1 /*
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4 *
5 * Derived from "arch/m68k/kernel/ptrace.c"
6 * Copyright (C) 1994 by Hamish Macdonald
7 * Taken from linux/kernel/ptrace.c and modified for M680x0.
8 * linux/kernel/ptrace.c is by Ross Biro 1/23/92, edited by Linus Torvalds
9 *
10 * Modified by Cort Dougan (cort@hq.fsmlabs.com)
11 * and Paul Mackerras (paulus@samba.org).
12 *
13 * This file is subject to the terms and conditions of the GNU General
14 * Public License. See the file README.legal in the main directory of
15 * this archive for more details.
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/sched.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/errno.h>
23 #include <linux/ptrace.h>
24 #include <linux/regset.h>
25 #include <linux/tracehook.h>
26 #include <linux/elf.h>
27 #include <linux/user.h>
28 #include <linux/security.h>
29 #include <linux/signal.h>
30 #include <linux/seccomp.h>
31 #include <linux/audit.h>
32 #include <trace/syscall.h>
33 #include <linux/hw_breakpoint.h>
34 #include <linux/perf_event.h>
35 #include <linux/context_tracking.h>
36 #include <linux/nospec.h>
37
38 #include <linux/uaccess.h>
39 #include <linux/pkeys.h>
40 #include <asm/page.h>
41 #include <asm/pgtable.h>
42 #include <asm/switch_to.h>
43 #include <asm/tm.h>
44 #include <asm/asm-prototypes.h>
45 #include <asm/debug.h>
46 #include <asm/hw_breakpoint.h>
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/syscalls.h>
50
51 /*
52 * The parameter save area on the stack is used to store arguments being passed
53 * to callee function and is located at fixed offset from stack pointer.
54 */
55 #ifdef CONFIG_PPC32
56 #define PARAMETER_SAVE_AREA_OFFSET 24 /* bytes */
57 #else /* CONFIG_PPC32 */
58 #define PARAMETER_SAVE_AREA_OFFSET 48 /* bytes */
59 #endif
60
61 struct pt_regs_offset {
62 const char *name;
63 int offset;
64 };
65
66 #define STR(s) #s /* convert to string */
67 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
68 #define GPR_OFFSET_NAME(num) \
69 {.name = STR(r##num), .offset = offsetof(struct pt_regs, gpr[num])}, \
70 {.name = STR(gpr##num), .offset = offsetof(struct pt_regs, gpr[num])}
71 #define REG_OFFSET_END {.name = NULL, .offset = 0}
72
73 #define TVSO(f) (offsetof(struct thread_vr_state, f))
74 #define TFSO(f) (offsetof(struct thread_fp_state, f))
75 #define TSO(f) (offsetof(struct thread_struct, f))
76
77 static const struct pt_regs_offset regoffset_table[] = {
78 GPR_OFFSET_NAME(0),
79 GPR_OFFSET_NAME(1),
80 GPR_OFFSET_NAME(2),
81 GPR_OFFSET_NAME(3),
82 GPR_OFFSET_NAME(4),
83 GPR_OFFSET_NAME(5),
84 GPR_OFFSET_NAME(6),
85 GPR_OFFSET_NAME(7),
86 GPR_OFFSET_NAME(8),
87 GPR_OFFSET_NAME(9),
88 GPR_OFFSET_NAME(10),
89 GPR_OFFSET_NAME(11),
90 GPR_OFFSET_NAME(12),
91 GPR_OFFSET_NAME(13),
92 GPR_OFFSET_NAME(14),
93 GPR_OFFSET_NAME(15),
94 GPR_OFFSET_NAME(16),
95 GPR_OFFSET_NAME(17),
96 GPR_OFFSET_NAME(18),
97 GPR_OFFSET_NAME(19),
98 GPR_OFFSET_NAME(20),
99 GPR_OFFSET_NAME(21),
100 GPR_OFFSET_NAME(22),
101 GPR_OFFSET_NAME(23),
102 GPR_OFFSET_NAME(24),
103 GPR_OFFSET_NAME(25),
104 GPR_OFFSET_NAME(26),
105 GPR_OFFSET_NAME(27),
106 GPR_OFFSET_NAME(28),
107 GPR_OFFSET_NAME(29),
108 GPR_OFFSET_NAME(30),
109 GPR_OFFSET_NAME(31),
110 REG_OFFSET_NAME(nip),
111 REG_OFFSET_NAME(msr),
112 REG_OFFSET_NAME(ctr),
113 REG_OFFSET_NAME(link),
114 REG_OFFSET_NAME(xer),
115 REG_OFFSET_NAME(ccr),
116 #ifdef CONFIG_PPC64
117 REG_OFFSET_NAME(softe),
118 #else
119 REG_OFFSET_NAME(mq),
120 #endif
121 REG_OFFSET_NAME(trap),
122 REG_OFFSET_NAME(dar),
123 REG_OFFSET_NAME(dsisr),
124 REG_OFFSET_END,
125 };
126
127 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
flush_tmregs_to_thread(struct task_struct * tsk)128 static void flush_tmregs_to_thread(struct task_struct *tsk)
129 {
130 /*
131 * If task is not current, it will have been flushed already to
132 * it's thread_struct during __switch_to().
133 *
134 * A reclaim flushes ALL the state or if not in TM save TM SPRs
135 * in the appropriate thread structures from live.
136 */
137
138 if ((!cpu_has_feature(CPU_FTR_TM)) || (tsk != current))
139 return;
140
141 if (MSR_TM_SUSPENDED(mfmsr())) {
142 tm_reclaim_current(TM_CAUSE_SIGNAL);
143 } else {
144 tm_enable();
145 tm_save_sprs(&(tsk->thread));
146 }
147 }
148 #else
flush_tmregs_to_thread(struct task_struct * tsk)149 static inline void flush_tmregs_to_thread(struct task_struct *tsk) { }
150 #endif
151
152 /**
153 * regs_query_register_offset() - query register offset from its name
154 * @name: the name of a register
155 *
156 * regs_query_register_offset() returns the offset of a register in struct
157 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
158 */
regs_query_register_offset(const char * name)159 int regs_query_register_offset(const char *name)
160 {
161 const struct pt_regs_offset *roff;
162 for (roff = regoffset_table; roff->name != NULL; roff++)
163 if (!strcmp(roff->name, name))
164 return roff->offset;
165 return -EINVAL;
166 }
167
168 /**
169 * regs_query_register_name() - query register name from its offset
170 * @offset: the offset of a register in struct pt_regs.
171 *
172 * regs_query_register_name() returns the name of a register from its
173 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
174 */
regs_query_register_name(unsigned int offset)175 const char *regs_query_register_name(unsigned int offset)
176 {
177 const struct pt_regs_offset *roff;
178 for (roff = regoffset_table; roff->name != NULL; roff++)
179 if (roff->offset == offset)
180 return roff->name;
181 return NULL;
182 }
183
184 /*
185 * does not yet catch signals sent when the child dies.
186 * in exit.c or in signal.c.
187 */
188
189 /*
190 * Set of msr bits that gdb can change on behalf of a process.
191 */
192 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
193 #define MSR_DEBUGCHANGE 0
194 #else
195 #define MSR_DEBUGCHANGE (MSR_SE | MSR_BE)
196 #endif
197
198 /*
199 * Max register writeable via put_reg
200 */
201 #ifdef CONFIG_PPC32
202 #define PT_MAX_PUT_REG PT_MQ
203 #else
204 #define PT_MAX_PUT_REG PT_CCR
205 #endif
206
get_user_msr(struct task_struct * task)207 static unsigned long get_user_msr(struct task_struct *task)
208 {
209 return task->thread.regs->msr | task->thread.fpexc_mode;
210 }
211
set_user_msr(struct task_struct * task,unsigned long msr)212 static int set_user_msr(struct task_struct *task, unsigned long msr)
213 {
214 task->thread.regs->msr &= ~MSR_DEBUGCHANGE;
215 task->thread.regs->msr |= msr & MSR_DEBUGCHANGE;
216 return 0;
217 }
218
219 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
get_user_ckpt_msr(struct task_struct * task)220 static unsigned long get_user_ckpt_msr(struct task_struct *task)
221 {
222 return task->thread.ckpt_regs.msr | task->thread.fpexc_mode;
223 }
224
set_user_ckpt_msr(struct task_struct * task,unsigned long msr)225 static int set_user_ckpt_msr(struct task_struct *task, unsigned long msr)
226 {
227 task->thread.ckpt_regs.msr &= ~MSR_DEBUGCHANGE;
228 task->thread.ckpt_regs.msr |= msr & MSR_DEBUGCHANGE;
229 return 0;
230 }
231
set_user_ckpt_trap(struct task_struct * task,unsigned long trap)232 static int set_user_ckpt_trap(struct task_struct *task, unsigned long trap)
233 {
234 task->thread.ckpt_regs.trap = trap & 0xfff0;
235 return 0;
236 }
237 #endif
238
239 #ifdef CONFIG_PPC64
get_user_dscr(struct task_struct * task,unsigned long * data)240 static int get_user_dscr(struct task_struct *task, unsigned long *data)
241 {
242 *data = task->thread.dscr;
243 return 0;
244 }
245
set_user_dscr(struct task_struct * task,unsigned long dscr)246 static int set_user_dscr(struct task_struct *task, unsigned long dscr)
247 {
248 task->thread.dscr = dscr;
249 task->thread.dscr_inherit = 1;
250 return 0;
251 }
252 #else
get_user_dscr(struct task_struct * task,unsigned long * data)253 static int get_user_dscr(struct task_struct *task, unsigned long *data)
254 {
255 return -EIO;
256 }
257
set_user_dscr(struct task_struct * task,unsigned long dscr)258 static int set_user_dscr(struct task_struct *task, unsigned long dscr)
259 {
260 return -EIO;
261 }
262 #endif
263
264 /*
265 * We prevent mucking around with the reserved area of trap
266 * which are used internally by the kernel.
267 */
set_user_trap(struct task_struct * task,unsigned long trap)268 static int set_user_trap(struct task_struct *task, unsigned long trap)
269 {
270 task->thread.regs->trap = trap & 0xfff0;
271 return 0;
272 }
273
274 /*
275 * Get contents of register REGNO in task TASK.
276 */
ptrace_get_reg(struct task_struct * task,int regno,unsigned long * data)277 int ptrace_get_reg(struct task_struct *task, int regno, unsigned long *data)
278 {
279 unsigned int regs_max;
280
281 if ((task->thread.regs == NULL) || !data)
282 return -EIO;
283
284 if (regno == PT_MSR) {
285 *data = get_user_msr(task);
286 return 0;
287 }
288
289 if (regno == PT_DSCR)
290 return get_user_dscr(task, data);
291
292 #ifdef CONFIG_PPC64
293 /*
294 * softe copies paca->irq_soft_mask variable state. Since irq_soft_mask is
295 * no more used as a flag, lets force usr to alway see the softe value as 1
296 * which means interrupts are not soft disabled.
297 */
298 if (regno == PT_SOFTE) {
299 *data = 1;
300 return 0;
301 }
302 #endif
303
304 regs_max = sizeof(struct user_pt_regs) / sizeof(unsigned long);
305 if (regno < regs_max) {
306 regno = array_index_nospec(regno, regs_max);
307 *data = ((unsigned long *)task->thread.regs)[regno];
308 return 0;
309 }
310
311 return -EIO;
312 }
313
314 /*
315 * Write contents of register REGNO in task TASK.
316 */
ptrace_put_reg(struct task_struct * task,int regno,unsigned long data)317 int ptrace_put_reg(struct task_struct *task, int regno, unsigned long data)
318 {
319 if (task->thread.regs == NULL)
320 return -EIO;
321
322 if (regno == PT_MSR)
323 return set_user_msr(task, data);
324 if (regno == PT_TRAP)
325 return set_user_trap(task, data);
326 if (regno == PT_DSCR)
327 return set_user_dscr(task, data);
328
329 if (regno <= PT_MAX_PUT_REG) {
330 regno = array_index_nospec(regno, PT_MAX_PUT_REG + 1);
331 ((unsigned long *)task->thread.regs)[regno] = data;
332 return 0;
333 }
334 return -EIO;
335 }
336
gpr_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)337 static int gpr_get(struct task_struct *target, const struct user_regset *regset,
338 unsigned int pos, unsigned int count,
339 void *kbuf, void __user *ubuf)
340 {
341 int i, ret;
342
343 if (target->thread.regs == NULL)
344 return -EIO;
345
346 if (!FULL_REGS(target->thread.regs)) {
347 /* We have a partial register set. Fill 14-31 with bogus values */
348 for (i = 14; i < 32; i++)
349 target->thread.regs->gpr[i] = NV_REG_POISON;
350 }
351
352 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
353 target->thread.regs,
354 0, offsetof(struct pt_regs, msr));
355 if (!ret) {
356 unsigned long msr = get_user_msr(target);
357 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
358 offsetof(struct pt_regs, msr),
359 offsetof(struct pt_regs, msr) +
360 sizeof(msr));
361 }
362
363 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
364 offsetof(struct pt_regs, msr) + sizeof(long));
365
366 if (!ret)
367 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
368 &target->thread.regs->orig_gpr3,
369 offsetof(struct pt_regs, orig_gpr3),
370 sizeof(struct user_pt_regs));
371 if (!ret)
372 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
373 sizeof(struct user_pt_regs), -1);
374
375 return ret;
376 }
377
gpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)378 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
379 unsigned int pos, unsigned int count,
380 const void *kbuf, const void __user *ubuf)
381 {
382 unsigned long reg;
383 int ret;
384
385 if (target->thread.regs == NULL)
386 return -EIO;
387
388 CHECK_FULL_REGS(target->thread.regs);
389
390 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
391 target->thread.regs,
392 0, PT_MSR * sizeof(reg));
393
394 if (!ret && count > 0) {
395 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, ®,
396 PT_MSR * sizeof(reg),
397 (PT_MSR + 1) * sizeof(reg));
398 if (!ret)
399 ret = set_user_msr(target, reg);
400 }
401
402 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
403 offsetof(struct pt_regs, msr) + sizeof(long));
404
405 if (!ret)
406 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
407 &target->thread.regs->orig_gpr3,
408 PT_ORIG_R3 * sizeof(reg),
409 (PT_MAX_PUT_REG + 1) * sizeof(reg));
410
411 if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
412 ret = user_regset_copyin_ignore(
413 &pos, &count, &kbuf, &ubuf,
414 (PT_MAX_PUT_REG + 1) * sizeof(reg),
415 PT_TRAP * sizeof(reg));
416
417 if (!ret && count > 0) {
418 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, ®,
419 PT_TRAP * sizeof(reg),
420 (PT_TRAP + 1) * sizeof(reg));
421 if (!ret)
422 ret = set_user_trap(target, reg);
423 }
424
425 if (!ret)
426 ret = user_regset_copyin_ignore(
427 &pos, &count, &kbuf, &ubuf,
428 (PT_TRAP + 1) * sizeof(reg), -1);
429
430 return ret;
431 }
432
433 /*
434 * Regardless of transactions, 'fp_state' holds the current running
435 * value of all FPR registers and 'ckfp_state' holds the last checkpointed
436 * value of all FPR registers for the current transaction.
437 *
438 * Userspace interface buffer layout:
439 *
440 * struct data {
441 * u64 fpr[32];
442 * u64 fpscr;
443 * };
444 */
fpr_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)445 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
446 unsigned int pos, unsigned int count,
447 void *kbuf, void __user *ubuf)
448 {
449 #ifdef CONFIG_VSX
450 u64 buf[33];
451 int i;
452
453 flush_fp_to_thread(target);
454
455 /* copy to local buffer then write that out */
456 for (i = 0; i < 32 ; i++)
457 buf[i] = target->thread.TS_FPR(i);
458 buf[32] = target->thread.fp_state.fpscr;
459 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
460 #else
461 BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
462 offsetof(struct thread_fp_state, fpr[32]));
463
464 flush_fp_to_thread(target);
465
466 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
467 &target->thread.fp_state, 0, -1);
468 #endif
469 }
470
471 /*
472 * Regardless of transactions, 'fp_state' holds the current running
473 * value of all FPR registers and 'ckfp_state' holds the last checkpointed
474 * value of all FPR registers for the current transaction.
475 *
476 * Userspace interface buffer layout:
477 *
478 * struct data {
479 * u64 fpr[32];
480 * u64 fpscr;
481 * };
482 *
483 */
fpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)484 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
485 unsigned int pos, unsigned int count,
486 const void *kbuf, const void __user *ubuf)
487 {
488 #ifdef CONFIG_VSX
489 u64 buf[33];
490 int i;
491
492 flush_fp_to_thread(target);
493
494 for (i = 0; i < 32 ; i++)
495 buf[i] = target->thread.TS_FPR(i);
496 buf[32] = target->thread.fp_state.fpscr;
497
498 /* copy to local buffer then write that out */
499 i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
500 if (i)
501 return i;
502
503 for (i = 0; i < 32 ; i++)
504 target->thread.TS_FPR(i) = buf[i];
505 target->thread.fp_state.fpscr = buf[32];
506 return 0;
507 #else
508 BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
509 offsetof(struct thread_fp_state, fpr[32]));
510
511 flush_fp_to_thread(target);
512
513 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
514 &target->thread.fp_state, 0, -1);
515 #endif
516 }
517
518 #ifdef CONFIG_ALTIVEC
519 /*
520 * Get/set all the altivec registers vr0..vr31, vscr, vrsave, in one go.
521 * The transfer totals 34 quadword. Quadwords 0-31 contain the
522 * corresponding vector registers. Quadword 32 contains the vscr as the
523 * last word (offset 12) within that quadword. Quadword 33 contains the
524 * vrsave as the first word (offset 0) within the quadword.
525 *
526 * This definition of the VMX state is compatible with the current PPC32
527 * ptrace interface. This allows signal handling and ptrace to use the
528 * same structures. This also simplifies the implementation of a bi-arch
529 * (combined (32- and 64-bit) gdb.
530 */
531
vr_active(struct task_struct * target,const struct user_regset * regset)532 static int vr_active(struct task_struct *target,
533 const struct user_regset *regset)
534 {
535 flush_altivec_to_thread(target);
536 return target->thread.used_vr ? regset->n : 0;
537 }
538
539 /*
540 * Regardless of transactions, 'vr_state' holds the current running
541 * value of all the VMX registers and 'ckvr_state' holds the last
542 * checkpointed value of all the VMX registers for the current
543 * transaction to fall back on in case it aborts.
544 *
545 * Userspace interface buffer layout:
546 *
547 * struct data {
548 * vector128 vr[32];
549 * vector128 vscr;
550 * vector128 vrsave;
551 * };
552 */
vr_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)553 static int vr_get(struct task_struct *target, const struct user_regset *regset,
554 unsigned int pos, unsigned int count,
555 void *kbuf, void __user *ubuf)
556 {
557 int ret;
558
559 flush_altivec_to_thread(target);
560
561 BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
562 offsetof(struct thread_vr_state, vr[32]));
563
564 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
565 &target->thread.vr_state, 0,
566 33 * sizeof(vector128));
567 if (!ret) {
568 /*
569 * Copy out only the low-order word of vrsave.
570 */
571 int start, end;
572 union {
573 elf_vrreg_t reg;
574 u32 word;
575 } vrsave;
576 memset(&vrsave, 0, sizeof(vrsave));
577
578 vrsave.word = target->thread.vrsave;
579
580 start = 33 * sizeof(vector128);
581 end = start + sizeof(vrsave);
582 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave,
583 start, end);
584 }
585
586 return ret;
587 }
588
589 /*
590 * Regardless of transactions, 'vr_state' holds the current running
591 * value of all the VMX registers and 'ckvr_state' holds the last
592 * checkpointed value of all the VMX registers for the current
593 * transaction to fall back on in case it aborts.
594 *
595 * Userspace interface buffer layout:
596 *
597 * struct data {
598 * vector128 vr[32];
599 * vector128 vscr;
600 * vector128 vrsave;
601 * };
602 */
vr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)603 static int vr_set(struct task_struct *target, const struct user_regset *regset,
604 unsigned int pos, unsigned int count,
605 const void *kbuf, const void __user *ubuf)
606 {
607 int ret;
608
609 flush_altivec_to_thread(target);
610
611 BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
612 offsetof(struct thread_vr_state, vr[32]));
613
614 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
615 &target->thread.vr_state, 0,
616 33 * sizeof(vector128));
617 if (!ret && count > 0) {
618 /*
619 * We use only the first word of vrsave.
620 */
621 int start, end;
622 union {
623 elf_vrreg_t reg;
624 u32 word;
625 } vrsave;
626 memset(&vrsave, 0, sizeof(vrsave));
627
628 vrsave.word = target->thread.vrsave;
629
630 start = 33 * sizeof(vector128);
631 end = start + sizeof(vrsave);
632 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave,
633 start, end);
634 if (!ret)
635 target->thread.vrsave = vrsave.word;
636 }
637
638 return ret;
639 }
640 #endif /* CONFIG_ALTIVEC */
641
642 #ifdef CONFIG_VSX
643 /*
644 * Currently to set and and get all the vsx state, you need to call
645 * the fp and VMX calls as well. This only get/sets the lower 32
646 * 128bit VSX registers.
647 */
648
vsr_active(struct task_struct * target,const struct user_regset * regset)649 static int vsr_active(struct task_struct *target,
650 const struct user_regset *regset)
651 {
652 flush_vsx_to_thread(target);
653 return target->thread.used_vsr ? regset->n : 0;
654 }
655
656 /*
657 * Regardless of transactions, 'fp_state' holds the current running
658 * value of all FPR registers and 'ckfp_state' holds the last
659 * checkpointed value of all FPR registers for the current
660 * transaction.
661 *
662 * Userspace interface buffer layout:
663 *
664 * struct data {
665 * u64 vsx[32];
666 * };
667 */
vsr_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)668 static int vsr_get(struct task_struct *target, const struct user_regset *regset,
669 unsigned int pos, unsigned int count,
670 void *kbuf, void __user *ubuf)
671 {
672 u64 buf[32];
673 int ret, i;
674
675 flush_tmregs_to_thread(target);
676 flush_fp_to_thread(target);
677 flush_altivec_to_thread(target);
678 flush_vsx_to_thread(target);
679
680 for (i = 0; i < 32 ; i++)
681 buf[i] = target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
682
683 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
684 buf, 0, 32 * sizeof(double));
685
686 return ret;
687 }
688
689 /*
690 * Regardless of transactions, 'fp_state' holds the current running
691 * value of all FPR registers and 'ckfp_state' holds the last
692 * checkpointed value of all FPR registers for the current
693 * transaction.
694 *
695 * Userspace interface buffer layout:
696 *
697 * struct data {
698 * u64 vsx[32];
699 * };
700 */
vsr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)701 static int vsr_set(struct task_struct *target, const struct user_regset *regset,
702 unsigned int pos, unsigned int count,
703 const void *kbuf, const void __user *ubuf)
704 {
705 u64 buf[32];
706 int ret,i;
707
708 flush_tmregs_to_thread(target);
709 flush_fp_to_thread(target);
710 flush_altivec_to_thread(target);
711 flush_vsx_to_thread(target);
712
713 for (i = 0; i < 32 ; i++)
714 buf[i] = target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
715
716 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
717 buf, 0, 32 * sizeof(double));
718 if (!ret)
719 for (i = 0; i < 32 ; i++)
720 target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
721
722 return ret;
723 }
724 #endif /* CONFIG_VSX */
725
726 #ifdef CONFIG_SPE
727
728 /*
729 * For get_evrregs/set_evrregs functions 'data' has the following layout:
730 *
731 * struct {
732 * u32 evr[32];
733 * u64 acc;
734 * u32 spefscr;
735 * }
736 */
737
evr_active(struct task_struct * target,const struct user_regset * regset)738 static int evr_active(struct task_struct *target,
739 const struct user_regset *regset)
740 {
741 flush_spe_to_thread(target);
742 return target->thread.used_spe ? regset->n : 0;
743 }
744
evr_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)745 static int evr_get(struct task_struct *target, const struct user_regset *regset,
746 unsigned int pos, unsigned int count,
747 void *kbuf, void __user *ubuf)
748 {
749 int ret;
750
751 flush_spe_to_thread(target);
752
753 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
754 &target->thread.evr,
755 0, sizeof(target->thread.evr));
756
757 BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
758 offsetof(struct thread_struct, spefscr));
759
760 if (!ret)
761 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
762 &target->thread.acc,
763 sizeof(target->thread.evr), -1);
764
765 return ret;
766 }
767
evr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)768 static int evr_set(struct task_struct *target, const struct user_regset *regset,
769 unsigned int pos, unsigned int count,
770 const void *kbuf, const void __user *ubuf)
771 {
772 int ret;
773
774 flush_spe_to_thread(target);
775
776 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
777 &target->thread.evr,
778 0, sizeof(target->thread.evr));
779
780 BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
781 offsetof(struct thread_struct, spefscr));
782
783 if (!ret)
784 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
785 &target->thread.acc,
786 sizeof(target->thread.evr), -1);
787
788 return ret;
789 }
790 #endif /* CONFIG_SPE */
791
792 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
793 /**
794 * tm_cgpr_active - get active number of registers in CGPR
795 * @target: The target task.
796 * @regset: The user regset structure.
797 *
798 * This function checks for the active number of available
799 * regisers in transaction checkpointed GPR category.
800 */
tm_cgpr_active(struct task_struct * target,const struct user_regset * regset)801 static int tm_cgpr_active(struct task_struct *target,
802 const struct user_regset *regset)
803 {
804 if (!cpu_has_feature(CPU_FTR_TM))
805 return -ENODEV;
806
807 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
808 return 0;
809
810 return regset->n;
811 }
812
813 /**
814 * tm_cgpr_get - get CGPR registers
815 * @target: The target task.
816 * @regset: The user regset structure.
817 * @pos: The buffer position.
818 * @count: Number of bytes to copy.
819 * @kbuf: Kernel buffer to copy from.
820 * @ubuf: User buffer to copy into.
821 *
822 * This function gets transaction checkpointed GPR registers.
823 *
824 * When the transaction is active, 'ckpt_regs' holds all the checkpointed
825 * GPR register values for the current transaction to fall back on if it
826 * aborts in between. This function gets those checkpointed GPR registers.
827 * The userspace interface buffer layout is as follows.
828 *
829 * struct data {
830 * struct pt_regs ckpt_regs;
831 * };
832 */
tm_cgpr_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)833 static int tm_cgpr_get(struct task_struct *target,
834 const struct user_regset *regset,
835 unsigned int pos, unsigned int count,
836 void *kbuf, void __user *ubuf)
837 {
838 int ret;
839
840 if (!cpu_has_feature(CPU_FTR_TM))
841 return -ENODEV;
842
843 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
844 return -ENODATA;
845
846 flush_tmregs_to_thread(target);
847 flush_fp_to_thread(target);
848 flush_altivec_to_thread(target);
849
850 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
851 &target->thread.ckpt_regs,
852 0, offsetof(struct pt_regs, msr));
853 if (!ret) {
854 unsigned long msr = get_user_ckpt_msr(target);
855
856 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
857 offsetof(struct pt_regs, msr),
858 offsetof(struct pt_regs, msr) +
859 sizeof(msr));
860 }
861
862 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
863 offsetof(struct pt_regs, msr) + sizeof(long));
864
865 if (!ret)
866 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
867 &target->thread.ckpt_regs.orig_gpr3,
868 offsetof(struct pt_regs, orig_gpr3),
869 sizeof(struct user_pt_regs));
870 if (!ret)
871 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
872 sizeof(struct user_pt_regs), -1);
873
874 return ret;
875 }
876
877 /*
878 * tm_cgpr_set - set the CGPR registers
879 * @target: The target task.
880 * @regset: The user regset structure.
881 * @pos: The buffer position.
882 * @count: Number of bytes to copy.
883 * @kbuf: Kernel buffer to copy into.
884 * @ubuf: User buffer to copy from.
885 *
886 * This function sets in transaction checkpointed GPR registers.
887 *
888 * When the transaction is active, 'ckpt_regs' holds the checkpointed
889 * GPR register values for the current transaction to fall back on if it
890 * aborts in between. This function sets those checkpointed GPR registers.
891 * The userspace interface buffer layout is as follows.
892 *
893 * struct data {
894 * struct pt_regs ckpt_regs;
895 * };
896 */
tm_cgpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)897 static int tm_cgpr_set(struct task_struct *target,
898 const struct user_regset *regset,
899 unsigned int pos, unsigned int count,
900 const void *kbuf, const void __user *ubuf)
901 {
902 unsigned long reg;
903 int ret;
904
905 if (!cpu_has_feature(CPU_FTR_TM))
906 return -ENODEV;
907
908 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
909 return -ENODATA;
910
911 flush_tmregs_to_thread(target);
912 flush_fp_to_thread(target);
913 flush_altivec_to_thread(target);
914
915 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
916 &target->thread.ckpt_regs,
917 0, PT_MSR * sizeof(reg));
918
919 if (!ret && count > 0) {
920 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, ®,
921 PT_MSR * sizeof(reg),
922 (PT_MSR + 1) * sizeof(reg));
923 if (!ret)
924 ret = set_user_ckpt_msr(target, reg);
925 }
926
927 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
928 offsetof(struct pt_regs, msr) + sizeof(long));
929
930 if (!ret)
931 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
932 &target->thread.ckpt_regs.orig_gpr3,
933 PT_ORIG_R3 * sizeof(reg),
934 (PT_MAX_PUT_REG + 1) * sizeof(reg));
935
936 if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
937 ret = user_regset_copyin_ignore(
938 &pos, &count, &kbuf, &ubuf,
939 (PT_MAX_PUT_REG + 1) * sizeof(reg),
940 PT_TRAP * sizeof(reg));
941
942 if (!ret && count > 0) {
943 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, ®,
944 PT_TRAP * sizeof(reg),
945 (PT_TRAP + 1) * sizeof(reg));
946 if (!ret)
947 ret = set_user_ckpt_trap(target, reg);
948 }
949
950 if (!ret)
951 ret = user_regset_copyin_ignore(
952 &pos, &count, &kbuf, &ubuf,
953 (PT_TRAP + 1) * sizeof(reg), -1);
954
955 return ret;
956 }
957
958 /**
959 * tm_cfpr_active - get active number of registers in CFPR
960 * @target: The target task.
961 * @regset: The user regset structure.
962 *
963 * This function checks for the active number of available
964 * regisers in transaction checkpointed FPR category.
965 */
tm_cfpr_active(struct task_struct * target,const struct user_regset * regset)966 static int tm_cfpr_active(struct task_struct *target,
967 const struct user_regset *regset)
968 {
969 if (!cpu_has_feature(CPU_FTR_TM))
970 return -ENODEV;
971
972 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
973 return 0;
974
975 return regset->n;
976 }
977
978 /**
979 * tm_cfpr_get - get CFPR registers
980 * @target: The target task.
981 * @regset: The user regset structure.
982 * @pos: The buffer position.
983 * @count: Number of bytes to copy.
984 * @kbuf: Kernel buffer to copy from.
985 * @ubuf: User buffer to copy into.
986 *
987 * This function gets in transaction checkpointed FPR registers.
988 *
989 * When the transaction is active 'ckfp_state' holds the checkpointed
990 * values for the current transaction to fall back on if it aborts
991 * in between. This function gets those checkpointed FPR registers.
992 * The userspace interface buffer layout is as follows.
993 *
994 * struct data {
995 * u64 fpr[32];
996 * u64 fpscr;
997 *};
998 */
tm_cfpr_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)999 static int tm_cfpr_get(struct task_struct *target,
1000 const struct user_regset *regset,
1001 unsigned int pos, unsigned int count,
1002 void *kbuf, void __user *ubuf)
1003 {
1004 u64 buf[33];
1005 int i;
1006
1007 if (!cpu_has_feature(CPU_FTR_TM))
1008 return -ENODEV;
1009
1010 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1011 return -ENODATA;
1012
1013 flush_tmregs_to_thread(target);
1014 flush_fp_to_thread(target);
1015 flush_altivec_to_thread(target);
1016
1017 /* copy to local buffer then write that out */
1018 for (i = 0; i < 32 ; i++)
1019 buf[i] = target->thread.TS_CKFPR(i);
1020 buf[32] = target->thread.ckfp_state.fpscr;
1021 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
1022 }
1023
1024 /**
1025 * tm_cfpr_set - set CFPR registers
1026 * @target: The target task.
1027 * @regset: The user regset structure.
1028 * @pos: The buffer position.
1029 * @count: Number of bytes to copy.
1030 * @kbuf: Kernel buffer to copy into.
1031 * @ubuf: User buffer to copy from.
1032 *
1033 * This function sets in transaction checkpointed FPR registers.
1034 *
1035 * When the transaction is active 'ckfp_state' holds the checkpointed
1036 * FPR register values for the current transaction to fall back on
1037 * if it aborts in between. This function sets these checkpointed
1038 * FPR registers. The userspace interface buffer layout is as follows.
1039 *
1040 * struct data {
1041 * u64 fpr[32];
1042 * u64 fpscr;
1043 *};
1044 */
tm_cfpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1045 static int tm_cfpr_set(struct task_struct *target,
1046 const struct user_regset *regset,
1047 unsigned int pos, unsigned int count,
1048 const void *kbuf, const void __user *ubuf)
1049 {
1050 u64 buf[33];
1051 int i;
1052
1053 if (!cpu_has_feature(CPU_FTR_TM))
1054 return -ENODEV;
1055
1056 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1057 return -ENODATA;
1058
1059 flush_tmregs_to_thread(target);
1060 flush_fp_to_thread(target);
1061 flush_altivec_to_thread(target);
1062
1063 for (i = 0; i < 32; i++)
1064 buf[i] = target->thread.TS_CKFPR(i);
1065 buf[32] = target->thread.ckfp_state.fpscr;
1066
1067 /* copy to local buffer then write that out */
1068 i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
1069 if (i)
1070 return i;
1071 for (i = 0; i < 32 ; i++)
1072 target->thread.TS_CKFPR(i) = buf[i];
1073 target->thread.ckfp_state.fpscr = buf[32];
1074 return 0;
1075 }
1076
1077 /**
1078 * tm_cvmx_active - get active number of registers in CVMX
1079 * @target: The target task.
1080 * @regset: The user regset structure.
1081 *
1082 * This function checks for the active number of available
1083 * regisers in checkpointed VMX category.
1084 */
tm_cvmx_active(struct task_struct * target,const struct user_regset * regset)1085 static int tm_cvmx_active(struct task_struct *target,
1086 const struct user_regset *regset)
1087 {
1088 if (!cpu_has_feature(CPU_FTR_TM))
1089 return -ENODEV;
1090
1091 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1092 return 0;
1093
1094 return regset->n;
1095 }
1096
1097 /**
1098 * tm_cvmx_get - get CMVX registers
1099 * @target: The target task.
1100 * @regset: The user regset structure.
1101 * @pos: The buffer position.
1102 * @count: Number of bytes to copy.
1103 * @kbuf: Kernel buffer to copy from.
1104 * @ubuf: User buffer to copy into.
1105 *
1106 * This function gets in transaction checkpointed VMX registers.
1107 *
1108 * When the transaction is active 'ckvr_state' and 'ckvrsave' hold
1109 * the checkpointed values for the current transaction to fall
1110 * back on if it aborts in between. The userspace interface buffer
1111 * layout is as follows.
1112 *
1113 * struct data {
1114 * vector128 vr[32];
1115 * vector128 vscr;
1116 * vector128 vrsave;
1117 *};
1118 */
tm_cvmx_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1119 static int tm_cvmx_get(struct task_struct *target,
1120 const struct user_regset *regset,
1121 unsigned int pos, unsigned int count,
1122 void *kbuf, void __user *ubuf)
1123 {
1124 int ret;
1125
1126 BUILD_BUG_ON(TVSO(vscr) != TVSO(vr[32]));
1127
1128 if (!cpu_has_feature(CPU_FTR_TM))
1129 return -ENODEV;
1130
1131 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1132 return -ENODATA;
1133
1134 /* Flush the state */
1135 flush_tmregs_to_thread(target);
1136 flush_fp_to_thread(target);
1137 flush_altivec_to_thread(target);
1138
1139 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1140 &target->thread.ckvr_state, 0,
1141 33 * sizeof(vector128));
1142 if (!ret) {
1143 /*
1144 * Copy out only the low-order word of vrsave.
1145 */
1146 union {
1147 elf_vrreg_t reg;
1148 u32 word;
1149 } vrsave;
1150 memset(&vrsave, 0, sizeof(vrsave));
1151 vrsave.word = target->thread.ckvrsave;
1152 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave,
1153 33 * sizeof(vector128), -1);
1154 }
1155
1156 return ret;
1157 }
1158
1159 /**
1160 * tm_cvmx_set - set CMVX registers
1161 * @target: The target task.
1162 * @regset: The user regset structure.
1163 * @pos: The buffer position.
1164 * @count: Number of bytes to copy.
1165 * @kbuf: Kernel buffer to copy into.
1166 * @ubuf: User buffer to copy from.
1167 *
1168 * This function sets in transaction checkpointed VMX registers.
1169 *
1170 * When the transaction is active 'ckvr_state' and 'ckvrsave' hold
1171 * the checkpointed values for the current transaction to fall
1172 * back on if it aborts in between. The userspace interface buffer
1173 * layout is as follows.
1174 *
1175 * struct data {
1176 * vector128 vr[32];
1177 * vector128 vscr;
1178 * vector128 vrsave;
1179 *};
1180 */
tm_cvmx_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1181 static int tm_cvmx_set(struct task_struct *target,
1182 const struct user_regset *regset,
1183 unsigned int pos, unsigned int count,
1184 const void *kbuf, const void __user *ubuf)
1185 {
1186 int ret;
1187
1188 BUILD_BUG_ON(TVSO(vscr) != TVSO(vr[32]));
1189
1190 if (!cpu_has_feature(CPU_FTR_TM))
1191 return -ENODEV;
1192
1193 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1194 return -ENODATA;
1195
1196 flush_tmregs_to_thread(target);
1197 flush_fp_to_thread(target);
1198 flush_altivec_to_thread(target);
1199
1200 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1201 &target->thread.ckvr_state, 0,
1202 33 * sizeof(vector128));
1203 if (!ret && count > 0) {
1204 /*
1205 * We use only the low-order word of vrsave.
1206 */
1207 union {
1208 elf_vrreg_t reg;
1209 u32 word;
1210 } vrsave;
1211 memset(&vrsave, 0, sizeof(vrsave));
1212 vrsave.word = target->thread.ckvrsave;
1213 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave,
1214 33 * sizeof(vector128), -1);
1215 if (!ret)
1216 target->thread.ckvrsave = vrsave.word;
1217 }
1218
1219 return ret;
1220 }
1221
1222 /**
1223 * tm_cvsx_active - get active number of registers in CVSX
1224 * @target: The target task.
1225 * @regset: The user regset structure.
1226 *
1227 * This function checks for the active number of available
1228 * regisers in transaction checkpointed VSX category.
1229 */
tm_cvsx_active(struct task_struct * target,const struct user_regset * regset)1230 static int tm_cvsx_active(struct task_struct *target,
1231 const struct user_regset *regset)
1232 {
1233 if (!cpu_has_feature(CPU_FTR_TM))
1234 return -ENODEV;
1235
1236 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1237 return 0;
1238
1239 flush_vsx_to_thread(target);
1240 return target->thread.used_vsr ? regset->n : 0;
1241 }
1242
1243 /**
1244 * tm_cvsx_get - get CVSX registers
1245 * @target: The target task.
1246 * @regset: The user regset structure.
1247 * @pos: The buffer position.
1248 * @count: Number of bytes to copy.
1249 * @kbuf: Kernel buffer to copy from.
1250 * @ubuf: User buffer to copy into.
1251 *
1252 * This function gets in transaction checkpointed VSX registers.
1253 *
1254 * When the transaction is active 'ckfp_state' holds the checkpointed
1255 * values for the current transaction to fall back on if it aborts
1256 * in between. This function gets those checkpointed VSX registers.
1257 * The userspace interface buffer layout is as follows.
1258 *
1259 * struct data {
1260 * u64 vsx[32];
1261 *};
1262 */
tm_cvsx_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1263 static int tm_cvsx_get(struct task_struct *target,
1264 const struct user_regset *regset,
1265 unsigned int pos, unsigned int count,
1266 void *kbuf, void __user *ubuf)
1267 {
1268 u64 buf[32];
1269 int ret, i;
1270
1271 if (!cpu_has_feature(CPU_FTR_TM))
1272 return -ENODEV;
1273
1274 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1275 return -ENODATA;
1276
1277 /* Flush the state */
1278 flush_tmregs_to_thread(target);
1279 flush_fp_to_thread(target);
1280 flush_altivec_to_thread(target);
1281 flush_vsx_to_thread(target);
1282
1283 for (i = 0; i < 32 ; i++)
1284 buf[i] = target->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET];
1285 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1286 buf, 0, 32 * sizeof(double));
1287
1288 return ret;
1289 }
1290
1291 /**
1292 * tm_cvsx_set - set CFPR registers
1293 * @target: The target task.
1294 * @regset: The user regset structure.
1295 * @pos: The buffer position.
1296 * @count: Number of bytes to copy.
1297 * @kbuf: Kernel buffer to copy into.
1298 * @ubuf: User buffer to copy from.
1299 *
1300 * This function sets in transaction checkpointed VSX registers.
1301 *
1302 * When the transaction is active 'ckfp_state' holds the checkpointed
1303 * VSX register values for the current transaction to fall back on
1304 * if it aborts in between. This function sets these checkpointed
1305 * FPR registers. The userspace interface buffer layout is as follows.
1306 *
1307 * struct data {
1308 * u64 vsx[32];
1309 *};
1310 */
tm_cvsx_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1311 static int tm_cvsx_set(struct task_struct *target,
1312 const struct user_regset *regset,
1313 unsigned int pos, unsigned int count,
1314 const void *kbuf, const void __user *ubuf)
1315 {
1316 u64 buf[32];
1317 int ret, i;
1318
1319 if (!cpu_has_feature(CPU_FTR_TM))
1320 return -ENODEV;
1321
1322 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1323 return -ENODATA;
1324
1325 /* Flush the state */
1326 flush_tmregs_to_thread(target);
1327 flush_fp_to_thread(target);
1328 flush_altivec_to_thread(target);
1329 flush_vsx_to_thread(target);
1330
1331 for (i = 0; i < 32 ; i++)
1332 buf[i] = target->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET];
1333
1334 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1335 buf, 0, 32 * sizeof(double));
1336 if (!ret)
1337 for (i = 0; i < 32 ; i++)
1338 target->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
1339
1340 return ret;
1341 }
1342
1343 /**
1344 * tm_spr_active - get active number of registers in TM SPR
1345 * @target: The target task.
1346 * @regset: The user regset structure.
1347 *
1348 * This function checks the active number of available
1349 * regisers in the transactional memory SPR category.
1350 */
tm_spr_active(struct task_struct * target,const struct user_regset * regset)1351 static int tm_spr_active(struct task_struct *target,
1352 const struct user_regset *regset)
1353 {
1354 if (!cpu_has_feature(CPU_FTR_TM))
1355 return -ENODEV;
1356
1357 return regset->n;
1358 }
1359
1360 /**
1361 * tm_spr_get - get the TM related SPR registers
1362 * @target: The target task.
1363 * @regset: The user regset structure.
1364 * @pos: The buffer position.
1365 * @count: Number of bytes to copy.
1366 * @kbuf: Kernel buffer to copy from.
1367 * @ubuf: User buffer to copy into.
1368 *
1369 * This function gets transactional memory related SPR registers.
1370 * The userspace interface buffer layout is as follows.
1371 *
1372 * struct {
1373 * u64 tm_tfhar;
1374 * u64 tm_texasr;
1375 * u64 tm_tfiar;
1376 * };
1377 */
tm_spr_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1378 static int tm_spr_get(struct task_struct *target,
1379 const struct user_regset *regset,
1380 unsigned int pos, unsigned int count,
1381 void *kbuf, void __user *ubuf)
1382 {
1383 int ret;
1384
1385 /* Build tests */
1386 BUILD_BUG_ON(TSO(tm_tfhar) + sizeof(u64) != TSO(tm_texasr));
1387 BUILD_BUG_ON(TSO(tm_texasr) + sizeof(u64) != TSO(tm_tfiar));
1388 BUILD_BUG_ON(TSO(tm_tfiar) + sizeof(u64) != TSO(ckpt_regs));
1389
1390 if (!cpu_has_feature(CPU_FTR_TM))
1391 return -ENODEV;
1392
1393 /* Flush the states */
1394 flush_tmregs_to_thread(target);
1395 flush_fp_to_thread(target);
1396 flush_altivec_to_thread(target);
1397
1398 /* TFHAR register */
1399 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1400 &target->thread.tm_tfhar, 0, sizeof(u64));
1401
1402 /* TEXASR register */
1403 if (!ret)
1404 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1405 &target->thread.tm_texasr, sizeof(u64),
1406 2 * sizeof(u64));
1407
1408 /* TFIAR register */
1409 if (!ret)
1410 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1411 &target->thread.tm_tfiar,
1412 2 * sizeof(u64), 3 * sizeof(u64));
1413 return ret;
1414 }
1415
1416 /**
1417 * tm_spr_set - set the TM related SPR registers
1418 * @target: The target task.
1419 * @regset: The user regset structure.
1420 * @pos: The buffer position.
1421 * @count: Number of bytes to copy.
1422 * @kbuf: Kernel buffer to copy into.
1423 * @ubuf: User buffer to copy from.
1424 *
1425 * This function sets transactional memory related SPR registers.
1426 * The userspace interface buffer layout is as follows.
1427 *
1428 * struct {
1429 * u64 tm_tfhar;
1430 * u64 tm_texasr;
1431 * u64 tm_tfiar;
1432 * };
1433 */
tm_spr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1434 static int tm_spr_set(struct task_struct *target,
1435 const struct user_regset *regset,
1436 unsigned int pos, unsigned int count,
1437 const void *kbuf, const void __user *ubuf)
1438 {
1439 int ret;
1440
1441 /* Build tests */
1442 BUILD_BUG_ON(TSO(tm_tfhar) + sizeof(u64) != TSO(tm_texasr));
1443 BUILD_BUG_ON(TSO(tm_texasr) + sizeof(u64) != TSO(tm_tfiar));
1444 BUILD_BUG_ON(TSO(tm_tfiar) + sizeof(u64) != TSO(ckpt_regs));
1445
1446 if (!cpu_has_feature(CPU_FTR_TM))
1447 return -ENODEV;
1448
1449 /* Flush the states */
1450 flush_tmregs_to_thread(target);
1451 flush_fp_to_thread(target);
1452 flush_altivec_to_thread(target);
1453
1454 /* TFHAR register */
1455 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1456 &target->thread.tm_tfhar, 0, sizeof(u64));
1457
1458 /* TEXASR register */
1459 if (!ret)
1460 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1461 &target->thread.tm_texasr, sizeof(u64),
1462 2 * sizeof(u64));
1463
1464 /* TFIAR register */
1465 if (!ret)
1466 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1467 &target->thread.tm_tfiar,
1468 2 * sizeof(u64), 3 * sizeof(u64));
1469 return ret;
1470 }
1471
tm_tar_active(struct task_struct * target,const struct user_regset * regset)1472 static int tm_tar_active(struct task_struct *target,
1473 const struct user_regset *regset)
1474 {
1475 if (!cpu_has_feature(CPU_FTR_TM))
1476 return -ENODEV;
1477
1478 if (MSR_TM_ACTIVE(target->thread.regs->msr))
1479 return regset->n;
1480
1481 return 0;
1482 }
1483
tm_tar_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1484 static int tm_tar_get(struct task_struct *target,
1485 const struct user_regset *regset,
1486 unsigned int pos, unsigned int count,
1487 void *kbuf, void __user *ubuf)
1488 {
1489 int ret;
1490
1491 if (!cpu_has_feature(CPU_FTR_TM))
1492 return -ENODEV;
1493
1494 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1495 return -ENODATA;
1496
1497 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1498 &target->thread.tm_tar, 0, sizeof(u64));
1499 return ret;
1500 }
1501
tm_tar_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1502 static int tm_tar_set(struct task_struct *target,
1503 const struct user_regset *regset,
1504 unsigned int pos, unsigned int count,
1505 const void *kbuf, const void __user *ubuf)
1506 {
1507 int ret;
1508
1509 if (!cpu_has_feature(CPU_FTR_TM))
1510 return -ENODEV;
1511
1512 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1513 return -ENODATA;
1514
1515 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1516 &target->thread.tm_tar, 0, sizeof(u64));
1517 return ret;
1518 }
1519
tm_ppr_active(struct task_struct * target,const struct user_regset * regset)1520 static int tm_ppr_active(struct task_struct *target,
1521 const struct user_regset *regset)
1522 {
1523 if (!cpu_has_feature(CPU_FTR_TM))
1524 return -ENODEV;
1525
1526 if (MSR_TM_ACTIVE(target->thread.regs->msr))
1527 return regset->n;
1528
1529 return 0;
1530 }
1531
1532
tm_ppr_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1533 static int tm_ppr_get(struct task_struct *target,
1534 const struct user_regset *regset,
1535 unsigned int pos, unsigned int count,
1536 void *kbuf, void __user *ubuf)
1537 {
1538 int ret;
1539
1540 if (!cpu_has_feature(CPU_FTR_TM))
1541 return -ENODEV;
1542
1543 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1544 return -ENODATA;
1545
1546 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1547 &target->thread.tm_ppr, 0, sizeof(u64));
1548 return ret;
1549 }
1550
tm_ppr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1551 static int tm_ppr_set(struct task_struct *target,
1552 const struct user_regset *regset,
1553 unsigned int pos, unsigned int count,
1554 const void *kbuf, const void __user *ubuf)
1555 {
1556 int ret;
1557
1558 if (!cpu_has_feature(CPU_FTR_TM))
1559 return -ENODEV;
1560
1561 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1562 return -ENODATA;
1563
1564 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1565 &target->thread.tm_ppr, 0, sizeof(u64));
1566 return ret;
1567 }
1568
tm_dscr_active(struct task_struct * target,const struct user_regset * regset)1569 static int tm_dscr_active(struct task_struct *target,
1570 const struct user_regset *regset)
1571 {
1572 if (!cpu_has_feature(CPU_FTR_TM))
1573 return -ENODEV;
1574
1575 if (MSR_TM_ACTIVE(target->thread.regs->msr))
1576 return regset->n;
1577
1578 return 0;
1579 }
1580
tm_dscr_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1581 static int tm_dscr_get(struct task_struct *target,
1582 const struct user_regset *regset,
1583 unsigned int pos, unsigned int count,
1584 void *kbuf, void __user *ubuf)
1585 {
1586 int ret;
1587
1588 if (!cpu_has_feature(CPU_FTR_TM))
1589 return -ENODEV;
1590
1591 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1592 return -ENODATA;
1593
1594 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1595 &target->thread.tm_dscr, 0, sizeof(u64));
1596 return ret;
1597 }
1598
tm_dscr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1599 static int tm_dscr_set(struct task_struct *target,
1600 const struct user_regset *regset,
1601 unsigned int pos, unsigned int count,
1602 const void *kbuf, const void __user *ubuf)
1603 {
1604 int ret;
1605
1606 if (!cpu_has_feature(CPU_FTR_TM))
1607 return -ENODEV;
1608
1609 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1610 return -ENODATA;
1611
1612 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1613 &target->thread.tm_dscr, 0, sizeof(u64));
1614 return ret;
1615 }
1616 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1617
1618 #ifdef CONFIG_PPC64
ppr_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1619 static int ppr_get(struct task_struct *target,
1620 const struct user_regset *regset,
1621 unsigned int pos, unsigned int count,
1622 void *kbuf, void __user *ubuf)
1623 {
1624 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1625 &target->thread.regs->ppr, 0, sizeof(u64));
1626 }
1627
ppr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1628 static int ppr_set(struct task_struct *target,
1629 const struct user_regset *regset,
1630 unsigned int pos, unsigned int count,
1631 const void *kbuf, const void __user *ubuf)
1632 {
1633 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1634 &target->thread.regs->ppr, 0, sizeof(u64));
1635 }
1636
dscr_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1637 static int dscr_get(struct task_struct *target,
1638 const struct user_regset *regset,
1639 unsigned int pos, unsigned int count,
1640 void *kbuf, void __user *ubuf)
1641 {
1642 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1643 &target->thread.dscr, 0, sizeof(u64));
1644 }
dscr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1645 static int dscr_set(struct task_struct *target,
1646 const struct user_regset *regset,
1647 unsigned int pos, unsigned int count,
1648 const void *kbuf, const void __user *ubuf)
1649 {
1650 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1651 &target->thread.dscr, 0, sizeof(u64));
1652 }
1653 #endif
1654 #ifdef CONFIG_PPC_BOOK3S_64
tar_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1655 static int tar_get(struct task_struct *target,
1656 const struct user_regset *regset,
1657 unsigned int pos, unsigned int count,
1658 void *kbuf, void __user *ubuf)
1659 {
1660 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1661 &target->thread.tar, 0, sizeof(u64));
1662 }
tar_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1663 static int tar_set(struct task_struct *target,
1664 const struct user_regset *regset,
1665 unsigned int pos, unsigned int count,
1666 const void *kbuf, const void __user *ubuf)
1667 {
1668 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1669 &target->thread.tar, 0, sizeof(u64));
1670 }
1671
ebb_active(struct task_struct * target,const struct user_regset * regset)1672 static int ebb_active(struct task_struct *target,
1673 const struct user_regset *regset)
1674 {
1675 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1676 return -ENODEV;
1677
1678 if (target->thread.used_ebb)
1679 return regset->n;
1680
1681 return 0;
1682 }
1683
ebb_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1684 static int ebb_get(struct task_struct *target,
1685 const struct user_regset *regset,
1686 unsigned int pos, unsigned int count,
1687 void *kbuf, void __user *ubuf)
1688 {
1689 /* Build tests */
1690 BUILD_BUG_ON(TSO(ebbrr) + sizeof(unsigned long) != TSO(ebbhr));
1691 BUILD_BUG_ON(TSO(ebbhr) + sizeof(unsigned long) != TSO(bescr));
1692
1693 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1694 return -ENODEV;
1695
1696 if (!target->thread.used_ebb)
1697 return -ENODATA;
1698
1699 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1700 &target->thread.ebbrr, 0, 3 * sizeof(unsigned long));
1701 }
1702
ebb_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1703 static int ebb_set(struct task_struct *target,
1704 const struct user_regset *regset,
1705 unsigned int pos, unsigned int count,
1706 const void *kbuf, const void __user *ubuf)
1707 {
1708 int ret = 0;
1709
1710 /* Build tests */
1711 BUILD_BUG_ON(TSO(ebbrr) + sizeof(unsigned long) != TSO(ebbhr));
1712 BUILD_BUG_ON(TSO(ebbhr) + sizeof(unsigned long) != TSO(bescr));
1713
1714 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1715 return -ENODEV;
1716
1717 if (target->thread.used_ebb)
1718 return -ENODATA;
1719
1720 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1721 &target->thread.ebbrr, 0, sizeof(unsigned long));
1722
1723 if (!ret)
1724 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1725 &target->thread.ebbhr, sizeof(unsigned long),
1726 2 * sizeof(unsigned long));
1727
1728 if (!ret)
1729 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1730 &target->thread.bescr,
1731 2 * sizeof(unsigned long), 3 * sizeof(unsigned long));
1732
1733 return ret;
1734 }
pmu_active(struct task_struct * target,const struct user_regset * regset)1735 static int pmu_active(struct task_struct *target,
1736 const struct user_regset *regset)
1737 {
1738 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1739 return -ENODEV;
1740
1741 return regset->n;
1742 }
1743
pmu_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1744 static int pmu_get(struct task_struct *target,
1745 const struct user_regset *regset,
1746 unsigned int pos, unsigned int count,
1747 void *kbuf, void __user *ubuf)
1748 {
1749 /* Build tests */
1750 BUILD_BUG_ON(TSO(siar) + sizeof(unsigned long) != TSO(sdar));
1751 BUILD_BUG_ON(TSO(sdar) + sizeof(unsigned long) != TSO(sier));
1752 BUILD_BUG_ON(TSO(sier) + sizeof(unsigned long) != TSO(mmcr2));
1753 BUILD_BUG_ON(TSO(mmcr2) + sizeof(unsigned long) != TSO(mmcr0));
1754
1755 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1756 return -ENODEV;
1757
1758 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1759 &target->thread.siar, 0,
1760 5 * sizeof(unsigned long));
1761 }
1762
pmu_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1763 static int pmu_set(struct task_struct *target,
1764 const struct user_regset *regset,
1765 unsigned int pos, unsigned int count,
1766 const void *kbuf, const void __user *ubuf)
1767 {
1768 int ret = 0;
1769
1770 /* Build tests */
1771 BUILD_BUG_ON(TSO(siar) + sizeof(unsigned long) != TSO(sdar));
1772 BUILD_BUG_ON(TSO(sdar) + sizeof(unsigned long) != TSO(sier));
1773 BUILD_BUG_ON(TSO(sier) + sizeof(unsigned long) != TSO(mmcr2));
1774 BUILD_BUG_ON(TSO(mmcr2) + sizeof(unsigned long) != TSO(mmcr0));
1775
1776 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1777 return -ENODEV;
1778
1779 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1780 &target->thread.siar, 0,
1781 sizeof(unsigned long));
1782
1783 if (!ret)
1784 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1785 &target->thread.sdar, sizeof(unsigned long),
1786 2 * sizeof(unsigned long));
1787
1788 if (!ret)
1789 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1790 &target->thread.sier, 2 * sizeof(unsigned long),
1791 3 * sizeof(unsigned long));
1792
1793 if (!ret)
1794 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1795 &target->thread.mmcr2, 3 * sizeof(unsigned long),
1796 4 * sizeof(unsigned long));
1797
1798 if (!ret)
1799 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1800 &target->thread.mmcr0, 4 * sizeof(unsigned long),
1801 5 * sizeof(unsigned long));
1802 return ret;
1803 }
1804 #endif
1805
1806 #ifdef CONFIG_PPC_MEM_KEYS
pkey_active(struct task_struct * target,const struct user_regset * regset)1807 static int pkey_active(struct task_struct *target,
1808 const struct user_regset *regset)
1809 {
1810 if (!arch_pkeys_enabled())
1811 return -ENODEV;
1812
1813 return regset->n;
1814 }
1815
pkey_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)1816 static int pkey_get(struct task_struct *target,
1817 const struct user_regset *regset,
1818 unsigned int pos, unsigned int count,
1819 void *kbuf, void __user *ubuf)
1820 {
1821 BUILD_BUG_ON(TSO(amr) + sizeof(unsigned long) != TSO(iamr));
1822 BUILD_BUG_ON(TSO(iamr) + sizeof(unsigned long) != TSO(uamor));
1823
1824 if (!arch_pkeys_enabled())
1825 return -ENODEV;
1826
1827 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1828 &target->thread.amr, 0,
1829 ELF_NPKEY * sizeof(unsigned long));
1830 }
1831
pkey_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1832 static int pkey_set(struct task_struct *target,
1833 const struct user_regset *regset,
1834 unsigned int pos, unsigned int count,
1835 const void *kbuf, const void __user *ubuf)
1836 {
1837 u64 new_amr;
1838 int ret;
1839
1840 if (!arch_pkeys_enabled())
1841 return -ENODEV;
1842
1843 /* Only the AMR can be set from userspace */
1844 if (pos != 0 || count != sizeof(new_amr))
1845 return -EINVAL;
1846
1847 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1848 &new_amr, 0, sizeof(new_amr));
1849 if (ret)
1850 return ret;
1851
1852 /* UAMOR determines which bits of the AMR can be set from userspace. */
1853 target->thread.amr = (new_amr & target->thread.uamor) |
1854 (target->thread.amr & ~target->thread.uamor);
1855
1856 return 0;
1857 }
1858 #endif /* CONFIG_PPC_MEM_KEYS */
1859
1860 /*
1861 * These are our native regset flavors.
1862 */
1863 enum powerpc_regset {
1864 REGSET_GPR,
1865 REGSET_FPR,
1866 #ifdef CONFIG_ALTIVEC
1867 REGSET_VMX,
1868 #endif
1869 #ifdef CONFIG_VSX
1870 REGSET_VSX,
1871 #endif
1872 #ifdef CONFIG_SPE
1873 REGSET_SPE,
1874 #endif
1875 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1876 REGSET_TM_CGPR, /* TM checkpointed GPR registers */
1877 REGSET_TM_CFPR, /* TM checkpointed FPR registers */
1878 REGSET_TM_CVMX, /* TM checkpointed VMX registers */
1879 REGSET_TM_CVSX, /* TM checkpointed VSX registers */
1880 REGSET_TM_SPR, /* TM specific SPR registers */
1881 REGSET_TM_CTAR, /* TM checkpointed TAR register */
1882 REGSET_TM_CPPR, /* TM checkpointed PPR register */
1883 REGSET_TM_CDSCR, /* TM checkpointed DSCR register */
1884 #endif
1885 #ifdef CONFIG_PPC64
1886 REGSET_PPR, /* PPR register */
1887 REGSET_DSCR, /* DSCR register */
1888 #endif
1889 #ifdef CONFIG_PPC_BOOK3S_64
1890 REGSET_TAR, /* TAR register */
1891 REGSET_EBB, /* EBB registers */
1892 REGSET_PMR, /* Performance Monitor Registers */
1893 #endif
1894 #ifdef CONFIG_PPC_MEM_KEYS
1895 REGSET_PKEY, /* AMR register */
1896 #endif
1897 };
1898
1899 static const struct user_regset native_regsets[] = {
1900 [REGSET_GPR] = {
1901 .core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
1902 .size = sizeof(long), .align = sizeof(long),
1903 .get = gpr_get, .set = gpr_set
1904 },
1905 [REGSET_FPR] = {
1906 .core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
1907 .size = sizeof(double), .align = sizeof(double),
1908 .get = fpr_get, .set = fpr_set
1909 },
1910 #ifdef CONFIG_ALTIVEC
1911 [REGSET_VMX] = {
1912 .core_note_type = NT_PPC_VMX, .n = 34,
1913 .size = sizeof(vector128), .align = sizeof(vector128),
1914 .active = vr_active, .get = vr_get, .set = vr_set
1915 },
1916 #endif
1917 #ifdef CONFIG_VSX
1918 [REGSET_VSX] = {
1919 .core_note_type = NT_PPC_VSX, .n = 32,
1920 .size = sizeof(double), .align = sizeof(double),
1921 .active = vsr_active, .get = vsr_get, .set = vsr_set
1922 },
1923 #endif
1924 #ifdef CONFIG_SPE
1925 [REGSET_SPE] = {
1926 .core_note_type = NT_PPC_SPE, .n = 35,
1927 .size = sizeof(u32), .align = sizeof(u32),
1928 .active = evr_active, .get = evr_get, .set = evr_set
1929 },
1930 #endif
1931 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1932 [REGSET_TM_CGPR] = {
1933 .core_note_type = NT_PPC_TM_CGPR, .n = ELF_NGREG,
1934 .size = sizeof(long), .align = sizeof(long),
1935 .active = tm_cgpr_active, .get = tm_cgpr_get, .set = tm_cgpr_set
1936 },
1937 [REGSET_TM_CFPR] = {
1938 .core_note_type = NT_PPC_TM_CFPR, .n = ELF_NFPREG,
1939 .size = sizeof(double), .align = sizeof(double),
1940 .active = tm_cfpr_active, .get = tm_cfpr_get, .set = tm_cfpr_set
1941 },
1942 [REGSET_TM_CVMX] = {
1943 .core_note_type = NT_PPC_TM_CVMX, .n = ELF_NVMX,
1944 .size = sizeof(vector128), .align = sizeof(vector128),
1945 .active = tm_cvmx_active, .get = tm_cvmx_get, .set = tm_cvmx_set
1946 },
1947 [REGSET_TM_CVSX] = {
1948 .core_note_type = NT_PPC_TM_CVSX, .n = ELF_NVSX,
1949 .size = sizeof(double), .align = sizeof(double),
1950 .active = tm_cvsx_active, .get = tm_cvsx_get, .set = tm_cvsx_set
1951 },
1952 [REGSET_TM_SPR] = {
1953 .core_note_type = NT_PPC_TM_SPR, .n = ELF_NTMSPRREG,
1954 .size = sizeof(u64), .align = sizeof(u64),
1955 .active = tm_spr_active, .get = tm_spr_get, .set = tm_spr_set
1956 },
1957 [REGSET_TM_CTAR] = {
1958 .core_note_type = NT_PPC_TM_CTAR, .n = 1,
1959 .size = sizeof(u64), .align = sizeof(u64),
1960 .active = tm_tar_active, .get = tm_tar_get, .set = tm_tar_set
1961 },
1962 [REGSET_TM_CPPR] = {
1963 .core_note_type = NT_PPC_TM_CPPR, .n = 1,
1964 .size = sizeof(u64), .align = sizeof(u64),
1965 .active = tm_ppr_active, .get = tm_ppr_get, .set = tm_ppr_set
1966 },
1967 [REGSET_TM_CDSCR] = {
1968 .core_note_type = NT_PPC_TM_CDSCR, .n = 1,
1969 .size = sizeof(u64), .align = sizeof(u64),
1970 .active = tm_dscr_active, .get = tm_dscr_get, .set = tm_dscr_set
1971 },
1972 #endif
1973 #ifdef CONFIG_PPC64
1974 [REGSET_PPR] = {
1975 .core_note_type = NT_PPC_PPR, .n = 1,
1976 .size = sizeof(u64), .align = sizeof(u64),
1977 .get = ppr_get, .set = ppr_set
1978 },
1979 [REGSET_DSCR] = {
1980 .core_note_type = NT_PPC_DSCR, .n = 1,
1981 .size = sizeof(u64), .align = sizeof(u64),
1982 .get = dscr_get, .set = dscr_set
1983 },
1984 #endif
1985 #ifdef CONFIG_PPC_BOOK3S_64
1986 [REGSET_TAR] = {
1987 .core_note_type = NT_PPC_TAR, .n = 1,
1988 .size = sizeof(u64), .align = sizeof(u64),
1989 .get = tar_get, .set = tar_set
1990 },
1991 [REGSET_EBB] = {
1992 .core_note_type = NT_PPC_EBB, .n = ELF_NEBB,
1993 .size = sizeof(u64), .align = sizeof(u64),
1994 .active = ebb_active, .get = ebb_get, .set = ebb_set
1995 },
1996 [REGSET_PMR] = {
1997 .core_note_type = NT_PPC_PMU, .n = ELF_NPMU,
1998 .size = sizeof(u64), .align = sizeof(u64),
1999 .active = pmu_active, .get = pmu_get, .set = pmu_set
2000 },
2001 #endif
2002 #ifdef CONFIG_PPC_MEM_KEYS
2003 [REGSET_PKEY] = {
2004 .core_note_type = NT_PPC_PKEY, .n = ELF_NPKEY,
2005 .size = sizeof(u64), .align = sizeof(u64),
2006 .active = pkey_active, .get = pkey_get, .set = pkey_set
2007 },
2008 #endif
2009 };
2010
2011 static const struct user_regset_view user_ppc_native_view = {
2012 .name = UTS_MACHINE, .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
2013 .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
2014 };
2015
2016 #ifdef CONFIG_PPC64
2017 #include <linux/compat.h>
2018
gpr32_get_common(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf,unsigned long * regs)2019 static int gpr32_get_common(struct task_struct *target,
2020 const struct user_regset *regset,
2021 unsigned int pos, unsigned int count,
2022 void *kbuf, void __user *ubuf,
2023 unsigned long *regs)
2024 {
2025 compat_ulong_t *k = kbuf;
2026 compat_ulong_t __user *u = ubuf;
2027 compat_ulong_t reg;
2028
2029 pos /= sizeof(reg);
2030 count /= sizeof(reg);
2031
2032 if (kbuf)
2033 for (; count > 0 && pos < PT_MSR; --count)
2034 *k++ = regs[pos++];
2035 else
2036 for (; count > 0 && pos < PT_MSR; --count)
2037 if (__put_user((compat_ulong_t) regs[pos++], u++))
2038 return -EFAULT;
2039
2040 if (count > 0 && pos == PT_MSR) {
2041 reg = get_user_msr(target);
2042 if (kbuf)
2043 *k++ = reg;
2044 else if (__put_user(reg, u++))
2045 return -EFAULT;
2046 ++pos;
2047 --count;
2048 }
2049
2050 if (kbuf)
2051 for (; count > 0 && pos < PT_REGS_COUNT; --count)
2052 *k++ = regs[pos++];
2053 else
2054 for (; count > 0 && pos < PT_REGS_COUNT; --count)
2055 if (__put_user((compat_ulong_t) regs[pos++], u++))
2056 return -EFAULT;
2057
2058 kbuf = k;
2059 ubuf = u;
2060 pos *= sizeof(reg);
2061 count *= sizeof(reg);
2062 return user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
2063 PT_REGS_COUNT * sizeof(reg), -1);
2064 }
2065
gpr32_set_common(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf,unsigned long * regs)2066 static int gpr32_set_common(struct task_struct *target,
2067 const struct user_regset *regset,
2068 unsigned int pos, unsigned int count,
2069 const void *kbuf, const void __user *ubuf,
2070 unsigned long *regs)
2071 {
2072 const compat_ulong_t *k = kbuf;
2073 const compat_ulong_t __user *u = ubuf;
2074 compat_ulong_t reg;
2075
2076 pos /= sizeof(reg);
2077 count /= sizeof(reg);
2078
2079 if (kbuf)
2080 for (; count > 0 && pos < PT_MSR; --count)
2081 regs[pos++] = *k++;
2082 else
2083 for (; count > 0 && pos < PT_MSR; --count) {
2084 if (__get_user(reg, u++))
2085 return -EFAULT;
2086 regs[pos++] = reg;
2087 }
2088
2089
2090 if (count > 0 && pos == PT_MSR) {
2091 if (kbuf)
2092 reg = *k++;
2093 else if (__get_user(reg, u++))
2094 return -EFAULT;
2095 set_user_msr(target, reg);
2096 ++pos;
2097 --count;
2098 }
2099
2100 if (kbuf) {
2101 for (; count > 0 && pos <= PT_MAX_PUT_REG; --count)
2102 regs[pos++] = *k++;
2103 for (; count > 0 && pos < PT_TRAP; --count, ++pos)
2104 ++k;
2105 } else {
2106 for (; count > 0 && pos <= PT_MAX_PUT_REG; --count) {
2107 if (__get_user(reg, u++))
2108 return -EFAULT;
2109 regs[pos++] = reg;
2110 }
2111 for (; count > 0 && pos < PT_TRAP; --count, ++pos)
2112 if (__get_user(reg, u++))
2113 return -EFAULT;
2114 }
2115
2116 if (count > 0 && pos == PT_TRAP) {
2117 if (kbuf)
2118 reg = *k++;
2119 else if (__get_user(reg, u++))
2120 return -EFAULT;
2121 set_user_trap(target, reg);
2122 ++pos;
2123 --count;
2124 }
2125
2126 kbuf = k;
2127 ubuf = u;
2128 pos *= sizeof(reg);
2129 count *= sizeof(reg);
2130 return user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
2131 (PT_TRAP + 1) * sizeof(reg), -1);
2132 }
2133
2134 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
tm_cgpr32_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)2135 static int tm_cgpr32_get(struct task_struct *target,
2136 const struct user_regset *regset,
2137 unsigned int pos, unsigned int count,
2138 void *kbuf, void __user *ubuf)
2139 {
2140 return gpr32_get_common(target, regset, pos, count, kbuf, ubuf,
2141 &target->thread.ckpt_regs.gpr[0]);
2142 }
2143
tm_cgpr32_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)2144 static int tm_cgpr32_set(struct task_struct *target,
2145 const struct user_regset *regset,
2146 unsigned int pos, unsigned int count,
2147 const void *kbuf, const void __user *ubuf)
2148 {
2149 return gpr32_set_common(target, regset, pos, count, kbuf, ubuf,
2150 &target->thread.ckpt_regs.gpr[0]);
2151 }
2152 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
2153
gpr32_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)2154 static int gpr32_get(struct task_struct *target,
2155 const struct user_regset *regset,
2156 unsigned int pos, unsigned int count,
2157 void *kbuf, void __user *ubuf)
2158 {
2159 int i;
2160
2161 if (target->thread.regs == NULL)
2162 return -EIO;
2163
2164 if (!FULL_REGS(target->thread.regs)) {
2165 /*
2166 * We have a partial register set.
2167 * Fill 14-31 with bogus values.
2168 */
2169 for (i = 14; i < 32; i++)
2170 target->thread.regs->gpr[i] = NV_REG_POISON;
2171 }
2172 return gpr32_get_common(target, regset, pos, count, kbuf, ubuf,
2173 &target->thread.regs->gpr[0]);
2174 }
2175
gpr32_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)2176 static int gpr32_set(struct task_struct *target,
2177 const struct user_regset *regset,
2178 unsigned int pos, unsigned int count,
2179 const void *kbuf, const void __user *ubuf)
2180 {
2181 if (target->thread.regs == NULL)
2182 return -EIO;
2183
2184 CHECK_FULL_REGS(target->thread.regs);
2185 return gpr32_set_common(target, regset, pos, count, kbuf, ubuf,
2186 &target->thread.regs->gpr[0]);
2187 }
2188
2189 /*
2190 * These are the regset flavors matching the CONFIG_PPC32 native set.
2191 */
2192 static const struct user_regset compat_regsets[] = {
2193 [REGSET_GPR] = {
2194 .core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
2195 .size = sizeof(compat_long_t), .align = sizeof(compat_long_t),
2196 .get = gpr32_get, .set = gpr32_set
2197 },
2198 [REGSET_FPR] = {
2199 .core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
2200 .size = sizeof(double), .align = sizeof(double),
2201 .get = fpr_get, .set = fpr_set
2202 },
2203 #ifdef CONFIG_ALTIVEC
2204 [REGSET_VMX] = {
2205 .core_note_type = NT_PPC_VMX, .n = 34,
2206 .size = sizeof(vector128), .align = sizeof(vector128),
2207 .active = vr_active, .get = vr_get, .set = vr_set
2208 },
2209 #endif
2210 #ifdef CONFIG_SPE
2211 [REGSET_SPE] = {
2212 .core_note_type = NT_PPC_SPE, .n = 35,
2213 .size = sizeof(u32), .align = sizeof(u32),
2214 .active = evr_active, .get = evr_get, .set = evr_set
2215 },
2216 #endif
2217 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2218 [REGSET_TM_CGPR] = {
2219 .core_note_type = NT_PPC_TM_CGPR, .n = ELF_NGREG,
2220 .size = sizeof(long), .align = sizeof(long),
2221 .active = tm_cgpr_active,
2222 .get = tm_cgpr32_get, .set = tm_cgpr32_set
2223 },
2224 [REGSET_TM_CFPR] = {
2225 .core_note_type = NT_PPC_TM_CFPR, .n = ELF_NFPREG,
2226 .size = sizeof(double), .align = sizeof(double),
2227 .active = tm_cfpr_active, .get = tm_cfpr_get, .set = tm_cfpr_set
2228 },
2229 [REGSET_TM_CVMX] = {
2230 .core_note_type = NT_PPC_TM_CVMX, .n = ELF_NVMX,
2231 .size = sizeof(vector128), .align = sizeof(vector128),
2232 .active = tm_cvmx_active, .get = tm_cvmx_get, .set = tm_cvmx_set
2233 },
2234 [REGSET_TM_CVSX] = {
2235 .core_note_type = NT_PPC_TM_CVSX, .n = ELF_NVSX,
2236 .size = sizeof(double), .align = sizeof(double),
2237 .active = tm_cvsx_active, .get = tm_cvsx_get, .set = tm_cvsx_set
2238 },
2239 [REGSET_TM_SPR] = {
2240 .core_note_type = NT_PPC_TM_SPR, .n = ELF_NTMSPRREG,
2241 .size = sizeof(u64), .align = sizeof(u64),
2242 .active = tm_spr_active, .get = tm_spr_get, .set = tm_spr_set
2243 },
2244 [REGSET_TM_CTAR] = {
2245 .core_note_type = NT_PPC_TM_CTAR, .n = 1,
2246 .size = sizeof(u64), .align = sizeof(u64),
2247 .active = tm_tar_active, .get = tm_tar_get, .set = tm_tar_set
2248 },
2249 [REGSET_TM_CPPR] = {
2250 .core_note_type = NT_PPC_TM_CPPR, .n = 1,
2251 .size = sizeof(u64), .align = sizeof(u64),
2252 .active = tm_ppr_active, .get = tm_ppr_get, .set = tm_ppr_set
2253 },
2254 [REGSET_TM_CDSCR] = {
2255 .core_note_type = NT_PPC_TM_CDSCR, .n = 1,
2256 .size = sizeof(u64), .align = sizeof(u64),
2257 .active = tm_dscr_active, .get = tm_dscr_get, .set = tm_dscr_set
2258 },
2259 #endif
2260 #ifdef CONFIG_PPC64
2261 [REGSET_PPR] = {
2262 .core_note_type = NT_PPC_PPR, .n = 1,
2263 .size = sizeof(u64), .align = sizeof(u64),
2264 .get = ppr_get, .set = ppr_set
2265 },
2266 [REGSET_DSCR] = {
2267 .core_note_type = NT_PPC_DSCR, .n = 1,
2268 .size = sizeof(u64), .align = sizeof(u64),
2269 .get = dscr_get, .set = dscr_set
2270 },
2271 #endif
2272 #ifdef CONFIG_PPC_BOOK3S_64
2273 [REGSET_TAR] = {
2274 .core_note_type = NT_PPC_TAR, .n = 1,
2275 .size = sizeof(u64), .align = sizeof(u64),
2276 .get = tar_get, .set = tar_set
2277 },
2278 [REGSET_EBB] = {
2279 .core_note_type = NT_PPC_EBB, .n = ELF_NEBB,
2280 .size = sizeof(u64), .align = sizeof(u64),
2281 .active = ebb_active, .get = ebb_get, .set = ebb_set
2282 },
2283 #endif
2284 };
2285
2286 static const struct user_regset_view user_ppc_compat_view = {
2287 .name = "ppc", .e_machine = EM_PPC, .ei_osabi = ELF_OSABI,
2288 .regsets = compat_regsets, .n = ARRAY_SIZE(compat_regsets)
2289 };
2290 #endif /* CONFIG_PPC64 */
2291
task_user_regset_view(struct task_struct * task)2292 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
2293 {
2294 #ifdef CONFIG_PPC64
2295 if (test_tsk_thread_flag(task, TIF_32BIT))
2296 return &user_ppc_compat_view;
2297 #endif
2298 return &user_ppc_native_view;
2299 }
2300
2301
user_enable_single_step(struct task_struct * task)2302 void user_enable_single_step(struct task_struct *task)
2303 {
2304 struct pt_regs *regs = task->thread.regs;
2305
2306 if (regs != NULL) {
2307 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2308 task->thread.debug.dbcr0 &= ~DBCR0_BT;
2309 task->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
2310 regs->msr |= MSR_DE;
2311 #else
2312 regs->msr &= ~MSR_BE;
2313 regs->msr |= MSR_SE;
2314 #endif
2315 }
2316 set_tsk_thread_flag(task, TIF_SINGLESTEP);
2317 }
2318
user_enable_block_step(struct task_struct * task)2319 void user_enable_block_step(struct task_struct *task)
2320 {
2321 struct pt_regs *regs = task->thread.regs;
2322
2323 if (regs != NULL) {
2324 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2325 task->thread.debug.dbcr0 &= ~DBCR0_IC;
2326 task->thread.debug.dbcr0 = DBCR0_IDM | DBCR0_BT;
2327 regs->msr |= MSR_DE;
2328 #else
2329 regs->msr &= ~MSR_SE;
2330 regs->msr |= MSR_BE;
2331 #endif
2332 }
2333 set_tsk_thread_flag(task, TIF_SINGLESTEP);
2334 }
2335
user_disable_single_step(struct task_struct * task)2336 void user_disable_single_step(struct task_struct *task)
2337 {
2338 struct pt_regs *regs = task->thread.regs;
2339
2340 if (regs != NULL) {
2341 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2342 /*
2343 * The logic to disable single stepping should be as
2344 * simple as turning off the Instruction Complete flag.
2345 * And, after doing so, if all debug flags are off, turn
2346 * off DBCR0(IDM) and MSR(DE) .... Torez
2347 */
2348 task->thread.debug.dbcr0 &= ~(DBCR0_IC|DBCR0_BT);
2349 /*
2350 * Test to see if any of the DBCR_ACTIVE_EVENTS bits are set.
2351 */
2352 if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
2353 task->thread.debug.dbcr1)) {
2354 /*
2355 * All debug events were off.....
2356 */
2357 task->thread.debug.dbcr0 &= ~DBCR0_IDM;
2358 regs->msr &= ~MSR_DE;
2359 }
2360 #else
2361 regs->msr &= ~(MSR_SE | MSR_BE);
2362 #endif
2363 }
2364 clear_tsk_thread_flag(task, TIF_SINGLESTEP);
2365 }
2366
2367 #ifdef CONFIG_HAVE_HW_BREAKPOINT
ptrace_triggered(struct perf_event * bp,struct perf_sample_data * data,struct pt_regs * regs)2368 void ptrace_triggered(struct perf_event *bp,
2369 struct perf_sample_data *data, struct pt_regs *regs)
2370 {
2371 struct perf_event_attr attr;
2372
2373 /*
2374 * Disable the breakpoint request here since ptrace has defined a
2375 * one-shot behaviour for breakpoint exceptions in PPC64.
2376 * The SIGTRAP signal is generated automatically for us in do_dabr().
2377 * We don't have to do anything about that here
2378 */
2379 attr = bp->attr;
2380 attr.disabled = true;
2381 modify_user_hw_breakpoint(bp, &attr);
2382 }
2383 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2384
ptrace_set_debugreg(struct task_struct * task,unsigned long addr,unsigned long data)2385 static int ptrace_set_debugreg(struct task_struct *task, unsigned long addr,
2386 unsigned long data)
2387 {
2388 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2389 int ret;
2390 struct thread_struct *thread = &(task->thread);
2391 struct perf_event *bp;
2392 struct perf_event_attr attr;
2393 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2394 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
2395 bool set_bp = true;
2396 struct arch_hw_breakpoint hw_brk;
2397 #endif
2398
2399 /* For ppc64 we support one DABR and no IABR's at the moment (ppc64).
2400 * For embedded processors we support one DAC and no IAC's at the
2401 * moment.
2402 */
2403 if (addr > 0)
2404 return -EINVAL;
2405
2406 /* The bottom 3 bits in dabr are flags */
2407 if ((data & ~0x7UL) >= TASK_SIZE)
2408 return -EIO;
2409
2410 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
2411 /* For processors using DABR (i.e. 970), the bottom 3 bits are flags.
2412 * It was assumed, on previous implementations, that 3 bits were
2413 * passed together with the data address, fitting the design of the
2414 * DABR register, as follows:
2415 *
2416 * bit 0: Read flag
2417 * bit 1: Write flag
2418 * bit 2: Breakpoint translation
2419 *
2420 * Thus, we use them here as so.
2421 */
2422
2423 /* Ensure breakpoint translation bit is set */
2424 if (data && !(data & HW_BRK_TYPE_TRANSLATE))
2425 return -EIO;
2426 hw_brk.address = data & (~HW_BRK_TYPE_DABR);
2427 hw_brk.type = (data & HW_BRK_TYPE_DABR) | HW_BRK_TYPE_PRIV_ALL;
2428 hw_brk.len = 8;
2429 set_bp = (data) && (hw_brk.type & HW_BRK_TYPE_RDWR);
2430 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2431 bp = thread->ptrace_bps[0];
2432 if (!set_bp) {
2433 if (bp) {
2434 unregister_hw_breakpoint(bp);
2435 thread->ptrace_bps[0] = NULL;
2436 }
2437 return 0;
2438 }
2439 if (bp) {
2440 attr = bp->attr;
2441 attr.bp_addr = hw_brk.address;
2442 arch_bp_generic_fields(hw_brk.type, &attr.bp_type);
2443
2444 /* Enable breakpoint */
2445 attr.disabled = false;
2446
2447 ret = modify_user_hw_breakpoint(bp, &attr);
2448 if (ret) {
2449 return ret;
2450 }
2451 thread->ptrace_bps[0] = bp;
2452 thread->hw_brk = hw_brk;
2453 return 0;
2454 }
2455
2456 /* Create a new breakpoint request if one doesn't exist already */
2457 hw_breakpoint_init(&attr);
2458 attr.bp_addr = hw_brk.address;
2459 attr.bp_len = 8;
2460 arch_bp_generic_fields(hw_brk.type,
2461 &attr.bp_type);
2462
2463 thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
2464 ptrace_triggered, NULL, task);
2465 if (IS_ERR(bp)) {
2466 thread->ptrace_bps[0] = NULL;
2467 return PTR_ERR(bp);
2468 }
2469
2470 #else /* !CONFIG_HAVE_HW_BREAKPOINT */
2471 if (set_bp && (!ppc_breakpoint_available()))
2472 return -ENODEV;
2473 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2474 task->thread.hw_brk = hw_brk;
2475 #else /* CONFIG_PPC_ADV_DEBUG_REGS */
2476 /* As described above, it was assumed 3 bits were passed with the data
2477 * address, but we will assume only the mode bits will be passed
2478 * as to not cause alignment restrictions for DAC-based processors.
2479 */
2480
2481 /* DAC's hold the whole address without any mode flags */
2482 task->thread.debug.dac1 = data & ~0x3UL;
2483
2484 if (task->thread.debug.dac1 == 0) {
2485 dbcr_dac(task) &= ~(DBCR_DAC1R | DBCR_DAC1W);
2486 if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
2487 task->thread.debug.dbcr1)) {
2488 task->thread.regs->msr &= ~MSR_DE;
2489 task->thread.debug.dbcr0 &= ~DBCR0_IDM;
2490 }
2491 return 0;
2492 }
2493
2494 /* Read or Write bits must be set */
2495
2496 if (!(data & 0x3UL))
2497 return -EINVAL;
2498
2499 /* Set the Internal Debugging flag (IDM bit 1) for the DBCR0
2500 register */
2501 task->thread.debug.dbcr0 |= DBCR0_IDM;
2502
2503 /* Check for write and read flags and set DBCR0
2504 accordingly */
2505 dbcr_dac(task) &= ~(DBCR_DAC1R|DBCR_DAC1W);
2506 if (data & 0x1UL)
2507 dbcr_dac(task) |= DBCR_DAC1R;
2508 if (data & 0x2UL)
2509 dbcr_dac(task) |= DBCR_DAC1W;
2510 task->thread.regs->msr |= MSR_DE;
2511 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2512 return 0;
2513 }
2514
2515 /*
2516 * Called by kernel/ptrace.c when detaching..
2517 *
2518 * Make sure single step bits etc are not set.
2519 */
ptrace_disable(struct task_struct * child)2520 void ptrace_disable(struct task_struct *child)
2521 {
2522 /* make sure the single step bit is not set. */
2523 user_disable_single_step(child);
2524 }
2525
2526 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
set_instruction_bp(struct task_struct * child,struct ppc_hw_breakpoint * bp_info)2527 static long set_instruction_bp(struct task_struct *child,
2528 struct ppc_hw_breakpoint *bp_info)
2529 {
2530 int slot;
2531 int slot1_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC1) != 0);
2532 int slot2_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC2) != 0);
2533 int slot3_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC3) != 0);
2534 int slot4_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC4) != 0);
2535
2536 if (dbcr_iac_range(child) & DBCR_IAC12MODE)
2537 slot2_in_use = 1;
2538 if (dbcr_iac_range(child) & DBCR_IAC34MODE)
2539 slot4_in_use = 1;
2540
2541 if (bp_info->addr >= TASK_SIZE)
2542 return -EIO;
2543
2544 if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT) {
2545
2546 /* Make sure range is valid. */
2547 if (bp_info->addr2 >= TASK_SIZE)
2548 return -EIO;
2549
2550 /* We need a pair of IAC regsisters */
2551 if ((!slot1_in_use) && (!slot2_in_use)) {
2552 slot = 1;
2553 child->thread.debug.iac1 = bp_info->addr;
2554 child->thread.debug.iac2 = bp_info->addr2;
2555 child->thread.debug.dbcr0 |= DBCR0_IAC1;
2556 if (bp_info->addr_mode ==
2557 PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2558 dbcr_iac_range(child) |= DBCR_IAC12X;
2559 else
2560 dbcr_iac_range(child) |= DBCR_IAC12I;
2561 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
2562 } else if ((!slot3_in_use) && (!slot4_in_use)) {
2563 slot = 3;
2564 child->thread.debug.iac3 = bp_info->addr;
2565 child->thread.debug.iac4 = bp_info->addr2;
2566 child->thread.debug.dbcr0 |= DBCR0_IAC3;
2567 if (bp_info->addr_mode ==
2568 PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2569 dbcr_iac_range(child) |= DBCR_IAC34X;
2570 else
2571 dbcr_iac_range(child) |= DBCR_IAC34I;
2572 #endif
2573 } else
2574 return -ENOSPC;
2575 } else {
2576 /* We only need one. If possible leave a pair free in
2577 * case a range is needed later
2578 */
2579 if (!slot1_in_use) {
2580 /*
2581 * Don't use iac1 if iac1-iac2 are free and either
2582 * iac3 or iac4 (but not both) are free
2583 */
2584 if (slot2_in_use || (slot3_in_use == slot4_in_use)) {
2585 slot = 1;
2586 child->thread.debug.iac1 = bp_info->addr;
2587 child->thread.debug.dbcr0 |= DBCR0_IAC1;
2588 goto out;
2589 }
2590 }
2591 if (!slot2_in_use) {
2592 slot = 2;
2593 child->thread.debug.iac2 = bp_info->addr;
2594 child->thread.debug.dbcr0 |= DBCR0_IAC2;
2595 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
2596 } else if (!slot3_in_use) {
2597 slot = 3;
2598 child->thread.debug.iac3 = bp_info->addr;
2599 child->thread.debug.dbcr0 |= DBCR0_IAC3;
2600 } else if (!slot4_in_use) {
2601 slot = 4;
2602 child->thread.debug.iac4 = bp_info->addr;
2603 child->thread.debug.dbcr0 |= DBCR0_IAC4;
2604 #endif
2605 } else
2606 return -ENOSPC;
2607 }
2608 out:
2609 child->thread.debug.dbcr0 |= DBCR0_IDM;
2610 child->thread.regs->msr |= MSR_DE;
2611
2612 return slot;
2613 }
2614
del_instruction_bp(struct task_struct * child,int slot)2615 static int del_instruction_bp(struct task_struct *child, int slot)
2616 {
2617 switch (slot) {
2618 case 1:
2619 if ((child->thread.debug.dbcr0 & DBCR0_IAC1) == 0)
2620 return -ENOENT;
2621
2622 if (dbcr_iac_range(child) & DBCR_IAC12MODE) {
2623 /* address range - clear slots 1 & 2 */
2624 child->thread.debug.iac2 = 0;
2625 dbcr_iac_range(child) &= ~DBCR_IAC12MODE;
2626 }
2627 child->thread.debug.iac1 = 0;
2628 child->thread.debug.dbcr0 &= ~DBCR0_IAC1;
2629 break;
2630 case 2:
2631 if ((child->thread.debug.dbcr0 & DBCR0_IAC2) == 0)
2632 return -ENOENT;
2633
2634 if (dbcr_iac_range(child) & DBCR_IAC12MODE)
2635 /* used in a range */
2636 return -EINVAL;
2637 child->thread.debug.iac2 = 0;
2638 child->thread.debug.dbcr0 &= ~DBCR0_IAC2;
2639 break;
2640 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
2641 case 3:
2642 if ((child->thread.debug.dbcr0 & DBCR0_IAC3) == 0)
2643 return -ENOENT;
2644
2645 if (dbcr_iac_range(child) & DBCR_IAC34MODE) {
2646 /* address range - clear slots 3 & 4 */
2647 child->thread.debug.iac4 = 0;
2648 dbcr_iac_range(child) &= ~DBCR_IAC34MODE;
2649 }
2650 child->thread.debug.iac3 = 0;
2651 child->thread.debug.dbcr0 &= ~DBCR0_IAC3;
2652 break;
2653 case 4:
2654 if ((child->thread.debug.dbcr0 & DBCR0_IAC4) == 0)
2655 return -ENOENT;
2656
2657 if (dbcr_iac_range(child) & DBCR_IAC34MODE)
2658 /* Used in a range */
2659 return -EINVAL;
2660 child->thread.debug.iac4 = 0;
2661 child->thread.debug.dbcr0 &= ~DBCR0_IAC4;
2662 break;
2663 #endif
2664 default:
2665 return -EINVAL;
2666 }
2667 return 0;
2668 }
2669
set_dac(struct task_struct * child,struct ppc_hw_breakpoint * bp_info)2670 static int set_dac(struct task_struct *child, struct ppc_hw_breakpoint *bp_info)
2671 {
2672 int byte_enable =
2673 (bp_info->condition_mode >> PPC_BREAKPOINT_CONDITION_BE_SHIFT)
2674 & 0xf;
2675 int condition_mode =
2676 bp_info->condition_mode & PPC_BREAKPOINT_CONDITION_MODE;
2677 int slot;
2678
2679 if (byte_enable && (condition_mode == 0))
2680 return -EINVAL;
2681
2682 if (bp_info->addr >= TASK_SIZE)
2683 return -EIO;
2684
2685 if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0) {
2686 slot = 1;
2687 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2688 dbcr_dac(child) |= DBCR_DAC1R;
2689 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2690 dbcr_dac(child) |= DBCR_DAC1W;
2691 child->thread.debug.dac1 = (unsigned long)bp_info->addr;
2692 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2693 if (byte_enable) {
2694 child->thread.debug.dvc1 =
2695 (unsigned long)bp_info->condition_value;
2696 child->thread.debug.dbcr2 |=
2697 ((byte_enable << DBCR2_DVC1BE_SHIFT) |
2698 (condition_mode << DBCR2_DVC1M_SHIFT));
2699 }
2700 #endif
2701 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2702 } else if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
2703 /* Both dac1 and dac2 are part of a range */
2704 return -ENOSPC;
2705 #endif
2706 } else if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0) {
2707 slot = 2;
2708 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2709 dbcr_dac(child) |= DBCR_DAC2R;
2710 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2711 dbcr_dac(child) |= DBCR_DAC2W;
2712 child->thread.debug.dac2 = (unsigned long)bp_info->addr;
2713 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2714 if (byte_enable) {
2715 child->thread.debug.dvc2 =
2716 (unsigned long)bp_info->condition_value;
2717 child->thread.debug.dbcr2 |=
2718 ((byte_enable << DBCR2_DVC2BE_SHIFT) |
2719 (condition_mode << DBCR2_DVC2M_SHIFT));
2720 }
2721 #endif
2722 } else
2723 return -ENOSPC;
2724 child->thread.debug.dbcr0 |= DBCR0_IDM;
2725 child->thread.regs->msr |= MSR_DE;
2726
2727 return slot + 4;
2728 }
2729
del_dac(struct task_struct * child,int slot)2730 static int del_dac(struct task_struct *child, int slot)
2731 {
2732 if (slot == 1) {
2733 if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0)
2734 return -ENOENT;
2735
2736 child->thread.debug.dac1 = 0;
2737 dbcr_dac(child) &= ~(DBCR_DAC1R | DBCR_DAC1W);
2738 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2739 if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
2740 child->thread.debug.dac2 = 0;
2741 child->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
2742 }
2743 child->thread.debug.dbcr2 &= ~(DBCR2_DVC1M | DBCR2_DVC1BE);
2744 #endif
2745 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2746 child->thread.debug.dvc1 = 0;
2747 #endif
2748 } else if (slot == 2) {
2749 if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0)
2750 return -ENOENT;
2751
2752 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2753 if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE)
2754 /* Part of a range */
2755 return -EINVAL;
2756 child->thread.debug.dbcr2 &= ~(DBCR2_DVC2M | DBCR2_DVC2BE);
2757 #endif
2758 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2759 child->thread.debug.dvc2 = 0;
2760 #endif
2761 child->thread.debug.dac2 = 0;
2762 dbcr_dac(child) &= ~(DBCR_DAC2R | DBCR_DAC2W);
2763 } else
2764 return -EINVAL;
2765
2766 return 0;
2767 }
2768 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2769
2770 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
set_dac_range(struct task_struct * child,struct ppc_hw_breakpoint * bp_info)2771 static int set_dac_range(struct task_struct *child,
2772 struct ppc_hw_breakpoint *bp_info)
2773 {
2774 int mode = bp_info->addr_mode & PPC_BREAKPOINT_MODE_MASK;
2775
2776 /* We don't allow range watchpoints to be used with DVC */
2777 if (bp_info->condition_mode)
2778 return -EINVAL;
2779
2780 /*
2781 * Best effort to verify the address range. The user/supervisor bits
2782 * prevent trapping in kernel space, but let's fail on an obvious bad
2783 * range. The simple test on the mask is not fool-proof, and any
2784 * exclusive range will spill over into kernel space.
2785 */
2786 if (bp_info->addr >= TASK_SIZE)
2787 return -EIO;
2788 if (mode == PPC_BREAKPOINT_MODE_MASK) {
2789 /*
2790 * dac2 is a bitmask. Don't allow a mask that makes a
2791 * kernel space address from a valid dac1 value
2792 */
2793 if (~((unsigned long)bp_info->addr2) >= TASK_SIZE)
2794 return -EIO;
2795 } else {
2796 /*
2797 * For range breakpoints, addr2 must also be a valid address
2798 */
2799 if (bp_info->addr2 >= TASK_SIZE)
2800 return -EIO;
2801 }
2802
2803 if (child->thread.debug.dbcr0 &
2804 (DBCR0_DAC1R | DBCR0_DAC1W | DBCR0_DAC2R | DBCR0_DAC2W))
2805 return -ENOSPC;
2806
2807 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2808 child->thread.debug.dbcr0 |= (DBCR0_DAC1R | DBCR0_IDM);
2809 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2810 child->thread.debug.dbcr0 |= (DBCR0_DAC1W | DBCR0_IDM);
2811 child->thread.debug.dac1 = bp_info->addr;
2812 child->thread.debug.dac2 = bp_info->addr2;
2813 if (mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
2814 child->thread.debug.dbcr2 |= DBCR2_DAC12M;
2815 else if (mode == PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2816 child->thread.debug.dbcr2 |= DBCR2_DAC12MX;
2817 else /* PPC_BREAKPOINT_MODE_MASK */
2818 child->thread.debug.dbcr2 |= DBCR2_DAC12MM;
2819 child->thread.regs->msr |= MSR_DE;
2820
2821 return 5;
2822 }
2823 #endif /* CONFIG_PPC_ADV_DEBUG_DAC_RANGE */
2824
ppc_set_hwdebug(struct task_struct * child,struct ppc_hw_breakpoint * bp_info)2825 static long ppc_set_hwdebug(struct task_struct *child,
2826 struct ppc_hw_breakpoint *bp_info)
2827 {
2828 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2829 int len = 0;
2830 struct thread_struct *thread = &(child->thread);
2831 struct perf_event *bp;
2832 struct perf_event_attr attr;
2833 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2834 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
2835 struct arch_hw_breakpoint brk;
2836 #endif
2837
2838 if (bp_info->version != 1)
2839 return -ENOTSUPP;
2840 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2841 /*
2842 * Check for invalid flags and combinations
2843 */
2844 if ((bp_info->trigger_type == 0) ||
2845 (bp_info->trigger_type & ~(PPC_BREAKPOINT_TRIGGER_EXECUTE |
2846 PPC_BREAKPOINT_TRIGGER_RW)) ||
2847 (bp_info->addr_mode & ~PPC_BREAKPOINT_MODE_MASK) ||
2848 (bp_info->condition_mode &
2849 ~(PPC_BREAKPOINT_CONDITION_MODE |
2850 PPC_BREAKPOINT_CONDITION_BE_ALL)))
2851 return -EINVAL;
2852 #if CONFIG_PPC_ADV_DEBUG_DVCS == 0
2853 if (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
2854 return -EINVAL;
2855 #endif
2856
2857 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_EXECUTE) {
2858 if ((bp_info->trigger_type != PPC_BREAKPOINT_TRIGGER_EXECUTE) ||
2859 (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE))
2860 return -EINVAL;
2861 return set_instruction_bp(child, bp_info);
2862 }
2863 if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
2864 return set_dac(child, bp_info);
2865
2866 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2867 return set_dac_range(child, bp_info);
2868 #else
2869 return -EINVAL;
2870 #endif
2871 #else /* !CONFIG_PPC_ADV_DEBUG_DVCS */
2872 /*
2873 * We only support one data breakpoint
2874 */
2875 if ((bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_RW) == 0 ||
2876 (bp_info->trigger_type & ~PPC_BREAKPOINT_TRIGGER_RW) != 0 ||
2877 bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
2878 return -EINVAL;
2879
2880 if ((unsigned long)bp_info->addr >= TASK_SIZE)
2881 return -EIO;
2882
2883 brk.address = bp_info->addr & ~7UL;
2884 brk.type = HW_BRK_TYPE_TRANSLATE;
2885 brk.len = 8;
2886 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2887 brk.type |= HW_BRK_TYPE_READ;
2888 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2889 brk.type |= HW_BRK_TYPE_WRITE;
2890 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2891 /*
2892 * Check if the request is for 'range' breakpoints. We can
2893 * support it if range < 8 bytes.
2894 */
2895 if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
2896 len = bp_info->addr2 - bp_info->addr;
2897 else if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
2898 len = 1;
2899 else
2900 return -EINVAL;
2901 bp = thread->ptrace_bps[0];
2902 if (bp)
2903 return -ENOSPC;
2904
2905 /* Create a new breakpoint request if one doesn't exist already */
2906 hw_breakpoint_init(&attr);
2907 attr.bp_addr = (unsigned long)bp_info->addr & ~HW_BREAKPOINT_ALIGN;
2908 attr.bp_len = len;
2909 arch_bp_generic_fields(brk.type, &attr.bp_type);
2910
2911 thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
2912 ptrace_triggered, NULL, child);
2913 if (IS_ERR(bp)) {
2914 thread->ptrace_bps[0] = NULL;
2915 return PTR_ERR(bp);
2916 }
2917
2918 return 1;
2919 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2920
2921 if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT)
2922 return -EINVAL;
2923
2924 if (child->thread.hw_brk.address)
2925 return -ENOSPC;
2926
2927 if (!ppc_breakpoint_available())
2928 return -ENODEV;
2929
2930 child->thread.hw_brk = brk;
2931
2932 return 1;
2933 #endif /* !CONFIG_PPC_ADV_DEBUG_DVCS */
2934 }
2935
ppc_del_hwdebug(struct task_struct * child,long data)2936 static long ppc_del_hwdebug(struct task_struct *child, long data)
2937 {
2938 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2939 int ret = 0;
2940 struct thread_struct *thread = &(child->thread);
2941 struct perf_event *bp;
2942 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2943 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2944 int rc;
2945
2946 if (data <= 4)
2947 rc = del_instruction_bp(child, (int)data);
2948 else
2949 rc = del_dac(child, (int)data - 4);
2950
2951 if (!rc) {
2952 if (!DBCR_ACTIVE_EVENTS(child->thread.debug.dbcr0,
2953 child->thread.debug.dbcr1)) {
2954 child->thread.debug.dbcr0 &= ~DBCR0_IDM;
2955 child->thread.regs->msr &= ~MSR_DE;
2956 }
2957 }
2958 return rc;
2959 #else
2960 if (data != 1)
2961 return -EINVAL;
2962
2963 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2964 bp = thread->ptrace_bps[0];
2965 if (bp) {
2966 unregister_hw_breakpoint(bp);
2967 thread->ptrace_bps[0] = NULL;
2968 } else
2969 ret = -ENOENT;
2970 return ret;
2971 #else /* CONFIG_HAVE_HW_BREAKPOINT */
2972 if (child->thread.hw_brk.address == 0)
2973 return -ENOENT;
2974
2975 child->thread.hw_brk.address = 0;
2976 child->thread.hw_brk.type = 0;
2977 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2978
2979 return 0;
2980 #endif
2981 }
2982
arch_ptrace(struct task_struct * child,long request,unsigned long addr,unsigned long data)2983 long arch_ptrace(struct task_struct *child, long request,
2984 unsigned long addr, unsigned long data)
2985 {
2986 int ret = -EPERM;
2987 void __user *datavp = (void __user *) data;
2988 unsigned long __user *datalp = datavp;
2989
2990 switch (request) {
2991 /* read the word at location addr in the USER area. */
2992 case PTRACE_PEEKUSR: {
2993 unsigned long index, tmp;
2994
2995 ret = -EIO;
2996 /* convert to index and check */
2997 #ifdef CONFIG_PPC32
2998 index = addr >> 2;
2999 if ((addr & 3) || (index > PT_FPSCR)
3000 || (child->thread.regs == NULL))
3001 #else
3002 index = addr >> 3;
3003 if ((addr & 7) || (index > PT_FPSCR))
3004 #endif
3005 break;
3006
3007 CHECK_FULL_REGS(child->thread.regs);
3008 if (index < PT_FPR0) {
3009 ret = ptrace_get_reg(child, (int) index, &tmp);
3010 if (ret)
3011 break;
3012 } else {
3013 unsigned int fpidx = index - PT_FPR0;
3014
3015 flush_fp_to_thread(child);
3016 if (fpidx < (PT_FPSCR - PT_FPR0))
3017 memcpy(&tmp, &child->thread.TS_FPR(fpidx),
3018 sizeof(long));
3019 else
3020 tmp = child->thread.fp_state.fpscr;
3021 }
3022 ret = put_user(tmp, datalp);
3023 break;
3024 }
3025
3026 /* write the word at location addr in the USER area */
3027 case PTRACE_POKEUSR: {
3028 unsigned long index;
3029
3030 ret = -EIO;
3031 /* convert to index and check */
3032 #ifdef CONFIG_PPC32
3033 index = addr >> 2;
3034 if ((addr & 3) || (index > PT_FPSCR)
3035 || (child->thread.regs == NULL))
3036 #else
3037 index = addr >> 3;
3038 if ((addr & 7) || (index > PT_FPSCR))
3039 #endif
3040 break;
3041
3042 CHECK_FULL_REGS(child->thread.regs);
3043 if (index < PT_FPR0) {
3044 ret = ptrace_put_reg(child, index, data);
3045 } else {
3046 unsigned int fpidx = index - PT_FPR0;
3047
3048 flush_fp_to_thread(child);
3049 if (fpidx < (PT_FPSCR - PT_FPR0))
3050 memcpy(&child->thread.TS_FPR(fpidx), &data,
3051 sizeof(long));
3052 else
3053 child->thread.fp_state.fpscr = data;
3054 ret = 0;
3055 }
3056 break;
3057 }
3058
3059 case PPC_PTRACE_GETHWDBGINFO: {
3060 struct ppc_debug_info dbginfo;
3061
3062 dbginfo.version = 1;
3063 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
3064 dbginfo.num_instruction_bps = CONFIG_PPC_ADV_DEBUG_IACS;
3065 dbginfo.num_data_bps = CONFIG_PPC_ADV_DEBUG_DACS;
3066 dbginfo.num_condition_regs = CONFIG_PPC_ADV_DEBUG_DVCS;
3067 dbginfo.data_bp_alignment = 4;
3068 dbginfo.sizeof_condition = 4;
3069 dbginfo.features = PPC_DEBUG_FEATURE_INSN_BP_RANGE |
3070 PPC_DEBUG_FEATURE_INSN_BP_MASK;
3071 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
3072 dbginfo.features |=
3073 PPC_DEBUG_FEATURE_DATA_BP_RANGE |
3074 PPC_DEBUG_FEATURE_DATA_BP_MASK;
3075 #endif
3076 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
3077 dbginfo.num_instruction_bps = 0;
3078 if (ppc_breakpoint_available())
3079 dbginfo.num_data_bps = 1;
3080 else
3081 dbginfo.num_data_bps = 0;
3082 dbginfo.num_condition_regs = 0;
3083 #ifdef CONFIG_PPC64
3084 dbginfo.data_bp_alignment = 8;
3085 #else
3086 dbginfo.data_bp_alignment = 4;
3087 #endif
3088 dbginfo.sizeof_condition = 0;
3089 #ifdef CONFIG_HAVE_HW_BREAKPOINT
3090 dbginfo.features = PPC_DEBUG_FEATURE_DATA_BP_RANGE;
3091 if (dawr_enabled())
3092 dbginfo.features |= PPC_DEBUG_FEATURE_DATA_BP_DAWR;
3093 #else
3094 dbginfo.features = 0;
3095 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
3096 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
3097
3098 if (copy_to_user(datavp, &dbginfo,
3099 sizeof(struct ppc_debug_info)))
3100 return -EFAULT;
3101 return 0;
3102 }
3103
3104 case PPC_PTRACE_SETHWDEBUG: {
3105 struct ppc_hw_breakpoint bp_info;
3106
3107 if (copy_from_user(&bp_info, datavp,
3108 sizeof(struct ppc_hw_breakpoint)))
3109 return -EFAULT;
3110 return ppc_set_hwdebug(child, &bp_info);
3111 }
3112
3113 case PPC_PTRACE_DELHWDEBUG: {
3114 ret = ppc_del_hwdebug(child, data);
3115 break;
3116 }
3117
3118 case PTRACE_GET_DEBUGREG: {
3119 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
3120 unsigned long dabr_fake;
3121 #endif
3122 ret = -EINVAL;
3123 /* We only support one DABR and no IABRS at the moment */
3124 if (addr > 0)
3125 break;
3126 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
3127 ret = put_user(child->thread.debug.dac1, datalp);
3128 #else
3129 dabr_fake = ((child->thread.hw_brk.address & (~HW_BRK_TYPE_DABR)) |
3130 (child->thread.hw_brk.type & HW_BRK_TYPE_DABR));
3131 ret = put_user(dabr_fake, datalp);
3132 #endif
3133 break;
3134 }
3135
3136 case PTRACE_SET_DEBUGREG:
3137 ret = ptrace_set_debugreg(child, addr, data);
3138 break;
3139
3140 #ifdef CONFIG_PPC64
3141 case PTRACE_GETREGS64:
3142 #endif
3143 case PTRACE_GETREGS: /* Get all pt_regs from the child. */
3144 return copy_regset_to_user(child, &user_ppc_native_view,
3145 REGSET_GPR,
3146 0, sizeof(struct user_pt_regs),
3147 datavp);
3148
3149 #ifdef CONFIG_PPC64
3150 case PTRACE_SETREGS64:
3151 #endif
3152 case PTRACE_SETREGS: /* Set all gp regs in the child. */
3153 return copy_regset_from_user(child, &user_ppc_native_view,
3154 REGSET_GPR,
3155 0, sizeof(struct user_pt_regs),
3156 datavp);
3157
3158 case PTRACE_GETFPREGS: /* Get the child FPU state (FPR0...31 + FPSCR) */
3159 return copy_regset_to_user(child, &user_ppc_native_view,
3160 REGSET_FPR,
3161 0, sizeof(elf_fpregset_t),
3162 datavp);
3163
3164 case PTRACE_SETFPREGS: /* Set the child FPU state (FPR0...31 + FPSCR) */
3165 return copy_regset_from_user(child, &user_ppc_native_view,
3166 REGSET_FPR,
3167 0, sizeof(elf_fpregset_t),
3168 datavp);
3169
3170 #ifdef CONFIG_ALTIVEC
3171 case PTRACE_GETVRREGS:
3172 return copy_regset_to_user(child, &user_ppc_native_view,
3173 REGSET_VMX,
3174 0, (33 * sizeof(vector128) +
3175 sizeof(u32)),
3176 datavp);
3177
3178 case PTRACE_SETVRREGS:
3179 return copy_regset_from_user(child, &user_ppc_native_view,
3180 REGSET_VMX,
3181 0, (33 * sizeof(vector128) +
3182 sizeof(u32)),
3183 datavp);
3184 #endif
3185 #ifdef CONFIG_VSX
3186 case PTRACE_GETVSRREGS:
3187 return copy_regset_to_user(child, &user_ppc_native_view,
3188 REGSET_VSX,
3189 0, 32 * sizeof(double),
3190 datavp);
3191
3192 case PTRACE_SETVSRREGS:
3193 return copy_regset_from_user(child, &user_ppc_native_view,
3194 REGSET_VSX,
3195 0, 32 * sizeof(double),
3196 datavp);
3197 #endif
3198 #ifdef CONFIG_SPE
3199 case PTRACE_GETEVRREGS:
3200 /* Get the child spe register state. */
3201 return copy_regset_to_user(child, &user_ppc_native_view,
3202 REGSET_SPE, 0, 35 * sizeof(u32),
3203 datavp);
3204
3205 case PTRACE_SETEVRREGS:
3206 /* Set the child spe register state. */
3207 return copy_regset_from_user(child, &user_ppc_native_view,
3208 REGSET_SPE, 0, 35 * sizeof(u32),
3209 datavp);
3210 #endif
3211
3212 default:
3213 ret = ptrace_request(child, request, addr, data);
3214 break;
3215 }
3216 return ret;
3217 }
3218
3219 #ifdef CONFIG_SECCOMP
do_seccomp(struct pt_regs * regs)3220 static int do_seccomp(struct pt_regs *regs)
3221 {
3222 if (!test_thread_flag(TIF_SECCOMP))
3223 return 0;
3224
3225 /*
3226 * The ABI we present to seccomp tracers is that r3 contains
3227 * the syscall return value and orig_gpr3 contains the first
3228 * syscall parameter. This is different to the ptrace ABI where
3229 * both r3 and orig_gpr3 contain the first syscall parameter.
3230 */
3231 regs->gpr[3] = -ENOSYS;
3232
3233 /*
3234 * We use the __ version here because we have already checked
3235 * TIF_SECCOMP. If this fails, there is nothing left to do, we
3236 * have already loaded -ENOSYS into r3, or seccomp has put
3237 * something else in r3 (via SECCOMP_RET_ERRNO/TRACE).
3238 */
3239 if (__secure_computing(NULL))
3240 return -1;
3241
3242 /*
3243 * The syscall was allowed by seccomp, restore the register
3244 * state to what audit expects.
3245 * Note that we use orig_gpr3, which means a seccomp tracer can
3246 * modify the first syscall parameter (in orig_gpr3) and also
3247 * allow the syscall to proceed.
3248 */
3249 regs->gpr[3] = regs->orig_gpr3;
3250
3251 return 0;
3252 }
3253 #else
do_seccomp(struct pt_regs * regs)3254 static inline int do_seccomp(struct pt_regs *regs) { return 0; }
3255 #endif /* CONFIG_SECCOMP */
3256
3257 /**
3258 * do_syscall_trace_enter() - Do syscall tracing on kernel entry.
3259 * @regs: the pt_regs of the task to trace (current)
3260 *
3261 * Performs various types of tracing on syscall entry. This includes seccomp,
3262 * ptrace, syscall tracepoints and audit.
3263 *
3264 * The pt_regs are potentially visible to userspace via ptrace, so their
3265 * contents is ABI.
3266 *
3267 * One or more of the tracers may modify the contents of pt_regs, in particular
3268 * to modify arguments or even the syscall number itself.
3269 *
3270 * It's also possible that a tracer can choose to reject the system call. In
3271 * that case this function will return an illegal syscall number, and will put
3272 * an appropriate return value in regs->r3.
3273 *
3274 * Return: the (possibly changed) syscall number.
3275 */
do_syscall_trace_enter(struct pt_regs * regs)3276 long do_syscall_trace_enter(struct pt_regs *regs)
3277 {
3278 u32 flags;
3279
3280 user_exit();
3281
3282 flags = READ_ONCE(current_thread_info()->flags) &
3283 (_TIF_SYSCALL_EMU | _TIF_SYSCALL_TRACE);
3284
3285 if (flags) {
3286 int rc = tracehook_report_syscall_entry(regs);
3287
3288 if (unlikely(flags & _TIF_SYSCALL_EMU)) {
3289 /*
3290 * A nonzero return code from
3291 * tracehook_report_syscall_entry() tells us to prevent
3292 * the syscall execution, but we are not going to
3293 * execute it anyway.
3294 *
3295 * Returning -1 will skip the syscall execution. We want
3296 * to avoid clobbering any registers, so we don't goto
3297 * the skip label below.
3298 */
3299 return -1;
3300 }
3301
3302 if (rc) {
3303 /*
3304 * The tracer decided to abort the syscall. Note that
3305 * the tracer may also just change regs->gpr[0] to an
3306 * invalid syscall number, that is handled below on the
3307 * exit path.
3308 */
3309 goto skip;
3310 }
3311 }
3312
3313 /* Run seccomp after ptrace; allow it to set gpr[3]. */
3314 if (do_seccomp(regs))
3315 return -1;
3316
3317 /* Avoid trace and audit when syscall is invalid. */
3318 if (regs->gpr[0] >= NR_syscalls)
3319 goto skip;
3320
3321 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
3322 trace_sys_enter(regs, regs->gpr[0]);
3323
3324 #ifdef CONFIG_PPC64
3325 if (!is_32bit_task())
3326 audit_syscall_entry(regs->gpr[0], regs->gpr[3], regs->gpr[4],
3327 regs->gpr[5], regs->gpr[6]);
3328 else
3329 #endif
3330 audit_syscall_entry(regs->gpr[0],
3331 regs->gpr[3] & 0xffffffff,
3332 regs->gpr[4] & 0xffffffff,
3333 regs->gpr[5] & 0xffffffff,
3334 regs->gpr[6] & 0xffffffff);
3335
3336 /* Return the possibly modified but valid syscall number */
3337 return regs->gpr[0];
3338
3339 skip:
3340 /*
3341 * If we are aborting explicitly, or if the syscall number is
3342 * now invalid, set the return value to -ENOSYS.
3343 */
3344 regs->gpr[3] = -ENOSYS;
3345 return -1;
3346 }
3347
do_syscall_trace_leave(struct pt_regs * regs)3348 void do_syscall_trace_leave(struct pt_regs *regs)
3349 {
3350 int step;
3351
3352 audit_syscall_exit(regs);
3353
3354 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
3355 trace_sys_exit(regs, regs->result);
3356
3357 step = test_thread_flag(TIF_SINGLESTEP);
3358 if (step || test_thread_flag(TIF_SYSCALL_TRACE))
3359 tracehook_report_syscall_exit(regs, step);
3360
3361 user_enter();
3362 }
3363
pt_regs_check(void)3364 void __init pt_regs_check(void)
3365 {
3366 BUILD_BUG_ON(offsetof(struct pt_regs, gpr) !=
3367 offsetof(struct user_pt_regs, gpr));
3368 BUILD_BUG_ON(offsetof(struct pt_regs, nip) !=
3369 offsetof(struct user_pt_regs, nip));
3370 BUILD_BUG_ON(offsetof(struct pt_regs, msr) !=
3371 offsetof(struct user_pt_regs, msr));
3372 BUILD_BUG_ON(offsetof(struct pt_regs, msr) !=
3373 offsetof(struct user_pt_regs, msr));
3374 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
3375 offsetof(struct user_pt_regs, orig_gpr3));
3376 BUILD_BUG_ON(offsetof(struct pt_regs, ctr) !=
3377 offsetof(struct user_pt_regs, ctr));
3378 BUILD_BUG_ON(offsetof(struct pt_regs, link) !=
3379 offsetof(struct user_pt_regs, link));
3380 BUILD_BUG_ON(offsetof(struct pt_regs, xer) !=
3381 offsetof(struct user_pt_regs, xer));
3382 BUILD_BUG_ON(offsetof(struct pt_regs, ccr) !=
3383 offsetof(struct user_pt_regs, ccr));
3384 #ifdef __powerpc64__
3385 BUILD_BUG_ON(offsetof(struct pt_regs, softe) !=
3386 offsetof(struct user_pt_regs, softe));
3387 #else
3388 BUILD_BUG_ON(offsetof(struct pt_regs, mq) !=
3389 offsetof(struct user_pt_regs, mq));
3390 #endif
3391 BUILD_BUG_ON(offsetof(struct pt_regs, trap) !=
3392 offsetof(struct user_pt_regs, trap));
3393 BUILD_BUG_ON(offsetof(struct pt_regs, dar) !=
3394 offsetof(struct user_pt_regs, dar));
3395 BUILD_BUG_ON(offsetof(struct pt_regs, dsisr) !=
3396 offsetof(struct user_pt_regs, dsisr));
3397 BUILD_BUG_ON(offsetof(struct pt_regs, result) !=
3398 offsetof(struct user_pt_regs, result));
3399
3400 BUILD_BUG_ON(sizeof(struct user_pt_regs) > sizeof(struct pt_regs));
3401 }
3402