1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * FM Driver for Connectivity chip of Texas Instruments.
4 *
5 * This sub-module of FM driver is common for FM RX and TX
6 * functionality. This module is responsible for:
7 * 1) Forming group of Channel-8 commands to perform particular
8 * functionality (eg., frequency set require more than
9 * one Channel-8 command to be sent to the chip).
10 * 2) Sending each Channel-8 command to the chip and reading
11 * response back over Shared Transport.
12 * 3) Managing TX and RX Queues and Tasklets.
13 * 4) Handling FM Interrupt packet and taking appropriate action.
14 * 5) Loading FM firmware to the chip (common, FM TX, and FM RX
15 * firmware files based on mode selection)
16 *
17 * Copyright (C) 2011 Texas Instruments
18 * Author: Raja Mani <raja_mani@ti.com>
19 * Author: Manjunatha Halli <manjunatha_halli@ti.com>
20 */
21
22 #include <linux/module.h>
23 #include <linux/firmware.h>
24 #include <linux/delay.h>
25 #include "fmdrv.h"
26 #include "fmdrv_v4l2.h"
27 #include "fmdrv_common.h"
28 #include <linux/ti_wilink_st.h>
29 #include "fmdrv_rx.h"
30 #include "fmdrv_tx.h"
31
32 /* Region info */
33 static struct region_info region_configs[] = {
34 /* Europe/US */
35 {
36 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
37 .bot_freq = 87500, /* 87.5 MHz */
38 .top_freq = 108000, /* 108 MHz */
39 .fm_band = 0,
40 },
41 /* Japan */
42 {
43 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
44 .bot_freq = 76000, /* 76 MHz */
45 .top_freq = 90000, /* 90 MHz */
46 .fm_band = 1,
47 },
48 };
49
50 /* Band selection */
51 static u8 default_radio_region; /* Europe/US */
52 module_param(default_radio_region, byte, 0);
53 MODULE_PARM_DESC(default_radio_region, "Region: 0=Europe/US, 1=Japan");
54
55 /* RDS buffer blocks */
56 static u32 default_rds_buf = 300;
57 module_param(default_rds_buf, uint, 0444);
58 MODULE_PARM_DESC(default_rds_buf, "RDS buffer entries");
59
60 /* Radio Nr */
61 static u32 radio_nr = -1;
62 module_param(radio_nr, int, 0444);
63 MODULE_PARM_DESC(radio_nr, "Radio Nr");
64
65 /* FM irq handlers forward declaration */
66 static void fm_irq_send_flag_getcmd(struct fmdev *);
67 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *);
68 static void fm_irq_handle_hw_malfunction(struct fmdev *);
69 static void fm_irq_handle_rds_start(struct fmdev *);
70 static void fm_irq_send_rdsdata_getcmd(struct fmdev *);
71 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *);
72 static void fm_irq_handle_rds_finish(struct fmdev *);
73 static void fm_irq_handle_tune_op_ended(struct fmdev *);
74 static void fm_irq_handle_power_enb(struct fmdev *);
75 static void fm_irq_handle_low_rssi_start(struct fmdev *);
76 static void fm_irq_afjump_set_pi(struct fmdev *);
77 static void fm_irq_handle_set_pi_resp(struct fmdev *);
78 static void fm_irq_afjump_set_pimask(struct fmdev *);
79 static void fm_irq_handle_set_pimask_resp(struct fmdev *);
80 static void fm_irq_afjump_setfreq(struct fmdev *);
81 static void fm_irq_handle_setfreq_resp(struct fmdev *);
82 static void fm_irq_afjump_enableint(struct fmdev *);
83 static void fm_irq_afjump_enableint_resp(struct fmdev *);
84 static void fm_irq_start_afjump(struct fmdev *);
85 static void fm_irq_handle_start_afjump_resp(struct fmdev *);
86 static void fm_irq_afjump_rd_freq(struct fmdev *);
87 static void fm_irq_afjump_rd_freq_resp(struct fmdev *);
88 static void fm_irq_handle_low_rssi_finish(struct fmdev *);
89 static void fm_irq_send_intmsk_cmd(struct fmdev *);
90 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *);
91
92 /*
93 * When FM common module receives interrupt packet, following handlers
94 * will be executed one after another to service the interrupt(s)
95 */
96 enum fmc_irq_handler_index {
97 FM_SEND_FLAG_GETCMD_IDX,
98 FM_HANDLE_FLAG_GETCMD_RESP_IDX,
99
100 /* HW malfunction irq handler */
101 FM_HW_MAL_FUNC_IDX,
102
103 /* RDS threshold reached irq handler */
104 FM_RDS_START_IDX,
105 FM_RDS_SEND_RDS_GETCMD_IDX,
106 FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX,
107 FM_RDS_FINISH_IDX,
108
109 /* Tune operation ended irq handler */
110 FM_HW_TUNE_OP_ENDED_IDX,
111
112 /* TX power enable irq handler */
113 FM_HW_POWER_ENB_IDX,
114
115 /* Low RSSI irq handler */
116 FM_LOW_RSSI_START_IDX,
117 FM_AF_JUMP_SETPI_IDX,
118 FM_AF_JUMP_HANDLE_SETPI_RESP_IDX,
119 FM_AF_JUMP_SETPI_MASK_IDX,
120 FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX,
121 FM_AF_JUMP_SET_AF_FREQ_IDX,
122 FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX,
123 FM_AF_JUMP_ENABLE_INT_IDX,
124 FM_AF_JUMP_ENABLE_INT_RESP_IDX,
125 FM_AF_JUMP_START_AFJUMP_IDX,
126 FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX,
127 FM_AF_JUMP_RD_FREQ_IDX,
128 FM_AF_JUMP_RD_FREQ_RESP_IDX,
129 FM_LOW_RSSI_FINISH_IDX,
130
131 /* Interrupt process post action */
132 FM_SEND_INTMSK_CMD_IDX,
133 FM_HANDLE_INTMSK_CMD_RESP_IDX,
134 };
135
136 /* FM interrupt handler table */
137 static int_handler_prototype int_handler_table[] = {
138 fm_irq_send_flag_getcmd,
139 fm_irq_handle_flag_getcmd_resp,
140 fm_irq_handle_hw_malfunction,
141 fm_irq_handle_rds_start, /* RDS threshold reached irq handler */
142 fm_irq_send_rdsdata_getcmd,
143 fm_irq_handle_rdsdata_getcmd_resp,
144 fm_irq_handle_rds_finish,
145 fm_irq_handle_tune_op_ended,
146 fm_irq_handle_power_enb, /* TX power enable irq handler */
147 fm_irq_handle_low_rssi_start,
148 fm_irq_afjump_set_pi,
149 fm_irq_handle_set_pi_resp,
150 fm_irq_afjump_set_pimask,
151 fm_irq_handle_set_pimask_resp,
152 fm_irq_afjump_setfreq,
153 fm_irq_handle_setfreq_resp,
154 fm_irq_afjump_enableint,
155 fm_irq_afjump_enableint_resp,
156 fm_irq_start_afjump,
157 fm_irq_handle_start_afjump_resp,
158 fm_irq_afjump_rd_freq,
159 fm_irq_afjump_rd_freq_resp,
160 fm_irq_handle_low_rssi_finish,
161 fm_irq_send_intmsk_cmd, /* Interrupt process post action */
162 fm_irq_handle_intmsk_cmd_resp
163 };
164
165 static long (*g_st_write) (struct sk_buff *skb);
166 static struct completion wait_for_fmdrv_reg_comp;
167
fm_irq_call(struct fmdev * fmdev)168 static inline void fm_irq_call(struct fmdev *fmdev)
169 {
170 fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
171 }
172
173 /* Continue next function in interrupt handler table */
fm_irq_call_stage(struct fmdev * fmdev,u8 stage)174 static inline void fm_irq_call_stage(struct fmdev *fmdev, u8 stage)
175 {
176 fmdev->irq_info.stage = stage;
177 fm_irq_call(fmdev);
178 }
179
fm_irq_timeout_stage(struct fmdev * fmdev,u8 stage)180 static inline void fm_irq_timeout_stage(struct fmdev *fmdev, u8 stage)
181 {
182 fmdev->irq_info.stage = stage;
183 mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
184 }
185
186 #ifdef FM_DUMP_TXRX_PKT
187 /* To dump outgoing FM Channel-8 packets */
dump_tx_skb_data(struct sk_buff * skb)188 inline void dump_tx_skb_data(struct sk_buff *skb)
189 {
190 int len, len_org;
191 u8 index;
192 struct fm_cmd_msg_hdr *cmd_hdr;
193
194 cmd_hdr = (struct fm_cmd_msg_hdr *)skb->data;
195 printk(KERN_INFO "<<%shdr:%02x len:%02x opcode:%02x type:%s dlen:%02x",
196 fm_cb(skb)->completion ? " " : "*", cmd_hdr->hdr,
197 cmd_hdr->len, cmd_hdr->op,
198 cmd_hdr->rd_wr ? "RD" : "WR", cmd_hdr->dlen);
199
200 len_org = skb->len - FM_CMD_MSG_HDR_SIZE;
201 if (len_org > 0) {
202 printk(KERN_CONT "\n data(%d): ", cmd_hdr->dlen);
203 len = min(len_org, 14);
204 for (index = 0; index < len; index++)
205 printk(KERN_CONT "%x ",
206 skb->data[FM_CMD_MSG_HDR_SIZE + index]);
207 printk(KERN_CONT "%s", (len_org > 14) ? ".." : "");
208 }
209 printk(KERN_CONT "\n");
210 }
211
212 /* To dump incoming FM Channel-8 packets */
dump_rx_skb_data(struct sk_buff * skb)213 inline void dump_rx_skb_data(struct sk_buff *skb)
214 {
215 int len, len_org;
216 u8 index;
217 struct fm_event_msg_hdr *evt_hdr;
218
219 evt_hdr = (struct fm_event_msg_hdr *)skb->data;
220 printk(KERN_INFO ">> hdr:%02x len:%02x sts:%02x numhci:%02x opcode:%02x type:%s dlen:%02x",
221 evt_hdr->hdr, evt_hdr->len,
222 evt_hdr->status, evt_hdr->num_fm_hci_cmds, evt_hdr->op,
223 (evt_hdr->rd_wr) ? "RD" : "WR", evt_hdr->dlen);
224
225 len_org = skb->len - FM_EVT_MSG_HDR_SIZE;
226 if (len_org > 0) {
227 printk(KERN_CONT "\n data(%d): ", evt_hdr->dlen);
228 len = min(len_org, 14);
229 for (index = 0; index < len; index++)
230 printk(KERN_CONT "%x ",
231 skb->data[FM_EVT_MSG_HDR_SIZE + index]);
232 printk(KERN_CONT "%s", (len_org > 14) ? ".." : "");
233 }
234 printk(KERN_CONT "\n");
235 }
236 #endif
237
fmc_update_region_info(struct fmdev * fmdev,u8 region_to_set)238 void fmc_update_region_info(struct fmdev *fmdev, u8 region_to_set)
239 {
240 fmdev->rx.region = region_configs[region_to_set];
241 }
242
243 /*
244 * FM common sub-module will schedule this tasklet whenever it receives
245 * FM packet from ST driver.
246 */
recv_tasklet(unsigned long arg)247 static void recv_tasklet(unsigned long arg)
248 {
249 struct fmdev *fmdev;
250 struct fm_irq *irq_info;
251 struct fm_event_msg_hdr *evt_hdr;
252 struct sk_buff *skb;
253 u8 num_fm_hci_cmds;
254 unsigned long flags;
255
256 fmdev = (struct fmdev *)arg;
257 irq_info = &fmdev->irq_info;
258 /* Process all packets in the RX queue */
259 while ((skb = skb_dequeue(&fmdev->rx_q))) {
260 if (skb->len < sizeof(struct fm_event_msg_hdr)) {
261 fmerr("skb(%p) has only %d bytes, at least need %zu bytes to decode\n",
262 skb,
263 skb->len, sizeof(struct fm_event_msg_hdr));
264 kfree_skb(skb);
265 continue;
266 }
267
268 evt_hdr = (void *)skb->data;
269 num_fm_hci_cmds = evt_hdr->num_fm_hci_cmds;
270
271 /* FM interrupt packet? */
272 if (evt_hdr->op == FM_INTERRUPT) {
273 /* FM interrupt handler started already? */
274 if (!test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
275 set_bit(FM_INTTASK_RUNNING, &fmdev->flag);
276 if (irq_info->stage != 0) {
277 fmerr("Inval stage resetting to zero\n");
278 irq_info->stage = 0;
279 }
280
281 /*
282 * Execute first function in interrupt handler
283 * table.
284 */
285 irq_info->handlers[irq_info->stage](fmdev);
286 } else {
287 set_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag);
288 }
289 kfree_skb(skb);
290 }
291 /* Anyone waiting for this with completion handler? */
292 else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp != NULL) {
293
294 spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
295 fmdev->resp_skb = skb;
296 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
297 complete(fmdev->resp_comp);
298
299 fmdev->resp_comp = NULL;
300 atomic_set(&fmdev->tx_cnt, 1);
301 }
302 /* Is this for interrupt handler? */
303 else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp == NULL) {
304 if (fmdev->resp_skb != NULL)
305 fmerr("Response SKB ptr not NULL\n");
306
307 spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
308 fmdev->resp_skb = skb;
309 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
310
311 /* Execute interrupt handler where state index points */
312 irq_info->handlers[irq_info->stage](fmdev);
313
314 kfree_skb(skb);
315 atomic_set(&fmdev->tx_cnt, 1);
316 } else {
317 fmerr("Nobody claimed SKB(%p),purging\n", skb);
318 }
319
320 /*
321 * Check flow control field. If Num_FM_HCI_Commands field is
322 * not zero, schedule FM TX tasklet.
323 */
324 if (num_fm_hci_cmds && atomic_read(&fmdev->tx_cnt))
325 if (!skb_queue_empty(&fmdev->tx_q))
326 tasklet_schedule(&fmdev->tx_task);
327 }
328 }
329
330 /* FM send tasklet: is scheduled when FM packet has to be sent to chip */
send_tasklet(unsigned long arg)331 static void send_tasklet(unsigned long arg)
332 {
333 struct fmdev *fmdev;
334 struct sk_buff *skb;
335 int len;
336
337 fmdev = (struct fmdev *)arg;
338
339 if (!atomic_read(&fmdev->tx_cnt))
340 return;
341
342 /* Check, is there any timeout happened to last transmitted packet */
343 if ((jiffies - fmdev->last_tx_jiffies) > FM_DRV_TX_TIMEOUT) {
344 fmerr("TX timeout occurred\n");
345 atomic_set(&fmdev->tx_cnt, 1);
346 }
347
348 /* Send queued FM TX packets */
349 skb = skb_dequeue(&fmdev->tx_q);
350 if (!skb)
351 return;
352
353 atomic_dec(&fmdev->tx_cnt);
354 fmdev->pre_op = fm_cb(skb)->fm_op;
355
356 if (fmdev->resp_comp != NULL)
357 fmerr("Response completion handler is not NULL\n");
358
359 fmdev->resp_comp = fm_cb(skb)->completion;
360
361 /* Write FM packet to ST driver */
362 len = g_st_write(skb);
363 if (len < 0) {
364 kfree_skb(skb);
365 fmdev->resp_comp = NULL;
366 fmerr("TX tasklet failed to send skb(%p)\n", skb);
367 atomic_set(&fmdev->tx_cnt, 1);
368 } else {
369 fmdev->last_tx_jiffies = jiffies;
370 }
371 }
372
373 /*
374 * Queues FM Channel-8 packet to FM TX queue and schedules FM TX tasklet for
375 * transmission
376 */
fm_send_cmd(struct fmdev * fmdev,u8 fm_op,u16 type,void * payload,int payload_len,struct completion * wait_completion)377 static int fm_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
378 int payload_len, struct completion *wait_completion)
379 {
380 struct sk_buff *skb;
381 struct fm_cmd_msg_hdr *hdr;
382 int size;
383
384 if (fm_op >= FM_INTERRUPT) {
385 fmerr("Invalid fm opcode - %d\n", fm_op);
386 return -EINVAL;
387 }
388 if (test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) && payload == NULL) {
389 fmerr("Payload data is NULL during fw download\n");
390 return -EINVAL;
391 }
392 if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag))
393 size =
394 FM_CMD_MSG_HDR_SIZE + ((payload == NULL) ? 0 : payload_len);
395 else
396 size = payload_len;
397
398 skb = alloc_skb(size, GFP_ATOMIC);
399 if (!skb) {
400 fmerr("No memory to create new SKB\n");
401 return -ENOMEM;
402 }
403 /*
404 * Don't fill FM header info for the commands which come from
405 * FM firmware file.
406 */
407 if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) ||
408 test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
409 /* Fill command header info */
410 hdr = skb_put(skb, FM_CMD_MSG_HDR_SIZE);
411 hdr->hdr = FM_PKT_LOGICAL_CHAN_NUMBER; /* 0x08 */
412
413 /* 3 (fm_opcode,rd_wr,dlen) + payload len) */
414 hdr->len = ((payload == NULL) ? 0 : payload_len) + 3;
415
416 /* FM opcode */
417 hdr->op = fm_op;
418
419 /* read/write type */
420 hdr->rd_wr = type;
421 hdr->dlen = payload_len;
422 fm_cb(skb)->fm_op = fm_op;
423
424 /*
425 * If firmware download has finished and the command is
426 * not a read command then payload is != NULL - a write
427 * command with u16 payload - convert to be16
428 */
429 if (payload != NULL)
430 *(__be16 *)payload = cpu_to_be16(*(u16 *)payload);
431
432 } else if (payload != NULL) {
433 fm_cb(skb)->fm_op = *((u8 *)payload + 2);
434 }
435 if (payload != NULL)
436 skb_put_data(skb, payload, payload_len);
437
438 fm_cb(skb)->completion = wait_completion;
439 skb_queue_tail(&fmdev->tx_q, skb);
440 tasklet_schedule(&fmdev->tx_task);
441
442 return 0;
443 }
444
445 /* Sends FM Channel-8 command to the chip and waits for the response */
fmc_send_cmd(struct fmdev * fmdev,u8 fm_op,u16 type,void * payload,unsigned int payload_len,void * response,int * response_len)446 int fmc_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
447 unsigned int payload_len, void *response, int *response_len)
448 {
449 struct sk_buff *skb;
450 struct fm_event_msg_hdr *evt_hdr;
451 unsigned long flags;
452 int ret;
453
454 init_completion(&fmdev->maintask_comp);
455 ret = fm_send_cmd(fmdev, fm_op, type, payload, payload_len,
456 &fmdev->maintask_comp);
457 if (ret)
458 return ret;
459
460 if (!wait_for_completion_timeout(&fmdev->maintask_comp,
461 FM_DRV_TX_TIMEOUT)) {
462 fmerr("Timeout(%d sec),didn't get regcompletion signal from RX tasklet\n",
463 jiffies_to_msecs(FM_DRV_TX_TIMEOUT) / 1000);
464 return -ETIMEDOUT;
465 }
466 if (!fmdev->resp_skb) {
467 fmerr("Response SKB is missing\n");
468 return -EFAULT;
469 }
470 spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
471 skb = fmdev->resp_skb;
472 fmdev->resp_skb = NULL;
473 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
474
475 evt_hdr = (void *)skb->data;
476 if (evt_hdr->status != 0) {
477 fmerr("Received event pkt status(%d) is not zero\n",
478 evt_hdr->status);
479 kfree_skb(skb);
480 return -EIO;
481 }
482 /* Send response data to caller */
483 if (response != NULL && response_len != NULL && evt_hdr->dlen &&
484 evt_hdr->dlen <= payload_len) {
485 /* Skip header info and copy only response data */
486 skb_pull(skb, sizeof(struct fm_event_msg_hdr));
487 memcpy(response, skb->data, evt_hdr->dlen);
488 *response_len = evt_hdr->dlen;
489 } else if (response_len != NULL && evt_hdr->dlen == 0) {
490 *response_len = 0;
491 }
492 kfree_skb(skb);
493
494 return 0;
495 }
496
497 /* --- Helper functions used in FM interrupt handlers ---*/
check_cmdresp_status(struct fmdev * fmdev,struct sk_buff ** skb)498 static inline int check_cmdresp_status(struct fmdev *fmdev,
499 struct sk_buff **skb)
500 {
501 struct fm_event_msg_hdr *fm_evt_hdr;
502 unsigned long flags;
503
504 del_timer(&fmdev->irq_info.timer);
505
506 spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
507 *skb = fmdev->resp_skb;
508 fmdev->resp_skb = NULL;
509 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
510
511 fm_evt_hdr = (void *)(*skb)->data;
512 if (fm_evt_hdr->status != 0) {
513 fmerr("irq: opcode %x response status is not zero Initiating irq recovery process\n",
514 fm_evt_hdr->op);
515
516 mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
517 return -1;
518 }
519
520 return 0;
521 }
522
fm_irq_common_cmd_resp_helper(struct fmdev * fmdev,u8 stage)523 static inline void fm_irq_common_cmd_resp_helper(struct fmdev *fmdev, u8 stage)
524 {
525 struct sk_buff *skb;
526
527 if (!check_cmdresp_status(fmdev, &skb))
528 fm_irq_call_stage(fmdev, stage);
529 }
530
531 /*
532 * Interrupt process timeout handler.
533 * One of the irq handler did not get proper response from the chip. So take
534 * recovery action here. FM interrupts are disabled in the beginning of
535 * interrupt process. Therefore reset stage index to re-enable default
536 * interrupts. So that next interrupt will be processed as usual.
537 */
int_timeout_handler(struct timer_list * t)538 static void int_timeout_handler(struct timer_list *t)
539 {
540 struct fmdev *fmdev;
541 struct fm_irq *fmirq;
542
543 fmdbg("irq: timeout,trying to re-enable fm interrupts\n");
544 fmdev = from_timer(fmdev, t, irq_info.timer);
545 fmirq = &fmdev->irq_info;
546 fmirq->retry++;
547
548 if (fmirq->retry > FM_IRQ_TIMEOUT_RETRY_MAX) {
549 /* Stop recovery action (interrupt reenable process) and
550 * reset stage index & retry count values */
551 fmirq->stage = 0;
552 fmirq->retry = 0;
553 fmerr("Recovery action failed duringirq processing, max retry reached\n");
554 return;
555 }
556 fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
557 }
558
559 /* --------- FM interrupt handlers ------------*/
fm_irq_send_flag_getcmd(struct fmdev * fmdev)560 static void fm_irq_send_flag_getcmd(struct fmdev *fmdev)
561 {
562 u16 flag;
563
564 /* Send FLAG_GET command , to know the source of interrupt */
565 if (!fm_send_cmd(fmdev, FLAG_GET, REG_RD, NULL, sizeof(flag), NULL))
566 fm_irq_timeout_stage(fmdev, FM_HANDLE_FLAG_GETCMD_RESP_IDX);
567 }
568
fm_irq_handle_flag_getcmd_resp(struct fmdev * fmdev)569 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *fmdev)
570 {
571 struct sk_buff *skb;
572 struct fm_event_msg_hdr *fm_evt_hdr;
573
574 if (check_cmdresp_status(fmdev, &skb))
575 return;
576
577 fm_evt_hdr = (void *)skb->data;
578 if (fm_evt_hdr->dlen > sizeof(fmdev->irq_info.flag))
579 return;
580
581 /* Skip header info and copy only response data */
582 skb_pull(skb, sizeof(struct fm_event_msg_hdr));
583 memcpy(&fmdev->irq_info.flag, skb->data, fm_evt_hdr->dlen);
584
585 fmdev->irq_info.flag = be16_to_cpu((__force __be16)fmdev->irq_info.flag);
586 fmdbg("irq: flag register(0x%x)\n", fmdev->irq_info.flag);
587
588 /* Continue next function in interrupt handler table */
589 fm_irq_call_stage(fmdev, FM_HW_MAL_FUNC_IDX);
590 }
591
fm_irq_handle_hw_malfunction(struct fmdev * fmdev)592 static void fm_irq_handle_hw_malfunction(struct fmdev *fmdev)
593 {
594 if (fmdev->irq_info.flag & FM_MAL_EVENT & fmdev->irq_info.mask)
595 fmerr("irq: HW MAL int received - do nothing\n");
596
597 /* Continue next function in interrupt handler table */
598 fm_irq_call_stage(fmdev, FM_RDS_START_IDX);
599 }
600
fm_irq_handle_rds_start(struct fmdev * fmdev)601 static void fm_irq_handle_rds_start(struct fmdev *fmdev)
602 {
603 if (fmdev->irq_info.flag & FM_RDS_EVENT & fmdev->irq_info.mask) {
604 fmdbg("irq: rds threshold reached\n");
605 fmdev->irq_info.stage = FM_RDS_SEND_RDS_GETCMD_IDX;
606 } else {
607 /* Continue next function in interrupt handler table */
608 fmdev->irq_info.stage = FM_HW_TUNE_OP_ENDED_IDX;
609 }
610
611 fm_irq_call(fmdev);
612 }
613
fm_irq_send_rdsdata_getcmd(struct fmdev * fmdev)614 static void fm_irq_send_rdsdata_getcmd(struct fmdev *fmdev)
615 {
616 /* Send the command to read RDS data from the chip */
617 if (!fm_send_cmd(fmdev, RDS_DATA_GET, REG_RD, NULL,
618 (FM_RX_RDS_FIFO_THRESHOLD * 3), NULL))
619 fm_irq_timeout_stage(fmdev, FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX);
620 }
621
622 /* Keeps track of current RX channel AF (Alternate Frequency) */
fm_rx_update_af_cache(struct fmdev * fmdev,u8 af)623 static void fm_rx_update_af_cache(struct fmdev *fmdev, u8 af)
624 {
625 struct tuned_station_info *stat_info = &fmdev->rx.stat_info;
626 u8 reg_idx = fmdev->rx.region.fm_band;
627 u8 index;
628 u32 freq;
629
630 /* First AF indicates the number of AF follows. Reset the list */
631 if ((af >= FM_RDS_1_AF_FOLLOWS) && (af <= FM_RDS_25_AF_FOLLOWS)) {
632 fmdev->rx.stat_info.af_list_max = (af - FM_RDS_1_AF_FOLLOWS + 1);
633 fmdev->rx.stat_info.afcache_size = 0;
634 fmdbg("No of expected AF : %d\n", fmdev->rx.stat_info.af_list_max);
635 return;
636 }
637
638 if (af < FM_RDS_MIN_AF)
639 return;
640 if (reg_idx == FM_BAND_EUROPE_US && af > FM_RDS_MAX_AF)
641 return;
642 if (reg_idx == FM_BAND_JAPAN && af > FM_RDS_MAX_AF_JAPAN)
643 return;
644
645 freq = fmdev->rx.region.bot_freq + (af * 100);
646 if (freq == fmdev->rx.freq) {
647 fmdbg("Current freq(%d) is matching with received AF(%d)\n",
648 fmdev->rx.freq, freq);
649 return;
650 }
651 /* Do check in AF cache */
652 for (index = 0; index < stat_info->afcache_size; index++) {
653 if (stat_info->af_cache[index] == freq)
654 break;
655 }
656 /* Reached the limit of the list - ignore the next AF */
657 if (index == stat_info->af_list_max) {
658 fmdbg("AF cache is full\n");
659 return;
660 }
661 /*
662 * If we reached the end of the list then this AF is not
663 * in the list - add it.
664 */
665 if (index == stat_info->afcache_size) {
666 fmdbg("Storing AF %d to cache index %d\n", freq, index);
667 stat_info->af_cache[index] = freq;
668 stat_info->afcache_size++;
669 }
670 }
671
672 /*
673 * Converts RDS buffer data from big endian format
674 * to little endian format.
675 */
fm_rdsparse_swapbytes(struct fmdev * fmdev,struct fm_rdsdata_format * rds_format)676 static void fm_rdsparse_swapbytes(struct fmdev *fmdev,
677 struct fm_rdsdata_format *rds_format)
678 {
679 u8 index = 0;
680 u8 *rds_buff;
681
682 /*
683 * Since in Orca the 2 RDS Data bytes are in little endian and
684 * in Dolphin they are in big endian, the parsing of the RDS data
685 * is chip dependent
686 */
687 if (fmdev->asci_id != 0x6350) {
688 rds_buff = &rds_format->data.groupdatabuff.buff[0];
689 while (index + 1 < FM_RX_RDS_INFO_FIELD_MAX) {
690 swap(rds_buff[index], rds_buff[index + 1]);
691 index += 2;
692 }
693 }
694 }
695
fm_irq_handle_rdsdata_getcmd_resp(struct fmdev * fmdev)696 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *fmdev)
697 {
698 struct sk_buff *skb;
699 struct fm_rdsdata_format rds_fmt;
700 struct fm_rds *rds = &fmdev->rx.rds;
701 unsigned long group_idx, flags;
702 u8 *rds_data, meta_data, tmpbuf[FM_RDS_BLK_SIZE];
703 u8 type, blk_idx;
704 u16 cur_picode;
705 u32 rds_len;
706
707 if (check_cmdresp_status(fmdev, &skb))
708 return;
709
710 /* Skip header info */
711 skb_pull(skb, sizeof(struct fm_event_msg_hdr));
712 rds_data = skb->data;
713 rds_len = skb->len;
714
715 /* Parse the RDS data */
716 while (rds_len >= FM_RDS_BLK_SIZE) {
717 meta_data = rds_data[2];
718 /* Get the type: 0=A, 1=B, 2=C, 3=C', 4=D, 5=E */
719 type = (meta_data & 0x07);
720
721 /* Transform the blk type into index sequence (0, 1, 2, 3, 4) */
722 blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
723 fmdbg("Block index:%d(%s)\n", blk_idx,
724 (meta_data & FM_RDS_STATUS_ERR_MASK) ? "Bad" : "Ok");
725
726 if ((meta_data & FM_RDS_STATUS_ERR_MASK) != 0)
727 break;
728
729 if (blk_idx > FM_RDS_BLK_IDX_D) {
730 fmdbg("Block sequence mismatch\n");
731 rds->last_blk_idx = -1;
732 break;
733 }
734
735 /* Skip checkword (control) byte and copy only data byte */
736 memcpy(&rds_fmt.data.groupdatabuff.
737 buff[blk_idx * (FM_RDS_BLK_SIZE - 1)],
738 rds_data, (FM_RDS_BLK_SIZE - 1));
739
740 rds->last_blk_idx = blk_idx;
741
742 /* If completed a whole group then handle it */
743 if (blk_idx == FM_RDS_BLK_IDX_D) {
744 fmdbg("Good block received\n");
745 fm_rdsparse_swapbytes(fmdev, &rds_fmt);
746
747 /*
748 * Extract PI code and store in local cache.
749 * We need this during AF switch processing.
750 */
751 cur_picode = be16_to_cpu((__force __be16)rds_fmt.data.groupgeneral.pidata);
752 if (fmdev->rx.stat_info.picode != cur_picode)
753 fmdev->rx.stat_info.picode = cur_picode;
754
755 fmdbg("picode:%d\n", cur_picode);
756
757 group_idx = (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
758 fmdbg("(fmdrv):Group:%ld%s\n", group_idx/2,
759 (group_idx % 2) ? "B" : "A");
760
761 group_idx = 1 << (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
762 if (group_idx == FM_RDS_GROUP_TYPE_MASK_0A) {
763 fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[0]);
764 fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[1]);
765 }
766 }
767 rds_len -= FM_RDS_BLK_SIZE;
768 rds_data += FM_RDS_BLK_SIZE;
769 }
770
771 /* Copy raw rds data to internal rds buffer */
772 rds_data = skb->data;
773 rds_len = skb->len;
774
775 spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
776 while (rds_len > 0) {
777 /*
778 * Fill RDS buffer as per V4L2 specification.
779 * Store control byte
780 */
781 type = (rds_data[2] & 0x07);
782 blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
783 tmpbuf[2] = blk_idx; /* Offset name */
784 tmpbuf[2] |= blk_idx << 3; /* Received offset */
785
786 /* Store data byte */
787 tmpbuf[0] = rds_data[0];
788 tmpbuf[1] = rds_data[1];
789
790 memcpy(&rds->buff[rds->wr_idx], &tmpbuf, FM_RDS_BLK_SIZE);
791 rds->wr_idx = (rds->wr_idx + FM_RDS_BLK_SIZE) % rds->buf_size;
792
793 /* Check for overflow & start over */
794 if (rds->wr_idx == rds->rd_idx) {
795 fmdbg("RDS buffer overflow\n");
796 rds->wr_idx = 0;
797 rds->rd_idx = 0;
798 break;
799 }
800 rds_len -= FM_RDS_BLK_SIZE;
801 rds_data += FM_RDS_BLK_SIZE;
802 }
803 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
804
805 /* Wakeup read queue */
806 if (rds->wr_idx != rds->rd_idx)
807 wake_up_interruptible(&rds->read_queue);
808
809 fm_irq_call_stage(fmdev, FM_RDS_FINISH_IDX);
810 }
811
fm_irq_handle_rds_finish(struct fmdev * fmdev)812 static void fm_irq_handle_rds_finish(struct fmdev *fmdev)
813 {
814 fm_irq_call_stage(fmdev, FM_HW_TUNE_OP_ENDED_IDX);
815 }
816
fm_irq_handle_tune_op_ended(struct fmdev * fmdev)817 static void fm_irq_handle_tune_op_ended(struct fmdev *fmdev)
818 {
819 if (fmdev->irq_info.flag & (FM_FR_EVENT | FM_BL_EVENT) & fmdev->
820 irq_info.mask) {
821 fmdbg("irq: tune ended/bandlimit reached\n");
822 if (test_and_clear_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag)) {
823 fmdev->irq_info.stage = FM_AF_JUMP_RD_FREQ_IDX;
824 } else {
825 complete(&fmdev->maintask_comp);
826 fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
827 }
828 } else
829 fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
830
831 fm_irq_call(fmdev);
832 }
833
fm_irq_handle_power_enb(struct fmdev * fmdev)834 static void fm_irq_handle_power_enb(struct fmdev *fmdev)
835 {
836 if (fmdev->irq_info.flag & FM_POW_ENB_EVENT) {
837 fmdbg("irq: Power Enabled/Disabled\n");
838 complete(&fmdev->maintask_comp);
839 }
840
841 fm_irq_call_stage(fmdev, FM_LOW_RSSI_START_IDX);
842 }
843
fm_irq_handle_low_rssi_start(struct fmdev * fmdev)844 static void fm_irq_handle_low_rssi_start(struct fmdev *fmdev)
845 {
846 if ((fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON) &&
847 (fmdev->irq_info.flag & FM_LEV_EVENT & fmdev->irq_info.mask) &&
848 (fmdev->rx.freq != FM_UNDEFINED_FREQ) &&
849 (fmdev->rx.stat_info.afcache_size != 0)) {
850 fmdbg("irq: rssi level has fallen below threshold level\n");
851
852 /* Disable further low RSSI interrupts */
853 fmdev->irq_info.mask &= ~FM_LEV_EVENT;
854
855 fmdev->rx.afjump_idx = 0;
856 fmdev->rx.freq_before_jump = fmdev->rx.freq;
857 fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
858 } else {
859 /* Continue next function in interrupt handler table */
860 fmdev->irq_info.stage = FM_SEND_INTMSK_CMD_IDX;
861 }
862
863 fm_irq_call(fmdev);
864 }
865
fm_irq_afjump_set_pi(struct fmdev * fmdev)866 static void fm_irq_afjump_set_pi(struct fmdev *fmdev)
867 {
868 u16 payload;
869
870 /* Set PI code - must be updated if the AF list is not empty */
871 payload = fmdev->rx.stat_info.picode;
872 if (!fm_send_cmd(fmdev, RDS_PI_SET, REG_WR, &payload, sizeof(payload), NULL))
873 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_RESP_IDX);
874 }
875
fm_irq_handle_set_pi_resp(struct fmdev * fmdev)876 static void fm_irq_handle_set_pi_resp(struct fmdev *fmdev)
877 {
878 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SETPI_MASK_IDX);
879 }
880
881 /*
882 * Set PI mask.
883 * 0xFFFF = Enable PI code matching
884 * 0x0000 = Disable PI code matching
885 */
fm_irq_afjump_set_pimask(struct fmdev * fmdev)886 static void fm_irq_afjump_set_pimask(struct fmdev *fmdev)
887 {
888 u16 payload;
889
890 payload = 0x0000;
891 if (!fm_send_cmd(fmdev, RDS_PI_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
892 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX);
893 }
894
fm_irq_handle_set_pimask_resp(struct fmdev * fmdev)895 static void fm_irq_handle_set_pimask_resp(struct fmdev *fmdev)
896 {
897 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SET_AF_FREQ_IDX);
898 }
899
fm_irq_afjump_setfreq(struct fmdev * fmdev)900 static void fm_irq_afjump_setfreq(struct fmdev *fmdev)
901 {
902 u16 frq_index;
903 u16 payload;
904
905 fmdbg("Switch to %d KHz\n", fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx]);
906 frq_index = (fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx] -
907 fmdev->rx.region.bot_freq) / FM_FREQ_MUL;
908
909 payload = frq_index;
910 if (!fm_send_cmd(fmdev, AF_FREQ_SET, REG_WR, &payload, sizeof(payload), NULL))
911 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX);
912 }
913
fm_irq_handle_setfreq_resp(struct fmdev * fmdev)914 static void fm_irq_handle_setfreq_resp(struct fmdev *fmdev)
915 {
916 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_ENABLE_INT_IDX);
917 }
918
fm_irq_afjump_enableint(struct fmdev * fmdev)919 static void fm_irq_afjump_enableint(struct fmdev *fmdev)
920 {
921 u16 payload;
922
923 /* Enable FR (tuning operation ended) interrupt */
924 payload = FM_FR_EVENT;
925 if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
926 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_ENABLE_INT_RESP_IDX);
927 }
928
fm_irq_afjump_enableint_resp(struct fmdev * fmdev)929 static void fm_irq_afjump_enableint_resp(struct fmdev *fmdev)
930 {
931 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_START_AFJUMP_IDX);
932 }
933
fm_irq_start_afjump(struct fmdev * fmdev)934 static void fm_irq_start_afjump(struct fmdev *fmdev)
935 {
936 u16 payload;
937
938 payload = FM_TUNER_AF_JUMP_MODE;
939 if (!fm_send_cmd(fmdev, TUNER_MODE_SET, REG_WR, &payload,
940 sizeof(payload), NULL))
941 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX);
942 }
943
fm_irq_handle_start_afjump_resp(struct fmdev * fmdev)944 static void fm_irq_handle_start_afjump_resp(struct fmdev *fmdev)
945 {
946 struct sk_buff *skb;
947
948 if (check_cmdresp_status(fmdev, &skb))
949 return;
950
951 fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
952 set_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag);
953 clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
954 }
955
fm_irq_afjump_rd_freq(struct fmdev * fmdev)956 static void fm_irq_afjump_rd_freq(struct fmdev *fmdev)
957 {
958 u16 payload;
959
960 if (!fm_send_cmd(fmdev, FREQ_SET, REG_RD, NULL, sizeof(payload), NULL))
961 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_RD_FREQ_RESP_IDX);
962 }
963
fm_irq_afjump_rd_freq_resp(struct fmdev * fmdev)964 static void fm_irq_afjump_rd_freq_resp(struct fmdev *fmdev)
965 {
966 struct sk_buff *skb;
967 u16 read_freq;
968 u32 curr_freq, jumped_freq;
969
970 if (check_cmdresp_status(fmdev, &skb))
971 return;
972
973 /* Skip header info and copy only response data */
974 skb_pull(skb, sizeof(struct fm_event_msg_hdr));
975 memcpy(&read_freq, skb->data, sizeof(read_freq));
976 read_freq = be16_to_cpu((__force __be16)read_freq);
977 curr_freq = fmdev->rx.region.bot_freq + ((u32)read_freq * FM_FREQ_MUL);
978
979 jumped_freq = fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx];
980
981 /* If the frequency was changed the jump succeeded */
982 if ((curr_freq != fmdev->rx.freq_before_jump) && (curr_freq == jumped_freq)) {
983 fmdbg("Successfully switched to alternate freq %d\n", curr_freq);
984 fmdev->rx.freq = curr_freq;
985 fm_rx_reset_rds_cache(fmdev);
986
987 /* AF feature is on, enable low level RSSI interrupt */
988 if (fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON)
989 fmdev->irq_info.mask |= FM_LEV_EVENT;
990
991 fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
992 } else { /* jump to the next freq in the AF list */
993 fmdev->rx.afjump_idx++;
994
995 /* If we reached the end of the list - stop searching */
996 if (fmdev->rx.afjump_idx >= fmdev->rx.stat_info.afcache_size) {
997 fmdbg("AF switch processing failed\n");
998 fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
999 } else { /* AF List is not over - try next one */
1000
1001 fmdbg("Trying next freq in AF cache\n");
1002 fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
1003 }
1004 }
1005 fm_irq_call(fmdev);
1006 }
1007
fm_irq_handle_low_rssi_finish(struct fmdev * fmdev)1008 static void fm_irq_handle_low_rssi_finish(struct fmdev *fmdev)
1009 {
1010 fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
1011 }
1012
fm_irq_send_intmsk_cmd(struct fmdev * fmdev)1013 static void fm_irq_send_intmsk_cmd(struct fmdev *fmdev)
1014 {
1015 u16 payload;
1016
1017 /* Re-enable FM interrupts */
1018 payload = fmdev->irq_info.mask;
1019
1020 if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload,
1021 sizeof(payload), NULL))
1022 fm_irq_timeout_stage(fmdev, FM_HANDLE_INTMSK_CMD_RESP_IDX);
1023 }
1024
fm_irq_handle_intmsk_cmd_resp(struct fmdev * fmdev)1025 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *fmdev)
1026 {
1027 struct sk_buff *skb;
1028
1029 if (check_cmdresp_status(fmdev, &skb))
1030 return;
1031 /*
1032 * This is last function in interrupt table to be executed.
1033 * So, reset stage index to 0.
1034 */
1035 fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
1036
1037 /* Start processing any pending interrupt */
1038 if (test_and_clear_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag))
1039 fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
1040 else
1041 clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
1042 }
1043
1044 /* Returns availability of RDS data in internal buffer */
fmc_is_rds_data_available(struct fmdev * fmdev,struct file * file,struct poll_table_struct * pts)1045 int fmc_is_rds_data_available(struct fmdev *fmdev, struct file *file,
1046 struct poll_table_struct *pts)
1047 {
1048 poll_wait(file, &fmdev->rx.rds.read_queue, pts);
1049 if (fmdev->rx.rds.rd_idx != fmdev->rx.rds.wr_idx)
1050 return 0;
1051
1052 return -EAGAIN;
1053 }
1054
1055 /* Copies RDS data from internal buffer to user buffer */
fmc_transfer_rds_from_internal_buff(struct fmdev * fmdev,struct file * file,u8 __user * buf,size_t count)1056 int fmc_transfer_rds_from_internal_buff(struct fmdev *fmdev, struct file *file,
1057 u8 __user *buf, size_t count)
1058 {
1059 u32 block_count;
1060 u8 tmpbuf[FM_RDS_BLK_SIZE];
1061 unsigned long flags;
1062 int ret;
1063
1064 if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
1065 if (file->f_flags & O_NONBLOCK)
1066 return -EWOULDBLOCK;
1067
1068 ret = wait_event_interruptible(fmdev->rx.rds.read_queue,
1069 (fmdev->rx.rds.wr_idx != fmdev->rx.rds.rd_idx));
1070 if (ret)
1071 return -EINTR;
1072 }
1073
1074 /* Calculate block count from byte count */
1075 count /= FM_RDS_BLK_SIZE;
1076 block_count = 0;
1077 ret = 0;
1078
1079 while (block_count < count) {
1080 spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
1081
1082 if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
1083 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
1084 break;
1085 }
1086 memcpy(tmpbuf, &fmdev->rx.rds.buff[fmdev->rx.rds.rd_idx],
1087 FM_RDS_BLK_SIZE);
1088 fmdev->rx.rds.rd_idx += FM_RDS_BLK_SIZE;
1089 if (fmdev->rx.rds.rd_idx >= fmdev->rx.rds.buf_size)
1090 fmdev->rx.rds.rd_idx = 0;
1091
1092 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
1093
1094 if (copy_to_user(buf, tmpbuf, FM_RDS_BLK_SIZE))
1095 break;
1096
1097 block_count++;
1098 buf += FM_RDS_BLK_SIZE;
1099 ret += FM_RDS_BLK_SIZE;
1100 }
1101 return ret;
1102 }
1103
fmc_set_freq(struct fmdev * fmdev,u32 freq_to_set)1104 int fmc_set_freq(struct fmdev *fmdev, u32 freq_to_set)
1105 {
1106 switch (fmdev->curr_fmmode) {
1107 case FM_MODE_RX:
1108 return fm_rx_set_freq(fmdev, freq_to_set);
1109
1110 case FM_MODE_TX:
1111 return fm_tx_set_freq(fmdev, freq_to_set);
1112
1113 default:
1114 return -EINVAL;
1115 }
1116 }
1117
fmc_get_freq(struct fmdev * fmdev,u32 * cur_tuned_frq)1118 int fmc_get_freq(struct fmdev *fmdev, u32 *cur_tuned_frq)
1119 {
1120 if (fmdev->rx.freq == FM_UNDEFINED_FREQ) {
1121 fmerr("RX frequency is not set\n");
1122 return -EPERM;
1123 }
1124 if (cur_tuned_frq == NULL) {
1125 fmerr("Invalid memory\n");
1126 return -ENOMEM;
1127 }
1128
1129 switch (fmdev->curr_fmmode) {
1130 case FM_MODE_RX:
1131 *cur_tuned_frq = fmdev->rx.freq;
1132 return 0;
1133
1134 case FM_MODE_TX:
1135 *cur_tuned_frq = 0; /* TODO : Change this later */
1136 return 0;
1137
1138 default:
1139 return -EINVAL;
1140 }
1141
1142 }
1143
fmc_set_region(struct fmdev * fmdev,u8 region_to_set)1144 int fmc_set_region(struct fmdev *fmdev, u8 region_to_set)
1145 {
1146 switch (fmdev->curr_fmmode) {
1147 case FM_MODE_RX:
1148 return fm_rx_set_region(fmdev, region_to_set);
1149
1150 case FM_MODE_TX:
1151 return fm_tx_set_region(fmdev, region_to_set);
1152
1153 default:
1154 return -EINVAL;
1155 }
1156 }
1157
fmc_set_mute_mode(struct fmdev * fmdev,u8 mute_mode_toset)1158 int fmc_set_mute_mode(struct fmdev *fmdev, u8 mute_mode_toset)
1159 {
1160 switch (fmdev->curr_fmmode) {
1161 case FM_MODE_RX:
1162 return fm_rx_set_mute_mode(fmdev, mute_mode_toset);
1163
1164 case FM_MODE_TX:
1165 return fm_tx_set_mute_mode(fmdev, mute_mode_toset);
1166
1167 default:
1168 return -EINVAL;
1169 }
1170 }
1171
fmc_set_stereo_mono(struct fmdev * fmdev,u16 mode)1172 int fmc_set_stereo_mono(struct fmdev *fmdev, u16 mode)
1173 {
1174 switch (fmdev->curr_fmmode) {
1175 case FM_MODE_RX:
1176 return fm_rx_set_stereo_mono(fmdev, mode);
1177
1178 case FM_MODE_TX:
1179 return fm_tx_set_stereo_mono(fmdev, mode);
1180
1181 default:
1182 return -EINVAL;
1183 }
1184 }
1185
fmc_set_rds_mode(struct fmdev * fmdev,u8 rds_en_dis)1186 int fmc_set_rds_mode(struct fmdev *fmdev, u8 rds_en_dis)
1187 {
1188 switch (fmdev->curr_fmmode) {
1189 case FM_MODE_RX:
1190 return fm_rx_set_rds_mode(fmdev, rds_en_dis);
1191
1192 case FM_MODE_TX:
1193 return fm_tx_set_rds_mode(fmdev, rds_en_dis);
1194
1195 default:
1196 return -EINVAL;
1197 }
1198 }
1199
1200 /* Sends power off command to the chip */
fm_power_down(struct fmdev * fmdev)1201 static int fm_power_down(struct fmdev *fmdev)
1202 {
1203 u16 payload;
1204 int ret;
1205
1206 if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1207 fmerr("FM core is not ready\n");
1208 return -EPERM;
1209 }
1210 if (fmdev->curr_fmmode == FM_MODE_OFF) {
1211 fmdbg("FM chip is already in OFF state\n");
1212 return 0;
1213 }
1214
1215 payload = 0x0;
1216 ret = fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1217 sizeof(payload), NULL, NULL);
1218 if (ret < 0)
1219 return ret;
1220
1221 return fmc_release(fmdev);
1222 }
1223
1224 /* Reads init command from FM firmware file and loads to the chip */
fm_download_firmware(struct fmdev * fmdev,const u8 * fw_name)1225 static int fm_download_firmware(struct fmdev *fmdev, const u8 *fw_name)
1226 {
1227 const struct firmware *fw_entry;
1228 struct bts_header *fw_header;
1229 struct bts_action *action;
1230 struct bts_action_delay *delay;
1231 u8 *fw_data;
1232 int ret, fw_len, cmd_cnt;
1233
1234 cmd_cnt = 0;
1235 set_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1236
1237 ret = request_firmware(&fw_entry, fw_name,
1238 &fmdev->radio_dev->dev);
1239 if (ret < 0) {
1240 fmerr("Unable to read firmware(%s) content\n", fw_name);
1241 return ret;
1242 }
1243 fmdbg("Firmware(%s) length : %zu bytes\n", fw_name, fw_entry->size);
1244
1245 fw_data = (void *)fw_entry->data;
1246 fw_len = fw_entry->size;
1247
1248 fw_header = (struct bts_header *)fw_data;
1249 if (fw_header->magic != FM_FW_FILE_HEADER_MAGIC) {
1250 fmerr("%s not a legal TI firmware file\n", fw_name);
1251 ret = -EINVAL;
1252 goto rel_fw;
1253 }
1254 fmdbg("FW(%s) magic number : 0x%x\n", fw_name, fw_header->magic);
1255
1256 /* Skip file header info , we already verified it */
1257 fw_data += sizeof(struct bts_header);
1258 fw_len -= sizeof(struct bts_header);
1259
1260 while (fw_data && fw_len > 0) {
1261 action = (struct bts_action *)fw_data;
1262
1263 switch (action->type) {
1264 case ACTION_SEND_COMMAND: /* Send */
1265 ret = fmc_send_cmd(fmdev, 0, 0, action->data,
1266 action->size, NULL, NULL);
1267 if (ret)
1268 goto rel_fw;
1269
1270 cmd_cnt++;
1271 break;
1272
1273 case ACTION_DELAY: /* Delay */
1274 delay = (struct bts_action_delay *)action->data;
1275 mdelay(delay->msec);
1276 break;
1277 }
1278
1279 fw_data += (sizeof(struct bts_action) + (action->size));
1280 fw_len -= (sizeof(struct bts_action) + (action->size));
1281 }
1282 fmdbg("Firmware commands(%d) loaded to chip\n", cmd_cnt);
1283 rel_fw:
1284 release_firmware(fw_entry);
1285 clear_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1286
1287 return ret;
1288 }
1289
1290 /* Loads default RX configuration to the chip */
load_default_rx_configuration(struct fmdev * fmdev)1291 static int load_default_rx_configuration(struct fmdev *fmdev)
1292 {
1293 int ret;
1294
1295 ret = fm_rx_set_volume(fmdev, FM_DEFAULT_RX_VOLUME);
1296 if (ret < 0)
1297 return ret;
1298
1299 return fm_rx_set_rssi_threshold(fmdev, FM_DEFAULT_RSSI_THRESHOLD);
1300 }
1301
1302 /* Does FM power on sequence */
fm_power_up(struct fmdev * fmdev,u8 mode)1303 static int fm_power_up(struct fmdev *fmdev, u8 mode)
1304 {
1305 u16 payload;
1306 __be16 asic_id = 0, asic_ver = 0;
1307 int resp_len, ret;
1308 u8 fw_name[50];
1309
1310 if (mode >= FM_MODE_ENTRY_MAX) {
1311 fmerr("Invalid firmware download option\n");
1312 return -EINVAL;
1313 }
1314
1315 /*
1316 * Initialize FM common module. FM GPIO toggling is
1317 * taken care in Shared Transport driver.
1318 */
1319 ret = fmc_prepare(fmdev);
1320 if (ret < 0) {
1321 fmerr("Unable to prepare FM Common\n");
1322 return ret;
1323 }
1324
1325 payload = FM_ENABLE;
1326 if (fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1327 sizeof(payload), NULL, NULL))
1328 goto rel;
1329
1330 /* Allow the chip to settle down in Channel-8 mode */
1331 msleep(20);
1332
1333 if (fmc_send_cmd(fmdev, ASIC_ID_GET, REG_RD, NULL,
1334 sizeof(asic_id), &asic_id, &resp_len))
1335 goto rel;
1336
1337 if (fmc_send_cmd(fmdev, ASIC_VER_GET, REG_RD, NULL,
1338 sizeof(asic_ver), &asic_ver, &resp_len))
1339 goto rel;
1340
1341 fmdbg("ASIC ID: 0x%x , ASIC Version: %d\n",
1342 be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1343
1344 sprintf(fw_name, "%s_%x.%d.bts", FM_FMC_FW_FILE_START,
1345 be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1346
1347 ret = fm_download_firmware(fmdev, fw_name);
1348 if (ret < 0) {
1349 fmdbg("Failed to download firmware file %s\n", fw_name);
1350 goto rel;
1351 }
1352 sprintf(fw_name, "%s_%x.%d.bts", (mode == FM_MODE_RX) ?
1353 FM_RX_FW_FILE_START : FM_TX_FW_FILE_START,
1354 be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1355
1356 ret = fm_download_firmware(fmdev, fw_name);
1357 if (ret < 0) {
1358 fmdbg("Failed to download firmware file %s\n", fw_name);
1359 goto rel;
1360 } else
1361 return ret;
1362 rel:
1363 return fmc_release(fmdev);
1364 }
1365
1366 /* Set FM Modes(TX, RX, OFF) */
fmc_set_mode(struct fmdev * fmdev,u8 fm_mode)1367 int fmc_set_mode(struct fmdev *fmdev, u8 fm_mode)
1368 {
1369 int ret = 0;
1370
1371 if (fm_mode >= FM_MODE_ENTRY_MAX) {
1372 fmerr("Invalid FM mode\n");
1373 return -EINVAL;
1374 }
1375 if (fmdev->curr_fmmode == fm_mode) {
1376 fmdbg("Already fm is in mode(%d)\n", fm_mode);
1377 return ret;
1378 }
1379
1380 switch (fm_mode) {
1381 case FM_MODE_OFF: /* OFF Mode */
1382 ret = fm_power_down(fmdev);
1383 if (ret < 0) {
1384 fmerr("Failed to set OFF mode\n");
1385 return ret;
1386 }
1387 break;
1388
1389 case FM_MODE_TX: /* TX Mode */
1390 case FM_MODE_RX: /* RX Mode */
1391 /* Power down before switching to TX or RX mode */
1392 if (fmdev->curr_fmmode != FM_MODE_OFF) {
1393 ret = fm_power_down(fmdev);
1394 if (ret < 0) {
1395 fmerr("Failed to set OFF mode\n");
1396 return ret;
1397 }
1398 msleep(30);
1399 }
1400 ret = fm_power_up(fmdev, fm_mode);
1401 if (ret < 0) {
1402 fmerr("Failed to load firmware\n");
1403 return ret;
1404 }
1405 }
1406 fmdev->curr_fmmode = fm_mode;
1407
1408 /* Set default configuration */
1409 if (fmdev->curr_fmmode == FM_MODE_RX) {
1410 fmdbg("Loading default rx configuration..\n");
1411 ret = load_default_rx_configuration(fmdev);
1412 if (ret < 0)
1413 fmerr("Failed to load default values\n");
1414 }
1415
1416 return ret;
1417 }
1418
1419 /* Returns current FM mode (TX, RX, OFF) */
fmc_get_mode(struct fmdev * fmdev,u8 * fmmode)1420 int fmc_get_mode(struct fmdev *fmdev, u8 *fmmode)
1421 {
1422 if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1423 fmerr("FM core is not ready\n");
1424 return -EPERM;
1425 }
1426 if (fmmode == NULL) {
1427 fmerr("Invalid memory\n");
1428 return -ENOMEM;
1429 }
1430
1431 *fmmode = fmdev->curr_fmmode;
1432 return 0;
1433 }
1434
1435 /* Called by ST layer when FM packet is available */
fm_st_receive(void * arg,struct sk_buff * skb)1436 static long fm_st_receive(void *arg, struct sk_buff *skb)
1437 {
1438 struct fmdev *fmdev;
1439
1440 fmdev = (struct fmdev *)arg;
1441
1442 if (skb == NULL) {
1443 fmerr("Invalid SKB received from ST\n");
1444 return -EFAULT;
1445 }
1446
1447 if (skb->cb[0] != FM_PKT_LOGICAL_CHAN_NUMBER) {
1448 fmerr("Received SKB (%p) is not FM Channel 8 pkt\n", skb);
1449 return -EINVAL;
1450 }
1451
1452 memcpy(skb_push(skb, 1), &skb->cb[0], 1);
1453 skb_queue_tail(&fmdev->rx_q, skb);
1454 tasklet_schedule(&fmdev->rx_task);
1455
1456 return 0;
1457 }
1458
1459 /*
1460 * Called by ST layer to indicate protocol registration completion
1461 * status.
1462 */
fm_st_reg_comp_cb(void * arg,int data)1463 static void fm_st_reg_comp_cb(void *arg, int data)
1464 {
1465 struct fmdev *fmdev;
1466
1467 fmdev = (struct fmdev *)arg;
1468 fmdev->streg_cbdata = data;
1469 complete(&wait_for_fmdrv_reg_comp);
1470 }
1471
1472 /*
1473 * This function will be called from FM V4L2 open function.
1474 * Register with ST driver and initialize driver data.
1475 */
fmc_prepare(struct fmdev * fmdev)1476 int fmc_prepare(struct fmdev *fmdev)
1477 {
1478 static struct st_proto_s fm_st_proto;
1479 int ret;
1480
1481 if (test_bit(FM_CORE_READY, &fmdev->flag)) {
1482 fmdbg("FM Core is already up\n");
1483 return 0;
1484 }
1485
1486 memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1487 fm_st_proto.recv = fm_st_receive;
1488 fm_st_proto.match_packet = NULL;
1489 fm_st_proto.reg_complete_cb = fm_st_reg_comp_cb;
1490 fm_st_proto.write = NULL; /* TI ST driver will fill write pointer */
1491 fm_st_proto.priv_data = fmdev;
1492 fm_st_proto.chnl_id = 0x08;
1493 fm_st_proto.max_frame_size = 0xff;
1494 fm_st_proto.hdr_len = 1;
1495 fm_st_proto.offset_len_in_hdr = 0;
1496 fm_st_proto.len_size = 1;
1497 fm_st_proto.reserve = 1;
1498
1499 ret = st_register(&fm_st_proto);
1500 if (ret == -EINPROGRESS) {
1501 init_completion(&wait_for_fmdrv_reg_comp);
1502 fmdev->streg_cbdata = -EINPROGRESS;
1503 fmdbg("%s waiting for ST reg completion signal\n", __func__);
1504
1505 if (!wait_for_completion_timeout(&wait_for_fmdrv_reg_comp,
1506 FM_ST_REG_TIMEOUT)) {
1507 fmerr("Timeout(%d sec), didn't get reg completion signal from ST\n",
1508 jiffies_to_msecs(FM_ST_REG_TIMEOUT) / 1000);
1509 return -ETIMEDOUT;
1510 }
1511 if (fmdev->streg_cbdata != 0) {
1512 fmerr("ST reg comp CB called with error status %d\n",
1513 fmdev->streg_cbdata);
1514 return -EAGAIN;
1515 }
1516
1517 ret = 0;
1518 } else if (ret < 0) {
1519 fmerr("st_register failed %d\n", ret);
1520 return -EAGAIN;
1521 }
1522
1523 if (fm_st_proto.write != NULL) {
1524 g_st_write = fm_st_proto.write;
1525 } else {
1526 fmerr("Failed to get ST write func pointer\n");
1527 ret = st_unregister(&fm_st_proto);
1528 if (ret < 0)
1529 fmerr("st_unregister failed %d\n", ret);
1530 return -EAGAIN;
1531 }
1532
1533 spin_lock_init(&fmdev->rds_buff_lock);
1534 spin_lock_init(&fmdev->resp_skb_lock);
1535
1536 /* Initialize TX queue and TX tasklet */
1537 skb_queue_head_init(&fmdev->tx_q);
1538 tasklet_init(&fmdev->tx_task, send_tasklet, (unsigned long)fmdev);
1539
1540 /* Initialize RX Queue and RX tasklet */
1541 skb_queue_head_init(&fmdev->rx_q);
1542 tasklet_init(&fmdev->rx_task, recv_tasklet, (unsigned long)fmdev);
1543
1544 fmdev->irq_info.stage = 0;
1545 atomic_set(&fmdev->tx_cnt, 1);
1546 fmdev->resp_comp = NULL;
1547
1548 timer_setup(&fmdev->irq_info.timer, int_timeout_handler, 0);
1549 /*TODO: add FM_STIC_EVENT later */
1550 fmdev->irq_info.mask = FM_MAL_EVENT;
1551
1552 /* Region info */
1553 fmdev->rx.region = region_configs[default_radio_region];
1554
1555 fmdev->rx.mute_mode = FM_MUTE_OFF;
1556 fmdev->rx.rf_depend_mute = FM_RX_RF_DEPENDENT_MUTE_OFF;
1557 fmdev->rx.rds.flag = FM_RDS_DISABLE;
1558 fmdev->rx.freq = FM_UNDEFINED_FREQ;
1559 fmdev->rx.rds_mode = FM_RDS_SYSTEM_RDS;
1560 fmdev->rx.af_mode = FM_RX_RDS_AF_SWITCH_MODE_OFF;
1561 fmdev->irq_info.retry = 0;
1562
1563 fm_rx_reset_rds_cache(fmdev);
1564 init_waitqueue_head(&fmdev->rx.rds.read_queue);
1565
1566 fm_rx_reset_station_info(fmdev);
1567 set_bit(FM_CORE_READY, &fmdev->flag);
1568
1569 return ret;
1570 }
1571
1572 /*
1573 * This function will be called from FM V4L2 release function.
1574 * Unregister from ST driver.
1575 */
fmc_release(struct fmdev * fmdev)1576 int fmc_release(struct fmdev *fmdev)
1577 {
1578 static struct st_proto_s fm_st_proto;
1579 int ret;
1580
1581 if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1582 fmdbg("FM Core is already down\n");
1583 return 0;
1584 }
1585 /* Service pending read */
1586 wake_up_interruptible(&fmdev->rx.rds.read_queue);
1587
1588 tasklet_kill(&fmdev->tx_task);
1589 tasklet_kill(&fmdev->rx_task);
1590
1591 skb_queue_purge(&fmdev->tx_q);
1592 skb_queue_purge(&fmdev->rx_q);
1593
1594 fmdev->resp_comp = NULL;
1595 fmdev->rx.freq = 0;
1596
1597 memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1598 fm_st_proto.chnl_id = 0x08;
1599
1600 ret = st_unregister(&fm_st_proto);
1601
1602 if (ret < 0)
1603 fmerr("Failed to de-register FM from ST %d\n", ret);
1604 else
1605 fmdbg("Successfully unregistered from ST\n");
1606
1607 clear_bit(FM_CORE_READY, &fmdev->flag);
1608 return ret;
1609 }
1610
1611 /*
1612 * Module init function. Ask FM V4L module to register video device.
1613 * Allocate memory for FM driver context and RX RDS buffer.
1614 */
fm_drv_init(void)1615 static int __init fm_drv_init(void)
1616 {
1617 struct fmdev *fmdev = NULL;
1618 int ret = -ENOMEM;
1619
1620 fmdbg("FM driver version %s\n", FM_DRV_VERSION);
1621
1622 fmdev = kzalloc(sizeof(struct fmdev), GFP_KERNEL);
1623 if (NULL == fmdev) {
1624 fmerr("Can't allocate operation structure memory\n");
1625 return ret;
1626 }
1627 fmdev->rx.rds.buf_size = default_rds_buf * FM_RDS_BLK_SIZE;
1628 fmdev->rx.rds.buff = kzalloc(fmdev->rx.rds.buf_size, GFP_KERNEL);
1629 if (NULL == fmdev->rx.rds.buff) {
1630 fmerr("Can't allocate rds ring buffer\n");
1631 goto rel_dev;
1632 }
1633
1634 ret = fm_v4l2_init_video_device(fmdev, radio_nr);
1635 if (ret < 0)
1636 goto rel_rdsbuf;
1637
1638 fmdev->irq_info.handlers = int_handler_table;
1639 fmdev->curr_fmmode = FM_MODE_OFF;
1640 fmdev->tx_data.pwr_lvl = FM_PWR_LVL_DEF;
1641 fmdev->tx_data.preemph = FM_TX_PREEMPH_50US;
1642 return ret;
1643
1644 rel_rdsbuf:
1645 kfree(fmdev->rx.rds.buff);
1646 rel_dev:
1647 kfree(fmdev);
1648
1649 return ret;
1650 }
1651
1652 /* Module exit function. Ask FM V4L module to unregister video device */
fm_drv_exit(void)1653 static void __exit fm_drv_exit(void)
1654 {
1655 struct fmdev *fmdev = NULL;
1656
1657 fmdev = fm_v4l2_deinit_video_device();
1658 if (fmdev != NULL) {
1659 kfree(fmdev->rx.rds.buff);
1660 kfree(fmdev);
1661 }
1662 }
1663
1664 module_init(fm_drv_init);
1665 module_exit(fm_drv_exit);
1666
1667 /* ------------- Module Info ------------- */
1668 MODULE_AUTHOR("Manjunatha Halli <manjunatha_halli@ti.com>");
1669 MODULE_DESCRIPTION("FM Driver for TI's Connectivity chip. " FM_DRV_VERSION);
1670 MODULE_VERSION(FM_DRV_VERSION);
1671 MODULE_LICENSE("GPL");
1672