1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef NVM_H
3 #define NVM_H
4
5 #include <linux/blkdev.h>
6 #include <linux/types.h>
7 #include <uapi/linux/lightnvm.h>
8
9 enum {
10 NVM_IO_OK = 0,
11 NVM_IO_REQUEUE = 1,
12 NVM_IO_DONE = 2,
13 NVM_IO_ERR = 3,
14
15 NVM_IOTYPE_NONE = 0,
16 NVM_IOTYPE_GC = 1,
17 };
18
19 /* common format */
20 #define NVM_GEN_CH_BITS (8)
21 #define NVM_GEN_LUN_BITS (8)
22 #define NVM_GEN_BLK_BITS (16)
23 #define NVM_GEN_RESERVED (32)
24
25 /* 1.2 format */
26 #define NVM_12_PG_BITS (16)
27 #define NVM_12_PL_BITS (4)
28 #define NVM_12_SEC_BITS (4)
29 #define NVM_12_RESERVED (8)
30
31 /* 2.0 format */
32 #define NVM_20_SEC_BITS (24)
33 #define NVM_20_RESERVED (8)
34
35 enum {
36 NVM_OCSSD_SPEC_12 = 12,
37 NVM_OCSSD_SPEC_20 = 20,
38 };
39
40 struct ppa_addr {
41 /* Generic structure for all addresses */
42 union {
43 /* generic device format */
44 struct {
45 u64 ch : NVM_GEN_CH_BITS;
46 u64 lun : NVM_GEN_LUN_BITS;
47 u64 blk : NVM_GEN_BLK_BITS;
48 u64 reserved : NVM_GEN_RESERVED;
49 } a;
50
51 /* 1.2 device format */
52 struct {
53 u64 ch : NVM_GEN_CH_BITS;
54 u64 lun : NVM_GEN_LUN_BITS;
55 u64 blk : NVM_GEN_BLK_BITS;
56 u64 pg : NVM_12_PG_BITS;
57 u64 pl : NVM_12_PL_BITS;
58 u64 sec : NVM_12_SEC_BITS;
59 u64 reserved : NVM_12_RESERVED;
60 } g;
61
62 /* 2.0 device format */
63 struct {
64 u64 grp : NVM_GEN_CH_BITS;
65 u64 pu : NVM_GEN_LUN_BITS;
66 u64 chk : NVM_GEN_BLK_BITS;
67 u64 sec : NVM_20_SEC_BITS;
68 u64 reserved : NVM_20_RESERVED;
69 } m;
70
71 struct {
72 u64 line : 63;
73 u64 is_cached : 1;
74 } c;
75
76 u64 ppa;
77 };
78 };
79
80 struct nvm_rq;
81 struct nvm_id;
82 struct nvm_dev;
83 struct nvm_tgt_dev;
84 struct nvm_chk_meta;
85
86 typedef int (nvm_id_fn)(struct nvm_dev *);
87 typedef int (nvm_op_bb_tbl_fn)(struct nvm_dev *, struct ppa_addr, u8 *);
88 typedef int (nvm_op_set_bb_fn)(struct nvm_dev *, struct ppa_addr *, int, int);
89 typedef int (nvm_get_chk_meta_fn)(struct nvm_dev *, sector_t, int,
90 struct nvm_chk_meta *);
91 typedef int (nvm_submit_io_fn)(struct nvm_dev *, struct nvm_rq *, void *);
92 typedef void *(nvm_create_dma_pool_fn)(struct nvm_dev *, char *, int);
93 typedef void (nvm_destroy_dma_pool_fn)(void *);
94 typedef void *(nvm_dev_dma_alloc_fn)(struct nvm_dev *, void *, gfp_t,
95 dma_addr_t *);
96 typedef void (nvm_dev_dma_free_fn)(void *, void*, dma_addr_t);
97
98 struct nvm_dev_ops {
99 nvm_id_fn *identity;
100 nvm_op_bb_tbl_fn *get_bb_tbl;
101 nvm_op_set_bb_fn *set_bb_tbl;
102
103 nvm_get_chk_meta_fn *get_chk_meta;
104
105 nvm_submit_io_fn *submit_io;
106
107 nvm_create_dma_pool_fn *create_dma_pool;
108 nvm_destroy_dma_pool_fn *destroy_dma_pool;
109 nvm_dev_dma_alloc_fn *dev_dma_alloc;
110 nvm_dev_dma_free_fn *dev_dma_free;
111 };
112
113 #ifdef CONFIG_NVM
114
115 #include <linux/blkdev.h>
116 #include <linux/file.h>
117 #include <linux/dmapool.h>
118 #include <uapi/linux/lightnvm.h>
119
120 enum {
121 /* HW Responsibilities */
122 NVM_RSP_L2P = 1 << 0,
123 NVM_RSP_ECC = 1 << 1,
124
125 /* Physical Adressing Mode */
126 NVM_ADDRMODE_LINEAR = 0,
127 NVM_ADDRMODE_CHANNEL = 1,
128
129 /* Plane programming mode for LUN */
130 NVM_PLANE_SINGLE = 1,
131 NVM_PLANE_DOUBLE = 2,
132 NVM_PLANE_QUAD = 4,
133
134 /* Status codes */
135 NVM_RSP_SUCCESS = 0x0,
136 NVM_RSP_NOT_CHANGEABLE = 0x1,
137 NVM_RSP_ERR_FAILWRITE = 0x40ff,
138 NVM_RSP_ERR_EMPTYPAGE = 0x42ff,
139 NVM_RSP_ERR_FAILECC = 0x4281,
140 NVM_RSP_ERR_FAILCRC = 0x4004,
141 NVM_RSP_WARN_HIGHECC = 0x4700,
142
143 /* Device opcodes */
144 NVM_OP_PWRITE = 0x91,
145 NVM_OP_PREAD = 0x92,
146 NVM_OP_ERASE = 0x90,
147
148 /* PPA Command Flags */
149 NVM_IO_SNGL_ACCESS = 0x0,
150 NVM_IO_DUAL_ACCESS = 0x1,
151 NVM_IO_QUAD_ACCESS = 0x2,
152
153 /* NAND Access Modes */
154 NVM_IO_SUSPEND = 0x80,
155 NVM_IO_SLC_MODE = 0x100,
156 NVM_IO_SCRAMBLE_ENABLE = 0x200,
157
158 /* Block Types */
159 NVM_BLK_T_FREE = 0x0,
160 NVM_BLK_T_BAD = 0x1,
161 NVM_BLK_T_GRWN_BAD = 0x2,
162 NVM_BLK_T_DEV = 0x4,
163 NVM_BLK_T_HOST = 0x8,
164
165 /* Memory capabilities */
166 NVM_ID_CAP_SLC = 0x1,
167 NVM_ID_CAP_CMD_SUSPEND = 0x2,
168 NVM_ID_CAP_SCRAMBLE = 0x4,
169 NVM_ID_CAP_ENCRYPT = 0x8,
170
171 /* Memory types */
172 NVM_ID_FMTYPE_SLC = 0,
173 NVM_ID_FMTYPE_MLC = 1,
174
175 /* Device capabilities */
176 NVM_ID_DCAP_BBLKMGMT = 0x1,
177 NVM_UD_DCAP_ECC = 0x2,
178 };
179
180 struct nvm_id_lp_mlc {
181 u16 num_pairs;
182 u8 pairs[886];
183 };
184
185 struct nvm_id_lp_tbl {
186 __u8 id[8];
187 struct nvm_id_lp_mlc mlc;
188 };
189
190 struct nvm_addrf_12 {
191 u8 ch_len;
192 u8 lun_len;
193 u8 blk_len;
194 u8 pg_len;
195 u8 pln_len;
196 u8 sec_len;
197
198 u8 ch_offset;
199 u8 lun_offset;
200 u8 blk_offset;
201 u8 pg_offset;
202 u8 pln_offset;
203 u8 sec_offset;
204
205 u64 ch_mask;
206 u64 lun_mask;
207 u64 blk_mask;
208 u64 pg_mask;
209 u64 pln_mask;
210 u64 sec_mask;
211 };
212
213 struct nvm_addrf {
214 u8 ch_len;
215 u8 lun_len;
216 u8 chk_len;
217 u8 sec_len;
218 u8 rsv_len[2];
219
220 u8 ch_offset;
221 u8 lun_offset;
222 u8 chk_offset;
223 u8 sec_offset;
224 u8 rsv_off[2];
225
226 u64 ch_mask;
227 u64 lun_mask;
228 u64 chk_mask;
229 u64 sec_mask;
230 u64 rsv_mask[2];
231 };
232
233 enum {
234 /* Chunk states */
235 NVM_CHK_ST_FREE = 1 << 0,
236 NVM_CHK_ST_CLOSED = 1 << 1,
237 NVM_CHK_ST_OPEN = 1 << 2,
238 NVM_CHK_ST_OFFLINE = 1 << 3,
239
240 /* Chunk types */
241 NVM_CHK_TP_W_SEQ = 1 << 0,
242 NVM_CHK_TP_W_RAN = 1 << 1,
243 NVM_CHK_TP_SZ_SPEC = 1 << 4,
244 };
245
246 /*
247 * Note: The structure size is linked to nvme_nvm_chk_meta such that the same
248 * buffer can be used when converting from little endian to cpu addressing.
249 */
250 struct nvm_chk_meta {
251 u8 state;
252 u8 type;
253 u8 wi;
254 u8 rsvd[5];
255 u64 slba;
256 u64 cnlb;
257 u64 wp;
258 };
259
260 struct nvm_target {
261 struct list_head list;
262 struct nvm_tgt_dev *dev;
263 struct nvm_tgt_type *type;
264 struct gendisk *disk;
265 };
266
267 #define ADDR_EMPTY (~0ULL)
268
269 #define NVM_TARGET_DEFAULT_OP (101)
270 #define NVM_TARGET_MIN_OP (3)
271 #define NVM_TARGET_MAX_OP (80)
272
273 #define NVM_VERSION_MAJOR 1
274 #define NVM_VERSION_MINOR 0
275 #define NVM_VERSION_PATCH 0
276
277 #define NVM_MAX_VLBA (64) /* max logical blocks in a vector command */
278
279 struct nvm_rq;
280 typedef void (nvm_end_io_fn)(struct nvm_rq *);
281
282 struct nvm_rq {
283 struct nvm_tgt_dev *dev;
284
285 struct bio *bio;
286
287 union {
288 struct ppa_addr ppa_addr;
289 dma_addr_t dma_ppa_list;
290 };
291
292 struct ppa_addr *ppa_list;
293
294 void *meta_list;
295 dma_addr_t dma_meta_list;
296
297 nvm_end_io_fn *end_io;
298
299 uint8_t opcode;
300 uint16_t nr_ppas;
301 uint16_t flags;
302
303 u64 ppa_status; /* ppa media status */
304 int error;
305
306 int is_seq; /* Sequential hint flag. 1.2 only */
307
308 void *private;
309 };
310
nvm_rq_from_pdu(void * pdu)311 static inline struct nvm_rq *nvm_rq_from_pdu(void *pdu)
312 {
313 return pdu - sizeof(struct nvm_rq);
314 }
315
nvm_rq_to_pdu(struct nvm_rq * rqdata)316 static inline void *nvm_rq_to_pdu(struct nvm_rq *rqdata)
317 {
318 return rqdata + 1;
319 }
320
nvm_rq_to_ppa_list(struct nvm_rq * rqd)321 static inline struct ppa_addr *nvm_rq_to_ppa_list(struct nvm_rq *rqd)
322 {
323 return (rqd->nr_ppas > 1) ? rqd->ppa_list : &rqd->ppa_addr;
324 }
325
326 enum {
327 NVM_BLK_ST_FREE = 0x1, /* Free block */
328 NVM_BLK_ST_TGT = 0x2, /* Block in use by target */
329 NVM_BLK_ST_BAD = 0x8, /* Bad block */
330 };
331
332 /* Instance geometry */
333 struct nvm_geo {
334 /* device reported version */
335 u8 major_ver_id;
336 u8 minor_ver_id;
337
338 /* kernel short version */
339 u8 version;
340
341 /* instance specific geometry */
342 int num_ch;
343 int num_lun; /* per channel */
344
345 /* calculated values */
346 int all_luns; /* across channels */
347 int all_chunks; /* across channels */
348
349 int op; /* over-provision in instance */
350
351 sector_t total_secs; /* across channels */
352
353 /* chunk geometry */
354 u32 num_chk; /* chunks per lun */
355 u32 clba; /* sectors per chunk */
356 u16 csecs; /* sector size */
357 u16 sos; /* out-of-band area size */
358 bool ext; /* metadata in extended data buffer */
359 u32 mdts; /* Max data transfer size*/
360
361 /* device write constrains */
362 u32 ws_min; /* minimum write size */
363 u32 ws_opt; /* optimal write size */
364 u32 mw_cunits; /* distance required for successful read */
365 u32 maxoc; /* maximum open chunks */
366 u32 maxocpu; /* maximum open chunks per parallel unit */
367
368 /* device capabilities */
369 u32 mccap;
370
371 /* device timings */
372 u32 trdt; /* Avg. Tread (ns) */
373 u32 trdm; /* Max Tread (ns) */
374 u32 tprt; /* Avg. Tprog (ns) */
375 u32 tprm; /* Max Tprog (ns) */
376 u32 tbet; /* Avg. Terase (ns) */
377 u32 tbem; /* Max Terase (ns) */
378
379 /* generic address format */
380 struct nvm_addrf addrf;
381
382 /* 1.2 compatibility */
383 u8 vmnt;
384 u32 cap;
385 u32 dom;
386
387 u8 mtype;
388 u8 fmtype;
389
390 u16 cpar;
391 u32 mpos;
392
393 u8 num_pln;
394 u8 pln_mode;
395 u16 num_pg;
396 u16 fpg_sz;
397 };
398
399 /* sub-device structure */
400 struct nvm_tgt_dev {
401 /* Device information */
402 struct nvm_geo geo;
403
404 /* Base ppas for target LUNs */
405 struct ppa_addr *luns;
406
407 struct request_queue *q;
408
409 struct nvm_dev *parent;
410 void *map;
411 };
412
413 struct nvm_dev {
414 struct nvm_dev_ops *ops;
415
416 struct list_head devices;
417
418 /* Device information */
419 struct nvm_geo geo;
420
421 unsigned long *lun_map;
422 void *dma_pool;
423
424 /* Backend device */
425 struct request_queue *q;
426 char name[DISK_NAME_LEN];
427 void *private_data;
428
429 struct kref ref;
430 void *rmap;
431
432 struct mutex mlock;
433 spinlock_t lock;
434
435 /* target management */
436 struct list_head area_list;
437 struct list_head targets;
438 };
439
generic_to_dev_addr(struct nvm_dev * dev,struct ppa_addr r)440 static inline struct ppa_addr generic_to_dev_addr(struct nvm_dev *dev,
441 struct ppa_addr r)
442 {
443 struct nvm_geo *geo = &dev->geo;
444 struct ppa_addr l;
445
446 if (geo->version == NVM_OCSSD_SPEC_12) {
447 struct nvm_addrf_12 *ppaf = (struct nvm_addrf_12 *)&geo->addrf;
448
449 l.ppa = ((u64)r.g.ch) << ppaf->ch_offset;
450 l.ppa |= ((u64)r.g.lun) << ppaf->lun_offset;
451 l.ppa |= ((u64)r.g.blk) << ppaf->blk_offset;
452 l.ppa |= ((u64)r.g.pg) << ppaf->pg_offset;
453 l.ppa |= ((u64)r.g.pl) << ppaf->pln_offset;
454 l.ppa |= ((u64)r.g.sec) << ppaf->sec_offset;
455 } else {
456 struct nvm_addrf *lbaf = &geo->addrf;
457
458 l.ppa = ((u64)r.m.grp) << lbaf->ch_offset;
459 l.ppa |= ((u64)r.m.pu) << lbaf->lun_offset;
460 l.ppa |= ((u64)r.m.chk) << lbaf->chk_offset;
461 l.ppa |= ((u64)r.m.sec) << lbaf->sec_offset;
462 }
463
464 return l;
465 }
466
dev_to_generic_addr(struct nvm_dev * dev,struct ppa_addr r)467 static inline struct ppa_addr dev_to_generic_addr(struct nvm_dev *dev,
468 struct ppa_addr r)
469 {
470 struct nvm_geo *geo = &dev->geo;
471 struct ppa_addr l;
472
473 l.ppa = 0;
474
475 if (geo->version == NVM_OCSSD_SPEC_12) {
476 struct nvm_addrf_12 *ppaf = (struct nvm_addrf_12 *)&geo->addrf;
477
478 l.g.ch = (r.ppa & ppaf->ch_mask) >> ppaf->ch_offset;
479 l.g.lun = (r.ppa & ppaf->lun_mask) >> ppaf->lun_offset;
480 l.g.blk = (r.ppa & ppaf->blk_mask) >> ppaf->blk_offset;
481 l.g.pg = (r.ppa & ppaf->pg_mask) >> ppaf->pg_offset;
482 l.g.pl = (r.ppa & ppaf->pln_mask) >> ppaf->pln_offset;
483 l.g.sec = (r.ppa & ppaf->sec_mask) >> ppaf->sec_offset;
484 } else {
485 struct nvm_addrf *lbaf = &geo->addrf;
486
487 l.m.grp = (r.ppa & lbaf->ch_mask) >> lbaf->ch_offset;
488 l.m.pu = (r.ppa & lbaf->lun_mask) >> lbaf->lun_offset;
489 l.m.chk = (r.ppa & lbaf->chk_mask) >> lbaf->chk_offset;
490 l.m.sec = (r.ppa & lbaf->sec_mask) >> lbaf->sec_offset;
491 }
492
493 return l;
494 }
495
dev_to_chunk_addr(struct nvm_dev * dev,void * addrf,struct ppa_addr p)496 static inline u64 dev_to_chunk_addr(struct nvm_dev *dev, void *addrf,
497 struct ppa_addr p)
498 {
499 struct nvm_geo *geo = &dev->geo;
500 u64 caddr;
501
502 if (geo->version == NVM_OCSSD_SPEC_12) {
503 struct nvm_addrf_12 *ppaf = (struct nvm_addrf_12 *)addrf;
504
505 caddr = (u64)p.g.pg << ppaf->pg_offset;
506 caddr |= (u64)p.g.pl << ppaf->pln_offset;
507 caddr |= (u64)p.g.sec << ppaf->sec_offset;
508 } else {
509 caddr = p.m.sec;
510 }
511
512 return caddr;
513 }
514
nvm_ppa32_to_ppa64(struct nvm_dev * dev,void * addrf,u32 ppa32)515 static inline struct ppa_addr nvm_ppa32_to_ppa64(struct nvm_dev *dev,
516 void *addrf, u32 ppa32)
517 {
518 struct ppa_addr ppa64;
519
520 ppa64.ppa = 0;
521
522 if (ppa32 == -1) {
523 ppa64.ppa = ADDR_EMPTY;
524 } else if (ppa32 & (1U << 31)) {
525 ppa64.c.line = ppa32 & ((~0U) >> 1);
526 ppa64.c.is_cached = 1;
527 } else {
528 struct nvm_geo *geo = &dev->geo;
529
530 if (geo->version == NVM_OCSSD_SPEC_12) {
531 struct nvm_addrf_12 *ppaf = addrf;
532
533 ppa64.g.ch = (ppa32 & ppaf->ch_mask) >>
534 ppaf->ch_offset;
535 ppa64.g.lun = (ppa32 & ppaf->lun_mask) >>
536 ppaf->lun_offset;
537 ppa64.g.blk = (ppa32 & ppaf->blk_mask) >>
538 ppaf->blk_offset;
539 ppa64.g.pg = (ppa32 & ppaf->pg_mask) >>
540 ppaf->pg_offset;
541 ppa64.g.pl = (ppa32 & ppaf->pln_mask) >>
542 ppaf->pln_offset;
543 ppa64.g.sec = (ppa32 & ppaf->sec_mask) >>
544 ppaf->sec_offset;
545 } else {
546 struct nvm_addrf *lbaf = addrf;
547
548 ppa64.m.grp = (ppa32 & lbaf->ch_mask) >>
549 lbaf->ch_offset;
550 ppa64.m.pu = (ppa32 & lbaf->lun_mask) >>
551 lbaf->lun_offset;
552 ppa64.m.chk = (ppa32 & lbaf->chk_mask) >>
553 lbaf->chk_offset;
554 ppa64.m.sec = (ppa32 & lbaf->sec_mask) >>
555 lbaf->sec_offset;
556 }
557 }
558
559 return ppa64;
560 }
561
nvm_ppa64_to_ppa32(struct nvm_dev * dev,void * addrf,struct ppa_addr ppa64)562 static inline u32 nvm_ppa64_to_ppa32(struct nvm_dev *dev,
563 void *addrf, struct ppa_addr ppa64)
564 {
565 u32 ppa32 = 0;
566
567 if (ppa64.ppa == ADDR_EMPTY) {
568 ppa32 = ~0U;
569 } else if (ppa64.c.is_cached) {
570 ppa32 |= ppa64.c.line;
571 ppa32 |= 1U << 31;
572 } else {
573 struct nvm_geo *geo = &dev->geo;
574
575 if (geo->version == NVM_OCSSD_SPEC_12) {
576 struct nvm_addrf_12 *ppaf = addrf;
577
578 ppa32 |= ppa64.g.ch << ppaf->ch_offset;
579 ppa32 |= ppa64.g.lun << ppaf->lun_offset;
580 ppa32 |= ppa64.g.blk << ppaf->blk_offset;
581 ppa32 |= ppa64.g.pg << ppaf->pg_offset;
582 ppa32 |= ppa64.g.pl << ppaf->pln_offset;
583 ppa32 |= ppa64.g.sec << ppaf->sec_offset;
584 } else {
585 struct nvm_addrf *lbaf = addrf;
586
587 ppa32 |= ppa64.m.grp << lbaf->ch_offset;
588 ppa32 |= ppa64.m.pu << lbaf->lun_offset;
589 ppa32 |= ppa64.m.chk << lbaf->chk_offset;
590 ppa32 |= ppa64.m.sec << lbaf->sec_offset;
591 }
592 }
593
594 return ppa32;
595 }
596
nvm_next_ppa_in_chk(struct nvm_tgt_dev * dev,struct ppa_addr * ppa)597 static inline int nvm_next_ppa_in_chk(struct nvm_tgt_dev *dev,
598 struct ppa_addr *ppa)
599 {
600 struct nvm_geo *geo = &dev->geo;
601 int last = 0;
602
603 if (geo->version == NVM_OCSSD_SPEC_12) {
604 int sec = ppa->g.sec;
605
606 sec++;
607 if (sec == geo->ws_min) {
608 int pg = ppa->g.pg;
609
610 sec = 0;
611 pg++;
612 if (pg == geo->num_pg) {
613 int pl = ppa->g.pl;
614
615 pg = 0;
616 pl++;
617 if (pl == geo->num_pln)
618 last = 1;
619
620 ppa->g.pl = pl;
621 }
622 ppa->g.pg = pg;
623 }
624 ppa->g.sec = sec;
625 } else {
626 ppa->m.sec++;
627 if (ppa->m.sec == geo->clba)
628 last = 1;
629 }
630
631 return last;
632 }
633
634 typedef blk_qc_t (nvm_tgt_make_rq_fn)(struct request_queue *, struct bio *);
635 typedef sector_t (nvm_tgt_capacity_fn)(void *);
636 typedef void *(nvm_tgt_init_fn)(struct nvm_tgt_dev *, struct gendisk *,
637 int flags);
638 typedef void (nvm_tgt_exit_fn)(void *, bool);
639 typedef int (nvm_tgt_sysfs_init_fn)(struct gendisk *);
640 typedef void (nvm_tgt_sysfs_exit_fn)(struct gendisk *);
641
642 enum {
643 NVM_TGT_F_DEV_L2P = 0,
644 NVM_TGT_F_HOST_L2P = 1 << 0,
645 };
646
647 struct nvm_tgt_type {
648 const char *name;
649 unsigned int version[3];
650 int flags;
651
652 /* target entry points */
653 nvm_tgt_make_rq_fn *make_rq;
654 nvm_tgt_capacity_fn *capacity;
655
656 /* module-specific init/teardown */
657 nvm_tgt_init_fn *init;
658 nvm_tgt_exit_fn *exit;
659
660 /* sysfs */
661 nvm_tgt_sysfs_init_fn *sysfs_init;
662 nvm_tgt_sysfs_exit_fn *sysfs_exit;
663
664 /* For internal use */
665 struct list_head list;
666 struct module *owner;
667 };
668
669 extern int nvm_register_tgt_type(struct nvm_tgt_type *);
670 extern void nvm_unregister_tgt_type(struct nvm_tgt_type *);
671
672 extern void *nvm_dev_dma_alloc(struct nvm_dev *, gfp_t, dma_addr_t *);
673 extern void nvm_dev_dma_free(struct nvm_dev *, void *, dma_addr_t);
674
675 extern struct nvm_dev *nvm_alloc_dev(int);
676 extern int nvm_register(struct nvm_dev *);
677 extern void nvm_unregister(struct nvm_dev *);
678
679 extern int nvm_get_chunk_meta(struct nvm_tgt_dev *, struct ppa_addr,
680 int, struct nvm_chk_meta *);
681 extern int nvm_set_chunk_meta(struct nvm_tgt_dev *, struct ppa_addr *,
682 int, int);
683 extern int nvm_submit_io(struct nvm_tgt_dev *, struct nvm_rq *, void *);
684 extern int nvm_submit_io_sync(struct nvm_tgt_dev *, struct nvm_rq *, void *);
685 extern void nvm_end_io(struct nvm_rq *);
686
687 #else /* CONFIG_NVM */
688 struct nvm_dev_ops;
689
nvm_alloc_dev(int node)690 static inline struct nvm_dev *nvm_alloc_dev(int node)
691 {
692 return ERR_PTR(-EINVAL);
693 }
nvm_register(struct nvm_dev * dev)694 static inline int nvm_register(struct nvm_dev *dev)
695 {
696 return -EINVAL;
697 }
nvm_unregister(struct nvm_dev * dev)698 static inline void nvm_unregister(struct nvm_dev *dev) {}
699 #endif /* CONFIG_NVM */
700 #endif /* LIGHTNVM.H */
701