1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
4 //
5 // Author: Timur Tabi <timur@freescale.com>
6 //
7 // Copyright 2007-2010 Freescale Semiconductor, Inc.
8 //
9 // Some notes why imx-pcm-fiq is used instead of DMA on some boards:
10 //
11 // The i.MX SSI core has some nasty limitations in AC97 mode. While most
12 // sane processor vendors have a FIFO per AC97 slot, the i.MX has only
13 // one FIFO which combines all valid receive slots. We cannot even select
14 // which slots we want to receive. The WM9712 with which this driver
15 // was developed with always sends GPIO status data in slot 12 which
16 // we receive in our (PCM-) data stream. The only chance we have is to
17 // manually skip this data in the FIQ handler. With sampling rates different
18 // from 48000Hz not every frame has valid receive data, so the ratio
19 // between pcm data and GPIO status data changes. Our FIQ handler is not
20 // able to handle this, hence this driver only works with 48000Hz sampling
21 // rate.
22 // Reading and writing AC97 registers is another challenge. The core
23 // provides us status bits when the read register is updated with *another*
24 // value. When we read the same register two times (and the register still
25 // contains the same value) these status bits are not set. We work
26 // around this by not polling these bits but only wait a fixed delay.
27
28 #include <linux/init.h>
29 #include <linux/io.h>
30 #include <linux/module.h>
31 #include <linux/interrupt.h>
32 #include <linux/clk.h>
33 #include <linux/ctype.h>
34 #include <linux/device.h>
35 #include <linux/delay.h>
36 #include <linux/mutex.h>
37 #include <linux/slab.h>
38 #include <linux/spinlock.h>
39 #include <linux/of.h>
40 #include <linux/of_address.h>
41 #include <linux/of_irq.h>
42 #include <linux/of_platform.h>
43 #include <linux/dma/imx-dma.h>
44
45 #include <sound/core.h>
46 #include <sound/pcm.h>
47 #include <sound/pcm_params.h>
48 #include <sound/initval.h>
49 #include <sound/soc.h>
50 #include <sound/dmaengine_pcm.h>
51
52 #include "fsl_ssi.h"
53 #include "imx-pcm.h"
54
55 /* Define RX and TX to index ssi->regvals array; Can be 0 or 1 only */
56 #define RX 0
57 #define TX 1
58
59 /**
60 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
61 *
62 * The SSI has a limitation in that the samples must be in the same byte
63 * order as the host CPU. This is because when multiple bytes are written
64 * to the STX register, the bytes and bits must be written in the same
65 * order. The STX is a shift register, so all the bits need to be aligned
66 * (bit-endianness must match byte-endianness). Processors typically write
67 * the bits within a byte in the same order that the bytes of a word are
68 * written in. So if the host CPU is big-endian, then only big-endian
69 * samples will be written to STX properly.
70 */
71 #ifdef __BIG_ENDIAN
72 #define FSLSSI_I2S_FORMATS \
73 (SNDRV_PCM_FMTBIT_S8 | \
74 SNDRV_PCM_FMTBIT_S16_BE | \
75 SNDRV_PCM_FMTBIT_S18_3BE | \
76 SNDRV_PCM_FMTBIT_S20_3BE | \
77 SNDRV_PCM_FMTBIT_S24_3BE | \
78 SNDRV_PCM_FMTBIT_S24_BE)
79 #else
80 #define FSLSSI_I2S_FORMATS \
81 (SNDRV_PCM_FMTBIT_S8 | \
82 SNDRV_PCM_FMTBIT_S16_LE | \
83 SNDRV_PCM_FMTBIT_S18_3LE | \
84 SNDRV_PCM_FMTBIT_S20_3LE | \
85 SNDRV_PCM_FMTBIT_S24_3LE | \
86 SNDRV_PCM_FMTBIT_S24_LE)
87 #endif
88
89 /*
90 * In AC97 mode, TXDIR bit is forced to 0 and TFDIR bit is forced to 1:
91 * - SSI inputs external bit clock and outputs frame sync clock -- CBM_CFS
92 * - Also have NB_NF to mark these two clocks will not be inverted
93 */
94 #define FSLSSI_AC97_DAIFMT \
95 (SND_SOC_DAIFMT_AC97 | \
96 SND_SOC_DAIFMT_BC_FP | \
97 SND_SOC_DAIFMT_NB_NF)
98
99 #define FSLSSI_SIER_DBG_RX_FLAGS \
100 (SSI_SIER_RFF0_EN | \
101 SSI_SIER_RLS_EN | \
102 SSI_SIER_RFS_EN | \
103 SSI_SIER_ROE0_EN | \
104 SSI_SIER_RFRC_EN)
105 #define FSLSSI_SIER_DBG_TX_FLAGS \
106 (SSI_SIER_TFE0_EN | \
107 SSI_SIER_TLS_EN | \
108 SSI_SIER_TFS_EN | \
109 SSI_SIER_TUE0_EN | \
110 SSI_SIER_TFRC_EN)
111
112 enum fsl_ssi_type {
113 FSL_SSI_MCP8610,
114 FSL_SSI_MX21,
115 FSL_SSI_MX35,
116 FSL_SSI_MX51,
117 };
118
119 struct fsl_ssi_regvals {
120 u32 sier;
121 u32 srcr;
122 u32 stcr;
123 u32 scr;
124 };
125
fsl_ssi_readable_reg(struct device * dev,unsigned int reg)126 static bool fsl_ssi_readable_reg(struct device *dev, unsigned int reg)
127 {
128 switch (reg) {
129 case REG_SSI_SACCEN:
130 case REG_SSI_SACCDIS:
131 return false;
132 default:
133 return true;
134 }
135 }
136
fsl_ssi_volatile_reg(struct device * dev,unsigned int reg)137 static bool fsl_ssi_volatile_reg(struct device *dev, unsigned int reg)
138 {
139 switch (reg) {
140 case REG_SSI_STX0:
141 case REG_SSI_STX1:
142 case REG_SSI_SRX0:
143 case REG_SSI_SRX1:
144 case REG_SSI_SISR:
145 case REG_SSI_SFCSR:
146 case REG_SSI_SACNT:
147 case REG_SSI_SACADD:
148 case REG_SSI_SACDAT:
149 case REG_SSI_SATAG:
150 case REG_SSI_SACCST:
151 case REG_SSI_SOR:
152 return true;
153 default:
154 return false;
155 }
156 }
157
fsl_ssi_precious_reg(struct device * dev,unsigned int reg)158 static bool fsl_ssi_precious_reg(struct device *dev, unsigned int reg)
159 {
160 switch (reg) {
161 case REG_SSI_SRX0:
162 case REG_SSI_SRX1:
163 case REG_SSI_SISR:
164 case REG_SSI_SACADD:
165 case REG_SSI_SACDAT:
166 case REG_SSI_SATAG:
167 return true;
168 default:
169 return false;
170 }
171 }
172
fsl_ssi_writeable_reg(struct device * dev,unsigned int reg)173 static bool fsl_ssi_writeable_reg(struct device *dev, unsigned int reg)
174 {
175 switch (reg) {
176 case REG_SSI_SRX0:
177 case REG_SSI_SRX1:
178 case REG_SSI_SACCST:
179 return false;
180 default:
181 return true;
182 }
183 }
184
185 static const struct regmap_config fsl_ssi_regconfig = {
186 .max_register = REG_SSI_SACCDIS,
187 .reg_bits = 32,
188 .val_bits = 32,
189 .reg_stride = 4,
190 .val_format_endian = REGMAP_ENDIAN_NATIVE,
191 .num_reg_defaults_raw = REG_SSI_SACCDIS / sizeof(uint32_t) + 1,
192 .readable_reg = fsl_ssi_readable_reg,
193 .volatile_reg = fsl_ssi_volatile_reg,
194 .precious_reg = fsl_ssi_precious_reg,
195 .writeable_reg = fsl_ssi_writeable_reg,
196 .cache_type = REGCACHE_FLAT,
197 };
198
199 struct fsl_ssi_soc_data {
200 bool imx;
201 bool imx21regs; /* imx21-class SSI - no SACC{ST,EN,DIS} regs */
202 bool offline_config;
203 u32 sisr_write_mask;
204 };
205
206 /**
207 * struct fsl_ssi - per-SSI private data
208 * @regs: Pointer to the regmap registers
209 * @irq: IRQ of this SSI
210 * @cpu_dai_drv: CPU DAI driver for this device
211 * @dai_fmt: DAI configuration this device is currently used with
212 * @streams: Mask of current active streams: BIT(TX) and BIT(RX)
213 * @i2s_net: I2S and Network mode configurations of SCR register
214 * (this is the initial settings based on the DAI format)
215 * @synchronous: Use synchronous mode - both of TX and RX use STCK and SFCK
216 * @use_dma: DMA is used or FIQ with stream filter
217 * @use_dual_fifo: DMA with support for dual FIFO mode
218 * @use_dyna_fifo: DMA with support for multi FIFO script
219 * @has_ipg_clk_name: If "ipg" is in the clock name list of device tree
220 * @fifo_depth: Depth of the SSI FIFOs
221 * @slot_width: Width of each DAI slot
222 * @slots: Number of slots
223 * @regvals: Specific RX/TX register settings
224 * @clk: Clock source to access register
225 * @baudclk: Clock source to generate bit and frame-sync clocks
226 * @baudclk_streams: Active streams that are using baudclk
227 * @regcache_sfcsr: Cache sfcsr register value during suspend and resume
228 * @regcache_sacnt: Cache sacnt register value during suspend and resume
229 * @dma_params_tx: DMA transmit parameters
230 * @dma_params_rx: DMA receive parameters
231 * @ssi_phys: physical address of the SSI registers
232 * @fiq_params: FIQ stream filtering parameters
233 * @card_pdev: Platform_device pointer to register a sound card for PowerPC or
234 * to register a CODEC platform device for AC97
235 * @card_name: Platform_device name to register a sound card for PowerPC or
236 * to register a CODEC platform device for AC97
237 * @card_idx: The index of SSI to register a sound card for PowerPC or
238 * to register a CODEC platform device for AC97
239 * @dbg_stats: Debugging statistics
240 * @soc: SoC specific data
241 * @dev: Pointer to &pdev->dev
242 * @fifo_watermark: The FIFO watermark setting. Notifies DMA when there are
243 * @fifo_watermark or fewer words in TX fifo or
244 * @fifo_watermark or more empty words in RX fifo.
245 * @dma_maxburst: Max number of words to transfer in one go. So far,
246 * this is always the same as fifo_watermark.
247 * @ac97_reg_lock: Mutex lock to serialize AC97 register access operations
248 * @audio_config: configure for dma multi fifo script
249 */
250 struct fsl_ssi {
251 struct regmap *regs;
252 int irq;
253 struct snd_soc_dai_driver cpu_dai_drv;
254
255 unsigned int dai_fmt;
256 u8 streams;
257 u8 i2s_net;
258 bool synchronous;
259 bool use_dma;
260 bool use_dual_fifo;
261 bool use_dyna_fifo;
262 bool has_ipg_clk_name;
263 unsigned int fifo_depth;
264 unsigned int slot_width;
265 unsigned int slots;
266 struct fsl_ssi_regvals regvals[2];
267
268 struct clk *clk;
269 struct clk *baudclk;
270 unsigned int baudclk_streams;
271
272 u32 regcache_sfcsr;
273 u32 regcache_sacnt;
274
275 struct snd_dmaengine_dai_dma_data dma_params_tx;
276 struct snd_dmaengine_dai_dma_data dma_params_rx;
277 dma_addr_t ssi_phys;
278
279 struct imx_pcm_fiq_params fiq_params;
280
281 struct platform_device *card_pdev;
282 char card_name[32];
283 u32 card_idx;
284
285 struct fsl_ssi_dbg dbg_stats;
286
287 const struct fsl_ssi_soc_data *soc;
288 struct device *dev;
289
290 u32 fifo_watermark;
291 u32 dma_maxburst;
292
293 struct mutex ac97_reg_lock;
294 struct sdma_peripheral_config audio_config[2];
295 };
296
297 /*
298 * SoC specific data
299 *
300 * Notes:
301 * 1) SSI in earlier SoCS has critical bits in control registers that
302 * cannot be changed after SSI starts running -- a software reset
303 * (set SSIEN to 0) is required to change their values. So adding
304 * an offline_config flag for these SoCs.
305 * 2) SDMA is available since imx35. However, imx35 does not support
306 * DMA bits changing when SSI is running, so set offline_config.
307 * 3) imx51 and later versions support register configurations when
308 * SSI is running (SSIEN); For these versions, DMA needs to be
309 * configured before SSI sends DMA request to avoid an undefined
310 * DMA request on the SDMA side.
311 */
312
313 static struct fsl_ssi_soc_data fsl_ssi_mpc8610 = {
314 .imx = false,
315 .offline_config = true,
316 .sisr_write_mask = SSI_SISR_RFRC | SSI_SISR_TFRC |
317 SSI_SISR_ROE0 | SSI_SISR_ROE1 |
318 SSI_SISR_TUE0 | SSI_SISR_TUE1,
319 };
320
321 static struct fsl_ssi_soc_data fsl_ssi_imx21 = {
322 .imx = true,
323 .imx21regs = true,
324 .offline_config = true,
325 .sisr_write_mask = 0,
326 };
327
328 static struct fsl_ssi_soc_data fsl_ssi_imx35 = {
329 .imx = true,
330 .offline_config = true,
331 .sisr_write_mask = SSI_SISR_RFRC | SSI_SISR_TFRC |
332 SSI_SISR_ROE0 | SSI_SISR_ROE1 |
333 SSI_SISR_TUE0 | SSI_SISR_TUE1,
334 };
335
336 static struct fsl_ssi_soc_data fsl_ssi_imx51 = {
337 .imx = true,
338 .offline_config = false,
339 .sisr_write_mask = SSI_SISR_ROE0 | SSI_SISR_ROE1 |
340 SSI_SISR_TUE0 | SSI_SISR_TUE1,
341 };
342
343 static const struct of_device_id fsl_ssi_ids[] = {
344 { .compatible = "fsl,mpc8610-ssi", .data = &fsl_ssi_mpc8610 },
345 { .compatible = "fsl,imx51-ssi", .data = &fsl_ssi_imx51 },
346 { .compatible = "fsl,imx35-ssi", .data = &fsl_ssi_imx35 },
347 { .compatible = "fsl,imx21-ssi", .data = &fsl_ssi_imx21 },
348 {}
349 };
350 MODULE_DEVICE_TABLE(of, fsl_ssi_ids);
351
fsl_ssi_is_ac97(struct fsl_ssi * ssi)352 static bool fsl_ssi_is_ac97(struct fsl_ssi *ssi)
353 {
354 return (ssi->dai_fmt & SND_SOC_DAIFMT_FORMAT_MASK) ==
355 SND_SOC_DAIFMT_AC97;
356 }
357
fsl_ssi_is_i2s_clock_provider(struct fsl_ssi * ssi)358 static bool fsl_ssi_is_i2s_clock_provider(struct fsl_ssi *ssi)
359 {
360 return (ssi->dai_fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) ==
361 SND_SOC_DAIFMT_BP_FP;
362 }
363
fsl_ssi_is_i2s_bc_fp(struct fsl_ssi * ssi)364 static bool fsl_ssi_is_i2s_bc_fp(struct fsl_ssi *ssi)
365 {
366 return (ssi->dai_fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) ==
367 SND_SOC_DAIFMT_BC_FP;
368 }
369
370 /**
371 * fsl_ssi_isr - Interrupt handler to gather states
372 * @irq: irq number
373 * @dev_id: context
374 */
fsl_ssi_isr(int irq,void * dev_id)375 static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
376 {
377 struct fsl_ssi *ssi = dev_id;
378 struct regmap *regs = ssi->regs;
379 u32 sisr, sisr2;
380
381 regmap_read(regs, REG_SSI_SISR, &sisr);
382
383 sisr2 = sisr & ssi->soc->sisr_write_mask;
384 /* Clear the bits that we set */
385 if (sisr2)
386 regmap_write(regs, REG_SSI_SISR, sisr2);
387
388 fsl_ssi_dbg_isr(&ssi->dbg_stats, sisr);
389
390 return IRQ_HANDLED;
391 }
392
393 /**
394 * fsl_ssi_config_enable - Set SCR, SIER, STCR and SRCR registers with
395 * cached values in regvals
396 * @ssi: SSI context
397 * @tx: direction
398 *
399 * Notes:
400 * 1) For offline_config SoCs, enable all necessary bits of both streams
401 * when 1st stream starts, even if the opposite stream will not start
402 * 2) It also clears FIFO before setting regvals; SOR is safe to set online
403 */
fsl_ssi_config_enable(struct fsl_ssi * ssi,bool tx)404 static void fsl_ssi_config_enable(struct fsl_ssi *ssi, bool tx)
405 {
406 struct fsl_ssi_regvals *vals = ssi->regvals;
407 int dir = tx ? TX : RX;
408 u32 sier, srcr, stcr;
409
410 /* Clear dirty data in the FIFO; It also prevents channel slipping */
411 regmap_update_bits(ssi->regs, REG_SSI_SOR,
412 SSI_SOR_xX_CLR(tx), SSI_SOR_xX_CLR(tx));
413
414 /*
415 * On offline_config SoCs, SxCR and SIER are already configured when
416 * the previous stream started. So skip all SxCR and SIER settings
417 * to prevent online reconfigurations, then jump to set SCR directly
418 */
419 if (ssi->soc->offline_config && ssi->streams)
420 goto enable_scr;
421
422 if (ssi->soc->offline_config) {
423 /*
424 * Online reconfiguration not supported, so enable all bits for
425 * both streams at once to avoid necessity of reconfigurations
426 */
427 srcr = vals[RX].srcr | vals[TX].srcr;
428 stcr = vals[RX].stcr | vals[TX].stcr;
429 sier = vals[RX].sier | vals[TX].sier;
430 } else {
431 /* Otherwise, only set bits for the current stream */
432 srcr = vals[dir].srcr;
433 stcr = vals[dir].stcr;
434 sier = vals[dir].sier;
435 }
436
437 /* Configure SRCR, STCR and SIER at once */
438 regmap_update_bits(ssi->regs, REG_SSI_SRCR, srcr, srcr);
439 regmap_update_bits(ssi->regs, REG_SSI_STCR, stcr, stcr);
440 regmap_update_bits(ssi->regs, REG_SSI_SIER, sier, sier);
441
442 enable_scr:
443 /*
444 * Start DMA before setting TE to avoid FIFO underrun
445 * which may cause a channel slip or a channel swap
446 *
447 * TODO: FIQ cases might also need this upon testing
448 */
449 if (ssi->use_dma && tx) {
450 int try = 100;
451 u32 sfcsr;
452
453 /* Enable SSI first to send TX DMA request */
454 regmap_update_bits(ssi->regs, REG_SSI_SCR,
455 SSI_SCR_SSIEN, SSI_SCR_SSIEN);
456
457 /* Busy wait until TX FIFO not empty -- DMA working */
458 do {
459 regmap_read(ssi->regs, REG_SSI_SFCSR, &sfcsr);
460 if (SSI_SFCSR_TFCNT0(sfcsr))
461 break;
462 } while (--try);
463
464 /* FIFO still empty -- something might be wrong */
465 if (!SSI_SFCSR_TFCNT0(sfcsr))
466 dev_warn(ssi->dev, "Timeout waiting TX FIFO filling\n");
467 }
468 /* Enable all remaining bits in SCR */
469 regmap_update_bits(ssi->regs, REG_SSI_SCR,
470 vals[dir].scr, vals[dir].scr);
471
472 /* Log the enabled stream to the mask */
473 ssi->streams |= BIT(dir);
474 }
475
476 /*
477 * Exclude bits that are used by the opposite stream
478 *
479 * When both streams are active, disabling some bits for the current stream
480 * might break the other stream if these bits are used by it.
481 *
482 * @vals : regvals of the current stream
483 * @avals: regvals of the opposite stream
484 * @aactive: active state of the opposite stream
485 *
486 * 1) XOR vals and avals to get the differences if the other stream is active;
487 * Otherwise, return current vals if the other stream is not active
488 * 2) AND the result of 1) with the current vals
489 */
490 #define _ssi_xor_shared_bits(vals, avals, aactive) \
491 ((vals) ^ ((avals) * (aactive)))
492
493 #define ssi_excl_shared_bits(vals, avals, aactive) \
494 ((vals) & _ssi_xor_shared_bits(vals, avals, aactive))
495
496 /**
497 * fsl_ssi_config_disable - Unset SCR, SIER, STCR and SRCR registers
498 * with cached values in regvals
499 * @ssi: SSI context
500 * @tx: direction
501 *
502 * Notes:
503 * 1) For offline_config SoCs, to avoid online reconfigurations, disable all
504 * bits of both streams at once when the last stream is abort to end
505 * 2) It also clears FIFO after unsetting regvals; SOR is safe to set online
506 */
fsl_ssi_config_disable(struct fsl_ssi * ssi,bool tx)507 static void fsl_ssi_config_disable(struct fsl_ssi *ssi, bool tx)
508 {
509 struct fsl_ssi_regvals *vals, *avals;
510 u32 sier, srcr, stcr, scr;
511 int adir = tx ? RX : TX;
512 int dir = tx ? TX : RX;
513 bool aactive;
514
515 /* Check if the opposite stream is active */
516 aactive = ssi->streams & BIT(adir);
517
518 vals = &ssi->regvals[dir];
519
520 /* Get regvals of the opposite stream to keep opposite stream safe */
521 avals = &ssi->regvals[adir];
522
523 /*
524 * To keep the other stream safe, exclude shared bits between
525 * both streams, and get safe bits to disable current stream
526 */
527 scr = ssi_excl_shared_bits(vals->scr, avals->scr, aactive);
528
529 /* Disable safe bits of SCR register for the current stream */
530 regmap_update_bits(ssi->regs, REG_SSI_SCR, scr, 0);
531
532 /* Log the disabled stream to the mask */
533 ssi->streams &= ~BIT(dir);
534
535 /*
536 * On offline_config SoCs, if the other stream is active, skip
537 * SxCR and SIER settings to prevent online reconfigurations
538 */
539 if (ssi->soc->offline_config && aactive)
540 goto fifo_clear;
541
542 if (ssi->soc->offline_config) {
543 /* Now there is only current stream active, disable all bits */
544 srcr = vals->srcr | avals->srcr;
545 stcr = vals->stcr | avals->stcr;
546 sier = vals->sier | avals->sier;
547 } else {
548 /*
549 * To keep the other stream safe, exclude shared bits between
550 * both streams, and get safe bits to disable current stream
551 */
552 sier = ssi_excl_shared_bits(vals->sier, avals->sier, aactive);
553 srcr = ssi_excl_shared_bits(vals->srcr, avals->srcr, aactive);
554 stcr = ssi_excl_shared_bits(vals->stcr, avals->stcr, aactive);
555 }
556
557 /* Clear configurations of SRCR, STCR and SIER at once */
558 regmap_update_bits(ssi->regs, REG_SSI_SRCR, srcr, 0);
559 regmap_update_bits(ssi->regs, REG_SSI_STCR, stcr, 0);
560 regmap_update_bits(ssi->regs, REG_SSI_SIER, sier, 0);
561
562 fifo_clear:
563 /* Clear remaining data in the FIFO */
564 regmap_update_bits(ssi->regs, REG_SSI_SOR,
565 SSI_SOR_xX_CLR(tx), SSI_SOR_xX_CLR(tx));
566 }
567
fsl_ssi_tx_ac97_saccst_setup(struct fsl_ssi * ssi)568 static void fsl_ssi_tx_ac97_saccst_setup(struct fsl_ssi *ssi)
569 {
570 struct regmap *regs = ssi->regs;
571
572 /* no SACC{ST,EN,DIS} regs on imx21-class SSI */
573 if (!ssi->soc->imx21regs) {
574 /* Disable all channel slots */
575 regmap_write(regs, REG_SSI_SACCDIS, 0xff);
576 /* Enable slots 3 & 4 -- PCM Playback Left & Right channels */
577 regmap_write(regs, REG_SSI_SACCEN, 0x300);
578 }
579 }
580
581 /**
582 * fsl_ssi_setup_regvals - Cache critical bits of SIER, SRCR, STCR and
583 * SCR to later set them safely
584 * @ssi: SSI context
585 */
fsl_ssi_setup_regvals(struct fsl_ssi * ssi)586 static void fsl_ssi_setup_regvals(struct fsl_ssi *ssi)
587 {
588 struct fsl_ssi_regvals *vals = ssi->regvals;
589
590 vals[RX].sier = SSI_SIER_RFF0_EN | FSLSSI_SIER_DBG_RX_FLAGS;
591 vals[RX].srcr = SSI_SRCR_RFEN0;
592 vals[RX].scr = SSI_SCR_SSIEN | SSI_SCR_RE;
593 vals[TX].sier = SSI_SIER_TFE0_EN | FSLSSI_SIER_DBG_TX_FLAGS;
594 vals[TX].stcr = SSI_STCR_TFEN0;
595 vals[TX].scr = SSI_SCR_SSIEN | SSI_SCR_TE;
596
597 /* AC97 has already enabled SSIEN, RE and TE, so ignore them */
598 if (fsl_ssi_is_ac97(ssi))
599 vals[RX].scr = vals[TX].scr = 0;
600
601 if (ssi->use_dual_fifo) {
602 vals[RX].srcr |= SSI_SRCR_RFEN1;
603 vals[TX].stcr |= SSI_STCR_TFEN1;
604 }
605
606 if (ssi->use_dma) {
607 vals[RX].sier |= SSI_SIER_RDMAE;
608 vals[TX].sier |= SSI_SIER_TDMAE;
609 } else {
610 vals[RX].sier |= SSI_SIER_RIE;
611 vals[TX].sier |= SSI_SIER_TIE;
612 }
613 }
614
fsl_ssi_setup_ac97(struct fsl_ssi * ssi)615 static void fsl_ssi_setup_ac97(struct fsl_ssi *ssi)
616 {
617 struct regmap *regs = ssi->regs;
618
619 /* Setup the clock control register */
620 regmap_write(regs, REG_SSI_STCCR, SSI_SxCCR_WL(17) | SSI_SxCCR_DC(13));
621 regmap_write(regs, REG_SSI_SRCCR, SSI_SxCCR_WL(17) | SSI_SxCCR_DC(13));
622
623 /* Enable AC97 mode and startup the SSI */
624 regmap_write(regs, REG_SSI_SACNT, SSI_SACNT_AC97EN | SSI_SACNT_FV);
625
626 /* AC97 has to communicate with codec before starting a stream */
627 regmap_update_bits(regs, REG_SSI_SCR,
628 SSI_SCR_SSIEN | SSI_SCR_TE | SSI_SCR_RE,
629 SSI_SCR_SSIEN | SSI_SCR_TE | SSI_SCR_RE);
630
631 regmap_write(regs, REG_SSI_SOR, SSI_SOR_WAIT(3));
632 }
633
fsl_ssi_startup(struct snd_pcm_substream * substream,struct snd_soc_dai * dai)634 static int fsl_ssi_startup(struct snd_pcm_substream *substream,
635 struct snd_soc_dai *dai)
636 {
637 struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
638 struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
639 int ret;
640
641 ret = clk_prepare_enable(ssi->clk);
642 if (ret)
643 return ret;
644
645 /*
646 * When using dual fifo mode, it is safer to ensure an even period
647 * size. If appearing to an odd number while DMA always starts its
648 * task from fifo0, fifo1 would be neglected at the end of each
649 * period. But SSI would still access fifo1 with an invalid data.
650 */
651 if (ssi->use_dual_fifo || ssi->use_dyna_fifo)
652 snd_pcm_hw_constraint_step(substream->runtime, 0,
653 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
654
655 return 0;
656 }
657
fsl_ssi_shutdown(struct snd_pcm_substream * substream,struct snd_soc_dai * dai)658 static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
659 struct snd_soc_dai *dai)
660 {
661 struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
662 struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
663
664 clk_disable_unprepare(ssi->clk);
665 }
666
667 /**
668 * fsl_ssi_set_bclk - Configure Digital Audio Interface bit clock
669 * @substream: ASoC substream
670 * @dai: pointer to DAI
671 * @hw_params: pointers to hw_params
672 *
673 * Notes: This function can be only called when using SSI as DAI master
674 *
675 * Quick instruction for parameters:
676 * freq: Output BCLK frequency = samplerate * slots * slot_width
677 * (In 2-channel I2S Master mode, slot_width is fixed 32)
678 */
fsl_ssi_set_bclk(struct snd_pcm_substream * substream,struct snd_soc_dai * dai,struct snd_pcm_hw_params * hw_params)679 static int fsl_ssi_set_bclk(struct snd_pcm_substream *substream,
680 struct snd_soc_dai *dai,
681 struct snd_pcm_hw_params *hw_params)
682 {
683 bool tx2, tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
684 struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
685 struct regmap *regs = ssi->regs;
686 u32 pm = 999, div2, psr, stccr, mask, afreq, factor, i;
687 unsigned long clkrate, baudrate, tmprate;
688 unsigned int channels = params_channels(hw_params);
689 unsigned int slot_width = params_width(hw_params);
690 unsigned int slots = 2;
691 u64 sub, savesub = 100000;
692 unsigned int freq;
693 bool baudclk_is_used;
694 int ret;
695
696 /* Override slots and slot_width if being specifically set... */
697 if (ssi->slots)
698 slots = ssi->slots;
699 if (ssi->slot_width)
700 slot_width = ssi->slot_width;
701
702 /* ...but force 32 bits for stereo audio using I2S Master Mode */
703 if (channels == 2 &&
704 (ssi->i2s_net & SSI_SCR_I2S_MODE_MASK) == SSI_SCR_I2S_MODE_MASTER)
705 slot_width = 32;
706
707 /* Generate bit clock based on the slot number and slot width */
708 freq = slots * slot_width * params_rate(hw_params);
709
710 /* Don't apply it to any non-baudclk circumstance */
711 if (IS_ERR(ssi->baudclk))
712 return -EINVAL;
713
714 /*
715 * Hardware limitation: The bclk rate must be
716 * never greater than 1/5 IPG clock rate
717 */
718 if (freq * 5 > clk_get_rate(ssi->clk)) {
719 dev_err(dai->dev, "bitclk > ipgclk / 5\n");
720 return -EINVAL;
721 }
722
723 baudclk_is_used = ssi->baudclk_streams & ~(BIT(substream->stream));
724
725 /* It should be already enough to divide clock by setting pm alone */
726 psr = 0;
727 div2 = 0;
728
729 factor = (div2 + 1) * (7 * psr + 1) * 2;
730
731 for (i = 0; i < 255; i++) {
732 tmprate = freq * factor * (i + 1);
733
734 if (baudclk_is_used)
735 clkrate = clk_get_rate(ssi->baudclk);
736 else
737 clkrate = clk_round_rate(ssi->baudclk, tmprate);
738
739 clkrate /= factor;
740 afreq = clkrate / (i + 1);
741
742 if (freq == afreq)
743 sub = 0;
744 else if (freq / afreq == 1)
745 sub = freq - afreq;
746 else if (afreq / freq == 1)
747 sub = afreq - freq;
748 else
749 continue;
750
751 /* Calculate the fraction */
752 sub *= 100000;
753 do_div(sub, freq);
754
755 if (sub < savesub && !(i == 0)) {
756 baudrate = tmprate;
757 savesub = sub;
758 pm = i;
759 }
760
761 /* We are lucky */
762 if (savesub == 0)
763 break;
764 }
765
766 /* No proper pm found if it is still remaining the initial value */
767 if (pm == 999) {
768 dev_err(dai->dev, "failed to handle the required sysclk\n");
769 return -EINVAL;
770 }
771
772 stccr = SSI_SxCCR_PM(pm + 1);
773 mask = SSI_SxCCR_PM_MASK | SSI_SxCCR_DIV2 | SSI_SxCCR_PSR;
774
775 /* STCCR is used for RX in synchronous mode */
776 tx2 = tx || ssi->synchronous;
777 regmap_update_bits(regs, REG_SSI_SxCCR(tx2), mask, stccr);
778
779 if (!baudclk_is_used) {
780 ret = clk_set_rate(ssi->baudclk, baudrate);
781 if (ret) {
782 dev_err(dai->dev, "failed to set baudclk rate\n");
783 return -EINVAL;
784 }
785 }
786
787 return 0;
788 }
789
790 /**
791 * fsl_ssi_hw_params - Configure SSI based on PCM hardware parameters
792 * @substream: ASoC substream
793 * @hw_params: pointers to hw_params
794 * @dai: pointer to DAI
795 *
796 * Notes:
797 * 1) SxCCR.WL bits are critical bits that require SSI to be temporarily
798 * disabled on offline_config SoCs. Even for online configurable SoCs
799 * running in synchronous mode (both TX and RX use STCCR), it is not
800 * safe to re-configure them when both two streams start running.
801 * 2) SxCCR.PM, SxCCR.DIV2 and SxCCR.PSR bits will be configured in the
802 * fsl_ssi_set_bclk() if SSI is the DAI clock master.
803 */
fsl_ssi_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * hw_params,struct snd_soc_dai * dai)804 static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
805 struct snd_pcm_hw_params *hw_params,
806 struct snd_soc_dai *dai)
807 {
808 bool tx2, tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
809 struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
810 struct fsl_ssi_regvals *vals = ssi->regvals;
811 struct regmap *regs = ssi->regs;
812 unsigned int channels = params_channels(hw_params);
813 unsigned int sample_size = params_width(hw_params);
814 u32 wl = SSI_SxCCR_WL(sample_size);
815 int ret;
816
817 if (fsl_ssi_is_i2s_clock_provider(ssi)) {
818 ret = fsl_ssi_set_bclk(substream, dai, hw_params);
819 if (ret)
820 return ret;
821
822 /* Do not enable the clock if it is already enabled */
823 if (!(ssi->baudclk_streams & BIT(substream->stream))) {
824 ret = clk_prepare_enable(ssi->baudclk);
825 if (ret)
826 return ret;
827
828 ssi->baudclk_streams |= BIT(substream->stream);
829 }
830 }
831
832 /*
833 * SSI is properly configured if it is enabled and running in
834 * the synchronous mode; Note that AC97 mode is an exception
835 * that should set separate configurations for STCCR and SRCCR
836 * despite running in the synchronous mode.
837 */
838 if (ssi->streams && ssi->synchronous)
839 return 0;
840
841 if (!fsl_ssi_is_ac97(ssi)) {
842 /*
843 * Keep the ssi->i2s_net intact while having a local variable
844 * to override settings for special use cases. Otherwise, the
845 * ssi->i2s_net will lose the settings for regular use cases.
846 */
847 u8 i2s_net = ssi->i2s_net;
848
849 /* Normal + Network mode to send 16-bit data in 32-bit frames */
850 if (fsl_ssi_is_i2s_bc_fp(ssi) && sample_size == 16)
851 i2s_net = SSI_SCR_I2S_MODE_NORMAL | SSI_SCR_NET;
852
853 /* Use Normal mode to send mono data at 1st slot of 2 slots */
854 if (channels == 1)
855 i2s_net = SSI_SCR_I2S_MODE_NORMAL;
856
857 regmap_update_bits(regs, REG_SSI_SCR,
858 SSI_SCR_I2S_NET_MASK, i2s_net);
859 }
860
861 /* In synchronous mode, the SSI uses STCCR for capture */
862 tx2 = tx || ssi->synchronous;
863 regmap_update_bits(regs, REG_SSI_SxCCR(tx2), SSI_SxCCR_WL_MASK, wl);
864
865 if (ssi->use_dyna_fifo) {
866 if (channels == 1) {
867 ssi->audio_config[0].n_fifos_dst = 1;
868 ssi->audio_config[1].n_fifos_src = 1;
869 vals[RX].srcr &= ~SSI_SRCR_RFEN1;
870 vals[TX].stcr &= ~SSI_STCR_TFEN1;
871 vals[RX].scr &= ~SSI_SCR_TCH_EN;
872 vals[TX].scr &= ~SSI_SCR_TCH_EN;
873 } else {
874 ssi->audio_config[0].n_fifos_dst = 2;
875 ssi->audio_config[1].n_fifos_src = 2;
876 vals[RX].srcr |= SSI_SRCR_RFEN1;
877 vals[TX].stcr |= SSI_STCR_TFEN1;
878 vals[RX].scr |= SSI_SCR_TCH_EN;
879 vals[TX].scr |= SSI_SCR_TCH_EN;
880 }
881 ssi->dma_params_tx.peripheral_config = &ssi->audio_config[0];
882 ssi->dma_params_tx.peripheral_size = sizeof(ssi->audio_config[0]);
883 ssi->dma_params_rx.peripheral_config = &ssi->audio_config[1];
884 ssi->dma_params_rx.peripheral_size = sizeof(ssi->audio_config[1]);
885 }
886
887 return 0;
888 }
889
fsl_ssi_hw_free(struct snd_pcm_substream * substream,struct snd_soc_dai * dai)890 static int fsl_ssi_hw_free(struct snd_pcm_substream *substream,
891 struct snd_soc_dai *dai)
892 {
893 struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
894 struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
895
896 if (fsl_ssi_is_i2s_clock_provider(ssi) &&
897 ssi->baudclk_streams & BIT(substream->stream)) {
898 clk_disable_unprepare(ssi->baudclk);
899 ssi->baudclk_streams &= ~BIT(substream->stream);
900 }
901
902 return 0;
903 }
904
_fsl_ssi_set_dai_fmt(struct fsl_ssi * ssi,unsigned int fmt)905 static int _fsl_ssi_set_dai_fmt(struct fsl_ssi *ssi, unsigned int fmt)
906 {
907 u32 strcr = 0, scr = 0, stcr, srcr, mask;
908 unsigned int slots;
909
910 ssi->dai_fmt = fmt;
911
912 /* Synchronize frame sync clock for TE to avoid data slipping */
913 scr |= SSI_SCR_SYNC_TX_FS;
914
915 /* Set to default shifting settings: LSB_ALIGNED */
916 strcr |= SSI_STCR_TXBIT0;
917
918 /* Use Network mode as default */
919 ssi->i2s_net = SSI_SCR_NET;
920 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
921 case SND_SOC_DAIFMT_I2S:
922 switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
923 case SND_SOC_DAIFMT_BP_FP:
924 if (IS_ERR(ssi->baudclk)) {
925 dev_err(ssi->dev,
926 "missing baudclk for master mode\n");
927 return -EINVAL;
928 }
929 fallthrough;
930 case SND_SOC_DAIFMT_BC_FP:
931 ssi->i2s_net |= SSI_SCR_I2S_MODE_MASTER;
932 break;
933 case SND_SOC_DAIFMT_BC_FC:
934 ssi->i2s_net |= SSI_SCR_I2S_MODE_SLAVE;
935 break;
936 default:
937 return -EINVAL;
938 }
939
940 slots = ssi->slots ? : 2;
941 regmap_update_bits(ssi->regs, REG_SSI_STCCR,
942 SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(slots));
943 regmap_update_bits(ssi->regs, REG_SSI_SRCCR,
944 SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(slots));
945
946 /* Data on rising edge of bclk, frame low, 1clk before data */
947 strcr |= SSI_STCR_TFSI | SSI_STCR_TSCKP | SSI_STCR_TEFS;
948 break;
949 case SND_SOC_DAIFMT_LEFT_J:
950 /* Data on rising edge of bclk, frame high */
951 strcr |= SSI_STCR_TSCKP;
952 break;
953 case SND_SOC_DAIFMT_DSP_A:
954 /* Data on rising edge of bclk, frame high, 1clk before data */
955 strcr |= SSI_STCR_TFSL | SSI_STCR_TSCKP | SSI_STCR_TEFS;
956 break;
957 case SND_SOC_DAIFMT_DSP_B:
958 /* Data on rising edge of bclk, frame high */
959 strcr |= SSI_STCR_TFSL | SSI_STCR_TSCKP;
960 break;
961 case SND_SOC_DAIFMT_AC97:
962 /* Data on falling edge of bclk, frame high, 1clk before data */
963 strcr |= SSI_STCR_TEFS;
964 break;
965 default:
966 return -EINVAL;
967 }
968
969 scr |= ssi->i2s_net;
970
971 /* DAI clock inversion */
972 switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
973 case SND_SOC_DAIFMT_NB_NF:
974 /* Nothing to do for both normal cases */
975 break;
976 case SND_SOC_DAIFMT_IB_NF:
977 /* Invert bit clock */
978 strcr ^= SSI_STCR_TSCKP;
979 break;
980 case SND_SOC_DAIFMT_NB_IF:
981 /* Invert frame clock */
982 strcr ^= SSI_STCR_TFSI;
983 break;
984 case SND_SOC_DAIFMT_IB_IF:
985 /* Invert both clocks */
986 strcr ^= SSI_STCR_TSCKP;
987 strcr ^= SSI_STCR_TFSI;
988 break;
989 default:
990 return -EINVAL;
991 }
992
993 /* DAI clock provider masks */
994 switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
995 case SND_SOC_DAIFMT_BP_FP:
996 /* Output bit and frame sync clocks */
997 strcr |= SSI_STCR_TFDIR | SSI_STCR_TXDIR;
998 scr |= SSI_SCR_SYS_CLK_EN;
999 break;
1000 case SND_SOC_DAIFMT_BC_FC:
1001 /* Input bit or frame sync clocks */
1002 break;
1003 case SND_SOC_DAIFMT_BC_FP:
1004 /* Input bit clock but output frame sync clock */
1005 strcr |= SSI_STCR_TFDIR;
1006 break;
1007 default:
1008 return -EINVAL;
1009 }
1010
1011 stcr = strcr;
1012 srcr = strcr;
1013
1014 /* Set SYN mode and clear RXDIR bit when using SYN or AC97 mode */
1015 if (ssi->synchronous || fsl_ssi_is_ac97(ssi)) {
1016 srcr &= ~SSI_SRCR_RXDIR;
1017 scr |= SSI_SCR_SYN;
1018 }
1019
1020 mask = SSI_STCR_TFDIR | SSI_STCR_TXDIR | SSI_STCR_TSCKP |
1021 SSI_STCR_TFSL | SSI_STCR_TFSI | SSI_STCR_TEFS | SSI_STCR_TXBIT0;
1022
1023 regmap_update_bits(ssi->regs, REG_SSI_STCR, mask, stcr);
1024 regmap_update_bits(ssi->regs, REG_SSI_SRCR, mask, srcr);
1025
1026 mask = SSI_SCR_SYNC_TX_FS | SSI_SCR_I2S_MODE_MASK |
1027 SSI_SCR_SYS_CLK_EN | SSI_SCR_SYN;
1028 regmap_update_bits(ssi->regs, REG_SSI_SCR, mask, scr);
1029
1030 return 0;
1031 }
1032
1033 /**
1034 * fsl_ssi_set_dai_fmt - Configure Digital Audio Interface (DAI) Format
1035 * @dai: pointer to DAI
1036 * @fmt: format mask
1037 */
fsl_ssi_set_dai_fmt(struct snd_soc_dai * dai,unsigned int fmt)1038 static int fsl_ssi_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt)
1039 {
1040 struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
1041
1042 /* AC97 configured DAIFMT earlier in the probe() */
1043 if (fsl_ssi_is_ac97(ssi))
1044 return 0;
1045
1046 return _fsl_ssi_set_dai_fmt(ssi, fmt);
1047 }
1048
1049 /**
1050 * fsl_ssi_set_dai_tdm_slot - Set TDM slot number and slot width
1051 * @dai: pointer to DAI
1052 * @tx_mask: mask for TX
1053 * @rx_mask: mask for RX
1054 * @slots: number of slots
1055 * @slot_width: number of bits per slot
1056 */
fsl_ssi_set_dai_tdm_slot(struct snd_soc_dai * dai,u32 tx_mask,u32 rx_mask,int slots,int slot_width)1057 static int fsl_ssi_set_dai_tdm_slot(struct snd_soc_dai *dai, u32 tx_mask,
1058 u32 rx_mask, int slots, int slot_width)
1059 {
1060 struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
1061 struct regmap *regs = ssi->regs;
1062 u32 val;
1063
1064 /* The word length should be 8, 10, 12, 16, 18, 20, 22 or 24 */
1065 if (slot_width & 1 || slot_width < 8 || slot_width > 24) {
1066 dev_err(dai->dev, "invalid slot width: %d\n", slot_width);
1067 return -EINVAL;
1068 }
1069
1070 /* The slot number should be >= 2 if using Network mode or I2S mode */
1071 if (ssi->i2s_net && slots < 2) {
1072 dev_err(dai->dev, "slot number should be >= 2 in I2S or NET\n");
1073 return -EINVAL;
1074 }
1075
1076 regmap_update_bits(regs, REG_SSI_STCCR,
1077 SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(slots));
1078 regmap_update_bits(regs, REG_SSI_SRCCR,
1079 SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(slots));
1080
1081 /* Save the SCR register value */
1082 regmap_read(regs, REG_SSI_SCR, &val);
1083 /* Temporarily enable SSI to allow SxMSKs to be configurable */
1084 regmap_update_bits(regs, REG_SSI_SCR, SSI_SCR_SSIEN, SSI_SCR_SSIEN);
1085
1086 regmap_write(regs, REG_SSI_STMSK, ~tx_mask);
1087 regmap_write(regs, REG_SSI_SRMSK, ~rx_mask);
1088
1089 /* Restore the value of SSIEN bit */
1090 regmap_update_bits(regs, REG_SSI_SCR, SSI_SCR_SSIEN, val);
1091
1092 ssi->slot_width = slot_width;
1093 ssi->slots = slots;
1094
1095 return 0;
1096 }
1097
1098 /**
1099 * fsl_ssi_trigger - Start or stop SSI and corresponding DMA transaction.
1100 * @substream: ASoC substream
1101 * @cmd: trigger command
1102 * @dai: pointer to DAI
1103 *
1104 * The DMA channel is in external master start and pause mode, which
1105 * means the SSI completely controls the flow of data.
1106 */
fsl_ssi_trigger(struct snd_pcm_substream * substream,int cmd,struct snd_soc_dai * dai)1107 static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
1108 struct snd_soc_dai *dai)
1109 {
1110 struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
1111 struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(asoc_rtd_to_cpu(rtd, 0));
1112 bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1113
1114 switch (cmd) {
1115 case SNDRV_PCM_TRIGGER_START:
1116 case SNDRV_PCM_TRIGGER_RESUME:
1117 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1118 /*
1119 * SACCST might be modified via AC Link by a CODEC if it sends
1120 * extra bits in their SLOTREQ requests, which'll accidentally
1121 * send valid data to slots other than normal playback slots.
1122 *
1123 * To be safe, configure SACCST right before TX starts.
1124 */
1125 if (tx && fsl_ssi_is_ac97(ssi))
1126 fsl_ssi_tx_ac97_saccst_setup(ssi);
1127 fsl_ssi_config_enable(ssi, tx);
1128 break;
1129
1130 case SNDRV_PCM_TRIGGER_STOP:
1131 case SNDRV_PCM_TRIGGER_SUSPEND:
1132 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1133 fsl_ssi_config_disable(ssi, tx);
1134 break;
1135
1136 default:
1137 return -EINVAL;
1138 }
1139
1140 return 0;
1141 }
1142
fsl_ssi_dai_probe(struct snd_soc_dai * dai)1143 static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
1144 {
1145 struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
1146
1147 if (ssi->soc->imx && ssi->use_dma)
1148 snd_soc_dai_init_dma_data(dai, &ssi->dma_params_tx,
1149 &ssi->dma_params_rx);
1150
1151 return 0;
1152 }
1153
1154 static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
1155 .startup = fsl_ssi_startup,
1156 .shutdown = fsl_ssi_shutdown,
1157 .hw_params = fsl_ssi_hw_params,
1158 .hw_free = fsl_ssi_hw_free,
1159 .set_fmt = fsl_ssi_set_dai_fmt,
1160 .set_tdm_slot = fsl_ssi_set_dai_tdm_slot,
1161 .trigger = fsl_ssi_trigger,
1162 };
1163
1164 static struct snd_soc_dai_driver fsl_ssi_dai_template = {
1165 .probe = fsl_ssi_dai_probe,
1166 .playback = {
1167 .stream_name = "CPU-Playback",
1168 .channels_min = 1,
1169 .channels_max = 32,
1170 .rates = SNDRV_PCM_RATE_CONTINUOUS,
1171 .formats = FSLSSI_I2S_FORMATS,
1172 },
1173 .capture = {
1174 .stream_name = "CPU-Capture",
1175 .channels_min = 1,
1176 .channels_max = 32,
1177 .rates = SNDRV_PCM_RATE_CONTINUOUS,
1178 .formats = FSLSSI_I2S_FORMATS,
1179 },
1180 .ops = &fsl_ssi_dai_ops,
1181 };
1182
1183 static const struct snd_soc_component_driver fsl_ssi_component = {
1184 .name = "fsl-ssi",
1185 .legacy_dai_naming = 1,
1186 };
1187
1188 static struct snd_soc_dai_driver fsl_ssi_ac97_dai = {
1189 .symmetric_channels = 1,
1190 .probe = fsl_ssi_dai_probe,
1191 .playback = {
1192 .stream_name = "AC97 Playback",
1193 .channels_min = 2,
1194 .channels_max = 2,
1195 .rates = SNDRV_PCM_RATE_8000_48000,
1196 .formats = SNDRV_PCM_FMTBIT_S16 | SNDRV_PCM_FMTBIT_S20,
1197 },
1198 .capture = {
1199 .stream_name = "AC97 Capture",
1200 .channels_min = 2,
1201 .channels_max = 2,
1202 .rates = SNDRV_PCM_RATE_48000,
1203 /* 16-bit capture is broken (errata ERR003778) */
1204 .formats = SNDRV_PCM_FMTBIT_S20,
1205 },
1206 .ops = &fsl_ssi_dai_ops,
1207 };
1208
1209 static struct fsl_ssi *fsl_ac97_data;
1210
fsl_ssi_ac97_write(struct snd_ac97 * ac97,unsigned short reg,unsigned short val)1211 static void fsl_ssi_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
1212 unsigned short val)
1213 {
1214 struct regmap *regs = fsl_ac97_data->regs;
1215 unsigned int lreg;
1216 unsigned int lval;
1217 int ret;
1218
1219 if (reg > 0x7f)
1220 return;
1221
1222 mutex_lock(&fsl_ac97_data->ac97_reg_lock);
1223
1224 ret = clk_prepare_enable(fsl_ac97_data->clk);
1225 if (ret) {
1226 pr_err("ac97 write clk_prepare_enable failed: %d\n",
1227 ret);
1228 goto ret_unlock;
1229 }
1230
1231 lreg = reg << 12;
1232 regmap_write(regs, REG_SSI_SACADD, lreg);
1233
1234 lval = val << 4;
1235 regmap_write(regs, REG_SSI_SACDAT, lval);
1236
1237 regmap_update_bits(regs, REG_SSI_SACNT,
1238 SSI_SACNT_RDWR_MASK, SSI_SACNT_WR);
1239 udelay(100);
1240
1241 clk_disable_unprepare(fsl_ac97_data->clk);
1242
1243 ret_unlock:
1244 mutex_unlock(&fsl_ac97_data->ac97_reg_lock);
1245 }
1246
fsl_ssi_ac97_read(struct snd_ac97 * ac97,unsigned short reg)1247 static unsigned short fsl_ssi_ac97_read(struct snd_ac97 *ac97,
1248 unsigned short reg)
1249 {
1250 struct regmap *regs = fsl_ac97_data->regs;
1251 unsigned short val = 0;
1252 u32 reg_val;
1253 unsigned int lreg;
1254 int ret;
1255
1256 mutex_lock(&fsl_ac97_data->ac97_reg_lock);
1257
1258 ret = clk_prepare_enable(fsl_ac97_data->clk);
1259 if (ret) {
1260 pr_err("ac97 read clk_prepare_enable failed: %d\n", ret);
1261 goto ret_unlock;
1262 }
1263
1264 lreg = (reg & 0x7f) << 12;
1265 regmap_write(regs, REG_SSI_SACADD, lreg);
1266 regmap_update_bits(regs, REG_SSI_SACNT,
1267 SSI_SACNT_RDWR_MASK, SSI_SACNT_RD);
1268
1269 udelay(100);
1270
1271 regmap_read(regs, REG_SSI_SACDAT, ®_val);
1272 val = (reg_val >> 4) & 0xffff;
1273
1274 clk_disable_unprepare(fsl_ac97_data->clk);
1275
1276 ret_unlock:
1277 mutex_unlock(&fsl_ac97_data->ac97_reg_lock);
1278 return val;
1279 }
1280
1281 static struct snd_ac97_bus_ops fsl_ssi_ac97_ops = {
1282 .read = fsl_ssi_ac97_read,
1283 .write = fsl_ssi_ac97_write,
1284 };
1285
1286 /**
1287 * fsl_ssi_hw_init - Initialize SSI registers
1288 * @ssi: SSI context
1289 */
fsl_ssi_hw_init(struct fsl_ssi * ssi)1290 static int fsl_ssi_hw_init(struct fsl_ssi *ssi)
1291 {
1292 u32 wm = ssi->fifo_watermark;
1293
1294 /* Initialize regvals */
1295 fsl_ssi_setup_regvals(ssi);
1296
1297 /* Set watermarks */
1298 regmap_write(ssi->regs, REG_SSI_SFCSR,
1299 SSI_SFCSR_TFWM0(wm) | SSI_SFCSR_RFWM0(wm) |
1300 SSI_SFCSR_TFWM1(wm) | SSI_SFCSR_RFWM1(wm));
1301
1302 /* Enable Dual FIFO mode */
1303 if (ssi->use_dual_fifo)
1304 regmap_update_bits(ssi->regs, REG_SSI_SCR,
1305 SSI_SCR_TCH_EN, SSI_SCR_TCH_EN);
1306
1307 /* AC97 should start earlier to communicate with CODECs */
1308 if (fsl_ssi_is_ac97(ssi)) {
1309 _fsl_ssi_set_dai_fmt(ssi, ssi->dai_fmt);
1310 fsl_ssi_setup_ac97(ssi);
1311 }
1312
1313 return 0;
1314 }
1315
1316 /**
1317 * fsl_ssi_hw_clean - Clear SSI registers
1318 * @ssi: SSI context
1319 */
fsl_ssi_hw_clean(struct fsl_ssi * ssi)1320 static void fsl_ssi_hw_clean(struct fsl_ssi *ssi)
1321 {
1322 /* Disable registers for AC97 */
1323 if (fsl_ssi_is_ac97(ssi)) {
1324 /* Disable TE and RE bits first */
1325 regmap_update_bits(ssi->regs, REG_SSI_SCR,
1326 SSI_SCR_TE | SSI_SCR_RE, 0);
1327 /* Disable AC97 mode */
1328 regmap_write(ssi->regs, REG_SSI_SACNT, 0);
1329 /* Unset WAIT bits */
1330 regmap_write(ssi->regs, REG_SSI_SOR, 0);
1331 /* Disable SSI -- software reset */
1332 regmap_update_bits(ssi->regs, REG_SSI_SCR, SSI_SCR_SSIEN, 0);
1333 }
1334 }
1335
1336 /*
1337 * Make every character in a string lower-case
1338 */
make_lowercase(char * s)1339 static void make_lowercase(char *s)
1340 {
1341 if (!s)
1342 return;
1343 for (; *s; s++)
1344 *s = tolower(*s);
1345 }
1346
fsl_ssi_imx_probe(struct platform_device * pdev,struct fsl_ssi * ssi,void __iomem * iomem)1347 static int fsl_ssi_imx_probe(struct platform_device *pdev,
1348 struct fsl_ssi *ssi, void __iomem *iomem)
1349 {
1350 struct device *dev = &pdev->dev;
1351 int ret;
1352
1353 /* Backward compatible for a DT without ipg clock name assigned */
1354 if (ssi->has_ipg_clk_name)
1355 ssi->clk = devm_clk_get(dev, "ipg");
1356 else
1357 ssi->clk = devm_clk_get(dev, NULL);
1358 if (IS_ERR(ssi->clk)) {
1359 ret = PTR_ERR(ssi->clk);
1360 dev_err(dev, "failed to get clock: %d\n", ret);
1361 return ret;
1362 }
1363
1364 /* Enable the clock since regmap will not handle it in this case */
1365 if (!ssi->has_ipg_clk_name) {
1366 ret = clk_prepare_enable(ssi->clk);
1367 if (ret) {
1368 dev_err(dev, "clk_prepare_enable failed: %d\n", ret);
1369 return ret;
1370 }
1371 }
1372
1373 /* Do not error out for consumer cases that live without a baud clock */
1374 ssi->baudclk = devm_clk_get(dev, "baud");
1375 if (IS_ERR(ssi->baudclk))
1376 dev_dbg(dev, "failed to get baud clock: %ld\n",
1377 PTR_ERR(ssi->baudclk));
1378
1379 ssi->dma_params_tx.maxburst = ssi->dma_maxburst;
1380 ssi->dma_params_rx.maxburst = ssi->dma_maxburst;
1381 ssi->dma_params_tx.addr = ssi->ssi_phys + REG_SSI_STX0;
1382 ssi->dma_params_rx.addr = ssi->ssi_phys + REG_SSI_SRX0;
1383
1384 /* Use even numbers to avoid channel swap due to SDMA script design */
1385 if (ssi->use_dual_fifo || ssi->use_dyna_fifo) {
1386 ssi->dma_params_tx.maxburst &= ~0x1;
1387 ssi->dma_params_rx.maxburst &= ~0x1;
1388 }
1389
1390 if (!ssi->use_dma) {
1391 /*
1392 * Some boards use an incompatible codec. Use imx-fiq-pcm-audio
1393 * to get it working, as DMA is not possible in this situation.
1394 */
1395 ssi->fiq_params.irq = ssi->irq;
1396 ssi->fiq_params.base = iomem;
1397 ssi->fiq_params.dma_params_rx = &ssi->dma_params_rx;
1398 ssi->fiq_params.dma_params_tx = &ssi->dma_params_tx;
1399
1400 ret = imx_pcm_fiq_init(pdev, &ssi->fiq_params);
1401 if (ret)
1402 goto error_pcm;
1403 } else {
1404 ret = imx_pcm_dma_init(pdev);
1405 if (ret)
1406 goto error_pcm;
1407 }
1408
1409 return 0;
1410
1411 error_pcm:
1412 if (!ssi->has_ipg_clk_name)
1413 clk_disable_unprepare(ssi->clk);
1414
1415 return ret;
1416 }
1417
fsl_ssi_imx_clean(struct platform_device * pdev,struct fsl_ssi * ssi)1418 static void fsl_ssi_imx_clean(struct platform_device *pdev, struct fsl_ssi *ssi)
1419 {
1420 if (!ssi->use_dma)
1421 imx_pcm_fiq_exit(pdev);
1422 if (!ssi->has_ipg_clk_name)
1423 clk_disable_unprepare(ssi->clk);
1424 }
1425
fsl_ssi_probe_from_dt(struct fsl_ssi * ssi)1426 static int fsl_ssi_probe_from_dt(struct fsl_ssi *ssi)
1427 {
1428 struct device *dev = ssi->dev;
1429 struct device_node *np = dev->of_node;
1430 const char *p, *sprop;
1431 const __be32 *iprop;
1432 u32 dmas[4];
1433 int ret;
1434
1435 ret = of_property_match_string(np, "clock-names", "ipg");
1436 /* Get error code if not found */
1437 ssi->has_ipg_clk_name = ret >= 0;
1438
1439 /* Check if being used in AC97 mode */
1440 sprop = of_get_property(np, "fsl,mode", NULL);
1441 if (sprop && !strcmp(sprop, "ac97-slave")) {
1442 ssi->dai_fmt = FSLSSI_AC97_DAIFMT;
1443
1444 ret = of_property_read_u32(np, "cell-index", &ssi->card_idx);
1445 if (ret) {
1446 dev_err(dev, "failed to get SSI index property\n");
1447 return -EINVAL;
1448 }
1449 strcpy(ssi->card_name, "ac97-codec");
1450 } else if (!of_find_property(np, "fsl,ssi-asynchronous", NULL)) {
1451 /*
1452 * In synchronous mode, STCK and STFS ports are used by RX
1453 * as well. So the software should limit the sample rates,
1454 * sample bits and channels to be symmetric.
1455 *
1456 * This is exclusive with FSLSSI_AC97_FORMATS as AC97 runs
1457 * in the SSI synchronous mode however it does not have to
1458 * limit symmetric sample rates and sample bits.
1459 */
1460 ssi->synchronous = true;
1461 }
1462
1463 /* Select DMA or FIQ */
1464 ssi->use_dma = !of_property_read_bool(np, "fsl,fiq-stream-filter");
1465
1466 /* Fetch FIFO depth; Set to 8 for older DT without this property */
1467 iprop = of_get_property(np, "fsl,fifo-depth", NULL);
1468 if (iprop)
1469 ssi->fifo_depth = be32_to_cpup(iprop);
1470 else
1471 ssi->fifo_depth = 8;
1472
1473 /* Use dual FIFO mode depending on the support from SDMA script */
1474 ret = of_property_read_u32_array(np, "dmas", dmas, 4);
1475 if (ssi->use_dma && !ret && dmas[2] == IMX_DMATYPE_SSI_DUAL)
1476 ssi->use_dual_fifo = true;
1477
1478 if (ssi->use_dma && !ret && dmas[2] == IMX_DMATYPE_MULTI_SAI)
1479 ssi->use_dyna_fifo = true;
1480 /*
1481 * Backward compatible for older bindings by manually triggering the
1482 * machine driver's probe(). Use /compatible property, including the
1483 * address of CPU DAI driver structure, as the name of machine driver
1484 *
1485 * If card_name is set by AC97 earlier, bypass here since it uses a
1486 * different name to register the device.
1487 */
1488 if (!ssi->card_name[0] && of_get_property(np, "codec-handle", NULL)) {
1489 struct device_node *root = of_find_node_by_path("/");
1490
1491 sprop = of_get_property(root, "compatible", NULL);
1492 of_node_put(root);
1493 /* Strip "fsl," in the compatible name if applicable */
1494 p = strrchr(sprop, ',');
1495 if (p)
1496 sprop = p + 1;
1497 snprintf(ssi->card_name, sizeof(ssi->card_name),
1498 "snd-soc-%s", sprop);
1499 make_lowercase(ssi->card_name);
1500 ssi->card_idx = 0;
1501 }
1502
1503 return 0;
1504 }
1505
fsl_ssi_probe(struct platform_device * pdev)1506 static int fsl_ssi_probe(struct platform_device *pdev)
1507 {
1508 struct regmap_config regconfig = fsl_ssi_regconfig;
1509 struct device *dev = &pdev->dev;
1510 struct fsl_ssi *ssi;
1511 struct resource *res;
1512 void __iomem *iomem;
1513 int ret = 0;
1514
1515 ssi = devm_kzalloc(dev, sizeof(*ssi), GFP_KERNEL);
1516 if (!ssi)
1517 return -ENOMEM;
1518
1519 ssi->dev = dev;
1520 ssi->soc = of_device_get_match_data(&pdev->dev);
1521
1522 /* Probe from DT */
1523 ret = fsl_ssi_probe_from_dt(ssi);
1524 if (ret)
1525 return ret;
1526
1527 if (fsl_ssi_is_ac97(ssi)) {
1528 memcpy(&ssi->cpu_dai_drv, &fsl_ssi_ac97_dai,
1529 sizeof(fsl_ssi_ac97_dai));
1530 fsl_ac97_data = ssi;
1531 } else {
1532 memcpy(&ssi->cpu_dai_drv, &fsl_ssi_dai_template,
1533 sizeof(fsl_ssi_dai_template));
1534 }
1535 ssi->cpu_dai_drv.name = dev_name(dev);
1536
1537 iomem = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1538 if (IS_ERR(iomem))
1539 return PTR_ERR(iomem);
1540 ssi->ssi_phys = res->start;
1541
1542 if (ssi->soc->imx21regs) {
1543 /* No SACC{ST,EN,DIS} regs in imx21-class SSI */
1544 regconfig.max_register = REG_SSI_SRMSK;
1545 regconfig.num_reg_defaults_raw =
1546 REG_SSI_SRMSK / sizeof(uint32_t) + 1;
1547 }
1548
1549 if (ssi->has_ipg_clk_name)
1550 ssi->regs = devm_regmap_init_mmio_clk(dev, "ipg", iomem,
1551 ®config);
1552 else
1553 ssi->regs = devm_regmap_init_mmio(dev, iomem, ®config);
1554 if (IS_ERR(ssi->regs)) {
1555 dev_err(dev, "failed to init register map\n");
1556 return PTR_ERR(ssi->regs);
1557 }
1558
1559 ssi->irq = platform_get_irq(pdev, 0);
1560 if (ssi->irq < 0)
1561 return ssi->irq;
1562
1563 /* Set software limitations for synchronous mode except AC97 */
1564 if (ssi->synchronous && !fsl_ssi_is_ac97(ssi)) {
1565 ssi->cpu_dai_drv.symmetric_rate = 1;
1566 ssi->cpu_dai_drv.symmetric_channels = 1;
1567 ssi->cpu_dai_drv.symmetric_sample_bits = 1;
1568 }
1569
1570 /*
1571 * Configure TX and RX DMA watermarks -- when to send a DMA request
1572 *
1573 * Values should be tested to avoid FIFO under/over run. Set maxburst
1574 * to fifo_watermark to maxiumize DMA transaction to reduce overhead.
1575 */
1576 switch (ssi->fifo_depth) {
1577 case 15:
1578 /*
1579 * Set to 8 as a balanced configuration -- When TX FIFO has 8
1580 * empty slots, send a DMA request to fill these 8 slots. The
1581 * remaining 7 slots should be able to allow DMA to finish the
1582 * transaction before TX FIFO underruns; Same applies to RX.
1583 *
1584 * Tested with cases running at 48kHz @ 16 bits x 16 channels
1585 */
1586 ssi->fifo_watermark = 8;
1587 ssi->dma_maxburst = 8;
1588 break;
1589 case 8:
1590 default:
1591 /* Safely use old watermark configurations for older chips */
1592 ssi->fifo_watermark = ssi->fifo_depth - 2;
1593 ssi->dma_maxburst = ssi->fifo_depth - 2;
1594 break;
1595 }
1596
1597 dev_set_drvdata(dev, ssi);
1598
1599 if (ssi->soc->imx) {
1600 ret = fsl_ssi_imx_probe(pdev, ssi, iomem);
1601 if (ret)
1602 return ret;
1603 }
1604
1605 if (fsl_ssi_is_ac97(ssi)) {
1606 mutex_init(&ssi->ac97_reg_lock);
1607 ret = snd_soc_set_ac97_ops_of_reset(&fsl_ssi_ac97_ops, pdev);
1608 if (ret) {
1609 dev_err(dev, "failed to set AC'97 ops\n");
1610 goto error_ac97_ops;
1611 }
1612 }
1613
1614 ret = devm_snd_soc_register_component(dev, &fsl_ssi_component,
1615 &ssi->cpu_dai_drv, 1);
1616 if (ret) {
1617 dev_err(dev, "failed to register DAI: %d\n", ret);
1618 goto error_asoc_register;
1619 }
1620
1621 if (ssi->use_dma) {
1622 ret = devm_request_irq(dev, ssi->irq, fsl_ssi_isr, 0,
1623 dev_name(dev), ssi);
1624 if (ret < 0) {
1625 dev_err(dev, "failed to claim irq %u\n", ssi->irq);
1626 goto error_asoc_register;
1627 }
1628 }
1629
1630 fsl_ssi_debugfs_create(&ssi->dbg_stats, dev);
1631
1632 /* Initially configures SSI registers */
1633 fsl_ssi_hw_init(ssi);
1634
1635 /* Register a platform device for older bindings or AC97 */
1636 if (ssi->card_name[0]) {
1637 struct device *parent = dev;
1638 /*
1639 * Do not set SSI dev as the parent of AC97 CODEC device since
1640 * it does not have a DT node. Otherwise ASoC core will assume
1641 * CODEC has the same DT node as the SSI, so it may bypass the
1642 * dai_probe() of SSI and then cause NULL DMA data pointers.
1643 */
1644 if (fsl_ssi_is_ac97(ssi))
1645 parent = NULL;
1646
1647 ssi->card_pdev = platform_device_register_data(parent,
1648 ssi->card_name, ssi->card_idx, NULL, 0);
1649 if (IS_ERR(ssi->card_pdev)) {
1650 ret = PTR_ERR(ssi->card_pdev);
1651 dev_err(dev, "failed to register %s: %d\n",
1652 ssi->card_name, ret);
1653 goto error_sound_card;
1654 }
1655 }
1656
1657 return 0;
1658
1659 error_sound_card:
1660 fsl_ssi_debugfs_remove(&ssi->dbg_stats);
1661 error_asoc_register:
1662 if (fsl_ssi_is_ac97(ssi))
1663 snd_soc_set_ac97_ops(NULL);
1664 error_ac97_ops:
1665 if (fsl_ssi_is_ac97(ssi))
1666 mutex_destroy(&ssi->ac97_reg_lock);
1667
1668 if (ssi->soc->imx)
1669 fsl_ssi_imx_clean(pdev, ssi);
1670
1671 return ret;
1672 }
1673
fsl_ssi_remove(struct platform_device * pdev)1674 static int fsl_ssi_remove(struct platform_device *pdev)
1675 {
1676 struct fsl_ssi *ssi = dev_get_drvdata(&pdev->dev);
1677
1678 fsl_ssi_debugfs_remove(&ssi->dbg_stats);
1679
1680 if (ssi->card_pdev)
1681 platform_device_unregister(ssi->card_pdev);
1682
1683 /* Clean up SSI registers */
1684 fsl_ssi_hw_clean(ssi);
1685
1686 if (ssi->soc->imx)
1687 fsl_ssi_imx_clean(pdev, ssi);
1688
1689 if (fsl_ssi_is_ac97(ssi)) {
1690 snd_soc_set_ac97_ops(NULL);
1691 mutex_destroy(&ssi->ac97_reg_lock);
1692 }
1693
1694 return 0;
1695 }
1696
1697 #ifdef CONFIG_PM_SLEEP
fsl_ssi_suspend(struct device * dev)1698 static int fsl_ssi_suspend(struct device *dev)
1699 {
1700 struct fsl_ssi *ssi = dev_get_drvdata(dev);
1701 struct regmap *regs = ssi->regs;
1702
1703 regmap_read(regs, REG_SSI_SFCSR, &ssi->regcache_sfcsr);
1704 regmap_read(regs, REG_SSI_SACNT, &ssi->regcache_sacnt);
1705
1706 regcache_cache_only(regs, true);
1707 regcache_mark_dirty(regs);
1708
1709 return 0;
1710 }
1711
fsl_ssi_resume(struct device * dev)1712 static int fsl_ssi_resume(struct device *dev)
1713 {
1714 struct fsl_ssi *ssi = dev_get_drvdata(dev);
1715 struct regmap *regs = ssi->regs;
1716
1717 regcache_cache_only(regs, false);
1718
1719 regmap_update_bits(regs, REG_SSI_SFCSR,
1720 SSI_SFCSR_RFWM1_MASK | SSI_SFCSR_TFWM1_MASK |
1721 SSI_SFCSR_RFWM0_MASK | SSI_SFCSR_TFWM0_MASK,
1722 ssi->regcache_sfcsr);
1723 regmap_write(regs, REG_SSI_SACNT, ssi->regcache_sacnt);
1724
1725 return regcache_sync(regs);
1726 }
1727 #endif /* CONFIG_PM_SLEEP */
1728
1729 static const struct dev_pm_ops fsl_ssi_pm = {
1730 SET_SYSTEM_SLEEP_PM_OPS(fsl_ssi_suspend, fsl_ssi_resume)
1731 };
1732
1733 static struct platform_driver fsl_ssi_driver = {
1734 .driver = {
1735 .name = "fsl-ssi-dai",
1736 .of_match_table = fsl_ssi_ids,
1737 .pm = &fsl_ssi_pm,
1738 },
1739 .probe = fsl_ssi_probe,
1740 .remove = fsl_ssi_remove,
1741 };
1742
1743 module_platform_driver(fsl_ssi_driver);
1744
1745 MODULE_ALIAS("platform:fsl-ssi-dai");
1746 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
1747 MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
1748 MODULE_LICENSE("GPL v2");
1749