1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * ADXL372 3-Axis Digital Accelerometer core driver
4 *
5 * Copyright 2018 Analog Devices Inc.
6 */
7
8 #include <linux/bitfield.h>
9 #include <linux/bitops.h>
10 #include <linux/interrupt.h>
11 #include <linux/irq.h>
12 #include <linux/module.h>
13 #include <linux/regmap.h>
14 #include <linux/spi/spi.h>
15
16 #include <linux/iio/iio.h>
17 #include <linux/iio/sysfs.h>
18 #include <linux/iio/buffer.h>
19 #include <linux/iio/events.h>
20 #include <linux/iio/trigger.h>
21 #include <linux/iio/trigger_consumer.h>
22 #include <linux/iio/triggered_buffer.h>
23
24 #include "adxl372.h"
25
26 /* ADXL372 registers definition */
27 #define ADXL372_DEVID 0x00
28 #define ADXL372_DEVID_MST 0x01
29 #define ADXL372_PARTID 0x02
30 #define ADXL372_STATUS_1 0x04
31 #define ADXL372_STATUS_2 0x05
32 #define ADXL372_FIFO_ENTRIES_2 0x06
33 #define ADXL372_FIFO_ENTRIES_1 0x07
34 #define ADXL372_X_DATA_H 0x08
35 #define ADXL372_X_DATA_L 0x09
36 #define ADXL372_Y_DATA_H 0x0A
37 #define ADXL372_Y_DATA_L 0x0B
38 #define ADXL372_Z_DATA_H 0x0C
39 #define ADXL372_Z_DATA_L 0x0D
40 #define ADXL372_X_MAXPEAK_H 0x15
41 #define ADXL372_X_MAXPEAK_L 0x16
42 #define ADXL372_Y_MAXPEAK_H 0x17
43 #define ADXL372_Y_MAXPEAK_L 0x18
44 #define ADXL372_Z_MAXPEAK_H 0x19
45 #define ADXL372_Z_MAXPEAK_L 0x1A
46 #define ADXL372_OFFSET_X 0x20
47 #define ADXL372_OFFSET_Y 0x21
48 #define ADXL372_OFFSET_Z 0x22
49 #define ADXL372_X_THRESH_ACT_H 0x23
50 #define ADXL372_X_THRESH_ACT_L 0x24
51 #define ADXL372_Y_THRESH_ACT_H 0x25
52 #define ADXL372_Y_THRESH_ACT_L 0x26
53 #define ADXL372_Z_THRESH_ACT_H 0x27
54 #define ADXL372_Z_THRESH_ACT_L 0x28
55 #define ADXL372_TIME_ACT 0x29
56 #define ADXL372_X_THRESH_INACT_H 0x2A
57 #define ADXL372_X_THRESH_INACT_L 0x2B
58 #define ADXL372_Y_THRESH_INACT_H 0x2C
59 #define ADXL372_Y_THRESH_INACT_L 0x2D
60 #define ADXL372_Z_THRESH_INACT_H 0x2E
61 #define ADXL372_Z_THRESH_INACT_L 0x2F
62 #define ADXL372_TIME_INACT_H 0x30
63 #define ADXL372_TIME_INACT_L 0x31
64 #define ADXL372_X_THRESH_ACT2_H 0x32
65 #define ADXL372_X_THRESH_ACT2_L 0x33
66 #define ADXL372_Y_THRESH_ACT2_H 0x34
67 #define ADXL372_Y_THRESH_ACT2_L 0x35
68 #define ADXL372_Z_THRESH_ACT2_H 0x36
69 #define ADXL372_Z_THRESH_ACT2_L 0x37
70 #define ADXL372_HPF 0x38
71 #define ADXL372_FIFO_SAMPLES 0x39
72 #define ADXL372_FIFO_CTL 0x3A
73 #define ADXL372_INT1_MAP 0x3B
74 #define ADXL372_INT2_MAP 0x3C
75 #define ADXL372_TIMING 0x3D
76 #define ADXL372_MEASURE 0x3E
77 #define ADXL372_POWER_CTL 0x3F
78 #define ADXL372_SELF_TEST 0x40
79 #define ADXL372_RESET 0x41
80 #define ADXL372_FIFO_DATA 0x42
81
82 #define ADXL372_DEVID_VAL 0xAD
83 #define ADXL372_PARTID_VAL 0xFA
84 #define ADXL372_RESET_CODE 0x52
85
86 /* ADXL372_POWER_CTL */
87 #define ADXL372_POWER_CTL_MODE_MSK GENMASK_ULL(1, 0)
88 #define ADXL372_POWER_CTL_MODE(x) (((x) & 0x3) << 0)
89
90 /* ADXL372_MEASURE */
91 #define ADXL372_MEASURE_LINKLOOP_MSK GENMASK_ULL(5, 4)
92 #define ADXL372_MEASURE_LINKLOOP_MODE(x) (((x) & 0x3) << 4)
93 #define ADXL372_MEASURE_BANDWIDTH_MSK GENMASK_ULL(2, 0)
94 #define ADXL372_MEASURE_BANDWIDTH_MODE(x) (((x) & 0x7) << 0)
95
96 /* ADXL372_TIMING */
97 #define ADXL372_TIMING_ODR_MSK GENMASK_ULL(7, 5)
98 #define ADXL372_TIMING_ODR_MODE(x) (((x) & 0x7) << 5)
99
100 /* ADXL372_FIFO_CTL */
101 #define ADXL372_FIFO_CTL_FORMAT_MSK GENMASK(5, 3)
102 #define ADXL372_FIFO_CTL_FORMAT_MODE(x) (((x) & 0x7) << 3)
103 #define ADXL372_FIFO_CTL_MODE_MSK GENMASK(2, 1)
104 #define ADXL372_FIFO_CTL_MODE_MODE(x) (((x) & 0x3) << 1)
105 #define ADXL372_FIFO_CTL_SAMPLES_MSK BIT(1)
106 #define ADXL372_FIFO_CTL_SAMPLES_MODE(x) (((x) > 0xFF) ? 1 : 0)
107
108 /* ADXL372_STATUS_1 */
109 #define ADXL372_STATUS_1_DATA_RDY(x) (((x) >> 0) & 0x1)
110 #define ADXL372_STATUS_1_FIFO_RDY(x) (((x) >> 1) & 0x1)
111 #define ADXL372_STATUS_1_FIFO_FULL(x) (((x) >> 2) & 0x1)
112 #define ADXL372_STATUS_1_FIFO_OVR(x) (((x) >> 3) & 0x1)
113 #define ADXL372_STATUS_1_USR_NVM_BUSY(x) (((x) >> 5) & 0x1)
114 #define ADXL372_STATUS_1_AWAKE(x) (((x) >> 6) & 0x1)
115 #define ADXL372_STATUS_1_ERR_USR_REGS(x) (((x) >> 7) & 0x1)
116
117 /* ADXL372_STATUS_2 */
118 #define ADXL372_STATUS_2_INACT(x) (((x) >> 4) & 0x1)
119 #define ADXL372_STATUS_2_ACT(x) (((x) >> 5) & 0x1)
120 #define ADXL372_STATUS_2_AC2(x) (((x) >> 6) & 0x1)
121
122 /* ADXL372_INT1_MAP */
123 #define ADXL372_INT1_MAP_DATA_RDY_MSK BIT(0)
124 #define ADXL372_INT1_MAP_DATA_RDY_MODE(x) (((x) & 0x1) << 0)
125 #define ADXL372_INT1_MAP_FIFO_RDY_MSK BIT(1)
126 #define ADXL372_INT1_MAP_FIFO_RDY_MODE(x) (((x) & 0x1) << 1)
127 #define ADXL372_INT1_MAP_FIFO_FULL_MSK BIT(2)
128 #define ADXL372_INT1_MAP_FIFO_FULL_MODE(x) (((x) & 0x1) << 2)
129 #define ADXL372_INT1_MAP_FIFO_OVR_MSK BIT(3)
130 #define ADXL372_INT1_MAP_FIFO_OVR_MODE(x) (((x) & 0x1) << 3)
131 #define ADXL372_INT1_MAP_INACT_MSK BIT(4)
132 #define ADXL372_INT1_MAP_INACT_MODE(x) (((x) & 0x1) << 4)
133 #define ADXL372_INT1_MAP_ACT_MSK BIT(5)
134 #define ADXL372_INT1_MAP_ACT_MODE(x) (((x) & 0x1) << 5)
135 #define ADXL372_INT1_MAP_AWAKE_MSK BIT(6)
136 #define ADXL372_INT1_MAP_AWAKE_MODE(x) (((x) & 0x1) << 6)
137 #define ADXL372_INT1_MAP_LOW_MSK BIT(7)
138 #define ADXL372_INT1_MAP_LOW_MODE(x) (((x) & 0x1) << 7)
139
140 /* ADX372_THRESH */
141 #define ADXL372_THRESH_VAL_H_MSK GENMASK(10, 3)
142 #define ADXL372_THRESH_VAL_H_SEL(x) FIELD_GET(ADXL372_THRESH_VAL_H_MSK, x)
143 #define ADXL372_THRESH_VAL_L_MSK GENMASK(2, 0)
144 #define ADXL372_THRESH_VAL_L_SEL(x) FIELD_GET(ADXL372_THRESH_VAL_L_MSK, x)
145
146 /* The ADXL372 includes a deep, 512 sample FIFO buffer */
147 #define ADXL372_FIFO_SIZE 512
148 #define ADXL372_X_AXIS_EN(x) ((x) & BIT(0))
149 #define ADXL372_Y_AXIS_EN(x) ((x) & BIT(1))
150 #define ADXL372_Z_AXIS_EN(x) ((x) & BIT(2))
151
152 /*
153 * At +/- 200g with 12-bit resolution, scale is computed as:
154 * (200 + 200) * 9.81 / (2^12 - 1) = 0.958241
155 */
156 #define ADXL372_USCALE 958241
157
158 enum adxl372_op_mode {
159 ADXL372_STANDBY,
160 ADXL372_WAKE_UP,
161 ADXL372_INSTANT_ON,
162 ADXL372_FULL_BW_MEASUREMENT,
163 };
164
165 enum adxl372_act_proc_mode {
166 ADXL372_DEFAULT,
167 ADXL372_LINKED,
168 ADXL372_LOOPED,
169 };
170
171 enum adxl372_th_activity {
172 ADXL372_ACTIVITY,
173 ADXL372_ACTIVITY2,
174 ADXL372_INACTIVITY,
175 };
176
177 enum adxl372_odr {
178 ADXL372_ODR_400HZ,
179 ADXL372_ODR_800HZ,
180 ADXL372_ODR_1600HZ,
181 ADXL372_ODR_3200HZ,
182 ADXL372_ODR_6400HZ,
183 };
184
185 enum adxl372_bandwidth {
186 ADXL372_BW_200HZ,
187 ADXL372_BW_400HZ,
188 ADXL372_BW_800HZ,
189 ADXL372_BW_1600HZ,
190 ADXL372_BW_3200HZ,
191 };
192
193 static const unsigned int adxl372_th_reg_high_addr[3] = {
194 [ADXL372_ACTIVITY] = ADXL372_X_THRESH_ACT_H,
195 [ADXL372_ACTIVITY2] = ADXL372_X_THRESH_ACT2_H,
196 [ADXL372_INACTIVITY] = ADXL372_X_THRESH_INACT_H,
197 };
198
199 enum adxl372_fifo_format {
200 ADXL372_XYZ_FIFO,
201 ADXL372_X_FIFO,
202 ADXL372_Y_FIFO,
203 ADXL372_XY_FIFO,
204 ADXL372_Z_FIFO,
205 ADXL372_XZ_FIFO,
206 ADXL372_YZ_FIFO,
207 ADXL372_XYZ_PEAK_FIFO,
208 };
209
210 enum adxl372_fifo_mode {
211 ADXL372_FIFO_BYPASSED,
212 ADXL372_FIFO_STREAMED,
213 ADXL372_FIFO_TRIGGERED,
214 ADXL372_FIFO_OLD_SAVED
215 };
216
217 static const int adxl372_samp_freq_tbl[5] = {
218 400, 800, 1600, 3200, 6400,
219 };
220
221 static const int adxl372_bw_freq_tbl[5] = {
222 200, 400, 800, 1600, 3200,
223 };
224
225 struct adxl372_axis_lookup {
226 unsigned int bits;
227 enum adxl372_fifo_format fifo_format;
228 };
229
230 static const struct adxl372_axis_lookup adxl372_axis_lookup_table[] = {
231 { BIT(0), ADXL372_X_FIFO },
232 { BIT(1), ADXL372_Y_FIFO },
233 { BIT(2), ADXL372_Z_FIFO },
234 { BIT(0) | BIT(1), ADXL372_XY_FIFO },
235 { BIT(0) | BIT(2), ADXL372_XZ_FIFO },
236 { BIT(1) | BIT(2), ADXL372_YZ_FIFO },
237 { BIT(0) | BIT(1) | BIT(2), ADXL372_XYZ_FIFO },
238 };
239
240 static const struct iio_event_spec adxl372_events[] = {
241 {
242 .type = IIO_EV_TYPE_THRESH,
243 .dir = IIO_EV_DIR_RISING,
244 .mask_separate = BIT(IIO_EV_INFO_VALUE),
245 .mask_shared_by_all = BIT(IIO_EV_INFO_PERIOD) | BIT(IIO_EV_INFO_ENABLE),
246 }, {
247 .type = IIO_EV_TYPE_THRESH,
248 .dir = IIO_EV_DIR_FALLING,
249 .mask_separate = BIT(IIO_EV_INFO_VALUE),
250 .mask_shared_by_all = BIT(IIO_EV_INFO_PERIOD) | BIT(IIO_EV_INFO_ENABLE),
251 },
252 };
253
254 #define ADXL372_ACCEL_CHANNEL(index, reg, axis) { \
255 .type = IIO_ACCEL, \
256 .address = reg, \
257 .modified = 1, \
258 .channel2 = IIO_MOD_##axis, \
259 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
260 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
261 BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
262 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), \
263 .scan_index = index, \
264 .scan_type = { \
265 .sign = 's', \
266 .realbits = 12, \
267 .storagebits = 16, \
268 .shift = 4, \
269 .endianness = IIO_BE, \
270 }, \
271 .event_spec = adxl372_events, \
272 .num_event_specs = ARRAY_SIZE(adxl372_events) \
273 }
274
275 static const struct iio_chan_spec adxl372_channels[] = {
276 ADXL372_ACCEL_CHANNEL(0, ADXL372_X_DATA_H, X),
277 ADXL372_ACCEL_CHANNEL(1, ADXL372_Y_DATA_H, Y),
278 ADXL372_ACCEL_CHANNEL(2, ADXL372_Z_DATA_H, Z),
279 };
280
281 struct adxl372_state {
282 int irq;
283 struct device *dev;
284 struct regmap *regmap;
285 struct iio_trigger *dready_trig;
286 struct iio_trigger *peak_datardy_trig;
287 enum adxl372_fifo_mode fifo_mode;
288 enum adxl372_fifo_format fifo_format;
289 unsigned int fifo_axis_mask;
290 enum adxl372_op_mode op_mode;
291 enum adxl372_act_proc_mode act_proc_mode;
292 enum adxl372_odr odr;
293 enum adxl372_bandwidth bw;
294 u32 act_time_ms;
295 u32 inact_time_ms;
296 u8 fifo_set_size;
297 unsigned long int1_bitmask;
298 unsigned long int2_bitmask;
299 u16 watermark;
300 __be16 fifo_buf[ADXL372_FIFO_SIZE];
301 bool peak_fifo_mode_en;
302 struct mutex threshold_m; /* lock for threshold */
303 };
304
305 static const unsigned long adxl372_channel_masks[] = {
306 BIT(0), BIT(1), BIT(2),
307 BIT(0) | BIT(1),
308 BIT(0) | BIT(2),
309 BIT(1) | BIT(2),
310 BIT(0) | BIT(1) | BIT(2),
311 0
312 };
313
adxl372_read_threshold_value(struct iio_dev * indio_dev,unsigned int addr,u16 * threshold)314 static ssize_t adxl372_read_threshold_value(struct iio_dev *indio_dev, unsigned int addr,
315 u16 *threshold)
316 {
317 struct adxl372_state *st = iio_priv(indio_dev);
318 __be16 raw_regval;
319 u16 regval;
320 int ret;
321
322 ret = regmap_bulk_read(st->regmap, addr, &raw_regval, sizeof(raw_regval));
323 if (ret < 0)
324 return ret;
325
326 regval = be16_to_cpu(raw_regval);
327 regval >>= 5;
328
329 *threshold = regval;
330
331 return 0;
332 }
333
adxl372_write_threshold_value(struct iio_dev * indio_dev,unsigned int addr,u16 threshold)334 static ssize_t adxl372_write_threshold_value(struct iio_dev *indio_dev, unsigned int addr,
335 u16 threshold)
336 {
337 struct adxl372_state *st = iio_priv(indio_dev);
338 int ret;
339
340 mutex_lock(&st->threshold_m);
341 ret = regmap_write(st->regmap, addr, ADXL372_THRESH_VAL_H_SEL(threshold));
342 if (ret < 0)
343 goto unlock;
344
345 ret = regmap_update_bits(st->regmap, addr + 1, GENMASK(7, 5),
346 ADXL372_THRESH_VAL_L_SEL(threshold) << 5);
347
348 unlock:
349 mutex_unlock(&st->threshold_m);
350
351 return ret;
352 }
353
adxl372_read_axis(struct adxl372_state * st,u8 addr)354 static int adxl372_read_axis(struct adxl372_state *st, u8 addr)
355 {
356 __be16 regval;
357 int ret;
358
359 ret = regmap_bulk_read(st->regmap, addr, ®val, sizeof(regval));
360 if (ret < 0)
361 return ret;
362
363 return be16_to_cpu(regval);
364 }
365
adxl372_set_op_mode(struct adxl372_state * st,enum adxl372_op_mode op_mode)366 static int adxl372_set_op_mode(struct adxl372_state *st,
367 enum adxl372_op_mode op_mode)
368 {
369 int ret;
370
371 ret = regmap_update_bits(st->regmap, ADXL372_POWER_CTL,
372 ADXL372_POWER_CTL_MODE_MSK,
373 ADXL372_POWER_CTL_MODE(op_mode));
374 if (ret < 0)
375 return ret;
376
377 st->op_mode = op_mode;
378
379 return ret;
380 }
381
adxl372_set_odr(struct adxl372_state * st,enum adxl372_odr odr)382 static int adxl372_set_odr(struct adxl372_state *st,
383 enum adxl372_odr odr)
384 {
385 int ret;
386
387 ret = regmap_update_bits(st->regmap, ADXL372_TIMING,
388 ADXL372_TIMING_ODR_MSK,
389 ADXL372_TIMING_ODR_MODE(odr));
390 if (ret < 0)
391 return ret;
392
393 st->odr = odr;
394
395 return ret;
396 }
397
adxl372_find_closest_match(const int * array,unsigned int size,int val)398 static int adxl372_find_closest_match(const int *array,
399 unsigned int size, int val)
400 {
401 int i;
402
403 for (i = 0; i < size; i++) {
404 if (val <= array[i])
405 return i;
406 }
407
408 return size - 1;
409 }
410
adxl372_set_bandwidth(struct adxl372_state * st,enum adxl372_bandwidth bw)411 static int adxl372_set_bandwidth(struct adxl372_state *st,
412 enum adxl372_bandwidth bw)
413 {
414 int ret;
415
416 ret = regmap_update_bits(st->regmap, ADXL372_MEASURE,
417 ADXL372_MEASURE_BANDWIDTH_MSK,
418 ADXL372_MEASURE_BANDWIDTH_MODE(bw));
419 if (ret < 0)
420 return ret;
421
422 st->bw = bw;
423
424 return ret;
425 }
426
adxl372_set_act_proc_mode(struct adxl372_state * st,enum adxl372_act_proc_mode mode)427 static int adxl372_set_act_proc_mode(struct adxl372_state *st,
428 enum adxl372_act_proc_mode mode)
429 {
430 int ret;
431
432 ret = regmap_update_bits(st->regmap,
433 ADXL372_MEASURE,
434 ADXL372_MEASURE_LINKLOOP_MSK,
435 ADXL372_MEASURE_LINKLOOP_MODE(mode));
436 if (ret < 0)
437 return ret;
438
439 st->act_proc_mode = mode;
440
441 return ret;
442 }
443
adxl372_set_activity_threshold(struct adxl372_state * st,enum adxl372_th_activity act,bool ref_en,bool enable,unsigned int threshold)444 static int adxl372_set_activity_threshold(struct adxl372_state *st,
445 enum adxl372_th_activity act,
446 bool ref_en, bool enable,
447 unsigned int threshold)
448 {
449 unsigned char buf[6];
450 unsigned char th_reg_high_val, th_reg_low_val, th_reg_high_addr;
451
452 /* scale factor is 100 mg/code */
453 th_reg_high_val = (threshold / 100) >> 3;
454 th_reg_low_val = ((threshold / 100) << 5) | (ref_en << 1) | enable;
455 th_reg_high_addr = adxl372_th_reg_high_addr[act];
456
457 buf[0] = th_reg_high_val;
458 buf[1] = th_reg_low_val;
459 buf[2] = th_reg_high_val;
460 buf[3] = th_reg_low_val;
461 buf[4] = th_reg_high_val;
462 buf[5] = th_reg_low_val;
463
464 return regmap_bulk_write(st->regmap, th_reg_high_addr,
465 buf, ARRAY_SIZE(buf));
466 }
467
adxl372_set_activity_time_ms(struct adxl372_state * st,unsigned int act_time_ms)468 static int adxl372_set_activity_time_ms(struct adxl372_state *st,
469 unsigned int act_time_ms)
470 {
471 unsigned int reg_val, scale_factor;
472 int ret;
473
474 /*
475 * 3.3 ms per code is the scale factor of the TIME_ACT register for
476 * ODR = 6400 Hz. It is 6.6 ms per code for ODR = 3200 Hz and below.
477 */
478 if (st->odr == ADXL372_ODR_6400HZ)
479 scale_factor = 3300;
480 else
481 scale_factor = 6600;
482
483 reg_val = DIV_ROUND_CLOSEST(act_time_ms * 1000, scale_factor);
484
485 /* TIME_ACT register is 8 bits wide */
486 if (reg_val > 0xFF)
487 reg_val = 0xFF;
488
489 ret = regmap_write(st->regmap, ADXL372_TIME_ACT, reg_val);
490 if (ret < 0)
491 return ret;
492
493 st->act_time_ms = act_time_ms;
494
495 return ret;
496 }
497
adxl372_set_inactivity_time_ms(struct adxl372_state * st,unsigned int inact_time_ms)498 static int adxl372_set_inactivity_time_ms(struct adxl372_state *st,
499 unsigned int inact_time_ms)
500 {
501 unsigned int reg_val_h, reg_val_l, res, scale_factor;
502 int ret;
503
504 /*
505 * 13 ms per code is the scale factor of the TIME_INACT register for
506 * ODR = 6400 Hz. It is 26 ms per code for ODR = 3200 Hz and below.
507 */
508 if (st->odr == ADXL372_ODR_6400HZ)
509 scale_factor = 13;
510 else
511 scale_factor = 26;
512
513 res = DIV_ROUND_CLOSEST(inact_time_ms, scale_factor);
514 reg_val_h = (res >> 8) & 0xFF;
515 reg_val_l = res & 0xFF;
516
517 ret = regmap_write(st->regmap, ADXL372_TIME_INACT_H, reg_val_h);
518 if (ret < 0)
519 return ret;
520
521 ret = regmap_write(st->regmap, ADXL372_TIME_INACT_L, reg_val_l);
522 if (ret < 0)
523 return ret;
524
525 st->inact_time_ms = inact_time_ms;
526
527 return ret;
528 }
529
adxl372_set_interrupts(struct adxl372_state * st,unsigned long int1_bitmask,unsigned long int2_bitmask)530 static int adxl372_set_interrupts(struct adxl372_state *st,
531 unsigned long int1_bitmask,
532 unsigned long int2_bitmask)
533 {
534 int ret;
535
536 ret = regmap_write(st->regmap, ADXL372_INT1_MAP, int1_bitmask);
537 if (ret < 0)
538 return ret;
539
540 return regmap_write(st->regmap, ADXL372_INT2_MAP, int2_bitmask);
541 }
542
adxl372_configure_fifo(struct adxl372_state * st)543 static int adxl372_configure_fifo(struct adxl372_state *st)
544 {
545 unsigned int fifo_samples, fifo_ctl;
546 int ret;
547
548 /* FIFO must be configured while in standby mode */
549 ret = adxl372_set_op_mode(st, ADXL372_STANDBY);
550 if (ret < 0)
551 return ret;
552
553 /*
554 * watermark stores the number of sets; we need to write the FIFO
555 * registers with the number of samples
556 */
557 fifo_samples = (st->watermark * st->fifo_set_size);
558 fifo_ctl = ADXL372_FIFO_CTL_FORMAT_MODE(st->fifo_format) |
559 ADXL372_FIFO_CTL_MODE_MODE(st->fifo_mode) |
560 ADXL372_FIFO_CTL_SAMPLES_MODE(fifo_samples);
561
562 ret = regmap_write(st->regmap,
563 ADXL372_FIFO_SAMPLES, fifo_samples & 0xFF);
564 if (ret < 0)
565 return ret;
566
567 ret = regmap_write(st->regmap, ADXL372_FIFO_CTL, fifo_ctl);
568 if (ret < 0)
569 return ret;
570
571 return adxl372_set_op_mode(st, ADXL372_FULL_BW_MEASUREMENT);
572 }
573
adxl372_get_status(struct adxl372_state * st,u8 * status1,u8 * status2,u16 * fifo_entries)574 static int adxl372_get_status(struct adxl372_state *st,
575 u8 *status1, u8 *status2,
576 u16 *fifo_entries)
577 {
578 __be32 buf;
579 u32 val;
580 int ret;
581
582 /* STATUS1, STATUS2, FIFO_ENTRIES2 and FIFO_ENTRIES are adjacent regs */
583 ret = regmap_bulk_read(st->regmap, ADXL372_STATUS_1,
584 &buf, sizeof(buf));
585 if (ret < 0)
586 return ret;
587
588 val = be32_to_cpu(buf);
589
590 *status1 = (val >> 24) & 0x0F;
591 *status2 = (val >> 16) & 0x0F;
592 /*
593 * FIFO_ENTRIES contains the least significant byte, and FIFO_ENTRIES2
594 * contains the two most significant bits
595 */
596 *fifo_entries = val & 0x3FF;
597
598 return ret;
599 }
600
adxl372_arrange_axis_data(struct adxl372_state * st,__be16 * sample)601 static void adxl372_arrange_axis_data(struct adxl372_state *st, __be16 *sample)
602 {
603 __be16 axis_sample[3];
604 int i = 0;
605
606 memset(axis_sample, 0, 3 * sizeof(__be16));
607 if (ADXL372_X_AXIS_EN(st->fifo_axis_mask))
608 axis_sample[i++] = sample[0];
609 if (ADXL372_Y_AXIS_EN(st->fifo_axis_mask))
610 axis_sample[i++] = sample[1];
611 if (ADXL372_Z_AXIS_EN(st->fifo_axis_mask))
612 axis_sample[i++] = sample[2];
613
614 memcpy(sample, axis_sample, 3 * sizeof(__be16));
615 }
616
adxl372_push_event(struct iio_dev * indio_dev,s64 timestamp,u8 status2)617 static void adxl372_push_event(struct iio_dev *indio_dev, s64 timestamp, u8 status2)
618 {
619 unsigned int ev_dir = IIO_EV_DIR_NONE;
620
621 if (ADXL372_STATUS_2_ACT(status2))
622 ev_dir = IIO_EV_DIR_RISING;
623
624 if (ADXL372_STATUS_2_INACT(status2))
625 ev_dir = IIO_EV_DIR_FALLING;
626
627 if (ev_dir != IIO_EV_DIR_NONE)
628 iio_push_event(indio_dev,
629 IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_X_OR_Y_OR_Z,
630 IIO_EV_TYPE_THRESH, ev_dir),
631 timestamp);
632 }
633
adxl372_trigger_handler(int irq,void * p)634 static irqreturn_t adxl372_trigger_handler(int irq, void *p)
635 {
636 struct iio_poll_func *pf = p;
637 struct iio_dev *indio_dev = pf->indio_dev;
638 struct adxl372_state *st = iio_priv(indio_dev);
639 u8 status1, status2;
640 u16 fifo_entries;
641 int i, ret;
642
643 ret = adxl372_get_status(st, &status1, &status2, &fifo_entries);
644 if (ret < 0)
645 goto err;
646
647 adxl372_push_event(indio_dev, iio_get_time_ns(indio_dev), status2);
648
649 if (st->fifo_mode != ADXL372_FIFO_BYPASSED &&
650 ADXL372_STATUS_1_FIFO_FULL(status1)) {
651 /*
652 * When reading data from multiple axes from the FIFO,
653 * to ensure that data is not overwritten and stored out
654 * of order at least one sample set must be left in the
655 * FIFO after every read.
656 */
657 fifo_entries -= st->fifo_set_size;
658
659 /* Read data from the FIFO */
660 ret = regmap_noinc_read(st->regmap, ADXL372_FIFO_DATA,
661 st->fifo_buf,
662 fifo_entries * sizeof(u16));
663 if (ret < 0)
664 goto err;
665
666 /* Each sample is 2 bytes */
667 for (i = 0; i < fifo_entries; i += st->fifo_set_size) {
668 /* filter peak detection data */
669 if (st->peak_fifo_mode_en)
670 adxl372_arrange_axis_data(st, &st->fifo_buf[i]);
671 iio_push_to_buffers(indio_dev, &st->fifo_buf[i]);
672 }
673 }
674 err:
675 iio_trigger_notify_done(indio_dev->trig);
676 return IRQ_HANDLED;
677 }
678
adxl372_setup(struct adxl372_state * st)679 static int adxl372_setup(struct adxl372_state *st)
680 {
681 unsigned int regval;
682 int ret;
683
684 ret = regmap_read(st->regmap, ADXL372_DEVID, ®val);
685 if (ret < 0)
686 return ret;
687
688 if (regval != ADXL372_DEVID_VAL) {
689 dev_err(st->dev, "Invalid chip id %x\n", regval);
690 return -ENODEV;
691 }
692
693 /*
694 * Perform a software reset to make sure the device is in a consistent
695 * state after start up.
696 */
697 ret = regmap_write(st->regmap, ADXL372_RESET, ADXL372_RESET_CODE);
698 if (ret < 0)
699 return ret;
700
701 ret = adxl372_set_op_mode(st, ADXL372_STANDBY);
702 if (ret < 0)
703 return ret;
704
705 /* Set threshold for activity detection to 1g */
706 ret = adxl372_set_activity_threshold(st, ADXL372_ACTIVITY,
707 true, true, 1000);
708 if (ret < 0)
709 return ret;
710
711 /* Set threshold for inactivity detection to 100mg */
712 ret = adxl372_set_activity_threshold(st, ADXL372_INACTIVITY,
713 true, true, 100);
714 if (ret < 0)
715 return ret;
716
717 /* Set activity processing in Looped mode */
718 ret = adxl372_set_act_proc_mode(st, ADXL372_LOOPED);
719 if (ret < 0)
720 return ret;
721
722 ret = adxl372_set_odr(st, ADXL372_ODR_6400HZ);
723 if (ret < 0)
724 return ret;
725
726 ret = adxl372_set_bandwidth(st, ADXL372_BW_3200HZ);
727 if (ret < 0)
728 return ret;
729
730 /* Set activity timer to 1ms */
731 ret = adxl372_set_activity_time_ms(st, 1);
732 if (ret < 0)
733 return ret;
734
735 /* Set inactivity timer to 10s */
736 ret = adxl372_set_inactivity_time_ms(st, 10000);
737 if (ret < 0)
738 return ret;
739
740 /* Set the mode of operation to full bandwidth measurement mode */
741 return adxl372_set_op_mode(st, ADXL372_FULL_BW_MEASUREMENT);
742 }
743
adxl372_reg_access(struct iio_dev * indio_dev,unsigned int reg,unsigned int writeval,unsigned int * readval)744 static int adxl372_reg_access(struct iio_dev *indio_dev,
745 unsigned int reg,
746 unsigned int writeval,
747 unsigned int *readval)
748 {
749 struct adxl372_state *st = iio_priv(indio_dev);
750
751 if (readval)
752 return regmap_read(st->regmap, reg, readval);
753 else
754 return regmap_write(st->regmap, reg, writeval);
755 }
756
adxl372_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long info)757 static int adxl372_read_raw(struct iio_dev *indio_dev,
758 struct iio_chan_spec const *chan,
759 int *val, int *val2, long info)
760 {
761 struct adxl372_state *st = iio_priv(indio_dev);
762 int ret;
763
764 switch (info) {
765 case IIO_CHAN_INFO_RAW:
766 ret = iio_device_claim_direct_mode(indio_dev);
767 if (ret)
768 return ret;
769
770 ret = adxl372_read_axis(st, chan->address);
771 iio_device_release_direct_mode(indio_dev);
772 if (ret < 0)
773 return ret;
774
775 *val = sign_extend32(ret >> chan->scan_type.shift,
776 chan->scan_type.realbits - 1);
777 return IIO_VAL_INT;
778 case IIO_CHAN_INFO_SCALE:
779 *val = 0;
780 *val2 = ADXL372_USCALE;
781 return IIO_VAL_INT_PLUS_MICRO;
782 case IIO_CHAN_INFO_SAMP_FREQ:
783 *val = adxl372_samp_freq_tbl[st->odr];
784 return IIO_VAL_INT;
785 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
786 *val = adxl372_bw_freq_tbl[st->bw];
787 return IIO_VAL_INT;
788 }
789
790 return -EINVAL;
791 }
792
adxl372_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long info)793 static int adxl372_write_raw(struct iio_dev *indio_dev,
794 struct iio_chan_spec const *chan,
795 int val, int val2, long info)
796 {
797 struct adxl372_state *st = iio_priv(indio_dev);
798 int odr_index, bw_index, ret;
799
800 switch (info) {
801 case IIO_CHAN_INFO_SAMP_FREQ:
802 odr_index = adxl372_find_closest_match(adxl372_samp_freq_tbl,
803 ARRAY_SIZE(adxl372_samp_freq_tbl),
804 val);
805 ret = adxl372_set_odr(st, odr_index);
806 if (ret < 0)
807 return ret;
808 /*
809 * The timer period depends on the ODR selected.
810 * At 3200 Hz and below, it is 6.6 ms; at 6400 Hz, it is 3.3 ms
811 */
812 ret = adxl372_set_activity_time_ms(st, st->act_time_ms);
813 if (ret < 0)
814 return ret;
815 /*
816 * The timer period depends on the ODR selected.
817 * At 3200 Hz and below, it is 26 ms; at 6400 Hz, it is 13 ms
818 */
819 ret = adxl372_set_inactivity_time_ms(st, st->inact_time_ms);
820 if (ret < 0)
821 return ret;
822 /*
823 * The maximum bandwidth is constrained to at most half of
824 * the ODR to ensure that the Nyquist criteria is not violated
825 */
826 if (st->bw > odr_index)
827 ret = adxl372_set_bandwidth(st, odr_index);
828
829 return ret;
830 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
831 bw_index = adxl372_find_closest_match(adxl372_bw_freq_tbl,
832 ARRAY_SIZE(adxl372_bw_freq_tbl),
833 val);
834 return adxl372_set_bandwidth(st, bw_index);
835 default:
836 return -EINVAL;
837 }
838 }
839
adxl372_read_event_value(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int * val,int * val2)840 static int adxl372_read_event_value(struct iio_dev *indio_dev, const struct iio_chan_spec *chan,
841 enum iio_event_type type, enum iio_event_direction dir,
842 enum iio_event_info info, int *val, int *val2)
843 {
844 struct adxl372_state *st = iio_priv(indio_dev);
845 unsigned int addr;
846 u16 raw_value;
847 int ret;
848
849 switch (info) {
850 case IIO_EV_INFO_VALUE:
851 switch (dir) {
852 case IIO_EV_DIR_RISING:
853 addr = ADXL372_X_THRESH_ACT_H + 2 * chan->scan_index;
854 ret = adxl372_read_threshold_value(indio_dev, addr, &raw_value);
855 if (ret < 0)
856 return ret;
857 *val = raw_value * ADXL372_USCALE;
858 *val2 = 1000000;
859 return IIO_VAL_FRACTIONAL;
860 case IIO_EV_DIR_FALLING:
861 addr = ADXL372_X_THRESH_INACT_H + 2 * chan->scan_index;
862 ret = adxl372_read_threshold_value(indio_dev, addr, &raw_value);
863 if (ret < 0)
864 return ret;
865 *val = raw_value * ADXL372_USCALE;
866 *val2 = 1000000;
867 return IIO_VAL_FRACTIONAL;
868 default:
869 return -EINVAL;
870 }
871 case IIO_EV_INFO_PERIOD:
872 switch (dir) {
873 case IIO_EV_DIR_RISING:
874 *val = st->act_time_ms;
875 *val2 = 1000;
876 return IIO_VAL_FRACTIONAL;
877 case IIO_EV_DIR_FALLING:
878 *val = st->inact_time_ms;
879 *val2 = 1000;
880 return IIO_VAL_FRACTIONAL;
881 default:
882 return -EINVAL;
883 }
884 default:
885 return -EINVAL;
886 }
887 }
888
adxl372_write_event_value(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int val,int val2)889 static int adxl372_write_event_value(struct iio_dev *indio_dev, const struct iio_chan_spec *chan,
890 enum iio_event_type type, enum iio_event_direction dir,
891 enum iio_event_info info, int val, int val2)
892 {
893 struct adxl372_state *st = iio_priv(indio_dev);
894 unsigned int val_ms;
895 unsigned int addr;
896 u16 raw_val;
897
898 switch (info) {
899 case IIO_EV_INFO_VALUE:
900 raw_val = DIV_ROUND_UP(val * 1000000, ADXL372_USCALE);
901 switch (dir) {
902 case IIO_EV_DIR_RISING:
903 addr = ADXL372_X_THRESH_ACT_H + 2 * chan->scan_index;
904 return adxl372_write_threshold_value(indio_dev, addr, raw_val);
905 case IIO_EV_DIR_FALLING:
906 addr = ADXL372_X_THRESH_INACT_H + 2 * chan->scan_index;
907 return adxl372_write_threshold_value(indio_dev, addr, raw_val);
908 default:
909 return -EINVAL;
910 }
911 case IIO_EV_INFO_PERIOD:
912 val_ms = val * 1000 + DIV_ROUND_UP(val2, 1000);
913 switch (dir) {
914 case IIO_EV_DIR_RISING:
915 return adxl372_set_activity_time_ms(st, val_ms);
916 case IIO_EV_DIR_FALLING:
917 return adxl372_set_inactivity_time_ms(st, val_ms);
918 default:
919 return -EINVAL;
920 }
921 default:
922 return -EINVAL;
923 }
924 }
925
adxl372_read_event_config(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir)926 static int adxl372_read_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan,
927 enum iio_event_type type, enum iio_event_direction dir)
928 {
929 struct adxl372_state *st = iio_priv(indio_dev);
930
931 switch (dir) {
932 case IIO_EV_DIR_RISING:
933 return FIELD_GET(ADXL372_INT1_MAP_ACT_MSK, st->int1_bitmask);
934 case IIO_EV_DIR_FALLING:
935 return FIELD_GET(ADXL372_INT1_MAP_INACT_MSK, st->int1_bitmask);
936 default:
937 return -EINVAL;
938 }
939 }
940
adxl372_write_event_config(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,int state)941 static int adxl372_write_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan,
942 enum iio_event_type type, enum iio_event_direction dir,
943 int state)
944 {
945 struct adxl372_state *st = iio_priv(indio_dev);
946
947 switch (dir) {
948 case IIO_EV_DIR_RISING:
949 set_mask_bits(&st->int1_bitmask, ADXL372_INT1_MAP_ACT_MSK,
950 ADXL372_INT1_MAP_ACT_MODE(state));
951 break;
952 case IIO_EV_DIR_FALLING:
953 set_mask_bits(&st->int1_bitmask, ADXL372_INT1_MAP_INACT_MSK,
954 ADXL372_INT1_MAP_INACT_MODE(state));
955 break;
956 default:
957 return -EINVAL;
958 }
959
960 return adxl372_set_interrupts(st, st->int1_bitmask, 0);
961 }
962
adxl372_show_filter_freq_avail(struct device * dev,struct device_attribute * attr,char * buf)963 static ssize_t adxl372_show_filter_freq_avail(struct device *dev,
964 struct device_attribute *attr,
965 char *buf)
966 {
967 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
968 struct adxl372_state *st = iio_priv(indio_dev);
969 int i;
970 size_t len = 0;
971
972 for (i = 0; i <= st->odr; i++)
973 len += scnprintf(buf + len, PAGE_SIZE - len,
974 "%d ", adxl372_bw_freq_tbl[i]);
975
976 buf[len - 1] = '\n';
977
978 return len;
979 }
980
adxl372_get_fifo_enabled(struct device * dev,struct device_attribute * attr,char * buf)981 static ssize_t adxl372_get_fifo_enabled(struct device *dev,
982 struct device_attribute *attr,
983 char *buf)
984 {
985 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
986 struct adxl372_state *st = iio_priv(indio_dev);
987
988 return sprintf(buf, "%d\n", st->fifo_mode);
989 }
990
adxl372_get_fifo_watermark(struct device * dev,struct device_attribute * attr,char * buf)991 static ssize_t adxl372_get_fifo_watermark(struct device *dev,
992 struct device_attribute *attr,
993 char *buf)
994 {
995 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
996 struct adxl372_state *st = iio_priv(indio_dev);
997
998 return sprintf(buf, "%d\n", st->watermark);
999 }
1000
hwfifo_watermark_min_show(struct device * dev,struct device_attribute * attr,char * buf)1001 static ssize_t hwfifo_watermark_min_show(struct device *dev,
1002 struct device_attribute *attr,
1003 char *buf)
1004 {
1005 return sysfs_emit(buf, "%s\n", "1");
1006 }
1007
hwfifo_watermark_max_show(struct device * dev,struct device_attribute * attr,char * buf)1008 static ssize_t hwfifo_watermark_max_show(struct device *dev,
1009 struct device_attribute *attr,
1010 char *buf)
1011 {
1012 return sysfs_emit(buf, "%s\n", __stringify(ADXL372_FIFO_SIZE));
1013 }
1014
1015 static IIO_DEVICE_ATTR_RO(hwfifo_watermark_min, 0);
1016 static IIO_DEVICE_ATTR_RO(hwfifo_watermark_max, 0);
1017 static IIO_DEVICE_ATTR(hwfifo_watermark, 0444,
1018 adxl372_get_fifo_watermark, NULL, 0);
1019 static IIO_DEVICE_ATTR(hwfifo_enabled, 0444,
1020 adxl372_get_fifo_enabled, NULL, 0);
1021
1022 static const struct attribute *adxl372_fifo_attributes[] = {
1023 &iio_dev_attr_hwfifo_watermark_min.dev_attr.attr,
1024 &iio_dev_attr_hwfifo_watermark_max.dev_attr.attr,
1025 &iio_dev_attr_hwfifo_watermark.dev_attr.attr,
1026 &iio_dev_attr_hwfifo_enabled.dev_attr.attr,
1027 NULL,
1028 };
1029
adxl372_set_watermark(struct iio_dev * indio_dev,unsigned int val)1030 static int adxl372_set_watermark(struct iio_dev *indio_dev, unsigned int val)
1031 {
1032 struct adxl372_state *st = iio_priv(indio_dev);
1033
1034 if (val > ADXL372_FIFO_SIZE)
1035 val = ADXL372_FIFO_SIZE;
1036
1037 st->watermark = val;
1038
1039 return 0;
1040 }
1041
adxl372_buffer_postenable(struct iio_dev * indio_dev)1042 static int adxl372_buffer_postenable(struct iio_dev *indio_dev)
1043 {
1044 struct adxl372_state *st = iio_priv(indio_dev);
1045 unsigned int mask;
1046 int i, ret;
1047
1048 st->int1_bitmask |= ADXL372_INT1_MAP_FIFO_FULL_MSK;
1049 ret = adxl372_set_interrupts(st, st->int1_bitmask, 0);
1050 if (ret < 0)
1051 return ret;
1052
1053 mask = *indio_dev->active_scan_mask;
1054
1055 for (i = 0; i < ARRAY_SIZE(adxl372_axis_lookup_table); i++) {
1056 if (mask == adxl372_axis_lookup_table[i].bits)
1057 break;
1058 }
1059
1060 if (i == ARRAY_SIZE(adxl372_axis_lookup_table))
1061 return -EINVAL;
1062
1063 st->fifo_format = adxl372_axis_lookup_table[i].fifo_format;
1064 st->fifo_axis_mask = adxl372_axis_lookup_table[i].bits;
1065 st->fifo_set_size = bitmap_weight(indio_dev->active_scan_mask,
1066 indio_dev->masklength);
1067
1068 /* Configure the FIFO to store sets of impact event peak. */
1069 if (st->peak_fifo_mode_en) {
1070 st->fifo_set_size = 3;
1071 st->fifo_format = ADXL372_XYZ_PEAK_FIFO;
1072 }
1073
1074 /*
1075 * The 512 FIFO samples can be allotted in several ways, such as:
1076 * 170 sample sets of concurrent 3-axis data
1077 * 256 sample sets of concurrent 2-axis data (user selectable)
1078 * 512 sample sets of single-axis data
1079 * 170 sets of impact event peak (x, y, z)
1080 */
1081 if ((st->watermark * st->fifo_set_size) > ADXL372_FIFO_SIZE)
1082 st->watermark = (ADXL372_FIFO_SIZE / st->fifo_set_size);
1083
1084 st->fifo_mode = ADXL372_FIFO_STREAMED;
1085
1086 ret = adxl372_configure_fifo(st);
1087 if (ret < 0) {
1088 st->fifo_mode = ADXL372_FIFO_BYPASSED;
1089 st->int1_bitmask &= ~ADXL372_INT1_MAP_FIFO_FULL_MSK;
1090 adxl372_set_interrupts(st, st->int1_bitmask, 0);
1091 return ret;
1092 }
1093
1094 return 0;
1095 }
1096
adxl372_buffer_predisable(struct iio_dev * indio_dev)1097 static int adxl372_buffer_predisable(struct iio_dev *indio_dev)
1098 {
1099 struct adxl372_state *st = iio_priv(indio_dev);
1100
1101 st->int1_bitmask &= ~ADXL372_INT1_MAP_FIFO_FULL_MSK;
1102 adxl372_set_interrupts(st, st->int1_bitmask, 0);
1103 st->fifo_mode = ADXL372_FIFO_BYPASSED;
1104 adxl372_configure_fifo(st);
1105
1106 return 0;
1107 }
1108
1109 static const struct iio_buffer_setup_ops adxl372_buffer_ops = {
1110 .postenable = adxl372_buffer_postenable,
1111 .predisable = adxl372_buffer_predisable,
1112 };
1113
adxl372_dready_trig_set_state(struct iio_trigger * trig,bool state)1114 static int adxl372_dready_trig_set_state(struct iio_trigger *trig,
1115 bool state)
1116 {
1117 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
1118 struct adxl372_state *st = iio_priv(indio_dev);
1119
1120 if (state)
1121 st->int1_bitmask |= ADXL372_INT1_MAP_FIFO_FULL_MSK;
1122
1123 return adxl372_set_interrupts(st, st->int1_bitmask, 0);
1124 }
1125
adxl372_validate_trigger(struct iio_dev * indio_dev,struct iio_trigger * trig)1126 static int adxl372_validate_trigger(struct iio_dev *indio_dev,
1127 struct iio_trigger *trig)
1128 {
1129 struct adxl372_state *st = iio_priv(indio_dev);
1130
1131 if (st->dready_trig != trig && st->peak_datardy_trig != trig)
1132 return -EINVAL;
1133
1134 return 0;
1135 }
1136
1137 static const struct iio_trigger_ops adxl372_trigger_ops = {
1138 .validate_device = &iio_trigger_validate_own_device,
1139 .set_trigger_state = adxl372_dready_trig_set_state,
1140 };
1141
adxl372_peak_dready_trig_set_state(struct iio_trigger * trig,bool state)1142 static int adxl372_peak_dready_trig_set_state(struct iio_trigger *trig,
1143 bool state)
1144 {
1145 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
1146 struct adxl372_state *st = iio_priv(indio_dev);
1147
1148 if (state)
1149 st->int1_bitmask |= ADXL372_INT1_MAP_FIFO_FULL_MSK;
1150
1151 st->peak_fifo_mode_en = state;
1152
1153 return adxl372_set_interrupts(st, st->int1_bitmask, 0);
1154 }
1155
1156 static const struct iio_trigger_ops adxl372_peak_data_trigger_ops = {
1157 .validate_device = &iio_trigger_validate_own_device,
1158 .set_trigger_state = adxl372_peak_dready_trig_set_state,
1159 };
1160
1161 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("400 800 1600 3200 6400");
1162 static IIO_DEVICE_ATTR(in_accel_filter_low_pass_3db_frequency_available,
1163 0444, adxl372_show_filter_freq_avail, NULL, 0);
1164
1165 static struct attribute *adxl372_attributes[] = {
1166 &iio_const_attr_sampling_frequency_available.dev_attr.attr,
1167 &iio_dev_attr_in_accel_filter_low_pass_3db_frequency_available.dev_attr.attr,
1168 NULL,
1169 };
1170
1171 static const struct attribute_group adxl372_attrs_group = {
1172 .attrs = adxl372_attributes,
1173 };
1174
1175 static const struct iio_info adxl372_info = {
1176 .validate_trigger = &adxl372_validate_trigger,
1177 .attrs = &adxl372_attrs_group,
1178 .read_raw = adxl372_read_raw,
1179 .write_raw = adxl372_write_raw,
1180 .read_event_config = adxl372_read_event_config,
1181 .write_event_config = adxl372_write_event_config,
1182 .read_event_value = adxl372_read_event_value,
1183 .write_event_value = adxl372_write_event_value,
1184 .debugfs_reg_access = &adxl372_reg_access,
1185 .hwfifo_set_watermark = adxl372_set_watermark,
1186 };
1187
adxl372_readable_noinc_reg(struct device * dev,unsigned int reg)1188 bool adxl372_readable_noinc_reg(struct device *dev, unsigned int reg)
1189 {
1190 return (reg == ADXL372_FIFO_DATA);
1191 }
1192 EXPORT_SYMBOL_NS_GPL(adxl372_readable_noinc_reg, IIO_ADXL372);
1193
adxl372_probe(struct device * dev,struct regmap * regmap,int irq,const char * name)1194 int adxl372_probe(struct device *dev, struct regmap *regmap,
1195 int irq, const char *name)
1196 {
1197 struct iio_dev *indio_dev;
1198 struct adxl372_state *st;
1199 int ret;
1200
1201 indio_dev = devm_iio_device_alloc(dev, sizeof(*st));
1202 if (!indio_dev)
1203 return -ENOMEM;
1204
1205 st = iio_priv(indio_dev);
1206 dev_set_drvdata(dev, indio_dev);
1207
1208 st->dev = dev;
1209 st->regmap = regmap;
1210 st->irq = irq;
1211
1212 mutex_init(&st->threshold_m);
1213
1214 indio_dev->channels = adxl372_channels;
1215 indio_dev->num_channels = ARRAY_SIZE(adxl372_channels);
1216 indio_dev->available_scan_masks = adxl372_channel_masks;
1217 indio_dev->name = name;
1218 indio_dev->info = &adxl372_info;
1219 indio_dev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE;
1220
1221 ret = adxl372_setup(st);
1222 if (ret < 0) {
1223 dev_err(dev, "ADXL372 setup failed\n");
1224 return ret;
1225 }
1226
1227 ret = devm_iio_triggered_buffer_setup_ext(dev,
1228 indio_dev, NULL,
1229 adxl372_trigger_handler,
1230 IIO_BUFFER_DIRECTION_IN,
1231 &adxl372_buffer_ops,
1232 adxl372_fifo_attributes);
1233 if (ret < 0)
1234 return ret;
1235
1236 if (st->irq) {
1237 st->dready_trig = devm_iio_trigger_alloc(dev,
1238 "%s-dev%d",
1239 indio_dev->name,
1240 iio_device_id(indio_dev));
1241 if (st->dready_trig == NULL)
1242 return -ENOMEM;
1243
1244 st->peak_datardy_trig = devm_iio_trigger_alloc(dev,
1245 "%s-dev%d-peak",
1246 indio_dev->name,
1247 iio_device_id(indio_dev));
1248 if (!st->peak_datardy_trig)
1249 return -ENOMEM;
1250
1251 st->dready_trig->ops = &adxl372_trigger_ops;
1252 st->peak_datardy_trig->ops = &adxl372_peak_data_trigger_ops;
1253 iio_trigger_set_drvdata(st->dready_trig, indio_dev);
1254 iio_trigger_set_drvdata(st->peak_datardy_trig, indio_dev);
1255 ret = devm_iio_trigger_register(dev, st->dready_trig);
1256 if (ret < 0)
1257 return ret;
1258
1259 ret = devm_iio_trigger_register(dev, st->peak_datardy_trig);
1260 if (ret < 0)
1261 return ret;
1262
1263 indio_dev->trig = iio_trigger_get(st->dready_trig);
1264
1265 ret = devm_request_threaded_irq(dev, st->irq,
1266 iio_trigger_generic_data_rdy_poll,
1267 NULL,
1268 IRQF_TRIGGER_RISING | IRQF_ONESHOT,
1269 indio_dev->name, st->dready_trig);
1270 if (ret < 0)
1271 return ret;
1272 }
1273
1274 return devm_iio_device_register(dev, indio_dev);
1275 }
1276 EXPORT_SYMBOL_NS_GPL(adxl372_probe, IIO_ADXL372);
1277
1278 MODULE_AUTHOR("Stefan Popa <stefan.popa@analog.com>");
1279 MODULE_DESCRIPTION("Analog Devices ADXL372 3-axis accelerometer driver");
1280 MODULE_LICENSE("GPL");
1281