will not be accepted.
216 */
mlx90632_reset_delay(void)217 static void mlx90632_reset_delay(void)
218 {
219 usleep_range(150, 200);
220 }
221
222 /**
223 * mlx90632_perform_measurement() - Trigger and retrieve current measurement cycle
224 * @data: pointer to mlx90632_data object containing regmap information
225 *
226 * Perform a measurement and return latest measurement cycle position reported
227 * by sensor. This is a blocking function for 500ms, as that is default sensor
228 * refresh rate.
229 */
mlx90632_perform_measurement(struct mlx90632_data * data)230 static int mlx90632_perform_measurement(struct mlx90632_data *data)
231 {
232 unsigned int reg_status;
233 int ret;
234
235 ret = regmap_update_bits(data->regmap, MLX90632_REG_STATUS,
236 MLX90632_STAT_DATA_RDY, 0);
237 if (ret < 0)
238 return ret;
239
240 ret = regmap_read_poll_timeout(data->regmap, MLX90632_REG_STATUS, reg_status,
241 !(reg_status & MLX90632_STAT_DATA_RDY), 10000,
242 100 * 10000);
243
244 if (ret < 0) {
245 dev_err(&data->client->dev, "data not ready");
246 return -ETIMEDOUT;
247 }
248
249 return (reg_status & MLX90632_STAT_CYCLE_POS) >> 2;
250 }
251
mlx90632_set_meas_type(struct regmap * regmap,u8 type)252 static int mlx90632_set_meas_type(struct regmap *regmap, u8 type)
253 {
254 int ret;
255
256 if ((type != MLX90632_MTYP_MEDICAL) && (type != MLX90632_MTYP_EXTENDED))
257 return -EINVAL;
258
259 ret = regmap_write(regmap, MLX90632_REG_I2C_CMD, MLX90632_RESET_CMD);
260 if (ret < 0)
261 return ret;
262
263 mlx90632_reset_delay();
264
265 ret = regmap_write_bits(regmap, MLX90632_REG_CONTROL,
266 (MLX90632_CFG_MTYP_MASK | MLX90632_CFG_PWR_MASK),
267 (MLX90632_MTYP_STATUS(type) | MLX90632_PWR_STATUS_HALT));
268 if (ret < 0)
269 return ret;
270
271 return mlx90632_pwr_continuous(regmap);
272 }
273
mlx90632_channel_new_select(int perform_ret,uint8_t * channel_new,uint8_t * channel_old)274 static int mlx90632_channel_new_select(int perform_ret, uint8_t *channel_new,
275 uint8_t *channel_old)
276 {
277 switch (perform_ret) {
278 case 1:
279 *channel_new = 1;
280 *channel_old = 2;
281 break;
282 case 2:
283 *channel_new = 2;
284 *channel_old = 1;
285 break;
286 default:
287 return -EINVAL;
288 }
289
290 return 0;
291 }
292
mlx90632_read_ambient_raw(struct regmap * regmap,s16 * ambient_new_raw,s16 * ambient_old_raw)293 static int mlx90632_read_ambient_raw(struct regmap *regmap,
294 s16 *ambient_new_raw, s16 *ambient_old_raw)
295 {
296 int ret;
297 unsigned int read_tmp;
298
299 ret = regmap_read(regmap, MLX90632_RAM_3(1), &read_tmp);
300 if (ret < 0)
301 return ret;
302 *ambient_new_raw = (s16)read_tmp;
303
304 ret = regmap_read(regmap, MLX90632_RAM_3(2), &read_tmp);
305 if (ret < 0)
306 return ret;
307 *ambient_old_raw = (s16)read_tmp;
308
309 return ret;
310 }
311
mlx90632_read_object_raw(struct regmap * regmap,int perform_measurement_ret,s16 * object_new_raw,s16 * object_old_raw)312 static int mlx90632_read_object_raw(struct regmap *regmap,
313 int perform_measurement_ret,
314 s16 *object_new_raw, s16 *object_old_raw)
315 {
316 int ret;
317 unsigned int read_tmp;
318 s16 read;
319 u8 channel = 0;
320 u8 channel_old = 0;
321
322 ret = mlx90632_channel_new_select(perform_measurement_ret, &channel,
323 &channel_old);
324 if (ret != 0)
325 return ret;
326
327 ret = regmap_read(regmap, MLX90632_RAM_2(channel), &read_tmp);
328 if (ret < 0)
329 return ret;
330
331 read = (s16)read_tmp;
332
333 ret = regmap_read(regmap, MLX90632_RAM_1(channel), &read_tmp);
334 if (ret < 0)
335 return ret;
336 *object_new_raw = (read + (s16)read_tmp) / 2;
337
338 ret = regmap_read(regmap, MLX90632_RAM_2(channel_old), &read_tmp);
339 if (ret < 0)
340 return ret;
341 read = (s16)read_tmp;
342
343 ret = regmap_read(regmap, MLX90632_RAM_1(channel_old), &read_tmp);
344 if (ret < 0)
345 return ret;
346 *object_old_raw = (read + (s16)read_tmp) / 2;
347
348 return ret;
349 }
350
mlx90632_read_all_channel(struct mlx90632_data * data,s16 * ambient_new_raw,s16 * ambient_old_raw,s16 * object_new_raw,s16 * object_old_raw)351 static int mlx90632_read_all_channel(struct mlx90632_data *data,
352 s16 *ambient_new_raw, s16 *ambient_old_raw,
353 s16 *object_new_raw, s16 *object_old_raw)
354 {
355 s32 ret, measurement;
356
357 mutex_lock(&data->lock);
358 measurement = mlx90632_perform_measurement(data);
359 if (measurement < 0) {
360 ret = measurement;
361 goto read_unlock;
362 }
363 ret = mlx90632_read_ambient_raw(data->regmap, ambient_new_raw,
364 ambient_old_raw);
365 if (ret < 0)
366 goto read_unlock;
367
368 ret = mlx90632_read_object_raw(data->regmap, measurement,
369 object_new_raw, object_old_raw);
370 read_unlock:
371 mutex_unlock(&data->lock);
372 return ret;
373 }
374
mlx90632_read_ambient_raw_extended(struct regmap * regmap,s16 * ambient_new_raw,s16 * ambient_old_raw)375 static int mlx90632_read_ambient_raw_extended(struct regmap *regmap,
376 s16 *ambient_new_raw, s16 *ambient_old_raw)
377 {
378 unsigned int read_tmp;
379 int ret;
380
381 ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_AMBIENT_1, &read_tmp);
382 if (ret < 0)
383 return ret;
384 *ambient_new_raw = (s16)read_tmp;
385
386 ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_AMBIENT_2, &read_tmp);
387 if (ret < 0)
388 return ret;
389 *ambient_old_raw = (s16)read_tmp;
390
391 return 0;
392 }
393
mlx90632_read_object_raw_extended(struct regmap * regmap,s16 * object_new_raw)394 static int mlx90632_read_object_raw_extended(struct regmap *regmap, s16 *object_new_raw)
395 {
396 unsigned int read_tmp;
397 s32 read;
398 int ret;
399
400 ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_1, &read_tmp);
401 if (ret < 0)
402 return ret;
403 read = (s16)read_tmp;
404
405 ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_2, &read_tmp);
406 if (ret < 0)
407 return ret;
408 read = read - (s16)read_tmp;
409
410 ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_3, &read_tmp);
411 if (ret < 0)
412 return ret;
413 read = read - (s16)read_tmp;
414
415 ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_4, &read_tmp);
416 if (ret < 0)
417 return ret;
418 read = (read + (s16)read_tmp) / 2;
419
420 ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_5, &read_tmp);
421 if (ret < 0)
422 return ret;
423 read = read + (s16)read_tmp;
424
425 ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_6, &read_tmp);
426 if (ret < 0)
427 return ret;
428 read = read + (s16)read_tmp;
429
430 if (read > S16_MAX || read < S16_MIN)
431 return -ERANGE;
432
433 *object_new_raw = read;
434
435 return 0;
436 }
437
mlx90632_read_all_channel_extended(struct mlx90632_data * data,s16 * object_new_raw,s16 * ambient_new_raw,s16 * ambient_old_raw)438 static int mlx90632_read_all_channel_extended(struct mlx90632_data *data, s16 *object_new_raw,
439 s16 *ambient_new_raw, s16 *ambient_old_raw)
440 {
441 s32 ret, meas;
442
443 mutex_lock(&data->lock);
444 ret = mlx90632_set_meas_type(data->regmap, MLX90632_MTYP_EXTENDED);
445 if (ret < 0)
446 goto read_unlock;
447
448 ret = read_poll_timeout(mlx90632_perform_measurement, meas, meas == 19,
449 50000, 800000, false, data);
450 if (ret != 0)
451 goto read_unlock;
452
453 ret = mlx90632_read_object_raw_extended(data->regmap, object_new_raw);
454 if (ret < 0)
455 goto read_unlock;
456
457 ret = mlx90632_read_ambient_raw_extended(data->regmap, ambient_new_raw, ambient_old_raw);
458
459 read_unlock:
460 (void) mlx90632_set_meas_type(data->regmap, MLX90632_MTYP_MEDICAL);
461
462 mutex_unlock(&data->lock);
463 return ret;
464 }
465
mlx90632_read_ee_register(struct regmap * regmap,u16 reg_lsb,s32 * reg_value)466 static int mlx90632_read_ee_register(struct regmap *regmap, u16 reg_lsb,
467 s32 *reg_value)
468 {
469 s32 ret;
470 unsigned int read;
471 u32 value;
472
473 ret = regmap_read(regmap, reg_lsb, &read);
474 if (ret < 0)
475 return ret;
476
477 value = read;
478
479 ret = regmap_read(regmap, reg_lsb + 1, &read);
480 if (ret < 0)
481 return ret;
482
483 *reg_value = (read << 16) | (value & 0xffff);
484
485 return 0;
486 }
487
mlx90632_preprocess_temp_amb(s16 ambient_new_raw,s16 ambient_old_raw,s16 Gb)488 static s64 mlx90632_preprocess_temp_amb(s16 ambient_new_raw,
489 s16 ambient_old_raw, s16 Gb)
490 {
491 s64 VR_Ta, kGb, tmp;
492
493 kGb = ((s64)Gb * 1000LL) >> 10ULL;
494 VR_Ta = (s64)ambient_old_raw * 1000000LL +
495 kGb * div64_s64(((s64)ambient_new_raw * 1000LL),
496 (MLX90632_REF_3));
497 tmp = div64_s64(
498 div64_s64(((s64)ambient_new_raw * 1000000000000LL),
499 (MLX90632_REF_3)), VR_Ta);
500 return div64_s64(tmp << 19ULL, 1000LL);
501 }
502
mlx90632_preprocess_temp_obj(s16 object_new_raw,s16 object_old_raw,s16 ambient_new_raw,s16 ambient_old_raw,s16 Ka)503 static s64 mlx90632_preprocess_temp_obj(s16 object_new_raw, s16 object_old_raw,
504 s16 ambient_new_raw,
505 s16 ambient_old_raw, s16 Ka)
506 {
507 s64 VR_IR, kKa, tmp;
508
509 kKa = ((s64)Ka * 1000LL) >> 10ULL;
510 VR_IR = (s64)ambient_old_raw * 1000000LL +
511 kKa * div64_s64(((s64)ambient_new_raw * 1000LL),
512 (MLX90632_REF_3));
513 tmp = div64_s64(
514 div64_s64(((s64)((object_new_raw + object_old_raw) / 2)
515 * 1000000000000LL), (MLX90632_REF_12)),
516 VR_IR);
517 return div64_s64((tmp << 19ULL), 1000LL);
518 }
519
mlx90632_preprocess_temp_obj_extended(s16 object_new_raw,s16 ambient_new_raw,s16 ambient_old_raw,s16 Ka)520 static s64 mlx90632_preprocess_temp_obj_extended(s16 object_new_raw, s16 ambient_new_raw,
521 s16 ambient_old_raw, s16 Ka)
522 {
523 s64 VR_IR, kKa, tmp;
524
525 kKa = ((s64)Ka * 1000LL) >> 10ULL;
526 VR_IR = (s64)ambient_old_raw * 1000000LL +
527 kKa * div64_s64((s64)ambient_new_raw * 1000LL,
528 MLX90632_REF_3);
529 tmp = div64_s64(
530 div64_s64((s64) object_new_raw * 1000000000000LL, MLX90632_REF_12),
531 VR_IR);
532 return div64_s64(tmp << 19ULL, 1000LL);
533 }
534
mlx90632_calc_temp_ambient(s16 ambient_new_raw,s16 ambient_old_raw,s32 P_T,s32 P_R,s32 P_G,s32 P_O,s16 Gb)535 static s32 mlx90632_calc_temp_ambient(s16 ambient_new_raw, s16 ambient_old_raw,
536 s32 P_T, s32 P_R, s32 P_G, s32 P_O, s16 Gb)
537 {
538 s64 Asub, Bsub, Ablock, Bblock, Cblock, AMB, sum;
539
540 AMB = mlx90632_preprocess_temp_amb(ambient_new_raw, ambient_old_raw,
541 Gb);
542 Asub = ((s64)P_T * 10000000000LL) >> 44ULL;
543 Bsub = AMB - (((s64)P_R * 1000LL) >> 8ULL);
544 Ablock = Asub * (Bsub * Bsub);
545 Bblock = (div64_s64(Bsub * 10000000LL, P_G)) << 20ULL;
546 Cblock = ((s64)P_O * 10000000000LL) >> 8ULL;
547
548 sum = div64_s64(Ablock, 1000000LL) + Bblock + Cblock;
549
550 return div64_s64(sum, 10000000LL);
551 }
552
mlx90632_calc_temp_object_iteration(s32 prev_object_temp,s64 object,s64 TAdut,s64 TAdut4,s32 Fa,s32 Fb,s32 Ga,s16 Ha,s16 Hb,u16 emissivity)553 static s32 mlx90632_calc_temp_object_iteration(s32 prev_object_temp, s64 object,
554 s64 TAdut, s64 TAdut4, s32 Fa, s32 Fb,
555 s32 Ga, s16 Ha, s16 Hb,
556 u16 emissivity)
557 {
558 s64 calcedKsTO, calcedKsTA, ir_Alpha, Alpha_corr;
559 s64 Ha_customer, Hb_customer;
560
561 Ha_customer = ((s64)Ha * 1000000LL) >> 14ULL;
562 Hb_customer = ((s64)Hb * 100) >> 10ULL;
563
564 calcedKsTO = ((s64)((s64)Ga * (prev_object_temp - 25 * 1000LL)
565 * 1000LL)) >> 36LL;
566 calcedKsTA = ((s64)(Fb * (TAdut - 25 * 1000000LL))) >> 36LL;
567 Alpha_corr = div64_s64((((s64)(Fa * 10000000000LL) >> 46LL)
568 * Ha_customer), 1000LL);
569 Alpha_corr *= ((s64)(1 * 1000000LL + calcedKsTO + calcedKsTA));
570 Alpha_corr = emissivity * div64_s64(Alpha_corr, 100000LL);
571 Alpha_corr = div64_s64(Alpha_corr, 1000LL);
572 ir_Alpha = div64_s64((s64)object * 10000000LL, Alpha_corr);
573
574 return (int_sqrt64(int_sqrt64(ir_Alpha * 1000000000000LL + TAdut4))
575 - 27315 - Hb_customer) * 10;
576 }
577
mlx90632_calc_ta4(s64 TAdut,s64 scale)578 static s64 mlx90632_calc_ta4(s64 TAdut, s64 scale)
579 {
580 return (div64_s64(TAdut, scale) + 27315) *
581 (div64_s64(TAdut, scale) + 27315) *
582 (div64_s64(TAdut, scale) + 27315) *
583 (div64_s64(TAdut, scale) + 27315);
584 }
585
mlx90632_calc_temp_object(s64 object,s64 ambient,s32 Ea,s32 Eb,s32 Fa,s32 Fb,s32 Ga,s16 Ha,s16 Hb,u16 tmp_emi)586 static s32 mlx90632_calc_temp_object(s64 object, s64 ambient, s32 Ea, s32 Eb,
587 s32 Fa, s32 Fb, s32 Ga, s16 Ha, s16 Hb,
588 u16 tmp_emi)
589 {
590 s64 kTA, kTA0, TAdut, TAdut4;
591 s64 temp = 25000;
592 s8 i;
593
594 kTA = (Ea * 1000LL) >> 16LL;
595 kTA0 = (Eb * 1000LL) >> 8LL;
596 TAdut = div64_s64(((ambient - kTA0) * 1000000LL), kTA) + 25 * 1000000LL;
597 TAdut4 = mlx90632_calc_ta4(TAdut, 10000LL);
598
599 /* Iterations of calculation as described in datasheet */
600 for (i = 0; i < 5; ++i) {
601 temp = mlx90632_calc_temp_object_iteration(temp, object, TAdut, TAdut4,
602 Fa, Fb, Ga, Ha, Hb,
603 tmp_emi);
604 }
605 return temp;
606 }
607
mlx90632_calc_temp_object_extended(s64 object,s64 ambient,s64 reflected,s32 Ea,s32 Eb,s32 Fa,s32 Fb,s32 Ga,s16 Ha,s16 Hb,u16 tmp_emi)608 static s32 mlx90632_calc_temp_object_extended(s64 object, s64 ambient, s64 reflected,
609 s32 Ea, s32 Eb, s32 Fa, s32 Fb, s32 Ga,
610 s16 Ha, s16 Hb, u16 tmp_emi)
611 {
612 s64 kTA, kTA0, TAdut, TAdut4, Tr4, TaTr4;
613 s64 temp = 25000;
614 s8 i;
615
616 kTA = (Ea * 1000LL) >> 16LL;
617 kTA0 = (Eb * 1000LL) >> 8LL;
618 TAdut = div64_s64((ambient - kTA0) * 1000000LL, kTA) + 25 * 1000000LL;
619 Tr4 = mlx90632_calc_ta4(reflected, 10);
620 TAdut4 = mlx90632_calc_ta4(TAdut, 10000LL);
621 TaTr4 = Tr4 - div64_s64(Tr4 - TAdut4, tmp_emi) * 1000;
622
623 /* Iterations of calculation as described in datasheet */
624 for (i = 0; i < 5; ++i) {
625 temp = mlx90632_calc_temp_object_iteration(temp, object, TAdut, TaTr4,
626 Fa / 2, Fb, Ga, Ha, Hb,
627 tmp_emi);
628 }
629
630 return temp;
631 }
632
mlx90632_calc_object_dsp105(struct mlx90632_data * data,int * val)633 static int mlx90632_calc_object_dsp105(struct mlx90632_data *data, int *val)
634 {
635 s32 ret;
636 s32 Ea, Eb, Fa, Fb, Ga;
637 unsigned int read_tmp;
638 s16 Ha, Hb, Gb, Ka;
639 s16 ambient_new_raw, ambient_old_raw, object_new_raw, object_old_raw;
640 s64 object, ambient;
641
642 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Ea, &Ea);
643 if (ret < 0)
644 return ret;
645 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Eb, &Eb);
646 if (ret < 0)
647 return ret;
648 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Fa, &Fa);
649 if (ret < 0)
650 return ret;
651 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Fb, &Fb);
652 if (ret < 0)
653 return ret;
654 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Ga, &Ga);
655 if (ret < 0)
656 return ret;
657 ret = regmap_read(data->regmap, MLX90632_EE_Ha, &read_tmp);
658 if (ret < 0)
659 return ret;
660 Ha = (s16)read_tmp;
661 ret = regmap_read(data->regmap, MLX90632_EE_Hb, &read_tmp);
662 if (ret < 0)
663 return ret;
664 Hb = (s16)read_tmp;
665 ret = regmap_read(data->regmap, MLX90632_EE_Gb, &read_tmp);
666 if (ret < 0)
667 return ret;
668 Gb = (s16)read_tmp;
669 ret = regmap_read(data->regmap, MLX90632_EE_Ka, &read_tmp);
670 if (ret < 0)
671 return ret;
672 Ka = (s16)read_tmp;
673
674 ret = mlx90632_read_all_channel(data,
675 &ambient_new_raw, &ambient_old_raw,
676 &object_new_raw, &object_old_raw);
677 if (ret < 0)
678 return ret;
679
680 if (object_new_raw > MLX90632_EXTENDED_LIMIT &&
681 data->mtyp == MLX90632_MTYP_EXTENDED) {
682 ret = mlx90632_read_all_channel_extended(data, &object_new_raw,
683 &ambient_new_raw, &ambient_old_raw);
684 if (ret < 0)
685 return ret;
686
687 /* Use extended mode calculations */
688 ambient = mlx90632_preprocess_temp_amb(ambient_new_raw,
689 ambient_old_raw, Gb);
690 object = mlx90632_preprocess_temp_obj_extended(object_new_raw,
691 ambient_new_raw,
692 ambient_old_raw, Ka);
693 *val = mlx90632_calc_temp_object_extended(object, ambient,
694 data->object_ambient_temperature,
695 Ea, Eb, Fa, Fb, Ga,
696 Ha, Hb, data->emissivity);
697 return 0;
698 }
699
700 ambient = mlx90632_preprocess_temp_amb(ambient_new_raw,
701 ambient_old_raw, Gb);
702 object = mlx90632_preprocess_temp_obj(object_new_raw,
703 object_old_raw,
704 ambient_new_raw,
705 ambient_old_raw, Ka);
706
707 *val = mlx90632_calc_temp_object(object, ambient, Ea, Eb, Fa, Fb, Ga,
708 Ha, Hb, data->emissivity);
709 return 0;
710 }
711
mlx90632_calc_ambient_dsp105(struct mlx90632_data * data,int * val)712 static int mlx90632_calc_ambient_dsp105(struct mlx90632_data *data, int *val)
713 {
714 s32 ret;
715 unsigned int read_tmp;
716 s32 PT, PR, PG, PO;
717 s16 Gb;
718 s16 ambient_new_raw, ambient_old_raw;
719
720 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_R, &PR);
721 if (ret < 0)
722 return ret;
723 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_G, &PG);
724 if (ret < 0)
725 return ret;
726 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_T, &PT);
727 if (ret < 0)
728 return ret;
729 ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_O, &PO);
730 if (ret < 0)
731 return ret;
732 ret = regmap_read(data->regmap, MLX90632_EE_Gb, &read_tmp);
733 if (ret < 0)
734 return ret;
735 Gb = (s16)read_tmp;
736
737 ret = mlx90632_read_ambient_raw(data->regmap, &ambient_new_raw,
738 &ambient_old_raw);
739 if (ret < 0)
740 return ret;
741 *val = mlx90632_calc_temp_ambient(ambient_new_raw, ambient_old_raw,
742 PT, PR, PG, PO, Gb);
743 return ret;
744 }
745
mlx90632_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * channel,int * val,int * val2,long mask)746 static int mlx90632_read_raw(struct iio_dev *indio_dev,
747 struct iio_chan_spec const *channel, int *val,
748 int *val2, long mask)
749 {
750 struct mlx90632_data *data = iio_priv(indio_dev);
751 int ret;
752
753 switch (mask) {
754 case IIO_CHAN_INFO_PROCESSED:
755 switch (channel->channel2) {
756 case IIO_MOD_TEMP_AMBIENT:
757 ret = mlx90632_calc_ambient_dsp105(data, val);
758 if (ret < 0)
759 return ret;
760 return IIO_VAL_INT;
761 case IIO_MOD_TEMP_OBJECT:
762 ret = mlx90632_calc_object_dsp105(data, val);
763 if (ret < 0)
764 return ret;
765 return IIO_VAL_INT;
766 default:
767 return -EINVAL;
768 }
769 case IIO_CHAN_INFO_CALIBEMISSIVITY:
770 if (data->emissivity == 1000) {
771 *val = 1;
772 *val2 = 0;
773 } else {
774 *val = 0;
775 *val2 = data->emissivity * 1000;
776 }
777 return IIO_VAL_INT_PLUS_MICRO;
778 case IIO_CHAN_INFO_CALIBAMBIENT:
779 *val = data->object_ambient_temperature;
780 return IIO_VAL_INT;
781 default:
782 return -EINVAL;
783 }
784 }
785
mlx90632_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * channel,int val,int val2,long mask)786 static int mlx90632_write_raw(struct iio_dev *indio_dev,
787 struct iio_chan_spec const *channel, int val,
788 int val2, long mask)
789 {
790 struct mlx90632_data *data = iio_priv(indio_dev);
791
792 switch (mask) {
793 case IIO_CHAN_INFO_CALIBEMISSIVITY:
794 /* Confirm we are within 0 and 1.0 */
795 if (val < 0 || val2 < 0 || val > 1 ||
796 (val == 1 && val2 != 0))
797 return -EINVAL;
798 data->emissivity = val * 1000 + val2 / 1000;
799 return 0;
800 case IIO_CHAN_INFO_CALIBAMBIENT:
801 data->object_ambient_temperature = val;
802 return 0;
803 default:
804 return -EINVAL;
805 }
806 }
807
808 static const struct iio_chan_spec mlx90632_channels[] = {
809 {
810 .type = IIO_TEMP,
811 .modified = 1,
812 .channel2 = IIO_MOD_TEMP_AMBIENT,
813 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
814 },
815 {
816 .type = IIO_TEMP,
817 .modified = 1,
818 .channel2 = IIO_MOD_TEMP_OBJECT,
819 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
820 BIT(IIO_CHAN_INFO_CALIBEMISSIVITY) | BIT(IIO_CHAN_INFO_CALIBAMBIENT),
821 },
822 };
823
824 static const struct iio_info mlx90632_info = {
825 .read_raw = mlx90632_read_raw,
826 .write_raw = mlx90632_write_raw,
827 };
828
mlx90632_sleep(struct mlx90632_data * data)829 static int mlx90632_sleep(struct mlx90632_data *data)
830 {
831 regcache_mark_dirty(data->regmap);
832
833 dev_dbg(&data->client->dev, "Requesting sleep");
834 return mlx90632_pwr_set_sleep_step(data->regmap);
835 }
836
mlx90632_wakeup(struct mlx90632_data * data)837 static int mlx90632_wakeup(struct mlx90632_data *data)
838 {
839 int ret;
840
841 ret = regcache_sync(data->regmap);
842 if (ret < 0) {
843 dev_err(&data->client->dev,
844 "Failed to sync regmap registers: %d\n", ret);
845 return ret;
846 }
847
848 dev_dbg(&data->client->dev, "Requesting wake-up\n");
849 return mlx90632_pwr_continuous(data->regmap);
850 }
851
mlx90632_disable_regulator(void * _data)852 static void mlx90632_disable_regulator(void *_data)
853 {
854 struct mlx90632_data *data = _data;
855 int ret;
856
857 ret = regulator_disable(data->regulator);
858 if (ret < 0)
859 dev_err(regmap_get_device(data->regmap),
860 "Failed to disable power regulator: %d\n", ret);
861 }
862
mlx90632_enable_regulator(struct mlx90632_data * data)863 static int mlx90632_enable_regulator(struct mlx90632_data *data)
864 {
865 int ret;
866
867 ret = regulator_enable(data->regulator);
868 if (ret < 0) {
869 dev_err(regmap_get_device(data->regmap), "Failed to enable power regulator!\n");
870 return ret;
871 }
872
873 mlx90632_reset_delay();
874
875 return ret;
876 }
877
mlx90632_probe(struct i2c_client * client,const struct i2c_device_id * id)878 static int mlx90632_probe(struct i2c_client *client,
879 const struct i2c_device_id *id)
880 {
881 struct iio_dev *indio_dev;
882 struct mlx90632_data *mlx90632;
883 struct regmap *regmap;
884 int ret;
885 unsigned int read;
886
887 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*mlx90632));
888 if (!indio_dev) {
889 dev_err(&client->dev, "Failed to allocate device\n");
890 return -ENOMEM;
891 }
892
893 regmap = devm_regmap_init_i2c(client, &mlx90632_regmap);
894 if (IS_ERR(regmap)) {
895 ret = PTR_ERR(regmap);
896 dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret);
897 return ret;
898 }
899
900 mlx90632 = iio_priv(indio_dev);
901 i2c_set_clientdata(client, indio_dev);
902 mlx90632->client = client;
903 mlx90632->regmap = regmap;
904 mlx90632->mtyp = MLX90632_MTYP_MEDICAL;
905
906 mutex_init(&mlx90632->lock);
907 indio_dev->name = id->name;
908 indio_dev->modes = INDIO_DIRECT_MODE;
909 indio_dev->info = &mlx90632_info;
910 indio_dev->channels = mlx90632_channels;
911 indio_dev->num_channels = ARRAY_SIZE(mlx90632_channels);
912
913 mlx90632->regulator = devm_regulator_get(&client->dev, "vdd");
914 if (IS_ERR(mlx90632->regulator))
915 return dev_err_probe(&client->dev, PTR_ERR(mlx90632->regulator),
916 "failed to get vdd regulator");
917
918 ret = mlx90632_enable_regulator(mlx90632);
919 if (ret < 0)
920 return ret;
921
922 ret = devm_add_action_or_reset(&client->dev, mlx90632_disable_regulator,
923 mlx90632);
924 if (ret < 0) {
925 dev_err(&client->dev, "Failed to setup regulator cleanup action %d\n",
926 ret);
927 return ret;
928 }
929
930 ret = mlx90632_wakeup(mlx90632);
931 if (ret < 0) {
932 dev_err(&client->dev, "Wakeup failed: %d\n", ret);
933 return ret;
934 }
935
936 ret = regmap_read(mlx90632->regmap, MLX90632_EE_VERSION, &read);
937 if (ret < 0) {
938 dev_err(&client->dev, "read of version failed: %d\n", ret);
939 return ret;
940 }
941 read = read & MLX90632_ID_MASK;
942 if (read == MLX90632_ID_MEDICAL) {
943 dev_dbg(&client->dev,
944 "Detected Medical EEPROM calibration %x\n", read);
945 } else if (read == MLX90632_ID_CONSUMER) {
946 dev_dbg(&client->dev,
947 "Detected Consumer EEPROM calibration %x\n", read);
948 } else if (read == MLX90632_ID_EXTENDED) {
949 dev_dbg(&client->dev,
950 "Detected Extended range EEPROM calibration %x\n", read);
951 mlx90632->mtyp = MLX90632_MTYP_EXTENDED;
952 } else if ((read & MLX90632_DSP_MASK) == MLX90632_DSP_VERSION) {
953 dev_dbg(&client->dev,
954 "Detected Unknown EEPROM calibration %x\n", read);
955 } else {
956 dev_err(&client->dev,
957 "Wrong DSP version %x (expected %x)\n",
958 read, MLX90632_DSP_VERSION);
959 return -EPROTONOSUPPORT;
960 }
961
962 mlx90632->emissivity = 1000;
963 mlx90632->object_ambient_temperature = 25000; /* 25 degrees milliCelsius */
964
965 pm_runtime_disable(&client->dev);
966 ret = pm_runtime_set_active(&client->dev);
967 if (ret < 0) {
968 mlx90632_sleep(mlx90632);
969 return ret;
970 }
971 pm_runtime_enable(&client->dev);
972 pm_runtime_set_autosuspend_delay(&client->dev, MLX90632_SLEEP_DELAY_MS);
973 pm_runtime_use_autosuspend(&client->dev);
974
975 return iio_device_register(indio_dev);
976 }
977
mlx90632_remove(struct i2c_client * client)978 static void mlx90632_remove(struct i2c_client *client)
979 {
980 struct iio_dev *indio_dev = i2c_get_clientdata(client);
981 struct mlx90632_data *data = iio_priv(indio_dev);
982
983 iio_device_unregister(indio_dev);
984
985 pm_runtime_disable(&client->dev);
986 pm_runtime_set_suspended(&client->dev);
987 pm_runtime_put_noidle(&client->dev);
988
989 mlx90632_sleep(data);
990 }
991
992 static const struct i2c_device_id mlx90632_id[] = {
993 { "mlx90632", 0 },
994 { }
995 };
996 MODULE_DEVICE_TABLE(i2c, mlx90632_id);
997
998 static const struct of_device_id mlx90632_of_match[] = {
999 { .compatible = "melexis,mlx90632" },
1000 { }
1001 };
1002 MODULE_DEVICE_TABLE(of, mlx90632_of_match);
1003
mlx90632_pm_suspend(struct device * dev)1004 static int __maybe_unused mlx90632_pm_suspend(struct device *dev)
1005 {
1006 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1007 struct mlx90632_data *data = iio_priv(indio_dev);
1008
1009 return mlx90632_sleep(data);
1010 }
1011
mlx90632_pm_resume(struct device * dev)1012 static int __maybe_unused mlx90632_pm_resume(struct device *dev)
1013 {
1014 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1015 struct mlx90632_data *data = iio_priv(indio_dev);
1016
1017 return mlx90632_wakeup(data);
1018 }
1019
1020 static UNIVERSAL_DEV_PM_OPS(mlx90632_pm_ops, mlx90632_pm_suspend,
1021 mlx90632_pm_resume, NULL);
1022
1023 static struct i2c_driver mlx90632_driver = {
1024 .driver = {
1025 .name = "mlx90632",
1026 .of_match_table = mlx90632_of_match,
1027 .pm = &mlx90632_pm_ops,
1028 },
1029 .probe = mlx90632_probe,
1030 .remove = mlx90632_remove,
1031 .id_table = mlx90632_id,
1032 };
1033 module_i2c_driver(mlx90632_driver);
1034
1035 MODULE_AUTHOR("Crt Mori <cmo@melexis.com>");
1036 MODULE_DESCRIPTION("Melexis MLX90632 contactless Infra Red temperature sensor driver");
1037 MODULE_LICENSE("GPL v2");
1038