1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * ASPEED Static Memory Controller driver
4  *
5  * Copyright (c) 2015-2016, IBM Corporation.
6  */
7 
8 #include <linux/bug.h>
9 #include <linux/device.h>
10 #include <linux/io.h>
11 #include <linux/module.h>
12 #include <linux/mutex.h>
13 #include <linux/mtd/mtd.h>
14 #include <linux/mtd/partitions.h>
15 #include <linux/mtd/spi-nor.h>
16 #include <linux/of.h>
17 #include <linux/of_platform.h>
18 #include <linux/sizes.h>
19 #include <linux/sysfs.h>
20 
21 #define DEVICE_NAME	"aspeed-smc"
22 
23 /*
24  * The driver only support SPI flash
25  */
26 enum aspeed_smc_flash_type {
27 	smc_type_nor  = 0,
28 	smc_type_nand = 1,
29 	smc_type_spi  = 2,
30 };
31 
32 struct aspeed_smc_chip;
33 
34 struct aspeed_smc_info {
35 	u32 maxsize;		/* maximum size of chip window */
36 	u8 nce;			/* number of chip enables */
37 	bool hastype;		/* flash type field exists in config reg */
38 	u8 we0;			/* shift for write enable bit for CE0 */
39 	u8 ctl0;		/* offset in regs of ctl for CE0 */
40 
41 	void (*set_4b)(struct aspeed_smc_chip *chip);
42 };
43 
44 static void aspeed_smc_chip_set_4b_spi_2400(struct aspeed_smc_chip *chip);
45 static void aspeed_smc_chip_set_4b(struct aspeed_smc_chip *chip);
46 
47 static const struct aspeed_smc_info fmc_2400_info = {
48 	.maxsize = 64 * 1024 * 1024,
49 	.nce = 5,
50 	.hastype = true,
51 	.we0 = 16,
52 	.ctl0 = 0x10,
53 	.set_4b = aspeed_smc_chip_set_4b,
54 };
55 
56 static const struct aspeed_smc_info spi_2400_info = {
57 	.maxsize = 64 * 1024 * 1024,
58 	.nce = 1,
59 	.hastype = false,
60 	.we0 = 0,
61 	.ctl0 = 0x04,
62 	.set_4b = aspeed_smc_chip_set_4b_spi_2400,
63 };
64 
65 static const struct aspeed_smc_info fmc_2500_info = {
66 	.maxsize = 256 * 1024 * 1024,
67 	.nce = 3,
68 	.hastype = true,
69 	.we0 = 16,
70 	.ctl0 = 0x10,
71 	.set_4b = aspeed_smc_chip_set_4b,
72 };
73 
74 static const struct aspeed_smc_info spi_2500_info = {
75 	.maxsize = 128 * 1024 * 1024,
76 	.nce = 2,
77 	.hastype = false,
78 	.we0 = 16,
79 	.ctl0 = 0x10,
80 	.set_4b = aspeed_smc_chip_set_4b,
81 };
82 
83 enum aspeed_smc_ctl_reg_value {
84 	smc_base,		/* base value without mode for other commands */
85 	smc_read,		/* command reg for (maybe fast) reads */
86 	smc_write,		/* command reg for writes */
87 	smc_max,
88 };
89 
90 struct aspeed_smc_controller;
91 
92 struct aspeed_smc_chip {
93 	int cs;
94 	struct aspeed_smc_controller *controller;
95 	void __iomem *ctl;			/* control register */
96 	void __iomem *ahb_base;			/* base of chip window */
97 	u32 ahb_window_size;			/* chip mapping window size */
98 	u32 ctl_val[smc_max];			/* control settings */
99 	enum aspeed_smc_flash_type type;	/* what type of flash */
100 	struct spi_nor nor;
101 };
102 
103 struct aspeed_smc_controller {
104 	struct device *dev;
105 
106 	struct mutex mutex;			/* controller access mutex */
107 	const struct aspeed_smc_info *info;	/* type info of controller */
108 	void __iomem *regs;			/* controller registers */
109 	void __iomem *ahb_base;			/* per-chip windows resource */
110 	u32 ahb_window_size;			/* full mapping window size */
111 
112 	struct aspeed_smc_chip *chips[0];	/* pointers to attached chips */
113 };
114 
115 /*
116  * SPI Flash Configuration Register (AST2500 SPI)
117  *     or
118  * Type setting Register (AST2500 FMC).
119  * CE0 and CE1 can only be of type SPI. CE2 can be of type NOR but the
120  * driver does not support it.
121  */
122 #define CONFIG_REG			0x0
123 #define CONFIG_DISABLE_LEGACY		BIT(31) /* 1 */
124 
125 #define CONFIG_CE2_WRITE		BIT(18)
126 #define CONFIG_CE1_WRITE		BIT(17)
127 #define CONFIG_CE0_WRITE		BIT(16)
128 
129 #define CONFIG_CE2_TYPE			BIT(4) /* AST2500 FMC only */
130 #define CONFIG_CE1_TYPE			BIT(2) /* AST2500 FMC only */
131 #define CONFIG_CE0_TYPE			BIT(0) /* AST2500 FMC only */
132 
133 /*
134  * CE Control Register
135  */
136 #define CE_CONTROL_REG			0x4
137 
138 /*
139  * CEx Control Register
140  */
141 #define CONTROL_AAF_MODE		BIT(31)
142 #define CONTROL_IO_MODE_MASK		GENMASK(30, 28)
143 #define CONTROL_IO_DUAL_DATA		BIT(29)
144 #define CONTROL_IO_DUAL_ADDR_DATA	(BIT(29) | BIT(28))
145 #define CONTROL_IO_QUAD_DATA		BIT(30)
146 #define CONTROL_IO_QUAD_ADDR_DATA	(BIT(30) | BIT(28))
147 #define CONTROL_CE_INACTIVE_SHIFT	24
148 #define CONTROL_CE_INACTIVE_MASK	GENMASK(27, \
149 					CONTROL_CE_INACTIVE_SHIFT)
150 /* 0 = 16T ... 15 = 1T   T=HCLK */
151 #define CONTROL_COMMAND_SHIFT		16
152 #define CONTROL_DUMMY_COMMAND_OUT	BIT(15)
153 #define CONTROL_IO_DUMMY_HI		BIT(14)
154 #define CONTROL_IO_DUMMY_HI_SHIFT	14
155 #define CONTROL_CLK_DIV4		BIT(13) /* others */
156 #define CONTROL_IO_ADDRESS_4B		BIT(13) /* AST2400 SPI */
157 #define CONTROL_RW_MERGE		BIT(12)
158 #define CONTROL_IO_DUMMY_LO_SHIFT	6
159 #define CONTROL_IO_DUMMY_LO		GENMASK(7, \
160 						CONTROL_IO_DUMMY_LO_SHIFT)
161 #define CONTROL_IO_DUMMY_MASK		(CONTROL_IO_DUMMY_HI | \
162 					 CONTROL_IO_DUMMY_LO)
163 #define CONTROL_IO_DUMMY_SET(dummy)				 \
164 	(((((dummy) >> 2) & 0x1) << CONTROL_IO_DUMMY_HI_SHIFT) | \
165 	 (((dummy) & 0x3) << CONTROL_IO_DUMMY_LO_SHIFT))
166 
167 #define CONTROL_CLOCK_FREQ_SEL_SHIFT	8
168 #define CONTROL_CLOCK_FREQ_SEL_MASK	GENMASK(11, \
169 						CONTROL_CLOCK_FREQ_SEL_SHIFT)
170 #define CONTROL_LSB_FIRST		BIT(5)
171 #define CONTROL_CLOCK_MODE_3		BIT(4)
172 #define CONTROL_IN_DUAL_DATA		BIT(3)
173 #define CONTROL_CE_STOP_ACTIVE_CONTROL	BIT(2)
174 #define CONTROL_COMMAND_MODE_MASK	GENMASK(1, 0)
175 #define CONTROL_COMMAND_MODE_NORMAL	0
176 #define CONTROL_COMMAND_MODE_FREAD	1
177 #define CONTROL_COMMAND_MODE_WRITE	2
178 #define CONTROL_COMMAND_MODE_USER	3
179 
180 #define CONTROL_KEEP_MASK						\
181 	(CONTROL_AAF_MODE | CONTROL_CE_INACTIVE_MASK | CONTROL_CLK_DIV4 | \
182 	 CONTROL_CLOCK_FREQ_SEL_MASK | CONTROL_LSB_FIRST | CONTROL_CLOCK_MODE_3)
183 
184 /*
185  * The Segment Register uses a 8MB unit to encode the start address
186  * and the end address of the mapping window of a flash SPI slave :
187  *
188  *        | byte 1 | byte 2 | byte 3 | byte 4 |
189  *        +--------+--------+--------+--------+
190  *        |  end   |  start |   0    |   0    |
191  */
192 #define SEGMENT_ADDR_REG0		0x30
193 #define SEGMENT_ADDR_START(_r)		((((_r) >> 16) & 0xFF) << 23)
194 #define SEGMENT_ADDR_END(_r)		((((_r) >> 24) & 0xFF) << 23)
195 #define SEGMENT_ADDR_VALUE(start, end)					\
196 	(((((start) >> 23) & 0xFF) << 16) | ((((end) >> 23) & 0xFF) << 24))
197 #define SEGMENT_ADDR_REG(controller, cs)	\
198 	((controller)->regs + SEGMENT_ADDR_REG0 + (cs) * 4)
199 
200 /*
201  * In user mode all data bytes read or written to the chip decode address
202  * range are transferred to or from the SPI bus. The range is treated as a
203  * fifo of arbitratry 1, 2, or 4 byte width but each write has to be aligned
204  * to its size. The address within the multiple 8kB range is ignored when
205  * sending bytes to the SPI bus.
206  *
207  * On the arm architecture, as of Linux version 4.3, memcpy_fromio and
208  * memcpy_toio on little endian targets use the optimized memcpy routines
209  * that were designed for well behavied memory storage. These routines
210  * have a stutter if the source and destination are not both word aligned,
211  * once with a duplicate access to the source after aligning to the
212  * destination to a word boundary, and again with a duplicate access to
213  * the source when the final byte count is not word aligned.
214  *
215  * When writing or reading the fifo this stutter discards data or sends
216  * too much data to the fifo and can not be used by this driver.
217  *
218  * While the low level io string routines that implement the insl family do
219  * the desired accesses and memory increments, the cross architecture io
220  * macros make them essentially impossible to use on a memory mapped address
221  * instead of a a token from the call to iomap of an io port.
222  *
223  * These fifo routines use readl and friends to a constant io port and update
224  * the memory buffer pointer and count via explicit code. The final updates
225  * to len are optimistically suppressed.
226  */
aspeed_smc_read_from_ahb(void * buf,void __iomem * src,size_t len)227 static int aspeed_smc_read_from_ahb(void *buf, void __iomem *src, size_t len)
228 {
229 	size_t offset = 0;
230 
231 	if (IS_ALIGNED((uintptr_t)src, sizeof(uintptr_t)) &&
232 	    IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
233 		ioread32_rep(src, buf, len >> 2);
234 		offset = len & ~0x3;
235 		len -= offset;
236 	}
237 	ioread8_rep(src, (u8 *)buf + offset, len);
238 	return 0;
239 }
240 
aspeed_smc_write_to_ahb(void __iomem * dst,const void * buf,size_t len)241 static int aspeed_smc_write_to_ahb(void __iomem *dst, const void *buf,
242 				   size_t len)
243 {
244 	size_t offset = 0;
245 
246 	if (IS_ALIGNED((uintptr_t)dst, sizeof(uintptr_t)) &&
247 	    IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
248 		iowrite32_rep(dst, buf, len >> 2);
249 		offset = len & ~0x3;
250 		len -= offset;
251 	}
252 	iowrite8_rep(dst, (const u8 *)buf + offset, len);
253 	return 0;
254 }
255 
aspeed_smc_chip_write_bit(struct aspeed_smc_chip * chip)256 static inline u32 aspeed_smc_chip_write_bit(struct aspeed_smc_chip *chip)
257 {
258 	return BIT(chip->controller->info->we0 + chip->cs);
259 }
260 
aspeed_smc_chip_check_config(struct aspeed_smc_chip * chip)261 static void aspeed_smc_chip_check_config(struct aspeed_smc_chip *chip)
262 {
263 	struct aspeed_smc_controller *controller = chip->controller;
264 	u32 reg;
265 
266 	reg = readl(controller->regs + CONFIG_REG);
267 
268 	if (reg & aspeed_smc_chip_write_bit(chip))
269 		return;
270 
271 	dev_dbg(controller->dev, "config write is not set ! @%p: 0x%08x\n",
272 		controller->regs + CONFIG_REG, reg);
273 	reg |= aspeed_smc_chip_write_bit(chip);
274 	writel(reg, controller->regs + CONFIG_REG);
275 }
276 
aspeed_smc_start_user(struct spi_nor * nor)277 static void aspeed_smc_start_user(struct spi_nor *nor)
278 {
279 	struct aspeed_smc_chip *chip = nor->priv;
280 	u32 ctl = chip->ctl_val[smc_base];
281 
282 	/*
283 	 * When the chip is controlled in user mode, we need write
284 	 * access to send the opcodes to it. So check the config.
285 	 */
286 	aspeed_smc_chip_check_config(chip);
287 
288 	ctl |= CONTROL_COMMAND_MODE_USER |
289 		CONTROL_CE_STOP_ACTIVE_CONTROL;
290 	writel(ctl, chip->ctl);
291 
292 	ctl &= ~CONTROL_CE_STOP_ACTIVE_CONTROL;
293 	writel(ctl, chip->ctl);
294 }
295 
aspeed_smc_stop_user(struct spi_nor * nor)296 static void aspeed_smc_stop_user(struct spi_nor *nor)
297 {
298 	struct aspeed_smc_chip *chip = nor->priv;
299 
300 	u32 ctl = chip->ctl_val[smc_read];
301 	u32 ctl2 = ctl | CONTROL_COMMAND_MODE_USER |
302 		CONTROL_CE_STOP_ACTIVE_CONTROL;
303 
304 	writel(ctl2, chip->ctl);	/* stop user CE control */
305 	writel(ctl, chip->ctl);		/* default to fread or read mode */
306 }
307 
aspeed_smc_prep(struct spi_nor * nor,enum spi_nor_ops ops)308 static int aspeed_smc_prep(struct spi_nor *nor, enum spi_nor_ops ops)
309 {
310 	struct aspeed_smc_chip *chip = nor->priv;
311 
312 	mutex_lock(&chip->controller->mutex);
313 	return 0;
314 }
315 
aspeed_smc_unprep(struct spi_nor * nor,enum spi_nor_ops ops)316 static void aspeed_smc_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
317 {
318 	struct aspeed_smc_chip *chip = nor->priv;
319 
320 	mutex_unlock(&chip->controller->mutex);
321 }
322 
aspeed_smc_read_reg(struct spi_nor * nor,u8 opcode,u8 * buf,int len)323 static int aspeed_smc_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
324 {
325 	struct aspeed_smc_chip *chip = nor->priv;
326 
327 	aspeed_smc_start_user(nor);
328 	aspeed_smc_write_to_ahb(chip->ahb_base, &opcode, 1);
329 	aspeed_smc_read_from_ahb(buf, chip->ahb_base, len);
330 	aspeed_smc_stop_user(nor);
331 	return 0;
332 }
333 
aspeed_smc_write_reg(struct spi_nor * nor,u8 opcode,u8 * buf,int len)334 static int aspeed_smc_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf,
335 				int len)
336 {
337 	struct aspeed_smc_chip *chip = nor->priv;
338 
339 	aspeed_smc_start_user(nor);
340 	aspeed_smc_write_to_ahb(chip->ahb_base, &opcode, 1);
341 	aspeed_smc_write_to_ahb(chip->ahb_base, buf, len);
342 	aspeed_smc_stop_user(nor);
343 	return 0;
344 }
345 
aspeed_smc_send_cmd_addr(struct spi_nor * nor,u8 cmd,u32 addr)346 static void aspeed_smc_send_cmd_addr(struct spi_nor *nor, u8 cmd, u32 addr)
347 {
348 	struct aspeed_smc_chip *chip = nor->priv;
349 	__be32 temp;
350 	u32 cmdaddr;
351 
352 	switch (nor->addr_width) {
353 	default:
354 		WARN_ONCE(1, "Unexpected address width %u, defaulting to 3\n",
355 			  nor->addr_width);
356 		/* FALLTHROUGH */
357 	case 3:
358 		cmdaddr = addr & 0xFFFFFF;
359 		cmdaddr |= cmd << 24;
360 
361 		temp = cpu_to_be32(cmdaddr);
362 		aspeed_smc_write_to_ahb(chip->ahb_base, &temp, 4);
363 		break;
364 	case 4:
365 		temp = cpu_to_be32(addr);
366 		aspeed_smc_write_to_ahb(chip->ahb_base, &cmd, 1);
367 		aspeed_smc_write_to_ahb(chip->ahb_base, &temp, 4);
368 		break;
369 	}
370 }
371 
aspeed_smc_read_user(struct spi_nor * nor,loff_t from,size_t len,u_char * read_buf)372 static ssize_t aspeed_smc_read_user(struct spi_nor *nor, loff_t from,
373 				    size_t len, u_char *read_buf)
374 {
375 	struct aspeed_smc_chip *chip = nor->priv;
376 	int i;
377 	u8 dummy = 0xFF;
378 
379 	aspeed_smc_start_user(nor);
380 	aspeed_smc_send_cmd_addr(nor, nor->read_opcode, from);
381 	for (i = 0; i < chip->nor.read_dummy / 8; i++)
382 		aspeed_smc_write_to_ahb(chip->ahb_base, &dummy, sizeof(dummy));
383 
384 	aspeed_smc_read_from_ahb(read_buf, chip->ahb_base, len);
385 	aspeed_smc_stop_user(nor);
386 	return len;
387 }
388 
aspeed_smc_write_user(struct spi_nor * nor,loff_t to,size_t len,const u_char * write_buf)389 static ssize_t aspeed_smc_write_user(struct spi_nor *nor, loff_t to,
390 				     size_t len, const u_char *write_buf)
391 {
392 	struct aspeed_smc_chip *chip = nor->priv;
393 
394 	aspeed_smc_start_user(nor);
395 	aspeed_smc_send_cmd_addr(nor, nor->program_opcode, to);
396 	aspeed_smc_write_to_ahb(chip->ahb_base, write_buf, len);
397 	aspeed_smc_stop_user(nor);
398 	return len;
399 }
400 
aspeed_smc_unregister(struct aspeed_smc_controller * controller)401 static int aspeed_smc_unregister(struct aspeed_smc_controller *controller)
402 {
403 	struct aspeed_smc_chip *chip;
404 	int n;
405 
406 	for (n = 0; n < controller->info->nce; n++) {
407 		chip = controller->chips[n];
408 		if (chip)
409 			mtd_device_unregister(&chip->nor.mtd);
410 	}
411 
412 	return 0;
413 }
414 
aspeed_smc_remove(struct platform_device * dev)415 static int aspeed_smc_remove(struct platform_device *dev)
416 {
417 	return aspeed_smc_unregister(platform_get_drvdata(dev));
418 }
419 
420 static const struct of_device_id aspeed_smc_matches[] = {
421 	{ .compatible = "aspeed,ast2400-fmc", .data = &fmc_2400_info },
422 	{ .compatible = "aspeed,ast2400-spi", .data = &spi_2400_info },
423 	{ .compatible = "aspeed,ast2500-fmc", .data = &fmc_2500_info },
424 	{ .compatible = "aspeed,ast2500-spi", .data = &spi_2500_info },
425 	{ }
426 };
427 MODULE_DEVICE_TABLE(of, aspeed_smc_matches);
428 
429 /*
430  * Each chip has a mapping window defined by a segment address
431  * register defining a start and an end address on the AHB bus. These
432  * addresses can be configured to fit the chip size and offer a
433  * contiguous memory region across chips. For the moment, we only
434  * check that each chip segment is valid.
435  */
aspeed_smc_chip_base(struct aspeed_smc_chip * chip,struct resource * res)436 static void __iomem *aspeed_smc_chip_base(struct aspeed_smc_chip *chip,
437 					  struct resource *res)
438 {
439 	struct aspeed_smc_controller *controller = chip->controller;
440 	u32 offset = 0;
441 	u32 reg;
442 
443 	if (controller->info->nce > 1) {
444 		reg = readl(SEGMENT_ADDR_REG(controller, chip->cs));
445 
446 		if (SEGMENT_ADDR_START(reg) >= SEGMENT_ADDR_END(reg))
447 			return NULL;
448 
449 		offset = SEGMENT_ADDR_START(reg) - res->start;
450 	}
451 
452 	return controller->ahb_base + offset;
453 }
454 
aspeed_smc_ahb_base_phy(struct aspeed_smc_controller * controller)455 static u32 aspeed_smc_ahb_base_phy(struct aspeed_smc_controller *controller)
456 {
457 	u32 seg0_val = readl(SEGMENT_ADDR_REG(controller, 0));
458 
459 	return SEGMENT_ADDR_START(seg0_val);
460 }
461 
chip_set_segment(struct aspeed_smc_chip * chip,u32 cs,u32 start,u32 size)462 static u32 chip_set_segment(struct aspeed_smc_chip *chip, u32 cs, u32 start,
463 			    u32 size)
464 {
465 	struct aspeed_smc_controller *controller = chip->controller;
466 	void __iomem *seg_reg;
467 	u32 seg_oldval, seg_newval, ahb_base_phy, end;
468 
469 	ahb_base_phy = aspeed_smc_ahb_base_phy(controller);
470 
471 	seg_reg = SEGMENT_ADDR_REG(controller, cs);
472 	seg_oldval = readl(seg_reg);
473 
474 	/*
475 	 * If the chip size is not specified, use the default segment
476 	 * size, but take into account the possible overlap with the
477 	 * previous segment
478 	 */
479 	if (!size)
480 		size = SEGMENT_ADDR_END(seg_oldval) - start;
481 
482 	/*
483 	 * The segment cannot exceed the maximum window size of the
484 	 * controller.
485 	 */
486 	if (start + size > ahb_base_phy + controller->ahb_window_size) {
487 		size = ahb_base_phy + controller->ahb_window_size - start;
488 		dev_warn(chip->nor.dev, "CE%d window resized to %dMB",
489 			 cs, size >> 20);
490 	}
491 
492 	end = start + size;
493 	seg_newval = SEGMENT_ADDR_VALUE(start, end);
494 	writel(seg_newval, seg_reg);
495 
496 	/*
497 	 * Restore default value if something goes wrong. The chip
498 	 * might have set some bogus value and we would loose access
499 	 * to the chip.
500 	 */
501 	if (seg_newval != readl(seg_reg)) {
502 		dev_err(chip->nor.dev, "CE%d window invalid", cs);
503 		writel(seg_oldval, seg_reg);
504 		start = SEGMENT_ADDR_START(seg_oldval);
505 		end = SEGMENT_ADDR_END(seg_oldval);
506 		size = end - start;
507 	}
508 
509 	dev_info(chip->nor.dev, "CE%d window [ 0x%.8x - 0x%.8x ] %dMB",
510 		 cs, start, end, size >> 20);
511 
512 	return size;
513 }
514 
515 /*
516  * The segment register defines the mapping window on the AHB bus and
517  * it needs to be configured depending on the chip size. The segment
518  * register of the following CE also needs to be tuned in order to
519  * provide a contiguous window across multiple chips.
520  *
521  * This is expected to be called in increasing CE order
522  */
aspeed_smc_chip_set_segment(struct aspeed_smc_chip * chip)523 static u32 aspeed_smc_chip_set_segment(struct aspeed_smc_chip *chip)
524 {
525 	struct aspeed_smc_controller *controller = chip->controller;
526 	u32 ahb_base_phy, start;
527 	u32 size = chip->nor.mtd.size;
528 
529 	/*
530 	 * Each controller has a chip size limit for direct memory
531 	 * access
532 	 */
533 	if (size > controller->info->maxsize)
534 		size = controller->info->maxsize;
535 
536 	/*
537 	 * The AST2400 SPI controller only handles one chip and does
538 	 * not have segment registers. Let's use the chip size for the
539 	 * AHB window.
540 	 */
541 	if (controller->info == &spi_2400_info)
542 		goto out;
543 
544 	/*
545 	 * The AST2500 SPI controller has a HW bug when the CE0 chip
546 	 * size reaches 128MB. Enforce a size limit of 120MB to
547 	 * prevent the controller from using bogus settings in the
548 	 * segment register.
549 	 */
550 	if (chip->cs == 0 && controller->info == &spi_2500_info &&
551 	    size == SZ_128M) {
552 		size = 120 << 20;
553 		dev_info(chip->nor.dev,
554 			 "CE%d window resized to %dMB (AST2500 HW quirk)",
555 			 chip->cs, size >> 20);
556 	}
557 
558 	ahb_base_phy = aspeed_smc_ahb_base_phy(controller);
559 
560 	/*
561 	 * As a start address for the current segment, use the default
562 	 * start address if we are handling CE0 or use the previous
563 	 * segment ending address
564 	 */
565 	if (chip->cs) {
566 		u32 prev = readl(SEGMENT_ADDR_REG(controller, chip->cs - 1));
567 
568 		start = SEGMENT_ADDR_END(prev);
569 	} else {
570 		start = ahb_base_phy;
571 	}
572 
573 	size = chip_set_segment(chip, chip->cs, start, size);
574 
575 	/* Update chip base address on the AHB bus */
576 	chip->ahb_base = controller->ahb_base + (start - ahb_base_phy);
577 
578 	/*
579 	 * Now, make sure the next segment does not overlap with the
580 	 * current one we just configured, even if there is no
581 	 * available chip. That could break access in Command Mode.
582 	 */
583 	if (chip->cs < controller->info->nce - 1)
584 		chip_set_segment(chip, chip->cs + 1, start + size, 0);
585 
586 out:
587 	if (size < chip->nor.mtd.size)
588 		dev_warn(chip->nor.dev,
589 			 "CE%d window too small for chip %dMB",
590 			 chip->cs, (u32)chip->nor.mtd.size >> 20);
591 
592 	return size;
593 }
594 
aspeed_smc_chip_enable_write(struct aspeed_smc_chip * chip)595 static void aspeed_smc_chip_enable_write(struct aspeed_smc_chip *chip)
596 {
597 	struct aspeed_smc_controller *controller = chip->controller;
598 	u32 reg;
599 
600 	reg = readl(controller->regs + CONFIG_REG);
601 
602 	reg |= aspeed_smc_chip_write_bit(chip);
603 	writel(reg, controller->regs + CONFIG_REG);
604 }
605 
aspeed_smc_chip_set_type(struct aspeed_smc_chip * chip,int type)606 static void aspeed_smc_chip_set_type(struct aspeed_smc_chip *chip, int type)
607 {
608 	struct aspeed_smc_controller *controller = chip->controller;
609 	u32 reg;
610 
611 	chip->type = type;
612 
613 	reg = readl(controller->regs + CONFIG_REG);
614 	reg &= ~(3 << (chip->cs * 2));
615 	reg |= chip->type << (chip->cs * 2);
616 	writel(reg, controller->regs + CONFIG_REG);
617 }
618 
619 /*
620  * The first chip of the AST2500 FMC flash controller is strapped by
621  * hardware, or autodetected, but other chips need to be set. Enforce
622  * the 4B setting for all chips.
623  */
aspeed_smc_chip_set_4b(struct aspeed_smc_chip * chip)624 static void aspeed_smc_chip_set_4b(struct aspeed_smc_chip *chip)
625 {
626 	struct aspeed_smc_controller *controller = chip->controller;
627 	u32 reg;
628 
629 	reg = readl(controller->regs + CE_CONTROL_REG);
630 	reg |= 1 << chip->cs;
631 	writel(reg, controller->regs + CE_CONTROL_REG);
632 }
633 
634 /*
635  * The AST2400 SPI flash controller does not have a CE Control
636  * register. It uses the CE0 control register to set 4Byte mode at the
637  * controller level.
638  */
aspeed_smc_chip_set_4b_spi_2400(struct aspeed_smc_chip * chip)639 static void aspeed_smc_chip_set_4b_spi_2400(struct aspeed_smc_chip *chip)
640 {
641 	chip->ctl_val[smc_base] |= CONTROL_IO_ADDRESS_4B;
642 	chip->ctl_val[smc_read] |= CONTROL_IO_ADDRESS_4B;
643 }
644 
aspeed_smc_chip_setup_init(struct aspeed_smc_chip * chip,struct resource * res)645 static int aspeed_smc_chip_setup_init(struct aspeed_smc_chip *chip,
646 				      struct resource *res)
647 {
648 	struct aspeed_smc_controller *controller = chip->controller;
649 	const struct aspeed_smc_info *info = controller->info;
650 	u32 reg, base_reg;
651 
652 	/*
653 	 * Always turn on the write enable bit to allow opcodes to be
654 	 * sent in user mode.
655 	 */
656 	aspeed_smc_chip_enable_write(chip);
657 
658 	/* The driver only supports SPI type flash */
659 	if (info->hastype)
660 		aspeed_smc_chip_set_type(chip, smc_type_spi);
661 
662 	/*
663 	 * Configure chip base address in memory
664 	 */
665 	chip->ahb_base = aspeed_smc_chip_base(chip, res);
666 	if (!chip->ahb_base) {
667 		dev_warn(chip->nor.dev, "CE%d window closed", chip->cs);
668 		return -EINVAL;
669 	}
670 
671 	/*
672 	 * Get value of the inherited control register. U-Boot usually
673 	 * does some timing calibration on the FMC chip, so it's good
674 	 * to keep them. In the future, we should handle calibration
675 	 * from Linux.
676 	 */
677 	reg = readl(chip->ctl);
678 	dev_dbg(controller->dev, "control register: %08x\n", reg);
679 
680 	base_reg = reg & CONTROL_KEEP_MASK;
681 	if (base_reg != reg) {
682 		dev_dbg(controller->dev,
683 			"control register changed to: %08x\n",
684 			base_reg);
685 	}
686 	chip->ctl_val[smc_base] = base_reg;
687 
688 	/*
689 	 * Retain the prior value of the control register as the
690 	 * default if it was normal access mode. Otherwise start with
691 	 * the sanitized base value set to read mode.
692 	 */
693 	if ((reg & CONTROL_COMMAND_MODE_MASK) ==
694 	    CONTROL_COMMAND_MODE_NORMAL)
695 		chip->ctl_val[smc_read] = reg;
696 	else
697 		chip->ctl_val[smc_read] = chip->ctl_val[smc_base] |
698 			CONTROL_COMMAND_MODE_NORMAL;
699 
700 	dev_dbg(controller->dev, "default control register: %08x\n",
701 		chip->ctl_val[smc_read]);
702 	return 0;
703 }
704 
aspeed_smc_chip_setup_finish(struct aspeed_smc_chip * chip)705 static int aspeed_smc_chip_setup_finish(struct aspeed_smc_chip *chip)
706 {
707 	struct aspeed_smc_controller *controller = chip->controller;
708 	const struct aspeed_smc_info *info = controller->info;
709 	u32 cmd;
710 
711 	if (chip->nor.addr_width == 4 && info->set_4b)
712 		info->set_4b(chip);
713 
714 	/* This is for direct AHB access when using Command Mode. */
715 	chip->ahb_window_size = aspeed_smc_chip_set_segment(chip);
716 
717 	/*
718 	 * base mode has not been optimized yet. use it for writes.
719 	 */
720 	chip->ctl_val[smc_write] = chip->ctl_val[smc_base] |
721 		chip->nor.program_opcode << CONTROL_COMMAND_SHIFT |
722 		CONTROL_COMMAND_MODE_WRITE;
723 
724 	dev_dbg(controller->dev, "write control register: %08x\n",
725 		chip->ctl_val[smc_write]);
726 
727 	/*
728 	 * TODO: Adjust clocks if fast read is supported and interpret
729 	 * SPI-NOR flags to adjust controller settings.
730 	 */
731 	if (chip->nor.read_proto == SNOR_PROTO_1_1_1) {
732 		if (chip->nor.read_dummy == 0)
733 			cmd = CONTROL_COMMAND_MODE_NORMAL;
734 		else
735 			cmd = CONTROL_COMMAND_MODE_FREAD;
736 	} else {
737 		dev_err(chip->nor.dev, "unsupported SPI read mode\n");
738 		return -EINVAL;
739 	}
740 
741 	chip->ctl_val[smc_read] |= cmd |
742 		CONTROL_IO_DUMMY_SET(chip->nor.read_dummy / 8);
743 
744 	dev_dbg(controller->dev, "base control register: %08x\n",
745 		chip->ctl_val[smc_read]);
746 	return 0;
747 }
748 
aspeed_smc_setup_flash(struct aspeed_smc_controller * controller,struct device_node * np,struct resource * r)749 static int aspeed_smc_setup_flash(struct aspeed_smc_controller *controller,
750 				  struct device_node *np, struct resource *r)
751 {
752 	const struct spi_nor_hwcaps hwcaps = {
753 		.mask = SNOR_HWCAPS_READ |
754 			SNOR_HWCAPS_READ_FAST |
755 			SNOR_HWCAPS_PP,
756 	};
757 	const struct aspeed_smc_info *info = controller->info;
758 	struct device *dev = controller->dev;
759 	struct device_node *child;
760 	unsigned int cs;
761 	int ret = -ENODEV;
762 
763 	for_each_available_child_of_node(np, child) {
764 		struct aspeed_smc_chip *chip;
765 		struct spi_nor *nor;
766 		struct mtd_info *mtd;
767 
768 		/* This driver does not support NAND or NOR flash devices. */
769 		if (!of_device_is_compatible(child, "jedec,spi-nor"))
770 			continue;
771 
772 		ret = of_property_read_u32(child, "reg", &cs);
773 		if (ret) {
774 			dev_err(dev, "Couldn't not read chip select.\n");
775 			break;
776 		}
777 
778 		if (cs >= info->nce) {
779 			dev_err(dev, "Chip select %d out of range.\n",
780 				cs);
781 			ret = -ERANGE;
782 			break;
783 		}
784 
785 		if (controller->chips[cs]) {
786 			dev_err(dev, "Chip select %d already in use by %s\n",
787 				cs, dev_name(controller->chips[cs]->nor.dev));
788 			ret = -EBUSY;
789 			break;
790 		}
791 
792 		chip = devm_kzalloc(controller->dev, sizeof(*chip), GFP_KERNEL);
793 		if (!chip) {
794 			ret = -ENOMEM;
795 			break;
796 		}
797 
798 		chip->controller = controller;
799 		chip->ctl = controller->regs + info->ctl0 + cs * 4;
800 		chip->cs = cs;
801 
802 		nor = &chip->nor;
803 		mtd = &nor->mtd;
804 
805 		nor->dev = dev;
806 		nor->priv = chip;
807 		spi_nor_set_flash_node(nor, child);
808 		nor->read = aspeed_smc_read_user;
809 		nor->write = aspeed_smc_write_user;
810 		nor->read_reg = aspeed_smc_read_reg;
811 		nor->write_reg = aspeed_smc_write_reg;
812 		nor->prepare = aspeed_smc_prep;
813 		nor->unprepare = aspeed_smc_unprep;
814 
815 		ret = aspeed_smc_chip_setup_init(chip, r);
816 		if (ret)
817 			break;
818 
819 		/*
820 		 * TODO: Add support for Dual and Quad SPI protocols
821 		 * attach when board support is present as determined
822 		 * by of property.
823 		 */
824 		ret = spi_nor_scan(nor, NULL, &hwcaps);
825 		if (ret)
826 			break;
827 
828 		ret = aspeed_smc_chip_setup_finish(chip);
829 		if (ret)
830 			break;
831 
832 		ret = mtd_device_register(mtd, NULL, 0);
833 		if (ret)
834 			break;
835 
836 		controller->chips[cs] = chip;
837 	}
838 
839 	if (ret) {
840 		of_node_put(child);
841 		aspeed_smc_unregister(controller);
842 	}
843 
844 	return ret;
845 }
846 
aspeed_smc_probe(struct platform_device * pdev)847 static int aspeed_smc_probe(struct platform_device *pdev)
848 {
849 	struct device_node *np = pdev->dev.of_node;
850 	struct device *dev = &pdev->dev;
851 	struct aspeed_smc_controller *controller;
852 	const struct of_device_id *match;
853 	const struct aspeed_smc_info *info;
854 	struct resource *res;
855 	int ret;
856 
857 	match = of_match_device(aspeed_smc_matches, &pdev->dev);
858 	if (!match || !match->data)
859 		return -ENODEV;
860 	info = match->data;
861 
862 	controller = devm_kzalloc(&pdev->dev,
863 				  struct_size(controller, chips, info->nce),
864 				  GFP_KERNEL);
865 	if (!controller)
866 		return -ENOMEM;
867 	controller->info = info;
868 	controller->dev = dev;
869 
870 	mutex_init(&controller->mutex);
871 	platform_set_drvdata(pdev, controller);
872 
873 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
874 	controller->regs = devm_ioremap_resource(dev, res);
875 	if (IS_ERR(controller->regs))
876 		return PTR_ERR(controller->regs);
877 
878 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
879 	controller->ahb_base = devm_ioremap_resource(dev, res);
880 	if (IS_ERR(controller->ahb_base))
881 		return PTR_ERR(controller->ahb_base);
882 
883 	controller->ahb_window_size = resource_size(res);
884 
885 	ret = aspeed_smc_setup_flash(controller, np, res);
886 	if (ret)
887 		dev_err(dev, "Aspeed SMC probe failed %d\n", ret);
888 
889 	return ret;
890 }
891 
892 static struct platform_driver aspeed_smc_driver = {
893 	.probe = aspeed_smc_probe,
894 	.remove = aspeed_smc_remove,
895 	.driver = {
896 		.name = DEVICE_NAME,
897 		.of_match_table = aspeed_smc_matches,
898 	}
899 };
900 
901 module_platform_driver(aspeed_smc_driver);
902 
903 MODULE_DESCRIPTION("ASPEED Static Memory Controller Driver");
904 MODULE_AUTHOR("Cedric Le Goater <clg@kaod.org>");
905 MODULE_LICENSE("GPL v2");
906