1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_GENERIC_PGTABLE_H
3 #define _ASM_GENERIC_PGTABLE_H
4 
5 #include <linux/pfn.h>
6 
7 #ifndef __ASSEMBLY__
8 #ifdef CONFIG_MMU
9 
10 #include <linux/mm_types.h>
11 #include <linux/bug.h>
12 #include <linux/errno.h>
13 
14 #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
15 	defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
16 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
17 #endif
18 
19 /*
20  * On almost all architectures and configurations, 0 can be used as the
21  * upper ceiling to free_pgtables(): on many architectures it has the same
22  * effect as using TASK_SIZE.  However, there is one configuration which
23  * must impose a more careful limit, to avoid freeing kernel pgtables.
24  */
25 #ifndef USER_PGTABLES_CEILING
26 #define USER_PGTABLES_CEILING	0UL
27 #endif
28 
29 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
30 extern int ptep_set_access_flags(struct vm_area_struct *vma,
31 				 unsigned long address, pte_t *ptep,
32 				 pte_t entry, int dirty);
33 #endif
34 
35 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
36 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
37 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
38 				 unsigned long address, pmd_t *pmdp,
39 				 pmd_t entry, int dirty);
40 extern int pudp_set_access_flags(struct vm_area_struct *vma,
41 				 unsigned long address, pud_t *pudp,
42 				 pud_t entry, int dirty);
43 #else
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)44 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
45 					unsigned long address, pmd_t *pmdp,
46 					pmd_t entry, int dirty)
47 {
48 	BUILD_BUG();
49 	return 0;
50 }
pudp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,pud_t entry,int dirty)51 static inline int pudp_set_access_flags(struct vm_area_struct *vma,
52 					unsigned long address, pud_t *pudp,
53 					pud_t entry, int dirty)
54 {
55 	BUILD_BUG();
56 	return 0;
57 }
58 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
59 #endif
60 
61 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)62 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
63 					    unsigned long address,
64 					    pte_t *ptep)
65 {
66 	pte_t pte = *ptep;
67 	int r = 1;
68 	if (!pte_young(pte))
69 		r = 0;
70 	else
71 		set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
72 	return r;
73 }
74 #endif
75 
76 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
77 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)78 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
79 					    unsigned long address,
80 					    pmd_t *pmdp)
81 {
82 	pmd_t pmd = *pmdp;
83 	int r = 1;
84 	if (!pmd_young(pmd))
85 		r = 0;
86 	else
87 		set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
88 	return r;
89 }
90 #else
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)91 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
92 					    unsigned long address,
93 					    pmd_t *pmdp)
94 {
95 	BUILD_BUG();
96 	return 0;
97 }
98 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
99 #endif
100 
101 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
102 int ptep_clear_flush_young(struct vm_area_struct *vma,
103 			   unsigned long address, pte_t *ptep);
104 #endif
105 
106 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
107 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
108 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
109 				  unsigned long address, pmd_t *pmdp);
110 #else
111 /*
112  * Despite relevant to THP only, this API is called from generic rmap code
113  * under PageTransHuge(), hence needs a dummy implementation for !THP
114  */
pmdp_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)115 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
116 					 unsigned long address, pmd_t *pmdp)
117 {
118 	BUILD_BUG();
119 	return 0;
120 }
121 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
122 #endif
123 
124 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long address,pte_t * ptep)125 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
126 				       unsigned long address,
127 				       pte_t *ptep)
128 {
129 	pte_t pte = *ptep;
130 	pte_clear(mm, address, ptep);
131 	return pte;
132 }
133 #endif
134 
135 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
136 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)137 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
138 					    unsigned long address,
139 					    pmd_t *pmdp)
140 {
141 	pmd_t pmd = *pmdp;
142 	pmd_clear(pmdp);
143 	return pmd;
144 }
145 #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
146 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
pudp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pud_t * pudp)147 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
148 					    unsigned long address,
149 					    pud_t *pudp)
150 {
151 	pud_t pud = *pudp;
152 
153 	pud_clear(pudp);
154 	return pud;
155 }
156 #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
157 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
158 
159 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
160 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
pmdp_huge_get_and_clear_full(struct mm_struct * mm,unsigned long address,pmd_t * pmdp,int full)161 static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
162 					    unsigned long address, pmd_t *pmdp,
163 					    int full)
164 {
165 	return pmdp_huge_get_and_clear(mm, address, pmdp);
166 }
167 #endif
168 
169 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
pudp_huge_get_and_clear_full(struct mm_struct * mm,unsigned long address,pud_t * pudp,int full)170 static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
171 					    unsigned long address, pud_t *pudp,
172 					    int full)
173 {
174 	return pudp_huge_get_and_clear(mm, address, pudp);
175 }
176 #endif
177 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
178 
179 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long address,pte_t * ptep,int full)180 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
181 					    unsigned long address, pte_t *ptep,
182 					    int full)
183 {
184 	pte_t pte;
185 	pte = ptep_get_and_clear(mm, address, ptep);
186 	return pte;
187 }
188 #endif
189 
190 /*
191  * Some architectures may be able to avoid expensive synchronization
192  * primitives when modifications are made to PTE's which are already
193  * not present, or in the process of an address space destruction.
194  */
195 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
pte_clear_not_present_full(struct mm_struct * mm,unsigned long address,pte_t * ptep,int full)196 static inline void pte_clear_not_present_full(struct mm_struct *mm,
197 					      unsigned long address,
198 					      pte_t *ptep,
199 					      int full)
200 {
201 	pte_clear(mm, address, ptep);
202 }
203 #endif
204 
205 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
206 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
207 			      unsigned long address,
208 			      pte_t *ptep);
209 #endif
210 
211 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
212 extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
213 			      unsigned long address,
214 			      pmd_t *pmdp);
215 extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
216 			      unsigned long address,
217 			      pud_t *pudp);
218 #endif
219 
220 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
221 struct mm_struct;
ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep)222 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
223 {
224 	pte_t old_pte = *ptep;
225 	set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
226 }
227 #endif
228 
229 #ifndef pte_savedwrite
230 #define pte_savedwrite pte_write
231 #endif
232 
233 #ifndef pte_mk_savedwrite
234 #define pte_mk_savedwrite pte_mkwrite
235 #endif
236 
237 #ifndef pte_clear_savedwrite
238 #define pte_clear_savedwrite pte_wrprotect
239 #endif
240 
241 #ifndef pmd_savedwrite
242 #define pmd_savedwrite pmd_write
243 #endif
244 
245 #ifndef pmd_mk_savedwrite
246 #define pmd_mk_savedwrite pmd_mkwrite
247 #endif
248 
249 #ifndef pmd_clear_savedwrite
250 #define pmd_clear_savedwrite pmd_wrprotect
251 #endif
252 
253 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
254 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)255 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
256 				      unsigned long address, pmd_t *pmdp)
257 {
258 	pmd_t old_pmd = *pmdp;
259 	set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
260 }
261 #else
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)262 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
263 				      unsigned long address, pmd_t *pmdp)
264 {
265 	BUILD_BUG();
266 }
267 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
268 #endif
269 #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
270 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
pudp_set_wrprotect(struct mm_struct * mm,unsigned long address,pud_t * pudp)271 static inline void pudp_set_wrprotect(struct mm_struct *mm,
272 				      unsigned long address, pud_t *pudp)
273 {
274 	pud_t old_pud = *pudp;
275 
276 	set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
277 }
278 #else
pudp_set_wrprotect(struct mm_struct * mm,unsigned long address,pud_t * pudp)279 static inline void pudp_set_wrprotect(struct mm_struct *mm,
280 				      unsigned long address, pud_t *pudp)
281 {
282 	BUILD_BUG();
283 }
284 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
285 #endif
286 
287 #ifndef pmdp_collapse_flush
288 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
289 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
290 				 unsigned long address, pmd_t *pmdp);
291 #else
pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)292 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
293 					unsigned long address,
294 					pmd_t *pmdp)
295 {
296 	BUILD_BUG();
297 	return *pmdp;
298 }
299 #define pmdp_collapse_flush pmdp_collapse_flush
300 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
301 #endif
302 
303 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
304 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
305 				       pgtable_t pgtable);
306 #endif
307 
308 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
309 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
310 #endif
311 
312 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
313 /*
314  * This is an implementation of pmdp_establish() that is only suitable for an
315  * architecture that doesn't have hardware dirty/accessed bits. In this case we
316  * can't race with CPU which sets these bits and non-atomic aproach is fine.
317  */
generic_pmdp_establish(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t pmd)318 static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
319 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
320 {
321 	pmd_t old_pmd = *pmdp;
322 	set_pmd_at(vma->vm_mm, address, pmdp, pmd);
323 	return old_pmd;
324 }
325 #endif
326 
327 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
328 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
329 			    pmd_t *pmdp);
330 #endif
331 
332 #ifndef __HAVE_ARCH_PTE_SAME
pte_same(pte_t pte_a,pte_t pte_b)333 static inline int pte_same(pte_t pte_a, pte_t pte_b)
334 {
335 	return pte_val(pte_a) == pte_val(pte_b);
336 }
337 #endif
338 
339 #ifndef __HAVE_ARCH_PTE_UNUSED
340 /*
341  * Some architectures provide facilities to virtualization guests
342  * so that they can flag allocated pages as unused. This allows the
343  * host to transparently reclaim unused pages. This function returns
344  * whether the pte's page is unused.
345  */
pte_unused(pte_t pte)346 static inline int pte_unused(pte_t pte)
347 {
348 	return 0;
349 }
350 #endif
351 
352 #ifndef pte_access_permitted
353 #define pte_access_permitted(pte, write) \
354 	(pte_present(pte) && (!(write) || pte_write(pte)))
355 #endif
356 
357 #ifndef pmd_access_permitted
358 #define pmd_access_permitted(pmd, write) \
359 	(pmd_present(pmd) && (!(write) || pmd_write(pmd)))
360 #endif
361 
362 #ifndef pud_access_permitted
363 #define pud_access_permitted(pud, write) \
364 	(pud_present(pud) && (!(write) || pud_write(pud)))
365 #endif
366 
367 #ifndef p4d_access_permitted
368 #define p4d_access_permitted(p4d, write) \
369 	(p4d_present(p4d) && (!(write) || p4d_write(p4d)))
370 #endif
371 
372 #ifndef pgd_access_permitted
373 #define pgd_access_permitted(pgd, write) \
374 	(pgd_present(pgd) && (!(write) || pgd_write(pgd)))
375 #endif
376 
377 #ifndef __HAVE_ARCH_PMD_SAME
pmd_same(pmd_t pmd_a,pmd_t pmd_b)378 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
379 {
380 	return pmd_val(pmd_a) == pmd_val(pmd_b);
381 }
382 
pud_same(pud_t pud_a,pud_t pud_b)383 static inline int pud_same(pud_t pud_a, pud_t pud_b)
384 {
385 	return pud_val(pud_a) == pud_val(pud_b);
386 }
387 #endif
388 
389 #ifndef __HAVE_ARCH_P4D_SAME
p4d_same(p4d_t p4d_a,p4d_t p4d_b)390 static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
391 {
392 	return p4d_val(p4d_a) == p4d_val(p4d_b);
393 }
394 #endif
395 
396 #ifndef __HAVE_ARCH_PGD_SAME
pgd_same(pgd_t pgd_a,pgd_t pgd_b)397 static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
398 {
399 	return pgd_val(pgd_a) == pgd_val(pgd_b);
400 }
401 #endif
402 
403 /*
404  * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
405  * TLB flush will be required as a result of the "set". For example, use
406  * in scenarios where it is known ahead of time that the routine is
407  * setting non-present entries, or re-setting an existing entry to the
408  * same value. Otherwise, use the typical "set" helpers and flush the
409  * TLB.
410  */
411 #define set_pte_safe(ptep, pte) \
412 ({ \
413 	WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
414 	set_pte(ptep, pte); \
415 })
416 
417 #define set_pmd_safe(pmdp, pmd) \
418 ({ \
419 	WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
420 	set_pmd(pmdp, pmd); \
421 })
422 
423 #define set_pud_safe(pudp, pud) \
424 ({ \
425 	WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
426 	set_pud(pudp, pud); \
427 })
428 
429 #define set_p4d_safe(p4dp, p4d) \
430 ({ \
431 	WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
432 	set_p4d(p4dp, p4d); \
433 })
434 
435 #define set_pgd_safe(pgdp, pgd) \
436 ({ \
437 	WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
438 	set_pgd(pgdp, pgd); \
439 })
440 
441 #ifndef __HAVE_ARCH_DO_SWAP_PAGE
442 /*
443  * Some architectures support metadata associated with a page. When a
444  * page is being swapped out, this metadata must be saved so it can be
445  * restored when the page is swapped back in. SPARC M7 and newer
446  * processors support an ADI (Application Data Integrity) tag for the
447  * page as metadata for the page. arch_do_swap_page() can restore this
448  * metadata when a page is swapped back in.
449  */
arch_do_swap_page(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t pte,pte_t oldpte)450 static inline void arch_do_swap_page(struct mm_struct *mm,
451 				     struct vm_area_struct *vma,
452 				     unsigned long addr,
453 				     pte_t pte, pte_t oldpte)
454 {
455 
456 }
457 #endif
458 
459 #ifndef __HAVE_ARCH_UNMAP_ONE
460 /*
461  * Some architectures support metadata associated with a page. When a
462  * page is being swapped out, this metadata must be saved so it can be
463  * restored when the page is swapped back in. SPARC M7 and newer
464  * processors support an ADI (Application Data Integrity) tag for the
465  * page as metadata for the page. arch_unmap_one() can save this
466  * metadata on a swap-out of a page.
467  */
arch_unmap_one(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t orig_pte)468 static inline int arch_unmap_one(struct mm_struct *mm,
469 				  struct vm_area_struct *vma,
470 				  unsigned long addr,
471 				  pte_t orig_pte)
472 {
473 	return 0;
474 }
475 #endif
476 
477 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
478 #define pgd_offset_gate(mm, addr)	pgd_offset(mm, addr)
479 #endif
480 
481 #ifndef __HAVE_ARCH_MOVE_PTE
482 #define move_pte(pte, prot, old_addr, new_addr)	(pte)
483 #endif
484 
485 #ifndef pte_accessible
486 # define pte_accessible(mm, pte)	((void)(pte), 1)
487 #endif
488 
489 #ifndef flush_tlb_fix_spurious_fault
490 #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
491 #endif
492 
493 #ifndef pgprot_noncached
494 #define pgprot_noncached(prot)	(prot)
495 #endif
496 
497 #ifndef pgprot_writecombine
498 #define pgprot_writecombine pgprot_noncached
499 #endif
500 
501 #ifndef pgprot_writethrough
502 #define pgprot_writethrough pgprot_noncached
503 #endif
504 
505 #ifndef pgprot_device
506 #define pgprot_device pgprot_noncached
507 #endif
508 
509 #ifndef pgprot_modify
510 #define pgprot_modify pgprot_modify
pgprot_modify(pgprot_t oldprot,pgprot_t newprot)511 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
512 {
513 	if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
514 		newprot = pgprot_noncached(newprot);
515 	if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
516 		newprot = pgprot_writecombine(newprot);
517 	if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
518 		newprot = pgprot_device(newprot);
519 	return newprot;
520 }
521 #endif
522 
523 /*
524  * When walking page tables, get the address of the next boundary,
525  * or the end address of the range if that comes earlier.  Although no
526  * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
527  */
528 
529 #define pgd_addr_end(addr, end)						\
530 ({	unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;	\
531 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
532 })
533 
534 #ifndef p4d_addr_end
535 #define p4d_addr_end(addr, end)						\
536 ({	unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK;	\
537 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
538 })
539 #endif
540 
541 #ifndef pud_addr_end
542 #define pud_addr_end(addr, end)						\
543 ({	unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;	\
544 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
545 })
546 #endif
547 
548 #ifndef pmd_addr_end
549 #define pmd_addr_end(addr, end)						\
550 ({	unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;	\
551 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
552 })
553 #endif
554 
555 /*
556  * When walking page tables, we usually want to skip any p?d_none entries;
557  * and any p?d_bad entries - reporting the error before resetting to none.
558  * Do the tests inline, but report and clear the bad entry in mm/memory.c.
559  */
560 void pgd_clear_bad(pgd_t *);
561 void p4d_clear_bad(p4d_t *);
562 void pud_clear_bad(pud_t *);
563 void pmd_clear_bad(pmd_t *);
564 
pgd_none_or_clear_bad(pgd_t * pgd)565 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
566 {
567 	if (pgd_none(*pgd))
568 		return 1;
569 	if (unlikely(pgd_bad(*pgd))) {
570 		pgd_clear_bad(pgd);
571 		return 1;
572 	}
573 	return 0;
574 }
575 
p4d_none_or_clear_bad(p4d_t * p4d)576 static inline int p4d_none_or_clear_bad(p4d_t *p4d)
577 {
578 	if (p4d_none(*p4d))
579 		return 1;
580 	if (unlikely(p4d_bad(*p4d))) {
581 		p4d_clear_bad(p4d);
582 		return 1;
583 	}
584 	return 0;
585 }
586 
pud_none_or_clear_bad(pud_t * pud)587 static inline int pud_none_or_clear_bad(pud_t *pud)
588 {
589 	if (pud_none(*pud))
590 		return 1;
591 	if (unlikely(pud_bad(*pud))) {
592 		pud_clear_bad(pud);
593 		return 1;
594 	}
595 	return 0;
596 }
597 
pmd_none_or_clear_bad(pmd_t * pmd)598 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
599 {
600 	if (pmd_none(*pmd))
601 		return 1;
602 	if (unlikely(pmd_bad(*pmd))) {
603 		pmd_clear_bad(pmd);
604 		return 1;
605 	}
606 	return 0;
607 }
608 
__ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)609 static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
610 					     unsigned long addr,
611 					     pte_t *ptep)
612 {
613 	/*
614 	 * Get the current pte state, but zero it out to make it
615 	 * non-present, preventing the hardware from asynchronously
616 	 * updating it.
617 	 */
618 	return ptep_get_and_clear(vma->vm_mm, addr, ptep);
619 }
620 
__ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t pte)621 static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
622 					     unsigned long addr,
623 					     pte_t *ptep, pte_t pte)
624 {
625 	/*
626 	 * The pte is non-present, so there's no hardware state to
627 	 * preserve.
628 	 */
629 	set_pte_at(vma->vm_mm, addr, ptep, pte);
630 }
631 
632 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
633 /*
634  * Start a pte protection read-modify-write transaction, which
635  * protects against asynchronous hardware modifications to the pte.
636  * The intention is not to prevent the hardware from making pte
637  * updates, but to prevent any updates it may make from being lost.
638  *
639  * This does not protect against other software modifications of the
640  * pte; the appropriate pte lock must be held over the transation.
641  *
642  * Note that this interface is intended to be batchable, meaning that
643  * ptep_modify_prot_commit may not actually update the pte, but merely
644  * queue the update to be done at some later time.  The update must be
645  * actually committed before the pte lock is released, however.
646  */
ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)647 static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
648 					   unsigned long addr,
649 					   pte_t *ptep)
650 {
651 	return __ptep_modify_prot_start(vma, addr, ptep);
652 }
653 
654 /*
655  * Commit an update to a pte, leaving any hardware-controlled bits in
656  * the PTE unmodified.
657  */
ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t old_pte,pte_t pte)658 static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
659 					   unsigned long addr,
660 					   pte_t *ptep, pte_t old_pte, pte_t pte)
661 {
662 	__ptep_modify_prot_commit(vma, addr, ptep, pte);
663 }
664 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
665 #endif /* CONFIG_MMU */
666 
667 /*
668  * No-op macros that just return the current protection value. Defined here
669  * because these macros can be used used even if CONFIG_MMU is not defined.
670  */
671 #ifndef pgprot_encrypted
672 #define pgprot_encrypted(prot)	(prot)
673 #endif
674 
675 #ifndef pgprot_decrypted
676 #define pgprot_decrypted(prot)	(prot)
677 #endif
678 
679 /*
680  * A facility to provide lazy MMU batching.  This allows PTE updates and
681  * page invalidations to be delayed until a call to leave lazy MMU mode
682  * is issued.  Some architectures may benefit from doing this, and it is
683  * beneficial for both shadow and direct mode hypervisors, which may batch
684  * the PTE updates which happen during this window.  Note that using this
685  * interface requires that read hazards be removed from the code.  A read
686  * hazard could result in the direct mode hypervisor case, since the actual
687  * write to the page tables may not yet have taken place, so reads though
688  * a raw PTE pointer after it has been modified are not guaranteed to be
689  * up to date.  This mode can only be entered and left under the protection of
690  * the page table locks for all page tables which may be modified.  In the UP
691  * case, this is required so that preemption is disabled, and in the SMP case,
692  * it must synchronize the delayed page table writes properly on other CPUs.
693  */
694 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
695 #define arch_enter_lazy_mmu_mode()	do {} while (0)
696 #define arch_leave_lazy_mmu_mode()	do {} while (0)
697 #define arch_flush_lazy_mmu_mode()	do {} while (0)
698 #endif
699 
700 /*
701  * A facility to provide batching of the reload of page tables and
702  * other process state with the actual context switch code for
703  * paravirtualized guests.  By convention, only one of the batched
704  * update (lazy) modes (CPU, MMU) should be active at any given time,
705  * entry should never be nested, and entry and exits should always be
706  * paired.  This is for sanity of maintaining and reasoning about the
707  * kernel code.  In this case, the exit (end of the context switch) is
708  * in architecture-specific code, and so doesn't need a generic
709  * definition.
710  */
711 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
712 #define arch_start_context_switch(prev)	do {} while (0)
713 #endif
714 
715 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
716 #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
pmd_swp_mksoft_dirty(pmd_t pmd)717 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
718 {
719 	return pmd;
720 }
721 
pmd_swp_soft_dirty(pmd_t pmd)722 static inline int pmd_swp_soft_dirty(pmd_t pmd)
723 {
724 	return 0;
725 }
726 
pmd_swp_clear_soft_dirty(pmd_t pmd)727 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
728 {
729 	return pmd;
730 }
731 #endif
732 #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
pte_soft_dirty(pte_t pte)733 static inline int pte_soft_dirty(pte_t pte)
734 {
735 	return 0;
736 }
737 
pmd_soft_dirty(pmd_t pmd)738 static inline int pmd_soft_dirty(pmd_t pmd)
739 {
740 	return 0;
741 }
742 
pte_mksoft_dirty(pte_t pte)743 static inline pte_t pte_mksoft_dirty(pte_t pte)
744 {
745 	return pte;
746 }
747 
pmd_mksoft_dirty(pmd_t pmd)748 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
749 {
750 	return pmd;
751 }
752 
pte_clear_soft_dirty(pte_t pte)753 static inline pte_t pte_clear_soft_dirty(pte_t pte)
754 {
755 	return pte;
756 }
757 
pmd_clear_soft_dirty(pmd_t pmd)758 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
759 {
760 	return pmd;
761 }
762 
pte_swp_mksoft_dirty(pte_t pte)763 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
764 {
765 	return pte;
766 }
767 
pte_swp_soft_dirty(pte_t pte)768 static inline int pte_swp_soft_dirty(pte_t pte)
769 {
770 	return 0;
771 }
772 
pte_swp_clear_soft_dirty(pte_t pte)773 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
774 {
775 	return pte;
776 }
777 
pmd_swp_mksoft_dirty(pmd_t pmd)778 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
779 {
780 	return pmd;
781 }
782 
pmd_swp_soft_dirty(pmd_t pmd)783 static inline int pmd_swp_soft_dirty(pmd_t pmd)
784 {
785 	return 0;
786 }
787 
pmd_swp_clear_soft_dirty(pmd_t pmd)788 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
789 {
790 	return pmd;
791 }
792 #endif
793 
794 #ifndef __HAVE_PFNMAP_TRACKING
795 /*
796  * Interfaces that can be used by architecture code to keep track of
797  * memory type of pfn mappings specified by the remap_pfn_range,
798  * vmf_insert_pfn.
799  */
800 
801 /*
802  * track_pfn_remap is called when a _new_ pfn mapping is being established
803  * by remap_pfn_range() for physical range indicated by pfn and size.
804  */
track_pfn_remap(struct vm_area_struct * vma,pgprot_t * prot,unsigned long pfn,unsigned long addr,unsigned long size)805 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
806 				  unsigned long pfn, unsigned long addr,
807 				  unsigned long size)
808 {
809 	return 0;
810 }
811 
812 /*
813  * track_pfn_insert is called when a _new_ single pfn is established
814  * by vmf_insert_pfn().
815  */
track_pfn_insert(struct vm_area_struct * vma,pgprot_t * prot,pfn_t pfn)816 static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
817 				    pfn_t pfn)
818 {
819 }
820 
821 /*
822  * track_pfn_copy is called when vma that is covering the pfnmap gets
823  * copied through copy_page_range().
824  */
track_pfn_copy(struct vm_area_struct * vma)825 static inline int track_pfn_copy(struct vm_area_struct *vma)
826 {
827 	return 0;
828 }
829 
830 /*
831  * untrack_pfn is called while unmapping a pfnmap for a region.
832  * untrack can be called for a specific region indicated by pfn and size or
833  * can be for the entire vma (in which case pfn, size are zero).
834  */
untrack_pfn(struct vm_area_struct * vma,unsigned long pfn,unsigned long size)835 static inline void untrack_pfn(struct vm_area_struct *vma,
836 			       unsigned long pfn, unsigned long size)
837 {
838 }
839 
840 /*
841  * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
842  */
untrack_pfn_moved(struct vm_area_struct * vma)843 static inline void untrack_pfn_moved(struct vm_area_struct *vma)
844 {
845 }
846 #else
847 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
848 			   unsigned long pfn, unsigned long addr,
849 			   unsigned long size);
850 extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
851 			     pfn_t pfn);
852 extern int track_pfn_copy(struct vm_area_struct *vma);
853 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
854 			unsigned long size);
855 extern void untrack_pfn_moved(struct vm_area_struct *vma);
856 #endif
857 
858 #ifdef __HAVE_COLOR_ZERO_PAGE
is_zero_pfn(unsigned long pfn)859 static inline int is_zero_pfn(unsigned long pfn)
860 {
861 	extern unsigned long zero_pfn;
862 	unsigned long offset_from_zero_pfn = pfn - zero_pfn;
863 	return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
864 }
865 
866 #define my_zero_pfn(addr)	page_to_pfn(ZERO_PAGE(addr))
867 
868 #else
is_zero_pfn(unsigned long pfn)869 static inline int is_zero_pfn(unsigned long pfn)
870 {
871 	extern unsigned long zero_pfn;
872 	return pfn == zero_pfn;
873 }
874 
my_zero_pfn(unsigned long addr)875 static inline unsigned long my_zero_pfn(unsigned long addr)
876 {
877 	extern unsigned long zero_pfn;
878 	return zero_pfn;
879 }
880 #endif
881 
882 #ifdef CONFIG_MMU
883 
884 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
pmd_trans_huge(pmd_t pmd)885 static inline int pmd_trans_huge(pmd_t pmd)
886 {
887 	return 0;
888 }
889 #ifndef pmd_write
pmd_write(pmd_t pmd)890 static inline int pmd_write(pmd_t pmd)
891 {
892 	BUG();
893 	return 0;
894 }
895 #endif /* pmd_write */
896 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
897 
898 #ifndef pud_write
pud_write(pud_t pud)899 static inline int pud_write(pud_t pud)
900 {
901 	BUG();
902 	return 0;
903 }
904 #endif /* pud_write */
905 
906 #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
907 	(defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
908 	 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD))
pud_trans_huge(pud_t pud)909 static inline int pud_trans_huge(pud_t pud)
910 {
911 	return 0;
912 }
913 #endif
914 
915 #ifndef pmd_read_atomic
pmd_read_atomic(pmd_t * pmdp)916 static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
917 {
918 	/*
919 	 * Depend on compiler for an atomic pmd read. NOTE: this is
920 	 * only going to work, if the pmdval_t isn't larger than
921 	 * an unsigned long.
922 	 */
923 	return *pmdp;
924 }
925 #endif
926 
927 #ifndef arch_needs_pgtable_deposit
928 #define arch_needs_pgtable_deposit() (false)
929 #endif
930 /*
931  * This function is meant to be used by sites walking pagetables with
932  * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
933  * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
934  * into a null pmd and the transhuge page fault can convert a null pmd
935  * into an hugepmd or into a regular pmd (if the hugepage allocation
936  * fails). While holding the mmap_sem in read mode the pmd becomes
937  * stable and stops changing under us only if it's not null and not a
938  * transhuge pmd. When those races occurs and this function makes a
939  * difference vs the standard pmd_none_or_clear_bad, the result is
940  * undefined so behaving like if the pmd was none is safe (because it
941  * can return none anyway). The compiler level barrier() is critically
942  * important to compute the two checks atomically on the same pmdval.
943  *
944  * For 32bit kernels with a 64bit large pmd_t this automatically takes
945  * care of reading the pmd atomically to avoid SMP race conditions
946  * against pmd_populate() when the mmap_sem is hold for reading by the
947  * caller (a special atomic read not done by "gcc" as in the generic
948  * version above, is also needed when THP is disabled because the page
949  * fault can populate the pmd from under us).
950  */
pmd_none_or_trans_huge_or_clear_bad(pmd_t * pmd)951 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
952 {
953 	pmd_t pmdval = pmd_read_atomic(pmd);
954 	/*
955 	 * The barrier will stabilize the pmdval in a register or on
956 	 * the stack so that it will stop changing under the code.
957 	 *
958 	 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
959 	 * pmd_read_atomic is allowed to return a not atomic pmdval
960 	 * (for example pointing to an hugepage that has never been
961 	 * mapped in the pmd). The below checks will only care about
962 	 * the low part of the pmd with 32bit PAE x86 anyway, with the
963 	 * exception of pmd_none(). So the important thing is that if
964 	 * the low part of the pmd is found null, the high part will
965 	 * be also null or the pmd_none() check below would be
966 	 * confused.
967 	 */
968 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
969 	barrier();
970 #endif
971 	/*
972 	 * !pmd_present() checks for pmd migration entries
973 	 *
974 	 * The complete check uses is_pmd_migration_entry() in linux/swapops.h
975 	 * But using that requires moving current function and pmd_trans_unstable()
976 	 * to linux/swapops.h to resovle dependency, which is too much code move.
977 	 *
978 	 * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
979 	 * because !pmd_present() pages can only be under migration not swapped
980 	 * out.
981 	 *
982 	 * pmd_none() is preseved for future condition checks on pmd migration
983 	 * entries and not confusing with this function name, although it is
984 	 * redundant with !pmd_present().
985 	 */
986 	if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
987 		(IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
988 		return 1;
989 	if (unlikely(pmd_bad(pmdval))) {
990 		pmd_clear_bad(pmd);
991 		return 1;
992 	}
993 	return 0;
994 }
995 
996 /*
997  * This is a noop if Transparent Hugepage Support is not built into
998  * the kernel. Otherwise it is equivalent to
999  * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
1000  * places that already verified the pmd is not none and they want to
1001  * walk ptes while holding the mmap sem in read mode (write mode don't
1002  * need this). If THP is not enabled, the pmd can't go away under the
1003  * code even if MADV_DONTNEED runs, but if THP is enabled we need to
1004  * run a pmd_trans_unstable before walking the ptes after
1005  * split_huge_pmd returns (because it may have run when the pmd become
1006  * null, but then a page fault can map in a THP and not a regular page).
1007  */
pmd_trans_unstable(pmd_t * pmd)1008 static inline int pmd_trans_unstable(pmd_t *pmd)
1009 {
1010 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1011 	return pmd_none_or_trans_huge_or_clear_bad(pmd);
1012 #else
1013 	return 0;
1014 #endif
1015 }
1016 
1017 #ifndef CONFIG_NUMA_BALANCING
1018 /*
1019  * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
1020  * the only case the kernel cares is for NUMA balancing and is only ever set
1021  * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
1022  * _PAGE_PROTNONE so by by default, implement the helper as "always no". It
1023  * is the responsibility of the caller to distinguish between PROT_NONE
1024  * protections and NUMA hinting fault protections.
1025  */
pte_protnone(pte_t pte)1026 static inline int pte_protnone(pte_t pte)
1027 {
1028 	return 0;
1029 }
1030 
pmd_protnone(pmd_t pmd)1031 static inline int pmd_protnone(pmd_t pmd)
1032 {
1033 	return 0;
1034 }
1035 #endif /* CONFIG_NUMA_BALANCING */
1036 
1037 #endif /* CONFIG_MMU */
1038 
1039 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1040 
1041 #ifndef __PAGETABLE_P4D_FOLDED
1042 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1043 int p4d_clear_huge(p4d_t *p4d);
1044 #else
p4d_set_huge(p4d_t * p4d,phys_addr_t addr,pgprot_t prot)1045 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1046 {
1047 	return 0;
1048 }
p4d_clear_huge(p4d_t * p4d)1049 static inline int p4d_clear_huge(p4d_t *p4d)
1050 {
1051 	return 0;
1052 }
1053 #endif /* !__PAGETABLE_P4D_FOLDED */
1054 
1055 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1056 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1057 int pud_clear_huge(pud_t *pud);
1058 int pmd_clear_huge(pmd_t *pmd);
1059 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1060 int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1061 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1062 #else	/* !CONFIG_HAVE_ARCH_HUGE_VMAP */
p4d_set_huge(p4d_t * p4d,phys_addr_t addr,pgprot_t prot)1063 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1064 {
1065 	return 0;
1066 }
pud_set_huge(pud_t * pud,phys_addr_t addr,pgprot_t prot)1067 static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1068 {
1069 	return 0;
1070 }
pmd_set_huge(pmd_t * pmd,phys_addr_t addr,pgprot_t prot)1071 static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1072 {
1073 	return 0;
1074 }
p4d_clear_huge(p4d_t * p4d)1075 static inline int p4d_clear_huge(p4d_t *p4d)
1076 {
1077 	return 0;
1078 }
pud_clear_huge(pud_t * pud)1079 static inline int pud_clear_huge(pud_t *pud)
1080 {
1081 	return 0;
1082 }
pmd_clear_huge(pmd_t * pmd)1083 static inline int pmd_clear_huge(pmd_t *pmd)
1084 {
1085 	return 0;
1086 }
p4d_free_pud_page(p4d_t * p4d,unsigned long addr)1087 static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1088 {
1089 	return 0;
1090 }
pud_free_pmd_page(pud_t * pud,unsigned long addr)1091 static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1092 {
1093 	return 0;
1094 }
pmd_free_pte_page(pmd_t * pmd,unsigned long addr)1095 static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1096 {
1097 	return 0;
1098 }
1099 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
1100 
1101 #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1102 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1103 /*
1104  * ARCHes with special requirements for evicting THP backing TLB entries can
1105  * implement this. Otherwise also, it can help optimize normal TLB flush in
1106  * THP regime. stock flush_tlb_range() typically has optimization to nuke the
1107  * entire TLB TLB if flush span is greater than a threshold, which will
1108  * likely be true for a single huge page. Thus a single thp flush will
1109  * invalidate the entire TLB which is not desitable.
1110  * e.g. see arch/arc: flush_pmd_tlb_range
1111  */
1112 #define flush_pmd_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1113 #define flush_pud_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1114 #else
1115 #define flush_pmd_tlb_range(vma, addr, end)	BUILD_BUG()
1116 #define flush_pud_tlb_range(vma, addr, end)	BUILD_BUG()
1117 #endif
1118 #endif
1119 
1120 struct file;
1121 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1122 			unsigned long size, pgprot_t *vma_prot);
1123 
1124 #ifndef CONFIG_X86_ESPFIX64
init_espfix_bsp(void)1125 static inline void init_espfix_bsp(void) { }
1126 #endif
1127 
1128 extern void __init pgtable_cache_init(void);
1129 
1130 #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
pfn_modify_allowed(unsigned long pfn,pgprot_t prot)1131 static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1132 {
1133 	return true;
1134 }
1135 
arch_has_pfn_modify_check(void)1136 static inline bool arch_has_pfn_modify_check(void)
1137 {
1138 	return false;
1139 }
1140 #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1141 
1142 /*
1143  * Architecture PAGE_KERNEL_* fallbacks
1144  *
1145  * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1146  * because they really don't support them, or the port needs to be updated to
1147  * reflect the required functionality. Below are a set of relatively safe
1148  * fallbacks, as best effort, which we can count on in lieu of the architectures
1149  * not defining them on their own yet.
1150  */
1151 
1152 #ifndef PAGE_KERNEL_RO
1153 # define PAGE_KERNEL_RO PAGE_KERNEL
1154 #endif
1155 
1156 #ifndef PAGE_KERNEL_EXEC
1157 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1158 #endif
1159 
1160 #endif /* !__ASSEMBLY__ */
1161 
1162 #ifndef io_remap_pfn_range
1163 #define io_remap_pfn_range remap_pfn_range
1164 #endif
1165 
1166 #ifndef has_transparent_hugepage
1167 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1168 #define has_transparent_hugepage() 1
1169 #else
1170 #define has_transparent_hugepage() 0
1171 #endif
1172 #endif
1173 
1174 /*
1175  * On some architectures it depends on the mm if the p4d/pud or pmd
1176  * layer of the page table hierarchy is folded or not.
1177  */
1178 #ifndef mm_p4d_folded
1179 #define mm_p4d_folded(mm)	__is_defined(__PAGETABLE_P4D_FOLDED)
1180 #endif
1181 
1182 #ifndef mm_pud_folded
1183 #define mm_pud_folded(mm)	__is_defined(__PAGETABLE_PUD_FOLDED)
1184 #endif
1185 
1186 #ifndef mm_pmd_folded
1187 #define mm_pmd_folded(mm)	__is_defined(__PAGETABLE_PMD_FOLDED)
1188 #endif
1189 
1190 #endif /* _ASM_GENERIC_PGTABLE_H */
1191