1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver
4 *
5 * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
6 */
7
8 #include <linux/module.h>
9 #include <linux/of_device.h>
10 #include <linux/delay.h>
11 #include <linux/mmc/mmc.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/pm_opp.h>
14 #include <linux/slab.h>
15 #include <linux/iopoll.h>
16 #include <linux/qcom_scm.h>
17 #include <linux/regulator/consumer.h>
18 #include <linux/interconnect.h>
19 #include <linux/pinctrl/consumer.h>
20 #include <linux/reset.h>
21
22 #include "sdhci-pltfm.h"
23 #include "cqhci.h"
24
25 #define CORE_MCI_VERSION 0x50
26 #define CORE_VERSION_MAJOR_SHIFT 28
27 #define CORE_VERSION_MAJOR_MASK (0xf << CORE_VERSION_MAJOR_SHIFT)
28 #define CORE_VERSION_MINOR_MASK 0xff
29
30 #define CORE_MCI_GENERICS 0x70
31 #define SWITCHABLE_SIGNALING_VOLTAGE BIT(29)
32
33 #define HC_MODE_EN 0x1
34 #define CORE_POWER 0x0
35 #define CORE_SW_RST BIT(7)
36 #define FF_CLK_SW_RST_DIS BIT(13)
37
38 #define CORE_PWRCTL_BUS_OFF BIT(0)
39 #define CORE_PWRCTL_BUS_ON BIT(1)
40 #define CORE_PWRCTL_IO_LOW BIT(2)
41 #define CORE_PWRCTL_IO_HIGH BIT(3)
42 #define CORE_PWRCTL_BUS_SUCCESS BIT(0)
43 #define CORE_PWRCTL_BUS_FAIL BIT(1)
44 #define CORE_PWRCTL_IO_SUCCESS BIT(2)
45 #define CORE_PWRCTL_IO_FAIL BIT(3)
46 #define REQ_BUS_OFF BIT(0)
47 #define REQ_BUS_ON BIT(1)
48 #define REQ_IO_LOW BIT(2)
49 #define REQ_IO_HIGH BIT(3)
50 #define INT_MASK 0xf
51 #define MAX_PHASES 16
52 #define CORE_DLL_LOCK BIT(7)
53 #define CORE_DDR_DLL_LOCK BIT(11)
54 #define CORE_DLL_EN BIT(16)
55 #define CORE_CDR_EN BIT(17)
56 #define CORE_CK_OUT_EN BIT(18)
57 #define CORE_CDR_EXT_EN BIT(19)
58 #define CORE_DLL_PDN BIT(29)
59 #define CORE_DLL_RST BIT(30)
60 #define CORE_CMD_DAT_TRACK_SEL BIT(0)
61
62 #define CORE_DDR_CAL_EN BIT(0)
63 #define CORE_FLL_CYCLE_CNT BIT(18)
64 #define CORE_DLL_CLOCK_DISABLE BIT(21)
65
66 #define DLL_USR_CTL_POR_VAL 0x10800
67 #define ENABLE_DLL_LOCK_STATUS BIT(26)
68 #define FINE_TUNE_MODE_EN BIT(27)
69 #define BIAS_OK_SIGNAL BIT(29)
70
71 #define DLL_CONFIG_3_LOW_FREQ_VAL 0x08
72 #define DLL_CONFIG_3_HIGH_FREQ_VAL 0x10
73
74 #define CORE_VENDOR_SPEC_POR_VAL 0xa9c
75 #define CORE_CLK_PWRSAVE BIT(1)
76 #define CORE_HC_MCLK_SEL_DFLT (2 << 8)
77 #define CORE_HC_MCLK_SEL_HS400 (3 << 8)
78 #define CORE_HC_MCLK_SEL_MASK (3 << 8)
79 #define CORE_IO_PAD_PWR_SWITCH_EN BIT(15)
80 #define CORE_IO_PAD_PWR_SWITCH BIT(16)
81 #define CORE_HC_SELECT_IN_EN BIT(18)
82 #define CORE_HC_SELECT_IN_HS400 (6 << 19)
83 #define CORE_HC_SELECT_IN_MASK (7 << 19)
84
85 #define CORE_3_0V_SUPPORT BIT(25)
86 #define CORE_1_8V_SUPPORT BIT(26)
87 #define CORE_VOLT_SUPPORT (CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT)
88
89 #define CORE_CSR_CDC_CTLR_CFG0 0x130
90 #define CORE_SW_TRIG_FULL_CALIB BIT(16)
91 #define CORE_HW_AUTOCAL_ENA BIT(17)
92
93 #define CORE_CSR_CDC_CTLR_CFG1 0x134
94 #define CORE_CSR_CDC_CAL_TIMER_CFG0 0x138
95 #define CORE_TIMER_ENA BIT(16)
96
97 #define CORE_CSR_CDC_CAL_TIMER_CFG1 0x13C
98 #define CORE_CSR_CDC_REFCOUNT_CFG 0x140
99 #define CORE_CSR_CDC_COARSE_CAL_CFG 0x144
100 #define CORE_CDC_OFFSET_CFG 0x14C
101 #define CORE_CSR_CDC_DELAY_CFG 0x150
102 #define CORE_CDC_SLAVE_DDA_CFG 0x160
103 #define CORE_CSR_CDC_STATUS0 0x164
104 #define CORE_CALIBRATION_DONE BIT(0)
105
106 #define CORE_CDC_ERROR_CODE_MASK 0x7000000
107
108 #define CORE_CSR_CDC_GEN_CFG 0x178
109 #define CORE_CDC_SWITCH_BYPASS_OFF BIT(0)
110 #define CORE_CDC_SWITCH_RC_EN BIT(1)
111
112 #define CORE_CDC_T4_DLY_SEL BIT(0)
113 #define CORE_CMDIN_RCLK_EN BIT(1)
114 #define CORE_START_CDC_TRAFFIC BIT(6)
115
116 #define CORE_PWRSAVE_DLL BIT(3)
117
118 #define DDR_CONFIG_POR_VAL 0x80040873
119
120
121 #define INVALID_TUNING_PHASE -1
122 #define SDHCI_MSM_MIN_CLOCK 400000
123 #define CORE_FREQ_100MHZ (100 * 1000 * 1000)
124
125 #define CDR_SELEXT_SHIFT 20
126 #define CDR_SELEXT_MASK (0xf << CDR_SELEXT_SHIFT)
127 #define CMUX_SHIFT_PHASE_SHIFT 24
128 #define CMUX_SHIFT_PHASE_MASK (7 << CMUX_SHIFT_PHASE_SHIFT)
129
130 #define MSM_MMC_AUTOSUSPEND_DELAY_MS 50
131
132 /* Timeout value to avoid infinite waiting for pwr_irq */
133 #define MSM_PWR_IRQ_TIMEOUT_MS 5000
134
135 /* Max load for eMMC Vdd-io supply */
136 #define MMC_VQMMC_MAX_LOAD_UA 325000
137
138 #define msm_host_readl(msm_host, host, offset) \
139 msm_host->var_ops->msm_readl_relaxed(host, offset)
140
141 #define msm_host_writel(msm_host, val, host, offset) \
142 msm_host->var_ops->msm_writel_relaxed(val, host, offset)
143
144 /* CQHCI vendor specific registers */
145 #define CQHCI_VENDOR_CFG1 0xA00
146 #define CQHCI_VENDOR_DIS_RST_ON_CQ_EN (0x3 << 13)
147
148 struct sdhci_msm_offset {
149 u32 core_hc_mode;
150 u32 core_mci_data_cnt;
151 u32 core_mci_status;
152 u32 core_mci_fifo_cnt;
153 u32 core_mci_version;
154 u32 core_generics;
155 u32 core_testbus_config;
156 u32 core_testbus_sel2_bit;
157 u32 core_testbus_ena;
158 u32 core_testbus_sel2;
159 u32 core_pwrctl_status;
160 u32 core_pwrctl_mask;
161 u32 core_pwrctl_clear;
162 u32 core_pwrctl_ctl;
163 u32 core_sdcc_debug_reg;
164 u32 core_dll_config;
165 u32 core_dll_status;
166 u32 core_vendor_spec;
167 u32 core_vendor_spec_adma_err_addr0;
168 u32 core_vendor_spec_adma_err_addr1;
169 u32 core_vendor_spec_func2;
170 u32 core_vendor_spec_capabilities0;
171 u32 core_ddr_200_cfg;
172 u32 core_vendor_spec3;
173 u32 core_dll_config_2;
174 u32 core_dll_config_3;
175 u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */
176 u32 core_ddr_config;
177 u32 core_dll_usr_ctl; /* Present on SDCC5.1 onwards */
178 };
179
180 static const struct sdhci_msm_offset sdhci_msm_v5_offset = {
181 .core_mci_data_cnt = 0x35c,
182 .core_mci_status = 0x324,
183 .core_mci_fifo_cnt = 0x308,
184 .core_mci_version = 0x318,
185 .core_generics = 0x320,
186 .core_testbus_config = 0x32c,
187 .core_testbus_sel2_bit = 3,
188 .core_testbus_ena = (1 << 31),
189 .core_testbus_sel2 = (1 << 3),
190 .core_pwrctl_status = 0x240,
191 .core_pwrctl_mask = 0x244,
192 .core_pwrctl_clear = 0x248,
193 .core_pwrctl_ctl = 0x24c,
194 .core_sdcc_debug_reg = 0x358,
195 .core_dll_config = 0x200,
196 .core_dll_status = 0x208,
197 .core_vendor_spec = 0x20c,
198 .core_vendor_spec_adma_err_addr0 = 0x214,
199 .core_vendor_spec_adma_err_addr1 = 0x218,
200 .core_vendor_spec_func2 = 0x210,
201 .core_vendor_spec_capabilities0 = 0x21c,
202 .core_ddr_200_cfg = 0x224,
203 .core_vendor_spec3 = 0x250,
204 .core_dll_config_2 = 0x254,
205 .core_dll_config_3 = 0x258,
206 .core_ddr_config = 0x25c,
207 .core_dll_usr_ctl = 0x388,
208 };
209
210 static const struct sdhci_msm_offset sdhci_msm_mci_offset = {
211 .core_hc_mode = 0x78,
212 .core_mci_data_cnt = 0x30,
213 .core_mci_status = 0x34,
214 .core_mci_fifo_cnt = 0x44,
215 .core_mci_version = 0x050,
216 .core_generics = 0x70,
217 .core_testbus_config = 0x0cc,
218 .core_testbus_sel2_bit = 4,
219 .core_testbus_ena = (1 << 3),
220 .core_testbus_sel2 = (1 << 4),
221 .core_pwrctl_status = 0xdc,
222 .core_pwrctl_mask = 0xe0,
223 .core_pwrctl_clear = 0xe4,
224 .core_pwrctl_ctl = 0xe8,
225 .core_sdcc_debug_reg = 0x124,
226 .core_dll_config = 0x100,
227 .core_dll_status = 0x108,
228 .core_vendor_spec = 0x10c,
229 .core_vendor_spec_adma_err_addr0 = 0x114,
230 .core_vendor_spec_adma_err_addr1 = 0x118,
231 .core_vendor_spec_func2 = 0x110,
232 .core_vendor_spec_capabilities0 = 0x11c,
233 .core_ddr_200_cfg = 0x184,
234 .core_vendor_spec3 = 0x1b0,
235 .core_dll_config_2 = 0x1b4,
236 .core_ddr_config_old = 0x1b8,
237 .core_ddr_config = 0x1bc,
238 };
239
240 struct sdhci_msm_variant_ops {
241 u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset);
242 void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host,
243 u32 offset);
244 };
245
246 /*
247 * From V5, register spaces have changed. Wrap this info in a structure
248 * and choose the data_structure based on version info mentioned in DT.
249 */
250 struct sdhci_msm_variant_info {
251 bool mci_removed;
252 bool restore_dll_config;
253 const struct sdhci_msm_variant_ops *var_ops;
254 const struct sdhci_msm_offset *offset;
255 };
256
257 struct sdhci_msm_host {
258 struct platform_device *pdev;
259 void __iomem *core_mem; /* MSM SDCC mapped address */
260 void __iomem *ice_mem; /* MSM ICE mapped address (if available) */
261 int pwr_irq; /* power irq */
262 struct clk *bus_clk; /* SDHC bus voter clock */
263 struct clk *xo_clk; /* TCXO clk needed for FLL feature of cm_dll*/
264 /* core, iface, cal, sleep, and ice clocks */
265 struct clk_bulk_data bulk_clks[5];
266 unsigned long clk_rate;
267 struct mmc_host *mmc;
268 bool use_14lpp_dll_reset;
269 bool tuning_done;
270 bool calibration_done;
271 u8 saved_tuning_phase;
272 bool use_cdclp533;
273 u32 curr_pwr_state;
274 u32 curr_io_level;
275 wait_queue_head_t pwr_irq_wait;
276 bool pwr_irq_flag;
277 u32 caps_0;
278 bool mci_removed;
279 bool restore_dll_config;
280 const struct sdhci_msm_variant_ops *var_ops;
281 const struct sdhci_msm_offset *offset;
282 bool use_cdr;
283 u32 transfer_mode;
284 bool updated_ddr_cfg;
285 bool uses_tassadar_dll;
286 u32 dll_config;
287 u32 ddr_config;
288 bool vqmmc_enabled;
289 };
290
sdhci_priv_msm_offset(struct sdhci_host * host)291 static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host)
292 {
293 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
294 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
295
296 return msm_host->offset;
297 }
298
299 /*
300 * APIs to read/write to vendor specific registers which were there in the
301 * core_mem region before MCI was removed.
302 */
sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host * host,u32 offset)303 static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host,
304 u32 offset)
305 {
306 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
307 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
308
309 return readl_relaxed(msm_host->core_mem + offset);
310 }
311
sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host * host,u32 offset)312 static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host,
313 u32 offset)
314 {
315 return readl_relaxed(host->ioaddr + offset);
316 }
317
sdhci_msm_mci_variant_writel_relaxed(u32 val,struct sdhci_host * host,u32 offset)318 static void sdhci_msm_mci_variant_writel_relaxed(u32 val,
319 struct sdhci_host *host, u32 offset)
320 {
321 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
322 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
323
324 writel_relaxed(val, msm_host->core_mem + offset);
325 }
326
sdhci_msm_v5_variant_writel_relaxed(u32 val,struct sdhci_host * host,u32 offset)327 static void sdhci_msm_v5_variant_writel_relaxed(u32 val,
328 struct sdhci_host *host, u32 offset)
329 {
330 writel_relaxed(val, host->ioaddr + offset);
331 }
332
msm_get_clock_mult_for_bus_mode(struct sdhci_host * host)333 static unsigned int msm_get_clock_mult_for_bus_mode(struct sdhci_host *host)
334 {
335 struct mmc_ios ios = host->mmc->ios;
336 /*
337 * The SDHC requires internal clock frequency to be double the
338 * actual clock that will be set for DDR mode. The controller
339 * uses the faster clock(100/400MHz) for some of its parts and
340 * send the actual required clock (50/200MHz) to the card.
341 */
342 if (ios.timing == MMC_TIMING_UHS_DDR50 ||
343 ios.timing == MMC_TIMING_MMC_DDR52 ||
344 ios.timing == MMC_TIMING_MMC_HS400 ||
345 host->flags & SDHCI_HS400_TUNING)
346 return 2;
347 return 1;
348 }
349
msm_set_clock_rate_for_bus_mode(struct sdhci_host * host,unsigned int clock)350 static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host,
351 unsigned int clock)
352 {
353 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
354 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
355 struct mmc_ios curr_ios = host->mmc->ios;
356 struct clk *core_clk = msm_host->bulk_clks[0].clk;
357 unsigned long achieved_rate;
358 unsigned int desired_rate;
359 unsigned int mult;
360 int rc;
361
362 mult = msm_get_clock_mult_for_bus_mode(host);
363 desired_rate = clock * mult;
364 rc = dev_pm_opp_set_rate(mmc_dev(host->mmc), desired_rate);
365 if (rc) {
366 pr_err("%s: Failed to set clock at rate %u at timing %d\n",
367 mmc_hostname(host->mmc), desired_rate, curr_ios.timing);
368 return;
369 }
370
371 /*
372 * Qualcomm clock drivers by default round clock _up_ if they can't
373 * make the requested rate. This is not good for SD. Yell if we
374 * encounter it.
375 */
376 achieved_rate = clk_get_rate(core_clk);
377 if (achieved_rate > desired_rate)
378 pr_warn("%s: Card appears overclocked; req %u Hz, actual %lu Hz\n",
379 mmc_hostname(host->mmc), desired_rate, achieved_rate);
380 host->mmc->actual_clock = achieved_rate / mult;
381
382 /* Stash the rate we requested to use in sdhci_msm_runtime_resume() */
383 msm_host->clk_rate = desired_rate;
384
385 pr_debug("%s: Setting clock at rate %lu at timing %d\n",
386 mmc_hostname(host->mmc), achieved_rate, curr_ios.timing);
387 }
388
389 /* Platform specific tuning */
msm_dll_poll_ck_out_en(struct sdhci_host * host,u8 poll)390 static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll)
391 {
392 u32 wait_cnt = 50;
393 u8 ck_out_en;
394 struct mmc_host *mmc = host->mmc;
395 const struct sdhci_msm_offset *msm_offset =
396 sdhci_priv_msm_offset(host);
397
398 /* Poll for CK_OUT_EN bit. max. poll time = 50us */
399 ck_out_en = !!(readl_relaxed(host->ioaddr +
400 msm_offset->core_dll_config) & CORE_CK_OUT_EN);
401
402 while (ck_out_en != poll) {
403 if (--wait_cnt == 0) {
404 dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n",
405 mmc_hostname(mmc), poll);
406 return -ETIMEDOUT;
407 }
408 udelay(1);
409
410 ck_out_en = !!(readl_relaxed(host->ioaddr +
411 msm_offset->core_dll_config) & CORE_CK_OUT_EN);
412 }
413
414 return 0;
415 }
416
msm_config_cm_dll_phase(struct sdhci_host * host,u8 phase)417 static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase)
418 {
419 int rc;
420 static const u8 grey_coded_phase_table[] = {
421 0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4,
422 0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8
423 };
424 unsigned long flags;
425 u32 config;
426 struct mmc_host *mmc = host->mmc;
427 const struct sdhci_msm_offset *msm_offset =
428 sdhci_priv_msm_offset(host);
429
430 if (phase > 0xf)
431 return -EINVAL;
432
433 spin_lock_irqsave(&host->lock, flags);
434
435 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
436 config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN);
437 config |= (CORE_CDR_EXT_EN | CORE_DLL_EN);
438 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
439
440 /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */
441 rc = msm_dll_poll_ck_out_en(host, 0);
442 if (rc)
443 goto err_out;
444
445 /*
446 * Write the selected DLL clock output phase (0 ... 15)
447 * to CDR_SELEXT bit field of DLL_CONFIG register.
448 */
449 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
450 config &= ~CDR_SELEXT_MASK;
451 config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT;
452 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
453
454 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
455 config |= CORE_CK_OUT_EN;
456 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
457
458 /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */
459 rc = msm_dll_poll_ck_out_en(host, 1);
460 if (rc)
461 goto err_out;
462
463 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
464 config |= CORE_CDR_EN;
465 config &= ~CORE_CDR_EXT_EN;
466 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
467 goto out;
468
469 err_out:
470 dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n",
471 mmc_hostname(mmc), phase);
472 out:
473 spin_unlock_irqrestore(&host->lock, flags);
474 return rc;
475 }
476
477 /*
478 * Find out the greatest range of consecuitive selected
479 * DLL clock output phases that can be used as sampling
480 * setting for SD3.0 UHS-I card read operation (in SDR104
481 * timing mode) or for eMMC4.5 card read operation (in
482 * HS400/HS200 timing mode).
483 * Select the 3/4 of the range and configure the DLL with the
484 * selected DLL clock output phase.
485 */
486
msm_find_most_appropriate_phase(struct sdhci_host * host,u8 * phase_table,u8 total_phases)487 static int msm_find_most_appropriate_phase(struct sdhci_host *host,
488 u8 *phase_table, u8 total_phases)
489 {
490 int ret;
491 u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} };
492 u8 phases_per_row[MAX_PHASES] = { 0 };
493 int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0;
494 int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0;
495 bool phase_0_found = false, phase_15_found = false;
496 struct mmc_host *mmc = host->mmc;
497
498 if (!total_phases || (total_phases > MAX_PHASES)) {
499 dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n",
500 mmc_hostname(mmc), total_phases);
501 return -EINVAL;
502 }
503
504 for (cnt = 0; cnt < total_phases; cnt++) {
505 ranges[row_index][col_index] = phase_table[cnt];
506 phases_per_row[row_index] += 1;
507 col_index++;
508
509 if ((cnt + 1) == total_phases) {
510 continue;
511 /* check if next phase in phase_table is consecutive or not */
512 } else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) {
513 row_index++;
514 col_index = 0;
515 }
516 }
517
518 if (row_index >= MAX_PHASES)
519 return -EINVAL;
520
521 /* Check if phase-0 is present in first valid window? */
522 if (!ranges[0][0]) {
523 phase_0_found = true;
524 phase_0_raw_index = 0;
525 /* Check if cycle exist between 2 valid windows */
526 for (cnt = 1; cnt <= row_index; cnt++) {
527 if (phases_per_row[cnt]) {
528 for (i = 0; i < phases_per_row[cnt]; i++) {
529 if (ranges[cnt][i] == 15) {
530 phase_15_found = true;
531 phase_15_raw_index = cnt;
532 break;
533 }
534 }
535 }
536 }
537 }
538
539 /* If 2 valid windows form cycle then merge them as single window */
540 if (phase_0_found && phase_15_found) {
541 /* number of phases in raw where phase 0 is present */
542 u8 phases_0 = phases_per_row[phase_0_raw_index];
543 /* number of phases in raw where phase 15 is present */
544 u8 phases_15 = phases_per_row[phase_15_raw_index];
545
546 if (phases_0 + phases_15 >= MAX_PHASES)
547 /*
548 * If there are more than 1 phase windows then total
549 * number of phases in both the windows should not be
550 * more than or equal to MAX_PHASES.
551 */
552 return -EINVAL;
553
554 /* Merge 2 cyclic windows */
555 i = phases_15;
556 for (cnt = 0; cnt < phases_0; cnt++) {
557 ranges[phase_15_raw_index][i] =
558 ranges[phase_0_raw_index][cnt];
559 if (++i >= MAX_PHASES)
560 break;
561 }
562
563 phases_per_row[phase_0_raw_index] = 0;
564 phases_per_row[phase_15_raw_index] = phases_15 + phases_0;
565 }
566
567 for (cnt = 0; cnt <= row_index; cnt++) {
568 if (phases_per_row[cnt] > curr_max) {
569 curr_max = phases_per_row[cnt];
570 selected_row_index = cnt;
571 }
572 }
573
574 i = (curr_max * 3) / 4;
575 if (i)
576 i--;
577
578 ret = ranges[selected_row_index][i];
579
580 if (ret >= MAX_PHASES) {
581 ret = -EINVAL;
582 dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n",
583 mmc_hostname(mmc), ret);
584 }
585
586 return ret;
587 }
588
msm_cm_dll_set_freq(struct sdhci_host * host)589 static inline void msm_cm_dll_set_freq(struct sdhci_host *host)
590 {
591 u32 mclk_freq = 0, config;
592 const struct sdhci_msm_offset *msm_offset =
593 sdhci_priv_msm_offset(host);
594
595 /* Program the MCLK value to MCLK_FREQ bit field */
596 if (host->clock <= 112000000)
597 mclk_freq = 0;
598 else if (host->clock <= 125000000)
599 mclk_freq = 1;
600 else if (host->clock <= 137000000)
601 mclk_freq = 2;
602 else if (host->clock <= 150000000)
603 mclk_freq = 3;
604 else if (host->clock <= 162000000)
605 mclk_freq = 4;
606 else if (host->clock <= 175000000)
607 mclk_freq = 5;
608 else if (host->clock <= 187000000)
609 mclk_freq = 6;
610 else if (host->clock <= 200000000)
611 mclk_freq = 7;
612
613 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
614 config &= ~CMUX_SHIFT_PHASE_MASK;
615 config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT;
616 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
617 }
618
619 /* Initialize the DLL (Programmable Delay Line) */
msm_init_cm_dll(struct sdhci_host * host)620 static int msm_init_cm_dll(struct sdhci_host *host)
621 {
622 struct mmc_host *mmc = host->mmc;
623 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
624 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
625 int wait_cnt = 50;
626 unsigned long flags, xo_clk = 0;
627 u32 config;
628 const struct sdhci_msm_offset *msm_offset =
629 msm_host->offset;
630
631 if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk))
632 xo_clk = clk_get_rate(msm_host->xo_clk);
633
634 spin_lock_irqsave(&host->lock, flags);
635
636 /*
637 * Make sure that clock is always enabled when DLL
638 * tuning is in progress. Keeping PWRSAVE ON may
639 * turn off the clock.
640 */
641 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
642 config &= ~CORE_CLK_PWRSAVE;
643 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
644
645 if (msm_host->dll_config)
646 writel_relaxed(msm_host->dll_config,
647 host->ioaddr + msm_offset->core_dll_config);
648
649 if (msm_host->use_14lpp_dll_reset) {
650 config = readl_relaxed(host->ioaddr +
651 msm_offset->core_dll_config);
652 config &= ~CORE_CK_OUT_EN;
653 writel_relaxed(config, host->ioaddr +
654 msm_offset->core_dll_config);
655
656 config = readl_relaxed(host->ioaddr +
657 msm_offset->core_dll_config_2);
658 config |= CORE_DLL_CLOCK_DISABLE;
659 writel_relaxed(config, host->ioaddr +
660 msm_offset->core_dll_config_2);
661 }
662
663 config = readl_relaxed(host->ioaddr +
664 msm_offset->core_dll_config);
665 config |= CORE_DLL_RST;
666 writel_relaxed(config, host->ioaddr +
667 msm_offset->core_dll_config);
668
669 config = readl_relaxed(host->ioaddr +
670 msm_offset->core_dll_config);
671 config |= CORE_DLL_PDN;
672 writel_relaxed(config, host->ioaddr +
673 msm_offset->core_dll_config);
674
675 if (!msm_host->dll_config)
676 msm_cm_dll_set_freq(host);
677
678 if (msm_host->use_14lpp_dll_reset &&
679 !IS_ERR_OR_NULL(msm_host->xo_clk)) {
680 u32 mclk_freq = 0;
681
682 config = readl_relaxed(host->ioaddr +
683 msm_offset->core_dll_config_2);
684 config &= CORE_FLL_CYCLE_CNT;
685 if (config)
686 mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8),
687 xo_clk);
688 else
689 mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4),
690 xo_clk);
691
692 config = readl_relaxed(host->ioaddr +
693 msm_offset->core_dll_config_2);
694 config &= ~(0xFF << 10);
695 config |= mclk_freq << 10;
696
697 writel_relaxed(config, host->ioaddr +
698 msm_offset->core_dll_config_2);
699 /* wait for 5us before enabling DLL clock */
700 udelay(5);
701 }
702
703 config = readl_relaxed(host->ioaddr +
704 msm_offset->core_dll_config);
705 config &= ~CORE_DLL_RST;
706 writel_relaxed(config, host->ioaddr +
707 msm_offset->core_dll_config);
708
709 config = readl_relaxed(host->ioaddr +
710 msm_offset->core_dll_config);
711 config &= ~CORE_DLL_PDN;
712 writel_relaxed(config, host->ioaddr +
713 msm_offset->core_dll_config);
714
715 if (msm_host->use_14lpp_dll_reset) {
716 if (!msm_host->dll_config)
717 msm_cm_dll_set_freq(host);
718 config = readl_relaxed(host->ioaddr +
719 msm_offset->core_dll_config_2);
720 config &= ~CORE_DLL_CLOCK_DISABLE;
721 writel_relaxed(config, host->ioaddr +
722 msm_offset->core_dll_config_2);
723 }
724
725 /*
726 * Configure DLL user control register to enable DLL status.
727 * This setting is applicable to SDCC v5.1 onwards only.
728 */
729 if (msm_host->uses_tassadar_dll) {
730 config = DLL_USR_CTL_POR_VAL | FINE_TUNE_MODE_EN |
731 ENABLE_DLL_LOCK_STATUS | BIAS_OK_SIGNAL;
732 writel_relaxed(config, host->ioaddr +
733 msm_offset->core_dll_usr_ctl);
734
735 config = readl_relaxed(host->ioaddr +
736 msm_offset->core_dll_config_3);
737 config &= ~0xFF;
738 if (msm_host->clk_rate < 150000000)
739 config |= DLL_CONFIG_3_LOW_FREQ_VAL;
740 else
741 config |= DLL_CONFIG_3_HIGH_FREQ_VAL;
742 writel_relaxed(config, host->ioaddr +
743 msm_offset->core_dll_config_3);
744 }
745
746 config = readl_relaxed(host->ioaddr +
747 msm_offset->core_dll_config);
748 config |= CORE_DLL_EN;
749 writel_relaxed(config, host->ioaddr +
750 msm_offset->core_dll_config);
751
752 config = readl_relaxed(host->ioaddr +
753 msm_offset->core_dll_config);
754 config |= CORE_CK_OUT_EN;
755 writel_relaxed(config, host->ioaddr +
756 msm_offset->core_dll_config);
757
758 /* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */
759 while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) &
760 CORE_DLL_LOCK)) {
761 /* max. wait for 50us sec for LOCK bit to be set */
762 if (--wait_cnt == 0) {
763 dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n",
764 mmc_hostname(mmc));
765 spin_unlock_irqrestore(&host->lock, flags);
766 return -ETIMEDOUT;
767 }
768 udelay(1);
769 }
770
771 spin_unlock_irqrestore(&host->lock, flags);
772 return 0;
773 }
774
msm_hc_select_default(struct sdhci_host * host)775 static void msm_hc_select_default(struct sdhci_host *host)
776 {
777 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
778 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
779 u32 config;
780 const struct sdhci_msm_offset *msm_offset =
781 msm_host->offset;
782
783 if (!msm_host->use_cdclp533) {
784 config = readl_relaxed(host->ioaddr +
785 msm_offset->core_vendor_spec3);
786 config &= ~CORE_PWRSAVE_DLL;
787 writel_relaxed(config, host->ioaddr +
788 msm_offset->core_vendor_spec3);
789 }
790
791 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
792 config &= ~CORE_HC_MCLK_SEL_MASK;
793 config |= CORE_HC_MCLK_SEL_DFLT;
794 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
795
796 /*
797 * Disable HC_SELECT_IN to be able to use the UHS mode select
798 * configuration from Host Control2 register for all other
799 * modes.
800 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field
801 * in VENDOR_SPEC_FUNC
802 */
803 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
804 config &= ~CORE_HC_SELECT_IN_EN;
805 config &= ~CORE_HC_SELECT_IN_MASK;
806 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
807
808 /*
809 * Make sure above writes impacting free running MCLK are completed
810 * before changing the clk_rate at GCC.
811 */
812 wmb();
813 }
814
msm_hc_select_hs400(struct sdhci_host * host)815 static void msm_hc_select_hs400(struct sdhci_host *host)
816 {
817 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
818 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
819 struct mmc_ios ios = host->mmc->ios;
820 u32 config, dll_lock;
821 int rc;
822 const struct sdhci_msm_offset *msm_offset =
823 msm_host->offset;
824
825 /* Select the divided clock (free running MCLK/2) */
826 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
827 config &= ~CORE_HC_MCLK_SEL_MASK;
828 config |= CORE_HC_MCLK_SEL_HS400;
829
830 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
831 /*
832 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC
833 * register
834 */
835 if ((msm_host->tuning_done || ios.enhanced_strobe) &&
836 !msm_host->calibration_done) {
837 config = readl_relaxed(host->ioaddr +
838 msm_offset->core_vendor_spec);
839 config |= CORE_HC_SELECT_IN_HS400;
840 config |= CORE_HC_SELECT_IN_EN;
841 writel_relaxed(config, host->ioaddr +
842 msm_offset->core_vendor_spec);
843 }
844 if (!msm_host->clk_rate && !msm_host->use_cdclp533) {
845 /*
846 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in
847 * core_dll_status to be set. This should get set
848 * within 15 us at 200 MHz.
849 */
850 rc = readl_relaxed_poll_timeout(host->ioaddr +
851 msm_offset->core_dll_status,
852 dll_lock,
853 (dll_lock &
854 (CORE_DLL_LOCK |
855 CORE_DDR_DLL_LOCK)), 10,
856 1000);
857 if (rc == -ETIMEDOUT)
858 pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n",
859 mmc_hostname(host->mmc), dll_lock);
860 }
861 /*
862 * Make sure above writes impacting free running MCLK are completed
863 * before changing the clk_rate at GCC.
864 */
865 wmb();
866 }
867
868 /*
869 * sdhci_msm_hc_select_mode :- In general all timing modes are
870 * controlled via UHS mode select in Host Control2 register.
871 * eMMC specific HS200/HS400 doesn't have their respective modes
872 * defined here, hence we use these values.
873 *
874 * HS200 - SDR104 (Since they both are equivalent in functionality)
875 * HS400 - This involves multiple configurations
876 * Initially SDR104 - when tuning is required as HS200
877 * Then when switching to DDR @ 400MHz (HS400) we use
878 * the vendor specific HC_SELECT_IN to control the mode.
879 *
880 * In addition to controlling the modes we also need to select the
881 * correct input clock for DLL depending on the mode.
882 *
883 * HS400 - divided clock (free running MCLK/2)
884 * All other modes - default (free running MCLK)
885 */
sdhci_msm_hc_select_mode(struct sdhci_host * host)886 static void sdhci_msm_hc_select_mode(struct sdhci_host *host)
887 {
888 struct mmc_ios ios = host->mmc->ios;
889
890 if (ios.timing == MMC_TIMING_MMC_HS400 ||
891 host->flags & SDHCI_HS400_TUNING)
892 msm_hc_select_hs400(host);
893 else
894 msm_hc_select_default(host);
895 }
896
sdhci_msm_cdclp533_calibration(struct sdhci_host * host)897 static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host)
898 {
899 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
900 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
901 u32 config, calib_done;
902 int ret;
903 const struct sdhci_msm_offset *msm_offset =
904 msm_host->offset;
905
906 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
907
908 /*
909 * Retuning in HS400 (DDR mode) will fail, just reset the
910 * tuning block and restore the saved tuning phase.
911 */
912 ret = msm_init_cm_dll(host);
913 if (ret)
914 goto out;
915
916 /* Set the selected phase in delay line hw block */
917 ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
918 if (ret)
919 goto out;
920
921 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
922 config |= CORE_CMD_DAT_TRACK_SEL;
923 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
924
925 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
926 config &= ~CORE_CDC_T4_DLY_SEL;
927 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
928
929 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
930 config &= ~CORE_CDC_SWITCH_BYPASS_OFF;
931 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
932
933 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
934 config |= CORE_CDC_SWITCH_RC_EN;
935 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
936
937 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
938 config &= ~CORE_START_CDC_TRAFFIC;
939 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
940
941 /* Perform CDC Register Initialization Sequence */
942
943 writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
944 writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1);
945 writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
946 writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1);
947 writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG);
948 writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG);
949 writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG);
950 writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG);
951 writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG);
952
953 /* CDC HW Calibration */
954
955 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
956 config |= CORE_SW_TRIG_FULL_CALIB;
957 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
958
959 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
960 config &= ~CORE_SW_TRIG_FULL_CALIB;
961 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
962
963 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
964 config |= CORE_HW_AUTOCAL_ENA;
965 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
966
967 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
968 config |= CORE_TIMER_ENA;
969 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
970
971 ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0,
972 calib_done,
973 (calib_done & CORE_CALIBRATION_DONE),
974 1, 50);
975
976 if (ret == -ETIMEDOUT) {
977 pr_err("%s: %s: CDC calibration was not completed\n",
978 mmc_hostname(host->mmc), __func__);
979 goto out;
980 }
981
982 ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0)
983 & CORE_CDC_ERROR_CODE_MASK;
984 if (ret) {
985 pr_err("%s: %s: CDC error code %d\n",
986 mmc_hostname(host->mmc), __func__, ret);
987 ret = -EINVAL;
988 goto out;
989 }
990
991 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
992 config |= CORE_START_CDC_TRAFFIC;
993 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
994 out:
995 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
996 __func__, ret);
997 return ret;
998 }
999
sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host * host)1000 static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host)
1001 {
1002 struct mmc_host *mmc = host->mmc;
1003 u32 dll_status, config, ddr_cfg_offset;
1004 int ret;
1005 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1006 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1007 const struct sdhci_msm_offset *msm_offset =
1008 sdhci_priv_msm_offset(host);
1009
1010 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1011
1012 /*
1013 * Currently the core_ddr_config register defaults to desired
1014 * configuration on reset. Currently reprogramming the power on
1015 * reset (POR) value in case it might have been modified by
1016 * bootloaders. In the future, if this changes, then the desired
1017 * values will need to be programmed appropriately.
1018 */
1019 if (msm_host->updated_ddr_cfg)
1020 ddr_cfg_offset = msm_offset->core_ddr_config;
1021 else
1022 ddr_cfg_offset = msm_offset->core_ddr_config_old;
1023 writel_relaxed(msm_host->ddr_config, host->ioaddr + ddr_cfg_offset);
1024
1025 if (mmc->ios.enhanced_strobe) {
1026 config = readl_relaxed(host->ioaddr +
1027 msm_offset->core_ddr_200_cfg);
1028 config |= CORE_CMDIN_RCLK_EN;
1029 writel_relaxed(config, host->ioaddr +
1030 msm_offset->core_ddr_200_cfg);
1031 }
1032
1033 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2);
1034 config |= CORE_DDR_CAL_EN;
1035 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2);
1036
1037 ret = readl_relaxed_poll_timeout(host->ioaddr +
1038 msm_offset->core_dll_status,
1039 dll_status,
1040 (dll_status & CORE_DDR_DLL_LOCK),
1041 10, 1000);
1042
1043 if (ret == -ETIMEDOUT) {
1044 pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n",
1045 mmc_hostname(host->mmc), __func__);
1046 goto out;
1047 }
1048
1049 /*
1050 * Set CORE_PWRSAVE_DLL bit in CORE_VENDOR_SPEC3.
1051 * When MCLK is gated OFF, it is not gated for less than 0.5us
1052 * and MCLK must be switched on for at-least 1us before DATA
1053 * starts coming. Controllers with 14lpp and later tech DLL cannot
1054 * guarantee above requirement. So PWRSAVE_DLL should not be
1055 * turned on for host controllers using this DLL.
1056 */
1057 if (!msm_host->use_14lpp_dll_reset) {
1058 config = readl_relaxed(host->ioaddr +
1059 msm_offset->core_vendor_spec3);
1060 config |= CORE_PWRSAVE_DLL;
1061 writel_relaxed(config, host->ioaddr +
1062 msm_offset->core_vendor_spec3);
1063 }
1064
1065 /*
1066 * Drain writebuffer to ensure above DLL calibration
1067 * and PWRSAVE DLL is enabled.
1068 */
1069 wmb();
1070 out:
1071 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1072 __func__, ret);
1073 return ret;
1074 }
1075
sdhci_msm_hs400_dll_calibration(struct sdhci_host * host)1076 static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host)
1077 {
1078 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1079 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1080 struct mmc_host *mmc = host->mmc;
1081 int ret;
1082 u32 config;
1083 const struct sdhci_msm_offset *msm_offset =
1084 msm_host->offset;
1085
1086 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1087
1088 /*
1089 * Retuning in HS400 (DDR mode) will fail, just reset the
1090 * tuning block and restore the saved tuning phase.
1091 */
1092 ret = msm_init_cm_dll(host);
1093 if (ret)
1094 goto out;
1095
1096 if (!mmc->ios.enhanced_strobe) {
1097 /* Set the selected phase in delay line hw block */
1098 ret = msm_config_cm_dll_phase(host,
1099 msm_host->saved_tuning_phase);
1100 if (ret)
1101 goto out;
1102 config = readl_relaxed(host->ioaddr +
1103 msm_offset->core_dll_config);
1104 config |= CORE_CMD_DAT_TRACK_SEL;
1105 writel_relaxed(config, host->ioaddr +
1106 msm_offset->core_dll_config);
1107 }
1108
1109 if (msm_host->use_cdclp533)
1110 ret = sdhci_msm_cdclp533_calibration(host);
1111 else
1112 ret = sdhci_msm_cm_dll_sdc4_calibration(host);
1113 out:
1114 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1115 __func__, ret);
1116 return ret;
1117 }
1118
sdhci_msm_is_tuning_needed(struct sdhci_host * host)1119 static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host)
1120 {
1121 struct mmc_ios *ios = &host->mmc->ios;
1122
1123 /*
1124 * Tuning is required for SDR104, HS200 and HS400 cards and
1125 * if clock frequency is greater than 100MHz in these modes.
1126 */
1127 if (host->clock <= CORE_FREQ_100MHZ ||
1128 !(ios->timing == MMC_TIMING_MMC_HS400 ||
1129 ios->timing == MMC_TIMING_MMC_HS200 ||
1130 ios->timing == MMC_TIMING_UHS_SDR104) ||
1131 ios->enhanced_strobe)
1132 return false;
1133
1134 return true;
1135 }
1136
sdhci_msm_restore_sdr_dll_config(struct sdhci_host * host)1137 static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host)
1138 {
1139 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1140 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1141 int ret;
1142
1143 /*
1144 * SDR DLL comes into picture only for timing modes which needs
1145 * tuning.
1146 */
1147 if (!sdhci_msm_is_tuning_needed(host))
1148 return 0;
1149
1150 /* Reset the tuning block */
1151 ret = msm_init_cm_dll(host);
1152 if (ret)
1153 return ret;
1154
1155 /* Restore the tuning block */
1156 ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
1157
1158 return ret;
1159 }
1160
sdhci_msm_set_cdr(struct sdhci_host * host,bool enable)1161 static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable)
1162 {
1163 const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host);
1164 u32 config, oldconfig = readl_relaxed(host->ioaddr +
1165 msm_offset->core_dll_config);
1166
1167 config = oldconfig;
1168 if (enable) {
1169 config |= CORE_CDR_EN;
1170 config &= ~CORE_CDR_EXT_EN;
1171 } else {
1172 config &= ~CORE_CDR_EN;
1173 config |= CORE_CDR_EXT_EN;
1174 }
1175
1176 if (config != oldconfig) {
1177 writel_relaxed(config, host->ioaddr +
1178 msm_offset->core_dll_config);
1179 }
1180 }
1181
sdhci_msm_execute_tuning(struct mmc_host * mmc,u32 opcode)1182 static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode)
1183 {
1184 struct sdhci_host *host = mmc_priv(mmc);
1185 int tuning_seq_cnt = 10;
1186 u8 phase, tuned_phases[16], tuned_phase_cnt = 0;
1187 int rc;
1188 struct mmc_ios ios = host->mmc->ios;
1189 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1190 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1191
1192 if (!sdhci_msm_is_tuning_needed(host)) {
1193 msm_host->use_cdr = false;
1194 sdhci_msm_set_cdr(host, false);
1195 return 0;
1196 }
1197
1198 /* Clock-Data-Recovery used to dynamically adjust RX sampling point */
1199 msm_host->use_cdr = true;
1200
1201 /*
1202 * Clear tuning_done flag before tuning to ensure proper
1203 * HS400 settings.
1204 */
1205 msm_host->tuning_done = 0;
1206
1207 /*
1208 * For HS400 tuning in HS200 timing requires:
1209 * - select MCLK/2 in VENDOR_SPEC
1210 * - program MCLK to 400MHz (or nearest supported) in GCC
1211 */
1212 if (host->flags & SDHCI_HS400_TUNING) {
1213 sdhci_msm_hc_select_mode(host);
1214 msm_set_clock_rate_for_bus_mode(host, ios.clock);
1215 host->flags &= ~SDHCI_HS400_TUNING;
1216 }
1217
1218 retry:
1219 /* First of all reset the tuning block */
1220 rc = msm_init_cm_dll(host);
1221 if (rc)
1222 return rc;
1223
1224 phase = 0;
1225 do {
1226 /* Set the phase in delay line hw block */
1227 rc = msm_config_cm_dll_phase(host, phase);
1228 if (rc)
1229 return rc;
1230
1231 rc = mmc_send_tuning(mmc, opcode, NULL);
1232 if (!rc) {
1233 /* Tuning is successful at this tuning point */
1234 tuned_phases[tuned_phase_cnt++] = phase;
1235 dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n",
1236 mmc_hostname(mmc), phase);
1237 }
1238 } while (++phase < ARRAY_SIZE(tuned_phases));
1239
1240 if (tuned_phase_cnt) {
1241 if (tuned_phase_cnt == ARRAY_SIZE(tuned_phases)) {
1242 /*
1243 * All phases valid is _almost_ as bad as no phases
1244 * valid. Probably all phases are not really reliable
1245 * but we didn't detect where the unreliable place is.
1246 * That means we'll essentially be guessing and hoping
1247 * we get a good phase. Better to try a few times.
1248 */
1249 dev_dbg(mmc_dev(mmc), "%s: All phases valid; try again\n",
1250 mmc_hostname(mmc));
1251 if (--tuning_seq_cnt) {
1252 tuned_phase_cnt = 0;
1253 goto retry;
1254 }
1255 }
1256
1257 rc = msm_find_most_appropriate_phase(host, tuned_phases,
1258 tuned_phase_cnt);
1259 if (rc < 0)
1260 return rc;
1261 else
1262 phase = rc;
1263
1264 /*
1265 * Finally set the selected phase in delay
1266 * line hw block.
1267 */
1268 rc = msm_config_cm_dll_phase(host, phase);
1269 if (rc)
1270 return rc;
1271 msm_host->saved_tuning_phase = phase;
1272 dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n",
1273 mmc_hostname(mmc), phase);
1274 } else {
1275 if (--tuning_seq_cnt)
1276 goto retry;
1277 /* Tuning failed */
1278 dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n",
1279 mmc_hostname(mmc));
1280 rc = -EIO;
1281 }
1282
1283 if (!rc)
1284 msm_host->tuning_done = true;
1285 return rc;
1286 }
1287
1288 /*
1289 * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation.
1290 * This needs to be done for both tuning and enhanced_strobe mode.
1291 * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz
1292 * fixed feedback clock is used.
1293 */
sdhci_msm_hs400(struct sdhci_host * host,struct mmc_ios * ios)1294 static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios)
1295 {
1296 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1297 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1298 int ret;
1299
1300 if (host->clock > CORE_FREQ_100MHZ &&
1301 (msm_host->tuning_done || ios->enhanced_strobe) &&
1302 !msm_host->calibration_done) {
1303 ret = sdhci_msm_hs400_dll_calibration(host);
1304 if (!ret)
1305 msm_host->calibration_done = true;
1306 else
1307 pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n",
1308 mmc_hostname(host->mmc), ret);
1309 }
1310 }
1311
sdhci_msm_set_uhs_signaling(struct sdhci_host * host,unsigned int uhs)1312 static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host,
1313 unsigned int uhs)
1314 {
1315 struct mmc_host *mmc = host->mmc;
1316 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1317 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1318 u16 ctrl_2;
1319 u32 config;
1320 const struct sdhci_msm_offset *msm_offset =
1321 msm_host->offset;
1322
1323 ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
1324 /* Select Bus Speed Mode for host */
1325 ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1326 switch (uhs) {
1327 case MMC_TIMING_UHS_SDR12:
1328 ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
1329 break;
1330 case MMC_TIMING_UHS_SDR25:
1331 ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
1332 break;
1333 case MMC_TIMING_UHS_SDR50:
1334 ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
1335 break;
1336 case MMC_TIMING_MMC_HS400:
1337 case MMC_TIMING_MMC_HS200:
1338 case MMC_TIMING_UHS_SDR104:
1339 ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
1340 break;
1341 case MMC_TIMING_UHS_DDR50:
1342 case MMC_TIMING_MMC_DDR52:
1343 ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
1344 break;
1345 }
1346
1347 /*
1348 * When clock frequency is less than 100MHz, the feedback clock must be
1349 * provided and DLL must not be used so that tuning can be skipped. To
1350 * provide feedback clock, the mode selection can be any value less
1351 * than 3'b011 in bits [2:0] of HOST CONTROL2 register.
1352 */
1353 if (host->clock <= CORE_FREQ_100MHZ) {
1354 if (uhs == MMC_TIMING_MMC_HS400 ||
1355 uhs == MMC_TIMING_MMC_HS200 ||
1356 uhs == MMC_TIMING_UHS_SDR104)
1357 ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1358 /*
1359 * DLL is not required for clock <= 100MHz
1360 * Thus, make sure DLL it is disabled when not required
1361 */
1362 config = readl_relaxed(host->ioaddr +
1363 msm_offset->core_dll_config);
1364 config |= CORE_DLL_RST;
1365 writel_relaxed(config, host->ioaddr +
1366 msm_offset->core_dll_config);
1367
1368 config = readl_relaxed(host->ioaddr +
1369 msm_offset->core_dll_config);
1370 config |= CORE_DLL_PDN;
1371 writel_relaxed(config, host->ioaddr +
1372 msm_offset->core_dll_config);
1373
1374 /*
1375 * The DLL needs to be restored and CDCLP533 recalibrated
1376 * when the clock frequency is set back to 400MHz.
1377 */
1378 msm_host->calibration_done = false;
1379 }
1380
1381 dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n",
1382 mmc_hostname(host->mmc), host->clock, uhs, ctrl_2);
1383 sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
1384
1385 if (mmc->ios.timing == MMC_TIMING_MMC_HS400)
1386 sdhci_msm_hs400(host, &mmc->ios);
1387 }
1388
sdhci_msm_set_pincfg(struct sdhci_msm_host * msm_host,bool level)1389 static int sdhci_msm_set_pincfg(struct sdhci_msm_host *msm_host, bool level)
1390 {
1391 struct platform_device *pdev = msm_host->pdev;
1392 int ret;
1393
1394 if (level)
1395 ret = pinctrl_pm_select_default_state(&pdev->dev);
1396 else
1397 ret = pinctrl_pm_select_sleep_state(&pdev->dev);
1398
1399 return ret;
1400 }
1401
sdhci_msm_set_vmmc(struct mmc_host * mmc)1402 static int sdhci_msm_set_vmmc(struct mmc_host *mmc)
1403 {
1404 if (IS_ERR(mmc->supply.vmmc))
1405 return 0;
1406
1407 return mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, mmc->ios.vdd);
1408 }
1409
msm_toggle_vqmmc(struct sdhci_msm_host * msm_host,struct mmc_host * mmc,bool level)1410 static int msm_toggle_vqmmc(struct sdhci_msm_host *msm_host,
1411 struct mmc_host *mmc, bool level)
1412 {
1413 int ret;
1414 struct mmc_ios ios;
1415
1416 if (msm_host->vqmmc_enabled == level)
1417 return 0;
1418
1419 if (level) {
1420 /* Set the IO voltage regulator to default voltage level */
1421 if (msm_host->caps_0 & CORE_3_0V_SUPPORT)
1422 ios.signal_voltage = MMC_SIGNAL_VOLTAGE_330;
1423 else if (msm_host->caps_0 & CORE_1_8V_SUPPORT)
1424 ios.signal_voltage = MMC_SIGNAL_VOLTAGE_180;
1425
1426 if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1427 ret = mmc_regulator_set_vqmmc(mmc, &ios);
1428 if (ret < 0) {
1429 dev_err(mmc_dev(mmc), "%s: vqmmc set volgate failed: %d\n",
1430 mmc_hostname(mmc), ret);
1431 goto out;
1432 }
1433 }
1434 ret = regulator_enable(mmc->supply.vqmmc);
1435 } else {
1436 ret = regulator_disable(mmc->supply.vqmmc);
1437 }
1438
1439 if (ret)
1440 dev_err(mmc_dev(mmc), "%s: vqmm %sable failed: %d\n",
1441 mmc_hostname(mmc), level ? "en":"dis", ret);
1442 else
1443 msm_host->vqmmc_enabled = level;
1444 out:
1445 return ret;
1446 }
1447
msm_config_vqmmc_mode(struct sdhci_msm_host * msm_host,struct mmc_host * mmc,bool hpm)1448 static int msm_config_vqmmc_mode(struct sdhci_msm_host *msm_host,
1449 struct mmc_host *mmc, bool hpm)
1450 {
1451 int load, ret;
1452
1453 load = hpm ? MMC_VQMMC_MAX_LOAD_UA : 0;
1454 ret = regulator_set_load(mmc->supply.vqmmc, load);
1455 if (ret)
1456 dev_err(mmc_dev(mmc), "%s: vqmmc set load failed: %d\n",
1457 mmc_hostname(mmc), ret);
1458 return ret;
1459 }
1460
sdhci_msm_set_vqmmc(struct sdhci_msm_host * msm_host,struct mmc_host * mmc,bool level)1461 static int sdhci_msm_set_vqmmc(struct sdhci_msm_host *msm_host,
1462 struct mmc_host *mmc, bool level)
1463 {
1464 int ret;
1465 bool always_on;
1466
1467 if (IS_ERR(mmc->supply.vqmmc) ||
1468 (mmc->ios.power_mode == MMC_POWER_UNDEFINED))
1469 return 0;
1470 /*
1471 * For eMMC don't turn off Vqmmc, Instead just configure it in LPM
1472 * and HPM modes by setting the corresponding load.
1473 *
1474 * Till eMMC is initialized (i.e. always_on == 0), just turn on/off
1475 * Vqmmc. Vqmmc gets turned off only if init fails and mmc_power_off
1476 * gets invoked. Once eMMC is initialized (i.e. always_on == 1),
1477 * Vqmmc should remain ON, So just set the load instead of turning it
1478 * off/on.
1479 */
1480 always_on = !mmc_card_is_removable(mmc) &&
1481 mmc->card && mmc_card_mmc(mmc->card);
1482
1483 if (always_on)
1484 ret = msm_config_vqmmc_mode(msm_host, mmc, level);
1485 else
1486 ret = msm_toggle_vqmmc(msm_host, mmc, level);
1487
1488 return ret;
1489 }
1490
sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host * msm_host)1491 static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host)
1492 {
1493 init_waitqueue_head(&msm_host->pwr_irq_wait);
1494 }
1495
sdhci_msm_complete_pwr_irq_wait(struct sdhci_msm_host * msm_host)1496 static inline void sdhci_msm_complete_pwr_irq_wait(
1497 struct sdhci_msm_host *msm_host)
1498 {
1499 wake_up(&msm_host->pwr_irq_wait);
1500 }
1501
1502 /*
1503 * sdhci_msm_check_power_status API should be called when registers writes
1504 * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens.
1505 * To what state the register writes will change the IO lines should be passed
1506 * as the argument req_type. This API will check whether the IO line's state
1507 * is already the expected state and will wait for power irq only if
1508 * power irq is expected to be triggered based on the current IO line state
1509 * and expected IO line state.
1510 */
sdhci_msm_check_power_status(struct sdhci_host * host,u32 req_type)1511 static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type)
1512 {
1513 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1514 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1515 bool done = false;
1516 u32 val = SWITCHABLE_SIGNALING_VOLTAGE;
1517 const struct sdhci_msm_offset *msm_offset =
1518 msm_host->offset;
1519
1520 pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n",
1521 mmc_hostname(host->mmc), __func__, req_type,
1522 msm_host->curr_pwr_state, msm_host->curr_io_level);
1523
1524 /*
1525 * The power interrupt will not be generated for signal voltage
1526 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set.
1527 * Since sdhci-msm-v5, this bit has been removed and SW must consider
1528 * it as always set.
1529 */
1530 if (!msm_host->mci_removed)
1531 val = msm_host_readl(msm_host, host,
1532 msm_offset->core_generics);
1533 if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) &&
1534 !(val & SWITCHABLE_SIGNALING_VOLTAGE)) {
1535 return;
1536 }
1537
1538 /*
1539 * The IRQ for request type IO High/LOW will be generated when -
1540 * there is a state change in 1.8V enable bit (bit 3) of
1541 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0
1542 * which indicates 3.3V IO voltage. So, when MMC core layer tries
1543 * to set it to 3.3V before card detection happens, the
1544 * IRQ doesn't get triggered as there is no state change in this bit.
1545 * The driver already handles this case by changing the IO voltage
1546 * level to high as part of controller power up sequence. Hence, check
1547 * for host->pwr to handle a case where IO voltage high request is
1548 * issued even before controller power up.
1549 */
1550 if ((req_type & REQ_IO_HIGH) && !host->pwr) {
1551 pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n",
1552 mmc_hostname(host->mmc), req_type);
1553 return;
1554 }
1555 if ((req_type & msm_host->curr_pwr_state) ||
1556 (req_type & msm_host->curr_io_level))
1557 done = true;
1558 /*
1559 * This is needed here to handle cases where register writes will
1560 * not change the current bus state or io level of the controller.
1561 * In this case, no power irq will be triggerred and we should
1562 * not wait.
1563 */
1564 if (!done) {
1565 if (!wait_event_timeout(msm_host->pwr_irq_wait,
1566 msm_host->pwr_irq_flag,
1567 msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS)))
1568 dev_warn(&msm_host->pdev->dev,
1569 "%s: pwr_irq for req: (%d) timed out\n",
1570 mmc_hostname(host->mmc), req_type);
1571 }
1572 pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc),
1573 __func__, req_type);
1574 }
1575
sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host * host)1576 static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host)
1577 {
1578 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1579 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1580 const struct sdhci_msm_offset *msm_offset =
1581 msm_host->offset;
1582
1583 pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n",
1584 mmc_hostname(host->mmc),
1585 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status),
1586 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask),
1587 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl));
1588 }
1589
sdhci_msm_handle_pwr_irq(struct sdhci_host * host,int irq)1590 static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq)
1591 {
1592 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1593 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1594 struct mmc_host *mmc = host->mmc;
1595 u32 irq_status, irq_ack = 0;
1596 int retry = 10, ret;
1597 u32 pwr_state = 0, io_level = 0;
1598 u32 config;
1599 const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1600
1601 irq_status = msm_host_readl(msm_host, host,
1602 msm_offset->core_pwrctl_status);
1603 irq_status &= INT_MASK;
1604
1605 msm_host_writel(msm_host, irq_status, host,
1606 msm_offset->core_pwrctl_clear);
1607
1608 /*
1609 * There is a rare HW scenario where the first clear pulse could be
1610 * lost when actual reset and clear/read of status register is
1611 * happening at a time. Hence, retry for at least 10 times to make
1612 * sure status register is cleared. Otherwise, this will result in
1613 * a spurious power IRQ resulting in system instability.
1614 */
1615 while (irq_status & msm_host_readl(msm_host, host,
1616 msm_offset->core_pwrctl_status)) {
1617 if (retry == 0) {
1618 pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n",
1619 mmc_hostname(host->mmc), irq_status);
1620 sdhci_msm_dump_pwr_ctrl_regs(host);
1621 WARN_ON(1);
1622 break;
1623 }
1624 msm_host_writel(msm_host, irq_status, host,
1625 msm_offset->core_pwrctl_clear);
1626 retry--;
1627 udelay(10);
1628 }
1629
1630 /* Handle BUS ON/OFF*/
1631 if (irq_status & CORE_PWRCTL_BUS_ON) {
1632 pwr_state = REQ_BUS_ON;
1633 io_level = REQ_IO_HIGH;
1634 }
1635 if (irq_status & CORE_PWRCTL_BUS_OFF) {
1636 pwr_state = REQ_BUS_OFF;
1637 io_level = REQ_IO_LOW;
1638 }
1639
1640 if (pwr_state) {
1641 ret = sdhci_msm_set_vmmc(mmc);
1642 if (!ret)
1643 ret = sdhci_msm_set_vqmmc(msm_host, mmc,
1644 pwr_state & REQ_BUS_ON);
1645 if (!ret)
1646 ret = sdhci_msm_set_pincfg(msm_host,
1647 pwr_state & REQ_BUS_ON);
1648 if (!ret)
1649 irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1650 else
1651 irq_ack |= CORE_PWRCTL_BUS_FAIL;
1652 }
1653
1654 /* Handle IO LOW/HIGH */
1655 if (irq_status & CORE_PWRCTL_IO_LOW)
1656 io_level = REQ_IO_LOW;
1657
1658 if (irq_status & CORE_PWRCTL_IO_HIGH)
1659 io_level = REQ_IO_HIGH;
1660
1661 if (io_level)
1662 irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1663
1664 if (io_level && !IS_ERR(mmc->supply.vqmmc) && !pwr_state) {
1665 ret = mmc_regulator_set_vqmmc(mmc, &mmc->ios);
1666 if (ret < 0) {
1667 dev_err(mmc_dev(mmc), "%s: IO_level setting failed(%d). signal_voltage: %d, vdd: %d irq_status: 0x%08x\n",
1668 mmc_hostname(mmc), ret,
1669 mmc->ios.signal_voltage, mmc->ios.vdd,
1670 irq_status);
1671 irq_ack |= CORE_PWRCTL_IO_FAIL;
1672 }
1673 }
1674
1675 /*
1676 * The driver has to acknowledge the interrupt, switch voltages and
1677 * report back if it succeded or not to this register. The voltage
1678 * switches are handled by the sdhci core, so just report success.
1679 */
1680 msm_host_writel(msm_host, irq_ack, host,
1681 msm_offset->core_pwrctl_ctl);
1682
1683 /*
1684 * If we don't have info regarding the voltage levels supported by
1685 * regulators, don't change the IO PAD PWR SWITCH.
1686 */
1687 if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1688 u32 new_config;
1689 /*
1690 * We should unset IO PAD PWR switch only if the register write
1691 * can set IO lines high and the regulator also switches to 3 V.
1692 * Else, we should keep the IO PAD PWR switch set.
1693 * This is applicable to certain targets where eMMC vccq supply
1694 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the
1695 * IO PAD PWR switch must be kept set to reflect actual
1696 * regulator voltage. This way, during initialization of
1697 * controllers with only 1.8V, we will set the IO PAD bit
1698 * without waiting for a REQ_IO_LOW.
1699 */
1700 config = readl_relaxed(host->ioaddr +
1701 msm_offset->core_vendor_spec);
1702 new_config = config;
1703
1704 if ((io_level & REQ_IO_HIGH) &&
1705 (msm_host->caps_0 & CORE_3_0V_SUPPORT))
1706 new_config &= ~CORE_IO_PAD_PWR_SWITCH;
1707 else if ((io_level & REQ_IO_LOW) ||
1708 (msm_host->caps_0 & CORE_1_8V_SUPPORT))
1709 new_config |= CORE_IO_PAD_PWR_SWITCH;
1710
1711 if (config ^ new_config)
1712 writel_relaxed(new_config, host->ioaddr +
1713 msm_offset->core_vendor_spec);
1714 }
1715
1716 if (pwr_state)
1717 msm_host->curr_pwr_state = pwr_state;
1718 if (io_level)
1719 msm_host->curr_io_level = io_level;
1720
1721 dev_dbg(mmc_dev(mmc), "%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n",
1722 mmc_hostname(msm_host->mmc), __func__, irq, irq_status,
1723 irq_ack);
1724 }
1725
sdhci_msm_pwr_irq(int irq,void * data)1726 static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data)
1727 {
1728 struct sdhci_host *host = (struct sdhci_host *)data;
1729 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1730 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1731
1732 sdhci_msm_handle_pwr_irq(host, irq);
1733 msm_host->pwr_irq_flag = 1;
1734 sdhci_msm_complete_pwr_irq_wait(msm_host);
1735
1736
1737 return IRQ_HANDLED;
1738 }
1739
sdhci_msm_get_max_clock(struct sdhci_host * host)1740 static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host)
1741 {
1742 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1743 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1744 struct clk *core_clk = msm_host->bulk_clks[0].clk;
1745
1746 return clk_round_rate(core_clk, ULONG_MAX);
1747 }
1748
sdhci_msm_get_min_clock(struct sdhci_host * host)1749 static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host)
1750 {
1751 return SDHCI_MSM_MIN_CLOCK;
1752 }
1753
1754 /*
1755 * __sdhci_msm_set_clock - sdhci_msm clock control.
1756 *
1757 * Description:
1758 * MSM controller does not use internal divider and
1759 * instead directly control the GCC clock as per
1760 * HW recommendation.
1761 **/
__sdhci_msm_set_clock(struct sdhci_host * host,unsigned int clock)1762 static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1763 {
1764 u16 clk;
1765
1766 sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
1767
1768 if (clock == 0)
1769 return;
1770
1771 /*
1772 * MSM controller do not use clock divider.
1773 * Thus read SDHCI_CLOCK_CONTROL and only enable
1774 * clock with no divider value programmed.
1775 */
1776 clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
1777 sdhci_enable_clk(host, clk);
1778 }
1779
1780 /* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */
sdhci_msm_set_clock(struct sdhci_host * host,unsigned int clock)1781 static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1782 {
1783 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1784 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1785
1786 if (!clock) {
1787 host->mmc->actual_clock = msm_host->clk_rate = 0;
1788 goto out;
1789 }
1790
1791 sdhci_msm_hc_select_mode(host);
1792
1793 msm_set_clock_rate_for_bus_mode(host, clock);
1794 out:
1795 __sdhci_msm_set_clock(host, clock);
1796 }
1797
1798 /*****************************************************************************\
1799 * *
1800 * Inline Crypto Engine (ICE) support *
1801 * *
1802 \*****************************************************************************/
1803
1804 #ifdef CONFIG_MMC_CRYPTO
1805
1806 #define AES_256_XTS_KEY_SIZE 64
1807
1808 /* QCOM ICE registers */
1809
1810 #define QCOM_ICE_REG_VERSION 0x0008
1811
1812 #define QCOM_ICE_REG_FUSE_SETTING 0x0010
1813 #define QCOM_ICE_FUSE_SETTING_MASK 0x1
1814 #define QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK 0x2
1815 #define QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK 0x4
1816
1817 #define QCOM_ICE_REG_BIST_STATUS 0x0070
1818 #define QCOM_ICE_BIST_STATUS_MASK 0xF0000000
1819
1820 #define QCOM_ICE_REG_ADVANCED_CONTROL 0x1000
1821
1822 #define sdhci_msm_ice_writel(host, val, reg) \
1823 writel((val), (host)->ice_mem + (reg))
1824 #define sdhci_msm_ice_readl(host, reg) \
1825 readl((host)->ice_mem + (reg))
1826
sdhci_msm_ice_supported(struct sdhci_msm_host * msm_host)1827 static bool sdhci_msm_ice_supported(struct sdhci_msm_host *msm_host)
1828 {
1829 struct device *dev = mmc_dev(msm_host->mmc);
1830 u32 regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_VERSION);
1831 int major = regval >> 24;
1832 int minor = (regval >> 16) & 0xFF;
1833 int step = regval & 0xFFFF;
1834
1835 /* For now this driver only supports ICE version 3. */
1836 if (major != 3) {
1837 dev_warn(dev, "Unsupported ICE version: v%d.%d.%d\n",
1838 major, minor, step);
1839 return false;
1840 }
1841
1842 dev_info(dev, "Found QC Inline Crypto Engine (ICE) v%d.%d.%d\n",
1843 major, minor, step);
1844
1845 /* If fuses are blown, ICE might not work in the standard way. */
1846 regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_FUSE_SETTING);
1847 if (regval & (QCOM_ICE_FUSE_SETTING_MASK |
1848 QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK |
1849 QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK)) {
1850 dev_warn(dev, "Fuses are blown; ICE is unusable!\n");
1851 return false;
1852 }
1853 return true;
1854 }
1855
sdhci_msm_ice_get_clk(struct device * dev)1856 static inline struct clk *sdhci_msm_ice_get_clk(struct device *dev)
1857 {
1858 return devm_clk_get(dev, "ice");
1859 }
1860
sdhci_msm_ice_init(struct sdhci_msm_host * msm_host,struct cqhci_host * cq_host)1861 static int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
1862 struct cqhci_host *cq_host)
1863 {
1864 struct mmc_host *mmc = msm_host->mmc;
1865 struct device *dev = mmc_dev(mmc);
1866 struct resource *res;
1867
1868 if (!(cqhci_readl(cq_host, CQHCI_CAP) & CQHCI_CAP_CS))
1869 return 0;
1870
1871 res = platform_get_resource_byname(msm_host->pdev, IORESOURCE_MEM,
1872 "ice");
1873 if (!res) {
1874 dev_warn(dev, "ICE registers not found\n");
1875 goto disable;
1876 }
1877
1878 if (!qcom_scm_ice_available()) {
1879 dev_warn(dev, "ICE SCM interface not found\n");
1880 goto disable;
1881 }
1882
1883 msm_host->ice_mem = devm_ioremap_resource(dev, res);
1884 if (IS_ERR(msm_host->ice_mem))
1885 return PTR_ERR(msm_host->ice_mem);
1886
1887 if (!sdhci_msm_ice_supported(msm_host))
1888 goto disable;
1889
1890 mmc->caps2 |= MMC_CAP2_CRYPTO;
1891 return 0;
1892
1893 disable:
1894 dev_warn(dev, "Disabling inline encryption support\n");
1895 return 0;
1896 }
1897
sdhci_msm_ice_low_power_mode_enable(struct sdhci_msm_host * msm_host)1898 static void sdhci_msm_ice_low_power_mode_enable(struct sdhci_msm_host *msm_host)
1899 {
1900 u32 regval;
1901
1902 regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_ADVANCED_CONTROL);
1903 /*
1904 * Enable low power mode sequence
1905 * [0]-0, [1]-0, [2]-0, [3]-E, [4]-0, [5]-0, [6]-0, [7]-0
1906 */
1907 regval |= 0x7000;
1908 sdhci_msm_ice_writel(msm_host, regval, QCOM_ICE_REG_ADVANCED_CONTROL);
1909 }
1910
sdhci_msm_ice_optimization_enable(struct sdhci_msm_host * msm_host)1911 static void sdhci_msm_ice_optimization_enable(struct sdhci_msm_host *msm_host)
1912 {
1913 u32 regval;
1914
1915 /* ICE Optimizations Enable Sequence */
1916 regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_ADVANCED_CONTROL);
1917 regval |= 0xD807100;
1918 /* ICE HPG requires delay before writing */
1919 udelay(5);
1920 sdhci_msm_ice_writel(msm_host, regval, QCOM_ICE_REG_ADVANCED_CONTROL);
1921 udelay(5);
1922 }
1923
1924 /*
1925 * Wait until the ICE BIST (built-in self-test) has completed.
1926 *
1927 * This may be necessary before ICE can be used.
1928 *
1929 * Note that we don't really care whether the BIST passed or failed; we really
1930 * just want to make sure that it isn't still running. This is because (a) the
1931 * BIST is a FIPS compliance thing that never fails in practice, (b) ICE is
1932 * documented to reject crypto requests if the BIST fails, so we needn't do it
1933 * in software too, and (c) properly testing storage encryption requires testing
1934 * the full storage stack anyway, and not relying on hardware-level self-tests.
1935 */
sdhci_msm_ice_wait_bist_status(struct sdhci_msm_host * msm_host)1936 static int sdhci_msm_ice_wait_bist_status(struct sdhci_msm_host *msm_host)
1937 {
1938 u32 regval;
1939 int err;
1940
1941 err = readl_poll_timeout(msm_host->ice_mem + QCOM_ICE_REG_BIST_STATUS,
1942 regval, !(regval & QCOM_ICE_BIST_STATUS_MASK),
1943 50, 5000);
1944 if (err)
1945 dev_err(mmc_dev(msm_host->mmc),
1946 "Timed out waiting for ICE self-test to complete\n");
1947 return err;
1948 }
1949
sdhci_msm_ice_enable(struct sdhci_msm_host * msm_host)1950 static void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
1951 {
1952 if (!(msm_host->mmc->caps2 & MMC_CAP2_CRYPTO))
1953 return;
1954 sdhci_msm_ice_low_power_mode_enable(msm_host);
1955 sdhci_msm_ice_optimization_enable(msm_host);
1956 sdhci_msm_ice_wait_bist_status(msm_host);
1957 }
1958
sdhci_msm_ice_resume(struct sdhci_msm_host * msm_host)1959 static int __maybe_unused sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
1960 {
1961 if (!(msm_host->mmc->caps2 & MMC_CAP2_CRYPTO))
1962 return 0;
1963 return sdhci_msm_ice_wait_bist_status(msm_host);
1964 }
1965
1966 /*
1967 * Program a key into a QC ICE keyslot, or evict a keyslot. QC ICE requires
1968 * vendor-specific SCM calls for this; it doesn't support the standard way.
1969 */
sdhci_msm_program_key(struct cqhci_host * cq_host,const union cqhci_crypto_cfg_entry * cfg,int slot)1970 static int sdhci_msm_program_key(struct cqhci_host *cq_host,
1971 const union cqhci_crypto_cfg_entry *cfg,
1972 int slot)
1973 {
1974 struct device *dev = mmc_dev(cq_host->mmc);
1975 union cqhci_crypto_cap_entry cap;
1976 union {
1977 u8 bytes[AES_256_XTS_KEY_SIZE];
1978 u32 words[AES_256_XTS_KEY_SIZE / sizeof(u32)];
1979 } key;
1980 int i;
1981 int err;
1982
1983 if (!(cfg->config_enable & CQHCI_CRYPTO_CONFIGURATION_ENABLE))
1984 return qcom_scm_ice_invalidate_key(slot);
1985
1986 /* Only AES-256-XTS has been tested so far. */
1987 cap = cq_host->crypto_cap_array[cfg->crypto_cap_idx];
1988 if (cap.algorithm_id != CQHCI_CRYPTO_ALG_AES_XTS ||
1989 cap.key_size != CQHCI_CRYPTO_KEY_SIZE_256) {
1990 dev_err_ratelimited(dev,
1991 "Unhandled crypto capability; algorithm_id=%d, key_size=%d\n",
1992 cap.algorithm_id, cap.key_size);
1993 return -EINVAL;
1994 }
1995
1996 memcpy(key.bytes, cfg->crypto_key, AES_256_XTS_KEY_SIZE);
1997
1998 /*
1999 * The SCM call byte-swaps the 32-bit words of the key. So we have to
2000 * do the same, in order for the final key be correct.
2001 */
2002 for (i = 0; i < ARRAY_SIZE(key.words); i++)
2003 __cpu_to_be32s(&key.words[i]);
2004
2005 err = qcom_scm_ice_set_key(slot, key.bytes, AES_256_XTS_KEY_SIZE,
2006 QCOM_SCM_ICE_CIPHER_AES_256_XTS,
2007 cfg->data_unit_size);
2008 memzero_explicit(&key, sizeof(key));
2009 return err;
2010 }
2011 #else /* CONFIG_MMC_CRYPTO */
sdhci_msm_ice_get_clk(struct device * dev)2012 static inline struct clk *sdhci_msm_ice_get_clk(struct device *dev)
2013 {
2014 return NULL;
2015 }
2016
sdhci_msm_ice_init(struct sdhci_msm_host * msm_host,struct cqhci_host * cq_host)2017 static inline int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
2018 struct cqhci_host *cq_host)
2019 {
2020 return 0;
2021 }
2022
sdhci_msm_ice_enable(struct sdhci_msm_host * msm_host)2023 static inline void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
2024 {
2025 }
2026
2027 static inline int __maybe_unused
sdhci_msm_ice_resume(struct sdhci_msm_host * msm_host)2028 sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
2029 {
2030 return 0;
2031 }
2032 #endif /* !CONFIG_MMC_CRYPTO */
2033
2034 /*****************************************************************************\
2035 * *
2036 * MSM Command Queue Engine (CQE) *
2037 * *
2038 \*****************************************************************************/
2039
sdhci_msm_cqe_irq(struct sdhci_host * host,u32 intmask)2040 static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask)
2041 {
2042 int cmd_error = 0;
2043 int data_error = 0;
2044
2045 if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error))
2046 return intmask;
2047
2048 cqhci_irq(host->mmc, intmask, cmd_error, data_error);
2049 return 0;
2050 }
2051
sdhci_msm_cqe_enable(struct mmc_host * mmc)2052 static void sdhci_msm_cqe_enable(struct mmc_host *mmc)
2053 {
2054 struct sdhci_host *host = mmc_priv(mmc);
2055 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2056 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2057
2058 sdhci_cqe_enable(mmc);
2059 sdhci_msm_ice_enable(msm_host);
2060 }
2061
sdhci_msm_cqe_disable(struct mmc_host * mmc,bool recovery)2062 static void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery)
2063 {
2064 struct sdhci_host *host = mmc_priv(mmc);
2065 unsigned long flags;
2066 u32 ctrl;
2067
2068 /*
2069 * When CQE is halted, the legacy SDHCI path operates only
2070 * on 16-byte descriptors in 64bit mode.
2071 */
2072 if (host->flags & SDHCI_USE_64_BIT_DMA)
2073 host->desc_sz = 16;
2074
2075 spin_lock_irqsave(&host->lock, flags);
2076
2077 /*
2078 * During CQE command transfers, command complete bit gets latched.
2079 * So s/w should clear command complete interrupt status when CQE is
2080 * either halted or disabled. Otherwise unexpected SDCHI legacy
2081 * interrupt gets triggered when CQE is halted/disabled.
2082 */
2083 ctrl = sdhci_readl(host, SDHCI_INT_ENABLE);
2084 ctrl |= SDHCI_INT_RESPONSE;
2085 sdhci_writel(host, ctrl, SDHCI_INT_ENABLE);
2086 sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS);
2087
2088 spin_unlock_irqrestore(&host->lock, flags);
2089
2090 sdhci_cqe_disable(mmc, recovery);
2091 }
2092
sdhci_msm_set_timeout(struct sdhci_host * host,struct mmc_command * cmd)2093 static void sdhci_msm_set_timeout(struct sdhci_host *host, struct mmc_command *cmd)
2094 {
2095 u32 count, start = 15;
2096
2097 __sdhci_set_timeout(host, cmd);
2098 count = sdhci_readb(host, SDHCI_TIMEOUT_CONTROL);
2099 /*
2100 * Update software timeout value if its value is less than hardware data
2101 * timeout value. Qcom SoC hardware data timeout value was calculated
2102 * using 4 * MCLK * 2^(count + 13). where MCLK = 1 / host->clock.
2103 */
2104 if (cmd && cmd->data && host->clock > 400000 &&
2105 host->clock <= 50000000 &&
2106 ((1 << (count + start)) > (10 * host->clock)))
2107 host->data_timeout = 22LL * NSEC_PER_SEC;
2108 }
2109
2110 static const struct cqhci_host_ops sdhci_msm_cqhci_ops = {
2111 .enable = sdhci_msm_cqe_enable,
2112 .disable = sdhci_msm_cqe_disable,
2113 #ifdef CONFIG_MMC_CRYPTO
2114 .program_key = sdhci_msm_program_key,
2115 #endif
2116 };
2117
sdhci_msm_cqe_add_host(struct sdhci_host * host,struct platform_device * pdev)2118 static int sdhci_msm_cqe_add_host(struct sdhci_host *host,
2119 struct platform_device *pdev)
2120 {
2121 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2122 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2123 struct cqhci_host *cq_host;
2124 bool dma64;
2125 u32 cqcfg;
2126 int ret;
2127
2128 /*
2129 * When CQE is halted, SDHC operates only on 16byte ADMA descriptors.
2130 * So ensure ADMA table is allocated for 16byte descriptors.
2131 */
2132 if (host->caps & SDHCI_CAN_64BIT)
2133 host->alloc_desc_sz = 16;
2134
2135 ret = sdhci_setup_host(host);
2136 if (ret)
2137 return ret;
2138
2139 cq_host = cqhci_pltfm_init(pdev);
2140 if (IS_ERR(cq_host)) {
2141 ret = PTR_ERR(cq_host);
2142 dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret);
2143 goto cleanup;
2144 }
2145
2146 msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD;
2147 cq_host->ops = &sdhci_msm_cqhci_ops;
2148
2149 dma64 = host->flags & SDHCI_USE_64_BIT_DMA;
2150
2151 ret = sdhci_msm_ice_init(msm_host, cq_host);
2152 if (ret)
2153 goto cleanup;
2154
2155 ret = cqhci_init(cq_host, host->mmc, dma64);
2156 if (ret) {
2157 dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n",
2158 mmc_hostname(host->mmc), ret);
2159 goto cleanup;
2160 }
2161
2162 /* Disable cqe reset due to cqe enable signal */
2163 cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1);
2164 cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN;
2165 cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1);
2166
2167 /*
2168 * SDHC expects 12byte ADMA descriptors till CQE is enabled.
2169 * So limit desc_sz to 12 so that the data commands that are sent
2170 * during card initialization (before CQE gets enabled) would
2171 * get executed without any issues.
2172 */
2173 if (host->flags & SDHCI_USE_64_BIT_DMA)
2174 host->desc_sz = 12;
2175
2176 ret = __sdhci_add_host(host);
2177 if (ret)
2178 goto cleanup;
2179
2180 dev_info(&pdev->dev, "%s: CQE init: success\n",
2181 mmc_hostname(host->mmc));
2182 return ret;
2183
2184 cleanup:
2185 sdhci_cleanup_host(host);
2186 return ret;
2187 }
2188
2189 /*
2190 * Platform specific register write functions. This is so that, if any
2191 * register write needs to be followed up by platform specific actions,
2192 * they can be added here. These functions can go to sleep when writes
2193 * to certain registers are done.
2194 * These functions are relying on sdhci_set_ios not using spinlock.
2195 */
__sdhci_msm_check_write(struct sdhci_host * host,u16 val,int reg)2196 static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg)
2197 {
2198 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2199 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2200 u32 req_type = 0;
2201
2202 switch (reg) {
2203 case SDHCI_HOST_CONTROL2:
2204 req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW :
2205 REQ_IO_HIGH;
2206 break;
2207 case SDHCI_SOFTWARE_RESET:
2208 if (host->pwr && (val & SDHCI_RESET_ALL))
2209 req_type = REQ_BUS_OFF;
2210 break;
2211 case SDHCI_POWER_CONTROL:
2212 req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON;
2213 break;
2214 case SDHCI_TRANSFER_MODE:
2215 msm_host->transfer_mode = val;
2216 break;
2217 case SDHCI_COMMAND:
2218 if (!msm_host->use_cdr)
2219 break;
2220 if ((msm_host->transfer_mode & SDHCI_TRNS_READ) &&
2221 SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK_HS200 &&
2222 SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK)
2223 sdhci_msm_set_cdr(host, true);
2224 else
2225 sdhci_msm_set_cdr(host, false);
2226 break;
2227 }
2228
2229 if (req_type) {
2230 msm_host->pwr_irq_flag = 0;
2231 /*
2232 * Since this register write may trigger a power irq, ensure
2233 * all previous register writes are complete by this point.
2234 */
2235 mb();
2236 }
2237 return req_type;
2238 }
2239
2240 /* This function may sleep*/
sdhci_msm_writew(struct sdhci_host * host,u16 val,int reg)2241 static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg)
2242 {
2243 u32 req_type = 0;
2244
2245 req_type = __sdhci_msm_check_write(host, val, reg);
2246 writew_relaxed(val, host->ioaddr + reg);
2247
2248 if (req_type)
2249 sdhci_msm_check_power_status(host, req_type);
2250 }
2251
2252 /* This function may sleep*/
sdhci_msm_writeb(struct sdhci_host * host,u8 val,int reg)2253 static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg)
2254 {
2255 u32 req_type = 0;
2256
2257 req_type = __sdhci_msm_check_write(host, val, reg);
2258
2259 writeb_relaxed(val, host->ioaddr + reg);
2260
2261 if (req_type)
2262 sdhci_msm_check_power_status(host, req_type);
2263 }
2264
sdhci_msm_set_regulator_caps(struct sdhci_msm_host * msm_host)2265 static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host)
2266 {
2267 struct mmc_host *mmc = msm_host->mmc;
2268 struct regulator *supply = mmc->supply.vqmmc;
2269 u32 caps = 0, config;
2270 struct sdhci_host *host = mmc_priv(mmc);
2271 const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2272
2273 if (!IS_ERR(mmc->supply.vqmmc)) {
2274 if (regulator_is_supported_voltage(supply, 1700000, 1950000))
2275 caps |= CORE_1_8V_SUPPORT;
2276 if (regulator_is_supported_voltage(supply, 2700000, 3600000))
2277 caps |= CORE_3_0V_SUPPORT;
2278
2279 if (!caps)
2280 pr_warn("%s: 1.8/3V not supported for vqmmc\n",
2281 mmc_hostname(mmc));
2282 }
2283
2284 if (caps) {
2285 /*
2286 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH
2287 * bit can be used as required later on.
2288 */
2289 u32 io_level = msm_host->curr_io_level;
2290
2291 config = readl_relaxed(host->ioaddr +
2292 msm_offset->core_vendor_spec);
2293 config |= CORE_IO_PAD_PWR_SWITCH_EN;
2294
2295 if ((io_level & REQ_IO_HIGH) && (caps & CORE_3_0V_SUPPORT))
2296 config &= ~CORE_IO_PAD_PWR_SWITCH;
2297 else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT))
2298 config |= CORE_IO_PAD_PWR_SWITCH;
2299
2300 writel_relaxed(config,
2301 host->ioaddr + msm_offset->core_vendor_spec);
2302 }
2303 msm_host->caps_0 |= caps;
2304 pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps);
2305 }
2306
sdhci_msm_reset(struct sdhci_host * host,u8 mask)2307 static void sdhci_msm_reset(struct sdhci_host *host, u8 mask)
2308 {
2309 if ((host->mmc->caps2 & MMC_CAP2_CQE) && (mask & SDHCI_RESET_ALL))
2310 cqhci_deactivate(host->mmc);
2311 sdhci_reset(host, mask);
2312 }
2313
sdhci_msm_register_vreg(struct sdhci_msm_host * msm_host)2314 static int sdhci_msm_register_vreg(struct sdhci_msm_host *msm_host)
2315 {
2316 int ret;
2317
2318 ret = mmc_regulator_get_supply(msm_host->mmc);
2319 if (ret)
2320 return ret;
2321
2322 sdhci_msm_set_regulator_caps(msm_host);
2323
2324 return 0;
2325 }
2326
sdhci_msm_start_signal_voltage_switch(struct mmc_host * mmc,struct mmc_ios * ios)2327 static int sdhci_msm_start_signal_voltage_switch(struct mmc_host *mmc,
2328 struct mmc_ios *ios)
2329 {
2330 struct sdhci_host *host = mmc_priv(mmc);
2331 u16 ctrl, status;
2332
2333 /*
2334 * Signal Voltage Switching is only applicable for Host Controllers
2335 * v3.00 and above.
2336 */
2337 if (host->version < SDHCI_SPEC_300)
2338 return 0;
2339
2340 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2341
2342 switch (ios->signal_voltage) {
2343 case MMC_SIGNAL_VOLTAGE_330:
2344 if (!(host->flags & SDHCI_SIGNALING_330))
2345 return -EINVAL;
2346
2347 /* Set 1.8V Signal Enable in the Host Control2 register to 0 */
2348 ctrl &= ~SDHCI_CTRL_VDD_180;
2349 break;
2350 case MMC_SIGNAL_VOLTAGE_180:
2351 if (!(host->flags & SDHCI_SIGNALING_180))
2352 return -EINVAL;
2353
2354 /* Enable 1.8V Signal Enable in the Host Control2 register */
2355 ctrl |= SDHCI_CTRL_VDD_180;
2356 break;
2357
2358 default:
2359 return -EINVAL;
2360 }
2361
2362 sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
2363
2364 /* Wait for 5ms */
2365 usleep_range(5000, 5500);
2366
2367 /* regulator output should be stable within 5 ms */
2368 status = ctrl & SDHCI_CTRL_VDD_180;
2369 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2370 if ((ctrl & SDHCI_CTRL_VDD_180) == status)
2371 return 0;
2372
2373 dev_warn(mmc_dev(mmc), "%s: Regulator output did not became stable\n",
2374 mmc_hostname(mmc));
2375
2376 return -EAGAIN;
2377 }
2378
2379 #define DRIVER_NAME "sdhci_msm"
2380 #define SDHCI_MSM_DUMP(f, x...) \
2381 pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x)
2382
sdhci_msm_dump_vendor_regs(struct sdhci_host * host)2383 static void sdhci_msm_dump_vendor_regs(struct sdhci_host *host)
2384 {
2385 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2386 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2387 const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2388
2389 SDHCI_MSM_DUMP("----------- VENDOR REGISTER DUMP -----------\n");
2390
2391 SDHCI_MSM_DUMP(
2392 "DLL sts: 0x%08x | DLL cfg: 0x%08x | DLL cfg2: 0x%08x\n",
2393 readl_relaxed(host->ioaddr + msm_offset->core_dll_status),
2394 readl_relaxed(host->ioaddr + msm_offset->core_dll_config),
2395 readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2));
2396 SDHCI_MSM_DUMP(
2397 "DLL cfg3: 0x%08x | DLL usr ctl: 0x%08x | DDR cfg: 0x%08x\n",
2398 readl_relaxed(host->ioaddr + msm_offset->core_dll_config_3),
2399 readl_relaxed(host->ioaddr + msm_offset->core_dll_usr_ctl),
2400 readl_relaxed(host->ioaddr + msm_offset->core_ddr_config));
2401 SDHCI_MSM_DUMP(
2402 "Vndr func: 0x%08x | Vndr func2 : 0x%08x Vndr func3: 0x%08x\n",
2403 readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec),
2404 readl_relaxed(host->ioaddr +
2405 msm_offset->core_vendor_spec_func2),
2406 readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3));
2407 }
2408
2409 static const struct sdhci_msm_variant_ops mci_var_ops = {
2410 .msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed,
2411 .msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed,
2412 };
2413
2414 static const struct sdhci_msm_variant_ops v5_var_ops = {
2415 .msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed,
2416 .msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed,
2417 };
2418
2419 static const struct sdhci_msm_variant_info sdhci_msm_mci_var = {
2420 .var_ops = &mci_var_ops,
2421 .offset = &sdhci_msm_mci_offset,
2422 };
2423
2424 static const struct sdhci_msm_variant_info sdhci_msm_v5_var = {
2425 .mci_removed = true,
2426 .var_ops = &v5_var_ops,
2427 .offset = &sdhci_msm_v5_offset,
2428 };
2429
2430 static const struct sdhci_msm_variant_info sdm845_sdhci_var = {
2431 .mci_removed = true,
2432 .restore_dll_config = true,
2433 .var_ops = &v5_var_ops,
2434 .offset = &sdhci_msm_v5_offset,
2435 };
2436
2437 static const struct of_device_id sdhci_msm_dt_match[] = {
2438 /*
2439 * Do not add new variants to the driver which are compatible with
2440 * generic ones, unless they need customization.
2441 */
2442 {.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var},
2443 {.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var},
2444 {.compatible = "qcom,sdm670-sdhci", .data = &sdm845_sdhci_var},
2445 {.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var},
2446 {.compatible = "qcom,sc7180-sdhci", .data = &sdm845_sdhci_var},
2447 {},
2448 };
2449
2450 MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match);
2451
2452 static const struct sdhci_ops sdhci_msm_ops = {
2453 .reset = sdhci_msm_reset,
2454 .set_clock = sdhci_msm_set_clock,
2455 .get_min_clock = sdhci_msm_get_min_clock,
2456 .get_max_clock = sdhci_msm_get_max_clock,
2457 .set_bus_width = sdhci_set_bus_width,
2458 .set_uhs_signaling = sdhci_msm_set_uhs_signaling,
2459 .write_w = sdhci_msm_writew,
2460 .write_b = sdhci_msm_writeb,
2461 .irq = sdhci_msm_cqe_irq,
2462 .dump_vendor_regs = sdhci_msm_dump_vendor_regs,
2463 .set_power = sdhci_set_power_noreg,
2464 .set_timeout = sdhci_msm_set_timeout,
2465 };
2466
2467 static const struct sdhci_pltfm_data sdhci_msm_pdata = {
2468 .quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
2469 SDHCI_QUIRK_SINGLE_POWER_WRITE |
2470 SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN |
2471 SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12,
2472
2473 .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
2474 .ops = &sdhci_msm_ops,
2475 };
2476
sdhci_msm_get_of_property(struct platform_device * pdev,struct sdhci_host * host)2477 static inline void sdhci_msm_get_of_property(struct platform_device *pdev,
2478 struct sdhci_host *host)
2479 {
2480 struct device_node *node = pdev->dev.of_node;
2481 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2482 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2483
2484 if (of_property_read_u32(node, "qcom,ddr-config",
2485 &msm_host->ddr_config))
2486 msm_host->ddr_config = DDR_CONFIG_POR_VAL;
2487
2488 of_property_read_u32(node, "qcom,dll-config", &msm_host->dll_config);
2489 }
2490
sdhci_msm_gcc_reset(struct device * dev,struct sdhci_host * host)2491 static int sdhci_msm_gcc_reset(struct device *dev, struct sdhci_host *host)
2492 {
2493 struct reset_control *reset;
2494 int ret = 0;
2495
2496 reset = reset_control_get_optional_exclusive(dev, NULL);
2497 if (IS_ERR(reset))
2498 return dev_err_probe(dev, PTR_ERR(reset),
2499 "unable to acquire core_reset\n");
2500
2501 if (!reset)
2502 return ret;
2503
2504 ret = reset_control_assert(reset);
2505 if (ret) {
2506 reset_control_put(reset);
2507 return dev_err_probe(dev, ret, "core_reset assert failed\n");
2508 }
2509
2510 /*
2511 * The hardware requirement for delay between assert/deassert
2512 * is at least 3-4 sleep clock (32.7KHz) cycles, which comes to
2513 * ~125us (4/32768). To be on the safe side add 200us delay.
2514 */
2515 usleep_range(200, 210);
2516
2517 ret = reset_control_deassert(reset);
2518 if (ret) {
2519 reset_control_put(reset);
2520 return dev_err_probe(dev, ret, "core_reset deassert failed\n");
2521 }
2522
2523 usleep_range(200, 210);
2524 reset_control_put(reset);
2525
2526 return ret;
2527 }
2528
sdhci_msm_probe(struct platform_device * pdev)2529 static int sdhci_msm_probe(struct platform_device *pdev)
2530 {
2531 struct sdhci_host *host;
2532 struct sdhci_pltfm_host *pltfm_host;
2533 struct sdhci_msm_host *msm_host;
2534 struct clk *clk;
2535 int ret;
2536 u16 host_version, core_minor;
2537 u32 core_version, config;
2538 u8 core_major;
2539 const struct sdhci_msm_offset *msm_offset;
2540 const struct sdhci_msm_variant_info *var_info;
2541 struct device_node *node = pdev->dev.of_node;
2542
2543 host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host));
2544 if (IS_ERR(host))
2545 return PTR_ERR(host);
2546
2547 host->sdma_boundary = 0;
2548 pltfm_host = sdhci_priv(host);
2549 msm_host = sdhci_pltfm_priv(pltfm_host);
2550 msm_host->mmc = host->mmc;
2551 msm_host->pdev = pdev;
2552
2553 ret = mmc_of_parse(host->mmc);
2554 if (ret)
2555 goto pltfm_free;
2556
2557 /*
2558 * Based on the compatible string, load the required msm host info from
2559 * the data associated with the version info.
2560 */
2561 var_info = of_device_get_match_data(&pdev->dev);
2562
2563 msm_host->mci_removed = var_info->mci_removed;
2564 msm_host->restore_dll_config = var_info->restore_dll_config;
2565 msm_host->var_ops = var_info->var_ops;
2566 msm_host->offset = var_info->offset;
2567
2568 msm_offset = msm_host->offset;
2569
2570 sdhci_get_of_property(pdev);
2571 sdhci_msm_get_of_property(pdev, host);
2572
2573 msm_host->saved_tuning_phase = INVALID_TUNING_PHASE;
2574
2575 ret = sdhci_msm_gcc_reset(&pdev->dev, host);
2576 if (ret)
2577 goto pltfm_free;
2578
2579 /* Setup SDCC bus voter clock. */
2580 msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus");
2581 if (!IS_ERR(msm_host->bus_clk)) {
2582 /* Vote for max. clk rate for max. performance */
2583 ret = clk_set_rate(msm_host->bus_clk, INT_MAX);
2584 if (ret)
2585 goto pltfm_free;
2586 ret = clk_prepare_enable(msm_host->bus_clk);
2587 if (ret)
2588 goto pltfm_free;
2589 }
2590
2591 /* Setup main peripheral bus clock */
2592 clk = devm_clk_get(&pdev->dev, "iface");
2593 if (IS_ERR(clk)) {
2594 ret = PTR_ERR(clk);
2595 dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret);
2596 goto bus_clk_disable;
2597 }
2598 msm_host->bulk_clks[1].clk = clk;
2599
2600 /* Setup SDC MMC clock */
2601 clk = devm_clk_get(&pdev->dev, "core");
2602 if (IS_ERR(clk)) {
2603 ret = PTR_ERR(clk);
2604 dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret);
2605 goto bus_clk_disable;
2606 }
2607 msm_host->bulk_clks[0].clk = clk;
2608
2609 /* Check for optional interconnect paths */
2610 ret = dev_pm_opp_of_find_icc_paths(&pdev->dev, NULL);
2611 if (ret)
2612 goto bus_clk_disable;
2613
2614 ret = devm_pm_opp_set_clkname(&pdev->dev, "core");
2615 if (ret)
2616 goto bus_clk_disable;
2617
2618 /* OPP table is optional */
2619 ret = devm_pm_opp_of_add_table(&pdev->dev);
2620 if (ret && ret != -ENODEV) {
2621 dev_err(&pdev->dev, "Invalid OPP table in Device tree\n");
2622 goto bus_clk_disable;
2623 }
2624
2625 /* Vote for maximum clock rate for maximum performance */
2626 ret = dev_pm_opp_set_rate(&pdev->dev, INT_MAX);
2627 if (ret)
2628 dev_warn(&pdev->dev, "core clock boost failed\n");
2629
2630 clk = devm_clk_get(&pdev->dev, "cal");
2631 if (IS_ERR(clk))
2632 clk = NULL;
2633 msm_host->bulk_clks[2].clk = clk;
2634
2635 clk = devm_clk_get(&pdev->dev, "sleep");
2636 if (IS_ERR(clk))
2637 clk = NULL;
2638 msm_host->bulk_clks[3].clk = clk;
2639
2640 clk = sdhci_msm_ice_get_clk(&pdev->dev);
2641 if (IS_ERR(clk))
2642 clk = NULL;
2643 msm_host->bulk_clks[4].clk = clk;
2644
2645 ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2646 msm_host->bulk_clks);
2647 if (ret)
2648 goto bus_clk_disable;
2649
2650 /*
2651 * xo clock is needed for FLL feature of cm_dll.
2652 * In case if xo clock is not mentioned in DT, warn and proceed.
2653 */
2654 msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo");
2655 if (IS_ERR(msm_host->xo_clk)) {
2656 ret = PTR_ERR(msm_host->xo_clk);
2657 dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret);
2658 }
2659
2660 if (!msm_host->mci_removed) {
2661 msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1);
2662 if (IS_ERR(msm_host->core_mem)) {
2663 ret = PTR_ERR(msm_host->core_mem);
2664 goto clk_disable;
2665 }
2666 }
2667
2668 /* Reset the vendor spec register to power on reset state */
2669 writel_relaxed(CORE_VENDOR_SPEC_POR_VAL,
2670 host->ioaddr + msm_offset->core_vendor_spec);
2671
2672 if (!msm_host->mci_removed) {
2673 /* Set HC_MODE_EN bit in HC_MODE register */
2674 msm_host_writel(msm_host, HC_MODE_EN, host,
2675 msm_offset->core_hc_mode);
2676 config = msm_host_readl(msm_host, host,
2677 msm_offset->core_hc_mode);
2678 config |= FF_CLK_SW_RST_DIS;
2679 msm_host_writel(msm_host, config, host,
2680 msm_offset->core_hc_mode);
2681 }
2682
2683 host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION));
2684 dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n",
2685 host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >>
2686 SDHCI_VENDOR_VER_SHIFT));
2687
2688 core_version = msm_host_readl(msm_host, host,
2689 msm_offset->core_mci_version);
2690 core_major = (core_version & CORE_VERSION_MAJOR_MASK) >>
2691 CORE_VERSION_MAJOR_SHIFT;
2692 core_minor = core_version & CORE_VERSION_MINOR_MASK;
2693 dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n",
2694 core_version, core_major, core_minor);
2695
2696 if (core_major == 1 && core_minor >= 0x42)
2697 msm_host->use_14lpp_dll_reset = true;
2698
2699 /*
2700 * SDCC 5 controller with major version 1, minor version 0x34 and later
2701 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL.
2702 */
2703 if (core_major == 1 && core_minor < 0x34)
2704 msm_host->use_cdclp533 = true;
2705
2706 /*
2707 * Support for some capabilities is not advertised by newer
2708 * controller versions and must be explicitly enabled.
2709 */
2710 if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) {
2711 config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES);
2712 config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT;
2713 writel_relaxed(config, host->ioaddr +
2714 msm_offset->core_vendor_spec_capabilities0);
2715 }
2716
2717 if (core_major == 1 && core_minor >= 0x49)
2718 msm_host->updated_ddr_cfg = true;
2719
2720 if (core_major == 1 && core_minor >= 0x71)
2721 msm_host->uses_tassadar_dll = true;
2722
2723 ret = sdhci_msm_register_vreg(msm_host);
2724 if (ret)
2725 goto clk_disable;
2726
2727 /*
2728 * Power on reset state may trigger power irq if previous status of
2729 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq
2730 * interrupt in GIC, any pending power irq interrupt should be
2731 * acknowledged. Otherwise power irq interrupt handler would be
2732 * fired prematurely.
2733 */
2734 sdhci_msm_handle_pwr_irq(host, 0);
2735
2736 /*
2737 * Ensure that above writes are propogated before interrupt enablement
2738 * in GIC.
2739 */
2740 mb();
2741
2742 /* Setup IRQ for handling power/voltage tasks with PMIC */
2743 msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq");
2744 if (msm_host->pwr_irq < 0) {
2745 ret = msm_host->pwr_irq;
2746 goto clk_disable;
2747 }
2748
2749 sdhci_msm_init_pwr_irq_wait(msm_host);
2750 /* Enable pwr irq interrupts */
2751 msm_host_writel(msm_host, INT_MASK, host,
2752 msm_offset->core_pwrctl_mask);
2753
2754 ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL,
2755 sdhci_msm_pwr_irq, IRQF_ONESHOT,
2756 dev_name(&pdev->dev), host);
2757 if (ret) {
2758 dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret);
2759 goto clk_disable;
2760 }
2761
2762 msm_host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY;
2763
2764 /* Set the timeout value to max possible */
2765 host->max_timeout_count = 0xF;
2766
2767 pm_runtime_get_noresume(&pdev->dev);
2768 pm_runtime_set_active(&pdev->dev);
2769 pm_runtime_enable(&pdev->dev);
2770 pm_runtime_set_autosuspend_delay(&pdev->dev,
2771 MSM_MMC_AUTOSUSPEND_DELAY_MS);
2772 pm_runtime_use_autosuspend(&pdev->dev);
2773
2774 host->mmc_host_ops.start_signal_voltage_switch =
2775 sdhci_msm_start_signal_voltage_switch;
2776 host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning;
2777 if (of_property_read_bool(node, "supports-cqe"))
2778 ret = sdhci_msm_cqe_add_host(host, pdev);
2779 else
2780 ret = sdhci_add_host(host);
2781 if (ret)
2782 goto pm_runtime_disable;
2783
2784 pm_runtime_mark_last_busy(&pdev->dev);
2785 pm_runtime_put_autosuspend(&pdev->dev);
2786
2787 return 0;
2788
2789 pm_runtime_disable:
2790 pm_runtime_disable(&pdev->dev);
2791 pm_runtime_set_suspended(&pdev->dev);
2792 pm_runtime_put_noidle(&pdev->dev);
2793 clk_disable:
2794 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2795 msm_host->bulk_clks);
2796 bus_clk_disable:
2797 if (!IS_ERR(msm_host->bus_clk))
2798 clk_disable_unprepare(msm_host->bus_clk);
2799 pltfm_free:
2800 sdhci_pltfm_free(pdev);
2801 return ret;
2802 }
2803
sdhci_msm_remove(struct platform_device * pdev)2804 static int sdhci_msm_remove(struct platform_device *pdev)
2805 {
2806 struct sdhci_host *host = platform_get_drvdata(pdev);
2807 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2808 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2809 int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) ==
2810 0xffffffff);
2811
2812 sdhci_remove_host(host, dead);
2813
2814 pm_runtime_get_sync(&pdev->dev);
2815 pm_runtime_disable(&pdev->dev);
2816 pm_runtime_put_noidle(&pdev->dev);
2817
2818 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2819 msm_host->bulk_clks);
2820 if (!IS_ERR(msm_host->bus_clk))
2821 clk_disable_unprepare(msm_host->bus_clk);
2822 sdhci_pltfm_free(pdev);
2823 return 0;
2824 }
2825
sdhci_msm_runtime_suspend(struct device * dev)2826 static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev)
2827 {
2828 struct sdhci_host *host = dev_get_drvdata(dev);
2829 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2830 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2831
2832 /* Drop the performance vote */
2833 dev_pm_opp_set_rate(dev, 0);
2834 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2835 msm_host->bulk_clks);
2836
2837 return 0;
2838 }
2839
sdhci_msm_runtime_resume(struct device * dev)2840 static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev)
2841 {
2842 struct sdhci_host *host = dev_get_drvdata(dev);
2843 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2844 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2845 int ret;
2846
2847 ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2848 msm_host->bulk_clks);
2849 if (ret)
2850 return ret;
2851 /*
2852 * Whenever core-clock is gated dynamically, it's needed to
2853 * restore the SDR DLL settings when the clock is ungated.
2854 */
2855 if (msm_host->restore_dll_config && msm_host->clk_rate) {
2856 ret = sdhci_msm_restore_sdr_dll_config(host);
2857 if (ret)
2858 return ret;
2859 }
2860
2861 dev_pm_opp_set_rate(dev, msm_host->clk_rate);
2862
2863 return sdhci_msm_ice_resume(msm_host);
2864 }
2865
2866 static const struct dev_pm_ops sdhci_msm_pm_ops = {
2867 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2868 pm_runtime_force_resume)
2869 SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend,
2870 sdhci_msm_runtime_resume,
2871 NULL)
2872 };
2873
2874 static struct platform_driver sdhci_msm_driver = {
2875 .probe = sdhci_msm_probe,
2876 .remove = sdhci_msm_remove,
2877 .driver = {
2878 .name = "sdhci_msm",
2879 .of_match_table = sdhci_msm_dt_match,
2880 .pm = &sdhci_msm_pm_ops,
2881 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2882 },
2883 };
2884
2885 module_platform_driver(sdhci_msm_driver);
2886
2887 MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver");
2888 MODULE_LICENSE("GPL v2");
2889