1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
4 */
5 #include <linux/list_sort.h>
6 #include <linux/libnvdimm.h>
7 #include <linux/module.h>
8 #include <linux/mutex.h>
9 #include <linux/ndctl.h>
10 #include <linux/sysfs.h>
11 #include <linux/delay.h>
12 #include <linux/list.h>
13 #include <linux/acpi.h>
14 #include <linux/sort.h>
15 #include <linux/io.h>
16 #include <linux/nd.h>
17 #include <asm/cacheflush.h>
18 #include <acpi/nfit.h>
19 #include "intel.h"
20 #include "nfit.h"
21
22 /*
23 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
24 * irrelevant.
25 */
26 #include <linux/io-64-nonatomic-hi-lo.h>
27
28 static bool force_enable_dimms;
29 module_param(force_enable_dimms, bool, S_IRUGO|S_IWUSR);
30 MODULE_PARM_DESC(force_enable_dimms, "Ignore _STA (ACPI DIMM device) status");
31
32 static bool disable_vendor_specific;
33 module_param(disable_vendor_specific, bool, S_IRUGO);
34 MODULE_PARM_DESC(disable_vendor_specific,
35 "Limit commands to the publicly specified set");
36
37 static unsigned long override_dsm_mask;
38 module_param(override_dsm_mask, ulong, S_IRUGO);
39 MODULE_PARM_DESC(override_dsm_mask, "Bitmask of allowed NVDIMM DSM functions");
40
41 static int default_dsm_family = -1;
42 module_param(default_dsm_family, int, S_IRUGO);
43 MODULE_PARM_DESC(default_dsm_family,
44 "Try this DSM type first when identifying NVDIMM family");
45
46 static bool no_init_ars;
47 module_param(no_init_ars, bool, 0644);
48 MODULE_PARM_DESC(no_init_ars, "Skip ARS run at nfit init time");
49
50 static bool force_labels;
51 module_param(force_labels, bool, 0444);
52 MODULE_PARM_DESC(force_labels, "Opt-in to labels despite missing methods");
53
54 LIST_HEAD(acpi_descs);
55 DEFINE_MUTEX(acpi_desc_lock);
56
57 static struct workqueue_struct *nfit_wq;
58
59 struct nfit_table_prev {
60 struct list_head spas;
61 struct list_head memdevs;
62 struct list_head dcrs;
63 struct list_head bdws;
64 struct list_head idts;
65 struct list_head flushes;
66 };
67
68 static guid_t nfit_uuid[NFIT_UUID_MAX];
69
to_nfit_uuid(enum nfit_uuids id)70 const guid_t *to_nfit_uuid(enum nfit_uuids id)
71 {
72 return &nfit_uuid[id];
73 }
74 EXPORT_SYMBOL(to_nfit_uuid);
75
to_acpi_dev(struct acpi_nfit_desc * acpi_desc)76 static struct acpi_device *to_acpi_dev(struct acpi_nfit_desc *acpi_desc)
77 {
78 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
79
80 /*
81 * If provider == 'ACPI.NFIT' we can assume 'dev' is a struct
82 * acpi_device.
83 */
84 if (!nd_desc->provider_name
85 || strcmp(nd_desc->provider_name, "ACPI.NFIT") != 0)
86 return NULL;
87
88 return to_acpi_device(acpi_desc->dev);
89 }
90
xlat_bus_status(void * buf,unsigned int cmd,u32 status)91 static int xlat_bus_status(void *buf, unsigned int cmd, u32 status)
92 {
93 struct nd_cmd_clear_error *clear_err;
94 struct nd_cmd_ars_status *ars_status;
95 u16 flags;
96
97 switch (cmd) {
98 case ND_CMD_ARS_CAP:
99 if ((status & 0xffff) == NFIT_ARS_CAP_NONE)
100 return -ENOTTY;
101
102 /* Command failed */
103 if (status & 0xffff)
104 return -EIO;
105
106 /* No supported scan types for this range */
107 flags = ND_ARS_PERSISTENT | ND_ARS_VOLATILE;
108 if ((status >> 16 & flags) == 0)
109 return -ENOTTY;
110 return 0;
111 case ND_CMD_ARS_START:
112 /* ARS is in progress */
113 if ((status & 0xffff) == NFIT_ARS_START_BUSY)
114 return -EBUSY;
115
116 /* Command failed */
117 if (status & 0xffff)
118 return -EIO;
119 return 0;
120 case ND_CMD_ARS_STATUS:
121 ars_status = buf;
122 /* Command failed */
123 if (status & 0xffff)
124 return -EIO;
125 /* Check extended status (Upper two bytes) */
126 if (status == NFIT_ARS_STATUS_DONE)
127 return 0;
128
129 /* ARS is in progress */
130 if (status == NFIT_ARS_STATUS_BUSY)
131 return -EBUSY;
132
133 /* No ARS performed for the current boot */
134 if (status == NFIT_ARS_STATUS_NONE)
135 return -EAGAIN;
136
137 /*
138 * ARS interrupted, either we overflowed or some other
139 * agent wants the scan to stop. If we didn't overflow
140 * then just continue with the returned results.
141 */
142 if (status == NFIT_ARS_STATUS_INTR) {
143 if (ars_status->out_length >= 40 && (ars_status->flags
144 & NFIT_ARS_F_OVERFLOW))
145 return -ENOSPC;
146 return 0;
147 }
148
149 /* Unknown status */
150 if (status >> 16)
151 return -EIO;
152 return 0;
153 case ND_CMD_CLEAR_ERROR:
154 clear_err = buf;
155 if (status & 0xffff)
156 return -EIO;
157 if (!clear_err->cleared)
158 return -EIO;
159 if (clear_err->length > clear_err->cleared)
160 return clear_err->cleared;
161 return 0;
162 default:
163 break;
164 }
165
166 /* all other non-zero status results in an error */
167 if (status)
168 return -EIO;
169 return 0;
170 }
171
172 #define ACPI_LABELS_LOCKED 3
173
xlat_nvdimm_status(struct nvdimm * nvdimm,void * buf,unsigned int cmd,u32 status)174 static int xlat_nvdimm_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
175 u32 status)
176 {
177 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
178
179 switch (cmd) {
180 case ND_CMD_GET_CONFIG_SIZE:
181 /*
182 * In the _LSI, _LSR, _LSW case the locked status is
183 * communicated via the read/write commands
184 */
185 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags))
186 break;
187
188 if (status >> 16 & ND_CONFIG_LOCKED)
189 return -EACCES;
190 break;
191 case ND_CMD_GET_CONFIG_DATA:
192 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)
193 && status == ACPI_LABELS_LOCKED)
194 return -EACCES;
195 break;
196 case ND_CMD_SET_CONFIG_DATA:
197 if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags)
198 && status == ACPI_LABELS_LOCKED)
199 return -EACCES;
200 break;
201 default:
202 break;
203 }
204
205 /* all other non-zero status results in an error */
206 if (status)
207 return -EIO;
208 return 0;
209 }
210
xlat_status(struct nvdimm * nvdimm,void * buf,unsigned int cmd,u32 status)211 static int xlat_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
212 u32 status)
213 {
214 if (!nvdimm)
215 return xlat_bus_status(buf, cmd, status);
216 return xlat_nvdimm_status(nvdimm, buf, cmd, status);
217 }
218
219 /* convert _LS{I,R} packages to the buffer object acpi_nfit_ctl expects */
pkg_to_buf(union acpi_object * pkg)220 static union acpi_object *pkg_to_buf(union acpi_object *pkg)
221 {
222 int i;
223 void *dst;
224 size_t size = 0;
225 union acpi_object *buf = NULL;
226
227 if (pkg->type != ACPI_TYPE_PACKAGE) {
228 WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
229 pkg->type);
230 goto err;
231 }
232
233 for (i = 0; i < pkg->package.count; i++) {
234 union acpi_object *obj = &pkg->package.elements[i];
235
236 if (obj->type == ACPI_TYPE_INTEGER)
237 size += 4;
238 else if (obj->type == ACPI_TYPE_BUFFER)
239 size += obj->buffer.length;
240 else {
241 WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
242 obj->type);
243 goto err;
244 }
245 }
246
247 buf = ACPI_ALLOCATE(sizeof(*buf) + size);
248 if (!buf)
249 goto err;
250
251 dst = buf + 1;
252 buf->type = ACPI_TYPE_BUFFER;
253 buf->buffer.length = size;
254 buf->buffer.pointer = dst;
255 for (i = 0; i < pkg->package.count; i++) {
256 union acpi_object *obj = &pkg->package.elements[i];
257
258 if (obj->type == ACPI_TYPE_INTEGER) {
259 memcpy(dst, &obj->integer.value, 4);
260 dst += 4;
261 } else if (obj->type == ACPI_TYPE_BUFFER) {
262 memcpy(dst, obj->buffer.pointer, obj->buffer.length);
263 dst += obj->buffer.length;
264 }
265 }
266 err:
267 ACPI_FREE(pkg);
268 return buf;
269 }
270
int_to_buf(union acpi_object * integer)271 static union acpi_object *int_to_buf(union acpi_object *integer)
272 {
273 union acpi_object *buf = ACPI_ALLOCATE(sizeof(*buf) + 4);
274 void *dst = NULL;
275
276 if (!buf)
277 goto err;
278
279 if (integer->type != ACPI_TYPE_INTEGER) {
280 WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
281 integer->type);
282 goto err;
283 }
284
285 dst = buf + 1;
286 buf->type = ACPI_TYPE_BUFFER;
287 buf->buffer.length = 4;
288 buf->buffer.pointer = dst;
289 memcpy(dst, &integer->integer.value, 4);
290 err:
291 ACPI_FREE(integer);
292 return buf;
293 }
294
acpi_label_write(acpi_handle handle,u32 offset,u32 len,void * data)295 static union acpi_object *acpi_label_write(acpi_handle handle, u32 offset,
296 u32 len, void *data)
297 {
298 acpi_status rc;
299 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
300 struct acpi_object_list input = {
301 .count = 3,
302 .pointer = (union acpi_object []) {
303 [0] = {
304 .integer.type = ACPI_TYPE_INTEGER,
305 .integer.value = offset,
306 },
307 [1] = {
308 .integer.type = ACPI_TYPE_INTEGER,
309 .integer.value = len,
310 },
311 [2] = {
312 .buffer.type = ACPI_TYPE_BUFFER,
313 .buffer.pointer = data,
314 .buffer.length = len,
315 },
316 },
317 };
318
319 rc = acpi_evaluate_object(handle, "_LSW", &input, &buf);
320 if (ACPI_FAILURE(rc))
321 return NULL;
322 return int_to_buf(buf.pointer);
323 }
324
acpi_label_read(acpi_handle handle,u32 offset,u32 len)325 static union acpi_object *acpi_label_read(acpi_handle handle, u32 offset,
326 u32 len)
327 {
328 acpi_status rc;
329 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
330 struct acpi_object_list input = {
331 .count = 2,
332 .pointer = (union acpi_object []) {
333 [0] = {
334 .integer.type = ACPI_TYPE_INTEGER,
335 .integer.value = offset,
336 },
337 [1] = {
338 .integer.type = ACPI_TYPE_INTEGER,
339 .integer.value = len,
340 },
341 },
342 };
343
344 rc = acpi_evaluate_object(handle, "_LSR", &input, &buf);
345 if (ACPI_FAILURE(rc))
346 return NULL;
347 return pkg_to_buf(buf.pointer);
348 }
349
acpi_label_info(acpi_handle handle)350 static union acpi_object *acpi_label_info(acpi_handle handle)
351 {
352 acpi_status rc;
353 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
354
355 rc = acpi_evaluate_object(handle, "_LSI", NULL, &buf);
356 if (ACPI_FAILURE(rc))
357 return NULL;
358 return pkg_to_buf(buf.pointer);
359 }
360
nfit_dsm_revid(unsigned family,unsigned func)361 static u8 nfit_dsm_revid(unsigned family, unsigned func)
362 {
363 static const u8 revid_table[NVDIMM_FAMILY_MAX+1][32] = {
364 [NVDIMM_FAMILY_INTEL] = {
365 [NVDIMM_INTEL_GET_MODES] = 2,
366 [NVDIMM_INTEL_GET_FWINFO] = 2,
367 [NVDIMM_INTEL_START_FWUPDATE] = 2,
368 [NVDIMM_INTEL_SEND_FWUPDATE] = 2,
369 [NVDIMM_INTEL_FINISH_FWUPDATE] = 2,
370 [NVDIMM_INTEL_QUERY_FWUPDATE] = 2,
371 [NVDIMM_INTEL_SET_THRESHOLD] = 2,
372 [NVDIMM_INTEL_INJECT_ERROR] = 2,
373 [NVDIMM_INTEL_GET_SECURITY_STATE] = 2,
374 [NVDIMM_INTEL_SET_PASSPHRASE] = 2,
375 [NVDIMM_INTEL_DISABLE_PASSPHRASE] = 2,
376 [NVDIMM_INTEL_UNLOCK_UNIT] = 2,
377 [NVDIMM_INTEL_FREEZE_LOCK] = 2,
378 [NVDIMM_INTEL_SECURE_ERASE] = 2,
379 [NVDIMM_INTEL_OVERWRITE] = 2,
380 [NVDIMM_INTEL_QUERY_OVERWRITE] = 2,
381 [NVDIMM_INTEL_SET_MASTER_PASSPHRASE] = 2,
382 [NVDIMM_INTEL_MASTER_SECURE_ERASE] = 2,
383 },
384 };
385 u8 id;
386
387 if (family > NVDIMM_FAMILY_MAX)
388 return 0;
389 if (func > 31)
390 return 0;
391 id = revid_table[family][func];
392 if (id == 0)
393 return 1; /* default */
394 return id;
395 }
396
payload_dumpable(struct nvdimm * nvdimm,unsigned int func)397 static bool payload_dumpable(struct nvdimm *nvdimm, unsigned int func)
398 {
399 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
400
401 if (nfit_mem && nfit_mem->family == NVDIMM_FAMILY_INTEL
402 && func >= NVDIMM_INTEL_GET_SECURITY_STATE
403 && func <= NVDIMM_INTEL_MASTER_SECURE_ERASE)
404 return IS_ENABLED(CONFIG_NFIT_SECURITY_DEBUG);
405 return true;
406 }
407
cmd_to_func(struct nfit_mem * nfit_mem,unsigned int cmd,struct nd_cmd_pkg * call_pkg)408 static int cmd_to_func(struct nfit_mem *nfit_mem, unsigned int cmd,
409 struct nd_cmd_pkg *call_pkg)
410 {
411 if (call_pkg) {
412 int i;
413
414 if (nfit_mem && nfit_mem->family != call_pkg->nd_family)
415 return -ENOTTY;
416
417 for (i = 0; i < ARRAY_SIZE(call_pkg->nd_reserved2); i++)
418 if (call_pkg->nd_reserved2[i])
419 return -EINVAL;
420 return call_pkg->nd_command;
421 }
422
423 /* In the !call_pkg case, bus commands == bus functions */
424 if (!nfit_mem)
425 return cmd;
426
427 /* Linux ND commands == NVDIMM_FAMILY_INTEL function numbers */
428 if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
429 return cmd;
430
431 /*
432 * Force function number validation to fail since 0 is never
433 * published as a valid function in dsm_mask.
434 */
435 return 0;
436 }
437
acpi_nfit_ctl(struct nvdimm_bus_descriptor * nd_desc,struct nvdimm * nvdimm,unsigned int cmd,void * buf,unsigned int buf_len,int * cmd_rc)438 int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm,
439 unsigned int cmd, void *buf, unsigned int buf_len, int *cmd_rc)
440 {
441 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
442 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
443 union acpi_object in_obj, in_buf, *out_obj;
444 const struct nd_cmd_desc *desc = NULL;
445 struct device *dev = acpi_desc->dev;
446 struct nd_cmd_pkg *call_pkg = NULL;
447 const char *cmd_name, *dimm_name;
448 unsigned long cmd_mask, dsm_mask;
449 u32 offset, fw_status = 0;
450 acpi_handle handle;
451 const guid_t *guid;
452 int func, rc, i;
453
454 if (cmd_rc)
455 *cmd_rc = -EINVAL;
456
457 if (cmd == ND_CMD_CALL)
458 call_pkg = buf;
459 func = cmd_to_func(nfit_mem, cmd, call_pkg);
460 if (func < 0)
461 return func;
462
463 if (nvdimm) {
464 struct acpi_device *adev = nfit_mem->adev;
465
466 if (!adev)
467 return -ENOTTY;
468
469 dimm_name = nvdimm_name(nvdimm);
470 cmd_name = nvdimm_cmd_name(cmd);
471 cmd_mask = nvdimm_cmd_mask(nvdimm);
472 dsm_mask = nfit_mem->dsm_mask;
473 desc = nd_cmd_dimm_desc(cmd);
474 guid = to_nfit_uuid(nfit_mem->family);
475 handle = adev->handle;
476 } else {
477 struct acpi_device *adev = to_acpi_dev(acpi_desc);
478
479 cmd_name = nvdimm_bus_cmd_name(cmd);
480 cmd_mask = nd_desc->cmd_mask;
481 dsm_mask = nd_desc->bus_dsm_mask;
482 desc = nd_cmd_bus_desc(cmd);
483 guid = to_nfit_uuid(NFIT_DEV_BUS);
484 handle = adev->handle;
485 dimm_name = "bus";
486 }
487
488 if (!desc || (cmd && (desc->out_num + desc->in_num == 0)))
489 return -ENOTTY;
490
491 /*
492 * Check for a valid command. For ND_CMD_CALL, we also have to
493 * make sure that the DSM function is supported.
494 */
495 if (cmd == ND_CMD_CALL && !test_bit(func, &dsm_mask))
496 return -ENOTTY;
497 else if (!test_bit(cmd, &cmd_mask))
498 return -ENOTTY;
499
500 in_obj.type = ACPI_TYPE_PACKAGE;
501 in_obj.package.count = 1;
502 in_obj.package.elements = &in_buf;
503 in_buf.type = ACPI_TYPE_BUFFER;
504 in_buf.buffer.pointer = buf;
505 in_buf.buffer.length = 0;
506
507 /* libnvdimm has already validated the input envelope */
508 for (i = 0; i < desc->in_num; i++)
509 in_buf.buffer.length += nd_cmd_in_size(nvdimm, cmd, desc,
510 i, buf);
511
512 if (call_pkg) {
513 /* skip over package wrapper */
514 in_buf.buffer.pointer = (void *) &call_pkg->nd_payload;
515 in_buf.buffer.length = call_pkg->nd_size_in;
516 }
517
518 dev_dbg(dev, "%s cmd: %d: func: %d input length: %d\n",
519 dimm_name, cmd, func, in_buf.buffer.length);
520 if (payload_dumpable(nvdimm, func))
521 print_hex_dump_debug("nvdimm in ", DUMP_PREFIX_OFFSET, 4, 4,
522 in_buf.buffer.pointer,
523 min_t(u32, 256, in_buf.buffer.length), true);
524
525 /* call the BIOS, prefer the named methods over _DSM if available */
526 if (nvdimm && cmd == ND_CMD_GET_CONFIG_SIZE
527 && test_bit(NFIT_MEM_LSR, &nfit_mem->flags))
528 out_obj = acpi_label_info(handle);
529 else if (nvdimm && cmd == ND_CMD_GET_CONFIG_DATA
530 && test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) {
531 struct nd_cmd_get_config_data_hdr *p = buf;
532
533 out_obj = acpi_label_read(handle, p->in_offset, p->in_length);
534 } else if (nvdimm && cmd == ND_CMD_SET_CONFIG_DATA
535 && test_bit(NFIT_MEM_LSW, &nfit_mem->flags)) {
536 struct nd_cmd_set_config_hdr *p = buf;
537
538 out_obj = acpi_label_write(handle, p->in_offset, p->in_length,
539 p->in_buf);
540 } else {
541 u8 revid;
542
543 if (nvdimm)
544 revid = nfit_dsm_revid(nfit_mem->family, func);
545 else
546 revid = 1;
547 out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj);
548 }
549
550 if (!out_obj) {
551 dev_dbg(dev, "%s _DSM failed cmd: %s\n", dimm_name, cmd_name);
552 return -EINVAL;
553 }
554
555 if (out_obj->type != ACPI_TYPE_BUFFER) {
556 dev_dbg(dev, "%s unexpected output object type cmd: %s type: %d\n",
557 dimm_name, cmd_name, out_obj->type);
558 rc = -EINVAL;
559 goto out;
560 }
561
562 dev_dbg(dev, "%s cmd: %s output length: %d\n", dimm_name,
563 cmd_name, out_obj->buffer.length);
564 print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4, 4,
565 out_obj->buffer.pointer,
566 min_t(u32, 128, out_obj->buffer.length), true);
567
568 if (call_pkg) {
569 call_pkg->nd_fw_size = out_obj->buffer.length;
570 memcpy(call_pkg->nd_payload + call_pkg->nd_size_in,
571 out_obj->buffer.pointer,
572 min(call_pkg->nd_fw_size, call_pkg->nd_size_out));
573
574 ACPI_FREE(out_obj);
575 /*
576 * Need to support FW function w/o known size in advance.
577 * Caller can determine required size based upon nd_fw_size.
578 * If we return an error (like elsewhere) then caller wouldn't
579 * be able to rely upon data returned to make calculation.
580 */
581 if (cmd_rc)
582 *cmd_rc = 0;
583 return 0;
584 }
585
586 for (i = 0, offset = 0; i < desc->out_num; i++) {
587 u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, buf,
588 (u32 *) out_obj->buffer.pointer,
589 out_obj->buffer.length - offset);
590
591 if (offset + out_size > out_obj->buffer.length) {
592 dev_dbg(dev, "%s output object underflow cmd: %s field: %d\n",
593 dimm_name, cmd_name, i);
594 break;
595 }
596
597 if (in_buf.buffer.length + offset + out_size > buf_len) {
598 dev_dbg(dev, "%s output overrun cmd: %s field: %d\n",
599 dimm_name, cmd_name, i);
600 rc = -ENXIO;
601 goto out;
602 }
603 memcpy(buf + in_buf.buffer.length + offset,
604 out_obj->buffer.pointer + offset, out_size);
605 offset += out_size;
606 }
607
608 /*
609 * Set fw_status for all the commands with a known format to be
610 * later interpreted by xlat_status().
611 */
612 if (i >= 1 && ((!nvdimm && cmd >= ND_CMD_ARS_CAP
613 && cmd <= ND_CMD_CLEAR_ERROR)
614 || (nvdimm && cmd >= ND_CMD_SMART
615 && cmd <= ND_CMD_VENDOR)))
616 fw_status = *(u32 *) out_obj->buffer.pointer;
617
618 if (offset + in_buf.buffer.length < buf_len) {
619 if (i >= 1) {
620 /*
621 * status valid, return the number of bytes left
622 * unfilled in the output buffer
623 */
624 rc = buf_len - offset - in_buf.buffer.length;
625 if (cmd_rc)
626 *cmd_rc = xlat_status(nvdimm, buf, cmd,
627 fw_status);
628 } else {
629 dev_err(dev, "%s:%s underrun cmd: %s buf_len: %d out_len: %d\n",
630 __func__, dimm_name, cmd_name, buf_len,
631 offset);
632 rc = -ENXIO;
633 }
634 } else {
635 rc = 0;
636 if (cmd_rc)
637 *cmd_rc = xlat_status(nvdimm, buf, cmd, fw_status);
638 }
639
640 out:
641 ACPI_FREE(out_obj);
642
643 return rc;
644 }
645 EXPORT_SYMBOL_GPL(acpi_nfit_ctl);
646
spa_type_name(u16 type)647 static const char *spa_type_name(u16 type)
648 {
649 static const char *to_name[] = {
650 [NFIT_SPA_VOLATILE] = "volatile",
651 [NFIT_SPA_PM] = "pmem",
652 [NFIT_SPA_DCR] = "dimm-control-region",
653 [NFIT_SPA_BDW] = "block-data-window",
654 [NFIT_SPA_VDISK] = "volatile-disk",
655 [NFIT_SPA_VCD] = "volatile-cd",
656 [NFIT_SPA_PDISK] = "persistent-disk",
657 [NFIT_SPA_PCD] = "persistent-cd",
658
659 };
660
661 if (type > NFIT_SPA_PCD)
662 return "unknown";
663
664 return to_name[type];
665 }
666
nfit_spa_type(struct acpi_nfit_system_address * spa)667 int nfit_spa_type(struct acpi_nfit_system_address *spa)
668 {
669 int i;
670
671 for (i = 0; i < NFIT_UUID_MAX; i++)
672 if (guid_equal(to_nfit_uuid(i), (guid_t *)&spa->range_guid))
673 return i;
674 return -1;
675 }
676
add_spa(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_system_address * spa)677 static bool add_spa(struct acpi_nfit_desc *acpi_desc,
678 struct nfit_table_prev *prev,
679 struct acpi_nfit_system_address *spa)
680 {
681 struct device *dev = acpi_desc->dev;
682 struct nfit_spa *nfit_spa;
683
684 if (spa->header.length != sizeof(*spa))
685 return false;
686
687 list_for_each_entry(nfit_spa, &prev->spas, list) {
688 if (memcmp(nfit_spa->spa, spa, sizeof(*spa)) == 0) {
689 list_move_tail(&nfit_spa->list, &acpi_desc->spas);
690 return true;
691 }
692 }
693
694 nfit_spa = devm_kzalloc(dev, sizeof(*nfit_spa) + sizeof(*spa),
695 GFP_KERNEL);
696 if (!nfit_spa)
697 return false;
698 INIT_LIST_HEAD(&nfit_spa->list);
699 memcpy(nfit_spa->spa, spa, sizeof(*spa));
700 list_add_tail(&nfit_spa->list, &acpi_desc->spas);
701 dev_dbg(dev, "spa index: %d type: %s\n",
702 spa->range_index,
703 spa_type_name(nfit_spa_type(spa)));
704 return true;
705 }
706
add_memdev(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_memory_map * memdev)707 static bool add_memdev(struct acpi_nfit_desc *acpi_desc,
708 struct nfit_table_prev *prev,
709 struct acpi_nfit_memory_map *memdev)
710 {
711 struct device *dev = acpi_desc->dev;
712 struct nfit_memdev *nfit_memdev;
713
714 if (memdev->header.length != sizeof(*memdev))
715 return false;
716
717 list_for_each_entry(nfit_memdev, &prev->memdevs, list)
718 if (memcmp(nfit_memdev->memdev, memdev, sizeof(*memdev)) == 0) {
719 list_move_tail(&nfit_memdev->list, &acpi_desc->memdevs);
720 return true;
721 }
722
723 nfit_memdev = devm_kzalloc(dev, sizeof(*nfit_memdev) + sizeof(*memdev),
724 GFP_KERNEL);
725 if (!nfit_memdev)
726 return false;
727 INIT_LIST_HEAD(&nfit_memdev->list);
728 memcpy(nfit_memdev->memdev, memdev, sizeof(*memdev));
729 list_add_tail(&nfit_memdev->list, &acpi_desc->memdevs);
730 dev_dbg(dev, "memdev handle: %#x spa: %d dcr: %d flags: %#x\n",
731 memdev->device_handle, memdev->range_index,
732 memdev->region_index, memdev->flags);
733 return true;
734 }
735
nfit_get_smbios_id(u32 device_handle,u16 * flags)736 int nfit_get_smbios_id(u32 device_handle, u16 *flags)
737 {
738 struct acpi_nfit_memory_map *memdev;
739 struct acpi_nfit_desc *acpi_desc;
740 struct nfit_mem *nfit_mem;
741 u16 physical_id;
742
743 mutex_lock(&acpi_desc_lock);
744 list_for_each_entry(acpi_desc, &acpi_descs, list) {
745 mutex_lock(&acpi_desc->init_mutex);
746 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
747 memdev = __to_nfit_memdev(nfit_mem);
748 if (memdev->device_handle == device_handle) {
749 *flags = memdev->flags;
750 physical_id = memdev->physical_id;
751 mutex_unlock(&acpi_desc->init_mutex);
752 mutex_unlock(&acpi_desc_lock);
753 return physical_id;
754 }
755 }
756 mutex_unlock(&acpi_desc->init_mutex);
757 }
758 mutex_unlock(&acpi_desc_lock);
759
760 return -ENODEV;
761 }
762 EXPORT_SYMBOL_GPL(nfit_get_smbios_id);
763
764 /*
765 * An implementation may provide a truncated control region if no block windows
766 * are defined.
767 */
sizeof_dcr(struct acpi_nfit_control_region * dcr)768 static size_t sizeof_dcr(struct acpi_nfit_control_region *dcr)
769 {
770 if (dcr->header.length < offsetof(struct acpi_nfit_control_region,
771 window_size))
772 return 0;
773 if (dcr->windows)
774 return sizeof(*dcr);
775 return offsetof(struct acpi_nfit_control_region, window_size);
776 }
777
add_dcr(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_control_region * dcr)778 static bool add_dcr(struct acpi_nfit_desc *acpi_desc,
779 struct nfit_table_prev *prev,
780 struct acpi_nfit_control_region *dcr)
781 {
782 struct device *dev = acpi_desc->dev;
783 struct nfit_dcr *nfit_dcr;
784
785 if (!sizeof_dcr(dcr))
786 return false;
787
788 list_for_each_entry(nfit_dcr, &prev->dcrs, list)
789 if (memcmp(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)) == 0) {
790 list_move_tail(&nfit_dcr->list, &acpi_desc->dcrs);
791 return true;
792 }
793
794 nfit_dcr = devm_kzalloc(dev, sizeof(*nfit_dcr) + sizeof(*dcr),
795 GFP_KERNEL);
796 if (!nfit_dcr)
797 return false;
798 INIT_LIST_HEAD(&nfit_dcr->list);
799 memcpy(nfit_dcr->dcr, dcr, sizeof_dcr(dcr));
800 list_add_tail(&nfit_dcr->list, &acpi_desc->dcrs);
801 dev_dbg(dev, "dcr index: %d windows: %d\n",
802 dcr->region_index, dcr->windows);
803 return true;
804 }
805
add_bdw(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_data_region * bdw)806 static bool add_bdw(struct acpi_nfit_desc *acpi_desc,
807 struct nfit_table_prev *prev,
808 struct acpi_nfit_data_region *bdw)
809 {
810 struct device *dev = acpi_desc->dev;
811 struct nfit_bdw *nfit_bdw;
812
813 if (bdw->header.length != sizeof(*bdw))
814 return false;
815 list_for_each_entry(nfit_bdw, &prev->bdws, list)
816 if (memcmp(nfit_bdw->bdw, bdw, sizeof(*bdw)) == 0) {
817 list_move_tail(&nfit_bdw->list, &acpi_desc->bdws);
818 return true;
819 }
820
821 nfit_bdw = devm_kzalloc(dev, sizeof(*nfit_bdw) + sizeof(*bdw),
822 GFP_KERNEL);
823 if (!nfit_bdw)
824 return false;
825 INIT_LIST_HEAD(&nfit_bdw->list);
826 memcpy(nfit_bdw->bdw, bdw, sizeof(*bdw));
827 list_add_tail(&nfit_bdw->list, &acpi_desc->bdws);
828 dev_dbg(dev, "bdw dcr: %d windows: %d\n",
829 bdw->region_index, bdw->windows);
830 return true;
831 }
832
sizeof_idt(struct acpi_nfit_interleave * idt)833 static size_t sizeof_idt(struct acpi_nfit_interleave *idt)
834 {
835 if (idt->header.length < sizeof(*idt))
836 return 0;
837 return sizeof(*idt) + sizeof(u32) * (idt->line_count - 1);
838 }
839
add_idt(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_interleave * idt)840 static bool add_idt(struct acpi_nfit_desc *acpi_desc,
841 struct nfit_table_prev *prev,
842 struct acpi_nfit_interleave *idt)
843 {
844 struct device *dev = acpi_desc->dev;
845 struct nfit_idt *nfit_idt;
846
847 if (!sizeof_idt(idt))
848 return false;
849
850 list_for_each_entry(nfit_idt, &prev->idts, list) {
851 if (sizeof_idt(nfit_idt->idt) != sizeof_idt(idt))
852 continue;
853
854 if (memcmp(nfit_idt->idt, idt, sizeof_idt(idt)) == 0) {
855 list_move_tail(&nfit_idt->list, &acpi_desc->idts);
856 return true;
857 }
858 }
859
860 nfit_idt = devm_kzalloc(dev, sizeof(*nfit_idt) + sizeof_idt(idt),
861 GFP_KERNEL);
862 if (!nfit_idt)
863 return false;
864 INIT_LIST_HEAD(&nfit_idt->list);
865 memcpy(nfit_idt->idt, idt, sizeof_idt(idt));
866 list_add_tail(&nfit_idt->list, &acpi_desc->idts);
867 dev_dbg(dev, "idt index: %d num_lines: %d\n",
868 idt->interleave_index, idt->line_count);
869 return true;
870 }
871
sizeof_flush(struct acpi_nfit_flush_address * flush)872 static size_t sizeof_flush(struct acpi_nfit_flush_address *flush)
873 {
874 if (flush->header.length < sizeof(*flush))
875 return 0;
876 return sizeof(*flush) + sizeof(u64) * (flush->hint_count - 1);
877 }
878
add_flush(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_flush_address * flush)879 static bool add_flush(struct acpi_nfit_desc *acpi_desc,
880 struct nfit_table_prev *prev,
881 struct acpi_nfit_flush_address *flush)
882 {
883 struct device *dev = acpi_desc->dev;
884 struct nfit_flush *nfit_flush;
885
886 if (!sizeof_flush(flush))
887 return false;
888
889 list_for_each_entry(nfit_flush, &prev->flushes, list) {
890 if (sizeof_flush(nfit_flush->flush) != sizeof_flush(flush))
891 continue;
892
893 if (memcmp(nfit_flush->flush, flush,
894 sizeof_flush(flush)) == 0) {
895 list_move_tail(&nfit_flush->list, &acpi_desc->flushes);
896 return true;
897 }
898 }
899
900 nfit_flush = devm_kzalloc(dev, sizeof(*nfit_flush)
901 + sizeof_flush(flush), GFP_KERNEL);
902 if (!nfit_flush)
903 return false;
904 INIT_LIST_HEAD(&nfit_flush->list);
905 memcpy(nfit_flush->flush, flush, sizeof_flush(flush));
906 list_add_tail(&nfit_flush->list, &acpi_desc->flushes);
907 dev_dbg(dev, "nfit_flush handle: %d hint_count: %d\n",
908 flush->device_handle, flush->hint_count);
909 return true;
910 }
911
add_platform_cap(struct acpi_nfit_desc * acpi_desc,struct acpi_nfit_capabilities * pcap)912 static bool add_platform_cap(struct acpi_nfit_desc *acpi_desc,
913 struct acpi_nfit_capabilities *pcap)
914 {
915 struct device *dev = acpi_desc->dev;
916 u32 mask;
917
918 mask = (1 << (pcap->highest_capability + 1)) - 1;
919 acpi_desc->platform_cap = pcap->capabilities & mask;
920 dev_dbg(dev, "cap: %#x\n", acpi_desc->platform_cap);
921 return true;
922 }
923
add_table(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,void * table,const void * end)924 static void *add_table(struct acpi_nfit_desc *acpi_desc,
925 struct nfit_table_prev *prev, void *table, const void *end)
926 {
927 struct device *dev = acpi_desc->dev;
928 struct acpi_nfit_header *hdr;
929 void *err = ERR_PTR(-ENOMEM);
930
931 if (table >= end)
932 return NULL;
933
934 hdr = table;
935 if (!hdr->length) {
936 dev_warn(dev, "found a zero length table '%d' parsing nfit\n",
937 hdr->type);
938 return NULL;
939 }
940
941 switch (hdr->type) {
942 case ACPI_NFIT_TYPE_SYSTEM_ADDRESS:
943 if (!add_spa(acpi_desc, prev, table))
944 return err;
945 break;
946 case ACPI_NFIT_TYPE_MEMORY_MAP:
947 if (!add_memdev(acpi_desc, prev, table))
948 return err;
949 break;
950 case ACPI_NFIT_TYPE_CONTROL_REGION:
951 if (!add_dcr(acpi_desc, prev, table))
952 return err;
953 break;
954 case ACPI_NFIT_TYPE_DATA_REGION:
955 if (!add_bdw(acpi_desc, prev, table))
956 return err;
957 break;
958 case ACPI_NFIT_TYPE_INTERLEAVE:
959 if (!add_idt(acpi_desc, prev, table))
960 return err;
961 break;
962 case ACPI_NFIT_TYPE_FLUSH_ADDRESS:
963 if (!add_flush(acpi_desc, prev, table))
964 return err;
965 break;
966 case ACPI_NFIT_TYPE_SMBIOS:
967 dev_dbg(dev, "smbios\n");
968 break;
969 case ACPI_NFIT_TYPE_CAPABILITIES:
970 if (!add_platform_cap(acpi_desc, table))
971 return err;
972 break;
973 default:
974 dev_err(dev, "unknown table '%d' parsing nfit\n", hdr->type);
975 break;
976 }
977
978 return table + hdr->length;
979 }
980
nfit_mem_find_spa_bdw(struct acpi_nfit_desc * acpi_desc,struct nfit_mem * nfit_mem)981 static void nfit_mem_find_spa_bdw(struct acpi_nfit_desc *acpi_desc,
982 struct nfit_mem *nfit_mem)
983 {
984 u32 device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
985 u16 dcr = nfit_mem->dcr->region_index;
986 struct nfit_spa *nfit_spa;
987
988 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
989 u16 range_index = nfit_spa->spa->range_index;
990 int type = nfit_spa_type(nfit_spa->spa);
991 struct nfit_memdev *nfit_memdev;
992
993 if (type != NFIT_SPA_BDW)
994 continue;
995
996 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
997 if (nfit_memdev->memdev->range_index != range_index)
998 continue;
999 if (nfit_memdev->memdev->device_handle != device_handle)
1000 continue;
1001 if (nfit_memdev->memdev->region_index != dcr)
1002 continue;
1003
1004 nfit_mem->spa_bdw = nfit_spa->spa;
1005 return;
1006 }
1007 }
1008
1009 dev_dbg(acpi_desc->dev, "SPA-BDW not found for SPA-DCR %d\n",
1010 nfit_mem->spa_dcr->range_index);
1011 nfit_mem->bdw = NULL;
1012 }
1013
nfit_mem_init_bdw(struct acpi_nfit_desc * acpi_desc,struct nfit_mem * nfit_mem,struct acpi_nfit_system_address * spa)1014 static void nfit_mem_init_bdw(struct acpi_nfit_desc *acpi_desc,
1015 struct nfit_mem *nfit_mem, struct acpi_nfit_system_address *spa)
1016 {
1017 u16 dcr = __to_nfit_memdev(nfit_mem)->region_index;
1018 struct nfit_memdev *nfit_memdev;
1019 struct nfit_bdw *nfit_bdw;
1020 struct nfit_idt *nfit_idt;
1021 u16 idt_idx, range_index;
1022
1023 list_for_each_entry(nfit_bdw, &acpi_desc->bdws, list) {
1024 if (nfit_bdw->bdw->region_index != dcr)
1025 continue;
1026 nfit_mem->bdw = nfit_bdw->bdw;
1027 break;
1028 }
1029
1030 if (!nfit_mem->bdw)
1031 return;
1032
1033 nfit_mem_find_spa_bdw(acpi_desc, nfit_mem);
1034
1035 if (!nfit_mem->spa_bdw)
1036 return;
1037
1038 range_index = nfit_mem->spa_bdw->range_index;
1039 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1040 if (nfit_memdev->memdev->range_index != range_index ||
1041 nfit_memdev->memdev->region_index != dcr)
1042 continue;
1043 nfit_mem->memdev_bdw = nfit_memdev->memdev;
1044 idt_idx = nfit_memdev->memdev->interleave_index;
1045 list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
1046 if (nfit_idt->idt->interleave_index != idt_idx)
1047 continue;
1048 nfit_mem->idt_bdw = nfit_idt->idt;
1049 break;
1050 }
1051 break;
1052 }
1053 }
1054
__nfit_mem_init(struct acpi_nfit_desc * acpi_desc,struct acpi_nfit_system_address * spa)1055 static int __nfit_mem_init(struct acpi_nfit_desc *acpi_desc,
1056 struct acpi_nfit_system_address *spa)
1057 {
1058 struct nfit_mem *nfit_mem, *found;
1059 struct nfit_memdev *nfit_memdev;
1060 int type = spa ? nfit_spa_type(spa) : 0;
1061
1062 switch (type) {
1063 case NFIT_SPA_DCR:
1064 case NFIT_SPA_PM:
1065 break;
1066 default:
1067 if (spa)
1068 return 0;
1069 }
1070
1071 /*
1072 * This loop runs in two modes, when a dimm is mapped the loop
1073 * adds memdev associations to an existing dimm, or creates a
1074 * dimm. In the unmapped dimm case this loop sweeps for memdev
1075 * instances with an invalid / zero range_index and adds those
1076 * dimms without spa associations.
1077 */
1078 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1079 struct nfit_flush *nfit_flush;
1080 struct nfit_dcr *nfit_dcr;
1081 u32 device_handle;
1082 u16 dcr;
1083
1084 if (spa && nfit_memdev->memdev->range_index != spa->range_index)
1085 continue;
1086 if (!spa && nfit_memdev->memdev->range_index)
1087 continue;
1088 found = NULL;
1089 dcr = nfit_memdev->memdev->region_index;
1090 device_handle = nfit_memdev->memdev->device_handle;
1091 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1092 if (__to_nfit_memdev(nfit_mem)->device_handle
1093 == device_handle) {
1094 found = nfit_mem;
1095 break;
1096 }
1097
1098 if (found)
1099 nfit_mem = found;
1100 else {
1101 nfit_mem = devm_kzalloc(acpi_desc->dev,
1102 sizeof(*nfit_mem), GFP_KERNEL);
1103 if (!nfit_mem)
1104 return -ENOMEM;
1105 INIT_LIST_HEAD(&nfit_mem->list);
1106 nfit_mem->acpi_desc = acpi_desc;
1107 list_add(&nfit_mem->list, &acpi_desc->dimms);
1108 }
1109
1110 list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1111 if (nfit_dcr->dcr->region_index != dcr)
1112 continue;
1113 /*
1114 * Record the control region for the dimm. For
1115 * the ACPI 6.1 case, where there are separate
1116 * control regions for the pmem vs blk
1117 * interfaces, be sure to record the extended
1118 * blk details.
1119 */
1120 if (!nfit_mem->dcr)
1121 nfit_mem->dcr = nfit_dcr->dcr;
1122 else if (nfit_mem->dcr->windows == 0
1123 && nfit_dcr->dcr->windows)
1124 nfit_mem->dcr = nfit_dcr->dcr;
1125 break;
1126 }
1127
1128 list_for_each_entry(nfit_flush, &acpi_desc->flushes, list) {
1129 struct acpi_nfit_flush_address *flush;
1130 u16 i;
1131
1132 if (nfit_flush->flush->device_handle != device_handle)
1133 continue;
1134 nfit_mem->nfit_flush = nfit_flush;
1135 flush = nfit_flush->flush;
1136 nfit_mem->flush_wpq = devm_kcalloc(acpi_desc->dev,
1137 flush->hint_count,
1138 sizeof(struct resource),
1139 GFP_KERNEL);
1140 if (!nfit_mem->flush_wpq)
1141 return -ENOMEM;
1142 for (i = 0; i < flush->hint_count; i++) {
1143 struct resource *res = &nfit_mem->flush_wpq[i];
1144
1145 res->start = flush->hint_address[i];
1146 res->end = res->start + 8 - 1;
1147 }
1148 break;
1149 }
1150
1151 if (dcr && !nfit_mem->dcr) {
1152 dev_err(acpi_desc->dev, "SPA %d missing DCR %d\n",
1153 spa->range_index, dcr);
1154 return -ENODEV;
1155 }
1156
1157 if (type == NFIT_SPA_DCR) {
1158 struct nfit_idt *nfit_idt;
1159 u16 idt_idx;
1160
1161 /* multiple dimms may share a SPA when interleaved */
1162 nfit_mem->spa_dcr = spa;
1163 nfit_mem->memdev_dcr = nfit_memdev->memdev;
1164 idt_idx = nfit_memdev->memdev->interleave_index;
1165 list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
1166 if (nfit_idt->idt->interleave_index != idt_idx)
1167 continue;
1168 nfit_mem->idt_dcr = nfit_idt->idt;
1169 break;
1170 }
1171 nfit_mem_init_bdw(acpi_desc, nfit_mem, spa);
1172 } else if (type == NFIT_SPA_PM) {
1173 /*
1174 * A single dimm may belong to multiple SPA-PM
1175 * ranges, record at least one in addition to
1176 * any SPA-DCR range.
1177 */
1178 nfit_mem->memdev_pmem = nfit_memdev->memdev;
1179 } else
1180 nfit_mem->memdev_dcr = nfit_memdev->memdev;
1181 }
1182
1183 return 0;
1184 }
1185
nfit_mem_cmp(void * priv,struct list_head * _a,struct list_head * _b)1186 static int nfit_mem_cmp(void *priv, struct list_head *_a, struct list_head *_b)
1187 {
1188 struct nfit_mem *a = container_of(_a, typeof(*a), list);
1189 struct nfit_mem *b = container_of(_b, typeof(*b), list);
1190 u32 handleA, handleB;
1191
1192 handleA = __to_nfit_memdev(a)->device_handle;
1193 handleB = __to_nfit_memdev(b)->device_handle;
1194 if (handleA < handleB)
1195 return -1;
1196 else if (handleA > handleB)
1197 return 1;
1198 return 0;
1199 }
1200
nfit_mem_init(struct acpi_nfit_desc * acpi_desc)1201 static int nfit_mem_init(struct acpi_nfit_desc *acpi_desc)
1202 {
1203 struct nfit_spa *nfit_spa;
1204 int rc;
1205
1206
1207 /*
1208 * For each SPA-DCR or SPA-PMEM address range find its
1209 * corresponding MEMDEV(s). From each MEMDEV find the
1210 * corresponding DCR. Then, if we're operating on a SPA-DCR,
1211 * try to find a SPA-BDW and a corresponding BDW that references
1212 * the DCR. Throw it all into an nfit_mem object. Note, that
1213 * BDWs are optional.
1214 */
1215 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
1216 rc = __nfit_mem_init(acpi_desc, nfit_spa->spa);
1217 if (rc)
1218 return rc;
1219 }
1220
1221 /*
1222 * If a DIMM has failed to be mapped into SPA there will be no
1223 * SPA entries above. Find and register all the unmapped DIMMs
1224 * for reporting and recovery purposes.
1225 */
1226 rc = __nfit_mem_init(acpi_desc, NULL);
1227 if (rc)
1228 return rc;
1229
1230 list_sort(NULL, &acpi_desc->dimms, nfit_mem_cmp);
1231
1232 return 0;
1233 }
1234
bus_dsm_mask_show(struct device * dev,struct device_attribute * attr,char * buf)1235 static ssize_t bus_dsm_mask_show(struct device *dev,
1236 struct device_attribute *attr, char *buf)
1237 {
1238 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1239 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1240
1241 return sprintf(buf, "%#lx\n", nd_desc->bus_dsm_mask);
1242 }
1243 static struct device_attribute dev_attr_bus_dsm_mask =
1244 __ATTR(dsm_mask, 0444, bus_dsm_mask_show, NULL);
1245
revision_show(struct device * dev,struct device_attribute * attr,char * buf)1246 static ssize_t revision_show(struct device *dev,
1247 struct device_attribute *attr, char *buf)
1248 {
1249 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1250 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1251 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1252
1253 return sprintf(buf, "%d\n", acpi_desc->acpi_header.revision);
1254 }
1255 static DEVICE_ATTR_RO(revision);
1256
hw_error_scrub_show(struct device * dev,struct device_attribute * attr,char * buf)1257 static ssize_t hw_error_scrub_show(struct device *dev,
1258 struct device_attribute *attr, char *buf)
1259 {
1260 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1261 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1262 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1263
1264 return sprintf(buf, "%d\n", acpi_desc->scrub_mode);
1265 }
1266
1267 /*
1268 * The 'hw_error_scrub' attribute can have the following values written to it:
1269 * '0': Switch to the default mode where an exception will only insert
1270 * the address of the memory error into the poison and badblocks lists.
1271 * '1': Enable a full scrub to happen if an exception for a memory error is
1272 * received.
1273 */
hw_error_scrub_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)1274 static ssize_t hw_error_scrub_store(struct device *dev,
1275 struct device_attribute *attr, const char *buf, size_t size)
1276 {
1277 struct nvdimm_bus_descriptor *nd_desc;
1278 ssize_t rc;
1279 long val;
1280
1281 rc = kstrtol(buf, 0, &val);
1282 if (rc)
1283 return rc;
1284
1285 nfit_device_lock(dev);
1286 nd_desc = dev_get_drvdata(dev);
1287 if (nd_desc) {
1288 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1289
1290 switch (val) {
1291 case HW_ERROR_SCRUB_ON:
1292 acpi_desc->scrub_mode = HW_ERROR_SCRUB_ON;
1293 break;
1294 case HW_ERROR_SCRUB_OFF:
1295 acpi_desc->scrub_mode = HW_ERROR_SCRUB_OFF;
1296 break;
1297 default:
1298 rc = -EINVAL;
1299 break;
1300 }
1301 }
1302 nfit_device_unlock(dev);
1303 if (rc)
1304 return rc;
1305 return size;
1306 }
1307 static DEVICE_ATTR_RW(hw_error_scrub);
1308
1309 /*
1310 * This shows the number of full Address Range Scrubs that have been
1311 * completed since driver load time. Userspace can wait on this using
1312 * select/poll etc. A '+' at the end indicates an ARS is in progress
1313 */
scrub_show(struct device * dev,struct device_attribute * attr,char * buf)1314 static ssize_t scrub_show(struct device *dev,
1315 struct device_attribute *attr, char *buf)
1316 {
1317 struct nvdimm_bus_descriptor *nd_desc;
1318 struct acpi_nfit_desc *acpi_desc;
1319 ssize_t rc = -ENXIO;
1320 bool busy;
1321
1322 nfit_device_lock(dev);
1323 nd_desc = dev_get_drvdata(dev);
1324 if (!nd_desc) {
1325 nfit_device_unlock(dev);
1326 return rc;
1327 }
1328 acpi_desc = to_acpi_desc(nd_desc);
1329
1330 mutex_lock(&acpi_desc->init_mutex);
1331 busy = test_bit(ARS_BUSY, &acpi_desc->scrub_flags)
1332 && !test_bit(ARS_CANCEL, &acpi_desc->scrub_flags);
1333 rc = sprintf(buf, "%d%s", acpi_desc->scrub_count, busy ? "+\n" : "\n");
1334 /* Allow an admin to poll the busy state at a higher rate */
1335 if (busy && capable(CAP_SYS_RAWIO) && !test_and_set_bit(ARS_POLL,
1336 &acpi_desc->scrub_flags)) {
1337 acpi_desc->scrub_tmo = 1;
1338 mod_delayed_work(nfit_wq, &acpi_desc->dwork, HZ);
1339 }
1340
1341 mutex_unlock(&acpi_desc->init_mutex);
1342 nfit_device_unlock(dev);
1343 return rc;
1344 }
1345
scrub_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)1346 static ssize_t scrub_store(struct device *dev,
1347 struct device_attribute *attr, const char *buf, size_t size)
1348 {
1349 struct nvdimm_bus_descriptor *nd_desc;
1350 ssize_t rc;
1351 long val;
1352
1353 rc = kstrtol(buf, 0, &val);
1354 if (rc)
1355 return rc;
1356 if (val != 1)
1357 return -EINVAL;
1358
1359 nfit_device_lock(dev);
1360 nd_desc = dev_get_drvdata(dev);
1361 if (nd_desc) {
1362 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1363
1364 rc = acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG);
1365 }
1366 nfit_device_unlock(dev);
1367 if (rc)
1368 return rc;
1369 return size;
1370 }
1371 static DEVICE_ATTR_RW(scrub);
1372
ars_supported(struct nvdimm_bus * nvdimm_bus)1373 static bool ars_supported(struct nvdimm_bus *nvdimm_bus)
1374 {
1375 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1376 const unsigned long mask = 1 << ND_CMD_ARS_CAP | 1 << ND_CMD_ARS_START
1377 | 1 << ND_CMD_ARS_STATUS;
1378
1379 return (nd_desc->cmd_mask & mask) == mask;
1380 }
1381
nfit_visible(struct kobject * kobj,struct attribute * a,int n)1382 static umode_t nfit_visible(struct kobject *kobj, struct attribute *a, int n)
1383 {
1384 struct device *dev = container_of(kobj, struct device, kobj);
1385 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1386
1387 if (a == &dev_attr_scrub.attr && !ars_supported(nvdimm_bus))
1388 return 0;
1389 return a->mode;
1390 }
1391
1392 static struct attribute *acpi_nfit_attributes[] = {
1393 &dev_attr_revision.attr,
1394 &dev_attr_scrub.attr,
1395 &dev_attr_hw_error_scrub.attr,
1396 &dev_attr_bus_dsm_mask.attr,
1397 NULL,
1398 };
1399
1400 static const struct attribute_group acpi_nfit_attribute_group = {
1401 .name = "nfit",
1402 .attrs = acpi_nfit_attributes,
1403 .is_visible = nfit_visible,
1404 };
1405
1406 static const struct attribute_group *acpi_nfit_attribute_groups[] = {
1407 &nvdimm_bus_attribute_group,
1408 &acpi_nfit_attribute_group,
1409 NULL,
1410 };
1411
to_nfit_memdev(struct device * dev)1412 static struct acpi_nfit_memory_map *to_nfit_memdev(struct device *dev)
1413 {
1414 struct nvdimm *nvdimm = to_nvdimm(dev);
1415 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1416
1417 return __to_nfit_memdev(nfit_mem);
1418 }
1419
to_nfit_dcr(struct device * dev)1420 static struct acpi_nfit_control_region *to_nfit_dcr(struct device *dev)
1421 {
1422 struct nvdimm *nvdimm = to_nvdimm(dev);
1423 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1424
1425 return nfit_mem->dcr;
1426 }
1427
handle_show(struct device * dev,struct device_attribute * attr,char * buf)1428 static ssize_t handle_show(struct device *dev,
1429 struct device_attribute *attr, char *buf)
1430 {
1431 struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1432
1433 return sprintf(buf, "%#x\n", memdev->device_handle);
1434 }
1435 static DEVICE_ATTR_RO(handle);
1436
phys_id_show(struct device * dev,struct device_attribute * attr,char * buf)1437 static ssize_t phys_id_show(struct device *dev,
1438 struct device_attribute *attr, char *buf)
1439 {
1440 struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1441
1442 return sprintf(buf, "%#x\n", memdev->physical_id);
1443 }
1444 static DEVICE_ATTR_RO(phys_id);
1445
vendor_show(struct device * dev,struct device_attribute * attr,char * buf)1446 static ssize_t vendor_show(struct device *dev,
1447 struct device_attribute *attr, char *buf)
1448 {
1449 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1450
1451 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->vendor_id));
1452 }
1453 static DEVICE_ATTR_RO(vendor);
1454
rev_id_show(struct device * dev,struct device_attribute * attr,char * buf)1455 static ssize_t rev_id_show(struct device *dev,
1456 struct device_attribute *attr, char *buf)
1457 {
1458 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1459
1460 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->revision_id));
1461 }
1462 static DEVICE_ATTR_RO(rev_id);
1463
device_show(struct device * dev,struct device_attribute * attr,char * buf)1464 static ssize_t device_show(struct device *dev,
1465 struct device_attribute *attr, char *buf)
1466 {
1467 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1468
1469 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->device_id));
1470 }
1471 static DEVICE_ATTR_RO(device);
1472
subsystem_vendor_show(struct device * dev,struct device_attribute * attr,char * buf)1473 static ssize_t subsystem_vendor_show(struct device *dev,
1474 struct device_attribute *attr, char *buf)
1475 {
1476 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1477
1478 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_vendor_id));
1479 }
1480 static DEVICE_ATTR_RO(subsystem_vendor);
1481
subsystem_rev_id_show(struct device * dev,struct device_attribute * attr,char * buf)1482 static ssize_t subsystem_rev_id_show(struct device *dev,
1483 struct device_attribute *attr, char *buf)
1484 {
1485 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1486
1487 return sprintf(buf, "0x%04x\n",
1488 be16_to_cpu(dcr->subsystem_revision_id));
1489 }
1490 static DEVICE_ATTR_RO(subsystem_rev_id);
1491
subsystem_device_show(struct device * dev,struct device_attribute * attr,char * buf)1492 static ssize_t subsystem_device_show(struct device *dev,
1493 struct device_attribute *attr, char *buf)
1494 {
1495 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1496
1497 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_device_id));
1498 }
1499 static DEVICE_ATTR_RO(subsystem_device);
1500
num_nvdimm_formats(struct nvdimm * nvdimm)1501 static int num_nvdimm_formats(struct nvdimm *nvdimm)
1502 {
1503 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1504 int formats = 0;
1505
1506 if (nfit_mem->memdev_pmem)
1507 formats++;
1508 if (nfit_mem->memdev_bdw)
1509 formats++;
1510 return formats;
1511 }
1512
format_show(struct device * dev,struct device_attribute * attr,char * buf)1513 static ssize_t format_show(struct device *dev,
1514 struct device_attribute *attr, char *buf)
1515 {
1516 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1517
1518 return sprintf(buf, "0x%04x\n", le16_to_cpu(dcr->code));
1519 }
1520 static DEVICE_ATTR_RO(format);
1521
format1_show(struct device * dev,struct device_attribute * attr,char * buf)1522 static ssize_t format1_show(struct device *dev,
1523 struct device_attribute *attr, char *buf)
1524 {
1525 u32 handle;
1526 ssize_t rc = -ENXIO;
1527 struct nfit_mem *nfit_mem;
1528 struct nfit_memdev *nfit_memdev;
1529 struct acpi_nfit_desc *acpi_desc;
1530 struct nvdimm *nvdimm = to_nvdimm(dev);
1531 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1532
1533 nfit_mem = nvdimm_provider_data(nvdimm);
1534 acpi_desc = nfit_mem->acpi_desc;
1535 handle = to_nfit_memdev(dev)->device_handle;
1536
1537 /* assumes DIMMs have at most 2 published interface codes */
1538 mutex_lock(&acpi_desc->init_mutex);
1539 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1540 struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
1541 struct nfit_dcr *nfit_dcr;
1542
1543 if (memdev->device_handle != handle)
1544 continue;
1545
1546 list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1547 if (nfit_dcr->dcr->region_index != memdev->region_index)
1548 continue;
1549 if (nfit_dcr->dcr->code == dcr->code)
1550 continue;
1551 rc = sprintf(buf, "0x%04x\n",
1552 le16_to_cpu(nfit_dcr->dcr->code));
1553 break;
1554 }
1555 if (rc != ENXIO)
1556 break;
1557 }
1558 mutex_unlock(&acpi_desc->init_mutex);
1559 return rc;
1560 }
1561 static DEVICE_ATTR_RO(format1);
1562
formats_show(struct device * dev,struct device_attribute * attr,char * buf)1563 static ssize_t formats_show(struct device *dev,
1564 struct device_attribute *attr, char *buf)
1565 {
1566 struct nvdimm *nvdimm = to_nvdimm(dev);
1567
1568 return sprintf(buf, "%d\n", num_nvdimm_formats(nvdimm));
1569 }
1570 static DEVICE_ATTR_RO(formats);
1571
serial_show(struct device * dev,struct device_attribute * attr,char * buf)1572 static ssize_t serial_show(struct device *dev,
1573 struct device_attribute *attr, char *buf)
1574 {
1575 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1576
1577 return sprintf(buf, "0x%08x\n", be32_to_cpu(dcr->serial_number));
1578 }
1579 static DEVICE_ATTR_RO(serial);
1580
family_show(struct device * dev,struct device_attribute * attr,char * buf)1581 static ssize_t family_show(struct device *dev,
1582 struct device_attribute *attr, char *buf)
1583 {
1584 struct nvdimm *nvdimm = to_nvdimm(dev);
1585 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1586
1587 if (nfit_mem->family < 0)
1588 return -ENXIO;
1589 return sprintf(buf, "%d\n", nfit_mem->family);
1590 }
1591 static DEVICE_ATTR_RO(family);
1592
dsm_mask_show(struct device * dev,struct device_attribute * attr,char * buf)1593 static ssize_t dsm_mask_show(struct device *dev,
1594 struct device_attribute *attr, char *buf)
1595 {
1596 struct nvdimm *nvdimm = to_nvdimm(dev);
1597 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1598
1599 if (nfit_mem->family < 0)
1600 return -ENXIO;
1601 return sprintf(buf, "%#lx\n", nfit_mem->dsm_mask);
1602 }
1603 static DEVICE_ATTR_RO(dsm_mask);
1604
flags_show(struct device * dev,struct device_attribute * attr,char * buf)1605 static ssize_t flags_show(struct device *dev,
1606 struct device_attribute *attr, char *buf)
1607 {
1608 struct nvdimm *nvdimm = to_nvdimm(dev);
1609 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1610 u16 flags = __to_nfit_memdev(nfit_mem)->flags;
1611
1612 if (test_bit(NFIT_MEM_DIRTY, &nfit_mem->flags))
1613 flags |= ACPI_NFIT_MEM_FLUSH_FAILED;
1614
1615 return sprintf(buf, "%s%s%s%s%s%s%s\n",
1616 flags & ACPI_NFIT_MEM_SAVE_FAILED ? "save_fail " : "",
1617 flags & ACPI_NFIT_MEM_RESTORE_FAILED ? "restore_fail " : "",
1618 flags & ACPI_NFIT_MEM_FLUSH_FAILED ? "flush_fail " : "",
1619 flags & ACPI_NFIT_MEM_NOT_ARMED ? "not_armed " : "",
1620 flags & ACPI_NFIT_MEM_HEALTH_OBSERVED ? "smart_event " : "",
1621 flags & ACPI_NFIT_MEM_MAP_FAILED ? "map_fail " : "",
1622 flags & ACPI_NFIT_MEM_HEALTH_ENABLED ? "smart_notify " : "");
1623 }
1624 static DEVICE_ATTR_RO(flags);
1625
id_show(struct device * dev,struct device_attribute * attr,char * buf)1626 static ssize_t id_show(struct device *dev,
1627 struct device_attribute *attr, char *buf)
1628 {
1629 struct nvdimm *nvdimm = to_nvdimm(dev);
1630 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1631
1632 return sprintf(buf, "%s\n", nfit_mem->id);
1633 }
1634 static DEVICE_ATTR_RO(id);
1635
dirty_shutdown_show(struct device * dev,struct device_attribute * attr,char * buf)1636 static ssize_t dirty_shutdown_show(struct device *dev,
1637 struct device_attribute *attr, char *buf)
1638 {
1639 struct nvdimm *nvdimm = to_nvdimm(dev);
1640 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1641
1642 return sprintf(buf, "%d\n", nfit_mem->dirty_shutdown);
1643 }
1644 static DEVICE_ATTR_RO(dirty_shutdown);
1645
1646 static struct attribute *acpi_nfit_dimm_attributes[] = {
1647 &dev_attr_handle.attr,
1648 &dev_attr_phys_id.attr,
1649 &dev_attr_vendor.attr,
1650 &dev_attr_device.attr,
1651 &dev_attr_rev_id.attr,
1652 &dev_attr_subsystem_vendor.attr,
1653 &dev_attr_subsystem_device.attr,
1654 &dev_attr_subsystem_rev_id.attr,
1655 &dev_attr_format.attr,
1656 &dev_attr_formats.attr,
1657 &dev_attr_format1.attr,
1658 &dev_attr_serial.attr,
1659 &dev_attr_flags.attr,
1660 &dev_attr_id.attr,
1661 &dev_attr_family.attr,
1662 &dev_attr_dsm_mask.attr,
1663 &dev_attr_dirty_shutdown.attr,
1664 NULL,
1665 };
1666
acpi_nfit_dimm_attr_visible(struct kobject * kobj,struct attribute * a,int n)1667 static umode_t acpi_nfit_dimm_attr_visible(struct kobject *kobj,
1668 struct attribute *a, int n)
1669 {
1670 struct device *dev = container_of(kobj, struct device, kobj);
1671 struct nvdimm *nvdimm = to_nvdimm(dev);
1672 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1673
1674 if (!to_nfit_dcr(dev)) {
1675 /* Without a dcr only the memdev attributes can be surfaced */
1676 if (a == &dev_attr_handle.attr || a == &dev_attr_phys_id.attr
1677 || a == &dev_attr_flags.attr
1678 || a == &dev_attr_family.attr
1679 || a == &dev_attr_dsm_mask.attr)
1680 return a->mode;
1681 return 0;
1682 }
1683
1684 if (a == &dev_attr_format1.attr && num_nvdimm_formats(nvdimm) <= 1)
1685 return 0;
1686
1687 if (!test_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags)
1688 && a == &dev_attr_dirty_shutdown.attr)
1689 return 0;
1690
1691 return a->mode;
1692 }
1693
1694 static const struct attribute_group acpi_nfit_dimm_attribute_group = {
1695 .name = "nfit",
1696 .attrs = acpi_nfit_dimm_attributes,
1697 .is_visible = acpi_nfit_dimm_attr_visible,
1698 };
1699
1700 static const struct attribute_group *acpi_nfit_dimm_attribute_groups[] = {
1701 &nvdimm_attribute_group,
1702 &nd_device_attribute_group,
1703 &acpi_nfit_dimm_attribute_group,
1704 NULL,
1705 };
1706
acpi_nfit_dimm_by_handle(struct acpi_nfit_desc * acpi_desc,u32 device_handle)1707 static struct nvdimm *acpi_nfit_dimm_by_handle(struct acpi_nfit_desc *acpi_desc,
1708 u32 device_handle)
1709 {
1710 struct nfit_mem *nfit_mem;
1711
1712 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1713 if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle)
1714 return nfit_mem->nvdimm;
1715
1716 return NULL;
1717 }
1718
__acpi_nvdimm_notify(struct device * dev,u32 event)1719 void __acpi_nvdimm_notify(struct device *dev, u32 event)
1720 {
1721 struct nfit_mem *nfit_mem;
1722 struct acpi_nfit_desc *acpi_desc;
1723
1724 dev_dbg(dev->parent, "%s: event: %d\n", dev_name(dev),
1725 event);
1726
1727 if (event != NFIT_NOTIFY_DIMM_HEALTH) {
1728 dev_dbg(dev->parent, "%s: unknown event: %d\n", dev_name(dev),
1729 event);
1730 return;
1731 }
1732
1733 acpi_desc = dev_get_drvdata(dev->parent);
1734 if (!acpi_desc)
1735 return;
1736
1737 /*
1738 * If we successfully retrieved acpi_desc, then we know nfit_mem data
1739 * is still valid.
1740 */
1741 nfit_mem = dev_get_drvdata(dev);
1742 if (nfit_mem && nfit_mem->flags_attr)
1743 sysfs_notify_dirent(nfit_mem->flags_attr);
1744 }
1745 EXPORT_SYMBOL_GPL(__acpi_nvdimm_notify);
1746
acpi_nvdimm_notify(acpi_handle handle,u32 event,void * data)1747 static void acpi_nvdimm_notify(acpi_handle handle, u32 event, void *data)
1748 {
1749 struct acpi_device *adev = data;
1750 struct device *dev = &adev->dev;
1751
1752 nfit_device_lock(dev->parent);
1753 __acpi_nvdimm_notify(dev, event);
1754 nfit_device_unlock(dev->parent);
1755 }
1756
acpi_nvdimm_has_method(struct acpi_device * adev,char * method)1757 static bool acpi_nvdimm_has_method(struct acpi_device *adev, char *method)
1758 {
1759 acpi_handle handle;
1760 acpi_status status;
1761
1762 status = acpi_get_handle(adev->handle, method, &handle);
1763
1764 if (ACPI_SUCCESS(status))
1765 return true;
1766 return false;
1767 }
1768
nfit_intel_shutdown_status(struct nfit_mem * nfit_mem)1769 __weak void nfit_intel_shutdown_status(struct nfit_mem *nfit_mem)
1770 {
1771 struct device *dev = &nfit_mem->adev->dev;
1772 struct nd_intel_smart smart = { 0 };
1773 union acpi_object in_buf = {
1774 .buffer.type = ACPI_TYPE_BUFFER,
1775 .buffer.length = 0,
1776 };
1777 union acpi_object in_obj = {
1778 .package.type = ACPI_TYPE_PACKAGE,
1779 .package.count = 1,
1780 .package.elements = &in_buf,
1781 };
1782 const u8 func = ND_INTEL_SMART;
1783 const guid_t *guid = to_nfit_uuid(nfit_mem->family);
1784 u8 revid = nfit_dsm_revid(nfit_mem->family, func);
1785 struct acpi_device *adev = nfit_mem->adev;
1786 acpi_handle handle = adev->handle;
1787 union acpi_object *out_obj;
1788
1789 if ((nfit_mem->dsm_mask & (1 << func)) == 0)
1790 return;
1791
1792 out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj);
1793 if (!out_obj || out_obj->type != ACPI_TYPE_BUFFER
1794 || out_obj->buffer.length < sizeof(smart)) {
1795 dev_dbg(dev->parent, "%s: failed to retrieve initial health\n",
1796 dev_name(dev));
1797 ACPI_FREE(out_obj);
1798 return;
1799 }
1800 memcpy(&smart, out_obj->buffer.pointer, sizeof(smart));
1801 ACPI_FREE(out_obj);
1802
1803 if (smart.flags & ND_INTEL_SMART_SHUTDOWN_VALID) {
1804 if (smart.shutdown_state)
1805 set_bit(NFIT_MEM_DIRTY, &nfit_mem->flags);
1806 }
1807
1808 if (smart.flags & ND_INTEL_SMART_SHUTDOWN_COUNT_VALID) {
1809 set_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags);
1810 nfit_mem->dirty_shutdown = smart.shutdown_count;
1811 }
1812 }
1813
populate_shutdown_status(struct nfit_mem * nfit_mem)1814 static void populate_shutdown_status(struct nfit_mem *nfit_mem)
1815 {
1816 /*
1817 * For DIMMs that provide a dynamic facility to retrieve a
1818 * dirty-shutdown status and/or a dirty-shutdown count, cache
1819 * these values in nfit_mem.
1820 */
1821 if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
1822 nfit_intel_shutdown_status(nfit_mem);
1823 }
1824
acpi_nfit_add_dimm(struct acpi_nfit_desc * acpi_desc,struct nfit_mem * nfit_mem,u32 device_handle)1825 static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc,
1826 struct nfit_mem *nfit_mem, u32 device_handle)
1827 {
1828 struct acpi_device *adev, *adev_dimm;
1829 struct device *dev = acpi_desc->dev;
1830 unsigned long dsm_mask, label_mask;
1831 const guid_t *guid;
1832 int i;
1833 int family = -1;
1834 struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
1835
1836 /* nfit test assumes 1:1 relationship between commands and dsms */
1837 nfit_mem->dsm_mask = acpi_desc->dimm_cmd_force_en;
1838 nfit_mem->family = NVDIMM_FAMILY_INTEL;
1839
1840 if (dcr->valid_fields & ACPI_NFIT_CONTROL_MFG_INFO_VALID)
1841 sprintf(nfit_mem->id, "%04x-%02x-%04x-%08x",
1842 be16_to_cpu(dcr->vendor_id),
1843 dcr->manufacturing_location,
1844 be16_to_cpu(dcr->manufacturing_date),
1845 be32_to_cpu(dcr->serial_number));
1846 else
1847 sprintf(nfit_mem->id, "%04x-%08x",
1848 be16_to_cpu(dcr->vendor_id),
1849 be32_to_cpu(dcr->serial_number));
1850
1851 adev = to_acpi_dev(acpi_desc);
1852 if (!adev) {
1853 /* unit test case */
1854 populate_shutdown_status(nfit_mem);
1855 return 0;
1856 }
1857
1858 adev_dimm = acpi_find_child_device(adev, device_handle, false);
1859 nfit_mem->adev = adev_dimm;
1860 if (!adev_dimm) {
1861 dev_err(dev, "no ACPI.NFIT device with _ADR %#x, disabling...\n",
1862 device_handle);
1863 return force_enable_dimms ? 0 : -ENODEV;
1864 }
1865
1866 if (ACPI_FAILURE(acpi_install_notify_handler(adev_dimm->handle,
1867 ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify, adev_dimm))) {
1868 dev_err(dev, "%s: notification registration failed\n",
1869 dev_name(&adev_dimm->dev));
1870 return -ENXIO;
1871 }
1872 /*
1873 * Record nfit_mem for the notification path to track back to
1874 * the nfit sysfs attributes for this dimm device object.
1875 */
1876 dev_set_drvdata(&adev_dimm->dev, nfit_mem);
1877
1878 /*
1879 * There are 4 "legacy" NVDIMM command sets
1880 * (NVDIMM_FAMILY_{INTEL,MSFT,HPE1,HPE2}) that were created before
1881 * an EFI working group was established to constrain this
1882 * proliferation. The nfit driver probes for the supported command
1883 * set by GUID. Note, if you're a platform developer looking to add
1884 * a new command set to this probe, consider using an existing set,
1885 * or otherwise seek approval to publish the command set at
1886 * http://www.uefi.org/RFIC_LIST.
1887 *
1888 * Note, that checking for function0 (bit0) tells us if any commands
1889 * are reachable through this GUID.
1890 */
1891 for (i = 0; i <= NVDIMM_FAMILY_MAX; i++)
1892 if (acpi_check_dsm(adev_dimm->handle, to_nfit_uuid(i), 1, 1))
1893 if (family < 0 || i == default_dsm_family)
1894 family = i;
1895
1896 /* limit the supported commands to those that are publicly documented */
1897 nfit_mem->family = family;
1898 if (override_dsm_mask && !disable_vendor_specific)
1899 dsm_mask = override_dsm_mask;
1900 else if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
1901 dsm_mask = NVDIMM_INTEL_CMDMASK;
1902 if (disable_vendor_specific)
1903 dsm_mask &= ~(1 << ND_CMD_VENDOR);
1904 } else if (nfit_mem->family == NVDIMM_FAMILY_HPE1) {
1905 dsm_mask = 0x1c3c76;
1906 } else if (nfit_mem->family == NVDIMM_FAMILY_HPE2) {
1907 dsm_mask = 0x1fe;
1908 if (disable_vendor_specific)
1909 dsm_mask &= ~(1 << 8);
1910 } else if (nfit_mem->family == NVDIMM_FAMILY_MSFT) {
1911 dsm_mask = 0xffffffff;
1912 } else if (nfit_mem->family == NVDIMM_FAMILY_HYPERV) {
1913 dsm_mask = 0x1f;
1914 } else {
1915 dev_dbg(dev, "unknown dimm command family\n");
1916 nfit_mem->family = -1;
1917 /* DSMs are optional, continue loading the driver... */
1918 return 0;
1919 }
1920
1921 /*
1922 * Function 0 is the command interrogation function, don't
1923 * export it to potential userspace use, and enable it to be
1924 * used as an error value in acpi_nfit_ctl().
1925 */
1926 dsm_mask &= ~1UL;
1927
1928 guid = to_nfit_uuid(nfit_mem->family);
1929 for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
1930 if (acpi_check_dsm(adev_dimm->handle, guid,
1931 nfit_dsm_revid(nfit_mem->family, i),
1932 1ULL << i))
1933 set_bit(i, &nfit_mem->dsm_mask);
1934
1935 /*
1936 * Prefer the NVDIMM_FAMILY_INTEL label read commands if present
1937 * due to their better semantics handling locked capacity.
1938 */
1939 label_mask = 1 << ND_CMD_GET_CONFIG_SIZE | 1 << ND_CMD_GET_CONFIG_DATA
1940 | 1 << ND_CMD_SET_CONFIG_DATA;
1941 if (family == NVDIMM_FAMILY_INTEL
1942 && (dsm_mask & label_mask) == label_mask)
1943 /* skip _LS{I,R,W} enabling */;
1944 else {
1945 if (acpi_nvdimm_has_method(adev_dimm, "_LSI")
1946 && acpi_nvdimm_has_method(adev_dimm, "_LSR")) {
1947 dev_dbg(dev, "%s: has _LSR\n", dev_name(&adev_dimm->dev));
1948 set_bit(NFIT_MEM_LSR, &nfit_mem->flags);
1949 }
1950
1951 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)
1952 && acpi_nvdimm_has_method(adev_dimm, "_LSW")) {
1953 dev_dbg(dev, "%s: has _LSW\n", dev_name(&adev_dimm->dev));
1954 set_bit(NFIT_MEM_LSW, &nfit_mem->flags);
1955 }
1956
1957 /*
1958 * Quirk read-only label configurations to preserve
1959 * access to label-less namespaces by default.
1960 */
1961 if (!test_bit(NFIT_MEM_LSW, &nfit_mem->flags)
1962 && !force_labels) {
1963 dev_dbg(dev, "%s: No _LSW, disable labels\n",
1964 dev_name(&adev_dimm->dev));
1965 clear_bit(NFIT_MEM_LSR, &nfit_mem->flags);
1966 } else
1967 dev_dbg(dev, "%s: Force enable labels\n",
1968 dev_name(&adev_dimm->dev));
1969 }
1970
1971 populate_shutdown_status(nfit_mem);
1972
1973 return 0;
1974 }
1975
shutdown_dimm_notify(void * data)1976 static void shutdown_dimm_notify(void *data)
1977 {
1978 struct acpi_nfit_desc *acpi_desc = data;
1979 struct nfit_mem *nfit_mem;
1980
1981 mutex_lock(&acpi_desc->init_mutex);
1982 /*
1983 * Clear out the nfit_mem->flags_attr and shut down dimm event
1984 * notifications.
1985 */
1986 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1987 struct acpi_device *adev_dimm = nfit_mem->adev;
1988
1989 if (nfit_mem->flags_attr) {
1990 sysfs_put(nfit_mem->flags_attr);
1991 nfit_mem->flags_attr = NULL;
1992 }
1993 if (adev_dimm) {
1994 acpi_remove_notify_handler(adev_dimm->handle,
1995 ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify);
1996 dev_set_drvdata(&adev_dimm->dev, NULL);
1997 }
1998 }
1999 mutex_unlock(&acpi_desc->init_mutex);
2000 }
2001
acpi_nfit_get_security_ops(int family)2002 static const struct nvdimm_security_ops *acpi_nfit_get_security_ops(int family)
2003 {
2004 switch (family) {
2005 case NVDIMM_FAMILY_INTEL:
2006 return intel_security_ops;
2007 default:
2008 return NULL;
2009 }
2010 }
2011
acpi_nfit_register_dimms(struct acpi_nfit_desc * acpi_desc)2012 static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc)
2013 {
2014 struct nfit_mem *nfit_mem;
2015 int dimm_count = 0, rc;
2016 struct nvdimm *nvdimm;
2017
2018 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
2019 struct acpi_nfit_flush_address *flush;
2020 unsigned long flags = 0, cmd_mask;
2021 struct nfit_memdev *nfit_memdev;
2022 u32 device_handle;
2023 u16 mem_flags;
2024
2025 device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
2026 nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, device_handle);
2027 if (nvdimm) {
2028 dimm_count++;
2029 continue;
2030 }
2031
2032 if (nfit_mem->bdw && nfit_mem->memdev_pmem)
2033 set_bit(NDD_ALIASING, &flags);
2034
2035 /* collate flags across all memdevs for this dimm */
2036 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
2037 struct acpi_nfit_memory_map *dimm_memdev;
2038
2039 dimm_memdev = __to_nfit_memdev(nfit_mem);
2040 if (dimm_memdev->device_handle
2041 != nfit_memdev->memdev->device_handle)
2042 continue;
2043 dimm_memdev->flags |= nfit_memdev->memdev->flags;
2044 }
2045
2046 mem_flags = __to_nfit_memdev(nfit_mem)->flags;
2047 if (mem_flags & ACPI_NFIT_MEM_NOT_ARMED)
2048 set_bit(NDD_UNARMED, &flags);
2049
2050 rc = acpi_nfit_add_dimm(acpi_desc, nfit_mem, device_handle);
2051 if (rc)
2052 continue;
2053
2054 /*
2055 * TODO: provide translation for non-NVDIMM_FAMILY_INTEL
2056 * devices (i.e. from nd_cmd to acpi_dsm) to standardize the
2057 * userspace interface.
2058 */
2059 cmd_mask = 1UL << ND_CMD_CALL;
2060 if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
2061 /*
2062 * These commands have a 1:1 correspondence
2063 * between DSM payload and libnvdimm ioctl
2064 * payload format.
2065 */
2066 cmd_mask |= nfit_mem->dsm_mask & NVDIMM_STANDARD_CMDMASK;
2067 }
2068
2069 /* Quirk to ignore LOCAL for labels on HYPERV DIMMs */
2070 if (nfit_mem->family == NVDIMM_FAMILY_HYPERV)
2071 set_bit(NDD_NOBLK, &flags);
2072
2073 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) {
2074 set_bit(ND_CMD_GET_CONFIG_SIZE, &cmd_mask);
2075 set_bit(ND_CMD_GET_CONFIG_DATA, &cmd_mask);
2076 }
2077 if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags))
2078 set_bit(ND_CMD_SET_CONFIG_DATA, &cmd_mask);
2079
2080 flush = nfit_mem->nfit_flush ? nfit_mem->nfit_flush->flush
2081 : NULL;
2082 nvdimm = __nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem,
2083 acpi_nfit_dimm_attribute_groups,
2084 flags, cmd_mask, flush ? flush->hint_count : 0,
2085 nfit_mem->flush_wpq, &nfit_mem->id[0],
2086 acpi_nfit_get_security_ops(nfit_mem->family));
2087 if (!nvdimm)
2088 return -ENOMEM;
2089
2090 nfit_mem->nvdimm = nvdimm;
2091 dimm_count++;
2092
2093 if ((mem_flags & ACPI_NFIT_MEM_FAILED_MASK) == 0)
2094 continue;
2095
2096 dev_err(acpi_desc->dev, "Error found in NVDIMM %s flags:%s%s%s%s%s\n",
2097 nvdimm_name(nvdimm),
2098 mem_flags & ACPI_NFIT_MEM_SAVE_FAILED ? " save_fail" : "",
2099 mem_flags & ACPI_NFIT_MEM_RESTORE_FAILED ? " restore_fail":"",
2100 mem_flags & ACPI_NFIT_MEM_FLUSH_FAILED ? " flush_fail" : "",
2101 mem_flags & ACPI_NFIT_MEM_NOT_ARMED ? " not_armed" : "",
2102 mem_flags & ACPI_NFIT_MEM_MAP_FAILED ? " map_fail" : "");
2103
2104 }
2105
2106 rc = nvdimm_bus_check_dimm_count(acpi_desc->nvdimm_bus, dimm_count);
2107 if (rc)
2108 return rc;
2109
2110 /*
2111 * Now that dimms are successfully registered, and async registration
2112 * is flushed, attempt to enable event notification.
2113 */
2114 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
2115 struct kernfs_node *nfit_kernfs;
2116
2117 nvdimm = nfit_mem->nvdimm;
2118 if (!nvdimm)
2119 continue;
2120
2121 nfit_kernfs = sysfs_get_dirent(nvdimm_kobj(nvdimm)->sd, "nfit");
2122 if (nfit_kernfs)
2123 nfit_mem->flags_attr = sysfs_get_dirent(nfit_kernfs,
2124 "flags");
2125 sysfs_put(nfit_kernfs);
2126 if (!nfit_mem->flags_attr)
2127 dev_warn(acpi_desc->dev, "%s: notifications disabled\n",
2128 nvdimm_name(nvdimm));
2129 }
2130
2131 return devm_add_action_or_reset(acpi_desc->dev, shutdown_dimm_notify,
2132 acpi_desc);
2133 }
2134
2135 /*
2136 * These constants are private because there are no kernel consumers of
2137 * these commands.
2138 */
2139 enum nfit_aux_cmds {
2140 NFIT_CMD_TRANSLATE_SPA = 5,
2141 NFIT_CMD_ARS_INJECT_SET = 7,
2142 NFIT_CMD_ARS_INJECT_CLEAR = 8,
2143 NFIT_CMD_ARS_INJECT_GET = 9,
2144 };
2145
acpi_nfit_init_dsms(struct acpi_nfit_desc * acpi_desc)2146 static void acpi_nfit_init_dsms(struct acpi_nfit_desc *acpi_desc)
2147 {
2148 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2149 const guid_t *guid = to_nfit_uuid(NFIT_DEV_BUS);
2150 struct acpi_device *adev;
2151 unsigned long dsm_mask;
2152 int i;
2153
2154 nd_desc->cmd_mask = acpi_desc->bus_cmd_force_en;
2155 nd_desc->bus_dsm_mask = acpi_desc->bus_nfit_cmd_force_en;
2156 adev = to_acpi_dev(acpi_desc);
2157 if (!adev)
2158 return;
2159
2160 for (i = ND_CMD_ARS_CAP; i <= ND_CMD_CLEAR_ERROR; i++)
2161 if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2162 set_bit(i, &nd_desc->cmd_mask);
2163 set_bit(ND_CMD_CALL, &nd_desc->cmd_mask);
2164
2165 dsm_mask =
2166 (1 << ND_CMD_ARS_CAP) |
2167 (1 << ND_CMD_ARS_START) |
2168 (1 << ND_CMD_ARS_STATUS) |
2169 (1 << ND_CMD_CLEAR_ERROR) |
2170 (1 << NFIT_CMD_TRANSLATE_SPA) |
2171 (1 << NFIT_CMD_ARS_INJECT_SET) |
2172 (1 << NFIT_CMD_ARS_INJECT_CLEAR) |
2173 (1 << NFIT_CMD_ARS_INJECT_GET);
2174 for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
2175 if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2176 set_bit(i, &nd_desc->bus_dsm_mask);
2177 }
2178
range_index_show(struct device * dev,struct device_attribute * attr,char * buf)2179 static ssize_t range_index_show(struct device *dev,
2180 struct device_attribute *attr, char *buf)
2181 {
2182 struct nd_region *nd_region = to_nd_region(dev);
2183 struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region);
2184
2185 return sprintf(buf, "%d\n", nfit_spa->spa->range_index);
2186 }
2187 static DEVICE_ATTR_RO(range_index);
2188
2189 static struct attribute *acpi_nfit_region_attributes[] = {
2190 &dev_attr_range_index.attr,
2191 NULL,
2192 };
2193
2194 static const struct attribute_group acpi_nfit_region_attribute_group = {
2195 .name = "nfit",
2196 .attrs = acpi_nfit_region_attributes,
2197 };
2198
2199 static const struct attribute_group *acpi_nfit_region_attribute_groups[] = {
2200 &nd_region_attribute_group,
2201 &nd_mapping_attribute_group,
2202 &nd_device_attribute_group,
2203 &nd_numa_attribute_group,
2204 &acpi_nfit_region_attribute_group,
2205 NULL,
2206 };
2207
2208 /* enough info to uniquely specify an interleave set */
2209 struct nfit_set_info {
2210 struct nfit_set_info_map {
2211 u64 region_offset;
2212 u32 serial_number;
2213 u32 pad;
2214 } mapping[0];
2215 };
2216
2217 struct nfit_set_info2 {
2218 struct nfit_set_info_map2 {
2219 u64 region_offset;
2220 u32 serial_number;
2221 u16 vendor_id;
2222 u16 manufacturing_date;
2223 u8 manufacturing_location;
2224 u8 reserved[31];
2225 } mapping[0];
2226 };
2227
sizeof_nfit_set_info(int num_mappings)2228 static size_t sizeof_nfit_set_info(int num_mappings)
2229 {
2230 return sizeof(struct nfit_set_info)
2231 + num_mappings * sizeof(struct nfit_set_info_map);
2232 }
2233
sizeof_nfit_set_info2(int num_mappings)2234 static size_t sizeof_nfit_set_info2(int num_mappings)
2235 {
2236 return sizeof(struct nfit_set_info2)
2237 + num_mappings * sizeof(struct nfit_set_info_map2);
2238 }
2239
cmp_map_compat(const void * m0,const void * m1)2240 static int cmp_map_compat(const void *m0, const void *m1)
2241 {
2242 const struct nfit_set_info_map *map0 = m0;
2243 const struct nfit_set_info_map *map1 = m1;
2244
2245 return memcmp(&map0->region_offset, &map1->region_offset,
2246 sizeof(u64));
2247 }
2248
cmp_map(const void * m0,const void * m1)2249 static int cmp_map(const void *m0, const void *m1)
2250 {
2251 const struct nfit_set_info_map *map0 = m0;
2252 const struct nfit_set_info_map *map1 = m1;
2253
2254 if (map0->region_offset < map1->region_offset)
2255 return -1;
2256 else if (map0->region_offset > map1->region_offset)
2257 return 1;
2258 return 0;
2259 }
2260
cmp_map2(const void * m0,const void * m1)2261 static int cmp_map2(const void *m0, const void *m1)
2262 {
2263 const struct nfit_set_info_map2 *map0 = m0;
2264 const struct nfit_set_info_map2 *map1 = m1;
2265
2266 if (map0->region_offset < map1->region_offset)
2267 return -1;
2268 else if (map0->region_offset > map1->region_offset)
2269 return 1;
2270 return 0;
2271 }
2272
2273 /* Retrieve the nth entry referencing this spa */
memdev_from_spa(struct acpi_nfit_desc * acpi_desc,u16 range_index,int n)2274 static struct acpi_nfit_memory_map *memdev_from_spa(
2275 struct acpi_nfit_desc *acpi_desc, u16 range_index, int n)
2276 {
2277 struct nfit_memdev *nfit_memdev;
2278
2279 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list)
2280 if (nfit_memdev->memdev->range_index == range_index)
2281 if (n-- == 0)
2282 return nfit_memdev->memdev;
2283 return NULL;
2284 }
2285
acpi_nfit_init_interleave_set(struct acpi_nfit_desc * acpi_desc,struct nd_region_desc * ndr_desc,struct acpi_nfit_system_address * spa)2286 static int acpi_nfit_init_interleave_set(struct acpi_nfit_desc *acpi_desc,
2287 struct nd_region_desc *ndr_desc,
2288 struct acpi_nfit_system_address *spa)
2289 {
2290 struct device *dev = acpi_desc->dev;
2291 struct nd_interleave_set *nd_set;
2292 u16 nr = ndr_desc->num_mappings;
2293 struct nfit_set_info2 *info2;
2294 struct nfit_set_info *info;
2295 int i;
2296
2297 nd_set = devm_kzalloc(dev, sizeof(*nd_set), GFP_KERNEL);
2298 if (!nd_set)
2299 return -ENOMEM;
2300 guid_copy(&nd_set->type_guid, (guid_t *) spa->range_guid);
2301
2302 info = devm_kzalloc(dev, sizeof_nfit_set_info(nr), GFP_KERNEL);
2303 if (!info)
2304 return -ENOMEM;
2305
2306 info2 = devm_kzalloc(dev, sizeof_nfit_set_info2(nr), GFP_KERNEL);
2307 if (!info2)
2308 return -ENOMEM;
2309
2310 for (i = 0; i < nr; i++) {
2311 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
2312 struct nfit_set_info_map *map = &info->mapping[i];
2313 struct nfit_set_info_map2 *map2 = &info2->mapping[i];
2314 struct nvdimm *nvdimm = mapping->nvdimm;
2315 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2316 struct acpi_nfit_memory_map *memdev = memdev_from_spa(acpi_desc,
2317 spa->range_index, i);
2318 struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2319
2320 if (!memdev || !nfit_mem->dcr) {
2321 dev_err(dev, "%s: failed to find DCR\n", __func__);
2322 return -ENODEV;
2323 }
2324
2325 map->region_offset = memdev->region_offset;
2326 map->serial_number = dcr->serial_number;
2327
2328 map2->region_offset = memdev->region_offset;
2329 map2->serial_number = dcr->serial_number;
2330 map2->vendor_id = dcr->vendor_id;
2331 map2->manufacturing_date = dcr->manufacturing_date;
2332 map2->manufacturing_location = dcr->manufacturing_location;
2333 }
2334
2335 /* v1.1 namespaces */
2336 sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map),
2337 cmp_map, NULL);
2338 nd_set->cookie1 = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0);
2339
2340 /* v1.2 namespaces */
2341 sort(&info2->mapping[0], nr, sizeof(struct nfit_set_info_map2),
2342 cmp_map2, NULL);
2343 nd_set->cookie2 = nd_fletcher64(info2, sizeof_nfit_set_info2(nr), 0);
2344
2345 /* support v1.1 namespaces created with the wrong sort order */
2346 sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map),
2347 cmp_map_compat, NULL);
2348 nd_set->altcookie = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0);
2349
2350 /* record the result of the sort for the mapping position */
2351 for (i = 0; i < nr; i++) {
2352 struct nfit_set_info_map2 *map2 = &info2->mapping[i];
2353 int j;
2354
2355 for (j = 0; j < nr; j++) {
2356 struct nd_mapping_desc *mapping = &ndr_desc->mapping[j];
2357 struct nvdimm *nvdimm = mapping->nvdimm;
2358 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2359 struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2360
2361 if (map2->serial_number == dcr->serial_number &&
2362 map2->vendor_id == dcr->vendor_id &&
2363 map2->manufacturing_date == dcr->manufacturing_date &&
2364 map2->manufacturing_location
2365 == dcr->manufacturing_location) {
2366 mapping->position = i;
2367 break;
2368 }
2369 }
2370 }
2371
2372 ndr_desc->nd_set = nd_set;
2373 devm_kfree(dev, info);
2374 devm_kfree(dev, info2);
2375
2376 return 0;
2377 }
2378
to_interleave_offset(u64 offset,struct nfit_blk_mmio * mmio)2379 static u64 to_interleave_offset(u64 offset, struct nfit_blk_mmio *mmio)
2380 {
2381 struct acpi_nfit_interleave *idt = mmio->idt;
2382 u32 sub_line_offset, line_index, line_offset;
2383 u64 line_no, table_skip_count, table_offset;
2384
2385 line_no = div_u64_rem(offset, mmio->line_size, &sub_line_offset);
2386 table_skip_count = div_u64_rem(line_no, mmio->num_lines, &line_index);
2387 line_offset = idt->line_offset[line_index]
2388 * mmio->line_size;
2389 table_offset = table_skip_count * mmio->table_size;
2390
2391 return mmio->base_offset + line_offset + table_offset + sub_line_offset;
2392 }
2393
read_blk_stat(struct nfit_blk * nfit_blk,unsigned int bw)2394 static u32 read_blk_stat(struct nfit_blk *nfit_blk, unsigned int bw)
2395 {
2396 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
2397 u64 offset = nfit_blk->stat_offset + mmio->size * bw;
2398 const u32 STATUS_MASK = 0x80000037;
2399
2400 if (mmio->num_lines)
2401 offset = to_interleave_offset(offset, mmio);
2402
2403 return readl(mmio->addr.base + offset) & STATUS_MASK;
2404 }
2405
write_blk_ctl(struct nfit_blk * nfit_blk,unsigned int bw,resource_size_t dpa,unsigned int len,unsigned int write)2406 static void write_blk_ctl(struct nfit_blk *nfit_blk, unsigned int bw,
2407 resource_size_t dpa, unsigned int len, unsigned int write)
2408 {
2409 u64 cmd, offset;
2410 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
2411
2412 enum {
2413 BCW_OFFSET_MASK = (1ULL << 48)-1,
2414 BCW_LEN_SHIFT = 48,
2415 BCW_LEN_MASK = (1ULL << 8) - 1,
2416 BCW_CMD_SHIFT = 56,
2417 };
2418
2419 cmd = (dpa >> L1_CACHE_SHIFT) & BCW_OFFSET_MASK;
2420 len = len >> L1_CACHE_SHIFT;
2421 cmd |= ((u64) len & BCW_LEN_MASK) << BCW_LEN_SHIFT;
2422 cmd |= ((u64) write) << BCW_CMD_SHIFT;
2423
2424 offset = nfit_blk->cmd_offset + mmio->size * bw;
2425 if (mmio->num_lines)
2426 offset = to_interleave_offset(offset, mmio);
2427
2428 writeq(cmd, mmio->addr.base + offset);
2429 nvdimm_flush(nfit_blk->nd_region, NULL);
2430
2431 if (nfit_blk->dimm_flags & NFIT_BLK_DCR_LATCH)
2432 readq(mmio->addr.base + offset);
2433 }
2434
acpi_nfit_blk_single_io(struct nfit_blk * nfit_blk,resource_size_t dpa,void * iobuf,size_t len,int rw,unsigned int lane)2435 static int acpi_nfit_blk_single_io(struct nfit_blk *nfit_blk,
2436 resource_size_t dpa, void *iobuf, size_t len, int rw,
2437 unsigned int lane)
2438 {
2439 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
2440 unsigned int copied = 0;
2441 u64 base_offset;
2442 int rc;
2443
2444 base_offset = nfit_blk->bdw_offset + dpa % L1_CACHE_BYTES
2445 + lane * mmio->size;
2446 write_blk_ctl(nfit_blk, lane, dpa, len, rw);
2447 while (len) {
2448 unsigned int c;
2449 u64 offset;
2450
2451 if (mmio->num_lines) {
2452 u32 line_offset;
2453
2454 offset = to_interleave_offset(base_offset + copied,
2455 mmio);
2456 div_u64_rem(offset, mmio->line_size, &line_offset);
2457 c = min_t(size_t, len, mmio->line_size - line_offset);
2458 } else {
2459 offset = base_offset + nfit_blk->bdw_offset;
2460 c = len;
2461 }
2462
2463 if (rw)
2464 memcpy_flushcache(mmio->addr.aperture + offset, iobuf + copied, c);
2465 else {
2466 if (nfit_blk->dimm_flags & NFIT_BLK_READ_FLUSH)
2467 arch_invalidate_pmem((void __force *)
2468 mmio->addr.aperture + offset, c);
2469
2470 memcpy(iobuf + copied, mmio->addr.aperture + offset, c);
2471 }
2472
2473 copied += c;
2474 len -= c;
2475 }
2476
2477 if (rw)
2478 nvdimm_flush(nfit_blk->nd_region, NULL);
2479
2480 rc = read_blk_stat(nfit_blk, lane) ? -EIO : 0;
2481 return rc;
2482 }
2483
acpi_nfit_blk_region_do_io(struct nd_blk_region * ndbr,resource_size_t dpa,void * iobuf,u64 len,int rw)2484 static int acpi_nfit_blk_region_do_io(struct nd_blk_region *ndbr,
2485 resource_size_t dpa, void *iobuf, u64 len, int rw)
2486 {
2487 struct nfit_blk *nfit_blk = nd_blk_region_provider_data(ndbr);
2488 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
2489 struct nd_region *nd_region = nfit_blk->nd_region;
2490 unsigned int lane, copied = 0;
2491 int rc = 0;
2492
2493 lane = nd_region_acquire_lane(nd_region);
2494 while (len) {
2495 u64 c = min(len, mmio->size);
2496
2497 rc = acpi_nfit_blk_single_io(nfit_blk, dpa + copied,
2498 iobuf + copied, c, rw, lane);
2499 if (rc)
2500 break;
2501
2502 copied += c;
2503 len -= c;
2504 }
2505 nd_region_release_lane(nd_region, lane);
2506
2507 return rc;
2508 }
2509
nfit_blk_init_interleave(struct nfit_blk_mmio * mmio,struct acpi_nfit_interleave * idt,u16 interleave_ways)2510 static int nfit_blk_init_interleave(struct nfit_blk_mmio *mmio,
2511 struct acpi_nfit_interleave *idt, u16 interleave_ways)
2512 {
2513 if (idt) {
2514 mmio->num_lines = idt->line_count;
2515 mmio->line_size = idt->line_size;
2516 if (interleave_ways == 0)
2517 return -ENXIO;
2518 mmio->table_size = mmio->num_lines * interleave_ways
2519 * mmio->line_size;
2520 }
2521
2522 return 0;
2523 }
2524
acpi_nfit_blk_get_flags(struct nvdimm_bus_descriptor * nd_desc,struct nvdimm * nvdimm,struct nfit_blk * nfit_blk)2525 static int acpi_nfit_blk_get_flags(struct nvdimm_bus_descriptor *nd_desc,
2526 struct nvdimm *nvdimm, struct nfit_blk *nfit_blk)
2527 {
2528 struct nd_cmd_dimm_flags flags;
2529 int rc;
2530
2531 memset(&flags, 0, sizeof(flags));
2532 rc = nd_desc->ndctl(nd_desc, nvdimm, ND_CMD_DIMM_FLAGS, &flags,
2533 sizeof(flags), NULL);
2534
2535 if (rc >= 0 && flags.status == 0)
2536 nfit_blk->dimm_flags = flags.flags;
2537 else if (rc == -ENOTTY) {
2538 /* fall back to a conservative default */
2539 nfit_blk->dimm_flags = NFIT_BLK_DCR_LATCH | NFIT_BLK_READ_FLUSH;
2540 rc = 0;
2541 } else
2542 rc = -ENXIO;
2543
2544 return rc;
2545 }
2546
acpi_nfit_blk_region_enable(struct nvdimm_bus * nvdimm_bus,struct device * dev)2547 static int acpi_nfit_blk_region_enable(struct nvdimm_bus *nvdimm_bus,
2548 struct device *dev)
2549 {
2550 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
2551 struct nd_blk_region *ndbr = to_nd_blk_region(dev);
2552 struct nfit_blk_mmio *mmio;
2553 struct nfit_blk *nfit_blk;
2554 struct nfit_mem *nfit_mem;
2555 struct nvdimm *nvdimm;
2556 int rc;
2557
2558 nvdimm = nd_blk_region_to_dimm(ndbr);
2559 nfit_mem = nvdimm_provider_data(nvdimm);
2560 if (!nfit_mem || !nfit_mem->dcr || !nfit_mem->bdw) {
2561 dev_dbg(dev, "missing%s%s%s\n",
2562 nfit_mem ? "" : " nfit_mem",
2563 (nfit_mem && nfit_mem->dcr) ? "" : " dcr",
2564 (nfit_mem && nfit_mem->bdw) ? "" : " bdw");
2565 return -ENXIO;
2566 }
2567
2568 nfit_blk = devm_kzalloc(dev, sizeof(*nfit_blk), GFP_KERNEL);
2569 if (!nfit_blk)
2570 return -ENOMEM;
2571 nd_blk_region_set_provider_data(ndbr, nfit_blk);
2572 nfit_blk->nd_region = to_nd_region(dev);
2573
2574 /* map block aperture memory */
2575 nfit_blk->bdw_offset = nfit_mem->bdw->offset;
2576 mmio = &nfit_blk->mmio[BDW];
2577 mmio->addr.base = devm_nvdimm_memremap(dev, nfit_mem->spa_bdw->address,
2578 nfit_mem->spa_bdw->length, nd_blk_memremap_flags(ndbr));
2579 if (!mmio->addr.base) {
2580 dev_dbg(dev, "%s failed to map bdw\n",
2581 nvdimm_name(nvdimm));
2582 return -ENOMEM;
2583 }
2584 mmio->size = nfit_mem->bdw->size;
2585 mmio->base_offset = nfit_mem->memdev_bdw->region_offset;
2586 mmio->idt = nfit_mem->idt_bdw;
2587 mmio->spa = nfit_mem->spa_bdw;
2588 rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_bdw,
2589 nfit_mem->memdev_bdw->interleave_ways);
2590 if (rc) {
2591 dev_dbg(dev, "%s failed to init bdw interleave\n",
2592 nvdimm_name(nvdimm));
2593 return rc;
2594 }
2595
2596 /* map block control memory */
2597 nfit_blk->cmd_offset = nfit_mem->dcr->command_offset;
2598 nfit_blk->stat_offset = nfit_mem->dcr->status_offset;
2599 mmio = &nfit_blk->mmio[DCR];
2600 mmio->addr.base = devm_nvdimm_ioremap(dev, nfit_mem->spa_dcr->address,
2601 nfit_mem->spa_dcr->length);
2602 if (!mmio->addr.base) {
2603 dev_dbg(dev, "%s failed to map dcr\n",
2604 nvdimm_name(nvdimm));
2605 return -ENOMEM;
2606 }
2607 mmio->size = nfit_mem->dcr->window_size;
2608 mmio->base_offset = nfit_mem->memdev_dcr->region_offset;
2609 mmio->idt = nfit_mem->idt_dcr;
2610 mmio->spa = nfit_mem->spa_dcr;
2611 rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_dcr,
2612 nfit_mem->memdev_dcr->interleave_ways);
2613 if (rc) {
2614 dev_dbg(dev, "%s failed to init dcr interleave\n",
2615 nvdimm_name(nvdimm));
2616 return rc;
2617 }
2618
2619 rc = acpi_nfit_blk_get_flags(nd_desc, nvdimm, nfit_blk);
2620 if (rc < 0) {
2621 dev_dbg(dev, "%s failed get DIMM flags\n",
2622 nvdimm_name(nvdimm));
2623 return rc;
2624 }
2625
2626 if (nvdimm_has_flush(nfit_blk->nd_region) < 0)
2627 dev_warn(dev, "unable to guarantee persistence of writes\n");
2628
2629 if (mmio->line_size == 0)
2630 return 0;
2631
2632 if ((u32) nfit_blk->cmd_offset % mmio->line_size
2633 + 8 > mmio->line_size) {
2634 dev_dbg(dev, "cmd_offset crosses interleave boundary\n");
2635 return -ENXIO;
2636 } else if ((u32) nfit_blk->stat_offset % mmio->line_size
2637 + 8 > mmio->line_size) {
2638 dev_dbg(dev, "stat_offset crosses interleave boundary\n");
2639 return -ENXIO;
2640 }
2641
2642 return 0;
2643 }
2644
ars_get_cap(struct acpi_nfit_desc * acpi_desc,struct nd_cmd_ars_cap * cmd,struct nfit_spa * nfit_spa)2645 static int ars_get_cap(struct acpi_nfit_desc *acpi_desc,
2646 struct nd_cmd_ars_cap *cmd, struct nfit_spa *nfit_spa)
2647 {
2648 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2649 struct acpi_nfit_system_address *spa = nfit_spa->spa;
2650 int cmd_rc, rc;
2651
2652 cmd->address = spa->address;
2653 cmd->length = spa->length;
2654 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, cmd,
2655 sizeof(*cmd), &cmd_rc);
2656 if (rc < 0)
2657 return rc;
2658 return cmd_rc;
2659 }
2660
ars_start(struct acpi_nfit_desc * acpi_desc,struct nfit_spa * nfit_spa,enum nfit_ars_state req_type)2661 static int ars_start(struct acpi_nfit_desc *acpi_desc,
2662 struct nfit_spa *nfit_spa, enum nfit_ars_state req_type)
2663 {
2664 int rc;
2665 int cmd_rc;
2666 struct nd_cmd_ars_start ars_start;
2667 struct acpi_nfit_system_address *spa = nfit_spa->spa;
2668 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2669
2670 memset(&ars_start, 0, sizeof(ars_start));
2671 ars_start.address = spa->address;
2672 ars_start.length = spa->length;
2673 if (req_type == ARS_REQ_SHORT)
2674 ars_start.flags = ND_ARS_RETURN_PREV_DATA;
2675 if (nfit_spa_type(spa) == NFIT_SPA_PM)
2676 ars_start.type = ND_ARS_PERSISTENT;
2677 else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE)
2678 ars_start.type = ND_ARS_VOLATILE;
2679 else
2680 return -ENOTTY;
2681
2682 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2683 sizeof(ars_start), &cmd_rc);
2684
2685 if (rc < 0)
2686 return rc;
2687 if (cmd_rc < 0)
2688 return cmd_rc;
2689 set_bit(ARS_VALID, &acpi_desc->scrub_flags);
2690 return 0;
2691 }
2692
ars_continue(struct acpi_nfit_desc * acpi_desc)2693 static int ars_continue(struct acpi_nfit_desc *acpi_desc)
2694 {
2695 int rc, cmd_rc;
2696 struct nd_cmd_ars_start ars_start;
2697 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2698 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2699
2700 ars_start = (struct nd_cmd_ars_start) {
2701 .address = ars_status->restart_address,
2702 .length = ars_status->restart_length,
2703 .type = ars_status->type,
2704 };
2705 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2706 sizeof(ars_start), &cmd_rc);
2707 if (rc < 0)
2708 return rc;
2709 return cmd_rc;
2710 }
2711
ars_get_status(struct acpi_nfit_desc * acpi_desc)2712 static int ars_get_status(struct acpi_nfit_desc *acpi_desc)
2713 {
2714 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2715 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2716 int rc, cmd_rc;
2717
2718 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_STATUS, ars_status,
2719 acpi_desc->max_ars, &cmd_rc);
2720 if (rc < 0)
2721 return rc;
2722 return cmd_rc;
2723 }
2724
ars_complete(struct acpi_nfit_desc * acpi_desc,struct nfit_spa * nfit_spa)2725 static void ars_complete(struct acpi_nfit_desc *acpi_desc,
2726 struct nfit_spa *nfit_spa)
2727 {
2728 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2729 struct acpi_nfit_system_address *spa = nfit_spa->spa;
2730 struct nd_region *nd_region = nfit_spa->nd_region;
2731 struct device *dev;
2732
2733 lockdep_assert_held(&acpi_desc->init_mutex);
2734 /*
2735 * Only advance the ARS state for ARS runs initiated by the
2736 * kernel, ignore ARS results from BIOS initiated runs for scrub
2737 * completion tracking.
2738 */
2739 if (acpi_desc->scrub_spa != nfit_spa)
2740 return;
2741
2742 if ((ars_status->address >= spa->address && ars_status->address
2743 < spa->address + spa->length)
2744 || (ars_status->address < spa->address)) {
2745 /*
2746 * Assume that if a scrub starts at an offset from the
2747 * start of nfit_spa that we are in the continuation
2748 * case.
2749 *
2750 * Otherwise, if the scrub covers the spa range, mark
2751 * any pending request complete.
2752 */
2753 if (ars_status->address + ars_status->length
2754 >= spa->address + spa->length)
2755 /* complete */;
2756 else
2757 return;
2758 } else
2759 return;
2760
2761 acpi_desc->scrub_spa = NULL;
2762 if (nd_region) {
2763 dev = nd_region_dev(nd_region);
2764 nvdimm_region_notify(nd_region, NVDIMM_REVALIDATE_POISON);
2765 } else
2766 dev = acpi_desc->dev;
2767 dev_dbg(dev, "ARS: range %d complete\n", spa->range_index);
2768 }
2769
ars_status_process_records(struct acpi_nfit_desc * acpi_desc)2770 static int ars_status_process_records(struct acpi_nfit_desc *acpi_desc)
2771 {
2772 struct nvdimm_bus *nvdimm_bus = acpi_desc->nvdimm_bus;
2773 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2774 int rc;
2775 u32 i;
2776
2777 /*
2778 * First record starts at 44 byte offset from the start of the
2779 * payload.
2780 */
2781 if (ars_status->out_length < 44)
2782 return 0;
2783
2784 /*
2785 * Ignore potentially stale results that are only refreshed
2786 * after a start-ARS event.
2787 */
2788 if (!test_and_clear_bit(ARS_VALID, &acpi_desc->scrub_flags)) {
2789 dev_dbg(acpi_desc->dev, "skip %d stale records\n",
2790 ars_status->num_records);
2791 return 0;
2792 }
2793
2794 for (i = 0; i < ars_status->num_records; i++) {
2795 /* only process full records */
2796 if (ars_status->out_length
2797 < 44 + sizeof(struct nd_ars_record) * (i + 1))
2798 break;
2799 rc = nvdimm_bus_add_badrange(nvdimm_bus,
2800 ars_status->records[i].err_address,
2801 ars_status->records[i].length);
2802 if (rc)
2803 return rc;
2804 }
2805 if (i < ars_status->num_records)
2806 dev_warn(acpi_desc->dev, "detected truncated ars results\n");
2807
2808 return 0;
2809 }
2810
acpi_nfit_remove_resource(void * data)2811 static void acpi_nfit_remove_resource(void *data)
2812 {
2813 struct resource *res = data;
2814
2815 remove_resource(res);
2816 }
2817
acpi_nfit_insert_resource(struct acpi_nfit_desc * acpi_desc,struct nd_region_desc * ndr_desc)2818 static int acpi_nfit_insert_resource(struct acpi_nfit_desc *acpi_desc,
2819 struct nd_region_desc *ndr_desc)
2820 {
2821 struct resource *res, *nd_res = ndr_desc->res;
2822 int is_pmem, ret;
2823
2824 /* No operation if the region is already registered as PMEM */
2825 is_pmem = region_intersects(nd_res->start, resource_size(nd_res),
2826 IORESOURCE_MEM, IORES_DESC_PERSISTENT_MEMORY);
2827 if (is_pmem == REGION_INTERSECTS)
2828 return 0;
2829
2830 res = devm_kzalloc(acpi_desc->dev, sizeof(*res), GFP_KERNEL);
2831 if (!res)
2832 return -ENOMEM;
2833
2834 res->name = "Persistent Memory";
2835 res->start = nd_res->start;
2836 res->end = nd_res->end;
2837 res->flags = IORESOURCE_MEM;
2838 res->desc = IORES_DESC_PERSISTENT_MEMORY;
2839
2840 ret = insert_resource(&iomem_resource, res);
2841 if (ret)
2842 return ret;
2843
2844 ret = devm_add_action_or_reset(acpi_desc->dev,
2845 acpi_nfit_remove_resource,
2846 res);
2847 if (ret)
2848 return ret;
2849
2850 return 0;
2851 }
2852
acpi_nfit_init_mapping(struct acpi_nfit_desc * acpi_desc,struct nd_mapping_desc * mapping,struct nd_region_desc * ndr_desc,struct acpi_nfit_memory_map * memdev,struct nfit_spa * nfit_spa)2853 static int acpi_nfit_init_mapping(struct acpi_nfit_desc *acpi_desc,
2854 struct nd_mapping_desc *mapping, struct nd_region_desc *ndr_desc,
2855 struct acpi_nfit_memory_map *memdev,
2856 struct nfit_spa *nfit_spa)
2857 {
2858 struct nvdimm *nvdimm = acpi_nfit_dimm_by_handle(acpi_desc,
2859 memdev->device_handle);
2860 struct acpi_nfit_system_address *spa = nfit_spa->spa;
2861 struct nd_blk_region_desc *ndbr_desc;
2862 struct nfit_mem *nfit_mem;
2863 int rc;
2864
2865 if (!nvdimm) {
2866 dev_err(acpi_desc->dev, "spa%d dimm: %#x not found\n",
2867 spa->range_index, memdev->device_handle);
2868 return -ENODEV;
2869 }
2870
2871 mapping->nvdimm = nvdimm;
2872 switch (nfit_spa_type(spa)) {
2873 case NFIT_SPA_PM:
2874 case NFIT_SPA_VOLATILE:
2875 mapping->start = memdev->address;
2876 mapping->size = memdev->region_size;
2877 break;
2878 case NFIT_SPA_DCR:
2879 nfit_mem = nvdimm_provider_data(nvdimm);
2880 if (!nfit_mem || !nfit_mem->bdw) {
2881 dev_dbg(acpi_desc->dev, "spa%d %s missing bdw\n",
2882 spa->range_index, nvdimm_name(nvdimm));
2883 break;
2884 }
2885
2886 mapping->size = nfit_mem->bdw->capacity;
2887 mapping->start = nfit_mem->bdw->start_address;
2888 ndr_desc->num_lanes = nfit_mem->bdw->windows;
2889 ndr_desc->mapping = mapping;
2890 ndr_desc->num_mappings = 1;
2891 ndbr_desc = to_blk_region_desc(ndr_desc);
2892 ndbr_desc->enable = acpi_nfit_blk_region_enable;
2893 ndbr_desc->do_io = acpi_desc->blk_do_io;
2894 rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
2895 if (rc)
2896 return rc;
2897 nfit_spa->nd_region = nvdimm_blk_region_create(acpi_desc->nvdimm_bus,
2898 ndr_desc);
2899 if (!nfit_spa->nd_region)
2900 return -ENOMEM;
2901 break;
2902 }
2903
2904 return 0;
2905 }
2906
nfit_spa_is_virtual(struct acpi_nfit_system_address * spa)2907 static bool nfit_spa_is_virtual(struct acpi_nfit_system_address *spa)
2908 {
2909 return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2910 nfit_spa_type(spa) == NFIT_SPA_VCD ||
2911 nfit_spa_type(spa) == NFIT_SPA_PDISK ||
2912 nfit_spa_type(spa) == NFIT_SPA_PCD);
2913 }
2914
nfit_spa_is_volatile(struct acpi_nfit_system_address * spa)2915 static bool nfit_spa_is_volatile(struct acpi_nfit_system_address *spa)
2916 {
2917 return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2918 nfit_spa_type(spa) == NFIT_SPA_VCD ||
2919 nfit_spa_type(spa) == NFIT_SPA_VOLATILE);
2920 }
2921
acpi_nfit_register_region(struct acpi_nfit_desc * acpi_desc,struct nfit_spa * nfit_spa)2922 static int acpi_nfit_register_region(struct acpi_nfit_desc *acpi_desc,
2923 struct nfit_spa *nfit_spa)
2924 {
2925 static struct nd_mapping_desc mappings[ND_MAX_MAPPINGS];
2926 struct acpi_nfit_system_address *spa = nfit_spa->spa;
2927 struct nd_blk_region_desc ndbr_desc;
2928 struct nd_region_desc *ndr_desc;
2929 struct nfit_memdev *nfit_memdev;
2930 struct nvdimm_bus *nvdimm_bus;
2931 struct resource res;
2932 int count = 0, rc;
2933
2934 if (nfit_spa->nd_region)
2935 return 0;
2936
2937 if (spa->range_index == 0 && !nfit_spa_is_virtual(spa)) {
2938 dev_dbg(acpi_desc->dev, "detected invalid spa index\n");
2939 return 0;
2940 }
2941
2942 memset(&res, 0, sizeof(res));
2943 memset(&mappings, 0, sizeof(mappings));
2944 memset(&ndbr_desc, 0, sizeof(ndbr_desc));
2945 res.start = spa->address;
2946 res.end = res.start + spa->length - 1;
2947 ndr_desc = &ndbr_desc.ndr_desc;
2948 ndr_desc->res = &res;
2949 ndr_desc->provider_data = nfit_spa;
2950 ndr_desc->attr_groups = acpi_nfit_region_attribute_groups;
2951 if (spa->flags & ACPI_NFIT_PROXIMITY_VALID) {
2952 ndr_desc->numa_node = acpi_map_pxm_to_online_node(
2953 spa->proximity_domain);
2954 ndr_desc->target_node = acpi_map_pxm_to_node(
2955 spa->proximity_domain);
2956 } else {
2957 ndr_desc->numa_node = NUMA_NO_NODE;
2958 ndr_desc->target_node = NUMA_NO_NODE;
2959 }
2960
2961 /*
2962 * Persistence domain bits are hierarchical, if
2963 * ACPI_NFIT_CAPABILITY_CACHE_FLUSH is set then
2964 * ACPI_NFIT_CAPABILITY_MEM_FLUSH is implied.
2965 */
2966 if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_CACHE_FLUSH)
2967 set_bit(ND_REGION_PERSIST_CACHE, &ndr_desc->flags);
2968 else if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_MEM_FLUSH)
2969 set_bit(ND_REGION_PERSIST_MEMCTRL, &ndr_desc->flags);
2970
2971 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
2972 struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
2973 struct nd_mapping_desc *mapping;
2974
2975 if (memdev->range_index != spa->range_index)
2976 continue;
2977 if (count >= ND_MAX_MAPPINGS) {
2978 dev_err(acpi_desc->dev, "spa%d exceeds max mappings %d\n",
2979 spa->range_index, ND_MAX_MAPPINGS);
2980 return -ENXIO;
2981 }
2982 mapping = &mappings[count++];
2983 rc = acpi_nfit_init_mapping(acpi_desc, mapping, ndr_desc,
2984 memdev, nfit_spa);
2985 if (rc)
2986 goto out;
2987 }
2988
2989 ndr_desc->mapping = mappings;
2990 ndr_desc->num_mappings = count;
2991 rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
2992 if (rc)
2993 goto out;
2994
2995 nvdimm_bus = acpi_desc->nvdimm_bus;
2996 if (nfit_spa_type(spa) == NFIT_SPA_PM) {
2997 rc = acpi_nfit_insert_resource(acpi_desc, ndr_desc);
2998 if (rc) {
2999 dev_warn(acpi_desc->dev,
3000 "failed to insert pmem resource to iomem: %d\n",
3001 rc);
3002 goto out;
3003 }
3004
3005 nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
3006 ndr_desc);
3007 if (!nfit_spa->nd_region)
3008 rc = -ENOMEM;
3009 } else if (nfit_spa_is_volatile(spa)) {
3010 nfit_spa->nd_region = nvdimm_volatile_region_create(nvdimm_bus,
3011 ndr_desc);
3012 if (!nfit_spa->nd_region)
3013 rc = -ENOMEM;
3014 } else if (nfit_spa_is_virtual(spa)) {
3015 nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
3016 ndr_desc);
3017 if (!nfit_spa->nd_region)
3018 rc = -ENOMEM;
3019 }
3020
3021 out:
3022 if (rc)
3023 dev_err(acpi_desc->dev, "failed to register spa range %d\n",
3024 nfit_spa->spa->range_index);
3025 return rc;
3026 }
3027
ars_status_alloc(struct acpi_nfit_desc * acpi_desc)3028 static int ars_status_alloc(struct acpi_nfit_desc *acpi_desc)
3029 {
3030 struct device *dev = acpi_desc->dev;
3031 struct nd_cmd_ars_status *ars_status;
3032
3033 if (acpi_desc->ars_status) {
3034 memset(acpi_desc->ars_status, 0, acpi_desc->max_ars);
3035 return 0;
3036 }
3037
3038 ars_status = devm_kzalloc(dev, acpi_desc->max_ars, GFP_KERNEL);
3039 if (!ars_status)
3040 return -ENOMEM;
3041 acpi_desc->ars_status = ars_status;
3042 return 0;
3043 }
3044
acpi_nfit_query_poison(struct acpi_nfit_desc * acpi_desc)3045 static int acpi_nfit_query_poison(struct acpi_nfit_desc *acpi_desc)
3046 {
3047 int rc;
3048
3049 if (ars_status_alloc(acpi_desc))
3050 return -ENOMEM;
3051
3052 rc = ars_get_status(acpi_desc);
3053
3054 if (rc < 0 && rc != -ENOSPC)
3055 return rc;
3056
3057 if (ars_status_process_records(acpi_desc))
3058 dev_err(acpi_desc->dev, "Failed to process ARS records\n");
3059
3060 return rc;
3061 }
3062
ars_register(struct acpi_nfit_desc * acpi_desc,struct nfit_spa * nfit_spa)3063 static int ars_register(struct acpi_nfit_desc *acpi_desc,
3064 struct nfit_spa *nfit_spa)
3065 {
3066 int rc;
3067
3068 if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3069 return acpi_nfit_register_region(acpi_desc, nfit_spa);
3070
3071 set_bit(ARS_REQ_SHORT, &nfit_spa->ars_state);
3072 if (!no_init_ars)
3073 set_bit(ARS_REQ_LONG, &nfit_spa->ars_state);
3074
3075 switch (acpi_nfit_query_poison(acpi_desc)) {
3076 case 0:
3077 case -ENOSPC:
3078 case -EAGAIN:
3079 rc = ars_start(acpi_desc, nfit_spa, ARS_REQ_SHORT);
3080 /* shouldn't happen, try again later */
3081 if (rc == -EBUSY)
3082 break;
3083 if (rc) {
3084 set_bit(ARS_FAILED, &nfit_spa->ars_state);
3085 break;
3086 }
3087 clear_bit(ARS_REQ_SHORT, &nfit_spa->ars_state);
3088 rc = acpi_nfit_query_poison(acpi_desc);
3089 if (rc)
3090 break;
3091 acpi_desc->scrub_spa = nfit_spa;
3092 ars_complete(acpi_desc, nfit_spa);
3093 /*
3094 * If ars_complete() says we didn't complete the
3095 * short scrub, we'll try again with a long
3096 * request.
3097 */
3098 acpi_desc->scrub_spa = NULL;
3099 break;
3100 case -EBUSY:
3101 case -ENOMEM:
3102 /*
3103 * BIOS was using ARS, wait for it to complete (or
3104 * resources to become available) and then perform our
3105 * own scrubs.
3106 */
3107 break;
3108 default:
3109 set_bit(ARS_FAILED, &nfit_spa->ars_state);
3110 break;
3111 }
3112
3113 return acpi_nfit_register_region(acpi_desc, nfit_spa);
3114 }
3115
ars_complete_all(struct acpi_nfit_desc * acpi_desc)3116 static void ars_complete_all(struct acpi_nfit_desc *acpi_desc)
3117 {
3118 struct nfit_spa *nfit_spa;
3119
3120 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3121 if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3122 continue;
3123 ars_complete(acpi_desc, nfit_spa);
3124 }
3125 }
3126
__acpi_nfit_scrub(struct acpi_nfit_desc * acpi_desc,int query_rc)3127 static unsigned int __acpi_nfit_scrub(struct acpi_nfit_desc *acpi_desc,
3128 int query_rc)
3129 {
3130 unsigned int tmo = acpi_desc->scrub_tmo;
3131 struct device *dev = acpi_desc->dev;
3132 struct nfit_spa *nfit_spa;
3133
3134 lockdep_assert_held(&acpi_desc->init_mutex);
3135
3136 if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags))
3137 return 0;
3138
3139 if (query_rc == -EBUSY) {
3140 dev_dbg(dev, "ARS: ARS busy\n");
3141 return min(30U * 60U, tmo * 2);
3142 }
3143 if (query_rc == -ENOSPC) {
3144 dev_dbg(dev, "ARS: ARS continue\n");
3145 ars_continue(acpi_desc);
3146 return 1;
3147 }
3148 if (query_rc && query_rc != -EAGAIN) {
3149 unsigned long long addr, end;
3150
3151 addr = acpi_desc->ars_status->address;
3152 end = addr + acpi_desc->ars_status->length;
3153 dev_dbg(dev, "ARS: %llx-%llx failed (%d)\n", addr, end,
3154 query_rc);
3155 }
3156
3157 ars_complete_all(acpi_desc);
3158 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3159 enum nfit_ars_state req_type;
3160 int rc;
3161
3162 if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3163 continue;
3164
3165 /* prefer short ARS requests first */
3166 if (test_bit(ARS_REQ_SHORT, &nfit_spa->ars_state))
3167 req_type = ARS_REQ_SHORT;
3168 else if (test_bit(ARS_REQ_LONG, &nfit_spa->ars_state))
3169 req_type = ARS_REQ_LONG;
3170 else
3171 continue;
3172 rc = ars_start(acpi_desc, nfit_spa, req_type);
3173
3174 dev = nd_region_dev(nfit_spa->nd_region);
3175 dev_dbg(dev, "ARS: range %d ARS start %s (%d)\n",
3176 nfit_spa->spa->range_index,
3177 req_type == ARS_REQ_SHORT ? "short" : "long",
3178 rc);
3179 /*
3180 * Hmm, we raced someone else starting ARS? Try again in
3181 * a bit.
3182 */
3183 if (rc == -EBUSY)
3184 return 1;
3185 if (rc == 0) {
3186 dev_WARN_ONCE(dev, acpi_desc->scrub_spa,
3187 "scrub start while range %d active\n",
3188 acpi_desc->scrub_spa->spa->range_index);
3189 clear_bit(req_type, &nfit_spa->ars_state);
3190 acpi_desc->scrub_spa = nfit_spa;
3191 /*
3192 * Consider this spa last for future scrub
3193 * requests
3194 */
3195 list_move_tail(&nfit_spa->list, &acpi_desc->spas);
3196 return 1;
3197 }
3198
3199 dev_err(dev, "ARS: range %d ARS failed (%d)\n",
3200 nfit_spa->spa->range_index, rc);
3201 set_bit(ARS_FAILED, &nfit_spa->ars_state);
3202 }
3203 return 0;
3204 }
3205
__sched_ars(struct acpi_nfit_desc * acpi_desc,unsigned int tmo)3206 static void __sched_ars(struct acpi_nfit_desc *acpi_desc, unsigned int tmo)
3207 {
3208 lockdep_assert_held(&acpi_desc->init_mutex);
3209
3210 set_bit(ARS_BUSY, &acpi_desc->scrub_flags);
3211 /* note this should only be set from within the workqueue */
3212 if (tmo)
3213 acpi_desc->scrub_tmo = tmo;
3214 queue_delayed_work(nfit_wq, &acpi_desc->dwork, tmo * HZ);
3215 }
3216
sched_ars(struct acpi_nfit_desc * acpi_desc)3217 static void sched_ars(struct acpi_nfit_desc *acpi_desc)
3218 {
3219 __sched_ars(acpi_desc, 0);
3220 }
3221
notify_ars_done(struct acpi_nfit_desc * acpi_desc)3222 static void notify_ars_done(struct acpi_nfit_desc *acpi_desc)
3223 {
3224 lockdep_assert_held(&acpi_desc->init_mutex);
3225
3226 clear_bit(ARS_BUSY, &acpi_desc->scrub_flags);
3227 acpi_desc->scrub_count++;
3228 if (acpi_desc->scrub_count_state)
3229 sysfs_notify_dirent(acpi_desc->scrub_count_state);
3230 }
3231
acpi_nfit_scrub(struct work_struct * work)3232 static void acpi_nfit_scrub(struct work_struct *work)
3233 {
3234 struct acpi_nfit_desc *acpi_desc;
3235 unsigned int tmo;
3236 int query_rc;
3237
3238 acpi_desc = container_of(work, typeof(*acpi_desc), dwork.work);
3239 mutex_lock(&acpi_desc->init_mutex);
3240 query_rc = acpi_nfit_query_poison(acpi_desc);
3241 tmo = __acpi_nfit_scrub(acpi_desc, query_rc);
3242 if (tmo)
3243 __sched_ars(acpi_desc, tmo);
3244 else
3245 notify_ars_done(acpi_desc);
3246 memset(acpi_desc->ars_status, 0, acpi_desc->max_ars);
3247 clear_bit(ARS_POLL, &acpi_desc->scrub_flags);
3248 mutex_unlock(&acpi_desc->init_mutex);
3249 }
3250
acpi_nfit_init_ars(struct acpi_nfit_desc * acpi_desc,struct nfit_spa * nfit_spa)3251 static void acpi_nfit_init_ars(struct acpi_nfit_desc *acpi_desc,
3252 struct nfit_spa *nfit_spa)
3253 {
3254 int type = nfit_spa_type(nfit_spa->spa);
3255 struct nd_cmd_ars_cap ars_cap;
3256 int rc;
3257
3258 set_bit(ARS_FAILED, &nfit_spa->ars_state);
3259 memset(&ars_cap, 0, sizeof(ars_cap));
3260 rc = ars_get_cap(acpi_desc, &ars_cap, nfit_spa);
3261 if (rc < 0)
3262 return;
3263 /* check that the supported scrub types match the spa type */
3264 if (type == NFIT_SPA_VOLATILE && ((ars_cap.status >> 16)
3265 & ND_ARS_VOLATILE) == 0)
3266 return;
3267 if (type == NFIT_SPA_PM && ((ars_cap.status >> 16)
3268 & ND_ARS_PERSISTENT) == 0)
3269 return;
3270
3271 nfit_spa->max_ars = ars_cap.max_ars_out;
3272 nfit_spa->clear_err_unit = ars_cap.clear_err_unit;
3273 acpi_desc->max_ars = max(nfit_spa->max_ars, acpi_desc->max_ars);
3274 clear_bit(ARS_FAILED, &nfit_spa->ars_state);
3275 }
3276
acpi_nfit_register_regions(struct acpi_nfit_desc * acpi_desc)3277 static int acpi_nfit_register_regions(struct acpi_nfit_desc *acpi_desc)
3278 {
3279 struct nfit_spa *nfit_spa;
3280 int rc;
3281
3282 set_bit(ARS_VALID, &acpi_desc->scrub_flags);
3283 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3284 switch (nfit_spa_type(nfit_spa->spa)) {
3285 case NFIT_SPA_VOLATILE:
3286 case NFIT_SPA_PM:
3287 acpi_nfit_init_ars(acpi_desc, nfit_spa);
3288 break;
3289 }
3290 }
3291
3292 list_for_each_entry(nfit_spa, &acpi_desc->spas, list)
3293 switch (nfit_spa_type(nfit_spa->spa)) {
3294 case NFIT_SPA_VOLATILE:
3295 case NFIT_SPA_PM:
3296 /* register regions and kick off initial ARS run */
3297 rc = ars_register(acpi_desc, nfit_spa);
3298 if (rc)
3299 return rc;
3300 break;
3301 case NFIT_SPA_BDW:
3302 /* nothing to register */
3303 break;
3304 case NFIT_SPA_DCR:
3305 case NFIT_SPA_VDISK:
3306 case NFIT_SPA_VCD:
3307 case NFIT_SPA_PDISK:
3308 case NFIT_SPA_PCD:
3309 /* register known regions that don't support ARS */
3310 rc = acpi_nfit_register_region(acpi_desc, nfit_spa);
3311 if (rc)
3312 return rc;
3313 break;
3314 default:
3315 /* don't register unknown regions */
3316 break;
3317 }
3318
3319 sched_ars(acpi_desc);
3320 return 0;
3321 }
3322
acpi_nfit_check_deletions(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev)3323 static int acpi_nfit_check_deletions(struct acpi_nfit_desc *acpi_desc,
3324 struct nfit_table_prev *prev)
3325 {
3326 struct device *dev = acpi_desc->dev;
3327
3328 if (!list_empty(&prev->spas) ||
3329 !list_empty(&prev->memdevs) ||
3330 !list_empty(&prev->dcrs) ||
3331 !list_empty(&prev->bdws) ||
3332 !list_empty(&prev->idts) ||
3333 !list_empty(&prev->flushes)) {
3334 dev_err(dev, "new nfit deletes entries (unsupported)\n");
3335 return -ENXIO;
3336 }
3337 return 0;
3338 }
3339
acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc * acpi_desc)3340 static int acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc *acpi_desc)
3341 {
3342 struct device *dev = acpi_desc->dev;
3343 struct kernfs_node *nfit;
3344 struct device *bus_dev;
3345
3346 if (!ars_supported(acpi_desc->nvdimm_bus))
3347 return 0;
3348
3349 bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3350 nfit = sysfs_get_dirent(bus_dev->kobj.sd, "nfit");
3351 if (!nfit) {
3352 dev_err(dev, "sysfs_get_dirent 'nfit' failed\n");
3353 return -ENODEV;
3354 }
3355 acpi_desc->scrub_count_state = sysfs_get_dirent(nfit, "scrub");
3356 sysfs_put(nfit);
3357 if (!acpi_desc->scrub_count_state) {
3358 dev_err(dev, "sysfs_get_dirent 'scrub' failed\n");
3359 return -ENODEV;
3360 }
3361
3362 return 0;
3363 }
3364
acpi_nfit_unregister(void * data)3365 static void acpi_nfit_unregister(void *data)
3366 {
3367 struct acpi_nfit_desc *acpi_desc = data;
3368
3369 nvdimm_bus_unregister(acpi_desc->nvdimm_bus);
3370 }
3371
acpi_nfit_init(struct acpi_nfit_desc * acpi_desc,void * data,acpi_size sz)3372 int acpi_nfit_init(struct acpi_nfit_desc *acpi_desc, void *data, acpi_size sz)
3373 {
3374 struct device *dev = acpi_desc->dev;
3375 struct nfit_table_prev prev;
3376 const void *end;
3377 int rc;
3378
3379 if (!acpi_desc->nvdimm_bus) {
3380 acpi_nfit_init_dsms(acpi_desc);
3381
3382 acpi_desc->nvdimm_bus = nvdimm_bus_register(dev,
3383 &acpi_desc->nd_desc);
3384 if (!acpi_desc->nvdimm_bus)
3385 return -ENOMEM;
3386
3387 rc = devm_add_action_or_reset(dev, acpi_nfit_unregister,
3388 acpi_desc);
3389 if (rc)
3390 return rc;
3391
3392 rc = acpi_nfit_desc_init_scrub_attr(acpi_desc);
3393 if (rc)
3394 return rc;
3395
3396 /* register this acpi_desc for mce notifications */
3397 mutex_lock(&acpi_desc_lock);
3398 list_add_tail(&acpi_desc->list, &acpi_descs);
3399 mutex_unlock(&acpi_desc_lock);
3400 }
3401
3402 mutex_lock(&acpi_desc->init_mutex);
3403
3404 INIT_LIST_HEAD(&prev.spas);
3405 INIT_LIST_HEAD(&prev.memdevs);
3406 INIT_LIST_HEAD(&prev.dcrs);
3407 INIT_LIST_HEAD(&prev.bdws);
3408 INIT_LIST_HEAD(&prev.idts);
3409 INIT_LIST_HEAD(&prev.flushes);
3410
3411 list_cut_position(&prev.spas, &acpi_desc->spas,
3412 acpi_desc->spas.prev);
3413 list_cut_position(&prev.memdevs, &acpi_desc->memdevs,
3414 acpi_desc->memdevs.prev);
3415 list_cut_position(&prev.dcrs, &acpi_desc->dcrs,
3416 acpi_desc->dcrs.prev);
3417 list_cut_position(&prev.bdws, &acpi_desc->bdws,
3418 acpi_desc->bdws.prev);
3419 list_cut_position(&prev.idts, &acpi_desc->idts,
3420 acpi_desc->idts.prev);
3421 list_cut_position(&prev.flushes, &acpi_desc->flushes,
3422 acpi_desc->flushes.prev);
3423
3424 end = data + sz;
3425 while (!IS_ERR_OR_NULL(data))
3426 data = add_table(acpi_desc, &prev, data, end);
3427
3428 if (IS_ERR(data)) {
3429 dev_dbg(dev, "nfit table parsing error: %ld\n", PTR_ERR(data));
3430 rc = PTR_ERR(data);
3431 goto out_unlock;
3432 }
3433
3434 rc = acpi_nfit_check_deletions(acpi_desc, &prev);
3435 if (rc)
3436 goto out_unlock;
3437
3438 rc = nfit_mem_init(acpi_desc);
3439 if (rc)
3440 goto out_unlock;
3441
3442 rc = acpi_nfit_register_dimms(acpi_desc);
3443 if (rc)
3444 goto out_unlock;
3445
3446 rc = acpi_nfit_register_regions(acpi_desc);
3447
3448 out_unlock:
3449 mutex_unlock(&acpi_desc->init_mutex);
3450 return rc;
3451 }
3452 EXPORT_SYMBOL_GPL(acpi_nfit_init);
3453
acpi_nfit_flush_probe(struct nvdimm_bus_descriptor * nd_desc)3454 static int acpi_nfit_flush_probe(struct nvdimm_bus_descriptor *nd_desc)
3455 {
3456 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
3457 struct device *dev = acpi_desc->dev;
3458
3459 /* Bounce the device lock to flush acpi_nfit_add / acpi_nfit_notify */
3460 nfit_device_lock(dev);
3461 nfit_device_unlock(dev);
3462
3463 /* Bounce the init_mutex to complete initial registration */
3464 mutex_lock(&acpi_desc->init_mutex);
3465 mutex_unlock(&acpi_desc->init_mutex);
3466
3467 return 0;
3468 }
3469
__acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor * nd_desc,struct nvdimm * nvdimm,unsigned int cmd)3470 static int __acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
3471 struct nvdimm *nvdimm, unsigned int cmd)
3472 {
3473 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
3474
3475 if (nvdimm)
3476 return 0;
3477 if (cmd != ND_CMD_ARS_START)
3478 return 0;
3479
3480 /*
3481 * The kernel and userspace may race to initiate a scrub, but
3482 * the scrub thread is prepared to lose that initial race. It
3483 * just needs guarantees that any ARS it initiates are not
3484 * interrupted by any intervening start requests from userspace.
3485 */
3486 if (work_busy(&acpi_desc->dwork.work))
3487 return -EBUSY;
3488
3489 return 0;
3490 }
3491
3492 /* prevent security commands from being issued via ioctl */
acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor * nd_desc,struct nvdimm * nvdimm,unsigned int cmd,void * buf)3493 static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
3494 struct nvdimm *nvdimm, unsigned int cmd, void *buf)
3495 {
3496 struct nd_cmd_pkg *call_pkg = buf;
3497 unsigned int func;
3498
3499 if (nvdimm && cmd == ND_CMD_CALL &&
3500 call_pkg->nd_family == NVDIMM_FAMILY_INTEL) {
3501 func = call_pkg->nd_command;
3502 if ((1 << func) & NVDIMM_INTEL_SECURITY_CMDMASK)
3503 return -EOPNOTSUPP;
3504 }
3505
3506 return __acpi_nfit_clear_to_send(nd_desc, nvdimm, cmd);
3507 }
3508
acpi_nfit_ars_rescan(struct acpi_nfit_desc * acpi_desc,enum nfit_ars_state req_type)3509 int acpi_nfit_ars_rescan(struct acpi_nfit_desc *acpi_desc,
3510 enum nfit_ars_state req_type)
3511 {
3512 struct device *dev = acpi_desc->dev;
3513 int scheduled = 0, busy = 0;
3514 struct nfit_spa *nfit_spa;
3515
3516 mutex_lock(&acpi_desc->init_mutex);
3517 if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags)) {
3518 mutex_unlock(&acpi_desc->init_mutex);
3519 return 0;
3520 }
3521
3522 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3523 int type = nfit_spa_type(nfit_spa->spa);
3524
3525 if (type != NFIT_SPA_PM && type != NFIT_SPA_VOLATILE)
3526 continue;
3527 if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3528 continue;
3529
3530 if (test_and_set_bit(req_type, &nfit_spa->ars_state))
3531 busy++;
3532 else
3533 scheduled++;
3534 }
3535 if (scheduled) {
3536 sched_ars(acpi_desc);
3537 dev_dbg(dev, "ars_scan triggered\n");
3538 }
3539 mutex_unlock(&acpi_desc->init_mutex);
3540
3541 if (scheduled)
3542 return 0;
3543 if (busy)
3544 return -EBUSY;
3545 return -ENOTTY;
3546 }
3547
acpi_nfit_desc_init(struct acpi_nfit_desc * acpi_desc,struct device * dev)3548 void acpi_nfit_desc_init(struct acpi_nfit_desc *acpi_desc, struct device *dev)
3549 {
3550 struct nvdimm_bus_descriptor *nd_desc;
3551
3552 dev_set_drvdata(dev, acpi_desc);
3553 acpi_desc->dev = dev;
3554 acpi_desc->blk_do_io = acpi_nfit_blk_region_do_io;
3555 nd_desc = &acpi_desc->nd_desc;
3556 nd_desc->provider_name = "ACPI.NFIT";
3557 nd_desc->module = THIS_MODULE;
3558 nd_desc->ndctl = acpi_nfit_ctl;
3559 nd_desc->flush_probe = acpi_nfit_flush_probe;
3560 nd_desc->clear_to_send = acpi_nfit_clear_to_send;
3561 nd_desc->attr_groups = acpi_nfit_attribute_groups;
3562
3563 INIT_LIST_HEAD(&acpi_desc->spas);
3564 INIT_LIST_HEAD(&acpi_desc->dcrs);
3565 INIT_LIST_HEAD(&acpi_desc->bdws);
3566 INIT_LIST_HEAD(&acpi_desc->idts);
3567 INIT_LIST_HEAD(&acpi_desc->flushes);
3568 INIT_LIST_HEAD(&acpi_desc->memdevs);
3569 INIT_LIST_HEAD(&acpi_desc->dimms);
3570 INIT_LIST_HEAD(&acpi_desc->list);
3571 mutex_init(&acpi_desc->init_mutex);
3572 acpi_desc->scrub_tmo = 1;
3573 INIT_DELAYED_WORK(&acpi_desc->dwork, acpi_nfit_scrub);
3574 }
3575 EXPORT_SYMBOL_GPL(acpi_nfit_desc_init);
3576
acpi_nfit_put_table(void * table)3577 static void acpi_nfit_put_table(void *table)
3578 {
3579 acpi_put_table(table);
3580 }
3581
acpi_nfit_shutdown(void * data)3582 void acpi_nfit_shutdown(void *data)
3583 {
3584 struct acpi_nfit_desc *acpi_desc = data;
3585 struct device *bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3586
3587 /*
3588 * Destruct under acpi_desc_lock so that nfit_handle_mce does not
3589 * race teardown
3590 */
3591 mutex_lock(&acpi_desc_lock);
3592 list_del(&acpi_desc->list);
3593 mutex_unlock(&acpi_desc_lock);
3594
3595 mutex_lock(&acpi_desc->init_mutex);
3596 set_bit(ARS_CANCEL, &acpi_desc->scrub_flags);
3597 cancel_delayed_work_sync(&acpi_desc->dwork);
3598 mutex_unlock(&acpi_desc->init_mutex);
3599
3600 /*
3601 * Bounce the nvdimm bus lock to make sure any in-flight
3602 * acpi_nfit_ars_rescan() submissions have had a chance to
3603 * either submit or see ->cancel set.
3604 */
3605 nfit_device_lock(bus_dev);
3606 nfit_device_unlock(bus_dev);
3607
3608 flush_workqueue(nfit_wq);
3609 }
3610 EXPORT_SYMBOL_GPL(acpi_nfit_shutdown);
3611
acpi_nfit_add(struct acpi_device * adev)3612 static int acpi_nfit_add(struct acpi_device *adev)
3613 {
3614 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3615 struct acpi_nfit_desc *acpi_desc;
3616 struct device *dev = &adev->dev;
3617 struct acpi_table_header *tbl;
3618 acpi_status status = AE_OK;
3619 acpi_size sz;
3620 int rc = 0;
3621
3622 status = acpi_get_table(ACPI_SIG_NFIT, 0, &tbl);
3623 if (ACPI_FAILURE(status)) {
3624 /* The NVDIMM root device allows OS to trigger enumeration of
3625 * NVDIMMs through NFIT at boot time and re-enumeration at
3626 * root level via the _FIT method during runtime.
3627 * This is ok to return 0 here, we could have an nvdimm
3628 * hotplugged later and evaluate _FIT method which returns
3629 * data in the format of a series of NFIT Structures.
3630 */
3631 dev_dbg(dev, "failed to find NFIT at startup\n");
3632 return 0;
3633 }
3634
3635 rc = devm_add_action_or_reset(dev, acpi_nfit_put_table, tbl);
3636 if (rc)
3637 return rc;
3638 sz = tbl->length;
3639
3640 acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3641 if (!acpi_desc)
3642 return -ENOMEM;
3643 acpi_nfit_desc_init(acpi_desc, &adev->dev);
3644
3645 /* Save the acpi header for exporting the revision via sysfs */
3646 acpi_desc->acpi_header = *tbl;
3647
3648 /* Evaluate _FIT and override with that if present */
3649 status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf);
3650 if (ACPI_SUCCESS(status) && buf.length > 0) {
3651 union acpi_object *obj = buf.pointer;
3652
3653 if (obj->type == ACPI_TYPE_BUFFER)
3654 rc = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3655 obj->buffer.length);
3656 else
3657 dev_dbg(dev, "invalid type %d, ignoring _FIT\n",
3658 (int) obj->type);
3659 kfree(buf.pointer);
3660 } else
3661 /* skip over the lead-in header table */
3662 rc = acpi_nfit_init(acpi_desc, (void *) tbl
3663 + sizeof(struct acpi_table_nfit),
3664 sz - sizeof(struct acpi_table_nfit));
3665
3666 if (rc)
3667 return rc;
3668 return devm_add_action_or_reset(dev, acpi_nfit_shutdown, acpi_desc);
3669 }
3670
acpi_nfit_remove(struct acpi_device * adev)3671 static int acpi_nfit_remove(struct acpi_device *adev)
3672 {
3673 /* see acpi_nfit_unregister */
3674 return 0;
3675 }
3676
acpi_nfit_update_notify(struct device * dev,acpi_handle handle)3677 static void acpi_nfit_update_notify(struct device *dev, acpi_handle handle)
3678 {
3679 struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3680 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3681 union acpi_object *obj;
3682 acpi_status status;
3683 int ret;
3684
3685 if (!dev->driver) {
3686 /* dev->driver may be null if we're being removed */
3687 dev_dbg(dev, "no driver found for dev\n");
3688 return;
3689 }
3690
3691 if (!acpi_desc) {
3692 acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3693 if (!acpi_desc)
3694 return;
3695 acpi_nfit_desc_init(acpi_desc, dev);
3696 } else {
3697 /*
3698 * Finish previous registration before considering new
3699 * regions.
3700 */
3701 flush_workqueue(nfit_wq);
3702 }
3703
3704 /* Evaluate _FIT */
3705 status = acpi_evaluate_object(handle, "_FIT", NULL, &buf);
3706 if (ACPI_FAILURE(status)) {
3707 dev_err(dev, "failed to evaluate _FIT\n");
3708 return;
3709 }
3710
3711 obj = buf.pointer;
3712 if (obj->type == ACPI_TYPE_BUFFER) {
3713 ret = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3714 obj->buffer.length);
3715 if (ret)
3716 dev_err(dev, "failed to merge updated NFIT\n");
3717 } else
3718 dev_err(dev, "Invalid _FIT\n");
3719 kfree(buf.pointer);
3720 }
3721
acpi_nfit_uc_error_notify(struct device * dev,acpi_handle handle)3722 static void acpi_nfit_uc_error_notify(struct device *dev, acpi_handle handle)
3723 {
3724 struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3725
3726 if (acpi_desc->scrub_mode == HW_ERROR_SCRUB_ON)
3727 acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG);
3728 else
3729 acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_SHORT);
3730 }
3731
__acpi_nfit_notify(struct device * dev,acpi_handle handle,u32 event)3732 void __acpi_nfit_notify(struct device *dev, acpi_handle handle, u32 event)
3733 {
3734 dev_dbg(dev, "event: 0x%x\n", event);
3735
3736 switch (event) {
3737 case NFIT_NOTIFY_UPDATE:
3738 return acpi_nfit_update_notify(dev, handle);
3739 case NFIT_NOTIFY_UC_MEMORY_ERROR:
3740 return acpi_nfit_uc_error_notify(dev, handle);
3741 default:
3742 return;
3743 }
3744 }
3745 EXPORT_SYMBOL_GPL(__acpi_nfit_notify);
3746
acpi_nfit_notify(struct acpi_device * adev,u32 event)3747 static void acpi_nfit_notify(struct acpi_device *adev, u32 event)
3748 {
3749 nfit_device_lock(&adev->dev);
3750 __acpi_nfit_notify(&adev->dev, adev->handle, event);
3751 nfit_device_unlock(&adev->dev);
3752 }
3753
3754 static const struct acpi_device_id acpi_nfit_ids[] = {
3755 { "ACPI0012", 0 },
3756 { "", 0 },
3757 };
3758 MODULE_DEVICE_TABLE(acpi, acpi_nfit_ids);
3759
3760 static struct acpi_driver acpi_nfit_driver = {
3761 .name = KBUILD_MODNAME,
3762 .ids = acpi_nfit_ids,
3763 .ops = {
3764 .add = acpi_nfit_add,
3765 .remove = acpi_nfit_remove,
3766 .notify = acpi_nfit_notify,
3767 },
3768 };
3769
nfit_init(void)3770 static __init int nfit_init(void)
3771 {
3772 int ret;
3773
3774 BUILD_BUG_ON(sizeof(struct acpi_table_nfit) != 40);
3775 BUILD_BUG_ON(sizeof(struct acpi_nfit_system_address) != 56);
3776 BUILD_BUG_ON(sizeof(struct acpi_nfit_memory_map) != 48);
3777 BUILD_BUG_ON(sizeof(struct acpi_nfit_interleave) != 20);
3778 BUILD_BUG_ON(sizeof(struct acpi_nfit_smbios) != 9);
3779 BUILD_BUG_ON(sizeof(struct acpi_nfit_control_region) != 80);
3780 BUILD_BUG_ON(sizeof(struct acpi_nfit_data_region) != 40);
3781 BUILD_BUG_ON(sizeof(struct acpi_nfit_capabilities) != 16);
3782
3783 guid_parse(UUID_VOLATILE_MEMORY, &nfit_uuid[NFIT_SPA_VOLATILE]);
3784 guid_parse(UUID_PERSISTENT_MEMORY, &nfit_uuid[NFIT_SPA_PM]);
3785 guid_parse(UUID_CONTROL_REGION, &nfit_uuid[NFIT_SPA_DCR]);
3786 guid_parse(UUID_DATA_REGION, &nfit_uuid[NFIT_SPA_BDW]);
3787 guid_parse(UUID_VOLATILE_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_VDISK]);
3788 guid_parse(UUID_VOLATILE_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_VCD]);
3789 guid_parse(UUID_PERSISTENT_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_PDISK]);
3790 guid_parse(UUID_PERSISTENT_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_PCD]);
3791 guid_parse(UUID_NFIT_BUS, &nfit_uuid[NFIT_DEV_BUS]);
3792 guid_parse(UUID_NFIT_DIMM, &nfit_uuid[NFIT_DEV_DIMM]);
3793 guid_parse(UUID_NFIT_DIMM_N_HPE1, &nfit_uuid[NFIT_DEV_DIMM_N_HPE1]);
3794 guid_parse(UUID_NFIT_DIMM_N_HPE2, &nfit_uuid[NFIT_DEV_DIMM_N_HPE2]);
3795 guid_parse(UUID_NFIT_DIMM_N_MSFT, &nfit_uuid[NFIT_DEV_DIMM_N_MSFT]);
3796 guid_parse(UUID_NFIT_DIMM_N_HYPERV, &nfit_uuid[NFIT_DEV_DIMM_N_HYPERV]);
3797
3798 nfit_wq = create_singlethread_workqueue("nfit");
3799 if (!nfit_wq)
3800 return -ENOMEM;
3801
3802 nfit_mce_register();
3803 ret = acpi_bus_register_driver(&acpi_nfit_driver);
3804 if (ret) {
3805 nfit_mce_unregister();
3806 destroy_workqueue(nfit_wq);
3807 }
3808
3809 return ret;
3810
3811 }
3812
nfit_exit(void)3813 static __exit void nfit_exit(void)
3814 {
3815 nfit_mce_unregister();
3816 acpi_bus_unregister_driver(&acpi_nfit_driver);
3817 destroy_workqueue(nfit_wq);
3818 WARN_ON(!list_empty(&acpi_descs));
3819 }
3820
3821 module_init(nfit_init);
3822 module_exit(nfit_exit);
3823 MODULE_LICENSE("GPL v2");
3824 MODULE_AUTHOR("Intel Corporation");
3825