1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2014-2018 The Linux Foundation. All rights reserved.
4 * Copyright (C) 2013 Red Hat
5 * Author: Rob Clark <robdclark@gmail.com>
6 */
7
8 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__
9 #include <linux/sort.h>
10 #include <linux/debugfs.h>
11 #include <linux/ktime.h>
12
13 #include <drm/drm_crtc.h>
14 #include <drm/drm_flip_work.h>
15 #include <drm/drm_mode.h>
16 #include <drm/drm_probe_helper.h>
17 #include <drm/drm_rect.h>
18 #include <drm/drm_vblank.h>
19
20 #include "dpu_kms.h"
21 #include "dpu_hw_lm.h"
22 #include "dpu_hw_ctl.h"
23 #include "dpu_crtc.h"
24 #include "dpu_plane.h"
25 #include "dpu_encoder.h"
26 #include "dpu_vbif.h"
27 #include "dpu_core_perf.h"
28 #include "dpu_trace.h"
29
30 #define DPU_DRM_BLEND_OP_NOT_DEFINED 0
31 #define DPU_DRM_BLEND_OP_OPAQUE 1
32 #define DPU_DRM_BLEND_OP_PREMULTIPLIED 2
33 #define DPU_DRM_BLEND_OP_COVERAGE 3
34 #define DPU_DRM_BLEND_OP_MAX 4
35
36 /* layer mixer index on dpu_crtc */
37 #define LEFT_MIXER 0
38 #define RIGHT_MIXER 1
39
40 /* timeout in ms waiting for frame done */
41 #define DPU_CRTC_FRAME_DONE_TIMEOUT_MS 60
42
_dpu_crtc_get_kms(struct drm_crtc * crtc)43 static struct dpu_kms *_dpu_crtc_get_kms(struct drm_crtc *crtc)
44 {
45 struct msm_drm_private *priv = crtc->dev->dev_private;
46
47 return to_dpu_kms(priv->kms);
48 }
49
dpu_crtc_destroy(struct drm_crtc * crtc)50 static void dpu_crtc_destroy(struct drm_crtc *crtc)
51 {
52 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
53
54 DPU_DEBUG("\n");
55
56 if (!crtc)
57 return;
58
59 drm_crtc_cleanup(crtc);
60 kfree(dpu_crtc);
61 }
62
_dpu_crtc_setup_blend_cfg(struct dpu_crtc_mixer * mixer,struct dpu_plane_state * pstate,struct dpu_format * format)63 static void _dpu_crtc_setup_blend_cfg(struct dpu_crtc_mixer *mixer,
64 struct dpu_plane_state *pstate, struct dpu_format *format)
65 {
66 struct dpu_hw_mixer *lm = mixer->hw_lm;
67 uint32_t blend_op;
68 struct drm_format_name_buf format_name;
69
70 /* default to opaque blending */
71 blend_op = DPU_BLEND_FG_ALPHA_FG_CONST |
72 DPU_BLEND_BG_ALPHA_BG_CONST;
73
74 if (format->alpha_enable) {
75 /* coverage blending */
76 blend_op = DPU_BLEND_FG_ALPHA_FG_PIXEL |
77 DPU_BLEND_BG_ALPHA_FG_PIXEL |
78 DPU_BLEND_BG_INV_ALPHA;
79 }
80
81 lm->ops.setup_blend_config(lm, pstate->stage,
82 0xFF, 0, blend_op);
83
84 DPU_DEBUG("format:%s, alpha_en:%u blend_op:0x%x\n",
85 drm_get_format_name(format->base.pixel_format, &format_name),
86 format->alpha_enable, blend_op);
87 }
88
_dpu_crtc_program_lm_output_roi(struct drm_crtc * crtc)89 static void _dpu_crtc_program_lm_output_roi(struct drm_crtc *crtc)
90 {
91 struct dpu_crtc *dpu_crtc;
92 struct dpu_crtc_state *crtc_state;
93 int lm_idx, lm_horiz_position;
94
95 dpu_crtc = to_dpu_crtc(crtc);
96 crtc_state = to_dpu_crtc_state(crtc->state);
97
98 lm_horiz_position = 0;
99 for (lm_idx = 0; lm_idx < crtc_state->num_mixers; lm_idx++) {
100 const struct drm_rect *lm_roi = &crtc_state->lm_bounds[lm_idx];
101 struct dpu_hw_mixer *hw_lm = crtc_state->mixers[lm_idx].hw_lm;
102 struct dpu_hw_mixer_cfg cfg;
103
104 if (!lm_roi || !drm_rect_visible(lm_roi))
105 continue;
106
107 cfg.out_width = drm_rect_width(lm_roi);
108 cfg.out_height = drm_rect_height(lm_roi);
109 cfg.right_mixer = lm_horiz_position++;
110 cfg.flags = 0;
111 hw_lm->ops.setup_mixer_out(hw_lm, &cfg);
112 }
113 }
114
_dpu_crtc_blend_setup_mixer(struct drm_crtc * crtc,struct dpu_crtc * dpu_crtc,struct dpu_crtc_mixer * mixer)115 static void _dpu_crtc_blend_setup_mixer(struct drm_crtc *crtc,
116 struct dpu_crtc *dpu_crtc, struct dpu_crtc_mixer *mixer)
117 {
118 struct drm_plane *plane;
119 struct drm_framebuffer *fb;
120 struct drm_plane_state *state;
121 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
122 struct dpu_plane_state *pstate = NULL;
123 struct dpu_format *format;
124 struct dpu_hw_ctl *ctl = mixer->lm_ctl;
125 struct dpu_hw_stage_cfg *stage_cfg = &dpu_crtc->stage_cfg;
126
127 u32 flush_mask;
128 uint32_t stage_idx, lm_idx;
129 int zpos_cnt[DPU_STAGE_MAX + 1] = { 0 };
130 bool bg_alpha_enable = false;
131
132 drm_atomic_crtc_for_each_plane(plane, crtc) {
133 state = plane->state;
134 if (!state)
135 continue;
136
137 pstate = to_dpu_plane_state(state);
138 fb = state->fb;
139
140 dpu_plane_get_ctl_flush(plane, ctl, &flush_mask);
141
142 DPU_DEBUG("crtc %d stage:%d - plane %d sspp %d fb %d\n",
143 crtc->base.id,
144 pstate->stage,
145 plane->base.id,
146 dpu_plane_pipe(plane) - SSPP_VIG0,
147 state->fb ? state->fb->base.id : -1);
148
149 format = to_dpu_format(msm_framebuffer_format(pstate->base.fb));
150
151 if (pstate->stage == DPU_STAGE_BASE && format->alpha_enable)
152 bg_alpha_enable = true;
153
154 stage_idx = zpos_cnt[pstate->stage]++;
155 stage_cfg->stage[pstate->stage][stage_idx] =
156 dpu_plane_pipe(plane);
157 stage_cfg->multirect_index[pstate->stage][stage_idx] =
158 pstate->multirect_index;
159
160 trace_dpu_crtc_setup_mixer(DRMID(crtc), DRMID(plane),
161 state, pstate, stage_idx,
162 dpu_plane_pipe(plane) - SSPP_VIG0,
163 format->base.pixel_format,
164 fb ? fb->modifier : 0);
165
166 /* blend config update */
167 for (lm_idx = 0; lm_idx < cstate->num_mixers; lm_idx++) {
168 _dpu_crtc_setup_blend_cfg(mixer + lm_idx,
169 pstate, format);
170
171 mixer[lm_idx].flush_mask |= flush_mask;
172
173 if (bg_alpha_enable && !format->alpha_enable)
174 mixer[lm_idx].mixer_op_mode = 0;
175 else
176 mixer[lm_idx].mixer_op_mode |=
177 1 << pstate->stage;
178 }
179 }
180
181 _dpu_crtc_program_lm_output_roi(crtc);
182 }
183
184 /**
185 * _dpu_crtc_blend_setup - configure crtc mixers
186 * @crtc: Pointer to drm crtc structure
187 */
_dpu_crtc_blend_setup(struct drm_crtc * crtc)188 static void _dpu_crtc_blend_setup(struct drm_crtc *crtc)
189 {
190 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
191 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
192 struct dpu_crtc_mixer *mixer = cstate->mixers;
193 struct dpu_hw_ctl *ctl;
194 struct dpu_hw_mixer *lm;
195 int i;
196
197 DPU_DEBUG("%s\n", dpu_crtc->name);
198
199 for (i = 0; i < cstate->num_mixers; i++) {
200 if (!mixer[i].hw_lm || !mixer[i].lm_ctl) {
201 DPU_ERROR("invalid lm or ctl assigned to mixer\n");
202 return;
203 }
204 mixer[i].mixer_op_mode = 0;
205 mixer[i].flush_mask = 0;
206 if (mixer[i].lm_ctl->ops.clear_all_blendstages)
207 mixer[i].lm_ctl->ops.clear_all_blendstages(
208 mixer[i].lm_ctl);
209 }
210
211 /* initialize stage cfg */
212 memset(&dpu_crtc->stage_cfg, 0, sizeof(struct dpu_hw_stage_cfg));
213
214 _dpu_crtc_blend_setup_mixer(crtc, dpu_crtc, mixer);
215
216 for (i = 0; i < cstate->num_mixers; i++) {
217 ctl = mixer[i].lm_ctl;
218 lm = mixer[i].hw_lm;
219
220 lm->ops.setup_alpha_out(lm, mixer[i].mixer_op_mode);
221
222 mixer[i].flush_mask |= ctl->ops.get_bitmask_mixer(ctl,
223 mixer[i].hw_lm->idx);
224
225 /* stage config flush mask */
226 ctl->ops.update_pending_flush(ctl, mixer[i].flush_mask);
227
228 DPU_DEBUG("lm %d, op_mode 0x%X, ctl %d, flush mask 0x%x\n",
229 mixer[i].hw_lm->idx - LM_0,
230 mixer[i].mixer_op_mode,
231 ctl->idx - CTL_0,
232 mixer[i].flush_mask);
233
234 ctl->ops.setup_blendstage(ctl, mixer[i].hw_lm->idx,
235 &dpu_crtc->stage_cfg);
236 }
237 }
238
239 /**
240 * _dpu_crtc_complete_flip - signal pending page_flip events
241 * Any pending vblank events are added to the vblank_event_list
242 * so that the next vblank interrupt shall signal them.
243 * However PAGE_FLIP events are not handled through the vblank_event_list.
244 * This API signals any pending PAGE_FLIP events requested through
245 * DRM_IOCTL_MODE_PAGE_FLIP and are cached in the dpu_crtc->event.
246 * @crtc: Pointer to drm crtc structure
247 */
_dpu_crtc_complete_flip(struct drm_crtc * crtc)248 static void _dpu_crtc_complete_flip(struct drm_crtc *crtc)
249 {
250 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
251 struct drm_device *dev = crtc->dev;
252 unsigned long flags;
253
254 spin_lock_irqsave(&dev->event_lock, flags);
255 if (dpu_crtc->event) {
256 DRM_DEBUG_VBL("%s: send event: %pK\n", dpu_crtc->name,
257 dpu_crtc->event);
258 trace_dpu_crtc_complete_flip(DRMID(crtc));
259 drm_crtc_send_vblank_event(crtc, dpu_crtc->event);
260 dpu_crtc->event = NULL;
261 }
262 spin_unlock_irqrestore(&dev->event_lock, flags);
263 }
264
dpu_crtc_get_intf_mode(struct drm_crtc * crtc)265 enum dpu_intf_mode dpu_crtc_get_intf_mode(struct drm_crtc *crtc)
266 {
267 struct drm_encoder *encoder;
268
269 if (!crtc || !crtc->dev) {
270 DPU_ERROR("invalid crtc\n");
271 return INTF_MODE_NONE;
272 }
273
274 WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
275
276 /* TODO: Returns the first INTF_MODE, could there be multiple values? */
277 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
278 return dpu_encoder_get_intf_mode(encoder);
279
280 return INTF_MODE_NONE;
281 }
282
dpu_crtc_vblank_callback(struct drm_crtc * crtc)283 void dpu_crtc_vblank_callback(struct drm_crtc *crtc)
284 {
285 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
286
287 /* keep statistics on vblank callback - with auto reset via debugfs */
288 if (ktime_compare(dpu_crtc->vblank_cb_time, ktime_set(0, 0)) == 0)
289 dpu_crtc->vblank_cb_time = ktime_get();
290 else
291 dpu_crtc->vblank_cb_count++;
292 _dpu_crtc_complete_flip(crtc);
293 drm_crtc_handle_vblank(crtc);
294 trace_dpu_crtc_vblank_cb(DRMID(crtc));
295 }
296
dpu_crtc_frame_event_work(struct kthread_work * work)297 static void dpu_crtc_frame_event_work(struct kthread_work *work)
298 {
299 struct dpu_crtc_frame_event *fevent = container_of(work,
300 struct dpu_crtc_frame_event, work);
301 struct drm_crtc *crtc = fevent->crtc;
302 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
303 unsigned long flags;
304 bool frame_done = false;
305
306 DPU_ATRACE_BEGIN("crtc_frame_event");
307
308 DRM_DEBUG_KMS("crtc%d event:%u ts:%lld\n", crtc->base.id, fevent->event,
309 ktime_to_ns(fevent->ts));
310
311 if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE
312 | DPU_ENCODER_FRAME_EVENT_ERROR
313 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
314
315 if (atomic_read(&dpu_crtc->frame_pending) < 1) {
316 /* ignore vblank when not pending */
317 } else if (atomic_dec_return(&dpu_crtc->frame_pending) == 0) {
318 /* release bandwidth and other resources */
319 trace_dpu_crtc_frame_event_done(DRMID(crtc),
320 fevent->event);
321 dpu_core_perf_crtc_release_bw(crtc);
322 } else {
323 trace_dpu_crtc_frame_event_more_pending(DRMID(crtc),
324 fevent->event);
325 }
326
327 if (fevent->event & DPU_ENCODER_FRAME_EVENT_DONE)
328 dpu_core_perf_crtc_update(crtc, 0, false);
329
330 if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE
331 | DPU_ENCODER_FRAME_EVENT_ERROR))
332 frame_done = true;
333 }
334
335 if (fevent->event & DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)
336 DPU_ERROR("crtc%d ts:%lld received panel dead event\n",
337 crtc->base.id, ktime_to_ns(fevent->ts));
338
339 if (frame_done)
340 complete_all(&dpu_crtc->frame_done_comp);
341
342 spin_lock_irqsave(&dpu_crtc->spin_lock, flags);
343 list_add_tail(&fevent->list, &dpu_crtc->frame_event_list);
344 spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags);
345 DPU_ATRACE_END("crtc_frame_event");
346 }
347
348 /*
349 * dpu_crtc_frame_event_cb - crtc frame event callback API. CRTC module
350 * registers this API to encoder for all frame event callbacks like
351 * frame_error, frame_done, idle_timeout, etc. Encoder may call different events
352 * from different context - IRQ, user thread, commit_thread, etc. Each event
353 * should be carefully reviewed and should be processed in proper task context
354 * to avoid schedulin delay or properly manage the irq context's bottom half
355 * processing.
356 */
dpu_crtc_frame_event_cb(void * data,u32 event)357 static void dpu_crtc_frame_event_cb(void *data, u32 event)
358 {
359 struct drm_crtc *crtc = (struct drm_crtc *)data;
360 struct dpu_crtc *dpu_crtc;
361 struct msm_drm_private *priv;
362 struct dpu_crtc_frame_event *fevent;
363 unsigned long flags;
364 u32 crtc_id;
365
366 /* Nothing to do on idle event */
367 if (event & DPU_ENCODER_FRAME_EVENT_IDLE)
368 return;
369
370 dpu_crtc = to_dpu_crtc(crtc);
371 priv = crtc->dev->dev_private;
372 crtc_id = drm_crtc_index(crtc);
373
374 trace_dpu_crtc_frame_event_cb(DRMID(crtc), event);
375
376 spin_lock_irqsave(&dpu_crtc->spin_lock, flags);
377 fevent = list_first_entry_or_null(&dpu_crtc->frame_event_list,
378 struct dpu_crtc_frame_event, list);
379 if (fevent)
380 list_del_init(&fevent->list);
381 spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags);
382
383 if (!fevent) {
384 DRM_ERROR("crtc%d event %d overflow\n", crtc->base.id, event);
385 return;
386 }
387
388 fevent->event = event;
389 fevent->crtc = crtc;
390 fevent->ts = ktime_get();
391 kthread_queue_work(&priv->event_thread[crtc_id].worker, &fevent->work);
392 }
393
dpu_crtc_complete_commit(struct drm_crtc * crtc)394 void dpu_crtc_complete_commit(struct drm_crtc *crtc)
395 {
396 trace_dpu_crtc_complete_commit(DRMID(crtc));
397 }
398
_dpu_crtc_setup_lm_bounds(struct drm_crtc * crtc,struct drm_crtc_state * state)399 static void _dpu_crtc_setup_lm_bounds(struct drm_crtc *crtc,
400 struct drm_crtc_state *state)
401 {
402 struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
403 struct drm_display_mode *adj_mode = &state->adjusted_mode;
404 u32 crtc_split_width = adj_mode->hdisplay / cstate->num_mixers;
405 int i;
406
407 for (i = 0; i < cstate->num_mixers; i++) {
408 struct drm_rect *r = &cstate->lm_bounds[i];
409 r->x1 = crtc_split_width * i;
410 r->y1 = 0;
411 r->x2 = r->x1 + crtc_split_width;
412 r->y2 = adj_mode->vdisplay;
413
414 trace_dpu_crtc_setup_lm_bounds(DRMID(crtc), i, r);
415 }
416
417 drm_mode_debug_printmodeline(adj_mode);
418 }
419
dpu_crtc_atomic_begin(struct drm_crtc * crtc,struct drm_crtc_state * old_state)420 static void dpu_crtc_atomic_begin(struct drm_crtc *crtc,
421 struct drm_crtc_state *old_state)
422 {
423 struct dpu_crtc *dpu_crtc;
424 struct dpu_crtc_state *cstate;
425 struct drm_encoder *encoder;
426 struct drm_device *dev;
427 unsigned long flags;
428 struct dpu_crtc_smmu_state_data *smmu_state;
429
430 if (!crtc) {
431 DPU_ERROR("invalid crtc\n");
432 return;
433 }
434
435 if (!crtc->state->enable) {
436 DPU_DEBUG("crtc%d -> enable %d, skip atomic_begin\n",
437 crtc->base.id, crtc->state->enable);
438 return;
439 }
440
441 DPU_DEBUG("crtc%d\n", crtc->base.id);
442
443 dpu_crtc = to_dpu_crtc(crtc);
444 cstate = to_dpu_crtc_state(crtc->state);
445 dev = crtc->dev;
446 smmu_state = &dpu_crtc->smmu_state;
447
448 _dpu_crtc_setup_lm_bounds(crtc, crtc->state);
449
450 if (dpu_crtc->event) {
451 WARN_ON(dpu_crtc->event);
452 } else {
453 spin_lock_irqsave(&dev->event_lock, flags);
454 dpu_crtc->event = crtc->state->event;
455 crtc->state->event = NULL;
456 spin_unlock_irqrestore(&dev->event_lock, flags);
457 }
458
459 /* encoder will trigger pending mask now */
460 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
461 dpu_encoder_trigger_kickoff_pending(encoder);
462
463 /*
464 * If no mixers have been allocated in dpu_crtc_atomic_check(),
465 * it means we are trying to flush a CRTC whose state is disabled:
466 * nothing else needs to be done.
467 */
468 if (unlikely(!cstate->num_mixers))
469 return;
470
471 _dpu_crtc_blend_setup(crtc);
472
473 /*
474 * PP_DONE irq is only used by command mode for now.
475 * It is better to request pending before FLUSH and START trigger
476 * to make sure no pp_done irq missed.
477 * This is safe because no pp_done will happen before SW trigger
478 * in command mode.
479 */
480 }
481
dpu_crtc_atomic_flush(struct drm_crtc * crtc,struct drm_crtc_state * old_crtc_state)482 static void dpu_crtc_atomic_flush(struct drm_crtc *crtc,
483 struct drm_crtc_state *old_crtc_state)
484 {
485 struct dpu_crtc *dpu_crtc;
486 struct drm_device *dev;
487 struct drm_plane *plane;
488 struct msm_drm_private *priv;
489 struct msm_drm_thread *event_thread;
490 unsigned long flags;
491 struct dpu_crtc_state *cstate;
492
493 if (!crtc->state->enable) {
494 DPU_DEBUG("crtc%d -> enable %d, skip atomic_flush\n",
495 crtc->base.id, crtc->state->enable);
496 return;
497 }
498
499 DPU_DEBUG("crtc%d\n", crtc->base.id);
500
501 dpu_crtc = to_dpu_crtc(crtc);
502 cstate = to_dpu_crtc_state(crtc->state);
503 dev = crtc->dev;
504 priv = dev->dev_private;
505
506 if (crtc->index >= ARRAY_SIZE(priv->event_thread)) {
507 DPU_ERROR("invalid crtc index[%d]\n", crtc->index);
508 return;
509 }
510
511 event_thread = &priv->event_thread[crtc->index];
512
513 if (dpu_crtc->event) {
514 DPU_DEBUG("already received dpu_crtc->event\n");
515 } else {
516 spin_lock_irqsave(&dev->event_lock, flags);
517 dpu_crtc->event = crtc->state->event;
518 crtc->state->event = NULL;
519 spin_unlock_irqrestore(&dev->event_lock, flags);
520 }
521
522 /*
523 * If no mixers has been allocated in dpu_crtc_atomic_check(),
524 * it means we are trying to flush a CRTC whose state is disabled:
525 * nothing else needs to be done.
526 */
527 if (unlikely(!cstate->num_mixers))
528 return;
529
530 /*
531 * For planes without commit update, drm framework will not add
532 * those planes to current state since hardware update is not
533 * required. However, if those planes were power collapsed since
534 * last commit cycle, driver has to restore the hardware state
535 * of those planes explicitly here prior to plane flush.
536 */
537 drm_atomic_crtc_for_each_plane(plane, crtc)
538 dpu_plane_restore(plane);
539
540 /* update performance setting before crtc kickoff */
541 dpu_core_perf_crtc_update(crtc, 1, false);
542
543 /*
544 * Final plane updates: Give each plane a chance to complete all
545 * required writes/flushing before crtc's "flush
546 * everything" call below.
547 */
548 drm_atomic_crtc_for_each_plane(plane, crtc) {
549 if (dpu_crtc->smmu_state.transition_error)
550 dpu_plane_set_error(plane, true);
551 dpu_plane_flush(plane);
552 }
553
554 /* Kickoff will be scheduled by outer layer */
555 }
556
557 /**
558 * dpu_crtc_destroy_state - state destroy hook
559 * @crtc: drm CRTC
560 * @state: CRTC state object to release
561 */
dpu_crtc_destroy_state(struct drm_crtc * crtc,struct drm_crtc_state * state)562 static void dpu_crtc_destroy_state(struct drm_crtc *crtc,
563 struct drm_crtc_state *state)
564 {
565 struct dpu_crtc *dpu_crtc;
566 struct dpu_crtc_state *cstate;
567
568 if (!crtc || !state) {
569 DPU_ERROR("invalid argument(s)\n");
570 return;
571 }
572
573 dpu_crtc = to_dpu_crtc(crtc);
574 cstate = to_dpu_crtc_state(state);
575
576 DPU_DEBUG("crtc%d\n", crtc->base.id);
577
578 __drm_atomic_helper_crtc_destroy_state(state);
579
580 kfree(cstate);
581 }
582
_dpu_crtc_wait_for_frame_done(struct drm_crtc * crtc)583 static int _dpu_crtc_wait_for_frame_done(struct drm_crtc *crtc)
584 {
585 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
586 int ret, rc = 0;
587
588 if (!atomic_read(&dpu_crtc->frame_pending)) {
589 DPU_DEBUG("no frames pending\n");
590 return 0;
591 }
592
593 DPU_ATRACE_BEGIN("frame done completion wait");
594 ret = wait_for_completion_timeout(&dpu_crtc->frame_done_comp,
595 msecs_to_jiffies(DPU_CRTC_FRAME_DONE_TIMEOUT_MS));
596 if (!ret) {
597 DRM_ERROR("frame done wait timed out, ret:%d\n", ret);
598 rc = -ETIMEDOUT;
599 }
600 DPU_ATRACE_END("frame done completion wait");
601
602 return rc;
603 }
604
dpu_crtc_commit_kickoff(struct drm_crtc * crtc)605 void dpu_crtc_commit_kickoff(struct drm_crtc *crtc)
606 {
607 struct drm_encoder *encoder;
608 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
609 struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc);
610 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
611
612 /*
613 * If no mixers has been allocated in dpu_crtc_atomic_check(),
614 * it means we are trying to start a CRTC whose state is disabled:
615 * nothing else needs to be done.
616 */
617 if (unlikely(!cstate->num_mixers))
618 return;
619
620 DPU_ATRACE_BEGIN("crtc_commit");
621
622 /*
623 * Encoder will flush/start now, unless it has a tx pending. If so, it
624 * may delay and flush at an irq event (e.g. ppdone)
625 */
626 drm_for_each_encoder_mask(encoder, crtc->dev,
627 crtc->state->encoder_mask)
628 dpu_encoder_prepare_for_kickoff(encoder);
629
630 if (atomic_inc_return(&dpu_crtc->frame_pending) == 1) {
631 /* acquire bandwidth and other resources */
632 DPU_DEBUG("crtc%d first commit\n", crtc->base.id);
633 } else
634 DPU_DEBUG("crtc%d commit\n", crtc->base.id);
635
636 dpu_crtc->play_count++;
637
638 dpu_vbif_clear_errors(dpu_kms);
639
640 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
641 dpu_encoder_kickoff(encoder);
642
643 reinit_completion(&dpu_crtc->frame_done_comp);
644 DPU_ATRACE_END("crtc_commit");
645 }
646
dpu_crtc_reset(struct drm_crtc * crtc)647 static void dpu_crtc_reset(struct drm_crtc *crtc)
648 {
649 struct dpu_crtc_state *cstate = kzalloc(sizeof(*cstate), GFP_KERNEL);
650
651 if (crtc->state)
652 dpu_crtc_destroy_state(crtc, crtc->state);
653
654 __drm_atomic_helper_crtc_reset(crtc, &cstate->base);
655 }
656
657 /**
658 * dpu_crtc_duplicate_state - state duplicate hook
659 * @crtc: Pointer to drm crtc structure
660 * @Returns: Pointer to new drm_crtc_state structure
661 */
dpu_crtc_duplicate_state(struct drm_crtc * crtc)662 static struct drm_crtc_state *dpu_crtc_duplicate_state(struct drm_crtc *crtc)
663 {
664 struct dpu_crtc *dpu_crtc;
665 struct dpu_crtc_state *cstate, *old_cstate;
666
667 if (!crtc || !crtc->state) {
668 DPU_ERROR("invalid argument(s)\n");
669 return NULL;
670 }
671
672 dpu_crtc = to_dpu_crtc(crtc);
673 old_cstate = to_dpu_crtc_state(crtc->state);
674 cstate = kmemdup(old_cstate, sizeof(*old_cstate), GFP_KERNEL);
675 if (!cstate) {
676 DPU_ERROR("failed to allocate state\n");
677 return NULL;
678 }
679
680 /* duplicate base helper */
681 __drm_atomic_helper_crtc_duplicate_state(crtc, &cstate->base);
682
683 return &cstate->base;
684 }
685
dpu_crtc_disable(struct drm_crtc * crtc,struct drm_crtc_state * old_crtc_state)686 static void dpu_crtc_disable(struct drm_crtc *crtc,
687 struct drm_crtc_state *old_crtc_state)
688 {
689 struct dpu_crtc *dpu_crtc;
690 struct dpu_crtc_state *cstate;
691 struct drm_display_mode *mode;
692 struct drm_encoder *encoder;
693 struct msm_drm_private *priv;
694 unsigned long flags;
695 bool release_bandwidth = false;
696
697 if (!crtc || !crtc->dev || !crtc->dev->dev_private || !crtc->state) {
698 DPU_ERROR("invalid crtc\n");
699 return;
700 }
701 dpu_crtc = to_dpu_crtc(crtc);
702 cstate = to_dpu_crtc_state(crtc->state);
703 mode = &cstate->base.adjusted_mode;
704 priv = crtc->dev->dev_private;
705
706 DRM_DEBUG_KMS("crtc%d\n", crtc->base.id);
707
708 /* Disable/save vblank irq handling */
709 drm_crtc_vblank_off(crtc);
710
711 drm_for_each_encoder_mask(encoder, crtc->dev,
712 old_crtc_state->encoder_mask) {
713 /* in video mode, we hold an extra bandwidth reference
714 * as we cannot drop bandwidth at frame-done if any
715 * crtc is being used in video mode.
716 */
717 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO)
718 release_bandwidth = true;
719 dpu_encoder_assign_crtc(encoder, NULL);
720 }
721
722 /* wait for frame_event_done completion */
723 if (_dpu_crtc_wait_for_frame_done(crtc))
724 DPU_ERROR("crtc%d wait for frame done failed;frame_pending%d\n",
725 crtc->base.id,
726 atomic_read(&dpu_crtc->frame_pending));
727
728 trace_dpu_crtc_disable(DRMID(crtc), false, dpu_crtc);
729 dpu_crtc->enabled = false;
730
731 if (atomic_read(&dpu_crtc->frame_pending)) {
732 trace_dpu_crtc_disable_frame_pending(DRMID(crtc),
733 atomic_read(&dpu_crtc->frame_pending));
734 if (release_bandwidth)
735 dpu_core_perf_crtc_release_bw(crtc);
736 atomic_set(&dpu_crtc->frame_pending, 0);
737 }
738
739 dpu_core_perf_crtc_update(crtc, 0, true);
740
741 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
742 dpu_encoder_register_frame_event_callback(encoder, NULL, NULL);
743
744 memset(cstate->mixers, 0, sizeof(cstate->mixers));
745 cstate->num_mixers = 0;
746
747 /* disable clk & bw control until clk & bw properties are set */
748 cstate->bw_control = false;
749 cstate->bw_split_vote = false;
750
751 if (crtc->state->event && !crtc->state->active) {
752 spin_lock_irqsave(&crtc->dev->event_lock, flags);
753 drm_crtc_send_vblank_event(crtc, crtc->state->event);
754 crtc->state->event = NULL;
755 spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
756 }
757
758 pm_runtime_put_sync(crtc->dev->dev);
759 }
760
dpu_crtc_enable(struct drm_crtc * crtc,struct drm_crtc_state * old_crtc_state)761 static void dpu_crtc_enable(struct drm_crtc *crtc,
762 struct drm_crtc_state *old_crtc_state)
763 {
764 struct dpu_crtc *dpu_crtc;
765 struct drm_encoder *encoder;
766 struct msm_drm_private *priv;
767 bool request_bandwidth;
768
769 if (!crtc || !crtc->dev || !crtc->dev->dev_private) {
770 DPU_ERROR("invalid crtc\n");
771 return;
772 }
773 priv = crtc->dev->dev_private;
774
775 pm_runtime_get_sync(crtc->dev->dev);
776
777 DRM_DEBUG_KMS("crtc%d\n", crtc->base.id);
778 dpu_crtc = to_dpu_crtc(crtc);
779
780 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) {
781 /* in video mode, we hold an extra bandwidth reference
782 * as we cannot drop bandwidth at frame-done if any
783 * crtc is being used in video mode.
784 */
785 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO)
786 request_bandwidth = true;
787 dpu_encoder_register_frame_event_callback(encoder,
788 dpu_crtc_frame_event_cb, (void *)crtc);
789 }
790
791 if (request_bandwidth)
792 atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref);
793
794 trace_dpu_crtc_enable(DRMID(crtc), true, dpu_crtc);
795 dpu_crtc->enabled = true;
796
797 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
798 dpu_encoder_assign_crtc(encoder, crtc);
799
800 /* Enable/restore vblank irq handling */
801 drm_crtc_vblank_on(crtc);
802 }
803
804 struct plane_state {
805 struct dpu_plane_state *dpu_pstate;
806 const struct drm_plane_state *drm_pstate;
807 int stage;
808 u32 pipe_id;
809 };
810
dpu_crtc_atomic_check(struct drm_crtc * crtc,struct drm_crtc_state * state)811 static int dpu_crtc_atomic_check(struct drm_crtc *crtc,
812 struct drm_crtc_state *state)
813 {
814 struct dpu_crtc *dpu_crtc;
815 struct plane_state *pstates;
816 struct dpu_crtc_state *cstate;
817
818 const struct drm_plane_state *pstate;
819 struct drm_plane *plane;
820 struct drm_display_mode *mode;
821
822 int cnt = 0, rc = 0, mixer_width, i, z_pos;
823
824 struct dpu_multirect_plane_states multirect_plane[DPU_STAGE_MAX * 2];
825 int multirect_count = 0;
826 const struct drm_plane_state *pipe_staged[SSPP_MAX];
827 int left_zpos_cnt = 0, right_zpos_cnt = 0;
828 struct drm_rect crtc_rect = { 0 };
829
830 if (!crtc) {
831 DPU_ERROR("invalid crtc\n");
832 return -EINVAL;
833 }
834
835 pstates = kzalloc(sizeof(*pstates) * DPU_STAGE_MAX * 4, GFP_KERNEL);
836
837 dpu_crtc = to_dpu_crtc(crtc);
838 cstate = to_dpu_crtc_state(state);
839
840 if (!state->enable || !state->active) {
841 DPU_DEBUG("crtc%d -> enable %d, active %d, skip atomic_check\n",
842 crtc->base.id, state->enable, state->active);
843 goto end;
844 }
845
846 mode = &state->adjusted_mode;
847 DPU_DEBUG("%s: check", dpu_crtc->name);
848
849 /* force a full mode set if active state changed */
850 if (state->active_changed)
851 state->mode_changed = true;
852
853 memset(pipe_staged, 0, sizeof(pipe_staged));
854
855 mixer_width = mode->hdisplay / cstate->num_mixers;
856
857 _dpu_crtc_setup_lm_bounds(crtc, state);
858
859 crtc_rect.x2 = mode->hdisplay;
860 crtc_rect.y2 = mode->vdisplay;
861
862 /* get plane state for all drm planes associated with crtc state */
863 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, state) {
864 struct drm_rect dst, clip = crtc_rect;
865
866 if (IS_ERR_OR_NULL(pstate)) {
867 rc = PTR_ERR(pstate);
868 DPU_ERROR("%s: failed to get plane%d state, %d\n",
869 dpu_crtc->name, plane->base.id, rc);
870 goto end;
871 }
872 if (cnt >= DPU_STAGE_MAX * 4)
873 continue;
874
875 pstates[cnt].dpu_pstate = to_dpu_plane_state(pstate);
876 pstates[cnt].drm_pstate = pstate;
877 pstates[cnt].stage = pstate->normalized_zpos;
878 pstates[cnt].pipe_id = dpu_plane_pipe(plane);
879
880 if (pipe_staged[pstates[cnt].pipe_id]) {
881 multirect_plane[multirect_count].r0 =
882 pipe_staged[pstates[cnt].pipe_id];
883 multirect_plane[multirect_count].r1 = pstate;
884 multirect_count++;
885
886 pipe_staged[pstates[cnt].pipe_id] = NULL;
887 } else {
888 pipe_staged[pstates[cnt].pipe_id] = pstate;
889 }
890
891 cnt++;
892
893 dst = drm_plane_state_dest(pstate);
894 if (!drm_rect_intersect(&clip, &dst)) {
895 DPU_ERROR("invalid vertical/horizontal destination\n");
896 DPU_ERROR("display: " DRM_RECT_FMT " plane: "
897 DRM_RECT_FMT "\n", DRM_RECT_ARG(&crtc_rect),
898 DRM_RECT_ARG(&dst));
899 rc = -E2BIG;
900 goto end;
901 }
902 }
903
904 for (i = 1; i < SSPP_MAX; i++) {
905 if (pipe_staged[i]) {
906 dpu_plane_clear_multirect(pipe_staged[i]);
907
908 if (is_dpu_plane_virtual(pipe_staged[i]->plane)) {
909 DPU_ERROR(
910 "r1 only virt plane:%d not supported\n",
911 pipe_staged[i]->plane->base.id);
912 rc = -EINVAL;
913 goto end;
914 }
915 }
916 }
917
918 z_pos = -1;
919 for (i = 0; i < cnt; i++) {
920 /* reset counts at every new blend stage */
921 if (pstates[i].stage != z_pos) {
922 left_zpos_cnt = 0;
923 right_zpos_cnt = 0;
924 z_pos = pstates[i].stage;
925 }
926
927 /* verify z_pos setting before using it */
928 if (z_pos >= DPU_STAGE_MAX - DPU_STAGE_0) {
929 DPU_ERROR("> %d plane stages assigned\n",
930 DPU_STAGE_MAX - DPU_STAGE_0);
931 rc = -EINVAL;
932 goto end;
933 } else if (pstates[i].drm_pstate->crtc_x < mixer_width) {
934 if (left_zpos_cnt == 2) {
935 DPU_ERROR("> 2 planes @ stage %d on left\n",
936 z_pos);
937 rc = -EINVAL;
938 goto end;
939 }
940 left_zpos_cnt++;
941
942 } else {
943 if (right_zpos_cnt == 2) {
944 DPU_ERROR("> 2 planes @ stage %d on right\n",
945 z_pos);
946 rc = -EINVAL;
947 goto end;
948 }
949 right_zpos_cnt++;
950 }
951
952 pstates[i].dpu_pstate->stage = z_pos + DPU_STAGE_0;
953 DPU_DEBUG("%s: zpos %d", dpu_crtc->name, z_pos);
954 }
955
956 for (i = 0; i < multirect_count; i++) {
957 if (dpu_plane_validate_multirect_v2(&multirect_plane[i])) {
958 DPU_ERROR(
959 "multirect validation failed for planes (%d - %d)\n",
960 multirect_plane[i].r0->plane->base.id,
961 multirect_plane[i].r1->plane->base.id);
962 rc = -EINVAL;
963 goto end;
964 }
965 }
966
967 atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref);
968
969 rc = dpu_core_perf_crtc_check(crtc, state);
970 if (rc) {
971 DPU_ERROR("crtc%d failed performance check %d\n",
972 crtc->base.id, rc);
973 goto end;
974 }
975
976 /* validate source split:
977 * use pstates sorted by stage to check planes on same stage
978 * we assume that all pipes are in source split so its valid to compare
979 * without taking into account left/right mixer placement
980 */
981 for (i = 1; i < cnt; i++) {
982 struct plane_state *prv_pstate, *cur_pstate;
983 struct drm_rect left_rect, right_rect;
984 int32_t left_pid, right_pid;
985 int32_t stage;
986
987 prv_pstate = &pstates[i - 1];
988 cur_pstate = &pstates[i];
989 if (prv_pstate->stage != cur_pstate->stage)
990 continue;
991
992 stage = cur_pstate->stage;
993
994 left_pid = prv_pstate->dpu_pstate->base.plane->base.id;
995 left_rect = drm_plane_state_dest(prv_pstate->drm_pstate);
996
997 right_pid = cur_pstate->dpu_pstate->base.plane->base.id;
998 right_rect = drm_plane_state_dest(cur_pstate->drm_pstate);
999
1000 if (right_rect.x1 < left_rect.x1) {
1001 swap(left_pid, right_pid);
1002 swap(left_rect, right_rect);
1003 }
1004
1005 /**
1006 * - planes are enumerated in pipe-priority order such that
1007 * planes with lower drm_id must be left-most in a shared
1008 * blend-stage when using source split.
1009 * - planes in source split must be contiguous in width
1010 * - planes in source split must have same dest yoff and height
1011 */
1012 if (right_pid < left_pid) {
1013 DPU_ERROR(
1014 "invalid src split cfg. priority mismatch. stage: %d left: %d right: %d\n",
1015 stage, left_pid, right_pid);
1016 rc = -EINVAL;
1017 goto end;
1018 } else if (right_rect.x1 != drm_rect_width(&left_rect)) {
1019 DPU_ERROR("non-contiguous coordinates for src split. "
1020 "stage: %d left: " DRM_RECT_FMT " right: "
1021 DRM_RECT_FMT "\n", stage,
1022 DRM_RECT_ARG(&left_rect),
1023 DRM_RECT_ARG(&right_rect));
1024 rc = -EINVAL;
1025 goto end;
1026 } else if (left_rect.y1 != right_rect.y1 ||
1027 drm_rect_height(&left_rect) != drm_rect_height(&right_rect)) {
1028 DPU_ERROR("source split at stage: %d. invalid "
1029 "yoff/height: left: " DRM_RECT_FMT " right: "
1030 DRM_RECT_FMT "\n", stage,
1031 DRM_RECT_ARG(&left_rect),
1032 DRM_RECT_ARG(&right_rect));
1033 rc = -EINVAL;
1034 goto end;
1035 }
1036 }
1037
1038 end:
1039 kfree(pstates);
1040 return rc;
1041 }
1042
dpu_crtc_vblank(struct drm_crtc * crtc,bool en)1043 int dpu_crtc_vblank(struct drm_crtc *crtc, bool en)
1044 {
1045 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1046 struct drm_encoder *enc;
1047
1048 trace_dpu_crtc_vblank(DRMID(&dpu_crtc->base), en, dpu_crtc);
1049
1050 /*
1051 * Normally we would iterate through encoder_mask in crtc state to find
1052 * attached encoders. In this case, we might be disabling vblank _after_
1053 * encoder_mask has been cleared.
1054 *
1055 * Instead, we "assign" a crtc to the encoder in enable and clear it in
1056 * disable (which is also after encoder_mask is cleared). So instead of
1057 * using encoder mask, we'll ask the encoder to toggle itself iff it's
1058 * currently assigned to our crtc.
1059 *
1060 * Note also that this function cannot be called while crtc is disabled
1061 * since we use drm_crtc_vblank_on/off. So we don't need to worry
1062 * about the assigned crtcs being inconsistent with the current state
1063 * (which means no need to worry about modeset locks).
1064 */
1065 list_for_each_entry(enc, &crtc->dev->mode_config.encoder_list, head) {
1066 trace_dpu_crtc_vblank_enable(DRMID(crtc), DRMID(enc), en,
1067 dpu_crtc);
1068
1069 dpu_encoder_toggle_vblank_for_crtc(enc, crtc, en);
1070 }
1071
1072 return 0;
1073 }
1074
1075 #ifdef CONFIG_DEBUG_FS
_dpu_debugfs_status_show(struct seq_file * s,void * data)1076 static int _dpu_debugfs_status_show(struct seq_file *s, void *data)
1077 {
1078 struct dpu_crtc *dpu_crtc;
1079 struct dpu_plane_state *pstate = NULL;
1080 struct dpu_crtc_mixer *m;
1081
1082 struct drm_crtc *crtc;
1083 struct drm_plane *plane;
1084 struct drm_display_mode *mode;
1085 struct drm_framebuffer *fb;
1086 struct drm_plane_state *state;
1087 struct dpu_crtc_state *cstate;
1088
1089 int i, out_width;
1090
1091 dpu_crtc = s->private;
1092 crtc = &dpu_crtc->base;
1093
1094 drm_modeset_lock_all(crtc->dev);
1095 cstate = to_dpu_crtc_state(crtc->state);
1096
1097 mode = &crtc->state->adjusted_mode;
1098 out_width = mode->hdisplay / cstate->num_mixers;
1099
1100 seq_printf(s, "crtc:%d width:%d height:%d\n", crtc->base.id,
1101 mode->hdisplay, mode->vdisplay);
1102
1103 seq_puts(s, "\n");
1104
1105 for (i = 0; i < cstate->num_mixers; ++i) {
1106 m = &cstate->mixers[i];
1107 if (!m->hw_lm)
1108 seq_printf(s, "\tmixer[%d] has no lm\n", i);
1109 else if (!m->lm_ctl)
1110 seq_printf(s, "\tmixer[%d] has no ctl\n", i);
1111 else
1112 seq_printf(s, "\tmixer:%d ctl:%d width:%d height:%d\n",
1113 m->hw_lm->idx - LM_0, m->lm_ctl->idx - CTL_0,
1114 out_width, mode->vdisplay);
1115 }
1116
1117 seq_puts(s, "\n");
1118
1119 drm_atomic_crtc_for_each_plane(plane, crtc) {
1120 pstate = to_dpu_plane_state(plane->state);
1121 state = plane->state;
1122
1123 if (!pstate || !state)
1124 continue;
1125
1126 seq_printf(s, "\tplane:%u stage:%d\n", plane->base.id,
1127 pstate->stage);
1128
1129 if (plane->state->fb) {
1130 fb = plane->state->fb;
1131
1132 seq_printf(s, "\tfb:%d image format:%4.4s wxh:%ux%u ",
1133 fb->base.id, (char *) &fb->format->format,
1134 fb->width, fb->height);
1135 for (i = 0; i < ARRAY_SIZE(fb->format->cpp); ++i)
1136 seq_printf(s, "cpp[%d]:%u ",
1137 i, fb->format->cpp[i]);
1138 seq_puts(s, "\n\t");
1139
1140 seq_printf(s, "modifier:%8llu ", fb->modifier);
1141 seq_puts(s, "\n");
1142
1143 seq_puts(s, "\t");
1144 for (i = 0; i < ARRAY_SIZE(fb->pitches); i++)
1145 seq_printf(s, "pitches[%d]:%8u ", i,
1146 fb->pitches[i]);
1147 seq_puts(s, "\n");
1148
1149 seq_puts(s, "\t");
1150 for (i = 0; i < ARRAY_SIZE(fb->offsets); i++)
1151 seq_printf(s, "offsets[%d]:%8u ", i,
1152 fb->offsets[i]);
1153 seq_puts(s, "\n");
1154 }
1155
1156 seq_printf(s, "\tsrc_x:%4d src_y:%4d src_w:%4d src_h:%4d\n",
1157 state->src_x, state->src_y, state->src_w, state->src_h);
1158
1159 seq_printf(s, "\tdst x:%4d dst_y:%4d dst_w:%4d dst_h:%4d\n",
1160 state->crtc_x, state->crtc_y, state->crtc_w,
1161 state->crtc_h);
1162 seq_printf(s, "\tmultirect: mode: %d index: %d\n",
1163 pstate->multirect_mode, pstate->multirect_index);
1164
1165 seq_puts(s, "\n");
1166 }
1167 if (dpu_crtc->vblank_cb_count) {
1168 ktime_t diff = ktime_sub(ktime_get(), dpu_crtc->vblank_cb_time);
1169 s64 diff_ms = ktime_to_ms(diff);
1170 s64 fps = diff_ms ? div_s64(
1171 dpu_crtc->vblank_cb_count * 1000, diff_ms) : 0;
1172
1173 seq_printf(s,
1174 "vblank fps:%lld count:%u total:%llums total_framecount:%llu\n",
1175 fps, dpu_crtc->vblank_cb_count,
1176 ktime_to_ms(diff), dpu_crtc->play_count);
1177
1178 /* reset time & count for next measurement */
1179 dpu_crtc->vblank_cb_count = 0;
1180 dpu_crtc->vblank_cb_time = ktime_set(0, 0);
1181 }
1182
1183 drm_modeset_unlock_all(crtc->dev);
1184
1185 return 0;
1186 }
1187
_dpu_debugfs_status_open(struct inode * inode,struct file * file)1188 static int _dpu_debugfs_status_open(struct inode *inode, struct file *file)
1189 {
1190 return single_open(file, _dpu_debugfs_status_show, inode->i_private);
1191 }
1192
1193 #define DEFINE_DPU_DEBUGFS_SEQ_FOPS(__prefix) \
1194 static int __prefix ## _open(struct inode *inode, struct file *file) \
1195 { \
1196 return single_open(file, __prefix ## _show, inode->i_private); \
1197 } \
1198 static const struct file_operations __prefix ## _fops = { \
1199 .owner = THIS_MODULE, \
1200 .open = __prefix ## _open, \
1201 .release = single_release, \
1202 .read = seq_read, \
1203 .llseek = seq_lseek, \
1204 }
1205
dpu_crtc_debugfs_state_show(struct seq_file * s,void * v)1206 static int dpu_crtc_debugfs_state_show(struct seq_file *s, void *v)
1207 {
1208 struct drm_crtc *crtc = (struct drm_crtc *) s->private;
1209 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1210
1211 seq_printf(s, "client type: %d\n", dpu_crtc_get_client_type(crtc));
1212 seq_printf(s, "intf_mode: %d\n", dpu_crtc_get_intf_mode(crtc));
1213 seq_printf(s, "core_clk_rate: %llu\n",
1214 dpu_crtc->cur_perf.core_clk_rate);
1215 seq_printf(s, "bw_ctl: %llu\n", dpu_crtc->cur_perf.bw_ctl);
1216 seq_printf(s, "max_per_pipe_ib: %llu\n",
1217 dpu_crtc->cur_perf.max_per_pipe_ib);
1218
1219 return 0;
1220 }
1221 DEFINE_DPU_DEBUGFS_SEQ_FOPS(dpu_crtc_debugfs_state);
1222
_dpu_crtc_init_debugfs(struct drm_crtc * crtc)1223 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc)
1224 {
1225 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1226
1227 static const struct file_operations debugfs_status_fops = {
1228 .open = _dpu_debugfs_status_open,
1229 .read = seq_read,
1230 .llseek = seq_lseek,
1231 .release = single_release,
1232 };
1233
1234 dpu_crtc->debugfs_root = debugfs_create_dir(dpu_crtc->name,
1235 crtc->dev->primary->debugfs_root);
1236
1237 debugfs_create_file("status", 0400,
1238 dpu_crtc->debugfs_root,
1239 dpu_crtc, &debugfs_status_fops);
1240 debugfs_create_file("state", 0600,
1241 dpu_crtc->debugfs_root,
1242 &dpu_crtc->base,
1243 &dpu_crtc_debugfs_state_fops);
1244
1245 return 0;
1246 }
1247 #else
_dpu_crtc_init_debugfs(struct drm_crtc * crtc)1248 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc)
1249 {
1250 return 0;
1251 }
1252 #endif /* CONFIG_DEBUG_FS */
1253
dpu_crtc_late_register(struct drm_crtc * crtc)1254 static int dpu_crtc_late_register(struct drm_crtc *crtc)
1255 {
1256 return _dpu_crtc_init_debugfs(crtc);
1257 }
1258
dpu_crtc_early_unregister(struct drm_crtc * crtc)1259 static void dpu_crtc_early_unregister(struct drm_crtc *crtc)
1260 {
1261 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1262
1263 debugfs_remove_recursive(dpu_crtc->debugfs_root);
1264 }
1265
1266 static const struct drm_crtc_funcs dpu_crtc_funcs = {
1267 .set_config = drm_atomic_helper_set_config,
1268 .destroy = dpu_crtc_destroy,
1269 .page_flip = drm_atomic_helper_page_flip,
1270 .reset = dpu_crtc_reset,
1271 .atomic_duplicate_state = dpu_crtc_duplicate_state,
1272 .atomic_destroy_state = dpu_crtc_destroy_state,
1273 .late_register = dpu_crtc_late_register,
1274 .early_unregister = dpu_crtc_early_unregister,
1275 };
1276
1277 static const struct drm_crtc_helper_funcs dpu_crtc_helper_funcs = {
1278 .atomic_disable = dpu_crtc_disable,
1279 .atomic_enable = dpu_crtc_enable,
1280 .atomic_check = dpu_crtc_atomic_check,
1281 .atomic_begin = dpu_crtc_atomic_begin,
1282 .atomic_flush = dpu_crtc_atomic_flush,
1283 };
1284
1285 /* initialize crtc */
dpu_crtc_init(struct drm_device * dev,struct drm_plane * plane,struct drm_plane * cursor)1286 struct drm_crtc *dpu_crtc_init(struct drm_device *dev, struct drm_plane *plane,
1287 struct drm_plane *cursor)
1288 {
1289 struct drm_crtc *crtc = NULL;
1290 struct dpu_crtc *dpu_crtc = NULL;
1291 struct msm_drm_private *priv = NULL;
1292 struct dpu_kms *kms = NULL;
1293 int i;
1294
1295 priv = dev->dev_private;
1296 kms = to_dpu_kms(priv->kms);
1297
1298 dpu_crtc = kzalloc(sizeof(*dpu_crtc), GFP_KERNEL);
1299 if (!dpu_crtc)
1300 return ERR_PTR(-ENOMEM);
1301
1302 crtc = &dpu_crtc->base;
1303 crtc->dev = dev;
1304
1305 spin_lock_init(&dpu_crtc->spin_lock);
1306 atomic_set(&dpu_crtc->frame_pending, 0);
1307
1308 init_completion(&dpu_crtc->frame_done_comp);
1309
1310 INIT_LIST_HEAD(&dpu_crtc->frame_event_list);
1311
1312 for (i = 0; i < ARRAY_SIZE(dpu_crtc->frame_events); i++) {
1313 INIT_LIST_HEAD(&dpu_crtc->frame_events[i].list);
1314 list_add(&dpu_crtc->frame_events[i].list,
1315 &dpu_crtc->frame_event_list);
1316 kthread_init_work(&dpu_crtc->frame_events[i].work,
1317 dpu_crtc_frame_event_work);
1318 }
1319
1320 drm_crtc_init_with_planes(dev, crtc, plane, cursor, &dpu_crtc_funcs,
1321 NULL);
1322
1323 drm_crtc_helper_add(crtc, &dpu_crtc_helper_funcs);
1324
1325 /* save user friendly CRTC name for later */
1326 snprintf(dpu_crtc->name, DPU_CRTC_NAME_SIZE, "crtc%u", crtc->base.id);
1327
1328 /* initialize event handling */
1329 spin_lock_init(&dpu_crtc->event_lock);
1330
1331 DPU_DEBUG("%s: successfully initialized crtc\n", dpu_crtc->name);
1332 return crtc;
1333 }
1334