1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
3  */
4 
5 #include "dpu_hwio.h"
6 #include "dpu_hw_catalog.h"
7 #include "dpu_hw_top.h"
8 #include "dpu_kms.h"
9 
10 #define SSPP_SPARE                        0x28
11 #define UBWC_STATIC                       0x144
12 
13 #define FLD_SPLIT_DISPLAY_CMD             BIT(1)
14 #define FLD_SMART_PANEL_FREE_RUN          BIT(2)
15 #define FLD_INTF_1_SW_TRG_MUX             BIT(4)
16 #define FLD_INTF_2_SW_TRG_MUX             BIT(8)
17 #define FLD_TE_LINE_INTER_WATERLEVEL_MASK 0xFFFF
18 
19 #define DANGER_STATUS                     0x360
20 #define SAFE_STATUS                       0x364
21 
22 #define TE_LINE_INTERVAL                  0x3F4
23 
24 #define TRAFFIC_SHAPER_EN                 BIT(31)
25 #define TRAFFIC_SHAPER_RD_CLIENT(num)     (0x030 + (num * 4))
26 #define TRAFFIC_SHAPER_WR_CLIENT(num)     (0x060 + (num * 4))
27 #define TRAFFIC_SHAPER_FIXPOINT_FACTOR    4
28 
29 #define MDP_WD_TIMER_0_CTL                0x380
30 #define MDP_WD_TIMER_0_CTL2               0x384
31 #define MDP_WD_TIMER_0_LOAD_VALUE         0x388
32 #define MDP_WD_TIMER_1_CTL                0x390
33 #define MDP_WD_TIMER_1_CTL2               0x394
34 #define MDP_WD_TIMER_1_LOAD_VALUE         0x398
35 #define MDP_WD_TIMER_2_CTL                0x420
36 #define MDP_WD_TIMER_2_CTL2               0x424
37 #define MDP_WD_TIMER_2_LOAD_VALUE         0x428
38 #define MDP_WD_TIMER_3_CTL                0x430
39 #define MDP_WD_TIMER_3_CTL2               0x434
40 #define MDP_WD_TIMER_3_LOAD_VALUE         0x438
41 #define MDP_WD_TIMER_4_CTL                0x440
42 #define MDP_WD_TIMER_4_CTL2               0x444
43 #define MDP_WD_TIMER_4_LOAD_VALUE         0x448
44 
45 #define MDP_TICK_COUNT                    16
46 #define XO_CLK_RATE                       19200
47 #define MS_TICKS_IN_SEC                   1000
48 
49 #define CALCULATE_WD_LOAD_VALUE(fps) \
50 	((uint32_t)((MS_TICKS_IN_SEC * XO_CLK_RATE)/(MDP_TICK_COUNT * fps)))
51 
52 #define DCE_SEL                           0x450
53 
dpu_hw_setup_split_pipe(struct dpu_hw_mdp * mdp,struct split_pipe_cfg * cfg)54 static void dpu_hw_setup_split_pipe(struct dpu_hw_mdp *mdp,
55 		struct split_pipe_cfg *cfg)
56 {
57 	struct dpu_hw_blk_reg_map *c;
58 	u32 upper_pipe = 0;
59 	u32 lower_pipe = 0;
60 
61 	if (!mdp || !cfg)
62 		return;
63 
64 	c = &mdp->hw;
65 
66 	if (cfg->en) {
67 		if (cfg->mode == INTF_MODE_CMD) {
68 			lower_pipe = FLD_SPLIT_DISPLAY_CMD;
69 			/* interface controlling sw trigger */
70 			if (cfg->intf == INTF_2)
71 				lower_pipe |= FLD_INTF_1_SW_TRG_MUX;
72 			else
73 				lower_pipe |= FLD_INTF_2_SW_TRG_MUX;
74 			upper_pipe = lower_pipe;
75 		} else {
76 			if (cfg->intf == INTF_2) {
77 				lower_pipe = FLD_INTF_1_SW_TRG_MUX;
78 				upper_pipe = FLD_INTF_2_SW_TRG_MUX;
79 			} else {
80 				lower_pipe = FLD_INTF_2_SW_TRG_MUX;
81 				upper_pipe = FLD_INTF_1_SW_TRG_MUX;
82 			}
83 		}
84 	}
85 
86 	DPU_REG_WRITE(c, SSPP_SPARE, cfg->split_flush_en ? 0x1 : 0x0);
87 	DPU_REG_WRITE(c, SPLIT_DISPLAY_LOWER_PIPE_CTRL, lower_pipe);
88 	DPU_REG_WRITE(c, SPLIT_DISPLAY_UPPER_PIPE_CTRL, upper_pipe);
89 	DPU_REG_WRITE(c, SPLIT_DISPLAY_EN, cfg->en & 0x1);
90 }
91 
dpu_hw_setup_clk_force_ctrl(struct dpu_hw_mdp * mdp,enum dpu_clk_ctrl_type clk_ctrl,bool enable)92 static bool dpu_hw_setup_clk_force_ctrl(struct dpu_hw_mdp *mdp,
93 		enum dpu_clk_ctrl_type clk_ctrl, bool enable)
94 {
95 	struct dpu_hw_blk_reg_map *c;
96 	u32 reg_off, bit_off;
97 	u32 reg_val, new_val;
98 	bool clk_forced_on;
99 
100 	if (!mdp)
101 		return false;
102 
103 	c = &mdp->hw;
104 
105 	if (clk_ctrl <= DPU_CLK_CTRL_NONE || clk_ctrl >= DPU_CLK_CTRL_MAX)
106 		return false;
107 
108 	reg_off = mdp->caps->clk_ctrls[clk_ctrl].reg_off;
109 	bit_off = mdp->caps->clk_ctrls[clk_ctrl].bit_off;
110 
111 	reg_val = DPU_REG_READ(c, reg_off);
112 
113 	if (enable)
114 		new_val = reg_val | BIT(bit_off);
115 	else
116 		new_val = reg_val & ~BIT(bit_off);
117 
118 	DPU_REG_WRITE(c, reg_off, new_val);
119 
120 	clk_forced_on = !(reg_val & BIT(bit_off));
121 
122 	return clk_forced_on;
123 }
124 
125 
dpu_hw_get_danger_status(struct dpu_hw_mdp * mdp,struct dpu_danger_safe_status * status)126 static void dpu_hw_get_danger_status(struct dpu_hw_mdp *mdp,
127 		struct dpu_danger_safe_status *status)
128 {
129 	struct dpu_hw_blk_reg_map *c;
130 	u32 value;
131 
132 	if (!mdp || !status)
133 		return;
134 
135 	c = &mdp->hw;
136 
137 	value = DPU_REG_READ(c, DANGER_STATUS);
138 	status->mdp = (value >> 0) & 0x3;
139 	status->sspp[SSPP_VIG0] = (value >> 4) & 0x3;
140 	status->sspp[SSPP_VIG1] = (value >> 6) & 0x3;
141 	status->sspp[SSPP_VIG2] = (value >> 8) & 0x3;
142 	status->sspp[SSPP_VIG3] = (value >> 10) & 0x3;
143 	status->sspp[SSPP_RGB0] = (value >> 12) & 0x3;
144 	status->sspp[SSPP_RGB1] = (value >> 14) & 0x3;
145 	status->sspp[SSPP_RGB2] = (value >> 16) & 0x3;
146 	status->sspp[SSPP_RGB3] = (value >> 18) & 0x3;
147 	status->sspp[SSPP_DMA0] = (value >> 20) & 0x3;
148 	status->sspp[SSPP_DMA1] = (value >> 22) & 0x3;
149 	status->sspp[SSPP_DMA2] = (value >> 28) & 0x3;
150 	status->sspp[SSPP_DMA3] = (value >> 30) & 0x3;
151 	status->sspp[SSPP_CURSOR0] = (value >> 24) & 0x3;
152 	status->sspp[SSPP_CURSOR1] = (value >> 26) & 0x3;
153 }
154 
dpu_hw_setup_vsync_source(struct dpu_hw_mdp * mdp,struct dpu_vsync_source_cfg * cfg)155 static void dpu_hw_setup_vsync_source(struct dpu_hw_mdp *mdp,
156 		struct dpu_vsync_source_cfg *cfg)
157 {
158 	struct dpu_hw_blk_reg_map *c;
159 	u32 reg, wd_load_value, wd_ctl, wd_ctl2, i;
160 	static const u32 pp_offset[PINGPONG_MAX] = {0xC, 0x8, 0x4, 0x13, 0x18};
161 
162 	if (!mdp || !cfg || (cfg->pp_count > ARRAY_SIZE(cfg->ppnumber)))
163 		return;
164 
165 	c = &mdp->hw;
166 	reg = DPU_REG_READ(c, MDP_VSYNC_SEL);
167 	for (i = 0; i < cfg->pp_count; i++) {
168 		int pp_idx = cfg->ppnumber[i] - PINGPONG_0;
169 
170 		if (pp_idx >= ARRAY_SIZE(pp_offset))
171 			continue;
172 
173 		reg &= ~(0xf << pp_offset[pp_idx]);
174 		reg |= (cfg->vsync_source & 0xf) << pp_offset[pp_idx];
175 	}
176 	DPU_REG_WRITE(c, MDP_VSYNC_SEL, reg);
177 
178 	if (cfg->vsync_source >= DPU_VSYNC_SOURCE_WD_TIMER_4 &&
179 			cfg->vsync_source <= DPU_VSYNC_SOURCE_WD_TIMER_0) {
180 		switch (cfg->vsync_source) {
181 		case DPU_VSYNC_SOURCE_WD_TIMER_4:
182 			wd_load_value = MDP_WD_TIMER_4_LOAD_VALUE;
183 			wd_ctl = MDP_WD_TIMER_4_CTL;
184 			wd_ctl2 = MDP_WD_TIMER_4_CTL2;
185 			break;
186 		case DPU_VSYNC_SOURCE_WD_TIMER_3:
187 			wd_load_value = MDP_WD_TIMER_3_LOAD_VALUE;
188 			wd_ctl = MDP_WD_TIMER_3_CTL;
189 			wd_ctl2 = MDP_WD_TIMER_3_CTL2;
190 			break;
191 		case DPU_VSYNC_SOURCE_WD_TIMER_2:
192 			wd_load_value = MDP_WD_TIMER_2_LOAD_VALUE;
193 			wd_ctl = MDP_WD_TIMER_2_CTL;
194 			wd_ctl2 = MDP_WD_TIMER_2_CTL2;
195 			break;
196 		case DPU_VSYNC_SOURCE_WD_TIMER_1:
197 			wd_load_value = MDP_WD_TIMER_1_LOAD_VALUE;
198 			wd_ctl = MDP_WD_TIMER_1_CTL;
199 			wd_ctl2 = MDP_WD_TIMER_1_CTL2;
200 			break;
201 		case DPU_VSYNC_SOURCE_WD_TIMER_0:
202 		default:
203 			wd_load_value = MDP_WD_TIMER_0_LOAD_VALUE;
204 			wd_ctl = MDP_WD_TIMER_0_CTL;
205 			wd_ctl2 = MDP_WD_TIMER_0_CTL2;
206 			break;
207 		}
208 
209 		DPU_REG_WRITE(c, wd_load_value,
210 			CALCULATE_WD_LOAD_VALUE(cfg->frame_rate));
211 
212 		DPU_REG_WRITE(c, wd_ctl, BIT(0)); /* clear timer */
213 		reg = DPU_REG_READ(c, wd_ctl2);
214 		reg |= BIT(8);		/* enable heartbeat timer */
215 		reg |= BIT(0);		/* enable WD timer */
216 		DPU_REG_WRITE(c, wd_ctl2, reg);
217 
218 		/* make sure that timers are enabled/disabled for vsync state */
219 		wmb();
220 	}
221 }
222 
dpu_hw_get_safe_status(struct dpu_hw_mdp * mdp,struct dpu_danger_safe_status * status)223 static void dpu_hw_get_safe_status(struct dpu_hw_mdp *mdp,
224 		struct dpu_danger_safe_status *status)
225 {
226 	struct dpu_hw_blk_reg_map *c;
227 	u32 value;
228 
229 	if (!mdp || !status)
230 		return;
231 
232 	c = &mdp->hw;
233 
234 	value = DPU_REG_READ(c, SAFE_STATUS);
235 	status->mdp = (value >> 0) & 0x1;
236 	status->sspp[SSPP_VIG0] = (value >> 4) & 0x1;
237 	status->sspp[SSPP_VIG1] = (value >> 6) & 0x1;
238 	status->sspp[SSPP_VIG2] = (value >> 8) & 0x1;
239 	status->sspp[SSPP_VIG3] = (value >> 10) & 0x1;
240 	status->sspp[SSPP_RGB0] = (value >> 12) & 0x1;
241 	status->sspp[SSPP_RGB1] = (value >> 14) & 0x1;
242 	status->sspp[SSPP_RGB2] = (value >> 16) & 0x1;
243 	status->sspp[SSPP_RGB3] = (value >> 18) & 0x1;
244 	status->sspp[SSPP_DMA0] = (value >> 20) & 0x1;
245 	status->sspp[SSPP_DMA1] = (value >> 22) & 0x1;
246 	status->sspp[SSPP_DMA2] = (value >> 28) & 0x1;
247 	status->sspp[SSPP_DMA3] = (value >> 30) & 0x1;
248 	status->sspp[SSPP_CURSOR0] = (value >> 24) & 0x1;
249 	status->sspp[SSPP_CURSOR1] = (value >> 26) & 0x1;
250 }
251 
dpu_hw_reset_ubwc(struct dpu_hw_mdp * mdp,struct dpu_mdss_cfg * m)252 static void dpu_hw_reset_ubwc(struct dpu_hw_mdp *mdp, struct dpu_mdss_cfg *m)
253 {
254 	struct dpu_hw_blk_reg_map c;
255 
256 	if (!mdp || !m)
257 		return;
258 
259 	if (!IS_UBWC_20_SUPPORTED(m->caps->ubwc_version))
260 		return;
261 
262 	/* force blk offset to zero to access beginning of register region */
263 	c = mdp->hw;
264 	c.blk_off = 0x0;
265 	DPU_REG_WRITE(&c, UBWC_STATIC, m->mdp[0].ubwc_static);
266 }
267 
dpu_hw_intf_audio_select(struct dpu_hw_mdp * mdp)268 static void dpu_hw_intf_audio_select(struct dpu_hw_mdp *mdp)
269 {
270 	struct dpu_hw_blk_reg_map *c;
271 
272 	if (!mdp)
273 		return;
274 
275 	c = &mdp->hw;
276 
277 	DPU_REG_WRITE(c, HDMI_DP_CORE_SELECT, 0x1);
278 }
279 
_setup_mdp_ops(struct dpu_hw_mdp_ops * ops,unsigned long cap)280 static void _setup_mdp_ops(struct dpu_hw_mdp_ops *ops,
281 		unsigned long cap)
282 {
283 	ops->setup_split_pipe = dpu_hw_setup_split_pipe;
284 	ops->setup_clk_force_ctrl = dpu_hw_setup_clk_force_ctrl;
285 	ops->get_danger_status = dpu_hw_get_danger_status;
286 	ops->setup_vsync_source = dpu_hw_setup_vsync_source;
287 	ops->get_safe_status = dpu_hw_get_safe_status;
288 	ops->reset_ubwc = dpu_hw_reset_ubwc;
289 	ops->intf_audio_select = dpu_hw_intf_audio_select;
290 }
291 
_top_offset(enum dpu_mdp mdp,const struct dpu_mdss_cfg * m,void __iomem * addr,struct dpu_hw_blk_reg_map * b)292 static const struct dpu_mdp_cfg *_top_offset(enum dpu_mdp mdp,
293 		const struct dpu_mdss_cfg *m,
294 		void __iomem *addr,
295 		struct dpu_hw_blk_reg_map *b)
296 {
297 	int i;
298 
299 	if (!m || !addr || !b)
300 		return ERR_PTR(-EINVAL);
301 
302 	for (i = 0; i < m->mdp_count; i++) {
303 		if (mdp == m->mdp[i].id) {
304 			b->base_off = addr;
305 			b->blk_off = m->mdp[i].base;
306 			b->length = m->mdp[i].len;
307 			b->hwversion = m->hwversion;
308 			b->log_mask = DPU_DBG_MASK_TOP;
309 			return &m->mdp[i];
310 		}
311 	}
312 
313 	return ERR_PTR(-EINVAL);
314 }
315 
316 static struct dpu_hw_blk_ops dpu_hw_ops;
317 
dpu_hw_mdptop_init(enum dpu_mdp idx,void __iomem * addr,const struct dpu_mdss_cfg * m)318 struct dpu_hw_mdp *dpu_hw_mdptop_init(enum dpu_mdp idx,
319 		void __iomem *addr,
320 		const struct dpu_mdss_cfg *m)
321 {
322 	struct dpu_hw_mdp *mdp;
323 	const struct dpu_mdp_cfg *cfg;
324 
325 	if (!addr || !m)
326 		return ERR_PTR(-EINVAL);
327 
328 	mdp = kzalloc(sizeof(*mdp), GFP_KERNEL);
329 	if (!mdp)
330 		return ERR_PTR(-ENOMEM);
331 
332 	cfg = _top_offset(idx, m, addr, &mdp->hw);
333 	if (IS_ERR_OR_NULL(cfg)) {
334 		kfree(mdp);
335 		return ERR_PTR(-EINVAL);
336 	}
337 
338 	/*
339 	 * Assign ops
340 	 */
341 	mdp->idx = idx;
342 	mdp->caps = cfg;
343 	_setup_mdp_ops(&mdp->ops, mdp->caps->features);
344 
345 	dpu_hw_blk_init(&mdp->base, DPU_HW_BLK_TOP, idx, &dpu_hw_ops);
346 
347 	return mdp;
348 }
349 
dpu_hw_mdp_destroy(struct dpu_hw_mdp * mdp)350 void dpu_hw_mdp_destroy(struct dpu_hw_mdp *mdp)
351 {
352 	if (mdp)
353 		dpu_hw_blk_destroy(&mdp->base);
354 	kfree(mdp);
355 }
356 
357