1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_TYPES_H
3 #define _LINUX_MM_TYPES_H
4 
5 #include <linux/mm_types_task.h>
6 
7 #include <linux/auxvec.h>
8 #include <linux/list.h>
9 #include <linux/spinlock.h>
10 #include <linux/rbtree.h>
11 #include <linux/rwsem.h>
12 #include <linux/completion.h>
13 #include <linux/cpumask.h>
14 #include <linux/uprobes.h>
15 #include <linux/page-flags-layout.h>
16 #include <linux/workqueue.h>
17 #include <linux/seqlock.h>
18 
19 #include <asm/mmu.h>
20 
21 #ifndef AT_VECTOR_SIZE_ARCH
22 #define AT_VECTOR_SIZE_ARCH 0
23 #endif
24 #define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
25 
26 #define INIT_PASID	0
27 
28 struct address_space;
29 struct mem_cgroup;
30 
31 /*
32  * Each physical page in the system has a struct page associated with
33  * it to keep track of whatever it is we are using the page for at the
34  * moment. Note that we have no way to track which tasks are using
35  * a page, though if it is a pagecache page, rmap structures can tell us
36  * who is mapping it.
37  *
38  * If you allocate the page using alloc_pages(), you can use some of the
39  * space in struct page for your own purposes.  The five words in the main
40  * union are available, except for bit 0 of the first word which must be
41  * kept clear.  Many users use this word to store a pointer to an object
42  * which is guaranteed to be aligned.  If you use the same storage as
43  * page->mapping, you must restore it to NULL before freeing the page.
44  *
45  * If your page will not be mapped to userspace, you can also use the four
46  * bytes in the mapcount union, but you must call page_mapcount_reset()
47  * before freeing it.
48  *
49  * If you want to use the refcount field, it must be used in such a way
50  * that other CPUs temporarily incrementing and then decrementing the
51  * refcount does not cause problems.  On receiving the page from
52  * alloc_pages(), the refcount will be positive.
53  *
54  * If you allocate pages of order > 0, you can use some of the fields
55  * in each subpage, but you may need to restore some of their values
56  * afterwards.
57  *
58  * SLUB uses cmpxchg_double() to atomically update its freelist and
59  * counters.  That requires that freelist & counters be adjacent and
60  * double-word aligned.  We align all struct pages to double-word
61  * boundaries, and ensure that 'freelist' is aligned within the
62  * struct.
63  */
64 #ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
65 #define _struct_page_alignment	__aligned(2 * sizeof(unsigned long))
66 #else
67 #define _struct_page_alignment
68 #endif
69 
70 struct page {
71 	unsigned long flags;		/* Atomic flags, some possibly
72 					 * updated asynchronously */
73 	/*
74 	 * Five words (20/40 bytes) are available in this union.
75 	 * WARNING: bit 0 of the first word is used for PageTail(). That
76 	 * means the other users of this union MUST NOT use the bit to
77 	 * avoid collision and false-positive PageTail().
78 	 */
79 	union {
80 		struct {	/* Page cache and anonymous pages */
81 			/**
82 			 * @lru: Pageout list, eg. active_list protected by
83 			 * lruvec->lru_lock.  Sometimes used as a generic list
84 			 * by the page owner.
85 			 */
86 			struct list_head lru;
87 			/* See page-flags.h for PAGE_MAPPING_FLAGS */
88 			struct address_space *mapping;
89 			pgoff_t index;		/* Our offset within mapping. */
90 			/**
91 			 * @private: Mapping-private opaque data.
92 			 * Usually used for buffer_heads if PagePrivate.
93 			 * Used for swp_entry_t if PageSwapCache.
94 			 * Indicates order in the buddy system if PageBuddy.
95 			 */
96 			unsigned long private;
97 		};
98 		struct {	/* page_pool used by netstack */
99 			/**
100 			 * @pp_magic: magic value to avoid recycling non
101 			 * page_pool allocated pages.
102 			 */
103 			unsigned long pp_magic;
104 			struct page_pool *pp;
105 			unsigned long _pp_mapping_pad;
106 			unsigned long dma_addr;
107 			union {
108 				/**
109 				 * dma_addr_upper: might require a 64-bit
110 				 * value on 32-bit architectures.
111 				 */
112 				unsigned long dma_addr_upper;
113 				/**
114 				 * For frag page support, not supported in
115 				 * 32-bit architectures with 64-bit DMA.
116 				 */
117 				atomic_long_t pp_frag_count;
118 			};
119 		};
120 		struct {	/* slab, slob and slub */
121 			union {
122 				struct list_head slab_list;
123 				struct {	/* Partial pages */
124 					struct page *next;
125 #ifdef CONFIG_64BIT
126 					int pages;	/* Nr of pages left */
127 					int pobjects;	/* Approximate count */
128 #else
129 					short int pages;
130 					short int pobjects;
131 #endif
132 				};
133 			};
134 			struct kmem_cache *slab_cache; /* not slob */
135 			/* Double-word boundary */
136 			void *freelist;		/* first free object */
137 			union {
138 				void *s_mem;	/* slab: first object */
139 				unsigned long counters;		/* SLUB */
140 				struct {			/* SLUB */
141 					unsigned inuse:16;
142 					unsigned objects:15;
143 					unsigned frozen:1;
144 				};
145 			};
146 		};
147 		struct {	/* Tail pages of compound page */
148 			unsigned long compound_head;	/* Bit zero is set */
149 
150 			/* First tail page only */
151 			unsigned char compound_dtor;
152 			unsigned char compound_order;
153 			atomic_t compound_mapcount;
154 			unsigned int compound_nr; /* 1 << compound_order */
155 		};
156 		struct {	/* Second tail page of compound page */
157 			unsigned long _compound_pad_1;	/* compound_head */
158 			atomic_t hpage_pinned_refcount;
159 			/* For both global and memcg */
160 			struct list_head deferred_list;
161 		};
162 		struct {	/* Page table pages */
163 			unsigned long _pt_pad_1;	/* compound_head */
164 			pgtable_t pmd_huge_pte; /* protected by page->ptl */
165 			unsigned long _pt_pad_2;	/* mapping */
166 			union {
167 				struct mm_struct *pt_mm; /* x86 pgds only */
168 				atomic_t pt_frag_refcount; /* powerpc */
169 			};
170 #if ALLOC_SPLIT_PTLOCKS
171 			spinlock_t *ptl;
172 #else
173 			spinlock_t ptl;
174 #endif
175 		};
176 		struct {	/* ZONE_DEVICE pages */
177 			/** @pgmap: Points to the hosting device page map. */
178 			struct dev_pagemap *pgmap;
179 			void *zone_device_data;
180 			/*
181 			 * ZONE_DEVICE private pages are counted as being
182 			 * mapped so the next 3 words hold the mapping, index,
183 			 * and private fields from the source anonymous or
184 			 * page cache page while the page is migrated to device
185 			 * private memory.
186 			 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also
187 			 * use the mapping, index, and private fields when
188 			 * pmem backed DAX files are mapped.
189 			 */
190 		};
191 
192 		/** @rcu_head: You can use this to free a page by RCU. */
193 		struct rcu_head rcu_head;
194 	};
195 
196 	union {		/* This union is 4 bytes in size. */
197 		/*
198 		 * If the page can be mapped to userspace, encodes the number
199 		 * of times this page is referenced by a page table.
200 		 */
201 		atomic_t _mapcount;
202 
203 		/*
204 		 * If the page is neither PageSlab nor mappable to userspace,
205 		 * the value stored here may help determine what this page
206 		 * is used for.  See page-flags.h for a list of page types
207 		 * which are currently stored here.
208 		 */
209 		unsigned int page_type;
210 
211 		unsigned int active;		/* SLAB */
212 		int units;			/* SLOB */
213 	};
214 
215 	/* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */
216 	atomic_t _refcount;
217 
218 #ifdef CONFIG_MEMCG
219 	unsigned long memcg_data;
220 #endif
221 
222 	/*
223 	 * On machines where all RAM is mapped into kernel address space,
224 	 * we can simply calculate the virtual address. On machines with
225 	 * highmem some memory is mapped into kernel virtual memory
226 	 * dynamically, so we need a place to store that address.
227 	 * Note that this field could be 16 bits on x86 ... ;)
228 	 *
229 	 * Architectures with slow multiplication can define
230 	 * WANT_PAGE_VIRTUAL in asm/page.h
231 	 */
232 #if defined(WANT_PAGE_VIRTUAL)
233 	void *virtual;			/* Kernel virtual address (NULL if
234 					   not kmapped, ie. highmem) */
235 #endif /* WANT_PAGE_VIRTUAL */
236 
237 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
238 	int _last_cpupid;
239 #endif
240 } _struct_page_alignment;
241 
compound_mapcount_ptr(struct page * page)242 static inline atomic_t *compound_mapcount_ptr(struct page *page)
243 {
244 	return &page[1].compound_mapcount;
245 }
246 
compound_pincount_ptr(struct page * page)247 static inline atomic_t *compound_pincount_ptr(struct page *page)
248 {
249 	return &page[2].hpage_pinned_refcount;
250 }
251 
252 /*
253  * Used for sizing the vmemmap region on some architectures
254  */
255 #define STRUCT_PAGE_MAX_SHIFT	(order_base_2(sizeof(struct page)))
256 
257 #define PAGE_FRAG_CACHE_MAX_SIZE	__ALIGN_MASK(32768, ~PAGE_MASK)
258 #define PAGE_FRAG_CACHE_MAX_ORDER	get_order(PAGE_FRAG_CACHE_MAX_SIZE)
259 
260 #define page_private(page)		((page)->private)
261 
set_page_private(struct page * page,unsigned long private)262 static inline void set_page_private(struct page *page, unsigned long private)
263 {
264 	page->private = private;
265 }
266 
267 struct page_frag_cache {
268 	void * va;
269 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
270 	__u16 offset;
271 	__u16 size;
272 #else
273 	__u32 offset;
274 #endif
275 	/* we maintain a pagecount bias, so that we dont dirty cache line
276 	 * containing page->_refcount every time we allocate a fragment.
277 	 */
278 	unsigned int		pagecnt_bias;
279 	bool pfmemalloc;
280 };
281 
282 typedef unsigned long vm_flags_t;
283 
284 /*
285  * A region containing a mapping of a non-memory backed file under NOMMU
286  * conditions.  These are held in a global tree and are pinned by the VMAs that
287  * map parts of them.
288  */
289 struct vm_region {
290 	struct rb_node	vm_rb;		/* link in global region tree */
291 	vm_flags_t	vm_flags;	/* VMA vm_flags */
292 	unsigned long	vm_start;	/* start address of region */
293 	unsigned long	vm_end;		/* region initialised to here */
294 	unsigned long	vm_top;		/* region allocated to here */
295 	unsigned long	vm_pgoff;	/* the offset in vm_file corresponding to vm_start */
296 	struct file	*vm_file;	/* the backing file or NULL */
297 
298 	int		vm_usage;	/* region usage count (access under nommu_region_sem) */
299 	bool		vm_icache_flushed : 1; /* true if the icache has been flushed for
300 						* this region */
301 };
302 
303 #ifdef CONFIG_USERFAULTFD
304 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
305 struct vm_userfaultfd_ctx {
306 	struct userfaultfd_ctx *ctx;
307 };
308 #else /* CONFIG_USERFAULTFD */
309 #define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
310 struct vm_userfaultfd_ctx {};
311 #endif /* CONFIG_USERFAULTFD */
312 
313 /*
314  * This struct describes a virtual memory area. There is one of these
315  * per VM-area/task. A VM area is any part of the process virtual memory
316  * space that has a special rule for the page-fault handlers (ie a shared
317  * library, the executable area etc).
318  */
319 struct vm_area_struct {
320 	/* The first cache line has the info for VMA tree walking. */
321 
322 	unsigned long vm_start;		/* Our start address within vm_mm. */
323 	unsigned long vm_end;		/* The first byte after our end address
324 					   within vm_mm. */
325 
326 	/* linked list of VM areas per task, sorted by address */
327 	struct vm_area_struct *vm_next, *vm_prev;
328 
329 	struct rb_node vm_rb;
330 
331 	/*
332 	 * Largest free memory gap in bytes to the left of this VMA.
333 	 * Either between this VMA and vma->vm_prev, or between one of the
334 	 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
335 	 * get_unmapped_area find a free area of the right size.
336 	 */
337 	unsigned long rb_subtree_gap;
338 
339 	/* Second cache line starts here. */
340 
341 	struct mm_struct *vm_mm;	/* The address space we belong to. */
342 
343 	/*
344 	 * Access permissions of this VMA.
345 	 * See vmf_insert_mixed_prot() for discussion.
346 	 */
347 	pgprot_t vm_page_prot;
348 	unsigned long vm_flags;		/* Flags, see mm.h. */
349 
350 	/*
351 	 * For areas with an address space and backing store,
352 	 * linkage into the address_space->i_mmap interval tree.
353 	 */
354 	struct {
355 		struct rb_node rb;
356 		unsigned long rb_subtree_last;
357 	} shared;
358 
359 	/*
360 	 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
361 	 * list, after a COW of one of the file pages.	A MAP_SHARED vma
362 	 * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
363 	 * or brk vma (with NULL file) can only be in an anon_vma list.
364 	 */
365 	struct list_head anon_vma_chain; /* Serialized by mmap_lock &
366 					  * page_table_lock */
367 	struct anon_vma *anon_vma;	/* Serialized by page_table_lock */
368 
369 	/* Function pointers to deal with this struct. */
370 	const struct vm_operations_struct *vm_ops;
371 
372 	/* Information about our backing store: */
373 	unsigned long vm_pgoff;		/* Offset (within vm_file) in PAGE_SIZE
374 					   units */
375 	struct file * vm_file;		/* File we map to (can be NULL). */
376 	void * vm_private_data;		/* was vm_pte (shared mem) */
377 
378 #ifdef CONFIG_SWAP
379 	atomic_long_t swap_readahead_info;
380 #endif
381 #ifndef CONFIG_MMU
382 	struct vm_region *vm_region;	/* NOMMU mapping region */
383 #endif
384 #ifdef CONFIG_NUMA
385 	struct mempolicy *vm_policy;	/* NUMA policy for the VMA */
386 #endif
387 	struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
388 } __randomize_layout;
389 
390 struct core_thread {
391 	struct task_struct *task;
392 	struct core_thread *next;
393 };
394 
395 struct core_state {
396 	atomic_t nr_threads;
397 	struct core_thread dumper;
398 	struct completion startup;
399 };
400 
401 struct kioctx_table;
402 struct mm_struct {
403 	struct {
404 		struct vm_area_struct *mmap;		/* list of VMAs */
405 		struct rb_root mm_rb;
406 		u64 vmacache_seqnum;                   /* per-thread vmacache */
407 #ifdef CONFIG_MMU
408 		unsigned long (*get_unmapped_area) (struct file *filp,
409 				unsigned long addr, unsigned long len,
410 				unsigned long pgoff, unsigned long flags);
411 #endif
412 		unsigned long mmap_base;	/* base of mmap area */
413 		unsigned long mmap_legacy_base;	/* base of mmap area in bottom-up allocations */
414 #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
415 		/* Base addresses for compatible mmap() */
416 		unsigned long mmap_compat_base;
417 		unsigned long mmap_compat_legacy_base;
418 #endif
419 		unsigned long task_size;	/* size of task vm space */
420 		unsigned long highest_vm_end;	/* highest vma end address */
421 		pgd_t * pgd;
422 
423 #ifdef CONFIG_MEMBARRIER
424 		/**
425 		 * @membarrier_state: Flags controlling membarrier behavior.
426 		 *
427 		 * This field is close to @pgd to hopefully fit in the same
428 		 * cache-line, which needs to be touched by switch_mm().
429 		 */
430 		atomic_t membarrier_state;
431 #endif
432 
433 		/**
434 		 * @mm_users: The number of users including userspace.
435 		 *
436 		 * Use mmget()/mmget_not_zero()/mmput() to modify. When this
437 		 * drops to 0 (i.e. when the task exits and there are no other
438 		 * temporary reference holders), we also release a reference on
439 		 * @mm_count (which may then free the &struct mm_struct if
440 		 * @mm_count also drops to 0).
441 		 */
442 		atomic_t mm_users;
443 
444 		/**
445 		 * @mm_count: The number of references to &struct mm_struct
446 		 * (@mm_users count as 1).
447 		 *
448 		 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the
449 		 * &struct mm_struct is freed.
450 		 */
451 		atomic_t mm_count;
452 
453 #ifdef CONFIG_MMU
454 		atomic_long_t pgtables_bytes;	/* PTE page table pages */
455 #endif
456 		int map_count;			/* number of VMAs */
457 
458 		spinlock_t page_table_lock; /* Protects page tables and some
459 					     * counters
460 					     */
461 		/*
462 		 * With some kernel config, the current mmap_lock's offset
463 		 * inside 'mm_struct' is at 0x120, which is very optimal, as
464 		 * its two hot fields 'count' and 'owner' sit in 2 different
465 		 * cachelines,  and when mmap_lock is highly contended, both
466 		 * of the 2 fields will be accessed frequently, current layout
467 		 * will help to reduce cache bouncing.
468 		 *
469 		 * So please be careful with adding new fields before
470 		 * mmap_lock, which can easily push the 2 fields into one
471 		 * cacheline.
472 		 */
473 		struct rw_semaphore mmap_lock;
474 
475 		struct list_head mmlist; /* List of maybe swapped mm's.	These
476 					  * are globally strung together off
477 					  * init_mm.mmlist, and are protected
478 					  * by mmlist_lock
479 					  */
480 
481 
482 		unsigned long hiwater_rss; /* High-watermark of RSS usage */
483 		unsigned long hiwater_vm;  /* High-water virtual memory usage */
484 
485 		unsigned long total_vm;	   /* Total pages mapped */
486 		unsigned long locked_vm;   /* Pages that have PG_mlocked set */
487 		atomic64_t    pinned_vm;   /* Refcount permanently increased */
488 		unsigned long data_vm;	   /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
489 		unsigned long exec_vm;	   /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
490 		unsigned long stack_vm;	   /* VM_STACK */
491 		unsigned long def_flags;
492 
493 		/**
494 		 * @write_protect_seq: Locked when any thread is write
495 		 * protecting pages mapped by this mm to enforce a later COW,
496 		 * for instance during page table copying for fork().
497 		 */
498 		seqcount_t write_protect_seq;
499 
500 		spinlock_t arg_lock; /* protect the below fields */
501 
502 		unsigned long start_code, end_code, start_data, end_data;
503 		unsigned long start_brk, brk, start_stack;
504 		unsigned long arg_start, arg_end, env_start, env_end;
505 
506 		unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
507 
508 		/*
509 		 * Special counters, in some configurations protected by the
510 		 * page_table_lock, in other configurations by being atomic.
511 		 */
512 		struct mm_rss_stat rss_stat;
513 
514 		struct linux_binfmt *binfmt;
515 
516 		/* Architecture-specific MM context */
517 		mm_context_t context;
518 
519 		unsigned long flags; /* Must use atomic bitops to access */
520 
521 		struct core_state *core_state; /* coredumping support */
522 
523 #ifdef CONFIG_AIO
524 		spinlock_t			ioctx_lock;
525 		struct kioctx_table __rcu	*ioctx_table;
526 #endif
527 #ifdef CONFIG_MEMCG
528 		/*
529 		 * "owner" points to a task that is regarded as the canonical
530 		 * user/owner of this mm. All of the following must be true in
531 		 * order for it to be changed:
532 		 *
533 		 * current == mm->owner
534 		 * current->mm != mm
535 		 * new_owner->mm == mm
536 		 * new_owner->alloc_lock is held
537 		 */
538 		struct task_struct __rcu *owner;
539 #endif
540 		struct user_namespace *user_ns;
541 
542 		/* store ref to file /proc/<pid>/exe symlink points to */
543 		struct file __rcu *exe_file;
544 #ifdef CONFIG_MMU_NOTIFIER
545 		struct mmu_notifier_subscriptions *notifier_subscriptions;
546 #endif
547 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
548 		pgtable_t pmd_huge_pte; /* protected by page_table_lock */
549 #endif
550 #ifdef CONFIG_NUMA_BALANCING
551 		/*
552 		 * numa_next_scan is the next time that the PTEs will be marked
553 		 * pte_numa. NUMA hinting faults will gather statistics and
554 		 * migrate pages to new nodes if necessary.
555 		 */
556 		unsigned long numa_next_scan;
557 
558 		/* Restart point for scanning and setting pte_numa */
559 		unsigned long numa_scan_offset;
560 
561 		/* numa_scan_seq prevents two threads setting pte_numa */
562 		int numa_scan_seq;
563 #endif
564 		/*
565 		 * An operation with batched TLB flushing is going on. Anything
566 		 * that can move process memory needs to flush the TLB when
567 		 * moving a PROT_NONE or PROT_NUMA mapped page.
568 		 */
569 		atomic_t tlb_flush_pending;
570 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
571 		/* See flush_tlb_batched_pending() */
572 		bool tlb_flush_batched;
573 #endif
574 		struct uprobes_state uprobes_state;
575 #ifdef CONFIG_HUGETLB_PAGE
576 		atomic_long_t hugetlb_usage;
577 #endif
578 		struct work_struct async_put_work;
579 
580 #ifdef CONFIG_IOMMU_SUPPORT
581 		u32 pasid;
582 #endif
583 	} __randomize_layout;
584 
585 	/*
586 	 * The mm_cpumask needs to be at the end of mm_struct, because it
587 	 * is dynamically sized based on nr_cpu_ids.
588 	 */
589 	unsigned long cpu_bitmap[];
590 };
591 
592 extern struct mm_struct init_mm;
593 
594 /* Pointer magic because the dynamic array size confuses some compilers. */
mm_init_cpumask(struct mm_struct * mm)595 static inline void mm_init_cpumask(struct mm_struct *mm)
596 {
597 	unsigned long cpu_bitmap = (unsigned long)mm;
598 
599 	cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap);
600 	cpumask_clear((struct cpumask *)cpu_bitmap);
601 }
602 
603 /* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
mm_cpumask(struct mm_struct * mm)604 static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
605 {
606 	return (struct cpumask *)&mm->cpu_bitmap;
607 }
608 
609 struct mmu_gather;
610 extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm);
611 extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm);
612 extern void tlb_finish_mmu(struct mmu_gather *tlb);
613 
init_tlb_flush_pending(struct mm_struct * mm)614 static inline void init_tlb_flush_pending(struct mm_struct *mm)
615 {
616 	atomic_set(&mm->tlb_flush_pending, 0);
617 }
618 
inc_tlb_flush_pending(struct mm_struct * mm)619 static inline void inc_tlb_flush_pending(struct mm_struct *mm)
620 {
621 	atomic_inc(&mm->tlb_flush_pending);
622 	/*
623 	 * The only time this value is relevant is when there are indeed pages
624 	 * to flush. And we'll only flush pages after changing them, which
625 	 * requires the PTL.
626 	 *
627 	 * So the ordering here is:
628 	 *
629 	 *	atomic_inc(&mm->tlb_flush_pending);
630 	 *	spin_lock(&ptl);
631 	 *	...
632 	 *	set_pte_at();
633 	 *	spin_unlock(&ptl);
634 	 *
635 	 *				spin_lock(&ptl)
636 	 *				mm_tlb_flush_pending();
637 	 *				....
638 	 *				spin_unlock(&ptl);
639 	 *
640 	 *	flush_tlb_range();
641 	 *	atomic_dec(&mm->tlb_flush_pending);
642 	 *
643 	 * Where the increment if constrained by the PTL unlock, it thus
644 	 * ensures that the increment is visible if the PTE modification is
645 	 * visible. After all, if there is no PTE modification, nobody cares
646 	 * about TLB flushes either.
647 	 *
648 	 * This very much relies on users (mm_tlb_flush_pending() and
649 	 * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and
650 	 * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc
651 	 * locks (PPC) the unlock of one doesn't order against the lock of
652 	 * another PTL.
653 	 *
654 	 * The decrement is ordered by the flush_tlb_range(), such that
655 	 * mm_tlb_flush_pending() will not return false unless all flushes have
656 	 * completed.
657 	 */
658 }
659 
dec_tlb_flush_pending(struct mm_struct * mm)660 static inline void dec_tlb_flush_pending(struct mm_struct *mm)
661 {
662 	/*
663 	 * See inc_tlb_flush_pending().
664 	 *
665 	 * This cannot be smp_mb__before_atomic() because smp_mb() simply does
666 	 * not order against TLB invalidate completion, which is what we need.
667 	 *
668 	 * Therefore we must rely on tlb_flush_*() to guarantee order.
669 	 */
670 	atomic_dec(&mm->tlb_flush_pending);
671 }
672 
mm_tlb_flush_pending(struct mm_struct * mm)673 static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
674 {
675 	/*
676 	 * Must be called after having acquired the PTL; orders against that
677 	 * PTLs release and therefore ensures that if we observe the modified
678 	 * PTE we must also observe the increment from inc_tlb_flush_pending().
679 	 *
680 	 * That is, it only guarantees to return true if there is a flush
681 	 * pending for _this_ PTL.
682 	 */
683 	return atomic_read(&mm->tlb_flush_pending);
684 }
685 
mm_tlb_flush_nested(struct mm_struct * mm)686 static inline bool mm_tlb_flush_nested(struct mm_struct *mm)
687 {
688 	/*
689 	 * Similar to mm_tlb_flush_pending(), we must have acquired the PTL
690 	 * for which there is a TLB flush pending in order to guarantee
691 	 * we've seen both that PTE modification and the increment.
692 	 *
693 	 * (no requirement on actually still holding the PTL, that is irrelevant)
694 	 */
695 	return atomic_read(&mm->tlb_flush_pending) > 1;
696 }
697 
698 struct vm_fault;
699 
700 /**
701  * typedef vm_fault_t - Return type for page fault handlers.
702  *
703  * Page fault handlers return a bitmask of %VM_FAULT values.
704  */
705 typedef __bitwise unsigned int vm_fault_t;
706 
707 /**
708  * enum vm_fault_reason - Page fault handlers return a bitmask of
709  * these values to tell the core VM what happened when handling the
710  * fault. Used to decide whether a process gets delivered SIGBUS or
711  * just gets major/minor fault counters bumped up.
712  *
713  * @VM_FAULT_OOM:		Out Of Memory
714  * @VM_FAULT_SIGBUS:		Bad access
715  * @VM_FAULT_MAJOR:		Page read from storage
716  * @VM_FAULT_WRITE:		Special case for get_user_pages
717  * @VM_FAULT_HWPOISON:		Hit poisoned small page
718  * @VM_FAULT_HWPOISON_LARGE:	Hit poisoned large page. Index encoded
719  *				in upper bits
720  * @VM_FAULT_SIGSEGV:		segmentation fault
721  * @VM_FAULT_NOPAGE:		->fault installed the pte, not return page
722  * @VM_FAULT_LOCKED:		->fault locked the returned page
723  * @VM_FAULT_RETRY:		->fault blocked, must retry
724  * @VM_FAULT_FALLBACK:		huge page fault failed, fall back to small
725  * @VM_FAULT_DONE_COW:		->fault has fully handled COW
726  * @VM_FAULT_NEEDDSYNC:		->fault did not modify page tables and needs
727  *				fsync() to complete (for synchronous page faults
728  *				in DAX)
729  * @VM_FAULT_HINDEX_MASK:	mask HINDEX value
730  *
731  */
732 enum vm_fault_reason {
733 	VM_FAULT_OOM            = (__force vm_fault_t)0x000001,
734 	VM_FAULT_SIGBUS         = (__force vm_fault_t)0x000002,
735 	VM_FAULT_MAJOR          = (__force vm_fault_t)0x000004,
736 	VM_FAULT_WRITE          = (__force vm_fault_t)0x000008,
737 	VM_FAULT_HWPOISON       = (__force vm_fault_t)0x000010,
738 	VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020,
739 	VM_FAULT_SIGSEGV        = (__force vm_fault_t)0x000040,
740 	VM_FAULT_NOPAGE         = (__force vm_fault_t)0x000100,
741 	VM_FAULT_LOCKED         = (__force vm_fault_t)0x000200,
742 	VM_FAULT_RETRY          = (__force vm_fault_t)0x000400,
743 	VM_FAULT_FALLBACK       = (__force vm_fault_t)0x000800,
744 	VM_FAULT_DONE_COW       = (__force vm_fault_t)0x001000,
745 	VM_FAULT_NEEDDSYNC      = (__force vm_fault_t)0x002000,
746 	VM_FAULT_HINDEX_MASK    = (__force vm_fault_t)0x0f0000,
747 };
748 
749 /* Encode hstate index for a hwpoisoned large page */
750 #define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16))
751 #define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf)
752 
753 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS |	\
754 			VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON |	\
755 			VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK)
756 
757 #define VM_FAULT_RESULT_TRACE \
758 	{ VM_FAULT_OOM,                 "OOM" },	\
759 	{ VM_FAULT_SIGBUS,              "SIGBUS" },	\
760 	{ VM_FAULT_MAJOR,               "MAJOR" },	\
761 	{ VM_FAULT_WRITE,               "WRITE" },	\
762 	{ VM_FAULT_HWPOISON,            "HWPOISON" },	\
763 	{ VM_FAULT_HWPOISON_LARGE,      "HWPOISON_LARGE" },	\
764 	{ VM_FAULT_SIGSEGV,             "SIGSEGV" },	\
765 	{ VM_FAULT_NOPAGE,              "NOPAGE" },	\
766 	{ VM_FAULT_LOCKED,              "LOCKED" },	\
767 	{ VM_FAULT_RETRY,               "RETRY" },	\
768 	{ VM_FAULT_FALLBACK,            "FALLBACK" },	\
769 	{ VM_FAULT_DONE_COW,            "DONE_COW" },	\
770 	{ VM_FAULT_NEEDDSYNC,           "NEEDDSYNC" }
771 
772 struct vm_special_mapping {
773 	const char *name;	/* The name, e.g. "[vdso]". */
774 
775 	/*
776 	 * If .fault is not provided, this points to a
777 	 * NULL-terminated array of pages that back the special mapping.
778 	 *
779 	 * This must not be NULL unless .fault is provided.
780 	 */
781 	struct page **pages;
782 
783 	/*
784 	 * If non-NULL, then this is called to resolve page faults
785 	 * on the special mapping.  If used, .pages is not checked.
786 	 */
787 	vm_fault_t (*fault)(const struct vm_special_mapping *sm,
788 				struct vm_area_struct *vma,
789 				struct vm_fault *vmf);
790 
791 	int (*mremap)(const struct vm_special_mapping *sm,
792 		     struct vm_area_struct *new_vma);
793 };
794 
795 enum tlb_flush_reason {
796 	TLB_FLUSH_ON_TASK_SWITCH,
797 	TLB_REMOTE_SHOOTDOWN,
798 	TLB_LOCAL_SHOOTDOWN,
799 	TLB_LOCAL_MM_SHOOTDOWN,
800 	TLB_REMOTE_SEND_IPI,
801 	NR_TLB_FLUSH_REASONS,
802 };
803 
804  /*
805   * A swap entry has to fit into a "unsigned long", as the entry is hidden
806   * in the "index" field of the swapper address space.
807   */
808 typedef struct {
809 	unsigned long val;
810 } swp_entry_t;
811 
812 #endif /* _LINUX_MM_TYPES_H */
813