1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2014-2018, The Linux Foundation. All rights reserved.
4 * Copyright (C) 2013 Red Hat
5 * Author: Rob Clark <robdclark@gmail.com>
6 */
7
8 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__
9 #include <linux/debugfs.h>
10 #include <linux/kthread.h>
11 #include <linux/seq_file.h>
12
13 #include <drm/drm_crtc.h>
14 #include <drm/drm_file.h>
15 #include <drm/drm_probe_helper.h>
16
17 #include "msm_drv.h"
18 #include "dpu_kms.h"
19 #include "dpu_hwio.h"
20 #include "dpu_hw_catalog.h"
21 #include "dpu_hw_intf.h"
22 #include "dpu_hw_ctl.h"
23 #include "dpu_formats.h"
24 #include "dpu_encoder_phys.h"
25 #include "dpu_crtc.h"
26 #include "dpu_trace.h"
27 #include "dpu_core_irq.h"
28
29 #define DPU_DEBUG_ENC(e, fmt, ...) DPU_DEBUG("enc%d " fmt,\
30 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
31
32 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
33 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
34
35 #define DPU_DEBUG_PHYS(p, fmt, ...) DPU_DEBUG("enc%d intf%d pp%d " fmt,\
36 (p) ? (p)->parent->base.id : -1, \
37 (p) ? (p)->intf_idx - INTF_0 : -1, \
38 (p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
39 ##__VA_ARGS__)
40
41 #define DPU_ERROR_PHYS(p, fmt, ...) DPU_ERROR("enc%d intf%d pp%d " fmt,\
42 (p) ? (p)->parent->base.id : -1, \
43 (p) ? (p)->intf_idx - INTF_0 : -1, \
44 (p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
45 ##__VA_ARGS__)
46
47 /*
48 * Two to anticipate panels that can do cmd/vid dynamic switching
49 * plan is to create all possible physical encoder types, and switch between
50 * them at runtime
51 */
52 #define NUM_PHYS_ENCODER_TYPES 2
53
54 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
55 (MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
56
57 #define MAX_CHANNELS_PER_ENC 2
58
59 #define IDLE_SHORT_TIMEOUT 1
60
61 #define MAX_VDISPLAY_SPLIT 1080
62
63 /* timeout in frames waiting for frame done */
64 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
65
66 /**
67 * enum dpu_enc_rc_events - events for resource control state machine
68 * @DPU_ENC_RC_EVENT_KICKOFF:
69 * This event happens at NORMAL priority.
70 * Event that signals the start of the transfer. When this event is
71 * received, enable MDP/DSI core clocks. Regardless of the previous
72 * state, the resource should be in ON state at the end of this event.
73 * @DPU_ENC_RC_EVENT_FRAME_DONE:
74 * This event happens at INTERRUPT level.
75 * Event signals the end of the data transfer after the PP FRAME_DONE
76 * event. At the end of this event, a delayed work is scheduled to go to
77 * IDLE_PC state after IDLE_TIMEOUT time.
78 * @DPU_ENC_RC_EVENT_PRE_STOP:
79 * This event happens at NORMAL priority.
80 * This event, when received during the ON state, leave the RC STATE
81 * in the PRE_OFF state. It should be followed by the STOP event as
82 * part of encoder disable.
83 * If received during IDLE or OFF states, it will do nothing.
84 * @DPU_ENC_RC_EVENT_STOP:
85 * This event happens at NORMAL priority.
86 * When this event is received, disable all the MDP/DSI core clocks, and
87 * disable IRQs. It should be called from the PRE_OFF or IDLE states.
88 * IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
89 * PRE_OFF is expected when PRE_STOP was executed during the ON state.
90 * Resource state should be in OFF at the end of the event.
91 * @DPU_ENC_RC_EVENT_ENTER_IDLE:
92 * This event happens at NORMAL priority from a work item.
93 * Event signals that there were no frame updates for IDLE_TIMEOUT time.
94 * This would disable MDP/DSI core clocks and change the resource state
95 * to IDLE.
96 */
97 enum dpu_enc_rc_events {
98 DPU_ENC_RC_EVENT_KICKOFF = 1,
99 DPU_ENC_RC_EVENT_FRAME_DONE,
100 DPU_ENC_RC_EVENT_PRE_STOP,
101 DPU_ENC_RC_EVENT_STOP,
102 DPU_ENC_RC_EVENT_ENTER_IDLE
103 };
104
105 /*
106 * enum dpu_enc_rc_states - states that the resource control maintains
107 * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
108 * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
109 * @DPU_ENC_RC_STATE_ON: Resource is in ON state
110 * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
111 * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
112 */
113 enum dpu_enc_rc_states {
114 DPU_ENC_RC_STATE_OFF,
115 DPU_ENC_RC_STATE_PRE_OFF,
116 DPU_ENC_RC_STATE_ON,
117 DPU_ENC_RC_STATE_IDLE
118 };
119
120 /**
121 * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
122 * encoders. Virtual encoder manages one "logical" display. Physical
123 * encoders manage one intf block, tied to a specific panel/sub-panel.
124 * Virtual encoder defers as much as possible to the physical encoders.
125 * Virtual encoder registers itself with the DRM Framework as the encoder.
126 * @base: drm_encoder base class for registration with DRM
127 * @enc_spinlock: Virtual-Encoder-Wide Spin Lock for IRQ purposes
128 * @bus_scaling_client: Client handle to the bus scaling interface
129 * @enabled: True if the encoder is active, protected by enc_lock
130 * @num_phys_encs: Actual number of physical encoders contained.
131 * @phys_encs: Container of physical encoders managed.
132 * @cur_master: Pointer to the current master in this mode. Optimization
133 * Only valid after enable. Cleared as disable.
134 * @hw_pp Handle to the pingpong blocks used for the display. No.
135 * pingpong blocks can be different than num_phys_encs.
136 * @intfs_swapped Whether or not the phys_enc interfaces have been swapped
137 * for partial update right-only cases, such as pingpong
138 * split where virtual pingpong does not generate IRQs
139 * @crtc: Pointer to the currently assigned crtc. Normally you
140 * would use crtc->state->encoder_mask to determine the
141 * link between encoder/crtc. However in this case we need
142 * to track crtc in the disable() hook which is called
143 * _after_ encoder_mask is cleared.
144 * @crtc_kickoff_cb: Callback into CRTC that will flush & start
145 * all CTL paths
146 * @crtc_kickoff_cb_data: Opaque user data given to crtc_kickoff_cb
147 * @debugfs_root: Debug file system root file node
148 * @enc_lock: Lock around physical encoder
149 * create/destroy/enable/disable
150 * @frame_busy_mask: Bitmask tracking which phys_enc we are still
151 * busy processing current command.
152 * Bit0 = phys_encs[0] etc.
153 * @crtc_frame_event_cb: callback handler for frame event
154 * @crtc_frame_event_cb_data: callback handler private data
155 * @frame_done_timeout_ms: frame done timeout in ms
156 * @frame_done_timer: watchdog timer for frame done event
157 * @vsync_event_timer: vsync timer
158 * @disp_info: local copy of msm_display_info struct
159 * @idle_pc_supported: indicate if idle power collaps is supported
160 * @rc_lock: resource control mutex lock to protect
161 * virt encoder over various state changes
162 * @rc_state: resource controller state
163 * @delayed_off_work: delayed worker to schedule disabling of
164 * clks and resources after IDLE_TIMEOUT time.
165 * @vsync_event_work: worker to handle vsync event for autorefresh
166 * @topology: topology of the display
167 * @mode_set_complete: flag to indicate modeset completion
168 * @idle_timeout: idle timeout duration in milliseconds
169 */
170 struct dpu_encoder_virt {
171 struct drm_encoder base;
172 spinlock_t enc_spinlock;
173 uint32_t bus_scaling_client;
174
175 bool enabled;
176
177 unsigned int num_phys_encs;
178 struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
179 struct dpu_encoder_phys *cur_master;
180 struct dpu_encoder_phys *cur_slave;
181 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
182
183 bool intfs_swapped;
184
185 struct drm_crtc *crtc;
186
187 struct dentry *debugfs_root;
188 struct mutex enc_lock;
189 DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
190 void (*crtc_frame_event_cb)(void *, u32 event);
191 void *crtc_frame_event_cb_data;
192
193 atomic_t frame_done_timeout_ms;
194 struct timer_list frame_done_timer;
195 struct timer_list vsync_event_timer;
196
197 struct msm_display_info disp_info;
198
199 bool idle_pc_supported;
200 struct mutex rc_lock;
201 enum dpu_enc_rc_states rc_state;
202 struct delayed_work delayed_off_work;
203 struct kthread_work vsync_event_work;
204 struct msm_display_topology topology;
205 bool mode_set_complete;
206
207 u32 idle_timeout;
208 };
209
210 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
211
dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys * phys_enc,enum dpu_intr_idx intr_idx)212 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
213 enum dpu_intr_idx intr_idx)
214 {
215 DRM_ERROR("irq timeout id=%u, intf=%d, pp=%d, intr=%d\n",
216 DRMID(phys_enc->parent), phys_enc->intf_idx - INTF_0,
217 phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
218
219 if (phys_enc->parent_ops->handle_frame_done)
220 phys_enc->parent_ops->handle_frame_done(
221 phys_enc->parent, phys_enc,
222 DPU_ENCODER_FRAME_EVENT_ERROR);
223 }
224
225 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
226 int32_t hw_id, struct dpu_encoder_wait_info *info);
227
dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys * phys_enc,enum dpu_intr_idx intr_idx,struct dpu_encoder_wait_info * wait_info)228 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
229 enum dpu_intr_idx intr_idx,
230 struct dpu_encoder_wait_info *wait_info)
231 {
232 struct dpu_encoder_irq *irq;
233 u32 irq_status;
234 int ret;
235
236 if (!phys_enc || !wait_info || intr_idx >= INTR_IDX_MAX) {
237 DPU_ERROR("invalid params\n");
238 return -EINVAL;
239 }
240 irq = &phys_enc->irq[intr_idx];
241
242 /* note: do master / slave checking outside */
243
244 /* return EWOULDBLOCK since we know the wait isn't necessary */
245 if (phys_enc->enable_state == DPU_ENC_DISABLED) {
246 DRM_ERROR("encoder is disabled id=%u, intr=%d, hw=%d, irq=%d",
247 DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
248 irq->irq_idx);
249 return -EWOULDBLOCK;
250 }
251
252 if (irq->irq_idx < 0) {
253 DRM_DEBUG_KMS("skip irq wait id=%u, intr=%d, hw=%d, irq=%s",
254 DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
255 irq->name);
256 return 0;
257 }
258
259 DRM_DEBUG_KMS("id=%u, intr=%d, hw=%d, irq=%d, pp=%d, pending_cnt=%d",
260 DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
261 irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0,
262 atomic_read(wait_info->atomic_cnt));
263
264 ret = dpu_encoder_helper_wait_event_timeout(
265 DRMID(phys_enc->parent),
266 irq->hw_idx,
267 wait_info);
268
269 if (ret <= 0) {
270 irq_status = dpu_core_irq_read(phys_enc->dpu_kms,
271 irq->irq_idx, true);
272 if (irq_status) {
273 unsigned long flags;
274
275 DRM_DEBUG_KMS("irq not triggered id=%u, intr=%d, "
276 "hw=%d, irq=%d, pp=%d, atomic_cnt=%d",
277 DRMID(phys_enc->parent), intr_idx,
278 irq->hw_idx, irq->irq_idx,
279 phys_enc->hw_pp->idx - PINGPONG_0,
280 atomic_read(wait_info->atomic_cnt));
281 local_irq_save(flags);
282 irq->cb.func(phys_enc, irq->irq_idx);
283 local_irq_restore(flags);
284 ret = 0;
285 } else {
286 ret = -ETIMEDOUT;
287 DRM_DEBUG_KMS("irq timeout id=%u, intr=%d, "
288 "hw=%d, irq=%d, pp=%d, atomic_cnt=%d",
289 DRMID(phys_enc->parent), intr_idx,
290 irq->hw_idx, irq->irq_idx,
291 phys_enc->hw_pp->idx - PINGPONG_0,
292 atomic_read(wait_info->atomic_cnt));
293 }
294 } else {
295 ret = 0;
296 trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
297 intr_idx, irq->hw_idx, irq->irq_idx,
298 phys_enc->hw_pp->idx - PINGPONG_0,
299 atomic_read(wait_info->atomic_cnt));
300 }
301
302 return ret;
303 }
304
dpu_encoder_helper_register_irq(struct dpu_encoder_phys * phys_enc,enum dpu_intr_idx intr_idx)305 int dpu_encoder_helper_register_irq(struct dpu_encoder_phys *phys_enc,
306 enum dpu_intr_idx intr_idx)
307 {
308 struct dpu_encoder_irq *irq;
309 int ret = 0;
310
311 if (!phys_enc || intr_idx >= INTR_IDX_MAX) {
312 DPU_ERROR("invalid params\n");
313 return -EINVAL;
314 }
315 irq = &phys_enc->irq[intr_idx];
316
317 if (irq->irq_idx >= 0) {
318 DPU_DEBUG_PHYS(phys_enc,
319 "skipping already registered irq %s type %d\n",
320 irq->name, irq->intr_type);
321 return 0;
322 }
323
324 irq->irq_idx = dpu_core_irq_idx_lookup(phys_enc->dpu_kms,
325 irq->intr_type, irq->hw_idx);
326 if (irq->irq_idx < 0) {
327 DPU_ERROR_PHYS(phys_enc,
328 "failed to lookup IRQ index for %s type:%d\n",
329 irq->name, irq->intr_type);
330 return -EINVAL;
331 }
332
333 ret = dpu_core_irq_register_callback(phys_enc->dpu_kms, irq->irq_idx,
334 &irq->cb);
335 if (ret) {
336 DPU_ERROR_PHYS(phys_enc,
337 "failed to register IRQ callback for %s\n",
338 irq->name);
339 irq->irq_idx = -EINVAL;
340 return ret;
341 }
342
343 ret = dpu_core_irq_enable(phys_enc->dpu_kms, &irq->irq_idx, 1);
344 if (ret) {
345 DRM_ERROR("enable failed id=%u, intr=%d, hw=%d, irq=%d",
346 DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
347 irq->irq_idx);
348 dpu_core_irq_unregister_callback(phys_enc->dpu_kms,
349 irq->irq_idx, &irq->cb);
350 irq->irq_idx = -EINVAL;
351 return ret;
352 }
353
354 trace_dpu_enc_irq_register_success(DRMID(phys_enc->parent), intr_idx,
355 irq->hw_idx, irq->irq_idx);
356
357 return ret;
358 }
359
dpu_encoder_helper_unregister_irq(struct dpu_encoder_phys * phys_enc,enum dpu_intr_idx intr_idx)360 int dpu_encoder_helper_unregister_irq(struct dpu_encoder_phys *phys_enc,
361 enum dpu_intr_idx intr_idx)
362 {
363 struct dpu_encoder_irq *irq;
364 int ret;
365
366 if (!phys_enc) {
367 DPU_ERROR("invalid encoder\n");
368 return -EINVAL;
369 }
370 irq = &phys_enc->irq[intr_idx];
371
372 /* silently skip irqs that weren't registered */
373 if (irq->irq_idx < 0) {
374 DRM_ERROR("duplicate unregister id=%u, intr=%d, hw=%d, irq=%d",
375 DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
376 irq->irq_idx);
377 return 0;
378 }
379
380 ret = dpu_core_irq_disable(phys_enc->dpu_kms, &irq->irq_idx, 1);
381 if (ret) {
382 DRM_ERROR("disable failed id=%u, intr=%d, hw=%d, irq=%d ret=%d",
383 DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
384 irq->irq_idx, ret);
385 }
386
387 ret = dpu_core_irq_unregister_callback(phys_enc->dpu_kms, irq->irq_idx,
388 &irq->cb);
389 if (ret) {
390 DRM_ERROR("unreg cb fail id=%u, intr=%d, hw=%d, irq=%d ret=%d",
391 DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
392 irq->irq_idx, ret);
393 }
394
395 trace_dpu_enc_irq_unregister_success(DRMID(phys_enc->parent), intr_idx,
396 irq->hw_idx, irq->irq_idx);
397
398 irq->irq_idx = -EINVAL;
399
400 return 0;
401 }
402
dpu_encoder_get_hw_resources(struct drm_encoder * drm_enc,struct dpu_encoder_hw_resources * hw_res)403 void dpu_encoder_get_hw_resources(struct drm_encoder *drm_enc,
404 struct dpu_encoder_hw_resources *hw_res)
405 {
406 struct dpu_encoder_virt *dpu_enc = NULL;
407 int i = 0;
408
409 dpu_enc = to_dpu_encoder_virt(drm_enc);
410 DPU_DEBUG_ENC(dpu_enc, "\n");
411
412 /* Query resources used by phys encs, expected to be without overlap */
413 memset(hw_res, 0, sizeof(*hw_res));
414
415 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
416 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
417
418 if (phys && phys->ops.get_hw_resources)
419 phys->ops.get_hw_resources(phys, hw_res);
420 }
421 }
422
dpu_encoder_destroy(struct drm_encoder * drm_enc)423 static void dpu_encoder_destroy(struct drm_encoder *drm_enc)
424 {
425 struct dpu_encoder_virt *dpu_enc = NULL;
426 int i = 0;
427
428 if (!drm_enc) {
429 DPU_ERROR("invalid encoder\n");
430 return;
431 }
432
433 dpu_enc = to_dpu_encoder_virt(drm_enc);
434 DPU_DEBUG_ENC(dpu_enc, "\n");
435
436 mutex_lock(&dpu_enc->enc_lock);
437
438 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
439 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
440
441 if (phys && phys->ops.destroy) {
442 phys->ops.destroy(phys);
443 --dpu_enc->num_phys_encs;
444 dpu_enc->phys_encs[i] = NULL;
445 }
446 }
447
448 if (dpu_enc->num_phys_encs)
449 DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n",
450 dpu_enc->num_phys_encs);
451 dpu_enc->num_phys_encs = 0;
452 mutex_unlock(&dpu_enc->enc_lock);
453
454 drm_encoder_cleanup(drm_enc);
455 mutex_destroy(&dpu_enc->enc_lock);
456 }
457
dpu_encoder_helper_split_config(struct dpu_encoder_phys * phys_enc,enum dpu_intf interface)458 void dpu_encoder_helper_split_config(
459 struct dpu_encoder_phys *phys_enc,
460 enum dpu_intf interface)
461 {
462 struct dpu_encoder_virt *dpu_enc;
463 struct split_pipe_cfg cfg = { 0 };
464 struct dpu_hw_mdp *hw_mdptop;
465 struct msm_display_info *disp_info;
466
467 if (!phys_enc || !phys_enc->hw_mdptop || !phys_enc->parent) {
468 DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != 0);
469 return;
470 }
471
472 dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
473 hw_mdptop = phys_enc->hw_mdptop;
474 disp_info = &dpu_enc->disp_info;
475
476 if (disp_info->intf_type != DRM_MODE_ENCODER_DSI)
477 return;
478
479 /**
480 * disable split modes since encoder will be operating in as the only
481 * encoder, either for the entire use case in the case of, for example,
482 * single DSI, or for this frame in the case of left/right only partial
483 * update.
484 */
485 if (phys_enc->split_role == ENC_ROLE_SOLO) {
486 if (hw_mdptop->ops.setup_split_pipe)
487 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
488 return;
489 }
490
491 cfg.en = true;
492 cfg.mode = phys_enc->intf_mode;
493 cfg.intf = interface;
494
495 if (cfg.en && phys_enc->ops.needs_single_flush &&
496 phys_enc->ops.needs_single_flush(phys_enc))
497 cfg.split_flush_en = true;
498
499 if (phys_enc->split_role == ENC_ROLE_MASTER) {
500 DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
501
502 if (hw_mdptop->ops.setup_split_pipe)
503 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
504 }
505 }
506
_dpu_encoder_adjust_mode(struct drm_connector * connector,struct drm_display_mode * adj_mode)507 static void _dpu_encoder_adjust_mode(struct drm_connector *connector,
508 struct drm_display_mode *adj_mode)
509 {
510 struct drm_display_mode *cur_mode;
511
512 if (!connector || !adj_mode)
513 return;
514
515 list_for_each_entry(cur_mode, &connector->modes, head) {
516 if (cur_mode->vdisplay == adj_mode->vdisplay &&
517 cur_mode->hdisplay == adj_mode->hdisplay &&
518 drm_mode_vrefresh(cur_mode) == drm_mode_vrefresh(adj_mode)) {
519 adj_mode->private = cur_mode->private;
520 adj_mode->private_flags |= cur_mode->private_flags;
521 }
522 }
523 }
524
dpu_encoder_get_topology(struct dpu_encoder_virt * dpu_enc,struct dpu_kms * dpu_kms,struct drm_display_mode * mode)525 static struct msm_display_topology dpu_encoder_get_topology(
526 struct dpu_encoder_virt *dpu_enc,
527 struct dpu_kms *dpu_kms,
528 struct drm_display_mode *mode)
529 {
530 struct msm_display_topology topology;
531 int i, intf_count = 0;
532
533 for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
534 if (dpu_enc->phys_encs[i])
535 intf_count++;
536
537 /* User split topology for width > 1080 */
538 topology.num_lm = (mode->vdisplay > MAX_VDISPLAY_SPLIT) ? 2 : 1;
539 topology.num_enc = 0;
540 topology.num_intf = intf_count;
541
542 return topology;
543 }
dpu_encoder_virt_atomic_check(struct drm_encoder * drm_enc,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)544 static int dpu_encoder_virt_atomic_check(
545 struct drm_encoder *drm_enc,
546 struct drm_crtc_state *crtc_state,
547 struct drm_connector_state *conn_state)
548 {
549 struct dpu_encoder_virt *dpu_enc;
550 struct msm_drm_private *priv;
551 struct dpu_kms *dpu_kms;
552 const struct drm_display_mode *mode;
553 struct drm_display_mode *adj_mode;
554 struct msm_display_topology topology;
555 int i = 0;
556 int ret = 0;
557
558 if (!drm_enc || !crtc_state || !conn_state) {
559 DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
560 drm_enc != 0, crtc_state != 0, conn_state != 0);
561 return -EINVAL;
562 }
563
564 dpu_enc = to_dpu_encoder_virt(drm_enc);
565 DPU_DEBUG_ENC(dpu_enc, "\n");
566
567 priv = drm_enc->dev->dev_private;
568 dpu_kms = to_dpu_kms(priv->kms);
569 mode = &crtc_state->mode;
570 adj_mode = &crtc_state->adjusted_mode;
571 trace_dpu_enc_atomic_check(DRMID(drm_enc));
572
573 /*
574 * display drivers may populate private fields of the drm display mode
575 * structure while registering possible modes of a connector with DRM.
576 * These private fields are not populated back while DRM invokes
577 * the mode_set callbacks. This module retrieves and populates the
578 * private fields of the given mode.
579 */
580 _dpu_encoder_adjust_mode(conn_state->connector, adj_mode);
581
582 /* perform atomic check on the first physical encoder (master) */
583 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
584 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
585
586 if (phys && phys->ops.atomic_check)
587 ret = phys->ops.atomic_check(phys, crtc_state,
588 conn_state);
589 else if (phys && phys->ops.mode_fixup)
590 if (!phys->ops.mode_fixup(phys, mode, adj_mode))
591 ret = -EINVAL;
592
593 if (ret) {
594 DPU_ERROR_ENC(dpu_enc,
595 "mode unsupported, phys idx %d\n", i);
596 break;
597 }
598 }
599
600 topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);
601
602 /* Reserve dynamic resources now. Indicating AtomicTest phase */
603 if (!ret) {
604 /*
605 * Avoid reserving resources when mode set is pending. Topology
606 * info may not be available to complete reservation.
607 */
608 if (drm_atomic_crtc_needs_modeset(crtc_state)
609 && dpu_enc->mode_set_complete) {
610 ret = dpu_rm_reserve(&dpu_kms->rm, drm_enc, crtc_state,
611 topology, true);
612 dpu_enc->mode_set_complete = false;
613 }
614 }
615
616 trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags,
617 adj_mode->private_flags);
618
619 return ret;
620 }
621
_dpu_encoder_update_vsync_source(struct dpu_encoder_virt * dpu_enc,struct msm_display_info * disp_info)622 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
623 struct msm_display_info *disp_info)
624 {
625 struct dpu_vsync_source_cfg vsync_cfg = { 0 };
626 struct msm_drm_private *priv;
627 struct dpu_kms *dpu_kms;
628 struct dpu_hw_mdp *hw_mdptop;
629 struct drm_encoder *drm_enc;
630 int i;
631
632 if (!dpu_enc || !disp_info) {
633 DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
634 dpu_enc != NULL, disp_info != NULL);
635 return;
636 } else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
637 DPU_ERROR("invalid num phys enc %d/%d\n",
638 dpu_enc->num_phys_encs,
639 (int) ARRAY_SIZE(dpu_enc->hw_pp));
640 return;
641 }
642
643 drm_enc = &dpu_enc->base;
644 /* this pointers are checked in virt_enable_helper */
645 priv = drm_enc->dev->dev_private;
646
647 dpu_kms = to_dpu_kms(priv->kms);
648 if (!dpu_kms) {
649 DPU_ERROR("invalid dpu_kms\n");
650 return;
651 }
652
653 hw_mdptop = dpu_kms->hw_mdp;
654 if (!hw_mdptop) {
655 DPU_ERROR("invalid mdptop\n");
656 return;
657 }
658
659 if (hw_mdptop->ops.setup_vsync_source &&
660 disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) {
661 for (i = 0; i < dpu_enc->num_phys_encs; i++)
662 vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
663
664 vsync_cfg.pp_count = dpu_enc->num_phys_encs;
665 if (disp_info->is_te_using_watchdog_timer)
666 vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0;
667 else
668 vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO;
669
670 hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
671 }
672 }
673
_dpu_encoder_irq_control(struct drm_encoder * drm_enc,bool enable)674 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable)
675 {
676 struct dpu_encoder_virt *dpu_enc;
677 int i;
678
679 if (!drm_enc) {
680 DPU_ERROR("invalid encoder\n");
681 return;
682 }
683
684 dpu_enc = to_dpu_encoder_virt(drm_enc);
685
686 DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable);
687 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
688 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
689
690 if (phys && phys->ops.irq_control)
691 phys->ops.irq_control(phys, enable);
692 }
693
694 }
695
_dpu_encoder_resource_control_helper(struct drm_encoder * drm_enc,bool enable)696 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc,
697 bool enable)
698 {
699 struct msm_drm_private *priv;
700 struct dpu_kms *dpu_kms;
701 struct dpu_encoder_virt *dpu_enc;
702
703 dpu_enc = to_dpu_encoder_virt(drm_enc);
704 priv = drm_enc->dev->dev_private;
705 dpu_kms = to_dpu_kms(priv->kms);
706
707 trace_dpu_enc_rc_helper(DRMID(drm_enc), enable);
708
709 if (!dpu_enc->cur_master) {
710 DPU_ERROR("encoder master not set\n");
711 return;
712 }
713
714 if (enable) {
715 /* enable DPU core clks */
716 pm_runtime_get_sync(&dpu_kms->pdev->dev);
717
718 /* enable all the irq */
719 _dpu_encoder_irq_control(drm_enc, true);
720
721 } else {
722 /* disable all the irq */
723 _dpu_encoder_irq_control(drm_enc, false);
724
725 /* disable DPU core clks */
726 pm_runtime_put_sync(&dpu_kms->pdev->dev);
727 }
728
729 }
730
dpu_encoder_resource_control(struct drm_encoder * drm_enc,u32 sw_event)731 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
732 u32 sw_event)
733 {
734 struct dpu_encoder_virt *dpu_enc;
735 struct msm_drm_private *priv;
736 bool is_vid_mode = false;
737
738 if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private ||
739 !drm_enc->crtc) {
740 DPU_ERROR("invalid parameters\n");
741 return -EINVAL;
742 }
743 dpu_enc = to_dpu_encoder_virt(drm_enc);
744 priv = drm_enc->dev->dev_private;
745 is_vid_mode = dpu_enc->disp_info.capabilities &
746 MSM_DISPLAY_CAP_VID_MODE;
747
748 /*
749 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
750 * events and return early for other events (ie wb display).
751 */
752 if (!dpu_enc->idle_pc_supported &&
753 (sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
754 sw_event != DPU_ENC_RC_EVENT_STOP &&
755 sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
756 return 0;
757
758 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
759 dpu_enc->rc_state, "begin");
760
761 switch (sw_event) {
762 case DPU_ENC_RC_EVENT_KICKOFF:
763 /* cancel delayed off work, if any */
764 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
765 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
766 sw_event);
767
768 mutex_lock(&dpu_enc->rc_lock);
769
770 /* return if the resource control is already in ON state */
771 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
772 DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in ON state\n",
773 DRMID(drm_enc), sw_event);
774 mutex_unlock(&dpu_enc->rc_lock);
775 return 0;
776 } else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
777 dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
778 DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in state %d\n",
779 DRMID(drm_enc), sw_event,
780 dpu_enc->rc_state);
781 mutex_unlock(&dpu_enc->rc_lock);
782 return -EINVAL;
783 }
784
785 if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
786 _dpu_encoder_irq_control(drm_enc, true);
787 else
788 _dpu_encoder_resource_control_helper(drm_enc, true);
789
790 dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
791
792 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
793 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
794 "kickoff");
795
796 mutex_unlock(&dpu_enc->rc_lock);
797 break;
798
799 case DPU_ENC_RC_EVENT_FRAME_DONE:
800 /*
801 * mutex lock is not used as this event happens at interrupt
802 * context. And locking is not required as, the other events
803 * like KICKOFF and STOP does a wait-for-idle before executing
804 * the resource_control
805 */
806 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
807 DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
808 DRMID(drm_enc), sw_event,
809 dpu_enc->rc_state);
810 return -EINVAL;
811 }
812
813 /*
814 * schedule off work item only when there are no
815 * frames pending
816 */
817 if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
818 DRM_DEBUG_KMS("id:%d skip schedule work\n",
819 DRMID(drm_enc));
820 return 0;
821 }
822
823 queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work,
824 msecs_to_jiffies(dpu_enc->idle_timeout));
825
826 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
827 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
828 "frame done");
829 break;
830
831 case DPU_ENC_RC_EVENT_PRE_STOP:
832 /* cancel delayed off work, if any */
833 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
834 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
835 sw_event);
836
837 mutex_lock(&dpu_enc->rc_lock);
838
839 if (is_vid_mode &&
840 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
841 _dpu_encoder_irq_control(drm_enc, true);
842 }
843 /* skip if is already OFF or IDLE, resources are off already */
844 else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
845 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
846 DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
847 DRMID(drm_enc), sw_event,
848 dpu_enc->rc_state);
849 mutex_unlock(&dpu_enc->rc_lock);
850 return 0;
851 }
852
853 dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
854
855 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
856 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
857 "pre stop");
858
859 mutex_unlock(&dpu_enc->rc_lock);
860 break;
861
862 case DPU_ENC_RC_EVENT_STOP:
863 mutex_lock(&dpu_enc->rc_lock);
864
865 /* return if the resource control is already in OFF state */
866 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
867 DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
868 DRMID(drm_enc), sw_event);
869 mutex_unlock(&dpu_enc->rc_lock);
870 return 0;
871 } else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
872 DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
873 DRMID(drm_enc), sw_event, dpu_enc->rc_state);
874 mutex_unlock(&dpu_enc->rc_lock);
875 return -EINVAL;
876 }
877
878 /**
879 * expect to arrive here only if in either idle state or pre-off
880 * and in IDLE state the resources are already disabled
881 */
882 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
883 _dpu_encoder_resource_control_helper(drm_enc, false);
884
885 dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
886
887 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
888 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
889 "stop");
890
891 mutex_unlock(&dpu_enc->rc_lock);
892 break;
893
894 case DPU_ENC_RC_EVENT_ENTER_IDLE:
895 mutex_lock(&dpu_enc->rc_lock);
896
897 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
898 DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
899 DRMID(drm_enc), sw_event, dpu_enc->rc_state);
900 mutex_unlock(&dpu_enc->rc_lock);
901 return 0;
902 }
903
904 /*
905 * if we are in ON but a frame was just kicked off,
906 * ignore the IDLE event, it's probably a stale timer event
907 */
908 if (dpu_enc->frame_busy_mask[0]) {
909 DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
910 DRMID(drm_enc), sw_event, dpu_enc->rc_state);
911 mutex_unlock(&dpu_enc->rc_lock);
912 return 0;
913 }
914
915 if (is_vid_mode)
916 _dpu_encoder_irq_control(drm_enc, false);
917 else
918 _dpu_encoder_resource_control_helper(drm_enc, false);
919
920 dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
921
922 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
923 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
924 "idle");
925
926 mutex_unlock(&dpu_enc->rc_lock);
927 break;
928
929 default:
930 DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
931 sw_event);
932 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
933 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
934 "error");
935 break;
936 }
937
938 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
939 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
940 "end");
941 return 0;
942 }
943
dpu_encoder_virt_mode_set(struct drm_encoder * drm_enc,struct drm_display_mode * mode,struct drm_display_mode * adj_mode)944 static void dpu_encoder_virt_mode_set(struct drm_encoder *drm_enc,
945 struct drm_display_mode *mode,
946 struct drm_display_mode *adj_mode)
947 {
948 struct dpu_encoder_virt *dpu_enc;
949 struct msm_drm_private *priv;
950 struct dpu_kms *dpu_kms;
951 struct list_head *connector_list;
952 struct drm_connector *conn = NULL, *conn_iter;
953 struct drm_crtc *drm_crtc;
954 struct dpu_crtc_state *cstate;
955 struct dpu_rm_hw_iter hw_iter;
956 struct msm_display_topology topology;
957 struct dpu_hw_ctl *hw_ctl[MAX_CHANNELS_PER_ENC] = { NULL };
958 struct dpu_hw_mixer *hw_lm[MAX_CHANNELS_PER_ENC] = { NULL };
959 int num_lm = 0, num_ctl = 0;
960 int i, j, ret;
961
962 if (!drm_enc) {
963 DPU_ERROR("invalid encoder\n");
964 return;
965 }
966
967 dpu_enc = to_dpu_encoder_virt(drm_enc);
968 DPU_DEBUG_ENC(dpu_enc, "\n");
969
970 priv = drm_enc->dev->dev_private;
971 dpu_kms = to_dpu_kms(priv->kms);
972 connector_list = &dpu_kms->dev->mode_config.connector_list;
973
974 trace_dpu_enc_mode_set(DRMID(drm_enc));
975
976 list_for_each_entry(conn_iter, connector_list, head)
977 if (conn_iter->encoder == drm_enc)
978 conn = conn_iter;
979
980 if (!conn) {
981 DPU_ERROR_ENC(dpu_enc, "failed to find attached connector\n");
982 return;
983 } else if (!conn->state) {
984 DPU_ERROR_ENC(dpu_enc, "invalid connector state\n");
985 return;
986 }
987
988 drm_for_each_crtc(drm_crtc, drm_enc->dev)
989 if (drm_crtc->state->encoder_mask & drm_encoder_mask(drm_enc))
990 break;
991
992 topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);
993
994 /* Reserve dynamic resources now. Indicating non-AtomicTest phase */
995 ret = dpu_rm_reserve(&dpu_kms->rm, drm_enc, drm_crtc->state,
996 topology, false);
997 if (ret) {
998 DPU_ERROR_ENC(dpu_enc,
999 "failed to reserve hw resources, %d\n", ret);
1000 return;
1001 }
1002
1003 dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id, DPU_HW_BLK_PINGPONG);
1004 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1005 dpu_enc->hw_pp[i] = NULL;
1006 if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter))
1007 break;
1008 dpu_enc->hw_pp[i] = (struct dpu_hw_pingpong *) hw_iter.hw;
1009 }
1010
1011 dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id, DPU_HW_BLK_CTL);
1012 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1013 if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter))
1014 break;
1015 hw_ctl[i] = (struct dpu_hw_ctl *)hw_iter.hw;
1016 num_ctl++;
1017 }
1018
1019 dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id, DPU_HW_BLK_LM);
1020 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1021 if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter))
1022 break;
1023 hw_lm[i] = (struct dpu_hw_mixer *)hw_iter.hw;
1024 num_lm++;
1025 }
1026
1027 cstate = to_dpu_crtc_state(drm_crtc->state);
1028
1029 for (i = 0; i < num_lm; i++) {
1030 int ctl_idx = (i < num_ctl) ? i : (num_ctl-1);
1031
1032 cstate->mixers[i].hw_lm = hw_lm[i];
1033 cstate->mixers[i].lm_ctl = hw_ctl[ctl_idx];
1034 }
1035
1036 cstate->num_mixers = num_lm;
1037
1038 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1039 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1040
1041 if (phys) {
1042 if (!dpu_enc->hw_pp[i]) {
1043 DPU_ERROR_ENC(dpu_enc, "no pp block assigned"
1044 "at idx: %d\n", i);
1045 goto error;
1046 }
1047
1048 if (!hw_ctl[i]) {
1049 DPU_ERROR_ENC(dpu_enc, "no ctl block assigned"
1050 "at idx: %d\n", i);
1051 goto error;
1052 }
1053
1054 phys->hw_pp = dpu_enc->hw_pp[i];
1055 phys->hw_ctl = hw_ctl[i];
1056
1057 dpu_rm_init_hw_iter(&hw_iter, drm_enc->base.id,
1058 DPU_HW_BLK_INTF);
1059 for (j = 0; j < MAX_CHANNELS_PER_ENC; j++) {
1060 struct dpu_hw_intf *hw_intf;
1061
1062 if (!dpu_rm_get_hw(&dpu_kms->rm, &hw_iter))
1063 break;
1064
1065 hw_intf = (struct dpu_hw_intf *)hw_iter.hw;
1066 if (hw_intf->idx == phys->intf_idx)
1067 phys->hw_intf = hw_intf;
1068 }
1069
1070 if (!phys->hw_intf) {
1071 DPU_ERROR_ENC(dpu_enc,
1072 "no intf block assigned at idx: %d\n",
1073 i);
1074 goto error;
1075 }
1076
1077 phys->connector = conn->state->connector;
1078 if (phys->ops.mode_set)
1079 phys->ops.mode_set(phys, mode, adj_mode);
1080 }
1081 }
1082
1083 dpu_enc->mode_set_complete = true;
1084
1085 error:
1086 dpu_rm_release(&dpu_kms->rm, drm_enc);
1087 }
1088
_dpu_encoder_virt_enable_helper(struct drm_encoder * drm_enc)1089 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1090 {
1091 struct dpu_encoder_virt *dpu_enc = NULL;
1092 struct msm_drm_private *priv;
1093 struct dpu_kms *dpu_kms;
1094
1095 if (!drm_enc || !drm_enc->dev || !drm_enc->dev->dev_private) {
1096 DPU_ERROR("invalid parameters\n");
1097 return;
1098 }
1099
1100 priv = drm_enc->dev->dev_private;
1101 dpu_kms = to_dpu_kms(priv->kms);
1102 if (!dpu_kms) {
1103 DPU_ERROR("invalid dpu_kms\n");
1104 return;
1105 }
1106
1107 dpu_enc = to_dpu_encoder_virt(drm_enc);
1108 if (!dpu_enc || !dpu_enc->cur_master) {
1109 DPU_ERROR("invalid dpu encoder/master\n");
1110 return;
1111 }
1112
1113 if (dpu_enc->cur_master->hw_mdptop &&
1114 dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc)
1115 dpu_enc->cur_master->hw_mdptop->ops.reset_ubwc(
1116 dpu_enc->cur_master->hw_mdptop,
1117 dpu_kms->catalog);
1118
1119 _dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1120 }
1121
dpu_encoder_virt_runtime_resume(struct drm_encoder * drm_enc)1122 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1123 {
1124 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1125
1126 mutex_lock(&dpu_enc->enc_lock);
1127
1128 if (!dpu_enc->enabled)
1129 goto out;
1130
1131 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1132 dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1133 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1134 dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1135
1136 _dpu_encoder_virt_enable_helper(drm_enc);
1137
1138 out:
1139 mutex_unlock(&dpu_enc->enc_lock);
1140 }
1141
dpu_encoder_virt_enable(struct drm_encoder * drm_enc)1142 static void dpu_encoder_virt_enable(struct drm_encoder *drm_enc)
1143 {
1144 struct dpu_encoder_virt *dpu_enc = NULL;
1145 int ret = 0;
1146 struct drm_display_mode *cur_mode = NULL;
1147
1148 if (!drm_enc) {
1149 DPU_ERROR("invalid encoder\n");
1150 return;
1151 }
1152 dpu_enc = to_dpu_encoder_virt(drm_enc);
1153
1154 mutex_lock(&dpu_enc->enc_lock);
1155 cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1156
1157 trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1158 cur_mode->vdisplay);
1159
1160 /* always enable slave encoder before master */
1161 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1162 dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1163
1164 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1165 dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1166
1167 ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1168 if (ret) {
1169 DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1170 ret);
1171 goto out;
1172 }
1173
1174 _dpu_encoder_virt_enable_helper(drm_enc);
1175
1176 dpu_enc->enabled = true;
1177
1178 out:
1179 mutex_unlock(&dpu_enc->enc_lock);
1180 }
1181
dpu_encoder_virt_disable(struct drm_encoder * drm_enc)1182 static void dpu_encoder_virt_disable(struct drm_encoder *drm_enc)
1183 {
1184 struct dpu_encoder_virt *dpu_enc = NULL;
1185 struct msm_drm_private *priv;
1186 struct dpu_kms *dpu_kms;
1187 struct drm_display_mode *mode;
1188 int i = 0;
1189
1190 if (!drm_enc) {
1191 DPU_ERROR("invalid encoder\n");
1192 return;
1193 } else if (!drm_enc->dev) {
1194 DPU_ERROR("invalid dev\n");
1195 return;
1196 } else if (!drm_enc->dev->dev_private) {
1197 DPU_ERROR("invalid dev_private\n");
1198 return;
1199 }
1200
1201 dpu_enc = to_dpu_encoder_virt(drm_enc);
1202 DPU_DEBUG_ENC(dpu_enc, "\n");
1203
1204 mutex_lock(&dpu_enc->enc_lock);
1205 dpu_enc->enabled = false;
1206
1207 mode = &drm_enc->crtc->state->adjusted_mode;
1208
1209 priv = drm_enc->dev->dev_private;
1210 dpu_kms = to_dpu_kms(priv->kms);
1211
1212 trace_dpu_enc_disable(DRMID(drm_enc));
1213
1214 /* wait for idle */
1215 dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE);
1216
1217 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1218
1219 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1220 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1221
1222 if (phys && phys->ops.disable)
1223 phys->ops.disable(phys);
1224 }
1225
1226 /* after phys waits for frame-done, should be no more frames pending */
1227 if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
1228 DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1229 del_timer_sync(&dpu_enc->frame_done_timer);
1230 }
1231
1232 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1233
1234 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1235 if (dpu_enc->phys_encs[i])
1236 dpu_enc->phys_encs[i]->connector = NULL;
1237 }
1238
1239 DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1240
1241 dpu_rm_release(&dpu_kms->rm, drm_enc);
1242
1243 mutex_unlock(&dpu_enc->enc_lock);
1244 }
1245
dpu_encoder_get_intf(struct dpu_mdss_cfg * catalog,enum dpu_intf_type type,u32 controller_id)1246 static enum dpu_intf dpu_encoder_get_intf(struct dpu_mdss_cfg *catalog,
1247 enum dpu_intf_type type, u32 controller_id)
1248 {
1249 int i = 0;
1250
1251 for (i = 0; i < catalog->intf_count; i++) {
1252 if (catalog->intf[i].type == type
1253 && catalog->intf[i].controller_id == controller_id) {
1254 return catalog->intf[i].id;
1255 }
1256 }
1257
1258 return INTF_MAX;
1259 }
1260
dpu_encoder_vblank_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phy_enc)1261 static void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1262 struct dpu_encoder_phys *phy_enc)
1263 {
1264 struct dpu_encoder_virt *dpu_enc = NULL;
1265 unsigned long lock_flags;
1266
1267 if (!drm_enc || !phy_enc)
1268 return;
1269
1270 DPU_ATRACE_BEGIN("encoder_vblank_callback");
1271 dpu_enc = to_dpu_encoder_virt(drm_enc);
1272
1273 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1274 if (dpu_enc->crtc)
1275 dpu_crtc_vblank_callback(dpu_enc->crtc);
1276 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1277
1278 atomic_inc(&phy_enc->vsync_cnt);
1279 DPU_ATRACE_END("encoder_vblank_callback");
1280 }
1281
dpu_encoder_underrun_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phy_enc)1282 static void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1283 struct dpu_encoder_phys *phy_enc)
1284 {
1285 if (!phy_enc)
1286 return;
1287
1288 DPU_ATRACE_BEGIN("encoder_underrun_callback");
1289 atomic_inc(&phy_enc->underrun_cnt);
1290 trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1291 atomic_read(&phy_enc->underrun_cnt));
1292 DPU_ATRACE_END("encoder_underrun_callback");
1293 }
1294
dpu_encoder_assign_crtc(struct drm_encoder * drm_enc,struct drm_crtc * crtc)1295 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1296 {
1297 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1298 unsigned long lock_flags;
1299
1300 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1301 /* crtc should always be cleared before re-assigning */
1302 WARN_ON(crtc && dpu_enc->crtc);
1303 dpu_enc->crtc = crtc;
1304 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1305 }
1306
dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder * drm_enc,struct drm_crtc * crtc,bool enable)1307 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1308 struct drm_crtc *crtc, bool enable)
1309 {
1310 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1311 unsigned long lock_flags;
1312 int i;
1313
1314 trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1315
1316 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1317 if (dpu_enc->crtc != crtc) {
1318 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1319 return;
1320 }
1321 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1322
1323 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1324 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1325
1326 if (phys && phys->ops.control_vblank_irq)
1327 phys->ops.control_vblank_irq(phys, enable);
1328 }
1329 }
1330
dpu_encoder_register_frame_event_callback(struct drm_encoder * drm_enc,void (* frame_event_cb)(void *,u32 event),void * frame_event_cb_data)1331 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc,
1332 void (*frame_event_cb)(void *, u32 event),
1333 void *frame_event_cb_data)
1334 {
1335 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1336 unsigned long lock_flags;
1337 bool enable;
1338
1339 enable = frame_event_cb ? true : false;
1340
1341 if (!drm_enc) {
1342 DPU_ERROR("invalid encoder\n");
1343 return;
1344 }
1345 trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable);
1346
1347 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1348 dpu_enc->crtc_frame_event_cb = frame_event_cb;
1349 dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data;
1350 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1351 }
1352
dpu_encoder_frame_done_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * ready_phys,u32 event)1353 static void dpu_encoder_frame_done_callback(
1354 struct drm_encoder *drm_enc,
1355 struct dpu_encoder_phys *ready_phys, u32 event)
1356 {
1357 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1358 unsigned int i;
1359
1360 if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1361 | DPU_ENCODER_FRAME_EVENT_ERROR
1362 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1363
1364 if (!dpu_enc->frame_busy_mask[0]) {
1365 /**
1366 * suppress frame_done without waiter,
1367 * likely autorefresh
1368 */
1369 trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc),
1370 event, ready_phys->intf_idx);
1371 return;
1372 }
1373
1374 /* One of the physical encoders has become idle */
1375 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1376 if (dpu_enc->phys_encs[i] == ready_phys) {
1377 trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1378 dpu_enc->frame_busy_mask[0]);
1379 clear_bit(i, dpu_enc->frame_busy_mask);
1380 }
1381 }
1382
1383 if (!dpu_enc->frame_busy_mask[0]) {
1384 atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
1385 del_timer(&dpu_enc->frame_done_timer);
1386
1387 dpu_encoder_resource_control(drm_enc,
1388 DPU_ENC_RC_EVENT_FRAME_DONE);
1389
1390 if (dpu_enc->crtc_frame_event_cb)
1391 dpu_enc->crtc_frame_event_cb(
1392 dpu_enc->crtc_frame_event_cb_data,
1393 event);
1394 }
1395 } else {
1396 if (dpu_enc->crtc_frame_event_cb)
1397 dpu_enc->crtc_frame_event_cb(
1398 dpu_enc->crtc_frame_event_cb_data, event);
1399 }
1400 }
1401
dpu_encoder_off_work(struct work_struct * work)1402 static void dpu_encoder_off_work(struct work_struct *work)
1403 {
1404 struct dpu_encoder_virt *dpu_enc = container_of(work,
1405 struct dpu_encoder_virt, delayed_off_work.work);
1406
1407 if (!dpu_enc) {
1408 DPU_ERROR("invalid dpu encoder\n");
1409 return;
1410 }
1411
1412 dpu_encoder_resource_control(&dpu_enc->base,
1413 DPU_ENC_RC_EVENT_ENTER_IDLE);
1414
1415 dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1416 DPU_ENCODER_FRAME_EVENT_IDLE);
1417 }
1418
1419 /**
1420 * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1421 * drm_enc: Pointer to drm encoder structure
1422 * phys: Pointer to physical encoder structure
1423 * extra_flush_bits: Additional bit mask to include in flush trigger
1424 */
_dpu_encoder_trigger_flush(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phys,uint32_t extra_flush_bits)1425 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1426 struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
1427 {
1428 struct dpu_hw_ctl *ctl;
1429 int pending_kickoff_cnt;
1430 u32 ret = UINT_MAX;
1431
1432 if (!phys->hw_pp) {
1433 DPU_ERROR("invalid pingpong hw\n");
1434 return;
1435 }
1436
1437 ctl = phys->hw_ctl;
1438 if (!ctl || !ctl->ops.trigger_flush) {
1439 DPU_ERROR("missing trigger cb\n");
1440 return;
1441 }
1442
1443 pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1444
1445 if (extra_flush_bits && ctl->ops.update_pending_flush)
1446 ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1447
1448 ctl->ops.trigger_flush(ctl);
1449
1450 if (ctl->ops.get_pending_flush)
1451 ret = ctl->ops.get_pending_flush(ctl);
1452
1453 trace_dpu_enc_trigger_flush(DRMID(drm_enc), phys->intf_idx,
1454 pending_kickoff_cnt, ctl->idx,
1455 extra_flush_bits, ret);
1456 }
1457
1458 /**
1459 * _dpu_encoder_trigger_start - trigger start for a physical encoder
1460 * phys: Pointer to physical encoder structure
1461 */
_dpu_encoder_trigger_start(struct dpu_encoder_phys * phys)1462 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1463 {
1464 if (!phys) {
1465 DPU_ERROR("invalid argument(s)\n");
1466 return;
1467 }
1468
1469 if (!phys->hw_pp) {
1470 DPU_ERROR("invalid pingpong hw\n");
1471 return;
1472 }
1473
1474 if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1475 phys->ops.trigger_start(phys);
1476 }
1477
dpu_encoder_helper_trigger_start(struct dpu_encoder_phys * phys_enc)1478 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1479 {
1480 struct dpu_hw_ctl *ctl;
1481
1482 if (!phys_enc) {
1483 DPU_ERROR("invalid encoder\n");
1484 return;
1485 }
1486
1487 ctl = phys_enc->hw_ctl;
1488 if (ctl && ctl->ops.trigger_start) {
1489 ctl->ops.trigger_start(ctl);
1490 trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1491 }
1492 }
1493
dpu_encoder_helper_wait_event_timeout(int32_t drm_id,int32_t hw_id,struct dpu_encoder_wait_info * info)1494 static int dpu_encoder_helper_wait_event_timeout(
1495 int32_t drm_id,
1496 int32_t hw_id,
1497 struct dpu_encoder_wait_info *info)
1498 {
1499 int rc = 0;
1500 s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1501 s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1502 s64 time;
1503
1504 do {
1505 rc = wait_event_timeout(*(info->wq),
1506 atomic_read(info->atomic_cnt) == 0, jiffies);
1507 time = ktime_to_ms(ktime_get());
1508
1509 trace_dpu_enc_wait_event_timeout(drm_id, hw_id, rc, time,
1510 expected_time,
1511 atomic_read(info->atomic_cnt));
1512 /* If we timed out, counter is valid and time is less, wait again */
1513 } while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1514 (time < expected_time));
1515
1516 return rc;
1517 }
1518
dpu_encoder_helper_hw_reset(struct dpu_encoder_phys * phys_enc)1519 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1520 {
1521 struct dpu_encoder_virt *dpu_enc;
1522 struct dpu_hw_ctl *ctl;
1523 int rc;
1524
1525 if (!phys_enc) {
1526 DPU_ERROR("invalid encoder\n");
1527 return;
1528 }
1529 dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1530 ctl = phys_enc->hw_ctl;
1531
1532 if (!ctl || !ctl->ops.reset)
1533 return;
1534
1535 DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(phys_enc->parent),
1536 ctl->idx);
1537
1538 rc = ctl->ops.reset(ctl);
1539 if (rc)
1540 DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n", ctl->idx);
1541
1542 phys_enc->enable_state = DPU_ENC_ENABLED;
1543 }
1544
1545 /**
1546 * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1547 * Iterate through the physical encoders and perform consolidated flush
1548 * and/or control start triggering as needed. This is done in the virtual
1549 * encoder rather than the individual physical ones in order to handle
1550 * use cases that require visibility into multiple physical encoders at
1551 * a time.
1552 * dpu_enc: Pointer to virtual encoder structure
1553 */
_dpu_encoder_kickoff_phys(struct dpu_encoder_virt * dpu_enc)1554 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
1555 {
1556 struct dpu_hw_ctl *ctl;
1557 uint32_t i, pending_flush;
1558 unsigned long lock_flags;
1559
1560 pending_flush = 0x0;
1561
1562 /* update pending counts and trigger kickoff ctl flush atomically */
1563 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1564
1565 /* don't perform flush/start operations for slave encoders */
1566 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1567 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1568
1569 if (!phys || phys->enable_state == DPU_ENC_DISABLED)
1570 continue;
1571
1572 ctl = phys->hw_ctl;
1573 if (!ctl)
1574 continue;
1575
1576 /*
1577 * This is cleared in frame_done worker, which isn't invoked
1578 * for async commits. So don't set this for async, since it'll
1579 * roll over to the next commit.
1580 */
1581 if (phys->split_role != ENC_ROLE_SLAVE)
1582 set_bit(i, dpu_enc->frame_busy_mask);
1583
1584 if (!phys->ops.needs_single_flush ||
1585 !phys->ops.needs_single_flush(phys))
1586 _dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
1587 else if (ctl->ops.get_pending_flush)
1588 pending_flush |= ctl->ops.get_pending_flush(ctl);
1589 }
1590
1591 /* for split flush, combine pending flush masks and send to master */
1592 if (pending_flush && dpu_enc->cur_master) {
1593 _dpu_encoder_trigger_flush(
1594 &dpu_enc->base,
1595 dpu_enc->cur_master,
1596 pending_flush);
1597 }
1598
1599 _dpu_encoder_trigger_start(dpu_enc->cur_master);
1600
1601 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1602 }
1603
dpu_encoder_trigger_kickoff_pending(struct drm_encoder * drm_enc)1604 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1605 {
1606 struct dpu_encoder_virt *dpu_enc;
1607 struct dpu_encoder_phys *phys;
1608 unsigned int i;
1609 struct dpu_hw_ctl *ctl;
1610 struct msm_display_info *disp_info;
1611
1612 if (!drm_enc) {
1613 DPU_ERROR("invalid encoder\n");
1614 return;
1615 }
1616 dpu_enc = to_dpu_encoder_virt(drm_enc);
1617 disp_info = &dpu_enc->disp_info;
1618
1619 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1620 phys = dpu_enc->phys_encs[i];
1621
1622 if (phys && phys->hw_ctl) {
1623 ctl = phys->hw_ctl;
1624 if (ctl->ops.clear_pending_flush)
1625 ctl->ops.clear_pending_flush(ctl);
1626
1627 /* update only for command mode primary ctl */
1628 if ((phys == dpu_enc->cur_master) &&
1629 (disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE)
1630 && ctl->ops.trigger_pending)
1631 ctl->ops.trigger_pending(ctl);
1632 }
1633 }
1634 }
1635
_dpu_encoder_calculate_linetime(struct dpu_encoder_virt * dpu_enc,struct drm_display_mode * mode)1636 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1637 struct drm_display_mode *mode)
1638 {
1639 u64 pclk_rate;
1640 u32 pclk_period;
1641 u32 line_time;
1642
1643 /*
1644 * For linetime calculation, only operate on master encoder.
1645 */
1646 if (!dpu_enc->cur_master)
1647 return 0;
1648
1649 if (!dpu_enc->cur_master->ops.get_line_count) {
1650 DPU_ERROR("get_line_count function not defined\n");
1651 return 0;
1652 }
1653
1654 pclk_rate = mode->clock; /* pixel clock in kHz */
1655 if (pclk_rate == 0) {
1656 DPU_ERROR("pclk is 0, cannot calculate line time\n");
1657 return 0;
1658 }
1659
1660 pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1661 if (pclk_period == 0) {
1662 DPU_ERROR("pclk period is 0\n");
1663 return 0;
1664 }
1665
1666 /*
1667 * Line time calculation based on Pixel clock and HTOTAL.
1668 * Final unit is in ns.
1669 */
1670 line_time = (pclk_period * mode->htotal) / 1000;
1671 if (line_time == 0) {
1672 DPU_ERROR("line time calculation is 0\n");
1673 return 0;
1674 }
1675
1676 DPU_DEBUG_ENC(dpu_enc,
1677 "clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1678 pclk_rate, pclk_period, line_time);
1679
1680 return line_time;
1681 }
1682
dpu_encoder_vsync_time(struct drm_encoder * drm_enc,ktime_t * wakeup_time)1683 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time)
1684 {
1685 struct drm_display_mode *mode;
1686 struct dpu_encoder_virt *dpu_enc;
1687 u32 cur_line;
1688 u32 line_time;
1689 u32 vtotal, time_to_vsync;
1690 ktime_t cur_time;
1691
1692 dpu_enc = to_dpu_encoder_virt(drm_enc);
1693
1694 if (!drm_enc->crtc || !drm_enc->crtc->state) {
1695 DPU_ERROR("crtc/crtc state object is NULL\n");
1696 return -EINVAL;
1697 }
1698 mode = &drm_enc->crtc->state->adjusted_mode;
1699
1700 line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1701 if (!line_time)
1702 return -EINVAL;
1703
1704 cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1705
1706 vtotal = mode->vtotal;
1707 if (cur_line >= vtotal)
1708 time_to_vsync = line_time * vtotal;
1709 else
1710 time_to_vsync = line_time * (vtotal - cur_line);
1711
1712 if (time_to_vsync == 0) {
1713 DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1714 vtotal);
1715 return -EINVAL;
1716 }
1717
1718 cur_time = ktime_get();
1719 *wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1720
1721 DPU_DEBUG_ENC(dpu_enc,
1722 "cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1723 cur_line, vtotal, time_to_vsync,
1724 ktime_to_ms(cur_time),
1725 ktime_to_ms(*wakeup_time));
1726 return 0;
1727 }
1728
dpu_encoder_vsync_event_handler(struct timer_list * t)1729 static void dpu_encoder_vsync_event_handler(struct timer_list *t)
1730 {
1731 struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
1732 vsync_event_timer);
1733 struct drm_encoder *drm_enc = &dpu_enc->base;
1734 struct msm_drm_private *priv;
1735 struct msm_drm_thread *event_thread;
1736
1737 if (!drm_enc->dev || !drm_enc->dev->dev_private ||
1738 !drm_enc->crtc) {
1739 DPU_ERROR("invalid parameters\n");
1740 return;
1741 }
1742
1743 priv = drm_enc->dev->dev_private;
1744
1745 if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) {
1746 DPU_ERROR("invalid crtc index\n");
1747 return;
1748 }
1749 event_thread = &priv->event_thread[drm_enc->crtc->index];
1750 if (!event_thread) {
1751 DPU_ERROR("event_thread not found for crtc:%d\n",
1752 drm_enc->crtc->index);
1753 return;
1754 }
1755
1756 del_timer(&dpu_enc->vsync_event_timer);
1757 }
1758
dpu_encoder_vsync_event_work_handler(struct kthread_work * work)1759 static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work)
1760 {
1761 struct dpu_encoder_virt *dpu_enc = container_of(work,
1762 struct dpu_encoder_virt, vsync_event_work);
1763 ktime_t wakeup_time;
1764
1765 if (!dpu_enc) {
1766 DPU_ERROR("invalid dpu encoder\n");
1767 return;
1768 }
1769
1770 if (dpu_encoder_vsync_time(&dpu_enc->base, &wakeup_time))
1771 return;
1772
1773 trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time);
1774 mod_timer(&dpu_enc->vsync_event_timer,
1775 nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1776 }
1777
dpu_encoder_prepare_for_kickoff(struct drm_encoder * drm_enc)1778 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc)
1779 {
1780 struct dpu_encoder_virt *dpu_enc;
1781 struct dpu_encoder_phys *phys;
1782 bool needs_hw_reset = false;
1783 unsigned int i;
1784
1785 dpu_enc = to_dpu_encoder_virt(drm_enc);
1786
1787 trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
1788
1789 /* prepare for next kickoff, may include waiting on previous kickoff */
1790 DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
1791 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1792 phys = dpu_enc->phys_encs[i];
1793 if (phys) {
1794 if (phys->ops.prepare_for_kickoff)
1795 phys->ops.prepare_for_kickoff(phys);
1796 if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
1797 needs_hw_reset = true;
1798 }
1799 }
1800 DPU_ATRACE_END("enc_prepare_for_kickoff");
1801
1802 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1803
1804 /* if any phys needs reset, reset all phys, in-order */
1805 if (needs_hw_reset) {
1806 trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
1807 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1808 dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
1809 }
1810 }
1811 }
1812
dpu_encoder_kickoff(struct drm_encoder * drm_enc)1813 void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
1814 {
1815 struct dpu_encoder_virt *dpu_enc;
1816 struct dpu_encoder_phys *phys;
1817 ktime_t wakeup_time;
1818 unsigned long timeout_ms;
1819 unsigned int i;
1820
1821 DPU_ATRACE_BEGIN("encoder_kickoff");
1822 dpu_enc = to_dpu_encoder_virt(drm_enc);
1823
1824 trace_dpu_enc_kickoff(DRMID(drm_enc));
1825
1826 timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
1827 drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
1828
1829 atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
1830 mod_timer(&dpu_enc->frame_done_timer,
1831 jiffies + msecs_to_jiffies(timeout_ms));
1832
1833 /* All phys encs are ready to go, trigger the kickoff */
1834 _dpu_encoder_kickoff_phys(dpu_enc);
1835
1836 /* allow phys encs to handle any post-kickoff business */
1837 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1838 phys = dpu_enc->phys_encs[i];
1839 if (phys && phys->ops.handle_post_kickoff)
1840 phys->ops.handle_post_kickoff(phys);
1841 }
1842
1843 if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
1844 !dpu_encoder_vsync_time(drm_enc, &wakeup_time)) {
1845 trace_dpu_enc_early_kickoff(DRMID(drm_enc),
1846 ktime_to_ms(wakeup_time));
1847 mod_timer(&dpu_enc->vsync_event_timer,
1848 nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1849 }
1850
1851 DPU_ATRACE_END("encoder_kickoff");
1852 }
1853
dpu_encoder_prepare_commit(struct drm_encoder * drm_enc)1854 void dpu_encoder_prepare_commit(struct drm_encoder *drm_enc)
1855 {
1856 struct dpu_encoder_virt *dpu_enc;
1857 struct dpu_encoder_phys *phys;
1858 int i;
1859
1860 if (!drm_enc) {
1861 DPU_ERROR("invalid encoder\n");
1862 return;
1863 }
1864 dpu_enc = to_dpu_encoder_virt(drm_enc);
1865
1866 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1867 phys = dpu_enc->phys_encs[i];
1868 if (phys && phys->ops.prepare_commit)
1869 phys->ops.prepare_commit(phys);
1870 }
1871 }
1872
1873 #ifdef CONFIG_DEBUG_FS
_dpu_encoder_status_show(struct seq_file * s,void * data)1874 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
1875 {
1876 struct dpu_encoder_virt *dpu_enc = s->private;
1877 int i;
1878
1879 mutex_lock(&dpu_enc->enc_lock);
1880 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1881 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1882
1883 if (!phys)
1884 continue;
1885
1886 seq_printf(s, "intf:%d vsync:%8d underrun:%8d ",
1887 phys->intf_idx - INTF_0,
1888 atomic_read(&phys->vsync_cnt),
1889 atomic_read(&phys->underrun_cnt));
1890
1891 switch (phys->intf_mode) {
1892 case INTF_MODE_VIDEO:
1893 seq_puts(s, "mode: video\n");
1894 break;
1895 case INTF_MODE_CMD:
1896 seq_puts(s, "mode: command\n");
1897 break;
1898 default:
1899 seq_puts(s, "mode: ???\n");
1900 break;
1901 }
1902 }
1903 mutex_unlock(&dpu_enc->enc_lock);
1904
1905 return 0;
1906 }
1907
_dpu_encoder_debugfs_status_open(struct inode * inode,struct file * file)1908 static int _dpu_encoder_debugfs_status_open(struct inode *inode,
1909 struct file *file)
1910 {
1911 return single_open(file, _dpu_encoder_status_show, inode->i_private);
1912 }
1913
_dpu_encoder_init_debugfs(struct drm_encoder * drm_enc)1914 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
1915 {
1916 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1917 struct msm_drm_private *priv;
1918 struct dpu_kms *dpu_kms;
1919 int i;
1920
1921 static const struct file_operations debugfs_status_fops = {
1922 .open = _dpu_encoder_debugfs_status_open,
1923 .read = seq_read,
1924 .llseek = seq_lseek,
1925 .release = single_release,
1926 };
1927
1928 char name[DPU_NAME_SIZE];
1929
1930 if (!drm_enc->dev || !drm_enc->dev->dev_private) {
1931 DPU_ERROR("invalid encoder or kms\n");
1932 return -EINVAL;
1933 }
1934
1935 priv = drm_enc->dev->dev_private;
1936 dpu_kms = to_dpu_kms(priv->kms);
1937
1938 snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id);
1939
1940 /* create overall sub-directory for the encoder */
1941 dpu_enc->debugfs_root = debugfs_create_dir(name,
1942 drm_enc->dev->primary->debugfs_root);
1943
1944 /* don't error check these */
1945 debugfs_create_file("status", 0600,
1946 dpu_enc->debugfs_root, dpu_enc, &debugfs_status_fops);
1947
1948 for (i = 0; i < dpu_enc->num_phys_encs; i++)
1949 if (dpu_enc->phys_encs[i] &&
1950 dpu_enc->phys_encs[i]->ops.late_register)
1951 dpu_enc->phys_encs[i]->ops.late_register(
1952 dpu_enc->phys_encs[i],
1953 dpu_enc->debugfs_root);
1954
1955 return 0;
1956 }
1957 #else
_dpu_encoder_init_debugfs(struct drm_encoder * drm_enc)1958 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
1959 {
1960 return 0;
1961 }
1962 #endif
1963
dpu_encoder_late_register(struct drm_encoder * encoder)1964 static int dpu_encoder_late_register(struct drm_encoder *encoder)
1965 {
1966 return _dpu_encoder_init_debugfs(encoder);
1967 }
1968
dpu_encoder_early_unregister(struct drm_encoder * encoder)1969 static void dpu_encoder_early_unregister(struct drm_encoder *encoder)
1970 {
1971 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
1972
1973 debugfs_remove_recursive(dpu_enc->debugfs_root);
1974 }
1975
dpu_encoder_virt_add_phys_encs(u32 display_caps,struct dpu_encoder_virt * dpu_enc,struct dpu_enc_phys_init_params * params)1976 static int dpu_encoder_virt_add_phys_encs(
1977 u32 display_caps,
1978 struct dpu_encoder_virt *dpu_enc,
1979 struct dpu_enc_phys_init_params *params)
1980 {
1981 struct dpu_encoder_phys *enc = NULL;
1982
1983 DPU_DEBUG_ENC(dpu_enc, "\n");
1984
1985 /*
1986 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
1987 * in this function, check up-front.
1988 */
1989 if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
1990 ARRAY_SIZE(dpu_enc->phys_encs)) {
1991 DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
1992 dpu_enc->num_phys_encs);
1993 return -EINVAL;
1994 }
1995
1996 if (display_caps & MSM_DISPLAY_CAP_VID_MODE) {
1997 enc = dpu_encoder_phys_vid_init(params);
1998
1999 if (IS_ERR_OR_NULL(enc)) {
2000 DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
2001 PTR_ERR(enc));
2002 return enc == 0 ? -EINVAL : PTR_ERR(enc);
2003 }
2004
2005 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2006 ++dpu_enc->num_phys_encs;
2007 }
2008
2009 if (display_caps & MSM_DISPLAY_CAP_CMD_MODE) {
2010 enc = dpu_encoder_phys_cmd_init(params);
2011
2012 if (IS_ERR_OR_NULL(enc)) {
2013 DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
2014 PTR_ERR(enc));
2015 return enc == 0 ? -EINVAL : PTR_ERR(enc);
2016 }
2017
2018 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2019 ++dpu_enc->num_phys_encs;
2020 }
2021
2022 if (params->split_role == ENC_ROLE_SLAVE)
2023 dpu_enc->cur_slave = enc;
2024 else
2025 dpu_enc->cur_master = enc;
2026
2027 return 0;
2028 }
2029
2030 static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops = {
2031 .handle_vblank_virt = dpu_encoder_vblank_callback,
2032 .handle_underrun_virt = dpu_encoder_underrun_callback,
2033 .handle_frame_done = dpu_encoder_frame_done_callback,
2034 };
2035
dpu_encoder_setup_display(struct dpu_encoder_virt * dpu_enc,struct dpu_kms * dpu_kms,struct msm_display_info * disp_info)2036 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
2037 struct dpu_kms *dpu_kms,
2038 struct msm_display_info *disp_info)
2039 {
2040 int ret = 0;
2041 int i = 0;
2042 enum dpu_intf_type intf_type;
2043 struct dpu_enc_phys_init_params phys_params;
2044
2045 if (!dpu_enc || !dpu_kms) {
2046 DPU_ERROR("invalid arg(s), enc %d kms %d\n",
2047 dpu_enc != 0, dpu_kms != 0);
2048 return -EINVAL;
2049 }
2050
2051 dpu_enc->cur_master = NULL;
2052
2053 memset(&phys_params, 0, sizeof(phys_params));
2054 phys_params.dpu_kms = dpu_kms;
2055 phys_params.parent = &dpu_enc->base;
2056 phys_params.parent_ops = &dpu_encoder_parent_ops;
2057 phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2058
2059 DPU_DEBUG("\n");
2060
2061 switch (disp_info->intf_type) {
2062 case DRM_MODE_ENCODER_DSI:
2063 intf_type = INTF_DSI;
2064 break;
2065 default:
2066 DPU_ERROR_ENC(dpu_enc, "unsupported display interface type\n");
2067 return -EINVAL;
2068 }
2069
2070 WARN_ON(disp_info->num_of_h_tiles < 1);
2071
2072 DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2073
2074 if ((disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) ||
2075 (disp_info->capabilities & MSM_DISPLAY_CAP_VID_MODE))
2076 dpu_enc->idle_pc_supported =
2077 dpu_kms->catalog->caps->has_idle_pc;
2078
2079 mutex_lock(&dpu_enc->enc_lock);
2080 for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2081 /*
2082 * Left-most tile is at index 0, content is controller id
2083 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2084 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2085 */
2086 u32 controller_id = disp_info->h_tile_instance[i];
2087
2088 if (disp_info->num_of_h_tiles > 1) {
2089 if (i == 0)
2090 phys_params.split_role = ENC_ROLE_MASTER;
2091 else
2092 phys_params.split_role = ENC_ROLE_SLAVE;
2093 } else {
2094 phys_params.split_role = ENC_ROLE_SOLO;
2095 }
2096
2097 DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2098 i, controller_id, phys_params.split_role);
2099
2100 phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog,
2101 intf_type,
2102 controller_id);
2103 if (phys_params.intf_idx == INTF_MAX) {
2104 DPU_ERROR_ENC(dpu_enc, "could not get intf: type %d, id %d\n",
2105 intf_type, controller_id);
2106 ret = -EINVAL;
2107 }
2108
2109 if (!ret) {
2110 ret = dpu_encoder_virt_add_phys_encs(disp_info->capabilities,
2111 dpu_enc,
2112 &phys_params);
2113 if (ret)
2114 DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2115 }
2116 }
2117
2118 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2119 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2120
2121 if (phys) {
2122 atomic_set(&phys->vsync_cnt, 0);
2123 atomic_set(&phys->underrun_cnt, 0);
2124 }
2125 }
2126 mutex_unlock(&dpu_enc->enc_lock);
2127
2128 return ret;
2129 }
2130
dpu_encoder_frame_done_timeout(struct timer_list * t)2131 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2132 {
2133 struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
2134 frame_done_timer);
2135 struct drm_encoder *drm_enc = &dpu_enc->base;
2136 struct msm_drm_private *priv;
2137 u32 event;
2138
2139 if (!drm_enc->dev || !drm_enc->dev->dev_private) {
2140 DPU_ERROR("invalid parameters\n");
2141 return;
2142 }
2143 priv = drm_enc->dev->dev_private;
2144
2145 if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) {
2146 DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2147 DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2148 return;
2149 } else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
2150 DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2151 return;
2152 }
2153
2154 DPU_ERROR_ENC(dpu_enc, "frame done timeout\n");
2155
2156 event = DPU_ENCODER_FRAME_EVENT_ERROR;
2157 trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2158 dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event);
2159 }
2160
2161 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2162 .mode_set = dpu_encoder_virt_mode_set,
2163 .disable = dpu_encoder_virt_disable,
2164 .enable = dpu_kms_encoder_enable,
2165 .atomic_check = dpu_encoder_virt_atomic_check,
2166
2167 /* This is called by dpu_kms_encoder_enable */
2168 .commit = dpu_encoder_virt_enable,
2169 };
2170
2171 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2172 .destroy = dpu_encoder_destroy,
2173 .late_register = dpu_encoder_late_register,
2174 .early_unregister = dpu_encoder_early_unregister,
2175 };
2176
dpu_encoder_setup(struct drm_device * dev,struct drm_encoder * enc,struct msm_display_info * disp_info)2177 int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc,
2178 struct msm_display_info *disp_info)
2179 {
2180 struct msm_drm_private *priv = dev->dev_private;
2181 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2182 struct drm_encoder *drm_enc = NULL;
2183 struct dpu_encoder_virt *dpu_enc = NULL;
2184 int ret = 0;
2185
2186 dpu_enc = to_dpu_encoder_virt(enc);
2187
2188 mutex_init(&dpu_enc->enc_lock);
2189 ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2190 if (ret)
2191 goto fail;
2192
2193 atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
2194 timer_setup(&dpu_enc->frame_done_timer,
2195 dpu_encoder_frame_done_timeout, 0);
2196
2197 if (disp_info->intf_type == DRM_MODE_ENCODER_DSI)
2198 timer_setup(&dpu_enc->vsync_event_timer,
2199 dpu_encoder_vsync_event_handler,
2200 0);
2201
2202
2203 mutex_init(&dpu_enc->rc_lock);
2204 INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2205 dpu_encoder_off_work);
2206 dpu_enc->idle_timeout = IDLE_TIMEOUT;
2207
2208 kthread_init_work(&dpu_enc->vsync_event_work,
2209 dpu_encoder_vsync_event_work_handler);
2210
2211 memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2212
2213 DPU_DEBUG_ENC(dpu_enc, "created\n");
2214
2215 return ret;
2216
2217 fail:
2218 DPU_ERROR("failed to create encoder\n");
2219 if (drm_enc)
2220 dpu_encoder_destroy(drm_enc);
2221
2222 return ret;
2223
2224
2225 }
2226
dpu_encoder_init(struct drm_device * dev,int drm_enc_mode)2227 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2228 int drm_enc_mode)
2229 {
2230 struct dpu_encoder_virt *dpu_enc = NULL;
2231 int rc = 0;
2232
2233 dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL);
2234 if (!dpu_enc)
2235 return ERR_PTR(ENOMEM);
2236
2237 rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs,
2238 drm_enc_mode, NULL);
2239 if (rc) {
2240 devm_kfree(dev->dev, dpu_enc);
2241 return ERR_PTR(rc);
2242 }
2243
2244 drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2245
2246 spin_lock_init(&dpu_enc->enc_spinlock);
2247 dpu_enc->enabled = false;
2248
2249 return &dpu_enc->base;
2250 }
2251
dpu_encoder_wait_for_event(struct drm_encoder * drm_enc,enum msm_event_wait event)2252 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc,
2253 enum msm_event_wait event)
2254 {
2255 int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL;
2256 struct dpu_encoder_virt *dpu_enc = NULL;
2257 int i, ret = 0;
2258
2259 if (!drm_enc) {
2260 DPU_ERROR("invalid encoder\n");
2261 return -EINVAL;
2262 }
2263 dpu_enc = to_dpu_encoder_virt(drm_enc);
2264 DPU_DEBUG_ENC(dpu_enc, "\n");
2265
2266 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2267 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2268 if (!phys)
2269 continue;
2270
2271 switch (event) {
2272 case MSM_ENC_COMMIT_DONE:
2273 fn_wait = phys->ops.wait_for_commit_done;
2274 break;
2275 case MSM_ENC_TX_COMPLETE:
2276 fn_wait = phys->ops.wait_for_tx_complete;
2277 break;
2278 case MSM_ENC_VBLANK:
2279 fn_wait = phys->ops.wait_for_vblank;
2280 break;
2281 default:
2282 DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n",
2283 event);
2284 return -EINVAL;
2285 };
2286
2287 if (fn_wait) {
2288 DPU_ATRACE_BEGIN("wait_for_completion_event");
2289 ret = fn_wait(phys);
2290 DPU_ATRACE_END("wait_for_completion_event");
2291 if (ret)
2292 return ret;
2293 }
2294 }
2295
2296 return ret;
2297 }
2298
dpu_encoder_get_intf_mode(struct drm_encoder * encoder)2299 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2300 {
2301 struct dpu_encoder_virt *dpu_enc = NULL;
2302 int i;
2303
2304 if (!encoder) {
2305 DPU_ERROR("invalid encoder\n");
2306 return INTF_MODE_NONE;
2307 }
2308 dpu_enc = to_dpu_encoder_virt(encoder);
2309
2310 if (dpu_enc->cur_master)
2311 return dpu_enc->cur_master->intf_mode;
2312
2313 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2314 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2315
2316 if (phys)
2317 return phys->intf_mode;
2318 }
2319
2320 return INTF_MODE_NONE;
2321 }
2322