1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4
5 #include <linux/errno.h>
6
7 #ifdef __KERNEL__
8
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/mmap_lock.h>
19 #include <linux/range.h>
20 #include <linux/pfn.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/bit_spinlock.h>
23 #include <linux/shrinker.h>
24 #include <linux/resource.h>
25 #include <linux/page_ext.h>
26 #include <linux/err.h>
27 #include <linux/page-flags.h>
28 #include <linux/page_ref.h>
29 #include <linux/memremap.h>
30 #include <linux/overflow.h>
31 #include <linux/sizes.h>
32 #include <linux/sched.h>
33 #include <linux/pgtable.h>
34 #include <linux/kasan.h>
35
36 struct mempolicy;
37 struct anon_vma;
38 struct anon_vma_chain;
39 struct file_ra_state;
40 struct user_struct;
41 struct writeback_control;
42 struct bdi_writeback;
43 struct pt_regs;
44
45 extern int sysctl_page_lock_unfairness;
46
47 void init_mm_internals(void);
48
49 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
50 extern unsigned long max_mapnr;
51
set_max_mapnr(unsigned long limit)52 static inline void set_max_mapnr(unsigned long limit)
53 {
54 max_mapnr = limit;
55 }
56 #else
set_max_mapnr(unsigned long limit)57 static inline void set_max_mapnr(unsigned long limit) { }
58 #endif
59
60 extern atomic_long_t _totalram_pages;
totalram_pages(void)61 static inline unsigned long totalram_pages(void)
62 {
63 return (unsigned long)atomic_long_read(&_totalram_pages);
64 }
65
totalram_pages_inc(void)66 static inline void totalram_pages_inc(void)
67 {
68 atomic_long_inc(&_totalram_pages);
69 }
70
totalram_pages_dec(void)71 static inline void totalram_pages_dec(void)
72 {
73 atomic_long_dec(&_totalram_pages);
74 }
75
totalram_pages_add(long count)76 static inline void totalram_pages_add(long count)
77 {
78 atomic_long_add(count, &_totalram_pages);
79 }
80
81 extern void * high_memory;
82 extern int page_cluster;
83
84 #ifdef CONFIG_SYSCTL
85 extern int sysctl_legacy_va_layout;
86 #else
87 #define sysctl_legacy_va_layout 0
88 #endif
89
90 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
91 extern const int mmap_rnd_bits_min;
92 extern const int mmap_rnd_bits_max;
93 extern int mmap_rnd_bits __read_mostly;
94 #endif
95 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
96 extern const int mmap_rnd_compat_bits_min;
97 extern const int mmap_rnd_compat_bits_max;
98 extern int mmap_rnd_compat_bits __read_mostly;
99 #endif
100
101 #include <asm/page.h>
102 #include <asm/processor.h>
103
104 /*
105 * Architectures that support memory tagging (assigning tags to memory regions,
106 * embedding these tags into addresses that point to these memory regions, and
107 * checking that the memory and the pointer tags match on memory accesses)
108 * redefine this macro to strip tags from pointers.
109 * It's defined as noop for architectures that don't support memory tagging.
110 */
111 #ifndef untagged_addr
112 #define untagged_addr(addr) (addr)
113 #endif
114
115 #ifndef __pa_symbol
116 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
117 #endif
118
119 #ifndef page_to_virt
120 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
121 #endif
122
123 #ifndef lm_alias
124 #define lm_alias(x) __va(__pa_symbol(x))
125 #endif
126
127 /*
128 * To prevent common memory management code establishing
129 * a zero page mapping on a read fault.
130 * This macro should be defined within <asm/pgtable.h>.
131 * s390 does this to prevent multiplexing of hardware bits
132 * related to the physical page in case of virtualization.
133 */
134 #ifndef mm_forbids_zeropage
135 #define mm_forbids_zeropage(X) (0)
136 #endif
137
138 /*
139 * On some architectures it is expensive to call memset() for small sizes.
140 * If an architecture decides to implement their own version of
141 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
142 * define their own version of this macro in <asm/pgtable.h>
143 */
144 #if BITS_PER_LONG == 64
145 /* This function must be updated when the size of struct page grows above 80
146 * or reduces below 56. The idea that compiler optimizes out switch()
147 * statement, and only leaves move/store instructions. Also the compiler can
148 * combine write statements if they are both assignments and can be reordered,
149 * this can result in several of the writes here being dropped.
150 */
151 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
__mm_zero_struct_page(struct page * page)152 static inline void __mm_zero_struct_page(struct page *page)
153 {
154 unsigned long *_pp = (void *)page;
155
156 /* Check that struct page is either 56, 64, 72, or 80 bytes */
157 BUILD_BUG_ON(sizeof(struct page) & 7);
158 BUILD_BUG_ON(sizeof(struct page) < 56);
159 BUILD_BUG_ON(sizeof(struct page) > 80);
160
161 switch (sizeof(struct page)) {
162 case 80:
163 _pp[9] = 0;
164 fallthrough;
165 case 72:
166 _pp[8] = 0;
167 fallthrough;
168 case 64:
169 _pp[7] = 0;
170 fallthrough;
171 case 56:
172 _pp[6] = 0;
173 _pp[5] = 0;
174 _pp[4] = 0;
175 _pp[3] = 0;
176 _pp[2] = 0;
177 _pp[1] = 0;
178 _pp[0] = 0;
179 }
180 }
181 #else
182 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
183 #endif
184
185 /*
186 * Default maximum number of active map areas, this limits the number of vmas
187 * per mm struct. Users can overwrite this number by sysctl but there is a
188 * problem.
189 *
190 * When a program's coredump is generated as ELF format, a section is created
191 * per a vma. In ELF, the number of sections is represented in unsigned short.
192 * This means the number of sections should be smaller than 65535 at coredump.
193 * Because the kernel adds some informative sections to a image of program at
194 * generating coredump, we need some margin. The number of extra sections is
195 * 1-3 now and depends on arch. We use "5" as safe margin, here.
196 *
197 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
198 * not a hard limit any more. Although some userspace tools can be surprised by
199 * that.
200 */
201 #define MAPCOUNT_ELF_CORE_MARGIN (5)
202 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
203
204 extern int sysctl_max_map_count;
205
206 extern unsigned long sysctl_user_reserve_kbytes;
207 extern unsigned long sysctl_admin_reserve_kbytes;
208
209 extern int sysctl_overcommit_memory;
210 extern int sysctl_overcommit_ratio;
211 extern unsigned long sysctl_overcommit_kbytes;
212
213 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
214 loff_t *);
215 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
216 loff_t *);
217 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
218 loff_t *);
219 /*
220 * Any attempt to mark this function as static leads to build failure
221 * when CONFIG_DEBUG_INFO_BTF is enabled because __add_to_page_cache_locked()
222 * is referred to by BPF code. This must be visible for error injection.
223 */
224 int __add_to_page_cache_locked(struct page *page, struct address_space *mapping,
225 pgoff_t index, gfp_t gfp, void **shadowp);
226
227 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
228 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
229 #else
230 #define nth_page(page,n) ((page) + (n))
231 #endif
232
233 /* to align the pointer to the (next) page boundary */
234 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
235
236 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
237 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
238
239 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
240
241 void setup_initial_init_mm(void *start_code, void *end_code,
242 void *end_data, void *brk);
243
244 /*
245 * Linux kernel virtual memory manager primitives.
246 * The idea being to have a "virtual" mm in the same way
247 * we have a virtual fs - giving a cleaner interface to the
248 * mm details, and allowing different kinds of memory mappings
249 * (from shared memory to executable loading to arbitrary
250 * mmap() functions).
251 */
252
253 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
254 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
255 void vm_area_free(struct vm_area_struct *);
256
257 #ifndef CONFIG_MMU
258 extern struct rb_root nommu_region_tree;
259 extern struct rw_semaphore nommu_region_sem;
260
261 extern unsigned int kobjsize(const void *objp);
262 #endif
263
264 /*
265 * vm_flags in vm_area_struct, see mm_types.h.
266 * When changing, update also include/trace/events/mmflags.h
267 */
268 #define VM_NONE 0x00000000
269
270 #define VM_READ 0x00000001 /* currently active flags */
271 #define VM_WRITE 0x00000002
272 #define VM_EXEC 0x00000004
273 #define VM_SHARED 0x00000008
274
275 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
276 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
277 #define VM_MAYWRITE 0x00000020
278 #define VM_MAYEXEC 0x00000040
279 #define VM_MAYSHARE 0x00000080
280
281 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
282 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
283 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
284 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
285
286 #define VM_LOCKED 0x00002000
287 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
288
289 /* Used by sys_madvise() */
290 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
291 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
292
293 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
294 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
295 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
296 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
297 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
298 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
299 #define VM_SYNC 0x00800000 /* Synchronous page faults */
300 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
301 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
302 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
303
304 #ifdef CONFIG_MEM_SOFT_DIRTY
305 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
306 #else
307 # define VM_SOFTDIRTY 0
308 #endif
309
310 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
311 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
312 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
313 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
314
315 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
316 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
317 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
318 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
319 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
320 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
321 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
322 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
323 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
324 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
325 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
326 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
327
328 #ifdef CONFIG_ARCH_HAS_PKEYS
329 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
330 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
331 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
332 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
333 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
334 #ifdef CONFIG_PPC
335 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4
336 #else
337 # define VM_PKEY_BIT4 0
338 #endif
339 #endif /* CONFIG_ARCH_HAS_PKEYS */
340
341 #if defined(CONFIG_X86)
342 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
343 #elif defined(CONFIG_PPC)
344 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
345 #elif defined(CONFIG_PARISC)
346 # define VM_GROWSUP VM_ARCH_1
347 #elif defined(CONFIG_IA64)
348 # define VM_GROWSUP VM_ARCH_1
349 #elif defined(CONFIG_SPARC64)
350 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
351 # define VM_ARCH_CLEAR VM_SPARC_ADI
352 #elif defined(CONFIG_ARM64)
353 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
354 # define VM_ARCH_CLEAR VM_ARM64_BTI
355 #elif !defined(CONFIG_MMU)
356 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
357 #endif
358
359 #if defined(CONFIG_ARM64_MTE)
360 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
361 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
362 #else
363 # define VM_MTE VM_NONE
364 # define VM_MTE_ALLOWED VM_NONE
365 #endif
366
367 #ifndef VM_GROWSUP
368 # define VM_GROWSUP VM_NONE
369 #endif
370
371 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
372 # define VM_UFFD_MINOR_BIT 37
373 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
374 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
375 # define VM_UFFD_MINOR VM_NONE
376 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
377
378 /* Bits set in the VMA until the stack is in its final location */
379 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
380
381 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
382
383 /* Common data flag combinations */
384 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
385 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
386 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
387 VM_MAYWRITE | VM_MAYEXEC)
388 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
389 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
390
391 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
392 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
393 #endif
394
395 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
396 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
397 #endif
398
399 #ifdef CONFIG_STACK_GROWSUP
400 #define VM_STACK VM_GROWSUP
401 #else
402 #define VM_STACK VM_GROWSDOWN
403 #endif
404
405 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
406
407 /* VMA basic access permission flags */
408 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
409
410
411 /*
412 * Special vmas that are non-mergable, non-mlock()able.
413 */
414 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
415
416 /* This mask prevents VMA from being scanned with khugepaged */
417 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
418
419 /* This mask defines which mm->def_flags a process can inherit its parent */
420 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
421
422 /* This mask is used to clear all the VMA flags used by mlock */
423 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
424
425 /* Arch-specific flags to clear when updating VM flags on protection change */
426 #ifndef VM_ARCH_CLEAR
427 # define VM_ARCH_CLEAR VM_NONE
428 #endif
429 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
430
431 /*
432 * mapping from the currently active vm_flags protection bits (the
433 * low four bits) to a page protection mask..
434 */
435 extern pgprot_t protection_map[16];
436
437 /**
438 * enum fault_flag - Fault flag definitions.
439 * @FAULT_FLAG_WRITE: Fault was a write fault.
440 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
441 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
442 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
443 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
444 * @FAULT_FLAG_TRIED: The fault has been tried once.
445 * @FAULT_FLAG_USER: The fault originated in userspace.
446 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
447 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
448 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
449 *
450 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
451 * whether we would allow page faults to retry by specifying these two
452 * fault flags correctly. Currently there can be three legal combinations:
453 *
454 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
455 * this is the first try
456 *
457 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
458 * we've already tried at least once
459 *
460 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
461 *
462 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
463 * be used. Note that page faults can be allowed to retry for multiple times,
464 * in which case we'll have an initial fault with flags (a) then later on
465 * continuous faults with flags (b). We should always try to detect pending
466 * signals before a retry to make sure the continuous page faults can still be
467 * interrupted if necessary.
468 */
469 enum fault_flag {
470 FAULT_FLAG_WRITE = 1 << 0,
471 FAULT_FLAG_MKWRITE = 1 << 1,
472 FAULT_FLAG_ALLOW_RETRY = 1 << 2,
473 FAULT_FLAG_RETRY_NOWAIT = 1 << 3,
474 FAULT_FLAG_KILLABLE = 1 << 4,
475 FAULT_FLAG_TRIED = 1 << 5,
476 FAULT_FLAG_USER = 1 << 6,
477 FAULT_FLAG_REMOTE = 1 << 7,
478 FAULT_FLAG_INSTRUCTION = 1 << 8,
479 FAULT_FLAG_INTERRUPTIBLE = 1 << 9,
480 };
481
482 /*
483 * The default fault flags that should be used by most of the
484 * arch-specific page fault handlers.
485 */
486 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
487 FAULT_FLAG_KILLABLE | \
488 FAULT_FLAG_INTERRUPTIBLE)
489
490 /**
491 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
492 * @flags: Fault flags.
493 *
494 * This is mostly used for places where we want to try to avoid taking
495 * the mmap_lock for too long a time when waiting for another condition
496 * to change, in which case we can try to be polite to release the
497 * mmap_lock in the first round to avoid potential starvation of other
498 * processes that would also want the mmap_lock.
499 *
500 * Return: true if the page fault allows retry and this is the first
501 * attempt of the fault handling; false otherwise.
502 */
fault_flag_allow_retry_first(enum fault_flag flags)503 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
504 {
505 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
506 (!(flags & FAULT_FLAG_TRIED));
507 }
508
509 #define FAULT_FLAG_TRACE \
510 { FAULT_FLAG_WRITE, "WRITE" }, \
511 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
512 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
513 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
514 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
515 { FAULT_FLAG_TRIED, "TRIED" }, \
516 { FAULT_FLAG_USER, "USER" }, \
517 { FAULT_FLAG_REMOTE, "REMOTE" }, \
518 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
519 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
520
521 /*
522 * vm_fault is filled by the pagefault handler and passed to the vma's
523 * ->fault function. The vma's ->fault is responsible for returning a bitmask
524 * of VM_FAULT_xxx flags that give details about how the fault was handled.
525 *
526 * MM layer fills up gfp_mask for page allocations but fault handler might
527 * alter it if its implementation requires a different allocation context.
528 *
529 * pgoff should be used in favour of virtual_address, if possible.
530 */
531 struct vm_fault {
532 const struct {
533 struct vm_area_struct *vma; /* Target VMA */
534 gfp_t gfp_mask; /* gfp mask to be used for allocations */
535 pgoff_t pgoff; /* Logical page offset based on vma */
536 unsigned long address; /* Faulting virtual address */
537 };
538 enum fault_flag flags; /* FAULT_FLAG_xxx flags
539 * XXX: should really be 'const' */
540 pmd_t *pmd; /* Pointer to pmd entry matching
541 * the 'address' */
542 pud_t *pud; /* Pointer to pud entry matching
543 * the 'address'
544 */
545 union {
546 pte_t orig_pte; /* Value of PTE at the time of fault */
547 pmd_t orig_pmd; /* Value of PMD at the time of fault,
548 * used by PMD fault only.
549 */
550 };
551
552 struct page *cow_page; /* Page handler may use for COW fault */
553 struct page *page; /* ->fault handlers should return a
554 * page here, unless VM_FAULT_NOPAGE
555 * is set (which is also implied by
556 * VM_FAULT_ERROR).
557 */
558 /* These three entries are valid only while holding ptl lock */
559 pte_t *pte; /* Pointer to pte entry matching
560 * the 'address'. NULL if the page
561 * table hasn't been allocated.
562 */
563 spinlock_t *ptl; /* Page table lock.
564 * Protects pte page table if 'pte'
565 * is not NULL, otherwise pmd.
566 */
567 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
568 * vm_ops->map_pages() sets up a page
569 * table from atomic context.
570 * do_fault_around() pre-allocates
571 * page table to avoid allocation from
572 * atomic context.
573 */
574 };
575
576 /* page entry size for vm->huge_fault() */
577 enum page_entry_size {
578 PE_SIZE_PTE = 0,
579 PE_SIZE_PMD,
580 PE_SIZE_PUD,
581 };
582
583 /*
584 * These are the virtual MM functions - opening of an area, closing and
585 * unmapping it (needed to keep files on disk up-to-date etc), pointer
586 * to the functions called when a no-page or a wp-page exception occurs.
587 */
588 struct vm_operations_struct {
589 void (*open)(struct vm_area_struct * area);
590 void (*close)(struct vm_area_struct * area);
591 /* Called any time before splitting to check if it's allowed */
592 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
593 int (*mremap)(struct vm_area_struct *area);
594 /*
595 * Called by mprotect() to make driver-specific permission
596 * checks before mprotect() is finalised. The VMA must not
597 * be modified. Returns 0 if eprotect() can proceed.
598 */
599 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
600 unsigned long end, unsigned long newflags);
601 vm_fault_t (*fault)(struct vm_fault *vmf);
602 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
603 enum page_entry_size pe_size);
604 vm_fault_t (*map_pages)(struct vm_fault *vmf,
605 pgoff_t start_pgoff, pgoff_t end_pgoff);
606 unsigned long (*pagesize)(struct vm_area_struct * area);
607
608 /* notification that a previously read-only page is about to become
609 * writable, if an error is returned it will cause a SIGBUS */
610 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
611
612 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
613 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
614
615 /* called by access_process_vm when get_user_pages() fails, typically
616 * for use by special VMAs. See also generic_access_phys() for a generic
617 * implementation useful for any iomem mapping.
618 */
619 int (*access)(struct vm_area_struct *vma, unsigned long addr,
620 void *buf, int len, int write);
621
622 /* Called by the /proc/PID/maps code to ask the vma whether it
623 * has a special name. Returning non-NULL will also cause this
624 * vma to be dumped unconditionally. */
625 const char *(*name)(struct vm_area_struct *vma);
626
627 #ifdef CONFIG_NUMA
628 /*
629 * set_policy() op must add a reference to any non-NULL @new mempolicy
630 * to hold the policy upon return. Caller should pass NULL @new to
631 * remove a policy and fall back to surrounding context--i.e. do not
632 * install a MPOL_DEFAULT policy, nor the task or system default
633 * mempolicy.
634 */
635 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
636
637 /*
638 * get_policy() op must add reference [mpol_get()] to any policy at
639 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
640 * in mm/mempolicy.c will do this automatically.
641 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
642 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
643 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
644 * must return NULL--i.e., do not "fallback" to task or system default
645 * policy.
646 */
647 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
648 unsigned long addr);
649 #endif
650 /*
651 * Called by vm_normal_page() for special PTEs to find the
652 * page for @addr. This is useful if the default behavior
653 * (using pte_page()) would not find the correct page.
654 */
655 struct page *(*find_special_page)(struct vm_area_struct *vma,
656 unsigned long addr);
657 };
658
vma_init(struct vm_area_struct * vma,struct mm_struct * mm)659 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
660 {
661 static const struct vm_operations_struct dummy_vm_ops = {};
662
663 memset(vma, 0, sizeof(*vma));
664 vma->vm_mm = mm;
665 vma->vm_ops = &dummy_vm_ops;
666 INIT_LIST_HEAD(&vma->anon_vma_chain);
667 }
668
vma_set_anonymous(struct vm_area_struct * vma)669 static inline void vma_set_anonymous(struct vm_area_struct *vma)
670 {
671 vma->vm_ops = NULL;
672 }
673
vma_is_anonymous(struct vm_area_struct * vma)674 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
675 {
676 return !vma->vm_ops;
677 }
678
vma_is_temporary_stack(struct vm_area_struct * vma)679 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
680 {
681 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
682
683 if (!maybe_stack)
684 return false;
685
686 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
687 VM_STACK_INCOMPLETE_SETUP)
688 return true;
689
690 return false;
691 }
692
vma_is_foreign(struct vm_area_struct * vma)693 static inline bool vma_is_foreign(struct vm_area_struct *vma)
694 {
695 if (!current->mm)
696 return true;
697
698 if (current->mm != vma->vm_mm)
699 return true;
700
701 return false;
702 }
703
vma_is_accessible(struct vm_area_struct * vma)704 static inline bool vma_is_accessible(struct vm_area_struct *vma)
705 {
706 return vma->vm_flags & VM_ACCESS_FLAGS;
707 }
708
709 #ifdef CONFIG_SHMEM
710 /*
711 * The vma_is_shmem is not inline because it is used only by slow
712 * paths in userfault.
713 */
714 bool vma_is_shmem(struct vm_area_struct *vma);
715 #else
vma_is_shmem(struct vm_area_struct * vma)716 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
717 #endif
718
719 int vma_is_stack_for_current(struct vm_area_struct *vma);
720
721 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
722 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
723
724 struct mmu_gather;
725 struct inode;
726
727 #include <linux/huge_mm.h>
728
729 /*
730 * Methods to modify the page usage count.
731 *
732 * What counts for a page usage:
733 * - cache mapping (page->mapping)
734 * - private data (page->private)
735 * - page mapped in a task's page tables, each mapping
736 * is counted separately
737 *
738 * Also, many kernel routines increase the page count before a critical
739 * routine so they can be sure the page doesn't go away from under them.
740 */
741
742 /*
743 * Drop a ref, return true if the refcount fell to zero (the page has no users)
744 */
put_page_testzero(struct page * page)745 static inline int put_page_testzero(struct page *page)
746 {
747 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
748 return page_ref_dec_and_test(page);
749 }
750
751 /*
752 * Try to grab a ref unless the page has a refcount of zero, return false if
753 * that is the case.
754 * This can be called when MMU is off so it must not access
755 * any of the virtual mappings.
756 */
get_page_unless_zero(struct page * page)757 static inline int get_page_unless_zero(struct page *page)
758 {
759 return page_ref_add_unless(page, 1, 0);
760 }
761
762 extern int page_is_ram(unsigned long pfn);
763
764 enum {
765 REGION_INTERSECTS,
766 REGION_DISJOINT,
767 REGION_MIXED,
768 };
769
770 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
771 unsigned long desc);
772
773 /* Support for virtually mapped pages */
774 struct page *vmalloc_to_page(const void *addr);
775 unsigned long vmalloc_to_pfn(const void *addr);
776
777 /*
778 * Determine if an address is within the vmalloc range
779 *
780 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
781 * is no special casing required.
782 */
783
784 #ifndef is_ioremap_addr
785 #define is_ioremap_addr(x) is_vmalloc_addr(x)
786 #endif
787
788 #ifdef CONFIG_MMU
789 extern bool is_vmalloc_addr(const void *x);
790 extern int is_vmalloc_or_module_addr(const void *x);
791 #else
is_vmalloc_addr(const void * x)792 static inline bool is_vmalloc_addr(const void *x)
793 {
794 return false;
795 }
is_vmalloc_or_module_addr(const void * x)796 static inline int is_vmalloc_or_module_addr(const void *x)
797 {
798 return 0;
799 }
800 #endif
801
802 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
kvmalloc(size_t size,gfp_t flags)803 static inline void *kvmalloc(size_t size, gfp_t flags)
804 {
805 return kvmalloc_node(size, flags, NUMA_NO_NODE);
806 }
kvzalloc_node(size_t size,gfp_t flags,int node)807 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
808 {
809 return kvmalloc_node(size, flags | __GFP_ZERO, node);
810 }
kvzalloc(size_t size,gfp_t flags)811 static inline void *kvzalloc(size_t size, gfp_t flags)
812 {
813 return kvmalloc(size, flags | __GFP_ZERO);
814 }
815
kvmalloc_array(size_t n,size_t size,gfp_t flags)816 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
817 {
818 size_t bytes;
819
820 if (unlikely(check_mul_overflow(n, size, &bytes)))
821 return NULL;
822
823 return kvmalloc(bytes, flags);
824 }
825
kvcalloc(size_t n,size_t size,gfp_t flags)826 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
827 {
828 return kvmalloc_array(n, size, flags | __GFP_ZERO);
829 }
830
831 extern void *kvrealloc(const void *p, size_t oldsize, size_t newsize,
832 gfp_t flags);
833 extern void kvfree(const void *addr);
834 extern void kvfree_sensitive(const void *addr, size_t len);
835
head_compound_mapcount(struct page * head)836 static inline int head_compound_mapcount(struct page *head)
837 {
838 return atomic_read(compound_mapcount_ptr(head)) + 1;
839 }
840
841 /*
842 * Mapcount of compound page as a whole, does not include mapped sub-pages.
843 *
844 * Must be called only for compound pages or any their tail sub-pages.
845 */
compound_mapcount(struct page * page)846 static inline int compound_mapcount(struct page *page)
847 {
848 VM_BUG_ON_PAGE(!PageCompound(page), page);
849 page = compound_head(page);
850 return head_compound_mapcount(page);
851 }
852
853 /*
854 * The atomic page->_mapcount, starts from -1: so that transitions
855 * both from it and to it can be tracked, using atomic_inc_and_test
856 * and atomic_add_negative(-1).
857 */
page_mapcount_reset(struct page * page)858 static inline void page_mapcount_reset(struct page *page)
859 {
860 atomic_set(&(page)->_mapcount, -1);
861 }
862
863 int __page_mapcount(struct page *page);
864
865 /*
866 * Mapcount of 0-order page; when compound sub-page, includes
867 * compound_mapcount().
868 *
869 * Result is undefined for pages which cannot be mapped into userspace.
870 * For example SLAB or special types of pages. See function page_has_type().
871 * They use this place in struct page differently.
872 */
page_mapcount(struct page * page)873 static inline int page_mapcount(struct page *page)
874 {
875 if (unlikely(PageCompound(page)))
876 return __page_mapcount(page);
877 return atomic_read(&page->_mapcount) + 1;
878 }
879
880 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
881 int total_mapcount(struct page *page);
882 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
883 #else
total_mapcount(struct page * page)884 static inline int total_mapcount(struct page *page)
885 {
886 return page_mapcount(page);
887 }
page_trans_huge_mapcount(struct page * page,int * total_mapcount)888 static inline int page_trans_huge_mapcount(struct page *page,
889 int *total_mapcount)
890 {
891 int mapcount = page_mapcount(page);
892 if (total_mapcount)
893 *total_mapcount = mapcount;
894 return mapcount;
895 }
896 #endif
897
virt_to_head_page(const void * x)898 static inline struct page *virt_to_head_page(const void *x)
899 {
900 struct page *page = virt_to_page(x);
901
902 return compound_head(page);
903 }
904
905 void __put_page(struct page *page);
906
907 void put_pages_list(struct list_head *pages);
908
909 void split_page(struct page *page, unsigned int order);
910 void copy_huge_page(struct page *dst, struct page *src);
911
912 /*
913 * Compound pages have a destructor function. Provide a
914 * prototype for that function and accessor functions.
915 * These are _only_ valid on the head of a compound page.
916 */
917 typedef void compound_page_dtor(struct page *);
918
919 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
920 enum compound_dtor_id {
921 NULL_COMPOUND_DTOR,
922 COMPOUND_PAGE_DTOR,
923 #ifdef CONFIG_HUGETLB_PAGE
924 HUGETLB_PAGE_DTOR,
925 #endif
926 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
927 TRANSHUGE_PAGE_DTOR,
928 #endif
929 NR_COMPOUND_DTORS,
930 };
931 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
932
set_compound_page_dtor(struct page * page,enum compound_dtor_id compound_dtor)933 static inline void set_compound_page_dtor(struct page *page,
934 enum compound_dtor_id compound_dtor)
935 {
936 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
937 page[1].compound_dtor = compound_dtor;
938 }
939
destroy_compound_page(struct page * page)940 static inline void destroy_compound_page(struct page *page)
941 {
942 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
943 compound_page_dtors[page[1].compound_dtor](page);
944 }
945
compound_order(struct page * page)946 static inline unsigned int compound_order(struct page *page)
947 {
948 if (!PageHead(page))
949 return 0;
950 return page[1].compound_order;
951 }
952
hpage_pincount_available(struct page * page)953 static inline bool hpage_pincount_available(struct page *page)
954 {
955 /*
956 * Can the page->hpage_pinned_refcount field be used? That field is in
957 * the 3rd page of the compound page, so the smallest (2-page) compound
958 * pages cannot support it.
959 */
960 page = compound_head(page);
961 return PageCompound(page) && compound_order(page) > 1;
962 }
963
head_compound_pincount(struct page * head)964 static inline int head_compound_pincount(struct page *head)
965 {
966 return atomic_read(compound_pincount_ptr(head));
967 }
968
compound_pincount(struct page * page)969 static inline int compound_pincount(struct page *page)
970 {
971 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
972 page = compound_head(page);
973 return head_compound_pincount(page);
974 }
975
set_compound_order(struct page * page,unsigned int order)976 static inline void set_compound_order(struct page *page, unsigned int order)
977 {
978 page[1].compound_order = order;
979 page[1].compound_nr = 1U << order;
980 }
981
982 /* Returns the number of pages in this potentially compound page. */
compound_nr(struct page * page)983 static inline unsigned long compound_nr(struct page *page)
984 {
985 if (!PageHead(page))
986 return 1;
987 return page[1].compound_nr;
988 }
989
990 /* Returns the number of bytes in this potentially compound page. */
page_size(struct page * page)991 static inline unsigned long page_size(struct page *page)
992 {
993 return PAGE_SIZE << compound_order(page);
994 }
995
996 /* Returns the number of bits needed for the number of bytes in a page */
page_shift(struct page * page)997 static inline unsigned int page_shift(struct page *page)
998 {
999 return PAGE_SHIFT + compound_order(page);
1000 }
1001
1002 void free_compound_page(struct page *page);
1003
1004 #ifdef CONFIG_MMU
1005 /*
1006 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1007 * servicing faults for write access. In the normal case, do always want
1008 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1009 * that do not have writing enabled, when used by access_process_vm.
1010 */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)1011 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1012 {
1013 if (likely(vma->vm_flags & VM_WRITE))
1014 pte = pte_mkwrite(pte);
1015 return pte;
1016 }
1017
1018 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1019 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
1020
1021 vm_fault_t finish_fault(struct vm_fault *vmf);
1022 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
1023 #endif
1024
1025 /*
1026 * Multiple processes may "see" the same page. E.g. for untouched
1027 * mappings of /dev/null, all processes see the same page full of
1028 * zeroes, and text pages of executables and shared libraries have
1029 * only one copy in memory, at most, normally.
1030 *
1031 * For the non-reserved pages, page_count(page) denotes a reference count.
1032 * page_count() == 0 means the page is free. page->lru is then used for
1033 * freelist management in the buddy allocator.
1034 * page_count() > 0 means the page has been allocated.
1035 *
1036 * Pages are allocated by the slab allocator in order to provide memory
1037 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1038 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1039 * unless a particular usage is carefully commented. (the responsibility of
1040 * freeing the kmalloc memory is the caller's, of course).
1041 *
1042 * A page may be used by anyone else who does a __get_free_page().
1043 * In this case, page_count still tracks the references, and should only
1044 * be used through the normal accessor functions. The top bits of page->flags
1045 * and page->virtual store page management information, but all other fields
1046 * are unused and could be used privately, carefully. The management of this
1047 * page is the responsibility of the one who allocated it, and those who have
1048 * subsequently been given references to it.
1049 *
1050 * The other pages (we may call them "pagecache pages") are completely
1051 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1052 * The following discussion applies only to them.
1053 *
1054 * A pagecache page contains an opaque `private' member, which belongs to the
1055 * page's address_space. Usually, this is the address of a circular list of
1056 * the page's disk buffers. PG_private must be set to tell the VM to call
1057 * into the filesystem to release these pages.
1058 *
1059 * A page may belong to an inode's memory mapping. In this case, page->mapping
1060 * is the pointer to the inode, and page->index is the file offset of the page,
1061 * in units of PAGE_SIZE.
1062 *
1063 * If pagecache pages are not associated with an inode, they are said to be
1064 * anonymous pages. These may become associated with the swapcache, and in that
1065 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1066 *
1067 * In either case (swapcache or inode backed), the pagecache itself holds one
1068 * reference to the page. Setting PG_private should also increment the
1069 * refcount. The each user mapping also has a reference to the page.
1070 *
1071 * The pagecache pages are stored in a per-mapping radix tree, which is
1072 * rooted at mapping->i_pages, and indexed by offset.
1073 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1074 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1075 *
1076 * All pagecache pages may be subject to I/O:
1077 * - inode pages may need to be read from disk,
1078 * - inode pages which have been modified and are MAP_SHARED may need
1079 * to be written back to the inode on disk,
1080 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1081 * modified may need to be swapped out to swap space and (later) to be read
1082 * back into memory.
1083 */
1084
1085 /*
1086 * The zone field is never updated after free_area_init_core()
1087 * sets it, so none of the operations on it need to be atomic.
1088 */
1089
1090 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1091 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1092 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1093 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
1094 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
1095 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1096
1097 /*
1098 * Define the bit shifts to access each section. For non-existent
1099 * sections we define the shift as 0; that plus a 0 mask ensures
1100 * the compiler will optimise away reference to them.
1101 */
1102 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1103 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1104 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
1105 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1106 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1107
1108 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1109 #ifdef NODE_NOT_IN_PAGE_FLAGS
1110 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
1111 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1112 SECTIONS_PGOFF : ZONES_PGOFF)
1113 #else
1114 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
1115 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1116 NODES_PGOFF : ZONES_PGOFF)
1117 #endif
1118
1119 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1120
1121 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1122 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1123 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
1124 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
1125 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
1126 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
1127
page_zonenum(const struct page * page)1128 static inline enum zone_type page_zonenum(const struct page *page)
1129 {
1130 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1131 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1132 }
1133
1134 #ifdef CONFIG_ZONE_DEVICE
is_zone_device_page(const struct page * page)1135 static inline bool is_zone_device_page(const struct page *page)
1136 {
1137 return page_zonenum(page) == ZONE_DEVICE;
1138 }
1139 extern void memmap_init_zone_device(struct zone *, unsigned long,
1140 unsigned long, struct dev_pagemap *);
1141 #else
is_zone_device_page(const struct page * page)1142 static inline bool is_zone_device_page(const struct page *page)
1143 {
1144 return false;
1145 }
1146 #endif
1147
is_zone_movable_page(const struct page * page)1148 static inline bool is_zone_movable_page(const struct page *page)
1149 {
1150 return page_zonenum(page) == ZONE_MOVABLE;
1151 }
1152
1153 #ifdef CONFIG_DEV_PAGEMAP_OPS
1154 void free_devmap_managed_page(struct page *page);
1155 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1156
page_is_devmap_managed(struct page * page)1157 static inline bool page_is_devmap_managed(struct page *page)
1158 {
1159 if (!static_branch_unlikely(&devmap_managed_key))
1160 return false;
1161 if (!is_zone_device_page(page))
1162 return false;
1163 switch (page->pgmap->type) {
1164 case MEMORY_DEVICE_PRIVATE:
1165 case MEMORY_DEVICE_FS_DAX:
1166 return true;
1167 default:
1168 break;
1169 }
1170 return false;
1171 }
1172
1173 void put_devmap_managed_page(struct page *page);
1174
1175 #else /* CONFIG_DEV_PAGEMAP_OPS */
page_is_devmap_managed(struct page * page)1176 static inline bool page_is_devmap_managed(struct page *page)
1177 {
1178 return false;
1179 }
1180
put_devmap_managed_page(struct page * page)1181 static inline void put_devmap_managed_page(struct page *page)
1182 {
1183 }
1184 #endif /* CONFIG_DEV_PAGEMAP_OPS */
1185
is_device_private_page(const struct page * page)1186 static inline bool is_device_private_page(const struct page *page)
1187 {
1188 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1189 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1190 is_zone_device_page(page) &&
1191 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1192 }
1193
is_pci_p2pdma_page(const struct page * page)1194 static inline bool is_pci_p2pdma_page(const struct page *page)
1195 {
1196 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1197 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1198 is_zone_device_page(page) &&
1199 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1200 }
1201
1202 /* 127: arbitrary random number, small enough to assemble well */
1203 #define page_ref_zero_or_close_to_overflow(page) \
1204 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1205
get_page(struct page * page)1206 static inline void get_page(struct page *page)
1207 {
1208 page = compound_head(page);
1209 /*
1210 * Getting a normal page or the head of a compound page
1211 * requires to already have an elevated page->_refcount.
1212 */
1213 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1214 page_ref_inc(page);
1215 }
1216
1217 bool __must_check try_grab_page(struct page *page, unsigned int flags);
1218 struct page *try_grab_compound_head(struct page *page, int refs,
1219 unsigned int flags);
1220
1221
try_get_page(struct page * page)1222 static inline __must_check bool try_get_page(struct page *page)
1223 {
1224 page = compound_head(page);
1225 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1226 return false;
1227 page_ref_inc(page);
1228 return true;
1229 }
1230
put_page(struct page * page)1231 static inline void put_page(struct page *page)
1232 {
1233 page = compound_head(page);
1234
1235 /*
1236 * For devmap managed pages we need to catch refcount transition from
1237 * 2 to 1, when refcount reach one it means the page is free and we
1238 * need to inform the device driver through callback. See
1239 * include/linux/memremap.h and HMM for details.
1240 */
1241 if (page_is_devmap_managed(page)) {
1242 put_devmap_managed_page(page);
1243 return;
1244 }
1245
1246 if (put_page_testzero(page))
1247 __put_page(page);
1248 }
1249
1250 /*
1251 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1252 * the page's refcount so that two separate items are tracked: the original page
1253 * reference count, and also a new count of how many pin_user_pages() calls were
1254 * made against the page. ("gup-pinned" is another term for the latter).
1255 *
1256 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1257 * distinct from normal pages. As such, the unpin_user_page() call (and its
1258 * variants) must be used in order to release gup-pinned pages.
1259 *
1260 * Choice of value:
1261 *
1262 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1263 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1264 * simpler, due to the fact that adding an even power of two to the page
1265 * refcount has the effect of using only the upper N bits, for the code that
1266 * counts up using the bias value. This means that the lower bits are left for
1267 * the exclusive use of the original code that increments and decrements by one
1268 * (or at least, by much smaller values than the bias value).
1269 *
1270 * Of course, once the lower bits overflow into the upper bits (and this is
1271 * OK, because subtraction recovers the original values), then visual inspection
1272 * no longer suffices to directly view the separate counts. However, for normal
1273 * applications that don't have huge page reference counts, this won't be an
1274 * issue.
1275 *
1276 * Locking: the lockless algorithm described in page_cache_get_speculative()
1277 * and page_cache_gup_pin_speculative() provides safe operation for
1278 * get_user_pages and page_mkclean and other calls that race to set up page
1279 * table entries.
1280 */
1281 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1282
1283 void unpin_user_page(struct page *page);
1284 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1285 bool make_dirty);
1286 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1287 bool make_dirty);
1288 void unpin_user_pages(struct page **pages, unsigned long npages);
1289
1290 /**
1291 * page_maybe_dma_pinned - Report if a page is pinned for DMA.
1292 * @page: The page.
1293 *
1294 * This function checks if a page has been pinned via a call to
1295 * a function in the pin_user_pages() family.
1296 *
1297 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1298 * because it means "definitely not pinned for DMA", but true means "probably
1299 * pinned for DMA, but possibly a false positive due to having at least
1300 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1301 *
1302 * False positives are OK, because: a) it's unlikely for a page to get that many
1303 * refcounts, and b) all the callers of this routine are expected to be able to
1304 * deal gracefully with a false positive.
1305 *
1306 * For huge pages, the result will be exactly correct. That's because we have
1307 * more tracking data available: the 3rd struct page in the compound page is
1308 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1309 * scheme).
1310 *
1311 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1312 *
1313 * Return: True, if it is likely that the page has been "dma-pinned".
1314 * False, if the page is definitely not dma-pinned.
1315 */
page_maybe_dma_pinned(struct page * page)1316 static inline bool page_maybe_dma_pinned(struct page *page)
1317 {
1318 if (hpage_pincount_available(page))
1319 return compound_pincount(page) > 0;
1320
1321 /*
1322 * page_ref_count() is signed. If that refcount overflows, then
1323 * page_ref_count() returns a negative value, and callers will avoid
1324 * further incrementing the refcount.
1325 *
1326 * Here, for that overflow case, use the signed bit to count a little
1327 * bit higher via unsigned math, and thus still get an accurate result.
1328 */
1329 return ((unsigned int)page_ref_count(compound_head(page))) >=
1330 GUP_PIN_COUNTING_BIAS;
1331 }
1332
is_cow_mapping(vm_flags_t flags)1333 static inline bool is_cow_mapping(vm_flags_t flags)
1334 {
1335 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1336 }
1337
1338 /*
1339 * This should most likely only be called during fork() to see whether we
1340 * should break the cow immediately for a page on the src mm.
1341 */
page_needs_cow_for_dma(struct vm_area_struct * vma,struct page * page)1342 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1343 struct page *page)
1344 {
1345 if (!is_cow_mapping(vma->vm_flags))
1346 return false;
1347
1348 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1349 return false;
1350
1351 return page_maybe_dma_pinned(page);
1352 }
1353
1354 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1355 #define SECTION_IN_PAGE_FLAGS
1356 #endif
1357
1358 /*
1359 * The identification function is mainly used by the buddy allocator for
1360 * determining if two pages could be buddies. We are not really identifying
1361 * the zone since we could be using the section number id if we do not have
1362 * node id available in page flags.
1363 * We only guarantee that it will return the same value for two combinable
1364 * pages in a zone.
1365 */
page_zone_id(struct page * page)1366 static inline int page_zone_id(struct page *page)
1367 {
1368 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1369 }
1370
1371 #ifdef NODE_NOT_IN_PAGE_FLAGS
1372 extern int page_to_nid(const struct page *page);
1373 #else
page_to_nid(const struct page * page)1374 static inline int page_to_nid(const struct page *page)
1375 {
1376 struct page *p = (struct page *)page;
1377
1378 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1379 }
1380 #endif
1381
1382 #ifdef CONFIG_NUMA_BALANCING
cpu_pid_to_cpupid(int cpu,int pid)1383 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1384 {
1385 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1386 }
1387
cpupid_to_pid(int cpupid)1388 static inline int cpupid_to_pid(int cpupid)
1389 {
1390 return cpupid & LAST__PID_MASK;
1391 }
1392
cpupid_to_cpu(int cpupid)1393 static inline int cpupid_to_cpu(int cpupid)
1394 {
1395 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1396 }
1397
cpupid_to_nid(int cpupid)1398 static inline int cpupid_to_nid(int cpupid)
1399 {
1400 return cpu_to_node(cpupid_to_cpu(cpupid));
1401 }
1402
cpupid_pid_unset(int cpupid)1403 static inline bool cpupid_pid_unset(int cpupid)
1404 {
1405 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1406 }
1407
cpupid_cpu_unset(int cpupid)1408 static inline bool cpupid_cpu_unset(int cpupid)
1409 {
1410 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1411 }
1412
__cpupid_match_pid(pid_t task_pid,int cpupid)1413 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1414 {
1415 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1416 }
1417
1418 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1419 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
page_cpupid_xchg_last(struct page * page,int cpupid)1420 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1421 {
1422 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1423 }
1424
page_cpupid_last(struct page * page)1425 static inline int page_cpupid_last(struct page *page)
1426 {
1427 return page->_last_cpupid;
1428 }
page_cpupid_reset_last(struct page * page)1429 static inline void page_cpupid_reset_last(struct page *page)
1430 {
1431 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1432 }
1433 #else
page_cpupid_last(struct page * page)1434 static inline int page_cpupid_last(struct page *page)
1435 {
1436 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1437 }
1438
1439 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1440
page_cpupid_reset_last(struct page * page)1441 static inline void page_cpupid_reset_last(struct page *page)
1442 {
1443 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1444 }
1445 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1446 #else /* !CONFIG_NUMA_BALANCING */
page_cpupid_xchg_last(struct page * page,int cpupid)1447 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1448 {
1449 return page_to_nid(page); /* XXX */
1450 }
1451
page_cpupid_last(struct page * page)1452 static inline int page_cpupid_last(struct page *page)
1453 {
1454 return page_to_nid(page); /* XXX */
1455 }
1456
cpupid_to_nid(int cpupid)1457 static inline int cpupid_to_nid(int cpupid)
1458 {
1459 return -1;
1460 }
1461
cpupid_to_pid(int cpupid)1462 static inline int cpupid_to_pid(int cpupid)
1463 {
1464 return -1;
1465 }
1466
cpupid_to_cpu(int cpupid)1467 static inline int cpupid_to_cpu(int cpupid)
1468 {
1469 return -1;
1470 }
1471
cpu_pid_to_cpupid(int nid,int pid)1472 static inline int cpu_pid_to_cpupid(int nid, int pid)
1473 {
1474 return -1;
1475 }
1476
cpupid_pid_unset(int cpupid)1477 static inline bool cpupid_pid_unset(int cpupid)
1478 {
1479 return true;
1480 }
1481
page_cpupid_reset_last(struct page * page)1482 static inline void page_cpupid_reset_last(struct page *page)
1483 {
1484 }
1485
cpupid_match_pid(struct task_struct * task,int cpupid)1486 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1487 {
1488 return false;
1489 }
1490 #endif /* CONFIG_NUMA_BALANCING */
1491
1492 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1493
1494 /*
1495 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1496 * setting tags for all pages to native kernel tag value 0xff, as the default
1497 * value 0x00 maps to 0xff.
1498 */
1499
page_kasan_tag(const struct page * page)1500 static inline u8 page_kasan_tag(const struct page *page)
1501 {
1502 u8 tag = 0xff;
1503
1504 if (kasan_enabled()) {
1505 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1506 tag ^= 0xff;
1507 }
1508
1509 return tag;
1510 }
1511
page_kasan_tag_set(struct page * page,u8 tag)1512 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1513 {
1514 if (kasan_enabled()) {
1515 tag ^= 0xff;
1516 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1517 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1518 }
1519 }
1520
page_kasan_tag_reset(struct page * page)1521 static inline void page_kasan_tag_reset(struct page *page)
1522 {
1523 if (kasan_enabled())
1524 page_kasan_tag_set(page, 0xff);
1525 }
1526
1527 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1528
page_kasan_tag(const struct page * page)1529 static inline u8 page_kasan_tag(const struct page *page)
1530 {
1531 return 0xff;
1532 }
1533
page_kasan_tag_set(struct page * page,u8 tag)1534 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
page_kasan_tag_reset(struct page * page)1535 static inline void page_kasan_tag_reset(struct page *page) { }
1536
1537 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1538
page_zone(const struct page * page)1539 static inline struct zone *page_zone(const struct page *page)
1540 {
1541 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1542 }
1543
page_pgdat(const struct page * page)1544 static inline pg_data_t *page_pgdat(const struct page *page)
1545 {
1546 return NODE_DATA(page_to_nid(page));
1547 }
1548
1549 #ifdef SECTION_IN_PAGE_FLAGS
set_page_section(struct page * page,unsigned long section)1550 static inline void set_page_section(struct page *page, unsigned long section)
1551 {
1552 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1553 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1554 }
1555
page_to_section(const struct page * page)1556 static inline unsigned long page_to_section(const struct page *page)
1557 {
1558 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1559 }
1560 #endif
1561
1562 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1563 #ifdef CONFIG_MIGRATION
is_pinnable_page(struct page * page)1564 static inline bool is_pinnable_page(struct page *page)
1565 {
1566 return !(is_zone_movable_page(page) || is_migrate_cma_page(page)) ||
1567 is_zero_pfn(page_to_pfn(page));
1568 }
1569 #else
is_pinnable_page(struct page * page)1570 static inline bool is_pinnable_page(struct page *page)
1571 {
1572 return true;
1573 }
1574 #endif
1575
set_page_zone(struct page * page,enum zone_type zone)1576 static inline void set_page_zone(struct page *page, enum zone_type zone)
1577 {
1578 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1579 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1580 }
1581
set_page_node(struct page * page,unsigned long node)1582 static inline void set_page_node(struct page *page, unsigned long node)
1583 {
1584 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1585 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1586 }
1587
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)1588 static inline void set_page_links(struct page *page, enum zone_type zone,
1589 unsigned long node, unsigned long pfn)
1590 {
1591 set_page_zone(page, zone);
1592 set_page_node(page, node);
1593 #ifdef SECTION_IN_PAGE_FLAGS
1594 set_page_section(page, pfn_to_section_nr(pfn));
1595 #endif
1596 }
1597
1598 /*
1599 * Some inline functions in vmstat.h depend on page_zone()
1600 */
1601 #include <linux/vmstat.h>
1602
lowmem_page_address(const struct page * page)1603 static __always_inline void *lowmem_page_address(const struct page *page)
1604 {
1605 return page_to_virt(page);
1606 }
1607
1608 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1609 #define HASHED_PAGE_VIRTUAL
1610 #endif
1611
1612 #if defined(WANT_PAGE_VIRTUAL)
page_address(const struct page * page)1613 static inline void *page_address(const struct page *page)
1614 {
1615 return page->virtual;
1616 }
set_page_address(struct page * page,void * address)1617 static inline void set_page_address(struct page *page, void *address)
1618 {
1619 page->virtual = address;
1620 }
1621 #define page_address_init() do { } while(0)
1622 #endif
1623
1624 #if defined(HASHED_PAGE_VIRTUAL)
1625 void *page_address(const struct page *page);
1626 void set_page_address(struct page *page, void *virtual);
1627 void page_address_init(void);
1628 #endif
1629
1630 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1631 #define page_address(page) lowmem_page_address(page)
1632 #define set_page_address(page, address) do { } while(0)
1633 #define page_address_init() do { } while(0)
1634 #endif
1635
1636 extern void *page_rmapping(struct page *page);
1637 extern struct anon_vma *page_anon_vma(struct page *page);
1638 extern struct address_space *page_mapping(struct page *page);
1639
1640 extern struct address_space *__page_file_mapping(struct page *);
1641
1642 static inline
page_file_mapping(struct page * page)1643 struct address_space *page_file_mapping(struct page *page)
1644 {
1645 if (unlikely(PageSwapCache(page)))
1646 return __page_file_mapping(page);
1647
1648 return page->mapping;
1649 }
1650
1651 extern pgoff_t __page_file_index(struct page *page);
1652
1653 /*
1654 * Return the pagecache index of the passed page. Regular pagecache pages
1655 * use ->index whereas swapcache pages use swp_offset(->private)
1656 */
page_index(struct page * page)1657 static inline pgoff_t page_index(struct page *page)
1658 {
1659 if (unlikely(PageSwapCache(page)))
1660 return __page_file_index(page);
1661 return page->index;
1662 }
1663
1664 bool page_mapped(struct page *page);
1665 struct address_space *page_mapping(struct page *page);
1666
1667 /*
1668 * Return true only if the page has been allocated with
1669 * ALLOC_NO_WATERMARKS and the low watermark was not
1670 * met implying that the system is under some pressure.
1671 */
page_is_pfmemalloc(const struct page * page)1672 static inline bool page_is_pfmemalloc(const struct page *page)
1673 {
1674 /*
1675 * lru.next has bit 1 set if the page is allocated from the
1676 * pfmemalloc reserves. Callers may simply overwrite it if
1677 * they do not need to preserve that information.
1678 */
1679 return (uintptr_t)page->lru.next & BIT(1);
1680 }
1681
1682 /*
1683 * Only to be called by the page allocator on a freshly allocated
1684 * page.
1685 */
set_page_pfmemalloc(struct page * page)1686 static inline void set_page_pfmemalloc(struct page *page)
1687 {
1688 page->lru.next = (void *)BIT(1);
1689 }
1690
clear_page_pfmemalloc(struct page * page)1691 static inline void clear_page_pfmemalloc(struct page *page)
1692 {
1693 page->lru.next = NULL;
1694 }
1695
1696 /*
1697 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1698 */
1699 extern void pagefault_out_of_memory(void);
1700
1701 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1702 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
1703
1704 /*
1705 * Flags passed to show_mem() and show_free_areas() to suppress output in
1706 * various contexts.
1707 */
1708 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1709
1710 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1711
1712 #ifdef CONFIG_MMU
1713 extern bool can_do_mlock(void);
1714 #else
can_do_mlock(void)1715 static inline bool can_do_mlock(void) { return false; }
1716 #endif
1717 extern int user_shm_lock(size_t, struct ucounts *);
1718 extern void user_shm_unlock(size_t, struct ucounts *);
1719
1720 /*
1721 * Parameter block passed down to zap_pte_range in exceptional cases.
1722 */
1723 struct zap_details {
1724 struct address_space *check_mapping; /* Check page->mapping if set */
1725 pgoff_t first_index; /* Lowest page->index to unmap */
1726 pgoff_t last_index; /* Highest page->index to unmap */
1727 struct page *single_page; /* Locked page to be unmapped */
1728 };
1729
1730 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1731 pte_t pte);
1732 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1733 pmd_t pmd);
1734
1735 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1736 unsigned long size);
1737 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1738 unsigned long size);
1739 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1740 unsigned long start, unsigned long end);
1741
1742 struct mmu_notifier_range;
1743
1744 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1745 unsigned long end, unsigned long floor, unsigned long ceiling);
1746 int
1747 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
1748 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
1749 struct mmu_notifier_range *range, pte_t **ptepp,
1750 pmd_t **pmdpp, spinlock_t **ptlp);
1751 int follow_pte(struct mm_struct *mm, unsigned long address,
1752 pte_t **ptepp, spinlock_t **ptlp);
1753 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1754 unsigned long *pfn);
1755 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1756 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1757 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1758 void *buf, int len, int write);
1759
1760 extern void truncate_pagecache(struct inode *inode, loff_t new);
1761 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1762 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1763 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1764 int truncate_inode_page(struct address_space *mapping, struct page *page);
1765 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1766 int invalidate_inode_page(struct page *page);
1767
1768 #ifdef CONFIG_MMU
1769 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1770 unsigned long address, unsigned int flags,
1771 struct pt_regs *regs);
1772 extern int fixup_user_fault(struct mm_struct *mm,
1773 unsigned long address, unsigned int fault_flags,
1774 bool *unlocked);
1775 void unmap_mapping_page(struct page *page);
1776 void unmap_mapping_pages(struct address_space *mapping,
1777 pgoff_t start, pgoff_t nr, bool even_cows);
1778 void unmap_mapping_range(struct address_space *mapping,
1779 loff_t const holebegin, loff_t const holelen, int even_cows);
1780 #else
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)1781 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1782 unsigned long address, unsigned int flags,
1783 struct pt_regs *regs)
1784 {
1785 /* should never happen if there's no MMU */
1786 BUG();
1787 return VM_FAULT_SIGBUS;
1788 }
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)1789 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
1790 unsigned int fault_flags, bool *unlocked)
1791 {
1792 /* should never happen if there's no MMU */
1793 BUG();
1794 return -EFAULT;
1795 }
unmap_mapping_page(struct page * page)1796 static inline void unmap_mapping_page(struct page *page) { }
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)1797 static inline void unmap_mapping_pages(struct address_space *mapping,
1798 pgoff_t start, pgoff_t nr, bool even_cows) { }
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)1799 static inline void unmap_mapping_range(struct address_space *mapping,
1800 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1801 #endif
1802
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)1803 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1804 loff_t const holebegin, loff_t const holelen)
1805 {
1806 unmap_mapping_range(mapping, holebegin, holelen, 0);
1807 }
1808
1809 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1810 void *buf, int len, unsigned int gup_flags);
1811 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1812 void *buf, int len, unsigned int gup_flags);
1813 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1814 void *buf, int len, unsigned int gup_flags);
1815
1816 long get_user_pages_remote(struct mm_struct *mm,
1817 unsigned long start, unsigned long nr_pages,
1818 unsigned int gup_flags, struct page **pages,
1819 struct vm_area_struct **vmas, int *locked);
1820 long pin_user_pages_remote(struct mm_struct *mm,
1821 unsigned long start, unsigned long nr_pages,
1822 unsigned int gup_flags, struct page **pages,
1823 struct vm_area_struct **vmas, int *locked);
1824 long get_user_pages(unsigned long start, unsigned long nr_pages,
1825 unsigned int gup_flags, struct page **pages,
1826 struct vm_area_struct **vmas);
1827 long pin_user_pages(unsigned long start, unsigned long nr_pages,
1828 unsigned int gup_flags, struct page **pages,
1829 struct vm_area_struct **vmas);
1830 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1831 unsigned int gup_flags, struct page **pages, int *locked);
1832 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1833 unsigned int gup_flags, struct page **pages, int *locked);
1834 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1835 struct page **pages, unsigned int gup_flags);
1836 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1837 struct page **pages, unsigned int gup_flags);
1838
1839 int get_user_pages_fast(unsigned long start, int nr_pages,
1840 unsigned int gup_flags, struct page **pages);
1841 int pin_user_pages_fast(unsigned long start, int nr_pages,
1842 unsigned int gup_flags, struct page **pages);
1843
1844 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1845 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1846 struct task_struct *task, bool bypass_rlim);
1847
1848 struct kvec;
1849 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1850 struct page **pages);
1851 struct page *get_dump_page(unsigned long addr);
1852
1853 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1854 extern void do_invalidatepage(struct page *page, unsigned int offset,
1855 unsigned int length);
1856
1857 int redirty_page_for_writepage(struct writeback_control *wbc,
1858 struct page *page);
1859 void account_page_cleaned(struct page *page, struct address_space *mapping,
1860 struct bdi_writeback *wb);
1861 int set_page_dirty(struct page *page);
1862 int set_page_dirty_lock(struct page *page);
1863 void __cancel_dirty_page(struct page *page);
cancel_dirty_page(struct page * page)1864 static inline void cancel_dirty_page(struct page *page)
1865 {
1866 /* Avoid atomic ops, locking, etc. when not actually needed. */
1867 if (PageDirty(page))
1868 __cancel_dirty_page(page);
1869 }
1870 int clear_page_dirty_for_io(struct page *page);
1871
1872 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1873
1874 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1875 unsigned long old_addr, struct vm_area_struct *new_vma,
1876 unsigned long new_addr, unsigned long len,
1877 bool need_rmap_locks);
1878
1879 /*
1880 * Flags used by change_protection(). For now we make it a bitmap so
1881 * that we can pass in multiple flags just like parameters. However
1882 * for now all the callers are only use one of the flags at the same
1883 * time.
1884 */
1885 /* Whether we should allow dirty bit accounting */
1886 #define MM_CP_DIRTY_ACCT (1UL << 0)
1887 /* Whether this protection change is for NUMA hints */
1888 #define MM_CP_PROT_NUMA (1UL << 1)
1889 /* Whether this change is for write protecting */
1890 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1891 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1892 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1893 MM_CP_UFFD_WP_RESOLVE)
1894
1895 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1896 unsigned long end, pgprot_t newprot,
1897 unsigned long cp_flags);
1898 extern int mprotect_fixup(struct vm_area_struct *vma,
1899 struct vm_area_struct **pprev, unsigned long start,
1900 unsigned long end, unsigned long newflags);
1901
1902 /*
1903 * doesn't attempt to fault and will return short.
1904 */
1905 int get_user_pages_fast_only(unsigned long start, int nr_pages,
1906 unsigned int gup_flags, struct page **pages);
1907 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1908 unsigned int gup_flags, struct page **pages);
1909
get_user_page_fast_only(unsigned long addr,unsigned int gup_flags,struct page ** pagep)1910 static inline bool get_user_page_fast_only(unsigned long addr,
1911 unsigned int gup_flags, struct page **pagep)
1912 {
1913 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1914 }
1915 /*
1916 * per-process(per-mm_struct) statistics.
1917 */
get_mm_counter(struct mm_struct * mm,int member)1918 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1919 {
1920 long val = atomic_long_read(&mm->rss_stat.count[member]);
1921
1922 #ifdef SPLIT_RSS_COUNTING
1923 /*
1924 * counter is updated in asynchronous manner and may go to minus.
1925 * But it's never be expected number for users.
1926 */
1927 if (val < 0)
1928 val = 0;
1929 #endif
1930 return (unsigned long)val;
1931 }
1932
1933 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
1934
add_mm_counter(struct mm_struct * mm,int member,long value)1935 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1936 {
1937 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1938
1939 mm_trace_rss_stat(mm, member, count);
1940 }
1941
inc_mm_counter(struct mm_struct * mm,int member)1942 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1943 {
1944 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1945
1946 mm_trace_rss_stat(mm, member, count);
1947 }
1948
dec_mm_counter(struct mm_struct * mm,int member)1949 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1950 {
1951 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1952
1953 mm_trace_rss_stat(mm, member, count);
1954 }
1955
1956 /* Optimized variant when page is already known not to be PageAnon */
mm_counter_file(struct page * page)1957 static inline int mm_counter_file(struct page *page)
1958 {
1959 if (PageSwapBacked(page))
1960 return MM_SHMEMPAGES;
1961 return MM_FILEPAGES;
1962 }
1963
mm_counter(struct page * page)1964 static inline int mm_counter(struct page *page)
1965 {
1966 if (PageAnon(page))
1967 return MM_ANONPAGES;
1968 return mm_counter_file(page);
1969 }
1970
get_mm_rss(struct mm_struct * mm)1971 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1972 {
1973 return get_mm_counter(mm, MM_FILEPAGES) +
1974 get_mm_counter(mm, MM_ANONPAGES) +
1975 get_mm_counter(mm, MM_SHMEMPAGES);
1976 }
1977
get_mm_hiwater_rss(struct mm_struct * mm)1978 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1979 {
1980 return max(mm->hiwater_rss, get_mm_rss(mm));
1981 }
1982
get_mm_hiwater_vm(struct mm_struct * mm)1983 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1984 {
1985 return max(mm->hiwater_vm, mm->total_vm);
1986 }
1987
update_hiwater_rss(struct mm_struct * mm)1988 static inline void update_hiwater_rss(struct mm_struct *mm)
1989 {
1990 unsigned long _rss = get_mm_rss(mm);
1991
1992 if ((mm)->hiwater_rss < _rss)
1993 (mm)->hiwater_rss = _rss;
1994 }
1995
update_hiwater_vm(struct mm_struct * mm)1996 static inline void update_hiwater_vm(struct mm_struct *mm)
1997 {
1998 if (mm->hiwater_vm < mm->total_vm)
1999 mm->hiwater_vm = mm->total_vm;
2000 }
2001
reset_mm_hiwater_rss(struct mm_struct * mm)2002 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2003 {
2004 mm->hiwater_rss = get_mm_rss(mm);
2005 }
2006
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)2007 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2008 struct mm_struct *mm)
2009 {
2010 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2011
2012 if (*maxrss < hiwater_rss)
2013 *maxrss = hiwater_rss;
2014 }
2015
2016 #if defined(SPLIT_RSS_COUNTING)
2017 void sync_mm_rss(struct mm_struct *mm);
2018 #else
sync_mm_rss(struct mm_struct * mm)2019 static inline void sync_mm_rss(struct mm_struct *mm)
2020 {
2021 }
2022 #endif
2023
2024 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
pte_special(pte_t pte)2025 static inline int pte_special(pte_t pte)
2026 {
2027 return 0;
2028 }
2029
pte_mkspecial(pte_t pte)2030 static inline pte_t pte_mkspecial(pte_t pte)
2031 {
2032 return pte;
2033 }
2034 #endif
2035
2036 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
pte_devmap(pte_t pte)2037 static inline int pte_devmap(pte_t pte)
2038 {
2039 return 0;
2040 }
2041 #endif
2042
2043 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2044
2045 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2046 spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)2047 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2048 spinlock_t **ptl)
2049 {
2050 pte_t *ptep;
2051 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2052 return ptep;
2053 }
2054
2055 #ifdef __PAGETABLE_P4D_FOLDED
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2056 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2057 unsigned long address)
2058 {
2059 return 0;
2060 }
2061 #else
2062 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2063 #endif
2064
2065 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2066 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2067 unsigned long address)
2068 {
2069 return 0;
2070 }
mm_inc_nr_puds(struct mm_struct * mm)2071 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
mm_dec_nr_puds(struct mm_struct * mm)2072 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2073
2074 #else
2075 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2076
mm_inc_nr_puds(struct mm_struct * mm)2077 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2078 {
2079 if (mm_pud_folded(mm))
2080 return;
2081 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2082 }
2083
mm_dec_nr_puds(struct mm_struct * mm)2084 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2085 {
2086 if (mm_pud_folded(mm))
2087 return;
2088 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2089 }
2090 #endif
2091
2092 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2093 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2094 unsigned long address)
2095 {
2096 return 0;
2097 }
2098
mm_inc_nr_pmds(struct mm_struct * mm)2099 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
mm_dec_nr_pmds(struct mm_struct * mm)2100 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2101
2102 #else
2103 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2104
mm_inc_nr_pmds(struct mm_struct * mm)2105 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2106 {
2107 if (mm_pmd_folded(mm))
2108 return;
2109 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2110 }
2111
mm_dec_nr_pmds(struct mm_struct * mm)2112 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2113 {
2114 if (mm_pmd_folded(mm))
2115 return;
2116 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2117 }
2118 #endif
2119
2120 #ifdef CONFIG_MMU
mm_pgtables_bytes_init(struct mm_struct * mm)2121 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2122 {
2123 atomic_long_set(&mm->pgtables_bytes, 0);
2124 }
2125
mm_pgtables_bytes(const struct mm_struct * mm)2126 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2127 {
2128 return atomic_long_read(&mm->pgtables_bytes);
2129 }
2130
mm_inc_nr_ptes(struct mm_struct * mm)2131 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2132 {
2133 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2134 }
2135
mm_dec_nr_ptes(struct mm_struct * mm)2136 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2137 {
2138 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2139 }
2140 #else
2141
mm_pgtables_bytes_init(struct mm_struct * mm)2142 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
mm_pgtables_bytes(const struct mm_struct * mm)2143 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2144 {
2145 return 0;
2146 }
2147
mm_inc_nr_ptes(struct mm_struct * mm)2148 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
mm_dec_nr_ptes(struct mm_struct * mm)2149 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2150 #endif
2151
2152 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2153 int __pte_alloc_kernel(pmd_t *pmd);
2154
2155 #if defined(CONFIG_MMU)
2156
p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2157 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2158 unsigned long address)
2159 {
2160 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2161 NULL : p4d_offset(pgd, address);
2162 }
2163
pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2164 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2165 unsigned long address)
2166 {
2167 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2168 NULL : pud_offset(p4d, address);
2169 }
2170
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2171 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2172 {
2173 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2174 NULL: pmd_offset(pud, address);
2175 }
2176 #endif /* CONFIG_MMU */
2177
2178 #if USE_SPLIT_PTE_PTLOCKS
2179 #if ALLOC_SPLIT_PTLOCKS
2180 void __init ptlock_cache_init(void);
2181 extern bool ptlock_alloc(struct page *page);
2182 extern void ptlock_free(struct page *page);
2183
ptlock_ptr(struct page * page)2184 static inline spinlock_t *ptlock_ptr(struct page *page)
2185 {
2186 return page->ptl;
2187 }
2188 #else /* ALLOC_SPLIT_PTLOCKS */
ptlock_cache_init(void)2189 static inline void ptlock_cache_init(void)
2190 {
2191 }
2192
ptlock_alloc(struct page * page)2193 static inline bool ptlock_alloc(struct page *page)
2194 {
2195 return true;
2196 }
2197
ptlock_free(struct page * page)2198 static inline void ptlock_free(struct page *page)
2199 {
2200 }
2201
ptlock_ptr(struct page * page)2202 static inline spinlock_t *ptlock_ptr(struct page *page)
2203 {
2204 return &page->ptl;
2205 }
2206 #endif /* ALLOC_SPLIT_PTLOCKS */
2207
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2208 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2209 {
2210 return ptlock_ptr(pmd_page(*pmd));
2211 }
2212
ptlock_init(struct page * page)2213 static inline bool ptlock_init(struct page *page)
2214 {
2215 /*
2216 * prep_new_page() initialize page->private (and therefore page->ptl)
2217 * with 0. Make sure nobody took it in use in between.
2218 *
2219 * It can happen if arch try to use slab for page table allocation:
2220 * slab code uses page->slab_cache, which share storage with page->ptl.
2221 */
2222 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2223 if (!ptlock_alloc(page))
2224 return false;
2225 spin_lock_init(ptlock_ptr(page));
2226 return true;
2227 }
2228
2229 #else /* !USE_SPLIT_PTE_PTLOCKS */
2230 /*
2231 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2232 */
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2233 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2234 {
2235 return &mm->page_table_lock;
2236 }
ptlock_cache_init(void)2237 static inline void ptlock_cache_init(void) {}
ptlock_init(struct page * page)2238 static inline bool ptlock_init(struct page *page) { return true; }
ptlock_free(struct page * page)2239 static inline void ptlock_free(struct page *page) {}
2240 #endif /* USE_SPLIT_PTE_PTLOCKS */
2241
pgtable_init(void)2242 static inline void pgtable_init(void)
2243 {
2244 ptlock_cache_init();
2245 pgtable_cache_init();
2246 }
2247
pgtable_pte_page_ctor(struct page * page)2248 static inline bool pgtable_pte_page_ctor(struct page *page)
2249 {
2250 if (!ptlock_init(page))
2251 return false;
2252 __SetPageTable(page);
2253 inc_lruvec_page_state(page, NR_PAGETABLE);
2254 return true;
2255 }
2256
pgtable_pte_page_dtor(struct page * page)2257 static inline void pgtable_pte_page_dtor(struct page *page)
2258 {
2259 ptlock_free(page);
2260 __ClearPageTable(page);
2261 dec_lruvec_page_state(page, NR_PAGETABLE);
2262 }
2263
2264 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
2265 ({ \
2266 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
2267 pte_t *__pte = pte_offset_map(pmd, address); \
2268 *(ptlp) = __ptl; \
2269 spin_lock(__ptl); \
2270 __pte; \
2271 })
2272
2273 #define pte_unmap_unlock(pte, ptl) do { \
2274 spin_unlock(ptl); \
2275 pte_unmap(pte); \
2276 } while (0)
2277
2278 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2279
2280 #define pte_alloc_map(mm, pmd, address) \
2281 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2282
2283 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
2284 (pte_alloc(mm, pmd) ? \
2285 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2286
2287 #define pte_alloc_kernel(pmd, address) \
2288 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2289 NULL: pte_offset_kernel(pmd, address))
2290
2291 #if USE_SPLIT_PMD_PTLOCKS
2292
pmd_to_page(pmd_t * pmd)2293 static struct page *pmd_to_page(pmd_t *pmd)
2294 {
2295 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2296 return virt_to_page((void *)((unsigned long) pmd & mask));
2297 }
2298
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)2299 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2300 {
2301 return ptlock_ptr(pmd_to_page(pmd));
2302 }
2303
pmd_ptlock_init(struct page * page)2304 static inline bool pmd_ptlock_init(struct page *page)
2305 {
2306 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2307 page->pmd_huge_pte = NULL;
2308 #endif
2309 return ptlock_init(page);
2310 }
2311
pmd_ptlock_free(struct page * page)2312 static inline void pmd_ptlock_free(struct page *page)
2313 {
2314 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2315 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2316 #endif
2317 ptlock_free(page);
2318 }
2319
2320 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2321
2322 #else
2323
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)2324 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2325 {
2326 return &mm->page_table_lock;
2327 }
2328
pmd_ptlock_init(struct page * page)2329 static inline bool pmd_ptlock_init(struct page *page) { return true; }
pmd_ptlock_free(struct page * page)2330 static inline void pmd_ptlock_free(struct page *page) {}
2331
2332 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2333
2334 #endif
2335
pmd_lock(struct mm_struct * mm,pmd_t * pmd)2336 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2337 {
2338 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2339 spin_lock(ptl);
2340 return ptl;
2341 }
2342
pgtable_pmd_page_ctor(struct page * page)2343 static inline bool pgtable_pmd_page_ctor(struct page *page)
2344 {
2345 if (!pmd_ptlock_init(page))
2346 return false;
2347 __SetPageTable(page);
2348 inc_lruvec_page_state(page, NR_PAGETABLE);
2349 return true;
2350 }
2351
pgtable_pmd_page_dtor(struct page * page)2352 static inline void pgtable_pmd_page_dtor(struct page *page)
2353 {
2354 pmd_ptlock_free(page);
2355 __ClearPageTable(page);
2356 dec_lruvec_page_state(page, NR_PAGETABLE);
2357 }
2358
2359 /*
2360 * No scalability reason to split PUD locks yet, but follow the same pattern
2361 * as the PMD locks to make it easier if we decide to. The VM should not be
2362 * considered ready to switch to split PUD locks yet; there may be places
2363 * which need to be converted from page_table_lock.
2364 */
pud_lockptr(struct mm_struct * mm,pud_t * pud)2365 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2366 {
2367 return &mm->page_table_lock;
2368 }
2369
pud_lock(struct mm_struct * mm,pud_t * pud)2370 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2371 {
2372 spinlock_t *ptl = pud_lockptr(mm, pud);
2373
2374 spin_lock(ptl);
2375 return ptl;
2376 }
2377
2378 extern void __init pagecache_init(void);
2379 extern void __init free_area_init_memoryless_node(int nid);
2380 extern void free_initmem(void);
2381
2382 /*
2383 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2384 * into the buddy system. The freed pages will be poisoned with pattern
2385 * "poison" if it's within range [0, UCHAR_MAX].
2386 * Return pages freed into the buddy system.
2387 */
2388 extern unsigned long free_reserved_area(void *start, void *end,
2389 int poison, const char *s);
2390
2391 extern void adjust_managed_page_count(struct page *page, long count);
2392 extern void mem_init_print_info(void);
2393
2394 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2395
2396 /* Free the reserved page into the buddy system, so it gets managed. */
free_reserved_page(struct page * page)2397 static inline void free_reserved_page(struct page *page)
2398 {
2399 ClearPageReserved(page);
2400 init_page_count(page);
2401 __free_page(page);
2402 adjust_managed_page_count(page, 1);
2403 }
2404 #define free_highmem_page(page) free_reserved_page(page)
2405
mark_page_reserved(struct page * page)2406 static inline void mark_page_reserved(struct page *page)
2407 {
2408 SetPageReserved(page);
2409 adjust_managed_page_count(page, -1);
2410 }
2411
2412 /*
2413 * Default method to free all the __init memory into the buddy system.
2414 * The freed pages will be poisoned with pattern "poison" if it's within
2415 * range [0, UCHAR_MAX].
2416 * Return pages freed into the buddy system.
2417 */
free_initmem_default(int poison)2418 static inline unsigned long free_initmem_default(int poison)
2419 {
2420 extern char __init_begin[], __init_end[];
2421
2422 return free_reserved_area(&__init_begin, &__init_end,
2423 poison, "unused kernel image (initmem)");
2424 }
2425
get_num_physpages(void)2426 static inline unsigned long get_num_physpages(void)
2427 {
2428 int nid;
2429 unsigned long phys_pages = 0;
2430
2431 for_each_online_node(nid)
2432 phys_pages += node_present_pages(nid);
2433
2434 return phys_pages;
2435 }
2436
2437 /*
2438 * Using memblock node mappings, an architecture may initialise its
2439 * zones, allocate the backing mem_map and account for memory holes in an
2440 * architecture independent manner.
2441 *
2442 * An architecture is expected to register range of page frames backed by
2443 * physical memory with memblock_add[_node]() before calling
2444 * free_area_init() passing in the PFN each zone ends at. At a basic
2445 * usage, an architecture is expected to do something like
2446 *
2447 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2448 * max_highmem_pfn};
2449 * for_each_valid_physical_page_range()
2450 * memblock_add_node(base, size, nid)
2451 * free_area_init(max_zone_pfns);
2452 */
2453 void free_area_init(unsigned long *max_zone_pfn);
2454 unsigned long node_map_pfn_alignment(void);
2455 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2456 unsigned long end_pfn);
2457 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2458 unsigned long end_pfn);
2459 extern void get_pfn_range_for_nid(unsigned int nid,
2460 unsigned long *start_pfn, unsigned long *end_pfn);
2461 extern unsigned long find_min_pfn_with_active_regions(void);
2462
2463 #ifndef CONFIG_NUMA
early_pfn_to_nid(unsigned long pfn)2464 static inline int early_pfn_to_nid(unsigned long pfn)
2465 {
2466 return 0;
2467 }
2468 #else
2469 /* please see mm/page_alloc.c */
2470 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2471 #endif
2472
2473 extern void set_dma_reserve(unsigned long new_dma_reserve);
2474 extern void memmap_init_range(unsigned long, int, unsigned long,
2475 unsigned long, unsigned long, enum meminit_context,
2476 struct vmem_altmap *, int migratetype);
2477 extern void setup_per_zone_wmarks(void);
2478 extern int __meminit init_per_zone_wmark_min(void);
2479 extern void mem_init(void);
2480 extern void __init mmap_init(void);
2481 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2482 extern long si_mem_available(void);
2483 extern void si_meminfo(struct sysinfo * val);
2484 extern void si_meminfo_node(struct sysinfo *val, int nid);
2485 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2486 extern unsigned long arch_reserved_kernel_pages(void);
2487 #endif
2488
2489 extern __printf(3, 4)
2490 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2491
2492 extern void setup_per_cpu_pageset(void);
2493
2494 /* page_alloc.c */
2495 extern int min_free_kbytes;
2496 extern int watermark_boost_factor;
2497 extern int watermark_scale_factor;
2498 extern bool arch_has_descending_max_zone_pfns(void);
2499
2500 /* nommu.c */
2501 extern atomic_long_t mmap_pages_allocated;
2502 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2503
2504 /* interval_tree.c */
2505 void vma_interval_tree_insert(struct vm_area_struct *node,
2506 struct rb_root_cached *root);
2507 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2508 struct vm_area_struct *prev,
2509 struct rb_root_cached *root);
2510 void vma_interval_tree_remove(struct vm_area_struct *node,
2511 struct rb_root_cached *root);
2512 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2513 unsigned long start, unsigned long last);
2514 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2515 unsigned long start, unsigned long last);
2516
2517 #define vma_interval_tree_foreach(vma, root, start, last) \
2518 for (vma = vma_interval_tree_iter_first(root, start, last); \
2519 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2520
2521 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2522 struct rb_root_cached *root);
2523 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2524 struct rb_root_cached *root);
2525 struct anon_vma_chain *
2526 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2527 unsigned long start, unsigned long last);
2528 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2529 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2530 #ifdef CONFIG_DEBUG_VM_RB
2531 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2532 #endif
2533
2534 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
2535 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2536 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2537
2538 /* mmap.c */
2539 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2540 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2541 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2542 struct vm_area_struct *expand);
vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert)2543 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2544 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2545 {
2546 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2547 }
2548 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2549 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2550 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2551 struct mempolicy *, struct vm_userfaultfd_ctx);
2552 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2553 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2554 unsigned long addr, int new_below);
2555 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2556 unsigned long addr, int new_below);
2557 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2558 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2559 struct rb_node **, struct rb_node *);
2560 extern void unlink_file_vma(struct vm_area_struct *);
2561 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2562 unsigned long addr, unsigned long len, pgoff_t pgoff,
2563 bool *need_rmap_locks);
2564 extern void exit_mmap(struct mm_struct *);
2565
check_data_rlimit(unsigned long rlim,unsigned long new,unsigned long start,unsigned long end_data,unsigned long start_data)2566 static inline int check_data_rlimit(unsigned long rlim,
2567 unsigned long new,
2568 unsigned long start,
2569 unsigned long end_data,
2570 unsigned long start_data)
2571 {
2572 if (rlim < RLIM_INFINITY) {
2573 if (((new - start) + (end_data - start_data)) > rlim)
2574 return -ENOSPC;
2575 }
2576
2577 return 0;
2578 }
2579
2580 extern int mm_take_all_locks(struct mm_struct *mm);
2581 extern void mm_drop_all_locks(struct mm_struct *mm);
2582
2583 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2584 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2585 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2586 extern struct file *get_task_exe_file(struct task_struct *task);
2587
2588 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2589 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2590
2591 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2592 const struct vm_special_mapping *sm);
2593 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2594 unsigned long addr, unsigned long len,
2595 unsigned long flags,
2596 const struct vm_special_mapping *spec);
2597 /* This is an obsolete alternative to _install_special_mapping. */
2598 extern int install_special_mapping(struct mm_struct *mm,
2599 unsigned long addr, unsigned long len,
2600 unsigned long flags, struct page **pages);
2601
2602 unsigned long randomize_stack_top(unsigned long stack_top);
2603
2604 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2605
2606 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2607 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2608 struct list_head *uf);
2609 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2610 unsigned long len, unsigned long prot, unsigned long flags,
2611 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2612 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2613 struct list_head *uf, bool downgrade);
2614 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2615 struct list_head *uf);
2616 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
2617
2618 #ifdef CONFIG_MMU
2619 extern int __mm_populate(unsigned long addr, unsigned long len,
2620 int ignore_errors);
mm_populate(unsigned long addr,unsigned long len)2621 static inline void mm_populate(unsigned long addr, unsigned long len)
2622 {
2623 /* Ignore errors */
2624 (void) __mm_populate(addr, len, 1);
2625 }
2626 #else
mm_populate(unsigned long addr,unsigned long len)2627 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2628 #endif
2629
2630 /* These take the mm semaphore themselves */
2631 extern int __must_check vm_brk(unsigned long, unsigned long);
2632 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2633 extern int vm_munmap(unsigned long, size_t);
2634 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2635 unsigned long, unsigned long,
2636 unsigned long, unsigned long);
2637
2638 struct vm_unmapped_area_info {
2639 #define VM_UNMAPPED_AREA_TOPDOWN 1
2640 unsigned long flags;
2641 unsigned long length;
2642 unsigned long low_limit;
2643 unsigned long high_limit;
2644 unsigned long align_mask;
2645 unsigned long align_offset;
2646 };
2647
2648 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2649
2650 /* truncate.c */
2651 extern void truncate_inode_pages(struct address_space *, loff_t);
2652 extern void truncate_inode_pages_range(struct address_space *,
2653 loff_t lstart, loff_t lend);
2654 extern void truncate_inode_pages_final(struct address_space *);
2655
2656 /* generic vm_area_ops exported for stackable file systems */
2657 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2658 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
2659 pgoff_t start_pgoff, pgoff_t end_pgoff);
2660 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2661
2662 /* mm/page-writeback.c */
2663 int __must_check write_one_page(struct page *page);
2664 void task_dirty_inc(struct task_struct *tsk);
2665
2666 extern unsigned long stack_guard_gap;
2667 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2668 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2669
2670 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2671 extern int expand_downwards(struct vm_area_struct *vma,
2672 unsigned long address);
2673 #if VM_GROWSUP
2674 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2675 #else
2676 #define expand_upwards(vma, address) (0)
2677 #endif
2678
2679 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2680 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2681 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2682 struct vm_area_struct **pprev);
2683
2684 /**
2685 * find_vma_intersection() - Look up the first VMA which intersects the interval
2686 * @mm: The process address space.
2687 * @start_addr: The inclusive start user address.
2688 * @end_addr: The exclusive end user address.
2689 *
2690 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes
2691 * start_addr < end_addr.
2692 */
2693 static inline
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)2694 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
2695 unsigned long start_addr,
2696 unsigned long end_addr)
2697 {
2698 struct vm_area_struct *vma = find_vma(mm, start_addr);
2699
2700 if (vma && end_addr <= vma->vm_start)
2701 vma = NULL;
2702 return vma;
2703 }
2704
2705 /**
2706 * vma_lookup() - Find a VMA at a specific address
2707 * @mm: The process address space.
2708 * @addr: The user address.
2709 *
2710 * Return: The vm_area_struct at the given address, %NULL otherwise.
2711 */
2712 static inline
vma_lookup(struct mm_struct * mm,unsigned long addr)2713 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
2714 {
2715 struct vm_area_struct *vma = find_vma(mm, addr);
2716
2717 if (vma && addr < vma->vm_start)
2718 vma = NULL;
2719
2720 return vma;
2721 }
2722
vm_start_gap(struct vm_area_struct * vma)2723 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2724 {
2725 unsigned long vm_start = vma->vm_start;
2726
2727 if (vma->vm_flags & VM_GROWSDOWN) {
2728 vm_start -= stack_guard_gap;
2729 if (vm_start > vma->vm_start)
2730 vm_start = 0;
2731 }
2732 return vm_start;
2733 }
2734
vm_end_gap(struct vm_area_struct * vma)2735 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2736 {
2737 unsigned long vm_end = vma->vm_end;
2738
2739 if (vma->vm_flags & VM_GROWSUP) {
2740 vm_end += stack_guard_gap;
2741 if (vm_end < vma->vm_end)
2742 vm_end = -PAGE_SIZE;
2743 }
2744 return vm_end;
2745 }
2746
vma_pages(struct vm_area_struct * vma)2747 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2748 {
2749 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2750 }
2751
2752 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)2753 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2754 unsigned long vm_start, unsigned long vm_end)
2755 {
2756 struct vm_area_struct *vma = find_vma(mm, vm_start);
2757
2758 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2759 vma = NULL;
2760
2761 return vma;
2762 }
2763
range_in_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)2764 static inline bool range_in_vma(struct vm_area_struct *vma,
2765 unsigned long start, unsigned long end)
2766 {
2767 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2768 }
2769
2770 #ifdef CONFIG_MMU
2771 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2772 void vma_set_page_prot(struct vm_area_struct *vma);
2773 #else
vm_get_page_prot(unsigned long vm_flags)2774 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2775 {
2776 return __pgprot(0);
2777 }
vma_set_page_prot(struct vm_area_struct * vma)2778 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2779 {
2780 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2781 }
2782 #endif
2783
2784 void vma_set_file(struct vm_area_struct *vma, struct file *file);
2785
2786 #ifdef CONFIG_NUMA_BALANCING
2787 unsigned long change_prot_numa(struct vm_area_struct *vma,
2788 unsigned long start, unsigned long end);
2789 #endif
2790
2791 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2792 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2793 unsigned long pfn, unsigned long size, pgprot_t);
2794 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2795 unsigned long pfn, unsigned long size, pgprot_t prot);
2796 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2797 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2798 struct page **pages, unsigned long *num);
2799 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2800 unsigned long num);
2801 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2802 unsigned long num);
2803 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2804 unsigned long pfn);
2805 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2806 unsigned long pfn, pgprot_t pgprot);
2807 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2808 pfn_t pfn);
2809 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2810 pfn_t pfn, pgprot_t pgprot);
2811 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2812 unsigned long addr, pfn_t pfn);
2813 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2814
vmf_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)2815 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2816 unsigned long addr, struct page *page)
2817 {
2818 int err = vm_insert_page(vma, addr, page);
2819
2820 if (err == -ENOMEM)
2821 return VM_FAULT_OOM;
2822 if (err < 0 && err != -EBUSY)
2823 return VM_FAULT_SIGBUS;
2824
2825 return VM_FAULT_NOPAGE;
2826 }
2827
2828 #ifndef io_remap_pfn_range
io_remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2829 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2830 unsigned long addr, unsigned long pfn,
2831 unsigned long size, pgprot_t prot)
2832 {
2833 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2834 }
2835 #endif
2836
vmf_error(int err)2837 static inline vm_fault_t vmf_error(int err)
2838 {
2839 if (err == -ENOMEM)
2840 return VM_FAULT_OOM;
2841 return VM_FAULT_SIGBUS;
2842 }
2843
2844 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2845 unsigned int foll_flags);
2846
2847 #define FOLL_WRITE 0x01 /* check pte is writable */
2848 #define FOLL_TOUCH 0x02 /* mark page accessed */
2849 #define FOLL_GET 0x04 /* do get_page on page */
2850 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2851 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2852 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2853 * and return without waiting upon it */
2854 #define FOLL_POPULATE 0x40 /* fault in page */
2855 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2856 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2857 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2858 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2859 #define FOLL_MLOCK 0x1000 /* lock present pages */
2860 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2861 #define FOLL_COW 0x4000 /* internal GUP flag */
2862 #define FOLL_ANON 0x8000 /* don't do file mappings */
2863 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
2864 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
2865 #define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
2866 #define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
2867
2868 /*
2869 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2870 * other. Here is what they mean, and how to use them:
2871 *
2872 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2873 * period _often_ under userspace control. This is in contrast to
2874 * iov_iter_get_pages(), whose usages are transient.
2875 *
2876 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2877 * lifetime enforced by the filesystem and we need guarantees that longterm
2878 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2879 * the filesystem. Ideas for this coordination include revoking the longterm
2880 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2881 * added after the problem with filesystems was found FS DAX VMAs are
2882 * specifically failed. Filesystem pages are still subject to bugs and use of
2883 * FOLL_LONGTERM should be avoided on those pages.
2884 *
2885 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2886 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2887 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2888 * is due to an incompatibility with the FS DAX check and
2889 * FAULT_FLAG_ALLOW_RETRY.
2890 *
2891 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2892 * that region. And so, CMA attempts to migrate the page before pinning, when
2893 * FOLL_LONGTERM is specified.
2894 *
2895 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2896 * but an additional pin counting system) will be invoked. This is intended for
2897 * anything that gets a page reference and then touches page data (for example,
2898 * Direct IO). This lets the filesystem know that some non-file-system entity is
2899 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2900 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2901 * a call to unpin_user_page().
2902 *
2903 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2904 * and separate refcounting mechanisms, however, and that means that each has
2905 * its own acquire and release mechanisms:
2906 *
2907 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2908 *
2909 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2910 *
2911 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2912 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2913 * calls applied to them, and that's perfectly OK. This is a constraint on the
2914 * callers, not on the pages.)
2915 *
2916 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2917 * directly by the caller. That's in order to help avoid mismatches when
2918 * releasing pages: get_user_pages*() pages must be released via put_page(),
2919 * while pin_user_pages*() pages must be released via unpin_user_page().
2920 *
2921 * Please see Documentation/core-api/pin_user_pages.rst for more information.
2922 */
2923
vm_fault_to_errno(vm_fault_t vm_fault,int foll_flags)2924 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2925 {
2926 if (vm_fault & VM_FAULT_OOM)
2927 return -ENOMEM;
2928 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2929 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2930 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2931 return -EFAULT;
2932 return 0;
2933 }
2934
2935 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2936 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2937 unsigned long size, pte_fn_t fn, void *data);
2938 extern int apply_to_existing_page_range(struct mm_struct *mm,
2939 unsigned long address, unsigned long size,
2940 pte_fn_t fn, void *data);
2941
2942 extern void init_mem_debugging_and_hardening(void);
2943 #ifdef CONFIG_PAGE_POISONING
2944 extern void __kernel_poison_pages(struct page *page, int numpages);
2945 extern void __kernel_unpoison_pages(struct page *page, int numpages);
2946 extern bool _page_poisoning_enabled_early;
2947 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
page_poisoning_enabled(void)2948 static inline bool page_poisoning_enabled(void)
2949 {
2950 return _page_poisoning_enabled_early;
2951 }
2952 /*
2953 * For use in fast paths after init_mem_debugging() has run, or when a
2954 * false negative result is not harmful when called too early.
2955 */
page_poisoning_enabled_static(void)2956 static inline bool page_poisoning_enabled_static(void)
2957 {
2958 return static_branch_unlikely(&_page_poisoning_enabled);
2959 }
kernel_poison_pages(struct page * page,int numpages)2960 static inline void kernel_poison_pages(struct page *page, int numpages)
2961 {
2962 if (page_poisoning_enabled_static())
2963 __kernel_poison_pages(page, numpages);
2964 }
kernel_unpoison_pages(struct page * page,int numpages)2965 static inline void kernel_unpoison_pages(struct page *page, int numpages)
2966 {
2967 if (page_poisoning_enabled_static())
2968 __kernel_unpoison_pages(page, numpages);
2969 }
2970 #else
page_poisoning_enabled(void)2971 static inline bool page_poisoning_enabled(void) { return false; }
page_poisoning_enabled_static(void)2972 static inline bool page_poisoning_enabled_static(void) { return false; }
__kernel_poison_pages(struct page * page,int nunmpages)2973 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
kernel_poison_pages(struct page * page,int numpages)2974 static inline void kernel_poison_pages(struct page *page, int numpages) { }
kernel_unpoison_pages(struct page * page,int numpages)2975 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
2976 #endif
2977
2978 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
want_init_on_alloc(gfp_t flags)2979 static inline bool want_init_on_alloc(gfp_t flags)
2980 {
2981 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
2982 &init_on_alloc))
2983 return true;
2984 return flags & __GFP_ZERO;
2985 }
2986
2987 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
want_init_on_free(void)2988 static inline bool want_init_on_free(void)
2989 {
2990 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
2991 &init_on_free);
2992 }
2993
2994 extern bool _debug_pagealloc_enabled_early;
2995 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2996
debug_pagealloc_enabled(void)2997 static inline bool debug_pagealloc_enabled(void)
2998 {
2999 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3000 _debug_pagealloc_enabled_early;
3001 }
3002
3003 /*
3004 * For use in fast paths after init_debug_pagealloc() has run, or when a
3005 * false negative result is not harmful when called too early.
3006 */
debug_pagealloc_enabled_static(void)3007 static inline bool debug_pagealloc_enabled_static(void)
3008 {
3009 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3010 return false;
3011
3012 return static_branch_unlikely(&_debug_pagealloc_enabled);
3013 }
3014
3015 #ifdef CONFIG_DEBUG_PAGEALLOC
3016 /*
3017 * To support DEBUG_PAGEALLOC architecture must ensure that
3018 * __kernel_map_pages() never fails
3019 */
3020 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3021
debug_pagealloc_map_pages(struct page * page,int numpages)3022 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3023 {
3024 if (debug_pagealloc_enabled_static())
3025 __kernel_map_pages(page, numpages, 1);
3026 }
3027
debug_pagealloc_unmap_pages(struct page * page,int numpages)3028 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3029 {
3030 if (debug_pagealloc_enabled_static())
3031 __kernel_map_pages(page, numpages, 0);
3032 }
3033 #else /* CONFIG_DEBUG_PAGEALLOC */
debug_pagealloc_map_pages(struct page * page,int numpages)3034 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
debug_pagealloc_unmap_pages(struct page * page,int numpages)3035 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3036 #endif /* CONFIG_DEBUG_PAGEALLOC */
3037
3038 #ifdef __HAVE_ARCH_GATE_AREA
3039 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3040 extern int in_gate_area_no_mm(unsigned long addr);
3041 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3042 #else
get_gate_vma(struct mm_struct * mm)3043 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3044 {
3045 return NULL;
3046 }
in_gate_area_no_mm(unsigned long addr)3047 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
in_gate_area(struct mm_struct * mm,unsigned long addr)3048 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3049 {
3050 return 0;
3051 }
3052 #endif /* __HAVE_ARCH_GATE_AREA */
3053
3054 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3055
3056 #ifdef CONFIG_SYSCTL
3057 extern int sysctl_drop_caches;
3058 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3059 loff_t *);
3060 #endif
3061
3062 void drop_slab(void);
3063 void drop_slab_node(int nid);
3064
3065 #ifndef CONFIG_MMU
3066 #define randomize_va_space 0
3067 #else
3068 extern int randomize_va_space;
3069 #endif
3070
3071 const char * arch_vma_name(struct vm_area_struct *vma);
3072 #ifdef CONFIG_MMU
3073 void print_vma_addr(char *prefix, unsigned long rip);
3074 #else
print_vma_addr(char * prefix,unsigned long rip)3075 static inline void print_vma_addr(char *prefix, unsigned long rip)
3076 {
3077 }
3078 #endif
3079
3080 int vmemmap_remap_free(unsigned long start, unsigned long end,
3081 unsigned long reuse);
3082 int vmemmap_remap_alloc(unsigned long start, unsigned long end,
3083 unsigned long reuse, gfp_t gfp_mask);
3084
3085 void *sparse_buffer_alloc(unsigned long size);
3086 struct page * __populate_section_memmap(unsigned long pfn,
3087 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
3088 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3089 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3090 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3091 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3092 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3093 struct vmem_altmap *altmap);
3094 void *vmemmap_alloc_block(unsigned long size, int node);
3095 struct vmem_altmap;
3096 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3097 struct vmem_altmap *altmap);
3098 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3099 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3100 int node, struct vmem_altmap *altmap);
3101 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3102 struct vmem_altmap *altmap);
3103 void vmemmap_populate_print_last(void);
3104 #ifdef CONFIG_MEMORY_HOTPLUG
3105 void vmemmap_free(unsigned long start, unsigned long end,
3106 struct vmem_altmap *altmap);
3107 #endif
3108 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3109 unsigned long nr_pages);
3110
3111 enum mf_flags {
3112 MF_COUNT_INCREASED = 1 << 0,
3113 MF_ACTION_REQUIRED = 1 << 1,
3114 MF_MUST_KILL = 1 << 2,
3115 MF_SOFT_OFFLINE = 1 << 3,
3116 };
3117 extern int memory_failure(unsigned long pfn, int flags);
3118 extern void memory_failure_queue(unsigned long pfn, int flags);
3119 extern void memory_failure_queue_kick(int cpu);
3120 extern int unpoison_memory(unsigned long pfn);
3121 extern int sysctl_memory_failure_early_kill;
3122 extern int sysctl_memory_failure_recovery;
3123 extern void shake_page(struct page *p);
3124 extern atomic_long_t num_poisoned_pages __read_mostly;
3125 extern int soft_offline_page(unsigned long pfn, int flags);
3126
3127
3128 /*
3129 * Error handlers for various types of pages.
3130 */
3131 enum mf_result {
3132 MF_IGNORED, /* Error: cannot be handled */
3133 MF_FAILED, /* Error: handling failed */
3134 MF_DELAYED, /* Will be handled later */
3135 MF_RECOVERED, /* Successfully recovered */
3136 };
3137
3138 enum mf_action_page_type {
3139 MF_MSG_KERNEL,
3140 MF_MSG_KERNEL_HIGH_ORDER,
3141 MF_MSG_SLAB,
3142 MF_MSG_DIFFERENT_COMPOUND,
3143 MF_MSG_POISONED_HUGE,
3144 MF_MSG_HUGE,
3145 MF_MSG_FREE_HUGE,
3146 MF_MSG_NON_PMD_HUGE,
3147 MF_MSG_UNMAP_FAILED,
3148 MF_MSG_DIRTY_SWAPCACHE,
3149 MF_MSG_CLEAN_SWAPCACHE,
3150 MF_MSG_DIRTY_MLOCKED_LRU,
3151 MF_MSG_CLEAN_MLOCKED_LRU,
3152 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3153 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3154 MF_MSG_DIRTY_LRU,
3155 MF_MSG_CLEAN_LRU,
3156 MF_MSG_TRUNCATED_LRU,
3157 MF_MSG_BUDDY,
3158 MF_MSG_BUDDY_2ND,
3159 MF_MSG_DAX,
3160 MF_MSG_UNSPLIT_THP,
3161 MF_MSG_UNKNOWN,
3162 };
3163
3164 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3165 extern void clear_huge_page(struct page *page,
3166 unsigned long addr_hint,
3167 unsigned int pages_per_huge_page);
3168 extern void copy_user_huge_page(struct page *dst, struct page *src,
3169 unsigned long addr_hint,
3170 struct vm_area_struct *vma,
3171 unsigned int pages_per_huge_page);
3172 extern long copy_huge_page_from_user(struct page *dst_page,
3173 const void __user *usr_src,
3174 unsigned int pages_per_huge_page,
3175 bool allow_pagefault);
3176
3177 /**
3178 * vma_is_special_huge - Are transhuge page-table entries considered special?
3179 * @vma: Pointer to the struct vm_area_struct to consider
3180 *
3181 * Whether transhuge page-table entries are considered "special" following
3182 * the definition in vm_normal_page().
3183 *
3184 * Return: true if transhuge page-table entries should be considered special,
3185 * false otherwise.
3186 */
vma_is_special_huge(const struct vm_area_struct * vma)3187 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3188 {
3189 return vma_is_dax(vma) || (vma->vm_file &&
3190 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3191 }
3192
3193 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3194
3195 #ifdef CONFIG_DEBUG_PAGEALLOC
3196 extern unsigned int _debug_guardpage_minorder;
3197 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3198
debug_guardpage_minorder(void)3199 static inline unsigned int debug_guardpage_minorder(void)
3200 {
3201 return _debug_guardpage_minorder;
3202 }
3203
debug_guardpage_enabled(void)3204 static inline bool debug_guardpage_enabled(void)
3205 {
3206 return static_branch_unlikely(&_debug_guardpage_enabled);
3207 }
3208
page_is_guard(struct page * page)3209 static inline bool page_is_guard(struct page *page)
3210 {
3211 if (!debug_guardpage_enabled())
3212 return false;
3213
3214 return PageGuard(page);
3215 }
3216 #else
debug_guardpage_minorder(void)3217 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
debug_guardpage_enabled(void)3218 static inline bool debug_guardpage_enabled(void) { return false; }
page_is_guard(struct page * page)3219 static inline bool page_is_guard(struct page *page) { return false; }
3220 #endif /* CONFIG_DEBUG_PAGEALLOC */
3221
3222 #if MAX_NUMNODES > 1
3223 void __init setup_nr_node_ids(void);
3224 #else
setup_nr_node_ids(void)3225 static inline void setup_nr_node_ids(void) {}
3226 #endif
3227
3228 extern int memcmp_pages(struct page *page1, struct page *page2);
3229
pages_identical(struct page * page1,struct page * page2)3230 static inline int pages_identical(struct page *page1, struct page *page2)
3231 {
3232 return !memcmp_pages(page1, page2);
3233 }
3234
3235 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3236 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3237 pgoff_t first_index, pgoff_t nr,
3238 pgoff_t bitmap_pgoff,
3239 unsigned long *bitmap,
3240 pgoff_t *start,
3241 pgoff_t *end);
3242
3243 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3244 pgoff_t first_index, pgoff_t nr);
3245 #endif
3246
3247 extern int sysctl_nr_trim_pages;
3248
3249 #ifdef CONFIG_PRINTK
3250 void mem_dump_obj(void *object);
3251 #else
mem_dump_obj(void * object)3252 static inline void mem_dump_obj(void *object) {}
3253 #endif
3254
3255 /**
3256 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3257 * @seals: the seals to check
3258 * @vma: the vma to operate on
3259 *
3260 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3261 * the vma flags. Return 0 if check pass, or <0 for errors.
3262 */
seal_check_future_write(int seals,struct vm_area_struct * vma)3263 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3264 {
3265 if (seals & F_SEAL_FUTURE_WRITE) {
3266 /*
3267 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3268 * "future write" seal active.
3269 */
3270 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3271 return -EPERM;
3272
3273 /*
3274 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3275 * MAP_SHARED and read-only, take care to not allow mprotect to
3276 * revert protections on such mappings. Do this only for shared
3277 * mappings. For private mappings, don't need to mask
3278 * VM_MAYWRITE as we still want them to be COW-writable.
3279 */
3280 if (vma->vm_flags & VM_SHARED)
3281 vma->vm_flags &= ~(VM_MAYWRITE);
3282 }
3283
3284 return 0;
3285 }
3286
3287 #endif /* __KERNEL__ */
3288 #endif /* _LINUX_MM_H */
3289