1 /*
2  * Toshiba TMIO NAND flash controller driver
3  *
4  * Slightly murky pre-git history of the driver:
5  *
6  * Copyright (c) Ian Molton 2004, 2005, 2008
7  *    Original work, independent of sharps code. Included hardware ECC support.
8  *    Hard ECC did not work for writes in the early revisions.
9  * Copyright (c) Dirk Opfer 2005.
10  *    Modifications developed from sharps code but
11  *    NOT containing any, ported onto Ians base.
12  * Copyright (c) Chris Humbert 2005
13  * Copyright (c) Dmitry Baryshkov 2008
14  *    Minor fixes
15  *
16  * Parts copyright Sebastian Carlier
17  *
18  * This file is licensed under
19  * the terms of the GNU General Public License version 2. This program
20  * is licensed "as is" without any warranty of any kind, whether express
21  * or implied.
22  *
23  */
24 
25 
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/mfd/core.h>
30 #include <linux/mfd/tmio.h>
31 #include <linux/delay.h>
32 #include <linux/io.h>
33 #include <linux/irq.h>
34 #include <linux/interrupt.h>
35 #include <linux/ioport.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/rawnand.h>
38 #include <linux/mtd/partitions.h>
39 #include <linux/slab.h>
40 
41 /*--------------------------------------------------------------------------*/
42 
43 /*
44  * NAND Flash Host Controller Configuration Register
45  */
46 #define CCR_COMMAND	0x04	/* w Command				*/
47 #define CCR_BASE	0x10	/* l NAND Flash Control Reg Base Addr	*/
48 #define CCR_INTP	0x3d	/* b Interrupt Pin			*/
49 #define CCR_INTE	0x48	/* b Interrupt Enable			*/
50 #define CCR_EC		0x4a	/* b Event Control			*/
51 #define CCR_ICC		0x4c	/* b Internal Clock Control		*/
52 #define CCR_ECCC	0x5b	/* b ECC Control			*/
53 #define CCR_NFTC	0x60	/* b NAND Flash Transaction Control	*/
54 #define CCR_NFM		0x61	/* b NAND Flash Monitor			*/
55 #define CCR_NFPSC	0x62	/* b NAND Flash Power Supply Control	*/
56 #define CCR_NFDC	0x63	/* b NAND Flash Detect Control		*/
57 
58 /*
59  * NAND Flash Control Register
60  */
61 #define FCR_DATA	0x00	/* bwl Data Register			*/
62 #define FCR_MODE	0x04	/* b Mode Register			*/
63 #define FCR_STATUS	0x05	/* b Status Register			*/
64 #define FCR_ISR		0x06	/* b Interrupt Status Register		*/
65 #define FCR_IMR		0x07	/* b Interrupt Mask Register		*/
66 
67 /* FCR_MODE Register Command List */
68 #define FCR_MODE_DATA	0x94	/* Data Data_Mode */
69 #define FCR_MODE_COMMAND 0x95	/* Data Command_Mode */
70 #define FCR_MODE_ADDRESS 0x96	/* Data Address_Mode */
71 
72 #define FCR_MODE_HWECC_CALC	0xB4	/* HW-ECC Data */
73 #define FCR_MODE_HWECC_RESULT	0xD4	/* HW-ECC Calc result Read_Mode */
74 #define FCR_MODE_HWECC_RESET	0xF4	/* HW-ECC Reset */
75 
76 #define FCR_MODE_POWER_ON	0x0C	/* Power Supply ON  to SSFDC card */
77 #define FCR_MODE_POWER_OFF	0x08	/* Power Supply OFF to SSFDC card */
78 
79 #define FCR_MODE_LED_OFF	0x00	/* LED OFF */
80 #define FCR_MODE_LED_ON		0x04	/* LED ON */
81 
82 #define FCR_MODE_EJECT_ON	0x68	/* Ejection events active  */
83 #define FCR_MODE_EJECT_OFF	0x08	/* Ejection events ignored */
84 
85 #define FCR_MODE_LOCK		0x6C	/* Lock_Mode. Eject Switch Invalid */
86 #define FCR_MODE_UNLOCK		0x0C	/* UnLock_Mode. Eject Switch is valid */
87 
88 #define FCR_MODE_CONTROLLER_ID	0x40	/* Controller ID Read */
89 #define FCR_MODE_STANDBY	0x00	/* SSFDC card Changes Standby State */
90 
91 #define FCR_MODE_WE		0x80
92 #define FCR_MODE_ECC1		0x40
93 #define FCR_MODE_ECC0		0x20
94 #define FCR_MODE_CE		0x10
95 #define FCR_MODE_PCNT1		0x08
96 #define FCR_MODE_PCNT0		0x04
97 #define FCR_MODE_ALE		0x02
98 #define FCR_MODE_CLE		0x01
99 
100 #define FCR_STATUS_BUSY		0x80
101 
102 /*--------------------------------------------------------------------------*/
103 
104 struct tmio_nand {
105 	struct nand_controller controller;
106 	struct nand_chip chip;
107 	struct completion comp;
108 
109 	struct platform_device *dev;
110 
111 	void __iomem *ccr;
112 	void __iomem *fcr;
113 	unsigned long fcr_base;
114 
115 	unsigned int irq;
116 
117 	/* for tmio_nand_read_byte */
118 	u8			read;
119 	unsigned read_good:1;
120 };
121 
mtd_to_tmio(struct mtd_info * mtd)122 static inline struct tmio_nand *mtd_to_tmio(struct mtd_info *mtd)
123 {
124 	return container_of(mtd_to_nand(mtd), struct tmio_nand, chip);
125 }
126 
127 
128 /*--------------------------------------------------------------------------*/
129 
tmio_nand_hwcontrol(struct nand_chip * chip,int cmd,unsigned int ctrl)130 static void tmio_nand_hwcontrol(struct nand_chip *chip, int cmd,
131 				unsigned int ctrl)
132 {
133 	struct tmio_nand *tmio = mtd_to_tmio(nand_to_mtd(chip));
134 
135 	if (ctrl & NAND_CTRL_CHANGE) {
136 		u8 mode;
137 
138 		if (ctrl & NAND_NCE) {
139 			mode = FCR_MODE_DATA;
140 
141 			if (ctrl & NAND_CLE)
142 				mode |=  FCR_MODE_CLE;
143 			else
144 				mode &= ~FCR_MODE_CLE;
145 
146 			if (ctrl & NAND_ALE)
147 				mode |=  FCR_MODE_ALE;
148 			else
149 				mode &= ~FCR_MODE_ALE;
150 		} else {
151 			mode = FCR_MODE_STANDBY;
152 		}
153 
154 		tmio_iowrite8(mode, tmio->fcr + FCR_MODE);
155 		tmio->read_good = 0;
156 	}
157 
158 	if (cmd != NAND_CMD_NONE)
159 		tmio_iowrite8(cmd, chip->legacy.IO_ADDR_W);
160 }
161 
tmio_nand_dev_ready(struct nand_chip * chip)162 static int tmio_nand_dev_ready(struct nand_chip *chip)
163 {
164 	struct tmio_nand *tmio = mtd_to_tmio(nand_to_mtd(chip));
165 
166 	return !(tmio_ioread8(tmio->fcr + FCR_STATUS) & FCR_STATUS_BUSY);
167 }
168 
tmio_irq(int irq,void * __tmio)169 static irqreturn_t tmio_irq(int irq, void *__tmio)
170 {
171 	struct tmio_nand *tmio = __tmio;
172 
173 	/* disable RDYREQ interrupt */
174 	tmio_iowrite8(0x00, tmio->fcr + FCR_IMR);
175 	complete(&tmio->comp);
176 
177 	return IRQ_HANDLED;
178 }
179 
180 /*
181   *The TMIO core has a RDYREQ interrupt on the posedge of #SMRB.
182   *This interrupt is normally disabled, but for long operations like
183   *erase and write, we enable it to wake us up.  The irq handler
184   *disables the interrupt.
185  */
tmio_nand_wait(struct nand_chip * nand_chip)186 static int tmio_nand_wait(struct nand_chip *nand_chip)
187 {
188 	struct tmio_nand *tmio = mtd_to_tmio(nand_to_mtd(nand_chip));
189 	long timeout;
190 	u8 status;
191 
192 	/* enable RDYREQ interrupt */
193 
194 	tmio_iowrite8(0x0f, tmio->fcr + FCR_ISR);
195 	reinit_completion(&tmio->comp);
196 	tmio_iowrite8(0x81, tmio->fcr + FCR_IMR);
197 
198 	timeout = 400;
199 	timeout = wait_for_completion_timeout(&tmio->comp,
200 					      msecs_to_jiffies(timeout));
201 
202 	if (unlikely(!tmio_nand_dev_ready(nand_chip))) {
203 		tmio_iowrite8(0x00, tmio->fcr + FCR_IMR);
204 		dev_warn(&tmio->dev->dev, "still busy after 400 ms\n");
205 
206 	} else if (unlikely(!timeout)) {
207 		tmio_iowrite8(0x00, tmio->fcr + FCR_IMR);
208 		dev_warn(&tmio->dev->dev, "timeout waiting for interrupt\n");
209 	}
210 
211 	nand_status_op(nand_chip, &status);
212 	return status;
213 }
214 
215 /*
216   *The TMIO controller combines two 8-bit data bytes into one 16-bit
217   *word. This function separates them so nand_base.c works as expected,
218   *especially its NAND_CMD_READID routines.
219  *
220   *To prevent stale data from being read, tmio_nand_hwcontrol() clears
221   *tmio->read_good.
222  */
tmio_nand_read_byte(struct nand_chip * chip)223 static u_char tmio_nand_read_byte(struct nand_chip *chip)
224 {
225 	struct tmio_nand *tmio = mtd_to_tmio(nand_to_mtd(chip));
226 	unsigned int data;
227 
228 	if (tmio->read_good--)
229 		return tmio->read;
230 
231 	data = tmio_ioread16(tmio->fcr + FCR_DATA);
232 	tmio->read = data >> 8;
233 	return data;
234 }
235 
236 /*
237   *The TMIO controller converts an 8-bit NAND interface to a 16-bit
238   *bus interface, so all data reads and writes must be 16-bit wide.
239   *Thus, we implement 16-bit versions of the read, write, and verify
240   *buffer functions.
241  */
242 static void
tmio_nand_write_buf(struct nand_chip * chip,const u_char * buf,int len)243 tmio_nand_write_buf(struct nand_chip *chip, const u_char *buf, int len)
244 {
245 	struct tmio_nand *tmio = mtd_to_tmio(nand_to_mtd(chip));
246 
247 	tmio_iowrite16_rep(tmio->fcr + FCR_DATA, buf, len >> 1);
248 }
249 
tmio_nand_read_buf(struct nand_chip * chip,u_char * buf,int len)250 static void tmio_nand_read_buf(struct nand_chip *chip, u_char *buf, int len)
251 {
252 	struct tmio_nand *tmio = mtd_to_tmio(nand_to_mtd(chip));
253 
254 	tmio_ioread16_rep(tmio->fcr + FCR_DATA, buf, len >> 1);
255 }
256 
tmio_nand_enable_hwecc(struct nand_chip * chip,int mode)257 static void tmio_nand_enable_hwecc(struct nand_chip *chip, int mode)
258 {
259 	struct tmio_nand *tmio = mtd_to_tmio(nand_to_mtd(chip));
260 
261 	tmio_iowrite8(FCR_MODE_HWECC_RESET, tmio->fcr + FCR_MODE);
262 	tmio_ioread8(tmio->fcr + FCR_DATA);	/* dummy read */
263 	tmio_iowrite8(FCR_MODE_HWECC_CALC, tmio->fcr + FCR_MODE);
264 }
265 
tmio_nand_calculate_ecc(struct nand_chip * chip,const u_char * dat,u_char * ecc_code)266 static int tmio_nand_calculate_ecc(struct nand_chip *chip, const u_char *dat,
267 				   u_char *ecc_code)
268 {
269 	struct tmio_nand *tmio = mtd_to_tmio(nand_to_mtd(chip));
270 	unsigned int ecc;
271 
272 	tmio_iowrite8(FCR_MODE_HWECC_RESULT, tmio->fcr + FCR_MODE);
273 
274 	ecc = tmio_ioread16(tmio->fcr + FCR_DATA);
275 	ecc_code[1] = ecc;	/* 000-255 LP7-0 */
276 	ecc_code[0] = ecc >> 8;	/* 000-255 LP15-8 */
277 	ecc = tmio_ioread16(tmio->fcr + FCR_DATA);
278 	ecc_code[2] = ecc;	/* 000-255 CP5-0,11b */
279 	ecc_code[4] = ecc >> 8;	/* 256-511 LP7-0 */
280 	ecc = tmio_ioread16(tmio->fcr + FCR_DATA);
281 	ecc_code[3] = ecc;	/* 256-511 LP15-8 */
282 	ecc_code[5] = ecc >> 8;	/* 256-511 CP5-0,11b */
283 
284 	tmio_iowrite8(FCR_MODE_DATA, tmio->fcr + FCR_MODE);
285 	return 0;
286 }
287 
tmio_nand_correct_data(struct nand_chip * chip,unsigned char * buf,unsigned char * read_ecc,unsigned char * calc_ecc)288 static int tmio_nand_correct_data(struct nand_chip *chip, unsigned char *buf,
289 				  unsigned char *read_ecc,
290 				  unsigned char *calc_ecc)
291 {
292 	int r0, r1;
293 
294 	/* assume ecc.size = 512 and ecc.bytes = 6 */
295 	r0 = rawnand_sw_hamming_correct(chip, buf, read_ecc, calc_ecc);
296 	if (r0 < 0)
297 		return r0;
298 	r1 = rawnand_sw_hamming_correct(chip, buf + 256, read_ecc + 3,
299 					calc_ecc + 3);
300 	if (r1 < 0)
301 		return r1;
302 	return r0 + r1;
303 }
304 
tmio_hw_init(struct platform_device * dev,struct tmio_nand * tmio)305 static int tmio_hw_init(struct platform_device *dev, struct tmio_nand *tmio)
306 {
307 	const struct mfd_cell *cell = mfd_get_cell(dev);
308 	int ret;
309 
310 	if (cell->enable) {
311 		ret = cell->enable(dev);
312 		if (ret)
313 			return ret;
314 	}
315 
316 	/* (4Ch) CLKRUN Enable    1st spcrunc */
317 	tmio_iowrite8(0x81, tmio->ccr + CCR_ICC);
318 
319 	/* (10h)BaseAddress    0x1000 spba.spba2 */
320 	tmio_iowrite16(tmio->fcr_base, tmio->ccr + CCR_BASE);
321 	tmio_iowrite16(tmio->fcr_base >> 16, tmio->ccr + CCR_BASE + 2);
322 
323 	/* (04h)Command Register I/O spcmd */
324 	tmio_iowrite8(0x02, tmio->ccr + CCR_COMMAND);
325 
326 	/* (62h) Power Supply Control ssmpwc */
327 	/* HardPowerOFF - SuspendOFF - PowerSupplyWait_4MS */
328 	tmio_iowrite8(0x02, tmio->ccr + CCR_NFPSC);
329 
330 	/* (63h) Detect Control ssmdtc */
331 	tmio_iowrite8(0x02, tmio->ccr + CCR_NFDC);
332 
333 	/* Interrupt status register clear sintst */
334 	tmio_iowrite8(0x0f, tmio->fcr + FCR_ISR);
335 
336 	/* After power supply, Media are reset smode */
337 	tmio_iowrite8(FCR_MODE_POWER_ON, tmio->fcr + FCR_MODE);
338 	tmio_iowrite8(FCR_MODE_COMMAND, tmio->fcr + FCR_MODE);
339 	tmio_iowrite8(NAND_CMD_RESET, tmio->fcr + FCR_DATA);
340 
341 	/* Standby Mode smode */
342 	tmio_iowrite8(FCR_MODE_STANDBY, tmio->fcr + FCR_MODE);
343 
344 	mdelay(5);
345 
346 	return 0;
347 }
348 
tmio_hw_stop(struct platform_device * dev,struct tmio_nand * tmio)349 static void tmio_hw_stop(struct platform_device *dev, struct tmio_nand *tmio)
350 {
351 	const struct mfd_cell *cell = mfd_get_cell(dev);
352 
353 	tmio_iowrite8(FCR_MODE_POWER_OFF, tmio->fcr + FCR_MODE);
354 	if (cell->disable)
355 		cell->disable(dev);
356 }
357 
tmio_attach_chip(struct nand_chip * chip)358 static int tmio_attach_chip(struct nand_chip *chip)
359 {
360 	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
361 		return 0;
362 
363 	chip->ecc.size = 512;
364 	chip->ecc.bytes = 6;
365 	chip->ecc.strength = 2;
366 	chip->ecc.hwctl = tmio_nand_enable_hwecc;
367 	chip->ecc.calculate = tmio_nand_calculate_ecc;
368 	chip->ecc.correct = tmio_nand_correct_data;
369 
370 	return 0;
371 }
372 
373 static const struct nand_controller_ops tmio_ops = {
374 	.attach_chip = tmio_attach_chip,
375 };
376 
tmio_probe(struct platform_device * dev)377 static int tmio_probe(struct platform_device *dev)
378 {
379 	struct tmio_nand_data *data = dev_get_platdata(&dev->dev);
380 	struct resource *fcr = platform_get_resource(dev,
381 			IORESOURCE_MEM, 0);
382 	struct resource *ccr = platform_get_resource(dev,
383 			IORESOURCE_MEM, 1);
384 	int irq = platform_get_irq(dev, 0);
385 	struct tmio_nand *tmio;
386 	struct mtd_info *mtd;
387 	struct nand_chip *nand_chip;
388 	int retval;
389 
390 	if (data == NULL)
391 		dev_warn(&dev->dev, "NULL platform data!\n");
392 
393 	if (!ccr || !fcr)
394 		return -EINVAL;
395 
396 	tmio = devm_kzalloc(&dev->dev, sizeof(*tmio), GFP_KERNEL);
397 	if (!tmio)
398 		return -ENOMEM;
399 
400 	init_completion(&tmio->comp);
401 
402 	tmio->dev = dev;
403 
404 	platform_set_drvdata(dev, tmio);
405 	nand_chip = &tmio->chip;
406 	mtd = nand_to_mtd(nand_chip);
407 	mtd->name = "tmio-nand";
408 	mtd->dev.parent = &dev->dev;
409 
410 	nand_controller_init(&tmio->controller);
411 	tmio->controller.ops = &tmio_ops;
412 	nand_chip->controller = &tmio->controller;
413 
414 	tmio->ccr = devm_ioremap(&dev->dev, ccr->start, resource_size(ccr));
415 	if (!tmio->ccr)
416 		return -EIO;
417 
418 	tmio->fcr_base = fcr->start & 0xfffff;
419 	tmio->fcr = devm_ioremap(&dev->dev, fcr->start, resource_size(fcr));
420 	if (!tmio->fcr)
421 		return -EIO;
422 
423 	retval = tmio_hw_init(dev, tmio);
424 	if (retval)
425 		return retval;
426 
427 	/* Set address of NAND IO lines */
428 	nand_chip->legacy.IO_ADDR_R = tmio->fcr;
429 	nand_chip->legacy.IO_ADDR_W = tmio->fcr;
430 
431 	/* Set address of hardware control function */
432 	nand_chip->legacy.cmd_ctrl = tmio_nand_hwcontrol;
433 	nand_chip->legacy.dev_ready = tmio_nand_dev_ready;
434 	nand_chip->legacy.read_byte = tmio_nand_read_byte;
435 	nand_chip->legacy.write_buf = tmio_nand_write_buf;
436 	nand_chip->legacy.read_buf = tmio_nand_read_buf;
437 
438 	if (data)
439 		nand_chip->badblock_pattern = data->badblock_pattern;
440 
441 	/* 15 us command delay time */
442 	nand_chip->legacy.chip_delay = 15;
443 
444 	retval = devm_request_irq(&dev->dev, irq, &tmio_irq, 0,
445 				  dev_name(&dev->dev), tmio);
446 	if (retval) {
447 		dev_err(&dev->dev, "request_irq error %d\n", retval);
448 		goto err_irq;
449 	}
450 
451 	tmio->irq = irq;
452 	nand_chip->legacy.waitfunc = tmio_nand_wait;
453 
454 	/* Scan to find existence of the device */
455 	retval = nand_scan(nand_chip, 1);
456 	if (retval)
457 		goto err_irq;
458 
459 	/* Register the partitions */
460 	retval = mtd_device_parse_register(mtd,
461 					   data ? data->part_parsers : NULL,
462 					   NULL,
463 					   data ? data->partition : NULL,
464 					   data ? data->num_partitions : 0);
465 	if (!retval)
466 		return retval;
467 
468 	nand_cleanup(nand_chip);
469 
470 err_irq:
471 	tmio_hw_stop(dev, tmio);
472 	return retval;
473 }
474 
tmio_remove(struct platform_device * dev)475 static int tmio_remove(struct platform_device *dev)
476 {
477 	struct tmio_nand *tmio = platform_get_drvdata(dev);
478 	struct nand_chip *chip = &tmio->chip;
479 	int ret;
480 
481 	ret = mtd_device_unregister(nand_to_mtd(chip));
482 	WARN_ON(ret);
483 	nand_cleanup(chip);
484 	tmio_hw_stop(dev, tmio);
485 	return 0;
486 }
487 
488 #ifdef CONFIG_PM
tmio_suspend(struct platform_device * dev,pm_message_t state)489 static int tmio_suspend(struct platform_device *dev, pm_message_t state)
490 {
491 	const struct mfd_cell *cell = mfd_get_cell(dev);
492 
493 	if (cell->suspend)
494 		cell->suspend(dev);
495 
496 	tmio_hw_stop(dev, platform_get_drvdata(dev));
497 	return 0;
498 }
499 
tmio_resume(struct platform_device * dev)500 static int tmio_resume(struct platform_device *dev)
501 {
502 	const struct mfd_cell *cell = mfd_get_cell(dev);
503 
504 	/* FIXME - is this required or merely another attack of the broken
505 	 * SHARP platform? Looks suspicious.
506 	 */
507 	tmio_hw_init(dev, platform_get_drvdata(dev));
508 
509 	if (cell->resume)
510 		cell->resume(dev);
511 
512 	return 0;
513 }
514 #else
515 #define tmio_suspend NULL
516 #define tmio_resume NULL
517 #endif
518 
519 static struct platform_driver tmio_driver = {
520 	.driver.name	= "tmio-nand",
521 	.driver.owner	= THIS_MODULE,
522 	.probe		= tmio_probe,
523 	.remove		= tmio_remove,
524 	.suspend	= tmio_suspend,
525 	.resume		= tmio_resume,
526 };
527 
528 module_platform_driver(tmio_driver);
529 
530 MODULE_LICENSE("GPL v2");
531 MODULE_AUTHOR("Ian Molton, Dirk Opfer, Chris Humbert, Dmitry Baryshkov");
532 MODULE_DESCRIPTION("NAND flash driver on Toshiba Mobile IO controller");
533 MODULE_ALIAS("platform:tmio-nand");
534