1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008 STMicroelectronics
4  * Copyright (C) 2010 Alessandro Rubini
5  * Copyright (C) 2010 Linus Walleij for ST-Ericsson
6  */
7 #include <linux/init.h>
8 #include <linux/interrupt.h>
9 #include <linux/irq.h>
10 #include <linux/io.h>
11 #include <linux/clockchips.h>
12 #include <linux/clocksource.h>
13 #include <linux/of_address.h>
14 #include <linux/of_irq.h>
15 #include <linux/of_platform.h>
16 #include <linux/clk.h>
17 #include <linux/jiffies.h>
18 #include <linux/delay.h>
19 #include <linux/err.h>
20 #include <linux/sched_clock.h>
21 #include <asm/mach/time.h>
22 
23 /*
24  * The MTU device hosts four different counters, with 4 set of
25  * registers. These are register names.
26  */
27 
28 #define MTU_IMSC	0x00	/* Interrupt mask set/clear */
29 #define MTU_RIS		0x04	/* Raw interrupt status */
30 #define MTU_MIS		0x08	/* Masked interrupt status */
31 #define MTU_ICR		0x0C	/* Interrupt clear register */
32 
33 /* per-timer registers take 0..3 as argument */
34 #define MTU_LR(x)	(0x10 + 0x10 * (x) + 0x00)	/* Load value */
35 #define MTU_VAL(x)	(0x10 + 0x10 * (x) + 0x04)	/* Current value */
36 #define MTU_CR(x)	(0x10 + 0x10 * (x) + 0x08)	/* Control reg */
37 #define MTU_BGLR(x)	(0x10 + 0x10 * (x) + 0x0c)	/* At next overflow */
38 
39 /* bits for the control register */
40 #define MTU_CRn_ENA		0x80
41 #define MTU_CRn_PERIODIC	0x40	/* if 0 = free-running */
42 #define MTU_CRn_PRESCALE_MASK	0x0c
43 #define MTU_CRn_PRESCALE_1		0x00
44 #define MTU_CRn_PRESCALE_16		0x04
45 #define MTU_CRn_PRESCALE_256		0x08
46 #define MTU_CRn_32BITS		0x02
47 #define MTU_CRn_ONESHOT		0x01	/* if 0 = wraps reloading from BGLR*/
48 
49 /* Other registers are usual amba/primecell registers, currently not used */
50 #define MTU_ITCR	0xff0
51 #define MTU_ITOP	0xff4
52 
53 #define MTU_PERIPH_ID0	0xfe0
54 #define MTU_PERIPH_ID1	0xfe4
55 #define MTU_PERIPH_ID2	0xfe8
56 #define MTU_PERIPH_ID3	0xfeC
57 
58 #define MTU_PCELL0	0xff0
59 #define MTU_PCELL1	0xff4
60 #define MTU_PCELL2	0xff8
61 #define MTU_PCELL3	0xffC
62 
63 static void __iomem *mtu_base;
64 static bool clkevt_periodic;
65 static u32 clk_prescale;
66 static u32 nmdk_cycle;		/* write-once */
67 static struct delay_timer mtu_delay_timer;
68 
69 /*
70  * Override the global weak sched_clock symbol with this
71  * local implementation which uses the clocksource to get some
72  * better resolution when scheduling the kernel.
73  */
nomadik_read_sched_clock(void)74 static u64 notrace nomadik_read_sched_clock(void)
75 {
76 	if (unlikely(!mtu_base))
77 		return 0;
78 
79 	return -readl(mtu_base + MTU_VAL(0));
80 }
81 
nmdk_timer_read_current_timer(void)82 static unsigned long nmdk_timer_read_current_timer(void)
83 {
84 	return ~readl_relaxed(mtu_base + MTU_VAL(0));
85 }
86 
87 /* Clockevent device: use one-shot mode */
nmdk_clkevt_next(unsigned long evt,struct clock_event_device * ev)88 static int nmdk_clkevt_next(unsigned long evt, struct clock_event_device *ev)
89 {
90 	writel(1 << 1, mtu_base + MTU_IMSC);
91 	writel(evt, mtu_base + MTU_LR(1));
92 	/* Load highest value, enable device, enable interrupts */
93 	writel(MTU_CRn_ONESHOT | clk_prescale |
94 	       MTU_CRn_32BITS | MTU_CRn_ENA,
95 	       mtu_base + MTU_CR(1));
96 
97 	return 0;
98 }
99 
nmdk_clkevt_reset(void)100 static void nmdk_clkevt_reset(void)
101 {
102 	if (clkevt_periodic) {
103 		/* Timer: configure load and background-load, and fire it up */
104 		writel(nmdk_cycle, mtu_base + MTU_LR(1));
105 		writel(nmdk_cycle, mtu_base + MTU_BGLR(1));
106 
107 		writel(MTU_CRn_PERIODIC | clk_prescale |
108 		       MTU_CRn_32BITS | MTU_CRn_ENA,
109 		       mtu_base + MTU_CR(1));
110 		writel(1 << 1, mtu_base + MTU_IMSC);
111 	} else {
112 		/* Generate an interrupt to start the clockevent again */
113 		(void) nmdk_clkevt_next(nmdk_cycle, NULL);
114 	}
115 }
116 
nmdk_clkevt_shutdown(struct clock_event_device * evt)117 static int nmdk_clkevt_shutdown(struct clock_event_device *evt)
118 {
119 	writel(0, mtu_base + MTU_IMSC);
120 	/* disable timer */
121 	writel(0, mtu_base + MTU_CR(1));
122 	/* load some high default value */
123 	writel(0xffffffff, mtu_base + MTU_LR(1));
124 	return 0;
125 }
126 
nmdk_clkevt_set_oneshot(struct clock_event_device * evt)127 static int nmdk_clkevt_set_oneshot(struct clock_event_device *evt)
128 {
129 	clkevt_periodic = false;
130 	return 0;
131 }
132 
nmdk_clkevt_set_periodic(struct clock_event_device * evt)133 static int nmdk_clkevt_set_periodic(struct clock_event_device *evt)
134 {
135 	clkevt_periodic = true;
136 	nmdk_clkevt_reset();
137 	return 0;
138 }
139 
nmdk_clksrc_reset(void)140 static void nmdk_clksrc_reset(void)
141 {
142 	/* Disable */
143 	writel(0, mtu_base + MTU_CR(0));
144 
145 	/* ClockSource: configure load and background-load, and fire it up */
146 	writel(nmdk_cycle, mtu_base + MTU_LR(0));
147 	writel(nmdk_cycle, mtu_base + MTU_BGLR(0));
148 
149 	writel(clk_prescale | MTU_CRn_32BITS | MTU_CRn_ENA,
150 	       mtu_base + MTU_CR(0));
151 }
152 
nmdk_clkevt_resume(struct clock_event_device * cedev)153 static void nmdk_clkevt_resume(struct clock_event_device *cedev)
154 {
155 	nmdk_clkevt_reset();
156 	nmdk_clksrc_reset();
157 }
158 
159 static struct clock_event_device nmdk_clkevt = {
160 	.name			= "mtu_1",
161 	.features		= CLOCK_EVT_FEAT_ONESHOT |
162 				  CLOCK_EVT_FEAT_PERIODIC |
163 				  CLOCK_EVT_FEAT_DYNIRQ,
164 	.rating			= 200,
165 	.set_state_shutdown	= nmdk_clkevt_shutdown,
166 	.set_state_periodic	= nmdk_clkevt_set_periodic,
167 	.set_state_oneshot	= nmdk_clkevt_set_oneshot,
168 	.set_next_event		= nmdk_clkevt_next,
169 	.resume			= nmdk_clkevt_resume,
170 };
171 
172 /*
173  * IRQ Handler for timer 1 of the MTU block.
174  */
nmdk_timer_interrupt(int irq,void * dev_id)175 static irqreturn_t nmdk_timer_interrupt(int irq, void *dev_id)
176 {
177 	struct clock_event_device *evdev = dev_id;
178 
179 	writel(1 << 1, mtu_base + MTU_ICR); /* Interrupt clear reg */
180 	evdev->event_handler(evdev);
181 	return IRQ_HANDLED;
182 }
183 
184 static struct irqaction nmdk_timer_irq = {
185 	.name		= "Nomadik Timer Tick",
186 	.flags		= IRQF_TIMER,
187 	.handler	= nmdk_timer_interrupt,
188 	.dev_id		= &nmdk_clkevt,
189 };
190 
nmdk_timer_init(void __iomem * base,int irq,struct clk * pclk,struct clk * clk)191 static int __init nmdk_timer_init(void __iomem *base, int irq,
192 				   struct clk *pclk, struct clk *clk)
193 {
194 	unsigned long rate;
195 	int ret;
196 
197 	mtu_base = base;
198 
199 	BUG_ON(clk_prepare_enable(pclk));
200 	BUG_ON(clk_prepare_enable(clk));
201 
202 	/*
203 	 * Tick rate is 2.4MHz for Nomadik and 2.4Mhz, 100MHz or 133 MHz
204 	 * for ux500.
205 	 * Use a divide-by-16 counter if the tick rate is more than 32MHz.
206 	 * At 32 MHz, the timer (with 32 bit counter) can be programmed
207 	 * to wake-up at a max 127s a head in time. Dividing a 2.4 MHz timer
208 	 * with 16 gives too low timer resolution.
209 	 */
210 	rate = clk_get_rate(clk);
211 	if (rate > 32000000) {
212 		rate /= 16;
213 		clk_prescale = MTU_CRn_PRESCALE_16;
214 	} else {
215 		clk_prescale = MTU_CRn_PRESCALE_1;
216 	}
217 
218 	/* Cycles for periodic mode */
219 	nmdk_cycle = DIV_ROUND_CLOSEST(rate, HZ);
220 
221 
222 	/* Timer 0 is the free running clocksource */
223 	nmdk_clksrc_reset();
224 
225 	ret = clocksource_mmio_init(mtu_base + MTU_VAL(0), "mtu_0",
226 				    rate, 200, 32, clocksource_mmio_readl_down);
227 	if (ret) {
228 		pr_err("timer: failed to initialize clock source %s\n", "mtu_0");
229 		return ret;
230 	}
231 
232 	sched_clock_register(nomadik_read_sched_clock, 32, rate);
233 
234 	/* Timer 1 is used for events, register irq and clockevents */
235 	setup_irq(irq, &nmdk_timer_irq);
236 	nmdk_clkevt.cpumask = cpumask_of(0);
237 	nmdk_clkevt.irq = irq;
238 	clockevents_config_and_register(&nmdk_clkevt, rate, 2, 0xffffffffU);
239 
240 	mtu_delay_timer.read_current_timer = &nmdk_timer_read_current_timer;
241 	mtu_delay_timer.freq = rate;
242 	register_current_timer_delay(&mtu_delay_timer);
243 
244 	return 0;
245 }
246 
nmdk_timer_of_init(struct device_node * node)247 static int __init nmdk_timer_of_init(struct device_node *node)
248 {
249 	struct clk *pclk;
250 	struct clk *clk;
251 	void __iomem *base;
252 	int irq;
253 
254 	base = of_iomap(node, 0);
255 	if (!base) {
256 		pr_err("Can't remap registers\n");
257 		return -ENXIO;
258 	}
259 
260 	pclk = of_clk_get_by_name(node, "apb_pclk");
261 	if (IS_ERR(pclk)) {
262 		pr_err("could not get apb_pclk\n");
263 		return PTR_ERR(pclk);
264 	}
265 
266 	clk = of_clk_get_by_name(node, "timclk");
267 	if (IS_ERR(clk)) {
268 		pr_err("could not get timclk\n");
269 		return PTR_ERR(clk);
270 	}
271 
272 	irq = irq_of_parse_and_map(node, 0);
273 	if (irq <= 0) {
274 		pr_err("Can't parse IRQ\n");
275 		return -EINVAL;
276 	}
277 
278 	return nmdk_timer_init(base, irq, pclk, clk);
279 }
280 TIMER_OF_DECLARE(nomadik_mtu, "st,nomadik-mtu",
281 		       nmdk_timer_of_init);
282