1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
4   *
5   * Copyright (C) 2008-2012 ST-Ericsson AB
6   * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
7   *
8   * Author: Linus Walleij <linus.walleij@stericsson.com>
9   *
10   * Initial version inspired by:
11   *	linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
12   * Initial adoption to PL022 by:
13   *      Sachin Verma <sachin.verma@st.com>
14   */
15  
16  #include <linux/init.h>
17  #include <linux/module.h>
18  #include <linux/device.h>
19  #include <linux/ioport.h>
20  #include <linux/errno.h>
21  #include <linux/interrupt.h>
22  #include <linux/spi/spi.h>
23  #include <linux/delay.h>
24  #include <linux/clk.h>
25  #include <linux/err.h>
26  #include <linux/amba/bus.h>
27  #include <linux/amba/pl022.h>
28  #include <linux/io.h>
29  #include <linux/slab.h>
30  #include <linux/dmaengine.h>
31  #include <linux/dma-mapping.h>
32  #include <linux/scatterlist.h>
33  #include <linux/pm_runtime.h>
34  #include <linux/of.h>
35  #include <linux/pinctrl/consumer.h>
36  
37  /*
38   * This macro is used to define some register default values.
39   * reg is masked with mask, the OR:ed with an (again masked)
40   * val shifted sb steps to the left.
41   */
42  #define SSP_WRITE_BITS(reg, val, mask, sb) \
43   ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
44  
45  /*
46   * This macro is also used to define some default values.
47   * It will just shift val by sb steps to the left and mask
48   * the result with mask.
49   */
50  #define GEN_MASK_BITS(val, mask, sb) \
51   (((val)<<(sb)) & (mask))
52  
53  #define DRIVE_TX		0
54  #define DO_NOT_DRIVE_TX		1
55  
56  #define DO_NOT_QUEUE_DMA	0
57  #define QUEUE_DMA		1
58  
59  #define RX_TRANSFER		1
60  #define TX_TRANSFER		2
61  
62  /*
63   * Macros to access SSP Registers with their offsets
64   */
65  #define SSP_CR0(r)	(r + 0x000)
66  #define SSP_CR1(r)	(r + 0x004)
67  #define SSP_DR(r)	(r + 0x008)
68  #define SSP_SR(r)	(r + 0x00C)
69  #define SSP_CPSR(r)	(r + 0x010)
70  #define SSP_IMSC(r)	(r + 0x014)
71  #define SSP_RIS(r)	(r + 0x018)
72  #define SSP_MIS(r)	(r + 0x01C)
73  #define SSP_ICR(r)	(r + 0x020)
74  #define SSP_DMACR(r)	(r + 0x024)
75  #define SSP_CSR(r)	(r + 0x030) /* vendor extension */
76  #define SSP_ITCR(r)	(r + 0x080)
77  #define SSP_ITIP(r)	(r + 0x084)
78  #define SSP_ITOP(r)	(r + 0x088)
79  #define SSP_TDR(r)	(r + 0x08C)
80  
81  #define SSP_PID0(r)	(r + 0xFE0)
82  #define SSP_PID1(r)	(r + 0xFE4)
83  #define SSP_PID2(r)	(r + 0xFE8)
84  #define SSP_PID3(r)	(r + 0xFEC)
85  
86  #define SSP_CID0(r)	(r + 0xFF0)
87  #define SSP_CID1(r)	(r + 0xFF4)
88  #define SSP_CID2(r)	(r + 0xFF8)
89  #define SSP_CID3(r)	(r + 0xFFC)
90  
91  /*
92   * SSP Control Register 0  - SSP_CR0
93   */
94  #define SSP_CR0_MASK_DSS	(0x0FUL << 0)
95  #define SSP_CR0_MASK_FRF	(0x3UL << 4)
96  #define SSP_CR0_MASK_SPO	(0x1UL << 6)
97  #define SSP_CR0_MASK_SPH	(0x1UL << 7)
98  #define SSP_CR0_MASK_SCR	(0xFFUL << 8)
99  
100  /*
101   * The ST version of this block moves som bits
102   * in SSP_CR0 and extends it to 32 bits
103   */
104  #define SSP_CR0_MASK_DSS_ST	(0x1FUL << 0)
105  #define SSP_CR0_MASK_HALFDUP_ST	(0x1UL << 5)
106  #define SSP_CR0_MASK_CSS_ST	(0x1FUL << 16)
107  #define SSP_CR0_MASK_FRF_ST	(0x3UL << 21)
108  
109  /*
110   * SSP Control Register 0  - SSP_CR1
111   */
112  #define SSP_CR1_MASK_LBM	(0x1UL << 0)
113  #define SSP_CR1_MASK_SSE	(0x1UL << 1)
114  #define SSP_CR1_MASK_MS		(0x1UL << 2)
115  #define SSP_CR1_MASK_SOD	(0x1UL << 3)
116  
117  /*
118   * The ST version of this block adds some bits
119   * in SSP_CR1
120   */
121  #define SSP_CR1_MASK_RENDN_ST	(0x1UL << 4)
122  #define SSP_CR1_MASK_TENDN_ST	(0x1UL << 5)
123  #define SSP_CR1_MASK_MWAIT_ST	(0x1UL << 6)
124  #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
125  #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
126  /* This one is only in the PL023 variant */
127  #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
128  
129  /*
130   * SSP Status Register - SSP_SR
131   */
132  #define SSP_SR_MASK_TFE		(0x1UL << 0) /* Transmit FIFO empty */
133  #define SSP_SR_MASK_TNF		(0x1UL << 1) /* Transmit FIFO not full */
134  #define SSP_SR_MASK_RNE		(0x1UL << 2) /* Receive FIFO not empty */
135  #define SSP_SR_MASK_RFF		(0x1UL << 3) /* Receive FIFO full */
136  #define SSP_SR_MASK_BSY		(0x1UL << 4) /* Busy Flag */
137  
138  /*
139   * SSP Clock Prescale Register  - SSP_CPSR
140   */
141  #define SSP_CPSR_MASK_CPSDVSR	(0xFFUL << 0)
142  
143  /*
144   * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
145   */
146  #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
147  #define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */
148  #define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */
149  #define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */
150  
151  /*
152   * SSP Raw Interrupt Status Register - SSP_RIS
153   */
154  /* Receive Overrun Raw Interrupt status */
155  #define SSP_RIS_MASK_RORRIS		(0x1UL << 0)
156  /* Receive Timeout Raw Interrupt status */
157  #define SSP_RIS_MASK_RTRIS		(0x1UL << 1)
158  /* Receive FIFO Raw Interrupt status */
159  #define SSP_RIS_MASK_RXRIS		(0x1UL << 2)
160  /* Transmit FIFO Raw Interrupt status */
161  #define SSP_RIS_MASK_TXRIS		(0x1UL << 3)
162  
163  /*
164   * SSP Masked Interrupt Status Register - SSP_MIS
165   */
166  /* Receive Overrun Masked Interrupt status */
167  #define SSP_MIS_MASK_RORMIS		(0x1UL << 0)
168  /* Receive Timeout Masked Interrupt status */
169  #define SSP_MIS_MASK_RTMIS		(0x1UL << 1)
170  /* Receive FIFO Masked Interrupt status */
171  #define SSP_MIS_MASK_RXMIS		(0x1UL << 2)
172  /* Transmit FIFO Masked Interrupt status */
173  #define SSP_MIS_MASK_TXMIS		(0x1UL << 3)
174  
175  /*
176   * SSP Interrupt Clear Register - SSP_ICR
177   */
178  /* Receive Overrun Raw Clear Interrupt bit */
179  #define SSP_ICR_MASK_RORIC		(0x1UL << 0)
180  /* Receive Timeout Clear Interrupt bit */
181  #define SSP_ICR_MASK_RTIC		(0x1UL << 1)
182  
183  /*
184   * SSP DMA Control Register - SSP_DMACR
185   */
186  /* Receive DMA Enable bit */
187  #define SSP_DMACR_MASK_RXDMAE		(0x1UL << 0)
188  /* Transmit DMA Enable bit */
189  #define SSP_DMACR_MASK_TXDMAE		(0x1UL << 1)
190  
191  /*
192   * SSP Chip Select Control Register - SSP_CSR
193   * (vendor extension)
194   */
195  #define SSP_CSR_CSVALUE_MASK		(0x1FUL << 0)
196  
197  /*
198   * SSP Integration Test control Register - SSP_ITCR
199   */
200  #define SSP_ITCR_MASK_ITEN		(0x1UL << 0)
201  #define SSP_ITCR_MASK_TESTFIFO		(0x1UL << 1)
202  
203  /*
204   * SSP Integration Test Input Register - SSP_ITIP
205   */
206  #define ITIP_MASK_SSPRXD		 (0x1UL << 0)
207  #define ITIP_MASK_SSPFSSIN		 (0x1UL << 1)
208  #define ITIP_MASK_SSPCLKIN		 (0x1UL << 2)
209  #define ITIP_MASK_RXDMAC		 (0x1UL << 3)
210  #define ITIP_MASK_TXDMAC		 (0x1UL << 4)
211  #define ITIP_MASK_SSPTXDIN		 (0x1UL << 5)
212  
213  /*
214   * SSP Integration Test output Register - SSP_ITOP
215   */
216  #define ITOP_MASK_SSPTXD		 (0x1UL << 0)
217  #define ITOP_MASK_SSPFSSOUT		 (0x1UL << 1)
218  #define ITOP_MASK_SSPCLKOUT		 (0x1UL << 2)
219  #define ITOP_MASK_SSPOEn		 (0x1UL << 3)
220  #define ITOP_MASK_SSPCTLOEn		 (0x1UL << 4)
221  #define ITOP_MASK_RORINTR		 (0x1UL << 5)
222  #define ITOP_MASK_RTINTR		 (0x1UL << 6)
223  #define ITOP_MASK_RXINTR		 (0x1UL << 7)
224  #define ITOP_MASK_TXINTR		 (0x1UL << 8)
225  #define ITOP_MASK_INTR			 (0x1UL << 9)
226  #define ITOP_MASK_RXDMABREQ		 (0x1UL << 10)
227  #define ITOP_MASK_RXDMASREQ		 (0x1UL << 11)
228  #define ITOP_MASK_TXDMABREQ		 (0x1UL << 12)
229  #define ITOP_MASK_TXDMASREQ		 (0x1UL << 13)
230  
231  /*
232   * SSP Test Data Register - SSP_TDR
233   */
234  #define TDR_MASK_TESTDATA		(0xFFFFFFFF)
235  
236  /*
237   * Message State
238   * we use the spi_message.state (void *) pointer to
239   * hold a single state value, that's why all this
240   * (void *) casting is done here.
241   */
242  #define STATE_START			((void *) 0)
243  #define STATE_RUNNING			((void *) 1)
244  #define STATE_DONE			((void *) 2)
245  #define STATE_ERROR			((void *) -1)
246  #define STATE_TIMEOUT			((void *) -2)
247  
248  /*
249   * SSP State - Whether Enabled or Disabled
250   */
251  #define SSP_DISABLED			(0)
252  #define SSP_ENABLED			(1)
253  
254  /*
255   * SSP DMA State - Whether DMA Enabled or Disabled
256   */
257  #define SSP_DMA_DISABLED		(0)
258  #define SSP_DMA_ENABLED			(1)
259  
260  /*
261   * SSP Clock Defaults
262   */
263  #define SSP_DEFAULT_CLKRATE 0x2
264  #define SSP_DEFAULT_PRESCALE 0x40
265  
266  /*
267   * SSP Clock Parameter ranges
268   */
269  #define CPSDVR_MIN 0x02
270  #define CPSDVR_MAX 0xFE
271  #define SCR_MIN 0x00
272  #define SCR_MAX 0xFF
273  
274  /*
275   * SSP Interrupt related Macros
276   */
277  #define DEFAULT_SSP_REG_IMSC  0x0UL
278  #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
279  #define ENABLE_ALL_INTERRUPTS ( \
280  	SSP_IMSC_MASK_RORIM | \
281  	SSP_IMSC_MASK_RTIM | \
282  	SSP_IMSC_MASK_RXIM | \
283  	SSP_IMSC_MASK_TXIM \
284  )
285  
286  #define CLEAR_ALL_INTERRUPTS  0x3
287  
288  #define SPI_POLLING_TIMEOUT 1000
289  
290  /*
291   * The type of reading going on this chip
292   */
293  enum ssp_reading {
294  	READING_NULL,
295  	READING_U8,
296  	READING_U16,
297  	READING_U32
298  };
299  
300  /*
301   * The type of writing going on this chip
302   */
303  enum ssp_writing {
304  	WRITING_NULL,
305  	WRITING_U8,
306  	WRITING_U16,
307  	WRITING_U32
308  };
309  
310  /**
311   * struct vendor_data - vendor-specific config parameters
312   * for PL022 derivates
313   * @fifodepth: depth of FIFOs (both)
314   * @max_bpw: maximum number of bits per word
315   * @unidir: supports unidirection transfers
316   * @extended_cr: 32 bit wide control register 0 with extra
317   * features and extra features in CR1 as found in the ST variants
318   * @pl023: supports a subset of the ST extensions called "PL023"
319   * @loopback: supports loopback mode
320   * @internal_cs_ctrl: supports chip select control register
321   */
322  struct vendor_data {
323  	int fifodepth;
324  	int max_bpw;
325  	bool unidir;
326  	bool extended_cr;
327  	bool pl023;
328  	bool loopback;
329  	bool internal_cs_ctrl;
330  };
331  
332  /**
333   * struct pl022 - This is the private SSP driver data structure
334   * @adev: AMBA device model hookup
335   * @vendor: vendor data for the IP block
336   * @phybase: the physical memory where the SSP device resides
337   * @virtbase: the virtual memory where the SSP is mapped
338   * @clk: outgoing clock "SPICLK" for the SPI bus
339   * @master: SPI framework hookup
340   * @master_info: controller-specific data from machine setup
341   * @pump_transfers: Tasklet used in Interrupt Transfer mode
342   * @cur_msg: Pointer to current spi_message being processed
343   * @cur_transfer: Pointer to current spi_transfer
344   * @cur_chip: pointer to current clients chip(assigned from controller_state)
345   * @next_msg_cs_active: the next message in the queue has been examined
346   *  and it was found that it uses the same chip select as the previous
347   *  message, so we left it active after the previous transfer, and it's
348   *  active already.
349   * @tx: current position in TX buffer to be read
350   * @tx_end: end position in TX buffer to be read
351   * @rx: current position in RX buffer to be written
352   * @rx_end: end position in RX buffer to be written
353   * @read: the type of read currently going on
354   * @write: the type of write currently going on
355   * @exp_fifo_level: expected FIFO level
356   * @rx_lev_trig: receive FIFO watermark level which triggers IRQ
357   * @tx_lev_trig: transmit FIFO watermark level which triggers IRQ
358   * @dma_rx_channel: optional channel for RX DMA
359   * @dma_tx_channel: optional channel for TX DMA
360   * @sgt_rx: scattertable for the RX transfer
361   * @sgt_tx: scattertable for the TX transfer
362   * @dummypage: a dummy page used for driving data on the bus with DMA
363   * @dma_running: indicates whether DMA is in operation
364   * @cur_cs: current chip select index
365   * @cur_gpiod: current chip select GPIO descriptor
366   */
367  struct pl022 {
368  	struct amba_device		*adev;
369  	struct vendor_data		*vendor;
370  	resource_size_t			phybase;
371  	void __iomem			*virtbase;
372  	struct clk			*clk;
373  	struct spi_master		*master;
374  	struct pl022_ssp_controller	*master_info;
375  	/* Message per-transfer pump */
376  	struct tasklet_struct		pump_transfers;
377  	struct spi_message		*cur_msg;
378  	struct spi_transfer		*cur_transfer;
379  	struct chip_data		*cur_chip;
380  	bool				next_msg_cs_active;
381  	void				*tx;
382  	void				*tx_end;
383  	void				*rx;
384  	void				*rx_end;
385  	enum ssp_reading		read;
386  	enum ssp_writing		write;
387  	u32				exp_fifo_level;
388  	enum ssp_rx_level_trig		rx_lev_trig;
389  	enum ssp_tx_level_trig		tx_lev_trig;
390  	/* DMA settings */
391  #ifdef CONFIG_DMA_ENGINE
392  	struct dma_chan			*dma_rx_channel;
393  	struct dma_chan			*dma_tx_channel;
394  	struct sg_table			sgt_rx;
395  	struct sg_table			sgt_tx;
396  	char				*dummypage;
397  	bool				dma_running;
398  #endif
399  	int cur_cs;
400  	struct gpio_desc *cur_gpiod;
401  };
402  
403  /**
404   * struct chip_data - To maintain runtime state of SSP for each client chip
405   * @cr0: Value of control register CR0 of SSP - on later ST variants this
406   *       register is 32 bits wide rather than just 16
407   * @cr1: Value of control register CR1 of SSP
408   * @dmacr: Value of DMA control Register of SSP
409   * @cpsr: Value of Clock prescale register
410   * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
411   * @enable_dma: Whether to enable DMA or not
412   * @read: function ptr to be used to read when doing xfer for this chip
413   * @write: function ptr to be used to write when doing xfer for this chip
414   * @xfer_type: polling/interrupt/DMA
415   *
416   * Runtime state of the SSP controller, maintained per chip,
417   * This would be set according to the current message that would be served
418   */
419  struct chip_data {
420  	u32 cr0;
421  	u16 cr1;
422  	u16 dmacr;
423  	u16 cpsr;
424  	u8 n_bytes;
425  	bool enable_dma;
426  	enum ssp_reading read;
427  	enum ssp_writing write;
428  	int xfer_type;
429  };
430  
431  /**
432   * internal_cs_control - Control chip select signals via SSP_CSR.
433   * @pl022: SSP driver private data structure
434   * @command: select/delect the chip
435   *
436   * Used on controller with internal chip select control via SSP_CSR register
437   * (vendor extension). Each of the 5 LSB in the register controls one chip
438   * select signal.
439   */
internal_cs_control(struct pl022 * pl022,u32 command)440  static void internal_cs_control(struct pl022 *pl022, u32 command)
441  {
442  	u32 tmp;
443  
444  	tmp = readw(SSP_CSR(pl022->virtbase));
445  	if (command == SSP_CHIP_SELECT)
446  		tmp &= ~BIT(pl022->cur_cs);
447  	else
448  		tmp |= BIT(pl022->cur_cs);
449  	writew(tmp, SSP_CSR(pl022->virtbase));
450  }
451  
pl022_cs_control(struct pl022 * pl022,u32 command)452  static void pl022_cs_control(struct pl022 *pl022, u32 command)
453  {
454  	if (pl022->vendor->internal_cs_ctrl)
455  		internal_cs_control(pl022, command);
456  	else if (pl022->cur_gpiod)
457  		/*
458  		 * This needs to be inverted since with GPIOLIB in
459  		 * control, the inversion will be handled by
460  		 * GPIOLIB's active low handling. The "command"
461  		 * passed into this function will be SSP_CHIP_SELECT
462  		 * which is enum:ed to 0, so we need the inverse
463  		 * (1) to activate chip select.
464  		 */
465  		gpiod_set_value(pl022->cur_gpiod, !command);
466  }
467  
468  /**
469   * giveback - current spi_message is over, schedule next message and call
470   * callback of this message. Assumes that caller already
471   * set message->status; dma and pio irqs are blocked
472   * @pl022: SSP driver private data structure
473   */
giveback(struct pl022 * pl022)474  static void giveback(struct pl022 *pl022)
475  {
476  	struct spi_transfer *last_transfer;
477  	pl022->next_msg_cs_active = false;
478  
479  	last_transfer = list_last_entry(&pl022->cur_msg->transfers,
480  					struct spi_transfer, transfer_list);
481  
482  	/* Delay if requested before any change in chip select */
483  	/*
484  	 * FIXME: This runs in interrupt context.
485  	 * Is this really smart?
486  	 */
487  	spi_transfer_delay_exec(last_transfer);
488  
489  	if (!last_transfer->cs_change) {
490  		struct spi_message *next_msg;
491  
492  		/*
493  		 * cs_change was not set. We can keep the chip select
494  		 * enabled if there is message in the queue and it is
495  		 * for the same spi device.
496  		 *
497  		 * We cannot postpone this until pump_messages, because
498  		 * after calling msg->complete (below) the driver that
499  		 * sent the current message could be unloaded, which
500  		 * could invalidate the cs_control() callback...
501  		 */
502  		/* get a pointer to the next message, if any */
503  		next_msg = spi_get_next_queued_message(pl022->master);
504  
505  		/*
506  		 * see if the next and current messages point
507  		 * to the same spi device.
508  		 */
509  		if (next_msg && next_msg->spi != pl022->cur_msg->spi)
510  			next_msg = NULL;
511  		if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
512  			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
513  		else
514  			pl022->next_msg_cs_active = true;
515  
516  	}
517  
518  	pl022->cur_msg = NULL;
519  	pl022->cur_transfer = NULL;
520  	pl022->cur_chip = NULL;
521  
522  	/* disable the SPI/SSP operation */
523  	writew((readw(SSP_CR1(pl022->virtbase)) &
524  		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
525  
526  	spi_finalize_current_message(pl022->master);
527  }
528  
529  /**
530   * flush - flush the FIFO to reach a clean state
531   * @pl022: SSP driver private data structure
532   */
flush(struct pl022 * pl022)533  static int flush(struct pl022 *pl022)
534  {
535  	unsigned long limit = loops_per_jiffy << 1;
536  
537  	dev_dbg(&pl022->adev->dev, "flush\n");
538  	do {
539  		while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
540  			readw(SSP_DR(pl022->virtbase));
541  	} while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
542  
543  	pl022->exp_fifo_level = 0;
544  
545  	return limit;
546  }
547  
548  /**
549   * restore_state - Load configuration of current chip
550   * @pl022: SSP driver private data structure
551   */
restore_state(struct pl022 * pl022)552  static void restore_state(struct pl022 *pl022)
553  {
554  	struct chip_data *chip = pl022->cur_chip;
555  
556  	if (pl022->vendor->extended_cr)
557  		writel(chip->cr0, SSP_CR0(pl022->virtbase));
558  	else
559  		writew(chip->cr0, SSP_CR0(pl022->virtbase));
560  	writew(chip->cr1, SSP_CR1(pl022->virtbase));
561  	writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
562  	writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
563  	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
564  	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
565  }
566  
567  /*
568   * Default SSP Register Values
569   */
570  #define DEFAULT_SSP_REG_CR0 ( \
571  	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)	| \
572  	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
573  	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
574  	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
575  	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
576  )
577  
578  /* ST versions have slightly different bit layout */
579  #define DEFAULT_SSP_REG_CR0_ST ( \
580  	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
581  	GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
582  	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
583  	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
584  	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
585  	GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16)	| \
586  	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
587  )
588  
589  /* The PL023 version is slightly different again */
590  #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
591  	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
592  	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
593  	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
594  	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
595  )
596  
597  #define DEFAULT_SSP_REG_CR1 ( \
598  	GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
599  	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
600  	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
601  	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
602  )
603  
604  /* ST versions extend this register to use all 16 bits */
605  #define DEFAULT_SSP_REG_CR1_ST ( \
606  	DEFAULT_SSP_REG_CR1 | \
607  	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
608  	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
609  	GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
610  	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
611  	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
612  )
613  
614  /*
615   * The PL023 variant has further differences: no loopback mode, no microwire
616   * support, and a new clock feedback delay setting.
617   */
618  #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
619  	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
620  	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
621  	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
622  	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
623  	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
624  	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
625  	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
626  	GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
627  )
628  
629  #define DEFAULT_SSP_REG_CPSR ( \
630  	GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
631  )
632  
633  #define DEFAULT_SSP_REG_DMACR (\
634  	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
635  	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
636  )
637  
638  /**
639   * load_ssp_default_config - Load default configuration for SSP
640   * @pl022: SSP driver private data structure
641   */
load_ssp_default_config(struct pl022 * pl022)642  static void load_ssp_default_config(struct pl022 *pl022)
643  {
644  	if (pl022->vendor->pl023) {
645  		writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
646  		writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
647  	} else if (pl022->vendor->extended_cr) {
648  		writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
649  		writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
650  	} else {
651  		writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
652  		writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
653  	}
654  	writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
655  	writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
656  	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
657  	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
658  }
659  
660  /*
661   * This will write to TX and read from RX according to the parameters
662   * set in pl022.
663   */
readwriter(struct pl022 * pl022)664  static void readwriter(struct pl022 *pl022)
665  {
666  
667  	/*
668  	 * The FIFO depth is different between primecell variants.
669  	 * I believe filling in too much in the FIFO might cause
670  	 * errons in 8bit wide transfers on ARM variants (just 8 words
671  	 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
672  	 *
673  	 * To prevent this issue, the TX FIFO is only filled to the
674  	 * unused RX FIFO fill length, regardless of what the TX
675  	 * FIFO status flag indicates.
676  	 */
677  	dev_dbg(&pl022->adev->dev,
678  		"%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
679  		__func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
680  
681  	/* Read as much as you can */
682  	while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
683  	       && (pl022->rx < pl022->rx_end)) {
684  		switch (pl022->read) {
685  		case READING_NULL:
686  			readw(SSP_DR(pl022->virtbase));
687  			break;
688  		case READING_U8:
689  			*(u8 *) (pl022->rx) =
690  				readw(SSP_DR(pl022->virtbase)) & 0xFFU;
691  			break;
692  		case READING_U16:
693  			*(u16 *) (pl022->rx) =
694  				(u16) readw(SSP_DR(pl022->virtbase));
695  			break;
696  		case READING_U32:
697  			*(u32 *) (pl022->rx) =
698  				readl(SSP_DR(pl022->virtbase));
699  			break;
700  		}
701  		pl022->rx += (pl022->cur_chip->n_bytes);
702  		pl022->exp_fifo_level--;
703  	}
704  	/*
705  	 * Write as much as possible up to the RX FIFO size
706  	 */
707  	while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
708  	       && (pl022->tx < pl022->tx_end)) {
709  		switch (pl022->write) {
710  		case WRITING_NULL:
711  			writew(0x0, SSP_DR(pl022->virtbase));
712  			break;
713  		case WRITING_U8:
714  			writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
715  			break;
716  		case WRITING_U16:
717  			writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
718  			break;
719  		case WRITING_U32:
720  			writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
721  			break;
722  		}
723  		pl022->tx += (pl022->cur_chip->n_bytes);
724  		pl022->exp_fifo_level++;
725  		/*
726  		 * This inner reader takes care of things appearing in the RX
727  		 * FIFO as we're transmitting. This will happen a lot since the
728  		 * clock starts running when you put things into the TX FIFO,
729  		 * and then things are continuously clocked into the RX FIFO.
730  		 */
731  		while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
732  		       && (pl022->rx < pl022->rx_end)) {
733  			switch (pl022->read) {
734  			case READING_NULL:
735  				readw(SSP_DR(pl022->virtbase));
736  				break;
737  			case READING_U8:
738  				*(u8 *) (pl022->rx) =
739  					readw(SSP_DR(pl022->virtbase)) & 0xFFU;
740  				break;
741  			case READING_U16:
742  				*(u16 *) (pl022->rx) =
743  					(u16) readw(SSP_DR(pl022->virtbase));
744  				break;
745  			case READING_U32:
746  				*(u32 *) (pl022->rx) =
747  					readl(SSP_DR(pl022->virtbase));
748  				break;
749  			}
750  			pl022->rx += (pl022->cur_chip->n_bytes);
751  			pl022->exp_fifo_level--;
752  		}
753  	}
754  	/*
755  	 * When we exit here the TX FIFO should be full and the RX FIFO
756  	 * should be empty
757  	 */
758  }
759  
760  /**
761   * next_transfer - Move to the Next transfer in the current spi message
762   * @pl022: SSP driver private data structure
763   *
764   * This function moves though the linked list of spi transfers in the
765   * current spi message and returns with the state of current spi
766   * message i.e whether its last transfer is done(STATE_DONE) or
767   * Next transfer is ready(STATE_RUNNING)
768   */
next_transfer(struct pl022 * pl022)769  static void *next_transfer(struct pl022 *pl022)
770  {
771  	struct spi_message *msg = pl022->cur_msg;
772  	struct spi_transfer *trans = pl022->cur_transfer;
773  
774  	/* Move to next transfer */
775  	if (trans->transfer_list.next != &msg->transfers) {
776  		pl022->cur_transfer =
777  		    list_entry(trans->transfer_list.next,
778  			       struct spi_transfer, transfer_list);
779  		return STATE_RUNNING;
780  	}
781  	return STATE_DONE;
782  }
783  
784  /*
785   * This DMA functionality is only compiled in if we have
786   * access to the generic DMA devices/DMA engine.
787   */
788  #ifdef CONFIG_DMA_ENGINE
unmap_free_dma_scatter(struct pl022 * pl022)789  static void unmap_free_dma_scatter(struct pl022 *pl022)
790  {
791  	/* Unmap and free the SG tables */
792  	dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
793  		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
794  	dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
795  		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
796  	sg_free_table(&pl022->sgt_rx);
797  	sg_free_table(&pl022->sgt_tx);
798  }
799  
dma_callback(void * data)800  static void dma_callback(void *data)
801  {
802  	struct pl022 *pl022 = data;
803  	struct spi_message *msg = pl022->cur_msg;
804  
805  	BUG_ON(!pl022->sgt_rx.sgl);
806  
807  #ifdef VERBOSE_DEBUG
808  	/*
809  	 * Optionally dump out buffers to inspect contents, this is
810  	 * good if you want to convince yourself that the loopback
811  	 * read/write contents are the same, when adopting to a new
812  	 * DMA engine.
813  	 */
814  	{
815  		struct scatterlist *sg;
816  		unsigned int i;
817  
818  		dma_sync_sg_for_cpu(&pl022->adev->dev,
819  				    pl022->sgt_rx.sgl,
820  				    pl022->sgt_rx.nents,
821  				    DMA_FROM_DEVICE);
822  
823  		for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
824  			dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
825  			print_hex_dump(KERN_ERR, "SPI RX: ",
826  				       DUMP_PREFIX_OFFSET,
827  				       16,
828  				       1,
829  				       sg_virt(sg),
830  				       sg_dma_len(sg),
831  				       1);
832  		}
833  		for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
834  			dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
835  			print_hex_dump(KERN_ERR, "SPI TX: ",
836  				       DUMP_PREFIX_OFFSET,
837  				       16,
838  				       1,
839  				       sg_virt(sg),
840  				       sg_dma_len(sg),
841  				       1);
842  		}
843  	}
844  #endif
845  
846  	unmap_free_dma_scatter(pl022);
847  
848  	/* Update total bytes transferred */
849  	msg->actual_length += pl022->cur_transfer->len;
850  	/* Move to next transfer */
851  	msg->state = next_transfer(pl022);
852  	if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change)
853  		pl022_cs_control(pl022, SSP_CHIP_DESELECT);
854  	tasklet_schedule(&pl022->pump_transfers);
855  }
856  
setup_dma_scatter(struct pl022 * pl022,void * buffer,unsigned int length,struct sg_table * sgtab)857  static void setup_dma_scatter(struct pl022 *pl022,
858  			      void *buffer,
859  			      unsigned int length,
860  			      struct sg_table *sgtab)
861  {
862  	struct scatterlist *sg;
863  	int bytesleft = length;
864  	void *bufp = buffer;
865  	int mapbytes;
866  	int i;
867  
868  	if (buffer) {
869  		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
870  			/*
871  			 * If there are less bytes left than what fits
872  			 * in the current page (plus page alignment offset)
873  			 * we just feed in this, else we stuff in as much
874  			 * as we can.
875  			 */
876  			if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
877  				mapbytes = bytesleft;
878  			else
879  				mapbytes = PAGE_SIZE - offset_in_page(bufp);
880  			sg_set_page(sg, virt_to_page(bufp),
881  				    mapbytes, offset_in_page(bufp));
882  			bufp += mapbytes;
883  			bytesleft -= mapbytes;
884  			dev_dbg(&pl022->adev->dev,
885  				"set RX/TX target page @ %p, %d bytes, %d left\n",
886  				bufp, mapbytes, bytesleft);
887  		}
888  	} else {
889  		/* Map the dummy buffer on every page */
890  		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
891  			if (bytesleft < PAGE_SIZE)
892  				mapbytes = bytesleft;
893  			else
894  				mapbytes = PAGE_SIZE;
895  			sg_set_page(sg, virt_to_page(pl022->dummypage),
896  				    mapbytes, 0);
897  			bytesleft -= mapbytes;
898  			dev_dbg(&pl022->adev->dev,
899  				"set RX/TX to dummy page %d bytes, %d left\n",
900  				mapbytes, bytesleft);
901  
902  		}
903  	}
904  	BUG_ON(bytesleft);
905  }
906  
907  /**
908   * configure_dma - configures the channels for the next transfer
909   * @pl022: SSP driver's private data structure
910   */
configure_dma(struct pl022 * pl022)911  static int configure_dma(struct pl022 *pl022)
912  {
913  	struct dma_slave_config rx_conf = {
914  		.src_addr = SSP_DR(pl022->phybase),
915  		.direction = DMA_DEV_TO_MEM,
916  		.device_fc = false,
917  	};
918  	struct dma_slave_config tx_conf = {
919  		.dst_addr = SSP_DR(pl022->phybase),
920  		.direction = DMA_MEM_TO_DEV,
921  		.device_fc = false,
922  	};
923  	unsigned int pages;
924  	int ret;
925  	int rx_sglen, tx_sglen;
926  	struct dma_chan *rxchan = pl022->dma_rx_channel;
927  	struct dma_chan *txchan = pl022->dma_tx_channel;
928  	struct dma_async_tx_descriptor *rxdesc;
929  	struct dma_async_tx_descriptor *txdesc;
930  
931  	/* Check that the channels are available */
932  	if (!rxchan || !txchan)
933  		return -ENODEV;
934  
935  	/*
936  	 * If supplied, the DMA burstsize should equal the FIFO trigger level.
937  	 * Notice that the DMA engine uses one-to-one mapping. Since we can
938  	 * not trigger on 2 elements this needs explicit mapping rather than
939  	 * calculation.
940  	 */
941  	switch (pl022->rx_lev_trig) {
942  	case SSP_RX_1_OR_MORE_ELEM:
943  		rx_conf.src_maxburst = 1;
944  		break;
945  	case SSP_RX_4_OR_MORE_ELEM:
946  		rx_conf.src_maxburst = 4;
947  		break;
948  	case SSP_RX_8_OR_MORE_ELEM:
949  		rx_conf.src_maxburst = 8;
950  		break;
951  	case SSP_RX_16_OR_MORE_ELEM:
952  		rx_conf.src_maxburst = 16;
953  		break;
954  	case SSP_RX_32_OR_MORE_ELEM:
955  		rx_conf.src_maxburst = 32;
956  		break;
957  	default:
958  		rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
959  		break;
960  	}
961  
962  	switch (pl022->tx_lev_trig) {
963  	case SSP_TX_1_OR_MORE_EMPTY_LOC:
964  		tx_conf.dst_maxburst = 1;
965  		break;
966  	case SSP_TX_4_OR_MORE_EMPTY_LOC:
967  		tx_conf.dst_maxburst = 4;
968  		break;
969  	case SSP_TX_8_OR_MORE_EMPTY_LOC:
970  		tx_conf.dst_maxburst = 8;
971  		break;
972  	case SSP_TX_16_OR_MORE_EMPTY_LOC:
973  		tx_conf.dst_maxburst = 16;
974  		break;
975  	case SSP_TX_32_OR_MORE_EMPTY_LOC:
976  		tx_conf.dst_maxburst = 32;
977  		break;
978  	default:
979  		tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
980  		break;
981  	}
982  
983  	switch (pl022->read) {
984  	case READING_NULL:
985  		/* Use the same as for writing */
986  		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
987  		break;
988  	case READING_U8:
989  		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
990  		break;
991  	case READING_U16:
992  		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
993  		break;
994  	case READING_U32:
995  		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
996  		break;
997  	}
998  
999  	switch (pl022->write) {
1000  	case WRITING_NULL:
1001  		/* Use the same as for reading */
1002  		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1003  		break;
1004  	case WRITING_U8:
1005  		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1006  		break;
1007  	case WRITING_U16:
1008  		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1009  		break;
1010  	case WRITING_U32:
1011  		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1012  		break;
1013  	}
1014  
1015  	/* SPI pecularity: we need to read and write the same width */
1016  	if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1017  		rx_conf.src_addr_width = tx_conf.dst_addr_width;
1018  	if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1019  		tx_conf.dst_addr_width = rx_conf.src_addr_width;
1020  	BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1021  
1022  	dmaengine_slave_config(rxchan, &rx_conf);
1023  	dmaengine_slave_config(txchan, &tx_conf);
1024  
1025  	/* Create sglists for the transfers */
1026  	pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
1027  	dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1028  
1029  	ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
1030  	if (ret)
1031  		goto err_alloc_rx_sg;
1032  
1033  	ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1034  	if (ret)
1035  		goto err_alloc_tx_sg;
1036  
1037  	/* Fill in the scatterlists for the RX+TX buffers */
1038  	setup_dma_scatter(pl022, pl022->rx,
1039  			  pl022->cur_transfer->len, &pl022->sgt_rx);
1040  	setup_dma_scatter(pl022, pl022->tx,
1041  			  pl022->cur_transfer->len, &pl022->sgt_tx);
1042  
1043  	/* Map DMA buffers */
1044  	rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1045  			   pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1046  	if (!rx_sglen)
1047  		goto err_rx_sgmap;
1048  
1049  	tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1050  			   pl022->sgt_tx.nents, DMA_TO_DEVICE);
1051  	if (!tx_sglen)
1052  		goto err_tx_sgmap;
1053  
1054  	/* Send both scatterlists */
1055  	rxdesc = dmaengine_prep_slave_sg(rxchan,
1056  				      pl022->sgt_rx.sgl,
1057  				      rx_sglen,
1058  				      DMA_DEV_TO_MEM,
1059  				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1060  	if (!rxdesc)
1061  		goto err_rxdesc;
1062  
1063  	txdesc = dmaengine_prep_slave_sg(txchan,
1064  				      pl022->sgt_tx.sgl,
1065  				      tx_sglen,
1066  				      DMA_MEM_TO_DEV,
1067  				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1068  	if (!txdesc)
1069  		goto err_txdesc;
1070  
1071  	/* Put the callback on the RX transfer only, that should finish last */
1072  	rxdesc->callback = dma_callback;
1073  	rxdesc->callback_param = pl022;
1074  
1075  	/* Submit and fire RX and TX with TX last so we're ready to read! */
1076  	dmaengine_submit(rxdesc);
1077  	dmaengine_submit(txdesc);
1078  	dma_async_issue_pending(rxchan);
1079  	dma_async_issue_pending(txchan);
1080  	pl022->dma_running = true;
1081  
1082  	return 0;
1083  
1084  err_txdesc:
1085  	dmaengine_terminate_all(txchan);
1086  err_rxdesc:
1087  	dmaengine_terminate_all(rxchan);
1088  	dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1089  		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
1090  err_tx_sgmap:
1091  	dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1092  		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1093  err_rx_sgmap:
1094  	sg_free_table(&pl022->sgt_tx);
1095  err_alloc_tx_sg:
1096  	sg_free_table(&pl022->sgt_rx);
1097  err_alloc_rx_sg:
1098  	return -ENOMEM;
1099  }
1100  
pl022_dma_probe(struct pl022 * pl022)1101  static int pl022_dma_probe(struct pl022 *pl022)
1102  {
1103  	dma_cap_mask_t mask;
1104  
1105  	/* Try to acquire a generic DMA engine slave channel */
1106  	dma_cap_zero(mask);
1107  	dma_cap_set(DMA_SLAVE, mask);
1108  	/*
1109  	 * We need both RX and TX channels to do DMA, else do none
1110  	 * of them.
1111  	 */
1112  	pl022->dma_rx_channel = dma_request_channel(mask,
1113  					    pl022->master_info->dma_filter,
1114  					    pl022->master_info->dma_rx_param);
1115  	if (!pl022->dma_rx_channel) {
1116  		dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1117  		goto err_no_rxchan;
1118  	}
1119  
1120  	pl022->dma_tx_channel = dma_request_channel(mask,
1121  					    pl022->master_info->dma_filter,
1122  					    pl022->master_info->dma_tx_param);
1123  	if (!pl022->dma_tx_channel) {
1124  		dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1125  		goto err_no_txchan;
1126  	}
1127  
1128  	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1129  	if (!pl022->dummypage)
1130  		goto err_no_dummypage;
1131  
1132  	dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1133  		 dma_chan_name(pl022->dma_rx_channel),
1134  		 dma_chan_name(pl022->dma_tx_channel));
1135  
1136  	return 0;
1137  
1138  err_no_dummypage:
1139  	dma_release_channel(pl022->dma_tx_channel);
1140  err_no_txchan:
1141  	dma_release_channel(pl022->dma_rx_channel);
1142  	pl022->dma_rx_channel = NULL;
1143  err_no_rxchan:
1144  	dev_err(&pl022->adev->dev,
1145  			"Failed to work in dma mode, work without dma!\n");
1146  	return -ENODEV;
1147  }
1148  
pl022_dma_autoprobe(struct pl022 * pl022)1149  static int pl022_dma_autoprobe(struct pl022 *pl022)
1150  {
1151  	struct device *dev = &pl022->adev->dev;
1152  	struct dma_chan *chan;
1153  	int err;
1154  
1155  	/* automatically configure DMA channels from platform, normally using DT */
1156  	chan = dma_request_chan(dev, "rx");
1157  	if (IS_ERR(chan)) {
1158  		err = PTR_ERR(chan);
1159  		goto err_no_rxchan;
1160  	}
1161  
1162  	pl022->dma_rx_channel = chan;
1163  
1164  	chan = dma_request_chan(dev, "tx");
1165  	if (IS_ERR(chan)) {
1166  		err = PTR_ERR(chan);
1167  		goto err_no_txchan;
1168  	}
1169  
1170  	pl022->dma_tx_channel = chan;
1171  
1172  	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1173  	if (!pl022->dummypage) {
1174  		err = -ENOMEM;
1175  		goto err_no_dummypage;
1176  	}
1177  
1178  	return 0;
1179  
1180  err_no_dummypage:
1181  	dma_release_channel(pl022->dma_tx_channel);
1182  	pl022->dma_tx_channel = NULL;
1183  err_no_txchan:
1184  	dma_release_channel(pl022->dma_rx_channel);
1185  	pl022->dma_rx_channel = NULL;
1186  err_no_rxchan:
1187  	return err;
1188  }
1189  
terminate_dma(struct pl022 * pl022)1190  static void terminate_dma(struct pl022 *pl022)
1191  {
1192  	struct dma_chan *rxchan = pl022->dma_rx_channel;
1193  	struct dma_chan *txchan = pl022->dma_tx_channel;
1194  
1195  	dmaengine_terminate_all(rxchan);
1196  	dmaengine_terminate_all(txchan);
1197  	unmap_free_dma_scatter(pl022);
1198  	pl022->dma_running = false;
1199  }
1200  
pl022_dma_remove(struct pl022 * pl022)1201  static void pl022_dma_remove(struct pl022 *pl022)
1202  {
1203  	if (pl022->dma_running)
1204  		terminate_dma(pl022);
1205  	if (pl022->dma_tx_channel)
1206  		dma_release_channel(pl022->dma_tx_channel);
1207  	if (pl022->dma_rx_channel)
1208  		dma_release_channel(pl022->dma_rx_channel);
1209  	kfree(pl022->dummypage);
1210  }
1211  
1212  #else
configure_dma(struct pl022 * pl022)1213  static inline int configure_dma(struct pl022 *pl022)
1214  {
1215  	return -ENODEV;
1216  }
1217  
pl022_dma_autoprobe(struct pl022 * pl022)1218  static inline int pl022_dma_autoprobe(struct pl022 *pl022)
1219  {
1220  	return 0;
1221  }
1222  
pl022_dma_probe(struct pl022 * pl022)1223  static inline int pl022_dma_probe(struct pl022 *pl022)
1224  {
1225  	return 0;
1226  }
1227  
pl022_dma_remove(struct pl022 * pl022)1228  static inline void pl022_dma_remove(struct pl022 *pl022)
1229  {
1230  }
1231  #endif
1232  
1233  /**
1234   * pl022_interrupt_handler - Interrupt handler for SSP controller
1235   * @irq: IRQ number
1236   * @dev_id: Local device data
1237   *
1238   * This function handles interrupts generated for an interrupt based transfer.
1239   * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1240   * current message's state as STATE_ERROR and schedule the tasklet
1241   * pump_transfers which will do the postprocessing of the current message by
1242   * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1243   * more data, and writes data in TX FIFO till it is not full. If we complete
1244   * the transfer we move to the next transfer and schedule the tasklet.
1245   */
pl022_interrupt_handler(int irq,void * dev_id)1246  static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1247  {
1248  	struct pl022 *pl022 = dev_id;
1249  	struct spi_message *msg = pl022->cur_msg;
1250  	u16 irq_status = 0;
1251  
1252  	if (unlikely(!msg)) {
1253  		dev_err(&pl022->adev->dev,
1254  			"bad message state in interrupt handler");
1255  		/* Never fail */
1256  		return IRQ_HANDLED;
1257  	}
1258  
1259  	/* Read the Interrupt Status Register */
1260  	irq_status = readw(SSP_MIS(pl022->virtbase));
1261  
1262  	if (unlikely(!irq_status))
1263  		return IRQ_NONE;
1264  
1265  	/*
1266  	 * This handles the FIFO interrupts, the timeout
1267  	 * interrupts are flatly ignored, they cannot be
1268  	 * trusted.
1269  	 */
1270  	if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1271  		/*
1272  		 * Overrun interrupt - bail out since our Data has been
1273  		 * corrupted
1274  		 */
1275  		dev_err(&pl022->adev->dev, "FIFO overrun\n");
1276  		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1277  			dev_err(&pl022->adev->dev,
1278  				"RXFIFO is full\n");
1279  
1280  		/*
1281  		 * Disable and clear interrupts, disable SSP,
1282  		 * mark message with bad status so it can be
1283  		 * retried.
1284  		 */
1285  		writew(DISABLE_ALL_INTERRUPTS,
1286  		       SSP_IMSC(pl022->virtbase));
1287  		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1288  		writew((readw(SSP_CR1(pl022->virtbase)) &
1289  			(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1290  		msg->state = STATE_ERROR;
1291  
1292  		/* Schedule message queue handler */
1293  		tasklet_schedule(&pl022->pump_transfers);
1294  		return IRQ_HANDLED;
1295  	}
1296  
1297  	readwriter(pl022);
1298  
1299  	if (pl022->tx == pl022->tx_end) {
1300  		/* Disable Transmit interrupt, enable receive interrupt */
1301  		writew((readw(SSP_IMSC(pl022->virtbase)) &
1302  		       ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1303  		       SSP_IMSC(pl022->virtbase));
1304  	}
1305  
1306  	/*
1307  	 * Since all transactions must write as much as shall be read,
1308  	 * we can conclude the entire transaction once RX is complete.
1309  	 * At this point, all TX will always be finished.
1310  	 */
1311  	if (pl022->rx >= pl022->rx_end) {
1312  		writew(DISABLE_ALL_INTERRUPTS,
1313  		       SSP_IMSC(pl022->virtbase));
1314  		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1315  		if (unlikely(pl022->rx > pl022->rx_end)) {
1316  			dev_warn(&pl022->adev->dev, "read %u surplus "
1317  				 "bytes (did you request an odd "
1318  				 "number of bytes on a 16bit bus?)\n",
1319  				 (u32) (pl022->rx - pl022->rx_end));
1320  		}
1321  		/* Update total bytes transferred */
1322  		msg->actual_length += pl022->cur_transfer->len;
1323  		/* Move to next transfer */
1324  		msg->state = next_transfer(pl022);
1325  		if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change)
1326  			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1327  		tasklet_schedule(&pl022->pump_transfers);
1328  		return IRQ_HANDLED;
1329  	}
1330  
1331  	return IRQ_HANDLED;
1332  }
1333  
1334  /*
1335   * This sets up the pointers to memory for the next message to
1336   * send out on the SPI bus.
1337   */
set_up_next_transfer(struct pl022 * pl022,struct spi_transfer * transfer)1338  static int set_up_next_transfer(struct pl022 *pl022,
1339  				struct spi_transfer *transfer)
1340  {
1341  	int residue;
1342  
1343  	/* Sanity check the message for this bus width */
1344  	residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1345  	if (unlikely(residue != 0)) {
1346  		dev_err(&pl022->adev->dev,
1347  			"message of %u bytes to transmit but the current "
1348  			"chip bus has a data width of %u bytes!\n",
1349  			pl022->cur_transfer->len,
1350  			pl022->cur_chip->n_bytes);
1351  		dev_err(&pl022->adev->dev, "skipping this message\n");
1352  		return -EIO;
1353  	}
1354  	pl022->tx = (void *)transfer->tx_buf;
1355  	pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1356  	pl022->rx = (void *)transfer->rx_buf;
1357  	pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1358  	pl022->write =
1359  	    pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1360  	pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1361  	return 0;
1362  }
1363  
1364  /**
1365   * pump_transfers - Tasklet function which schedules next transfer
1366   * when running in interrupt or DMA transfer mode.
1367   * @data: SSP driver private data structure
1368   *
1369   */
pump_transfers(unsigned long data)1370  static void pump_transfers(unsigned long data)
1371  {
1372  	struct pl022 *pl022 = (struct pl022 *) data;
1373  	struct spi_message *message = NULL;
1374  	struct spi_transfer *transfer = NULL;
1375  	struct spi_transfer *previous = NULL;
1376  
1377  	/* Get current state information */
1378  	message = pl022->cur_msg;
1379  	transfer = pl022->cur_transfer;
1380  
1381  	/* Handle for abort */
1382  	if (message->state == STATE_ERROR) {
1383  		message->status = -EIO;
1384  		giveback(pl022);
1385  		return;
1386  	}
1387  
1388  	/* Handle end of message */
1389  	if (message->state == STATE_DONE) {
1390  		message->status = 0;
1391  		giveback(pl022);
1392  		return;
1393  	}
1394  
1395  	/* Delay if requested at end of transfer before CS change */
1396  	if (message->state == STATE_RUNNING) {
1397  		previous = list_entry(transfer->transfer_list.prev,
1398  					struct spi_transfer,
1399  					transfer_list);
1400  		/*
1401  		 * FIXME: This runs in interrupt context.
1402  		 * Is this really smart?
1403  		 */
1404  		spi_transfer_delay_exec(previous);
1405  
1406  		/* Reselect chip select only if cs_change was requested */
1407  		if (previous->cs_change)
1408  			pl022_cs_control(pl022, SSP_CHIP_SELECT);
1409  	} else {
1410  		/* STATE_START */
1411  		message->state = STATE_RUNNING;
1412  	}
1413  
1414  	if (set_up_next_transfer(pl022, transfer)) {
1415  		message->state = STATE_ERROR;
1416  		message->status = -EIO;
1417  		giveback(pl022);
1418  		return;
1419  	}
1420  	/* Flush the FIFOs and let's go! */
1421  	flush(pl022);
1422  
1423  	if (pl022->cur_chip->enable_dma) {
1424  		if (configure_dma(pl022)) {
1425  			dev_dbg(&pl022->adev->dev,
1426  				"configuration of DMA failed, fall back to interrupt mode\n");
1427  			goto err_config_dma;
1428  		}
1429  		return;
1430  	}
1431  
1432  err_config_dma:
1433  	/* enable all interrupts except RX */
1434  	writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1435  }
1436  
do_interrupt_dma_transfer(struct pl022 * pl022)1437  static void do_interrupt_dma_transfer(struct pl022 *pl022)
1438  {
1439  	/*
1440  	 * Default is to enable all interrupts except RX -
1441  	 * this will be enabled once TX is complete
1442  	 */
1443  	u32 irqflags = (u32)(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM);
1444  
1445  	/* Enable target chip, if not already active */
1446  	if (!pl022->next_msg_cs_active)
1447  		pl022_cs_control(pl022, SSP_CHIP_SELECT);
1448  
1449  	if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1450  		/* Error path */
1451  		pl022->cur_msg->state = STATE_ERROR;
1452  		pl022->cur_msg->status = -EIO;
1453  		giveback(pl022);
1454  		return;
1455  	}
1456  	/* If we're using DMA, set up DMA here */
1457  	if (pl022->cur_chip->enable_dma) {
1458  		/* Configure DMA transfer */
1459  		if (configure_dma(pl022)) {
1460  			dev_dbg(&pl022->adev->dev,
1461  				"configuration of DMA failed, fall back to interrupt mode\n");
1462  			goto err_config_dma;
1463  		}
1464  		/* Disable interrupts in DMA mode, IRQ from DMA controller */
1465  		irqflags = DISABLE_ALL_INTERRUPTS;
1466  	}
1467  err_config_dma:
1468  	/* Enable SSP, turn on interrupts */
1469  	writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1470  	       SSP_CR1(pl022->virtbase));
1471  	writew(irqflags, SSP_IMSC(pl022->virtbase));
1472  }
1473  
print_current_status(struct pl022 * pl022)1474  static void print_current_status(struct pl022 *pl022)
1475  {
1476  	u32 read_cr0;
1477  	u16 read_cr1, read_dmacr, read_sr;
1478  
1479  	if (pl022->vendor->extended_cr)
1480  		read_cr0 = readl(SSP_CR0(pl022->virtbase));
1481  	else
1482  		read_cr0 = readw(SSP_CR0(pl022->virtbase));
1483  	read_cr1 = readw(SSP_CR1(pl022->virtbase));
1484  	read_dmacr = readw(SSP_DMACR(pl022->virtbase));
1485  	read_sr = readw(SSP_SR(pl022->virtbase));
1486  
1487  	dev_warn(&pl022->adev->dev, "spi-pl022 CR0: %x\n", read_cr0);
1488  	dev_warn(&pl022->adev->dev, "spi-pl022 CR1: %x\n", read_cr1);
1489  	dev_warn(&pl022->adev->dev, "spi-pl022 DMACR: %x\n", read_dmacr);
1490  	dev_warn(&pl022->adev->dev, "spi-pl022 SR: %x\n", read_sr);
1491  	dev_warn(&pl022->adev->dev,
1492  			"spi-pl022 exp_fifo_level/fifodepth: %u/%d\n",
1493  			pl022->exp_fifo_level,
1494  			pl022->vendor->fifodepth);
1495  
1496  }
1497  
do_polling_transfer(struct pl022 * pl022)1498  static void do_polling_transfer(struct pl022 *pl022)
1499  {
1500  	struct spi_message *message = NULL;
1501  	struct spi_transfer *transfer = NULL;
1502  	struct spi_transfer *previous = NULL;
1503  	unsigned long time, timeout;
1504  
1505  	message = pl022->cur_msg;
1506  
1507  	while (message->state != STATE_DONE) {
1508  		/* Handle for abort */
1509  		if (message->state == STATE_ERROR)
1510  			break;
1511  		transfer = pl022->cur_transfer;
1512  
1513  		/* Delay if requested at end of transfer */
1514  		if (message->state == STATE_RUNNING) {
1515  			previous =
1516  			    list_entry(transfer->transfer_list.prev,
1517  				       struct spi_transfer, transfer_list);
1518  			spi_transfer_delay_exec(previous);
1519  			if (previous->cs_change)
1520  				pl022_cs_control(pl022, SSP_CHIP_SELECT);
1521  		} else {
1522  			/* STATE_START */
1523  			message->state = STATE_RUNNING;
1524  			if (!pl022->next_msg_cs_active)
1525  				pl022_cs_control(pl022, SSP_CHIP_SELECT);
1526  		}
1527  
1528  		/* Configuration Changing Per Transfer */
1529  		if (set_up_next_transfer(pl022, transfer)) {
1530  			/* Error path */
1531  			message->state = STATE_ERROR;
1532  			break;
1533  		}
1534  		/* Flush FIFOs and enable SSP */
1535  		flush(pl022);
1536  		writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1537  		       SSP_CR1(pl022->virtbase));
1538  
1539  		dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1540  
1541  		timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1542  		while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1543  			time = jiffies;
1544  			readwriter(pl022);
1545  			if (time_after(time, timeout)) {
1546  				dev_warn(&pl022->adev->dev,
1547  				"%s: timeout!\n", __func__);
1548  				message->state = STATE_TIMEOUT;
1549  				print_current_status(pl022);
1550  				goto out;
1551  			}
1552  			cpu_relax();
1553  		}
1554  
1555  		/* Update total byte transferred */
1556  		message->actual_length += pl022->cur_transfer->len;
1557  		/* Move to next transfer */
1558  		message->state = next_transfer(pl022);
1559  		if (message->state != STATE_DONE
1560  		    && pl022->cur_transfer->cs_change)
1561  			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1562  	}
1563  out:
1564  	/* Handle end of message */
1565  	if (message->state == STATE_DONE)
1566  		message->status = 0;
1567  	else if (message->state == STATE_TIMEOUT)
1568  		message->status = -EAGAIN;
1569  	else
1570  		message->status = -EIO;
1571  
1572  	giveback(pl022);
1573  	return;
1574  }
1575  
pl022_transfer_one_message(struct spi_master * master,struct spi_message * msg)1576  static int pl022_transfer_one_message(struct spi_master *master,
1577  				      struct spi_message *msg)
1578  {
1579  	struct pl022 *pl022 = spi_master_get_devdata(master);
1580  
1581  	/* Initial message state */
1582  	pl022->cur_msg = msg;
1583  	msg->state = STATE_START;
1584  
1585  	pl022->cur_transfer = list_entry(msg->transfers.next,
1586  					 struct spi_transfer, transfer_list);
1587  
1588  	/* Setup the SPI using the per chip configuration */
1589  	pl022->cur_chip = spi_get_ctldata(msg->spi);
1590  	pl022->cur_cs = msg->spi->chip_select;
1591  	/* This is always available but may be set to -ENOENT */
1592  	pl022->cur_gpiod = msg->spi->cs_gpiod;
1593  
1594  	restore_state(pl022);
1595  	flush(pl022);
1596  
1597  	if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1598  		do_polling_transfer(pl022);
1599  	else
1600  		do_interrupt_dma_transfer(pl022);
1601  
1602  	return 0;
1603  }
1604  
pl022_unprepare_transfer_hardware(struct spi_master * master)1605  static int pl022_unprepare_transfer_hardware(struct spi_master *master)
1606  {
1607  	struct pl022 *pl022 = spi_master_get_devdata(master);
1608  
1609  	/* nothing more to do - disable spi/ssp and power off */
1610  	writew((readw(SSP_CR1(pl022->virtbase)) &
1611  		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1612  
1613  	return 0;
1614  }
1615  
verify_controller_parameters(struct pl022 * pl022,struct pl022_config_chip const * chip_info)1616  static int verify_controller_parameters(struct pl022 *pl022,
1617  				struct pl022_config_chip const *chip_info)
1618  {
1619  	if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1620  	    || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1621  		dev_err(&pl022->adev->dev,
1622  			"interface is configured incorrectly\n");
1623  		return -EINVAL;
1624  	}
1625  	if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1626  	    (!pl022->vendor->unidir)) {
1627  		dev_err(&pl022->adev->dev,
1628  			"unidirectional mode not supported in this "
1629  			"hardware version\n");
1630  		return -EINVAL;
1631  	}
1632  	if ((chip_info->hierarchy != SSP_MASTER)
1633  	    && (chip_info->hierarchy != SSP_SLAVE)) {
1634  		dev_err(&pl022->adev->dev,
1635  			"hierarchy is configured incorrectly\n");
1636  		return -EINVAL;
1637  	}
1638  	if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1639  	    && (chip_info->com_mode != DMA_TRANSFER)
1640  	    && (chip_info->com_mode != POLLING_TRANSFER)) {
1641  		dev_err(&pl022->adev->dev,
1642  			"Communication mode is configured incorrectly\n");
1643  		return -EINVAL;
1644  	}
1645  	switch (chip_info->rx_lev_trig) {
1646  	case SSP_RX_1_OR_MORE_ELEM:
1647  	case SSP_RX_4_OR_MORE_ELEM:
1648  	case SSP_RX_8_OR_MORE_ELEM:
1649  		/* These are always OK, all variants can handle this */
1650  		break;
1651  	case SSP_RX_16_OR_MORE_ELEM:
1652  		if (pl022->vendor->fifodepth < 16) {
1653  			dev_err(&pl022->adev->dev,
1654  			"RX FIFO Trigger Level is configured incorrectly\n");
1655  			return -EINVAL;
1656  		}
1657  		break;
1658  	case SSP_RX_32_OR_MORE_ELEM:
1659  		if (pl022->vendor->fifodepth < 32) {
1660  			dev_err(&pl022->adev->dev,
1661  			"RX FIFO Trigger Level is configured incorrectly\n");
1662  			return -EINVAL;
1663  		}
1664  		break;
1665  	default:
1666  		dev_err(&pl022->adev->dev,
1667  			"RX FIFO Trigger Level is configured incorrectly\n");
1668  		return -EINVAL;
1669  	}
1670  	switch (chip_info->tx_lev_trig) {
1671  	case SSP_TX_1_OR_MORE_EMPTY_LOC:
1672  	case SSP_TX_4_OR_MORE_EMPTY_LOC:
1673  	case SSP_TX_8_OR_MORE_EMPTY_LOC:
1674  		/* These are always OK, all variants can handle this */
1675  		break;
1676  	case SSP_TX_16_OR_MORE_EMPTY_LOC:
1677  		if (pl022->vendor->fifodepth < 16) {
1678  			dev_err(&pl022->adev->dev,
1679  			"TX FIFO Trigger Level is configured incorrectly\n");
1680  			return -EINVAL;
1681  		}
1682  		break;
1683  	case SSP_TX_32_OR_MORE_EMPTY_LOC:
1684  		if (pl022->vendor->fifodepth < 32) {
1685  			dev_err(&pl022->adev->dev,
1686  			"TX FIFO Trigger Level is configured incorrectly\n");
1687  			return -EINVAL;
1688  		}
1689  		break;
1690  	default:
1691  		dev_err(&pl022->adev->dev,
1692  			"TX FIFO Trigger Level is configured incorrectly\n");
1693  		return -EINVAL;
1694  	}
1695  	if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1696  		if ((chip_info->ctrl_len < SSP_BITS_4)
1697  		    || (chip_info->ctrl_len > SSP_BITS_32)) {
1698  			dev_err(&pl022->adev->dev,
1699  				"CTRL LEN is configured incorrectly\n");
1700  			return -EINVAL;
1701  		}
1702  		if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1703  		    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1704  			dev_err(&pl022->adev->dev,
1705  				"Wait State is configured incorrectly\n");
1706  			return -EINVAL;
1707  		}
1708  		/* Half duplex is only available in the ST Micro version */
1709  		if (pl022->vendor->extended_cr) {
1710  			if ((chip_info->duplex !=
1711  			     SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1712  			    && (chip_info->duplex !=
1713  				SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1714  				dev_err(&pl022->adev->dev,
1715  					"Microwire duplex mode is configured incorrectly\n");
1716  				return -EINVAL;
1717  			}
1718  		} else {
1719  			if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX) {
1720  				dev_err(&pl022->adev->dev,
1721  					"Microwire half duplex mode requested,"
1722  					" but this is only available in the"
1723  					" ST version of PL022\n");
1724  				return -EINVAL;
1725  			}
1726  		}
1727  	}
1728  	return 0;
1729  }
1730  
spi_rate(u32 rate,u16 cpsdvsr,u16 scr)1731  static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1732  {
1733  	return rate / (cpsdvsr * (1 + scr));
1734  }
1735  
calculate_effective_freq(struct pl022 * pl022,int freq,struct ssp_clock_params * clk_freq)1736  static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1737  				    ssp_clock_params * clk_freq)
1738  {
1739  	/* Lets calculate the frequency parameters */
1740  	u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1741  	u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1742  		best_scr = 0, tmp, found = 0;
1743  
1744  	rate = clk_get_rate(pl022->clk);
1745  	/* cpsdvscr = 2 & scr 0 */
1746  	max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1747  	/* cpsdvsr = 254 & scr = 255 */
1748  	min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1749  
1750  	if (freq > max_tclk)
1751  		dev_warn(&pl022->adev->dev,
1752  			"Max speed that can be programmed is %d Hz, you requested %d\n",
1753  			max_tclk, freq);
1754  
1755  	if (freq < min_tclk) {
1756  		dev_err(&pl022->adev->dev,
1757  			"Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1758  			freq, min_tclk);
1759  		return -EINVAL;
1760  	}
1761  
1762  	/*
1763  	 * best_freq will give closest possible available rate (<= requested
1764  	 * freq) for all values of scr & cpsdvsr.
1765  	 */
1766  	while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1767  		while (scr <= SCR_MAX) {
1768  			tmp = spi_rate(rate, cpsdvsr, scr);
1769  
1770  			if (tmp > freq) {
1771  				/* we need lower freq */
1772  				scr++;
1773  				continue;
1774  			}
1775  
1776  			/*
1777  			 * If found exact value, mark found and break.
1778  			 * If found more closer value, update and break.
1779  			 */
1780  			if (tmp > best_freq) {
1781  				best_freq = tmp;
1782  				best_cpsdvsr = cpsdvsr;
1783  				best_scr = scr;
1784  
1785  				if (tmp == freq)
1786  					found = 1;
1787  			}
1788  			/*
1789  			 * increased scr will give lower rates, which are not
1790  			 * required
1791  			 */
1792  			break;
1793  		}
1794  		cpsdvsr += 2;
1795  		scr = SCR_MIN;
1796  	}
1797  
1798  	WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1799  			freq);
1800  
1801  	clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1802  	clk_freq->scr = (u8) (best_scr & 0xFF);
1803  	dev_dbg(&pl022->adev->dev,
1804  		"SSP Target Frequency is: %u, Effective Frequency is %u\n",
1805  		freq, best_freq);
1806  	dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1807  		clk_freq->cpsdvsr, clk_freq->scr);
1808  
1809  	return 0;
1810  }
1811  
1812  /*
1813   * A piece of default chip info unless the platform
1814   * supplies it.
1815   */
1816  static const struct pl022_config_chip pl022_default_chip_info = {
1817  	.com_mode = INTERRUPT_TRANSFER,
1818  	.iface = SSP_INTERFACE_MOTOROLA_SPI,
1819  	.hierarchy = SSP_MASTER,
1820  	.slave_tx_disable = DO_NOT_DRIVE_TX,
1821  	.rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1822  	.tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1823  	.ctrl_len = SSP_BITS_8,
1824  	.wait_state = SSP_MWIRE_WAIT_ZERO,
1825  	.duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1826  };
1827  
1828  /**
1829   * pl022_setup - setup function registered to SPI master framework
1830   * @spi: spi device which is requesting setup
1831   *
1832   * This function is registered to the SPI framework for this SPI master
1833   * controller. If it is the first time when setup is called by this device,
1834   * this function will initialize the runtime state for this chip and save
1835   * the same in the device structure. Else it will update the runtime info
1836   * with the updated chip info. Nothing is really being written to the
1837   * controller hardware here, that is not done until the actual transfer
1838   * commence.
1839   */
pl022_setup(struct spi_device * spi)1840  static int pl022_setup(struct spi_device *spi)
1841  {
1842  	struct pl022_config_chip const *chip_info;
1843  	struct pl022_config_chip chip_info_dt;
1844  	struct chip_data *chip;
1845  	struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1846  	int status = 0;
1847  	struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1848  	unsigned int bits = spi->bits_per_word;
1849  	u32 tmp;
1850  	struct device_node *np = spi->dev.of_node;
1851  
1852  	if (!spi->max_speed_hz)
1853  		return -EINVAL;
1854  
1855  	/* Get controller_state if one is supplied */
1856  	chip = spi_get_ctldata(spi);
1857  
1858  	if (chip == NULL) {
1859  		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1860  		if (!chip)
1861  			return -ENOMEM;
1862  		dev_dbg(&spi->dev,
1863  			"allocated memory for controller's runtime state\n");
1864  	}
1865  
1866  	/* Get controller data if one is supplied */
1867  	chip_info = spi->controller_data;
1868  
1869  	if (chip_info == NULL) {
1870  		if (np) {
1871  			chip_info_dt = pl022_default_chip_info;
1872  
1873  			chip_info_dt.hierarchy = SSP_MASTER;
1874  			of_property_read_u32(np, "pl022,interface",
1875  				&chip_info_dt.iface);
1876  			of_property_read_u32(np, "pl022,com-mode",
1877  				&chip_info_dt.com_mode);
1878  			of_property_read_u32(np, "pl022,rx-level-trig",
1879  				&chip_info_dt.rx_lev_trig);
1880  			of_property_read_u32(np, "pl022,tx-level-trig",
1881  				&chip_info_dt.tx_lev_trig);
1882  			of_property_read_u32(np, "pl022,ctrl-len",
1883  				&chip_info_dt.ctrl_len);
1884  			of_property_read_u32(np, "pl022,wait-state",
1885  				&chip_info_dt.wait_state);
1886  			of_property_read_u32(np, "pl022,duplex",
1887  				&chip_info_dt.duplex);
1888  
1889  			chip_info = &chip_info_dt;
1890  		} else {
1891  			chip_info = &pl022_default_chip_info;
1892  			/* spi_board_info.controller_data not is supplied */
1893  			dev_dbg(&spi->dev,
1894  				"using default controller_data settings\n");
1895  		}
1896  	} else
1897  		dev_dbg(&spi->dev,
1898  			"using user supplied controller_data settings\n");
1899  
1900  	/*
1901  	 * We can override with custom divisors, else we use the board
1902  	 * frequency setting
1903  	 */
1904  	if ((0 == chip_info->clk_freq.cpsdvsr)
1905  	    && (0 == chip_info->clk_freq.scr)) {
1906  		status = calculate_effective_freq(pl022,
1907  						  spi->max_speed_hz,
1908  						  &clk_freq);
1909  		if (status < 0)
1910  			goto err_config_params;
1911  	} else {
1912  		memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1913  		if ((clk_freq.cpsdvsr % 2) != 0)
1914  			clk_freq.cpsdvsr =
1915  				clk_freq.cpsdvsr - 1;
1916  	}
1917  	if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1918  	    || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1919  		status = -EINVAL;
1920  		dev_err(&spi->dev,
1921  			"cpsdvsr is configured incorrectly\n");
1922  		goto err_config_params;
1923  	}
1924  
1925  	status = verify_controller_parameters(pl022, chip_info);
1926  	if (status) {
1927  		dev_err(&spi->dev, "controller data is incorrect");
1928  		goto err_config_params;
1929  	}
1930  
1931  	pl022->rx_lev_trig = chip_info->rx_lev_trig;
1932  	pl022->tx_lev_trig = chip_info->tx_lev_trig;
1933  
1934  	/* Now set controller state based on controller data */
1935  	chip->xfer_type = chip_info->com_mode;
1936  
1937  	/* Check bits per word with vendor specific range */
1938  	if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1939  		status = -ENOTSUPP;
1940  		dev_err(&spi->dev, "illegal data size for this controller!\n");
1941  		dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1942  				pl022->vendor->max_bpw);
1943  		goto err_config_params;
1944  	} else if (bits <= 8) {
1945  		dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1946  		chip->n_bytes = 1;
1947  		chip->read = READING_U8;
1948  		chip->write = WRITING_U8;
1949  	} else if (bits <= 16) {
1950  		dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1951  		chip->n_bytes = 2;
1952  		chip->read = READING_U16;
1953  		chip->write = WRITING_U16;
1954  	} else {
1955  		dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1956  		chip->n_bytes = 4;
1957  		chip->read = READING_U32;
1958  		chip->write = WRITING_U32;
1959  	}
1960  
1961  	/* Now Initialize all register settings required for this chip */
1962  	chip->cr0 = 0;
1963  	chip->cr1 = 0;
1964  	chip->dmacr = 0;
1965  	chip->cpsr = 0;
1966  	if ((chip_info->com_mode == DMA_TRANSFER)
1967  	    && ((pl022->master_info)->enable_dma)) {
1968  		chip->enable_dma = true;
1969  		dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1970  		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1971  			       SSP_DMACR_MASK_RXDMAE, 0);
1972  		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1973  			       SSP_DMACR_MASK_TXDMAE, 1);
1974  	} else {
1975  		chip->enable_dma = false;
1976  		dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1977  		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1978  			       SSP_DMACR_MASK_RXDMAE, 0);
1979  		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1980  			       SSP_DMACR_MASK_TXDMAE, 1);
1981  	}
1982  
1983  	chip->cpsr = clk_freq.cpsdvsr;
1984  
1985  	/* Special setup for the ST micro extended control registers */
1986  	if (pl022->vendor->extended_cr) {
1987  		u32 etx;
1988  
1989  		if (pl022->vendor->pl023) {
1990  			/* These bits are only in the PL023 */
1991  			SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
1992  				       SSP_CR1_MASK_FBCLKDEL_ST, 13);
1993  		} else {
1994  			/* These bits are in the PL022 but not PL023 */
1995  			SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
1996  				       SSP_CR0_MASK_HALFDUP_ST, 5);
1997  			SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
1998  				       SSP_CR0_MASK_CSS_ST, 16);
1999  			SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2000  				       SSP_CR0_MASK_FRF_ST, 21);
2001  			SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
2002  				       SSP_CR1_MASK_MWAIT_ST, 6);
2003  		}
2004  		SSP_WRITE_BITS(chip->cr0, bits - 1,
2005  			       SSP_CR0_MASK_DSS_ST, 0);
2006  
2007  		if (spi->mode & SPI_LSB_FIRST) {
2008  			tmp = SSP_RX_LSB;
2009  			etx = SSP_TX_LSB;
2010  		} else {
2011  			tmp = SSP_RX_MSB;
2012  			etx = SSP_TX_MSB;
2013  		}
2014  		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
2015  		SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
2016  		SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
2017  			       SSP_CR1_MASK_RXIFLSEL_ST, 7);
2018  		SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
2019  			       SSP_CR1_MASK_TXIFLSEL_ST, 10);
2020  	} else {
2021  		SSP_WRITE_BITS(chip->cr0, bits - 1,
2022  			       SSP_CR0_MASK_DSS, 0);
2023  		SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2024  			       SSP_CR0_MASK_FRF, 4);
2025  	}
2026  
2027  	/* Stuff that is common for all versions */
2028  	if (spi->mode & SPI_CPOL)
2029  		tmp = SSP_CLK_POL_IDLE_HIGH;
2030  	else
2031  		tmp = SSP_CLK_POL_IDLE_LOW;
2032  	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
2033  
2034  	if (spi->mode & SPI_CPHA)
2035  		tmp = SSP_CLK_SECOND_EDGE;
2036  	else
2037  		tmp = SSP_CLK_FIRST_EDGE;
2038  	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
2039  
2040  	SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
2041  	/* Loopback is available on all versions except PL023 */
2042  	if (pl022->vendor->loopback) {
2043  		if (spi->mode & SPI_LOOP)
2044  			tmp = LOOPBACK_ENABLED;
2045  		else
2046  			tmp = LOOPBACK_DISABLED;
2047  		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2048  	}
2049  	SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2050  	SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2051  	SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
2052  		3);
2053  
2054  	/* Save controller_state */
2055  	spi_set_ctldata(spi, chip);
2056  	return status;
2057   err_config_params:
2058  	spi_set_ctldata(spi, NULL);
2059  	kfree(chip);
2060  	return status;
2061  }
2062  
2063  /**
2064   * pl022_cleanup - cleanup function registered to SPI master framework
2065   * @spi: spi device which is requesting cleanup
2066   *
2067   * This function is registered to the SPI framework for this SPI master
2068   * controller. It will free the runtime state of chip.
2069   */
pl022_cleanup(struct spi_device * spi)2070  static void pl022_cleanup(struct spi_device *spi)
2071  {
2072  	struct chip_data *chip = spi_get_ctldata(spi);
2073  
2074  	spi_set_ctldata(spi, NULL);
2075  	kfree(chip);
2076  }
2077  
2078  static struct pl022_ssp_controller *
pl022_platform_data_dt_get(struct device * dev)2079  pl022_platform_data_dt_get(struct device *dev)
2080  {
2081  	struct device_node *np = dev->of_node;
2082  	struct pl022_ssp_controller *pd;
2083  
2084  	if (!np) {
2085  		dev_err(dev, "no dt node defined\n");
2086  		return NULL;
2087  	}
2088  
2089  	pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
2090  	if (!pd)
2091  		return NULL;
2092  
2093  	pd->bus_id = -1;
2094  	pd->enable_dma = 1;
2095  	of_property_read_u32(np, "pl022,autosuspend-delay",
2096  			     &pd->autosuspend_delay);
2097  	pd->rt = of_property_read_bool(np, "pl022,rt");
2098  
2099  	return pd;
2100  }
2101  
pl022_probe(struct amba_device * adev,const struct amba_id * id)2102  static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
2103  {
2104  	struct device *dev = &adev->dev;
2105  	struct pl022_ssp_controller *platform_info =
2106  			dev_get_platdata(&adev->dev);
2107  	struct spi_master *master;
2108  	struct pl022 *pl022 = NULL;	/*Data for this driver */
2109  	int status = 0;
2110  
2111  	dev_info(&adev->dev,
2112  		 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2113  	if (!platform_info && IS_ENABLED(CONFIG_OF))
2114  		platform_info = pl022_platform_data_dt_get(dev);
2115  
2116  	if (!platform_info) {
2117  		dev_err(dev, "probe: no platform data defined\n");
2118  		return -ENODEV;
2119  	}
2120  
2121  	/* Allocate master with space for data */
2122  	master = spi_alloc_master(dev, sizeof(struct pl022));
2123  	if (master == NULL) {
2124  		dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2125  		return -ENOMEM;
2126  	}
2127  
2128  	pl022 = spi_master_get_devdata(master);
2129  	pl022->master = master;
2130  	pl022->master_info = platform_info;
2131  	pl022->adev = adev;
2132  	pl022->vendor = id->data;
2133  
2134  	/*
2135  	 * Bus Number Which has been Assigned to this SSP controller
2136  	 * on this board
2137  	 */
2138  	master->bus_num = platform_info->bus_id;
2139  	master->cleanup = pl022_cleanup;
2140  	master->setup = pl022_setup;
2141  	master->auto_runtime_pm = true;
2142  	master->transfer_one_message = pl022_transfer_one_message;
2143  	master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
2144  	master->rt = platform_info->rt;
2145  	master->dev.of_node = dev->of_node;
2146  	master->use_gpio_descriptors = true;
2147  
2148  	/*
2149  	 * Supports mode 0-3, loopback, and active low CS. Transfers are
2150  	 * always MS bit first on the original pl022.
2151  	 */
2152  	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2153  	if (pl022->vendor->extended_cr)
2154  		master->mode_bits |= SPI_LSB_FIRST;
2155  
2156  	dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2157  
2158  	status = amba_request_regions(adev, NULL);
2159  	if (status)
2160  		goto err_no_ioregion;
2161  
2162  	pl022->phybase = adev->res.start;
2163  	pl022->virtbase = devm_ioremap(dev, adev->res.start,
2164  				       resource_size(&adev->res));
2165  	if (pl022->virtbase == NULL) {
2166  		status = -ENOMEM;
2167  		goto err_no_ioremap;
2168  	}
2169  	dev_info(&adev->dev, "mapped registers from %pa to %p\n",
2170  		&adev->res.start, pl022->virtbase);
2171  
2172  	pl022->clk = devm_clk_get(&adev->dev, NULL);
2173  	if (IS_ERR(pl022->clk)) {
2174  		status = PTR_ERR(pl022->clk);
2175  		dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2176  		goto err_no_clk;
2177  	}
2178  
2179  	status = clk_prepare_enable(pl022->clk);
2180  	if (status) {
2181  		dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2182  		goto err_no_clk_en;
2183  	}
2184  
2185  	/* Initialize transfer pump */
2186  	tasklet_init(&pl022->pump_transfers, pump_transfers,
2187  		     (unsigned long)pl022);
2188  
2189  	/* Disable SSP */
2190  	writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2191  	       SSP_CR1(pl022->virtbase));
2192  	load_ssp_default_config(pl022);
2193  
2194  	status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
2195  				  0, "pl022", pl022);
2196  	if (status < 0) {
2197  		dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2198  		goto err_no_irq;
2199  	}
2200  
2201  	/* Get DMA channels, try autoconfiguration first */
2202  	status = pl022_dma_autoprobe(pl022);
2203  	if (status == -EPROBE_DEFER) {
2204  		dev_dbg(dev, "deferring probe to get DMA channel\n");
2205  		goto err_no_irq;
2206  	}
2207  
2208  	/* If that failed, use channels from platform_info */
2209  	if (status == 0)
2210  		platform_info->enable_dma = 1;
2211  	else if (platform_info->enable_dma) {
2212  		status = pl022_dma_probe(pl022);
2213  		if (status != 0)
2214  			platform_info->enable_dma = 0;
2215  	}
2216  
2217  	/* Register with the SPI framework */
2218  	amba_set_drvdata(adev, pl022);
2219  	status = devm_spi_register_master(&adev->dev, master);
2220  	if (status != 0) {
2221  		dev_err(&adev->dev,
2222  			"probe - problem registering spi master\n");
2223  		goto err_spi_register;
2224  	}
2225  	dev_dbg(dev, "probe succeeded\n");
2226  
2227  	/* let runtime pm put suspend */
2228  	if (platform_info->autosuspend_delay > 0) {
2229  		dev_info(&adev->dev,
2230  			"will use autosuspend for runtime pm, delay %dms\n",
2231  			platform_info->autosuspend_delay);
2232  		pm_runtime_set_autosuspend_delay(dev,
2233  			platform_info->autosuspend_delay);
2234  		pm_runtime_use_autosuspend(dev);
2235  	}
2236  	pm_runtime_put(dev);
2237  
2238  	return 0;
2239  
2240   err_spi_register:
2241  	if (platform_info->enable_dma)
2242  		pl022_dma_remove(pl022);
2243   err_no_irq:
2244  	clk_disable_unprepare(pl022->clk);
2245   err_no_clk_en:
2246   err_no_clk:
2247   err_no_ioremap:
2248  	amba_release_regions(adev);
2249   err_no_ioregion:
2250  	spi_master_put(master);
2251  	return status;
2252  }
2253  
2254  static void
pl022_remove(struct amba_device * adev)2255  pl022_remove(struct amba_device *adev)
2256  {
2257  	struct pl022 *pl022 = amba_get_drvdata(adev);
2258  
2259  	if (!pl022)
2260  		return;
2261  
2262  	/*
2263  	 * undo pm_runtime_put() in probe.  I assume that we're not
2264  	 * accessing the primecell here.
2265  	 */
2266  	pm_runtime_get_noresume(&adev->dev);
2267  
2268  	load_ssp_default_config(pl022);
2269  	if (pl022->master_info->enable_dma)
2270  		pl022_dma_remove(pl022);
2271  
2272  	clk_disable_unprepare(pl022->clk);
2273  	amba_release_regions(adev);
2274  	tasklet_disable(&pl022->pump_transfers);
2275  }
2276  
2277  #ifdef CONFIG_PM_SLEEP
pl022_suspend(struct device * dev)2278  static int pl022_suspend(struct device *dev)
2279  {
2280  	struct pl022 *pl022 = dev_get_drvdata(dev);
2281  	int ret;
2282  
2283  	ret = spi_master_suspend(pl022->master);
2284  	if (ret)
2285  		return ret;
2286  
2287  	ret = pm_runtime_force_suspend(dev);
2288  	if (ret) {
2289  		spi_master_resume(pl022->master);
2290  		return ret;
2291  	}
2292  
2293  	pinctrl_pm_select_sleep_state(dev);
2294  
2295  	dev_dbg(dev, "suspended\n");
2296  	return 0;
2297  }
2298  
pl022_resume(struct device * dev)2299  static int pl022_resume(struct device *dev)
2300  {
2301  	struct pl022 *pl022 = dev_get_drvdata(dev);
2302  	int ret;
2303  
2304  	ret = pm_runtime_force_resume(dev);
2305  	if (ret)
2306  		dev_err(dev, "problem resuming\n");
2307  
2308  	/* Start the queue running */
2309  	ret = spi_master_resume(pl022->master);
2310  	if (!ret)
2311  		dev_dbg(dev, "resumed\n");
2312  
2313  	return ret;
2314  }
2315  #endif
2316  
2317  #ifdef CONFIG_PM
pl022_runtime_suspend(struct device * dev)2318  static int pl022_runtime_suspend(struct device *dev)
2319  {
2320  	struct pl022 *pl022 = dev_get_drvdata(dev);
2321  
2322  	clk_disable_unprepare(pl022->clk);
2323  	pinctrl_pm_select_idle_state(dev);
2324  
2325  	return 0;
2326  }
2327  
pl022_runtime_resume(struct device * dev)2328  static int pl022_runtime_resume(struct device *dev)
2329  {
2330  	struct pl022 *pl022 = dev_get_drvdata(dev);
2331  
2332  	pinctrl_pm_select_default_state(dev);
2333  	clk_prepare_enable(pl022->clk);
2334  
2335  	return 0;
2336  }
2337  #endif
2338  
2339  static const struct dev_pm_ops pl022_dev_pm_ops = {
2340  	SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2341  	SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2342  };
2343  
2344  static struct vendor_data vendor_arm = {
2345  	.fifodepth = 8,
2346  	.max_bpw = 16,
2347  	.unidir = false,
2348  	.extended_cr = false,
2349  	.pl023 = false,
2350  	.loopback = true,
2351  	.internal_cs_ctrl = false,
2352  };
2353  
2354  static struct vendor_data vendor_st = {
2355  	.fifodepth = 32,
2356  	.max_bpw = 32,
2357  	.unidir = false,
2358  	.extended_cr = true,
2359  	.pl023 = false,
2360  	.loopback = true,
2361  	.internal_cs_ctrl = false,
2362  };
2363  
2364  static struct vendor_data vendor_st_pl023 = {
2365  	.fifodepth = 32,
2366  	.max_bpw = 32,
2367  	.unidir = false,
2368  	.extended_cr = true,
2369  	.pl023 = true,
2370  	.loopback = false,
2371  	.internal_cs_ctrl = false,
2372  };
2373  
2374  static struct vendor_data vendor_lsi = {
2375  	.fifodepth = 8,
2376  	.max_bpw = 16,
2377  	.unidir = false,
2378  	.extended_cr = false,
2379  	.pl023 = false,
2380  	.loopback = true,
2381  	.internal_cs_ctrl = true,
2382  };
2383  
2384  static const struct amba_id pl022_ids[] = {
2385  	{
2386  		/*
2387  		 * ARM PL022 variant, this has a 16bit wide
2388  		 * and 8 locations deep TX/RX FIFO
2389  		 */
2390  		.id	= 0x00041022,
2391  		.mask	= 0x000fffff,
2392  		.data	= &vendor_arm,
2393  	},
2394  	{
2395  		/*
2396  		 * ST Micro derivative, this has 32bit wide
2397  		 * and 32 locations deep TX/RX FIFO
2398  		 */
2399  		.id	= 0x01080022,
2400  		.mask	= 0xffffffff,
2401  		.data	= &vendor_st,
2402  	},
2403  	{
2404  		/*
2405  		 * ST-Ericsson derivative "PL023" (this is not
2406  		 * an official ARM number), this is a PL022 SSP block
2407  		 * stripped to SPI mode only, it has 32bit wide
2408  		 * and 32 locations deep TX/RX FIFO but no extended
2409  		 * CR0/CR1 register
2410  		 */
2411  		.id	= 0x00080023,
2412  		.mask	= 0xffffffff,
2413  		.data	= &vendor_st_pl023,
2414  	},
2415  	{
2416  		/*
2417  		 * PL022 variant that has a chip select control register whih
2418  		 * allows control of 5 output signals nCS[0:4].
2419  		 */
2420  		.id	= 0x000b6022,
2421  		.mask	= 0x000fffff,
2422  		.data	= &vendor_lsi,
2423  	},
2424  	{ 0, 0 },
2425  };
2426  
2427  MODULE_DEVICE_TABLE(amba, pl022_ids);
2428  
2429  static struct amba_driver pl022_driver = {
2430  	.drv = {
2431  		.name	= "ssp-pl022",
2432  		.pm	= &pl022_dev_pm_ops,
2433  	},
2434  	.id_table	= pl022_ids,
2435  	.probe		= pl022_probe,
2436  	.remove		= pl022_remove,
2437  };
2438  
pl022_init(void)2439  static int __init pl022_init(void)
2440  {
2441  	return amba_driver_register(&pl022_driver);
2442  }
2443  subsys_initcall(pl022_init);
2444  
pl022_exit(void)2445  static void __exit pl022_exit(void)
2446  {
2447  	amba_driver_unregister(&pl022_driver);
2448  }
2449  module_exit(pl022_exit);
2450  
2451  MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2452  MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2453  MODULE_LICENSE("GPL");
2454