1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Adaptec AAC series RAID controller driver
4 * (c) Copyright 2001 Red Hat Inc.
5 *
6 * based on the old aacraid driver that is..
7 * Adaptec aacraid device driver for Linux.
8 *
9 * Copyright (c) 2000-2010 Adaptec, Inc.
10 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
11 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
12 *
13 * Module Name:
14 * aachba.c
15 *
16 * Abstract: Contains Interfaces to manage IOs.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/types.h>
22 #include <linux/pci.h>
23 #include <linux/spinlock.h>
24 #include <linux/slab.h>
25 #include <linux/completion.h>
26 #include <linux/blkdev.h>
27 #include <linux/uaccess.h>
28 #include <linux/module.h>
29
30 #include <asm/unaligned.h>
31
32 #include <scsi/scsi.h>
33 #include <scsi/scsi_cmnd.h>
34 #include <scsi/scsi_device.h>
35 #include <scsi/scsi_host.h>
36
37 #include "aacraid.h"
38
39 /* values for inqd_pdt: Peripheral device type in plain English */
40 #define INQD_PDT_DA 0x00 /* Direct-access (DISK) device */
41 #define INQD_PDT_PROC 0x03 /* Processor device */
42 #define INQD_PDT_CHNGR 0x08 /* Changer (jukebox, scsi2) */
43 #define INQD_PDT_COMM 0x09 /* Communication device (scsi2) */
44 #define INQD_PDT_NOLUN2 0x1f /* Unknown Device (scsi2) */
45 #define INQD_PDT_NOLUN 0x7f /* Logical Unit Not Present */
46
47 #define INQD_PDT_DMASK 0x1F /* Peripheral Device Type Mask */
48 #define INQD_PDT_QMASK 0xE0 /* Peripheral Device Qualifer Mask */
49
50 /*
51 * Sense codes
52 */
53
54 #define SENCODE_NO_SENSE 0x00
55 #define SENCODE_END_OF_DATA 0x00
56 #define SENCODE_BECOMING_READY 0x04
57 #define SENCODE_INIT_CMD_REQUIRED 0x04
58 #define SENCODE_UNRECOVERED_READ_ERROR 0x11
59 #define SENCODE_PARAM_LIST_LENGTH_ERROR 0x1A
60 #define SENCODE_INVALID_COMMAND 0x20
61 #define SENCODE_LBA_OUT_OF_RANGE 0x21
62 #define SENCODE_INVALID_CDB_FIELD 0x24
63 #define SENCODE_LUN_NOT_SUPPORTED 0x25
64 #define SENCODE_INVALID_PARAM_FIELD 0x26
65 #define SENCODE_PARAM_NOT_SUPPORTED 0x26
66 #define SENCODE_PARAM_VALUE_INVALID 0x26
67 #define SENCODE_RESET_OCCURRED 0x29
68 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x3E
69 #define SENCODE_INQUIRY_DATA_CHANGED 0x3F
70 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x39
71 #define SENCODE_DIAGNOSTIC_FAILURE 0x40
72 #define SENCODE_INTERNAL_TARGET_FAILURE 0x44
73 #define SENCODE_INVALID_MESSAGE_ERROR 0x49
74 #define SENCODE_LUN_FAILED_SELF_CONFIG 0x4c
75 #define SENCODE_OVERLAPPED_COMMAND 0x4E
76
77 /*
78 * Additional sense codes
79 */
80
81 #define ASENCODE_NO_SENSE 0x00
82 #define ASENCODE_END_OF_DATA 0x05
83 #define ASENCODE_BECOMING_READY 0x01
84 #define ASENCODE_INIT_CMD_REQUIRED 0x02
85 #define ASENCODE_PARAM_LIST_LENGTH_ERROR 0x00
86 #define ASENCODE_INVALID_COMMAND 0x00
87 #define ASENCODE_LBA_OUT_OF_RANGE 0x00
88 #define ASENCODE_INVALID_CDB_FIELD 0x00
89 #define ASENCODE_LUN_NOT_SUPPORTED 0x00
90 #define ASENCODE_INVALID_PARAM_FIELD 0x00
91 #define ASENCODE_PARAM_NOT_SUPPORTED 0x01
92 #define ASENCODE_PARAM_VALUE_INVALID 0x02
93 #define ASENCODE_RESET_OCCURRED 0x00
94 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x00
95 #define ASENCODE_INQUIRY_DATA_CHANGED 0x03
96 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x00
97 #define ASENCODE_DIAGNOSTIC_FAILURE 0x80
98 #define ASENCODE_INTERNAL_TARGET_FAILURE 0x00
99 #define ASENCODE_INVALID_MESSAGE_ERROR 0x00
100 #define ASENCODE_LUN_FAILED_SELF_CONFIG 0x00
101 #define ASENCODE_OVERLAPPED_COMMAND 0x00
102
103 #define BYTE0(x) (unsigned char)(x)
104 #define BYTE1(x) (unsigned char)((x) >> 8)
105 #define BYTE2(x) (unsigned char)((x) >> 16)
106 #define BYTE3(x) (unsigned char)((x) >> 24)
107
108 /* MODE_SENSE data format */
109 typedef struct {
110 struct {
111 u8 data_length;
112 u8 med_type;
113 u8 dev_par;
114 u8 bd_length;
115 } __attribute__((packed)) hd;
116 struct {
117 u8 dens_code;
118 u8 block_count[3];
119 u8 reserved;
120 u8 block_length[3];
121 } __attribute__((packed)) bd;
122 u8 mpc_buf[3];
123 } __attribute__((packed)) aac_modep_data;
124
125 /* MODE_SENSE_10 data format */
126 typedef struct {
127 struct {
128 u8 data_length[2];
129 u8 med_type;
130 u8 dev_par;
131 u8 rsrvd[2];
132 u8 bd_length[2];
133 } __attribute__((packed)) hd;
134 struct {
135 u8 dens_code;
136 u8 block_count[3];
137 u8 reserved;
138 u8 block_length[3];
139 } __attribute__((packed)) bd;
140 u8 mpc_buf[3];
141 } __attribute__((packed)) aac_modep10_data;
142
143 /*------------------------------------------------------------------------------
144 * S T R U C T S / T Y P E D E F S
145 *----------------------------------------------------------------------------*/
146 /* SCSI inquiry data */
147 struct inquiry_data {
148 u8 inqd_pdt; /* Peripheral qualifier | Peripheral Device Type */
149 u8 inqd_dtq; /* RMB | Device Type Qualifier */
150 u8 inqd_ver; /* ISO version | ECMA version | ANSI-approved version */
151 u8 inqd_rdf; /* AENC | TrmIOP | Response data format */
152 u8 inqd_len; /* Additional length (n-4) */
153 u8 inqd_pad1[2];/* Reserved - must be zero */
154 u8 inqd_pad2; /* RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
155 u8 inqd_vid[8]; /* Vendor ID */
156 u8 inqd_pid[16];/* Product ID */
157 u8 inqd_prl[4]; /* Product Revision Level */
158 };
159
160 /* Added for VPD 0x83 */
161 struct tvpd_id_descriptor_type_1 {
162 u8 codeset:4; /* VPD_CODE_SET */
163 u8 reserved:4;
164 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */
165 u8 reserved2:4;
166 u8 reserved3;
167 u8 identifierlength;
168 u8 venid[8];
169 u8 productid[16];
170 u8 serialnumber[8]; /* SN in ASCII */
171
172 };
173
174 struct tvpd_id_descriptor_type_2 {
175 u8 codeset:4; /* VPD_CODE_SET */
176 u8 reserved:4;
177 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */
178 u8 reserved2:4;
179 u8 reserved3;
180 u8 identifierlength;
181 struct teu64id {
182 u32 Serial;
183 /* The serial number supposed to be 40 bits,
184 * bit we only support 32, so make the last byte zero. */
185 u8 reserved;
186 u8 venid[3];
187 } eu64id;
188
189 };
190
191 struct tvpd_id_descriptor_type_3 {
192 u8 codeset : 4; /* VPD_CODE_SET */
193 u8 reserved : 4;
194 u8 identifiertype : 4; /* VPD_IDENTIFIER_TYPE */
195 u8 reserved2 : 4;
196 u8 reserved3;
197 u8 identifierlength;
198 u8 Identifier[16];
199 };
200
201 struct tvpd_page83 {
202 u8 DeviceType:5;
203 u8 DeviceTypeQualifier:3;
204 u8 PageCode;
205 u8 reserved;
206 u8 PageLength;
207 struct tvpd_id_descriptor_type_1 type1;
208 struct tvpd_id_descriptor_type_2 type2;
209 struct tvpd_id_descriptor_type_3 type3;
210 };
211
212 /*
213 * M O D U L E G L O B A L S
214 */
215
216 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *sgmap);
217 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg);
218 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg);
219 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd,
220 struct aac_raw_io2 *rio2, int sg_max);
221 static long aac_build_sghba(struct scsi_cmnd *scsicmd,
222 struct aac_hba_cmd_req *hbacmd,
223 int sg_max, u64 sg_address);
224 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2,
225 int pages, int nseg, int nseg_new);
226 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
227 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd);
228 #ifdef AAC_DETAILED_STATUS_INFO
229 static char *aac_get_status_string(u32 status);
230 #endif
231
232 /*
233 * Non dasd selection is handled entirely in aachba now
234 */
235
236 static int nondasd = -1;
237 static int aac_cache = 2; /* WCE=0 to avoid performance problems */
238 static int dacmode = -1;
239 int aac_msi;
240 int aac_commit = -1;
241 int startup_timeout = 180;
242 int aif_timeout = 120;
243 int aac_sync_mode; /* Only Sync. transfer - disabled */
244 static int aac_convert_sgl = 1; /* convert non-conformable s/g list - enabled */
245
246 module_param(aac_sync_mode, int, S_IRUGO|S_IWUSR);
247 MODULE_PARM_DESC(aac_sync_mode, "Force sync. transfer mode"
248 " 0=off, 1=on");
249 module_param(aac_convert_sgl, int, S_IRUGO|S_IWUSR);
250 MODULE_PARM_DESC(aac_convert_sgl, "Convert non-conformable s/g list"
251 " 0=off, 1=on");
252 module_param(nondasd, int, S_IRUGO|S_IWUSR);
253 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices."
254 " 0=off, 1=on");
255 module_param_named(cache, aac_cache, int, S_IRUGO|S_IWUSR);
256 MODULE_PARM_DESC(cache, "Disable Queue Flush commands:\n"
257 "\tbit 0 - Disable FUA in WRITE SCSI commands\n"
258 "\tbit 1 - Disable SYNCHRONIZE_CACHE SCSI command\n"
259 "\tbit 2 - Disable only if Battery is protecting Cache");
260 module_param(dacmode, int, S_IRUGO|S_IWUSR);
261 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC."
262 " 0=off, 1=on");
263 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR);
264 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the"
265 " adapter for foreign arrays.\n"
266 "This is typically needed in systems that do not have a BIOS."
267 " 0=off, 1=on");
268 module_param_named(msi, aac_msi, int, S_IRUGO|S_IWUSR);
269 MODULE_PARM_DESC(msi, "IRQ handling."
270 " 0=PIC(default), 1=MSI, 2=MSI-X)");
271 module_param(startup_timeout, int, S_IRUGO|S_IWUSR);
272 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for"
273 " adapter to have it's kernel up and\n"
274 "running. This is typically adjusted for large systems that do not"
275 " have a BIOS.");
276 module_param(aif_timeout, int, S_IRUGO|S_IWUSR);
277 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for"
278 " applications to pick up AIFs before\n"
279 "deregistering them. This is typically adjusted for heavily burdened"
280 " systems.");
281
282 int aac_fib_dump;
283 module_param(aac_fib_dump, int, 0644);
284 MODULE_PARM_DESC(aac_fib_dump, "Dump controller fibs prior to IOP_RESET 0=off, 1=on");
285
286 int numacb = -1;
287 module_param(numacb, int, S_IRUGO|S_IWUSR);
288 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control"
289 " blocks (FIB) allocated. Valid values are 512 and down. Default is"
290 " to use suggestion from Firmware.");
291
292 static int acbsize = -1;
293 module_param(acbsize, int, S_IRUGO|S_IWUSR);
294 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB)"
295 " size. Valid values are 512, 2048, 4096 and 8192. Default is to use"
296 " suggestion from Firmware.");
297
298 int update_interval = 30 * 60;
299 module_param(update_interval, int, S_IRUGO|S_IWUSR);
300 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync"
301 " updates issued to adapter.");
302
303 int check_interval = 60;
304 module_param(check_interval, int, S_IRUGO|S_IWUSR);
305 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health"
306 " checks.");
307
308 int aac_check_reset = 1;
309 module_param_named(check_reset, aac_check_reset, int, S_IRUGO|S_IWUSR);
310 MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the"
311 " adapter. a value of -1 forces the reset to adapters programmed to"
312 " ignore it.");
313
314 int expose_physicals = -1;
315 module_param(expose_physicals, int, S_IRUGO|S_IWUSR);
316 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays."
317 " -1=protect 0=off, 1=on");
318
319 int aac_reset_devices;
320 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR);
321 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization.");
322
323 static int aac_wwn = 1;
324 module_param_named(wwn, aac_wwn, int, S_IRUGO|S_IWUSR);
325 MODULE_PARM_DESC(wwn, "Select a WWN type for the arrays:\n"
326 "\t0 - Disable\n"
327 "\t1 - Array Meta Data Signature (default)\n"
328 "\t2 - Adapter Serial Number");
329
330
aac_valid_context(struct scsi_cmnd * scsicmd,struct fib * fibptr)331 static inline int aac_valid_context(struct scsi_cmnd *scsicmd,
332 struct fib *fibptr) {
333 struct scsi_device *device;
334
335 if (unlikely(!scsicmd || !scsicmd->scsi_done)) {
336 dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n"));
337 aac_fib_complete(fibptr);
338 return 0;
339 }
340 scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
341 device = scsicmd->device;
342 if (unlikely(!device)) {
343 dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n"));
344 aac_fib_complete(fibptr);
345 return 0;
346 }
347 return 1;
348 }
349
350 /**
351 * aac_get_config_status - check the adapter configuration
352 * @dev: aac driver data
353 * @commit_flag: force sending CT_COMMIT_CONFIG
354 *
355 * Query config status, and commit the configuration if needed.
356 */
aac_get_config_status(struct aac_dev * dev,int commit_flag)357 int aac_get_config_status(struct aac_dev *dev, int commit_flag)
358 {
359 int status = 0;
360 struct fib * fibptr;
361
362 if (!(fibptr = aac_fib_alloc(dev)))
363 return -ENOMEM;
364
365 aac_fib_init(fibptr);
366 {
367 struct aac_get_config_status *dinfo;
368 dinfo = (struct aac_get_config_status *) fib_data(fibptr);
369
370 dinfo->command = cpu_to_le32(VM_ContainerConfig);
371 dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS);
372 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
373 }
374
375 status = aac_fib_send(ContainerCommand,
376 fibptr,
377 sizeof (struct aac_get_config_status),
378 FsaNormal,
379 1, 1,
380 NULL, NULL);
381 if (status < 0) {
382 printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
383 } else {
384 struct aac_get_config_status_resp *reply
385 = (struct aac_get_config_status_resp *) fib_data(fibptr);
386 dprintk((KERN_WARNING
387 "aac_get_config_status: response=%d status=%d action=%d\n",
388 le32_to_cpu(reply->response),
389 le32_to_cpu(reply->status),
390 le32_to_cpu(reply->data.action)));
391 if ((le32_to_cpu(reply->response) != ST_OK) ||
392 (le32_to_cpu(reply->status) != CT_OK) ||
393 (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
394 printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
395 status = -EINVAL;
396 }
397 }
398 /* Do not set XferState to zero unless receives a response from F/W */
399 if (status >= 0)
400 aac_fib_complete(fibptr);
401
402 /* Send a CT_COMMIT_CONFIG to enable discovery of devices */
403 if (status >= 0) {
404 if ((aac_commit == 1) || commit_flag) {
405 struct aac_commit_config * dinfo;
406 aac_fib_init(fibptr);
407 dinfo = (struct aac_commit_config *) fib_data(fibptr);
408
409 dinfo->command = cpu_to_le32(VM_ContainerConfig);
410 dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG);
411
412 status = aac_fib_send(ContainerCommand,
413 fibptr,
414 sizeof (struct aac_commit_config),
415 FsaNormal,
416 1, 1,
417 NULL, NULL);
418 /* Do not set XferState to zero unless
419 * receives a response from F/W */
420 if (status >= 0)
421 aac_fib_complete(fibptr);
422 } else if (aac_commit == 0) {
423 printk(KERN_WARNING
424 "aac_get_config_status: Foreign device configurations are being ignored\n");
425 }
426 }
427 /* FIB should be freed only after getting the response from the F/W */
428 if (status != -ERESTARTSYS)
429 aac_fib_free(fibptr);
430 return status;
431 }
432
aac_expose_phy_device(struct scsi_cmnd * scsicmd)433 static void aac_expose_phy_device(struct scsi_cmnd *scsicmd)
434 {
435 char inq_data;
436 scsi_sg_copy_to_buffer(scsicmd, &inq_data, sizeof(inq_data));
437 if ((inq_data & 0x20) && (inq_data & 0x1f) == TYPE_DISK) {
438 inq_data &= 0xdf;
439 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
440 }
441 }
442
443 /**
444 * aac_get_containers - list containers
445 * @dev: aac driver data
446 *
447 * Make a list of all containers on this controller
448 */
aac_get_containers(struct aac_dev * dev)449 int aac_get_containers(struct aac_dev *dev)
450 {
451 struct fsa_dev_info *fsa_dev_ptr;
452 u32 index;
453 int status = 0;
454 struct fib * fibptr;
455 struct aac_get_container_count *dinfo;
456 struct aac_get_container_count_resp *dresp;
457 int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
458
459 if (!(fibptr = aac_fib_alloc(dev)))
460 return -ENOMEM;
461
462 aac_fib_init(fibptr);
463 dinfo = (struct aac_get_container_count *) fib_data(fibptr);
464 dinfo->command = cpu_to_le32(VM_ContainerConfig);
465 dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT);
466
467 status = aac_fib_send(ContainerCommand,
468 fibptr,
469 sizeof (struct aac_get_container_count),
470 FsaNormal,
471 1, 1,
472 NULL, NULL);
473 if (status >= 0) {
474 dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
475 maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
476 if (fibptr->dev->supplement_adapter_info.supported_options2 &
477 AAC_OPTION_SUPPORTED_240_VOLUMES) {
478 maximum_num_containers =
479 le32_to_cpu(dresp->MaxSimpleVolumes);
480 }
481 aac_fib_complete(fibptr);
482 }
483 /* FIB should be freed only after getting the response from the F/W */
484 if (status != -ERESTARTSYS)
485 aac_fib_free(fibptr);
486
487 if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
488 maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
489 if (dev->fsa_dev == NULL ||
490 dev->maximum_num_containers != maximum_num_containers) {
491
492 fsa_dev_ptr = dev->fsa_dev;
493
494 dev->fsa_dev = kcalloc(maximum_num_containers,
495 sizeof(*fsa_dev_ptr), GFP_KERNEL);
496
497 kfree(fsa_dev_ptr);
498 fsa_dev_ptr = NULL;
499
500
501 if (!dev->fsa_dev)
502 return -ENOMEM;
503
504 dev->maximum_num_containers = maximum_num_containers;
505 }
506 for (index = 0; index < dev->maximum_num_containers; index++) {
507 dev->fsa_dev[index].devname[0] = '\0';
508 dev->fsa_dev[index].valid = 0;
509
510 status = aac_probe_container(dev, index);
511
512 if (status < 0) {
513 printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
514 break;
515 }
516 }
517 return status;
518 }
519
get_container_name_callback(void * context,struct fib * fibptr)520 static void get_container_name_callback(void *context, struct fib * fibptr)
521 {
522 struct aac_get_name_resp * get_name_reply;
523 struct scsi_cmnd * scsicmd;
524
525 scsicmd = (struct scsi_cmnd *) context;
526
527 if (!aac_valid_context(scsicmd, fibptr))
528 return;
529
530 dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
531 BUG_ON(fibptr == NULL);
532
533 get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
534 /* Failure is irrelevant, using default value instead */
535 if ((le32_to_cpu(get_name_reply->status) == CT_OK)
536 && (get_name_reply->data[0] != '\0')) {
537 char *sp = get_name_reply->data;
538 int data_size = sizeof_field(struct aac_get_name_resp, data);
539
540 sp[data_size - 1] = '\0';
541 while (*sp == ' ')
542 ++sp;
543 if (*sp) {
544 struct inquiry_data inq;
545 char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)];
546 int count = sizeof(d);
547 char *dp = d;
548 do {
549 *dp++ = (*sp) ? *sp++ : ' ';
550 } while (--count > 0);
551
552 scsi_sg_copy_to_buffer(scsicmd, &inq, sizeof(inq));
553 memcpy(inq.inqd_pid, d, sizeof(d));
554 scsi_sg_copy_from_buffer(scsicmd, &inq, sizeof(inq));
555 }
556 }
557
558 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
559
560 aac_fib_complete(fibptr);
561 scsicmd->scsi_done(scsicmd);
562 }
563
564 /*
565 * aac_get_container_name - get container name, none blocking.
566 */
aac_get_container_name(struct scsi_cmnd * scsicmd)567 static int aac_get_container_name(struct scsi_cmnd * scsicmd)
568 {
569 int status;
570 int data_size;
571 struct aac_get_name *dinfo;
572 struct fib * cmd_fibcontext;
573 struct aac_dev * dev;
574
575 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
576
577 data_size = sizeof_field(struct aac_get_name_resp, data);
578
579 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
580
581 aac_fib_init(cmd_fibcontext);
582 dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);
583 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
584
585 dinfo->command = cpu_to_le32(VM_ContainerConfig);
586 dinfo->type = cpu_to_le32(CT_READ_NAME);
587 dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
588 dinfo->count = cpu_to_le32(data_size - 1);
589
590 status = aac_fib_send(ContainerCommand,
591 cmd_fibcontext,
592 sizeof(struct aac_get_name_resp),
593 FsaNormal,
594 0, 1,
595 (fib_callback)get_container_name_callback,
596 (void *) scsicmd);
597
598 /*
599 * Check that the command queued to the controller
600 */
601 if (status == -EINPROGRESS)
602 return 0;
603
604 printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status);
605 aac_fib_complete(cmd_fibcontext);
606 return -1;
607 }
608
aac_probe_container_callback2(struct scsi_cmnd * scsicmd)609 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd)
610 {
611 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
612
613 if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1))
614 return aac_scsi_cmd(scsicmd);
615
616 scsicmd->result = DID_NO_CONNECT << 16;
617 scsicmd->scsi_done(scsicmd);
618 return 0;
619 }
620
_aac_probe_container2(void * context,struct fib * fibptr)621 static void _aac_probe_container2(void * context, struct fib * fibptr)
622 {
623 struct fsa_dev_info *fsa_dev_ptr;
624 int (*callback)(struct scsi_cmnd *);
625 struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context;
626 int i;
627
628
629 if (!aac_valid_context(scsicmd, fibptr))
630 return;
631
632 scsicmd->SCp.Status = 0;
633 fsa_dev_ptr = fibptr->dev->fsa_dev;
634 if (fsa_dev_ptr) {
635 struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr);
636 __le32 sup_options2;
637
638 fsa_dev_ptr += scmd_id(scsicmd);
639 sup_options2 =
640 fibptr->dev->supplement_adapter_info.supported_options2;
641
642 if ((le32_to_cpu(dresp->status) == ST_OK) &&
643 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
644 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
645 if (!(sup_options2 & AAC_OPTION_VARIABLE_BLOCK_SIZE)) {
646 dresp->mnt[0].fileinfo.bdevinfo.block_size = 0x200;
647 fsa_dev_ptr->block_size = 0x200;
648 } else {
649 fsa_dev_ptr->block_size =
650 le32_to_cpu(dresp->mnt[0].fileinfo.bdevinfo.block_size);
651 }
652 for (i = 0; i < 16; i++)
653 fsa_dev_ptr->identifier[i] =
654 dresp->mnt[0].fileinfo.bdevinfo
655 .identifier[i];
656 fsa_dev_ptr->valid = 1;
657 /* sense_key holds the current state of the spin-up */
658 if (dresp->mnt[0].state & cpu_to_le32(FSCS_NOT_READY))
659 fsa_dev_ptr->sense_data.sense_key = NOT_READY;
660 else if (fsa_dev_ptr->sense_data.sense_key == NOT_READY)
661 fsa_dev_ptr->sense_data.sense_key = NO_SENSE;
662 fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol);
663 fsa_dev_ptr->size
664 = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
665 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
666 fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0);
667 }
668 if ((fsa_dev_ptr->valid & 1) == 0)
669 fsa_dev_ptr->valid = 0;
670 scsicmd->SCp.Status = le32_to_cpu(dresp->count);
671 }
672 aac_fib_complete(fibptr);
673 aac_fib_free(fibptr);
674 callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr);
675 scsicmd->SCp.ptr = NULL;
676 (*callback)(scsicmd);
677 return;
678 }
679
_aac_probe_container1(void * context,struct fib * fibptr)680 static void _aac_probe_container1(void * context, struct fib * fibptr)
681 {
682 struct scsi_cmnd * scsicmd;
683 struct aac_mount * dresp;
684 struct aac_query_mount *dinfo;
685 int status;
686
687 dresp = (struct aac_mount *) fib_data(fibptr);
688 if (!aac_supports_2T(fibptr->dev)) {
689 dresp->mnt[0].capacityhigh = 0;
690 if ((le32_to_cpu(dresp->status) == ST_OK) &&
691 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) {
692 _aac_probe_container2(context, fibptr);
693 return;
694 }
695 }
696 scsicmd = (struct scsi_cmnd *) context;
697
698 if (!aac_valid_context(scsicmd, fibptr))
699 return;
700
701 aac_fib_init(fibptr);
702
703 dinfo = (struct aac_query_mount *)fib_data(fibptr);
704
705 if (fibptr->dev->supplement_adapter_info.supported_options2 &
706 AAC_OPTION_VARIABLE_BLOCK_SIZE)
707 dinfo->command = cpu_to_le32(VM_NameServeAllBlk);
708 else
709 dinfo->command = cpu_to_le32(VM_NameServe64);
710
711 dinfo->count = cpu_to_le32(scmd_id(scsicmd));
712 dinfo->type = cpu_to_le32(FT_FILESYS);
713 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
714
715 status = aac_fib_send(ContainerCommand,
716 fibptr,
717 sizeof(struct aac_query_mount),
718 FsaNormal,
719 0, 1,
720 _aac_probe_container2,
721 (void *) scsicmd);
722 /*
723 * Check that the command queued to the controller
724 */
725 if (status < 0 && status != -EINPROGRESS) {
726 /* Inherit results from VM_NameServe, if any */
727 dresp->status = cpu_to_le32(ST_OK);
728 _aac_probe_container2(context, fibptr);
729 }
730 }
731
_aac_probe_container(struct scsi_cmnd * scsicmd,int (* callback)(struct scsi_cmnd *))732 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *))
733 {
734 struct fib * fibptr;
735 int status = -ENOMEM;
736
737 if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) {
738 struct aac_query_mount *dinfo;
739
740 aac_fib_init(fibptr);
741
742 dinfo = (struct aac_query_mount *)fib_data(fibptr);
743
744 if (fibptr->dev->supplement_adapter_info.supported_options2 &
745 AAC_OPTION_VARIABLE_BLOCK_SIZE)
746 dinfo->command = cpu_to_le32(VM_NameServeAllBlk);
747 else
748 dinfo->command = cpu_to_le32(VM_NameServe);
749
750 dinfo->count = cpu_to_le32(scmd_id(scsicmd));
751 dinfo->type = cpu_to_le32(FT_FILESYS);
752 scsicmd->SCp.ptr = (char *)callback;
753 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
754
755 status = aac_fib_send(ContainerCommand,
756 fibptr,
757 sizeof(struct aac_query_mount),
758 FsaNormal,
759 0, 1,
760 _aac_probe_container1,
761 (void *) scsicmd);
762 /*
763 * Check that the command queued to the controller
764 */
765 if (status == -EINPROGRESS)
766 return 0;
767
768 if (status < 0) {
769 scsicmd->SCp.ptr = NULL;
770 aac_fib_complete(fibptr);
771 aac_fib_free(fibptr);
772 }
773 }
774 if (status < 0) {
775 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
776 if (fsa_dev_ptr) {
777 fsa_dev_ptr += scmd_id(scsicmd);
778 if ((fsa_dev_ptr->valid & 1) == 0) {
779 fsa_dev_ptr->valid = 0;
780 return (*callback)(scsicmd);
781 }
782 }
783 }
784 return status;
785 }
786
787 /**
788 * aac_probe_container_callback1 - query a logical volume
789 * @scsicmd: the scsi command block
790 *
791 * Queries the controller about the given volume. The volume information
792 * is updated in the struct fsa_dev_info structure rather than returned.
793 */
aac_probe_container_callback1(struct scsi_cmnd * scsicmd)794 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd)
795 {
796 scsicmd->device = NULL;
797 return 0;
798 }
799
aac_probe_container_scsi_done(struct scsi_cmnd * scsi_cmnd)800 static void aac_probe_container_scsi_done(struct scsi_cmnd *scsi_cmnd)
801 {
802 aac_probe_container_callback1(scsi_cmnd);
803 }
804
aac_probe_container(struct aac_dev * dev,int cid)805 int aac_probe_container(struct aac_dev *dev, int cid)
806 {
807 struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL);
808 struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL);
809 int status;
810
811 if (!scsicmd || !scsidev) {
812 kfree(scsicmd);
813 kfree(scsidev);
814 return -ENOMEM;
815 }
816 scsicmd->scsi_done = aac_probe_container_scsi_done;
817
818 scsicmd->device = scsidev;
819 scsidev->sdev_state = 0;
820 scsidev->id = cid;
821 scsidev->host = dev->scsi_host_ptr;
822
823 if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0)
824 while (scsicmd->device == scsidev)
825 schedule();
826 kfree(scsidev);
827 status = scsicmd->SCp.Status;
828 kfree(scsicmd);
829 return status;
830 }
831
832 /* Local Structure to set SCSI inquiry data strings */
833 struct scsi_inq {
834 char vid[8]; /* Vendor ID */
835 char pid[16]; /* Product ID */
836 char prl[4]; /* Product Revision Level */
837 };
838
839 /**
840 * inqstrcpy - string merge
841 * @a: string to copy from
842 * @b: string to copy to
843 *
844 * Copy a String from one location to another
845 * without copying \0
846 */
847
inqstrcpy(char * a,char * b)848 static void inqstrcpy(char *a, char *b)
849 {
850
851 while (*a != (char)0)
852 *b++ = *a++;
853 }
854
855 static char *container_types[] = {
856 "None",
857 "Volume",
858 "Mirror",
859 "Stripe",
860 "RAID5",
861 "SSRW",
862 "SSRO",
863 "Morph",
864 "Legacy",
865 "RAID4",
866 "RAID10",
867 "RAID00",
868 "V-MIRRORS",
869 "PSEUDO R4",
870 "RAID50",
871 "RAID5D",
872 "RAID5D0",
873 "RAID1E",
874 "RAID6",
875 "RAID60",
876 "Unknown"
877 };
878
get_container_type(unsigned tindex)879 char * get_container_type(unsigned tindex)
880 {
881 if (tindex >= ARRAY_SIZE(container_types))
882 tindex = ARRAY_SIZE(container_types) - 1;
883 return container_types[tindex];
884 }
885
886 /* Function: setinqstr
887 *
888 * Arguments: [1] pointer to void [1] int
889 *
890 * Purpose: Sets SCSI inquiry data strings for vendor, product
891 * and revision level. Allows strings to be set in platform dependent
892 * files instead of in OS dependent driver source.
893 */
894
setinqstr(struct aac_dev * dev,void * data,int tindex)895 static void setinqstr(struct aac_dev *dev, void *data, int tindex)
896 {
897 struct scsi_inq *str;
898 struct aac_supplement_adapter_info *sup_adap_info;
899
900 sup_adap_info = &dev->supplement_adapter_info;
901 str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
902 memset(str, ' ', sizeof(*str));
903
904 if (sup_adap_info->adapter_type_text[0]) {
905 int c;
906 char *cp;
907 char *cname = kmemdup(sup_adap_info->adapter_type_text,
908 sizeof(sup_adap_info->adapter_type_text),
909 GFP_ATOMIC);
910 if (!cname)
911 return;
912
913 cp = cname;
914 if ((cp[0] == 'A') && (cp[1] == 'O') && (cp[2] == 'C'))
915 inqstrcpy("SMC", str->vid);
916 else {
917 c = sizeof(str->vid);
918 while (*cp && *cp != ' ' && --c)
919 ++cp;
920 c = *cp;
921 *cp = '\0';
922 inqstrcpy(cname, str->vid);
923 *cp = c;
924 while (*cp && *cp != ' ')
925 ++cp;
926 }
927 while (*cp == ' ')
928 ++cp;
929 /* last six chars reserved for vol type */
930 if (strlen(cp) > sizeof(str->pid))
931 cp[sizeof(str->pid)] = '\0';
932 inqstrcpy (cp, str->pid);
933
934 kfree(cname);
935 } else {
936 struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype);
937
938 inqstrcpy (mp->vname, str->vid);
939 /* last six chars reserved for vol type */
940 inqstrcpy (mp->model, str->pid);
941 }
942
943 if (tindex < ARRAY_SIZE(container_types)){
944 char *findit = str->pid;
945
946 for ( ; *findit != ' '; findit++); /* walk till we find a space */
947 /* RAID is superfluous in the context of a RAID device */
948 if (memcmp(findit-4, "RAID", 4) == 0)
949 *(findit -= 4) = ' ';
950 if (((findit - str->pid) + strlen(container_types[tindex]))
951 < (sizeof(str->pid) + sizeof(str->prl)))
952 inqstrcpy (container_types[tindex], findit + 1);
953 }
954 inqstrcpy ("V1.0", str->prl);
955 }
956
build_vpd83_type3(struct tvpd_page83 * vpdpage83data,struct aac_dev * dev,struct scsi_cmnd * scsicmd)957 static void build_vpd83_type3(struct tvpd_page83 *vpdpage83data,
958 struct aac_dev *dev, struct scsi_cmnd *scsicmd)
959 {
960 int container;
961
962 vpdpage83data->type3.codeset = 1;
963 vpdpage83data->type3.identifiertype = 3;
964 vpdpage83data->type3.identifierlength = sizeof(vpdpage83data->type3)
965 - 4;
966
967 for (container = 0; container < dev->maximum_num_containers;
968 container++) {
969
970 if (scmd_id(scsicmd) == container) {
971 memcpy(vpdpage83data->type3.Identifier,
972 dev->fsa_dev[container].identifier,
973 16);
974 break;
975 }
976 }
977 }
978
get_container_serial_callback(void * context,struct fib * fibptr)979 static void get_container_serial_callback(void *context, struct fib * fibptr)
980 {
981 struct aac_get_serial_resp * get_serial_reply;
982 struct scsi_cmnd * scsicmd;
983
984 BUG_ON(fibptr == NULL);
985
986 scsicmd = (struct scsi_cmnd *) context;
987 if (!aac_valid_context(scsicmd, fibptr))
988 return;
989
990 get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr);
991 /* Failure is irrelevant, using default value instead */
992 if (le32_to_cpu(get_serial_reply->status) == CT_OK) {
993 /*Check to see if it's for VPD 0x83 or 0x80 */
994 if (scsicmd->cmnd[2] == 0x83) {
995 /* vpd page 0x83 - Device Identification Page */
996 struct aac_dev *dev;
997 int i;
998 struct tvpd_page83 vpdpage83data;
999
1000 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1001
1002 memset(((u8 *)&vpdpage83data), 0,
1003 sizeof(vpdpage83data));
1004
1005 /* DIRECT_ACCESS_DEVIC */
1006 vpdpage83data.DeviceType = 0;
1007 /* DEVICE_CONNECTED */
1008 vpdpage83data.DeviceTypeQualifier = 0;
1009 /* VPD_DEVICE_IDENTIFIERS */
1010 vpdpage83data.PageCode = 0x83;
1011 vpdpage83data.reserved = 0;
1012 vpdpage83data.PageLength =
1013 sizeof(vpdpage83data.type1) +
1014 sizeof(vpdpage83data.type2);
1015
1016 /* VPD 83 Type 3 is not supported for ARC */
1017 if (dev->sa_firmware)
1018 vpdpage83data.PageLength +=
1019 sizeof(vpdpage83data.type3);
1020
1021 /* T10 Vendor Identifier Field Format */
1022 /* VpdcodesetAscii */
1023 vpdpage83data.type1.codeset = 2;
1024 /* VpdIdentifierTypeVendorId */
1025 vpdpage83data.type1.identifiertype = 1;
1026 vpdpage83data.type1.identifierlength =
1027 sizeof(vpdpage83data.type1) - 4;
1028
1029 /* "ADAPTEC " for adaptec */
1030 memcpy(vpdpage83data.type1.venid,
1031 "ADAPTEC ",
1032 sizeof(vpdpage83data.type1.venid));
1033 memcpy(vpdpage83data.type1.productid,
1034 "ARRAY ",
1035 sizeof(
1036 vpdpage83data.type1.productid));
1037
1038 /* Convert to ascii based serial number.
1039 * The LSB is the the end.
1040 */
1041 for (i = 0; i < 8; i++) {
1042 u8 temp =
1043 (u8)((get_serial_reply->uid >> ((7 - i) * 4)) & 0xF);
1044 if (temp > 0x9) {
1045 vpdpage83data.type1.serialnumber[i] =
1046 'A' + (temp - 0xA);
1047 } else {
1048 vpdpage83data.type1.serialnumber[i] =
1049 '0' + temp;
1050 }
1051 }
1052
1053 /* VpdCodeSetBinary */
1054 vpdpage83data.type2.codeset = 1;
1055 /* VpdidentifiertypeEUI64 */
1056 vpdpage83data.type2.identifiertype = 2;
1057 vpdpage83data.type2.identifierlength =
1058 sizeof(vpdpage83data.type2) - 4;
1059
1060 vpdpage83data.type2.eu64id.venid[0] = 0xD0;
1061 vpdpage83data.type2.eu64id.venid[1] = 0;
1062 vpdpage83data.type2.eu64id.venid[2] = 0;
1063
1064 vpdpage83data.type2.eu64id.Serial =
1065 get_serial_reply->uid;
1066 vpdpage83data.type2.eu64id.reserved = 0;
1067
1068 /*
1069 * VpdIdentifierTypeFCPHName
1070 * VPD 0x83 Type 3 not supported for ARC
1071 */
1072 if (dev->sa_firmware) {
1073 build_vpd83_type3(&vpdpage83data,
1074 dev, scsicmd);
1075 }
1076
1077 /* Move the inquiry data to the response buffer. */
1078 scsi_sg_copy_from_buffer(scsicmd, &vpdpage83data,
1079 sizeof(vpdpage83data));
1080 } else {
1081 /* It must be for VPD 0x80 */
1082 char sp[13];
1083 /* EVPD bit set */
1084 sp[0] = INQD_PDT_DA;
1085 sp[1] = scsicmd->cmnd[2];
1086 sp[2] = 0;
1087 sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X",
1088 le32_to_cpu(get_serial_reply->uid));
1089 scsi_sg_copy_from_buffer(scsicmd, sp,
1090 sizeof(sp));
1091 }
1092 }
1093
1094 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
1095
1096 aac_fib_complete(fibptr);
1097 scsicmd->scsi_done(scsicmd);
1098 }
1099
1100 /*
1101 * aac_get_container_serial - get container serial, none blocking.
1102 */
aac_get_container_serial(struct scsi_cmnd * scsicmd)1103 static int aac_get_container_serial(struct scsi_cmnd * scsicmd)
1104 {
1105 int status;
1106 struct aac_get_serial *dinfo;
1107 struct fib * cmd_fibcontext;
1108 struct aac_dev * dev;
1109
1110 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1111
1112 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
1113
1114 aac_fib_init(cmd_fibcontext);
1115 dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext);
1116
1117 dinfo->command = cpu_to_le32(VM_ContainerConfig);
1118 dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID);
1119 dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
1120 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1121
1122 status = aac_fib_send(ContainerCommand,
1123 cmd_fibcontext,
1124 sizeof(struct aac_get_serial_resp),
1125 FsaNormal,
1126 0, 1,
1127 (fib_callback) get_container_serial_callback,
1128 (void *) scsicmd);
1129
1130 /*
1131 * Check that the command queued to the controller
1132 */
1133 if (status == -EINPROGRESS)
1134 return 0;
1135
1136 printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status);
1137 aac_fib_complete(cmd_fibcontext);
1138 return -1;
1139 }
1140
1141 /* Function: setinqserial
1142 *
1143 * Arguments: [1] pointer to void [1] int
1144 *
1145 * Purpose: Sets SCSI Unit Serial number.
1146 * This is a fake. We should read a proper
1147 * serial number from the container. <SuSE>But
1148 * without docs it's quite hard to do it :-)
1149 * So this will have to do in the meantime.</SuSE>
1150 */
1151
setinqserial(struct aac_dev * dev,void * data,int cid)1152 static int setinqserial(struct aac_dev *dev, void *data, int cid)
1153 {
1154 /*
1155 * This breaks array migration.
1156 */
1157 return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X",
1158 le32_to_cpu(dev->adapter_info.serial[0]), cid);
1159 }
1160
set_sense(struct sense_data * sense_data,u8 sense_key,u8 sense_code,u8 a_sense_code,u8 bit_pointer,u16 field_pointer)1161 static inline void set_sense(struct sense_data *sense_data, u8 sense_key,
1162 u8 sense_code, u8 a_sense_code, u8 bit_pointer, u16 field_pointer)
1163 {
1164 u8 *sense_buf = (u8 *)sense_data;
1165 /* Sense data valid, err code 70h */
1166 sense_buf[0] = 0x70; /* No info field */
1167 sense_buf[1] = 0; /* Segment number, always zero */
1168
1169 sense_buf[2] = sense_key; /* Sense key */
1170
1171 sense_buf[12] = sense_code; /* Additional sense code */
1172 sense_buf[13] = a_sense_code; /* Additional sense code qualifier */
1173
1174 if (sense_key == ILLEGAL_REQUEST) {
1175 sense_buf[7] = 10; /* Additional sense length */
1176
1177 sense_buf[15] = bit_pointer;
1178 /* Illegal parameter is in the parameter block */
1179 if (sense_code == SENCODE_INVALID_CDB_FIELD)
1180 sense_buf[15] |= 0xc0;/* Std sense key specific field */
1181 /* Illegal parameter is in the CDB block */
1182 sense_buf[16] = field_pointer >> 8; /* MSB */
1183 sense_buf[17] = field_pointer; /* LSB */
1184 } else
1185 sense_buf[7] = 6; /* Additional sense length */
1186 }
1187
aac_bounds_32(struct aac_dev * dev,struct scsi_cmnd * cmd,u64 lba)1188 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
1189 {
1190 if (lba & 0xffffffff00000000LL) {
1191 int cid = scmd_id(cmd);
1192 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
1193 cmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION;
1194 set_sense(&dev->fsa_dev[cid].sense_data,
1195 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1196 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1197 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1198 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1199 SCSI_SENSE_BUFFERSIZE));
1200 cmd->scsi_done(cmd);
1201 return 1;
1202 }
1203 return 0;
1204 }
1205
aac_bounds_64(struct aac_dev * dev,struct scsi_cmnd * cmd,u64 lba)1206 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
1207 {
1208 return 0;
1209 }
1210
1211 static void io_callback(void *context, struct fib * fibptr);
1212
aac_read_raw_io(struct fib * fib,struct scsi_cmnd * cmd,u64 lba,u32 count)1213 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1214 {
1215 struct aac_dev *dev = fib->dev;
1216 u16 fibsize, command;
1217 long ret;
1218
1219 aac_fib_init(fib);
1220 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
1221 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) &&
1222 !dev->sync_mode) {
1223 struct aac_raw_io2 *readcmd2;
1224 readcmd2 = (struct aac_raw_io2 *) fib_data(fib);
1225 memset(readcmd2, 0, sizeof(struct aac_raw_io2));
1226 readcmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff));
1227 readcmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1228 readcmd2->byteCount = cpu_to_le32(count *
1229 dev->fsa_dev[scmd_id(cmd)].block_size);
1230 readcmd2->cid = cpu_to_le16(scmd_id(cmd));
1231 readcmd2->flags = cpu_to_le16(RIO2_IO_TYPE_READ);
1232 ret = aac_build_sgraw2(cmd, readcmd2,
1233 dev->scsi_host_ptr->sg_tablesize);
1234 if (ret < 0)
1235 return ret;
1236 command = ContainerRawIo2;
1237 fibsize = struct_size(readcmd2, sge,
1238 le32_to_cpu(readcmd2->sgeCnt));
1239 } else {
1240 struct aac_raw_io *readcmd;
1241 readcmd = (struct aac_raw_io *) fib_data(fib);
1242 readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1243 readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1244 readcmd->count = cpu_to_le32(count *
1245 dev->fsa_dev[scmd_id(cmd)].block_size);
1246 readcmd->cid = cpu_to_le16(scmd_id(cmd));
1247 readcmd->flags = cpu_to_le16(RIO_TYPE_READ);
1248 readcmd->bpTotal = 0;
1249 readcmd->bpComplete = 0;
1250 ret = aac_build_sgraw(cmd, &readcmd->sg);
1251 if (ret < 0)
1252 return ret;
1253 command = ContainerRawIo;
1254 fibsize = sizeof(struct aac_raw_io) +
1255 ((le32_to_cpu(readcmd->sg.count)-1) * sizeof(struct sgentryraw));
1256 }
1257
1258 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1259 /*
1260 * Now send the Fib to the adapter
1261 */
1262 return aac_fib_send(command,
1263 fib,
1264 fibsize,
1265 FsaNormal,
1266 0, 1,
1267 (fib_callback) io_callback,
1268 (void *) cmd);
1269 }
1270
aac_read_block64(struct fib * fib,struct scsi_cmnd * cmd,u64 lba,u32 count)1271 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1272 {
1273 u16 fibsize;
1274 struct aac_read64 *readcmd;
1275 long ret;
1276
1277 aac_fib_init(fib);
1278 readcmd = (struct aac_read64 *) fib_data(fib);
1279 readcmd->command = cpu_to_le32(VM_CtHostRead64);
1280 readcmd->cid = cpu_to_le16(scmd_id(cmd));
1281 readcmd->sector_count = cpu_to_le16(count);
1282 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1283 readcmd->pad = 0;
1284 readcmd->flags = 0;
1285
1286 ret = aac_build_sg64(cmd, &readcmd->sg);
1287 if (ret < 0)
1288 return ret;
1289 fibsize = sizeof(struct aac_read64) +
1290 ((le32_to_cpu(readcmd->sg.count) - 1) *
1291 sizeof (struct sgentry64));
1292 BUG_ON (fibsize > (fib->dev->max_fib_size -
1293 sizeof(struct aac_fibhdr)));
1294 /*
1295 * Now send the Fib to the adapter
1296 */
1297 return aac_fib_send(ContainerCommand64,
1298 fib,
1299 fibsize,
1300 FsaNormal,
1301 0, 1,
1302 (fib_callback) io_callback,
1303 (void *) cmd);
1304 }
1305
aac_read_block(struct fib * fib,struct scsi_cmnd * cmd,u64 lba,u32 count)1306 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1307 {
1308 u16 fibsize;
1309 struct aac_read *readcmd;
1310 struct aac_dev *dev = fib->dev;
1311 long ret;
1312
1313 aac_fib_init(fib);
1314 readcmd = (struct aac_read *) fib_data(fib);
1315 readcmd->command = cpu_to_le32(VM_CtBlockRead);
1316 readcmd->cid = cpu_to_le32(scmd_id(cmd));
1317 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1318 readcmd->count = cpu_to_le32(count *
1319 dev->fsa_dev[scmd_id(cmd)].block_size);
1320
1321 ret = aac_build_sg(cmd, &readcmd->sg);
1322 if (ret < 0)
1323 return ret;
1324 fibsize = sizeof(struct aac_read) +
1325 ((le32_to_cpu(readcmd->sg.count) - 1) *
1326 sizeof (struct sgentry));
1327 BUG_ON (fibsize > (fib->dev->max_fib_size -
1328 sizeof(struct aac_fibhdr)));
1329 /*
1330 * Now send the Fib to the adapter
1331 */
1332 return aac_fib_send(ContainerCommand,
1333 fib,
1334 fibsize,
1335 FsaNormal,
1336 0, 1,
1337 (fib_callback) io_callback,
1338 (void *) cmd);
1339 }
1340
aac_write_raw_io(struct fib * fib,struct scsi_cmnd * cmd,u64 lba,u32 count,int fua)1341 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1342 {
1343 struct aac_dev *dev = fib->dev;
1344 u16 fibsize, command;
1345 long ret;
1346
1347 aac_fib_init(fib);
1348 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
1349 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) &&
1350 !dev->sync_mode) {
1351 struct aac_raw_io2 *writecmd2;
1352 writecmd2 = (struct aac_raw_io2 *) fib_data(fib);
1353 memset(writecmd2, 0, sizeof(struct aac_raw_io2));
1354 writecmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff));
1355 writecmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1356 writecmd2->byteCount = cpu_to_le32(count *
1357 dev->fsa_dev[scmd_id(cmd)].block_size);
1358 writecmd2->cid = cpu_to_le16(scmd_id(cmd));
1359 writecmd2->flags = (fua && ((aac_cache & 5) != 1) &&
1360 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1361 cpu_to_le16(RIO2_IO_TYPE_WRITE|RIO2_IO_SUREWRITE) :
1362 cpu_to_le16(RIO2_IO_TYPE_WRITE);
1363 ret = aac_build_sgraw2(cmd, writecmd2,
1364 dev->scsi_host_ptr->sg_tablesize);
1365 if (ret < 0)
1366 return ret;
1367 command = ContainerRawIo2;
1368 fibsize = struct_size(writecmd2, sge,
1369 le32_to_cpu(writecmd2->sgeCnt));
1370 } else {
1371 struct aac_raw_io *writecmd;
1372 writecmd = (struct aac_raw_io *) fib_data(fib);
1373 writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1374 writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1375 writecmd->count = cpu_to_le32(count *
1376 dev->fsa_dev[scmd_id(cmd)].block_size);
1377 writecmd->cid = cpu_to_le16(scmd_id(cmd));
1378 writecmd->flags = (fua && ((aac_cache & 5) != 1) &&
1379 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1380 cpu_to_le16(RIO_TYPE_WRITE|RIO_SUREWRITE) :
1381 cpu_to_le16(RIO_TYPE_WRITE);
1382 writecmd->bpTotal = 0;
1383 writecmd->bpComplete = 0;
1384 ret = aac_build_sgraw(cmd, &writecmd->sg);
1385 if (ret < 0)
1386 return ret;
1387 command = ContainerRawIo;
1388 fibsize = sizeof(struct aac_raw_io) +
1389 ((le32_to_cpu(writecmd->sg.count)-1) * sizeof (struct sgentryraw));
1390 }
1391
1392 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1393 /*
1394 * Now send the Fib to the adapter
1395 */
1396 return aac_fib_send(command,
1397 fib,
1398 fibsize,
1399 FsaNormal,
1400 0, 1,
1401 (fib_callback) io_callback,
1402 (void *) cmd);
1403 }
1404
aac_write_block64(struct fib * fib,struct scsi_cmnd * cmd,u64 lba,u32 count,int fua)1405 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1406 {
1407 u16 fibsize;
1408 struct aac_write64 *writecmd;
1409 long ret;
1410
1411 aac_fib_init(fib);
1412 writecmd = (struct aac_write64 *) fib_data(fib);
1413 writecmd->command = cpu_to_le32(VM_CtHostWrite64);
1414 writecmd->cid = cpu_to_le16(scmd_id(cmd));
1415 writecmd->sector_count = cpu_to_le16(count);
1416 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1417 writecmd->pad = 0;
1418 writecmd->flags = 0;
1419
1420 ret = aac_build_sg64(cmd, &writecmd->sg);
1421 if (ret < 0)
1422 return ret;
1423 fibsize = sizeof(struct aac_write64) +
1424 ((le32_to_cpu(writecmd->sg.count) - 1) *
1425 sizeof (struct sgentry64));
1426 BUG_ON (fibsize > (fib->dev->max_fib_size -
1427 sizeof(struct aac_fibhdr)));
1428 /*
1429 * Now send the Fib to the adapter
1430 */
1431 return aac_fib_send(ContainerCommand64,
1432 fib,
1433 fibsize,
1434 FsaNormal,
1435 0, 1,
1436 (fib_callback) io_callback,
1437 (void *) cmd);
1438 }
1439
aac_write_block(struct fib * fib,struct scsi_cmnd * cmd,u64 lba,u32 count,int fua)1440 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1441 {
1442 u16 fibsize;
1443 struct aac_write *writecmd;
1444 struct aac_dev *dev = fib->dev;
1445 long ret;
1446
1447 aac_fib_init(fib);
1448 writecmd = (struct aac_write *) fib_data(fib);
1449 writecmd->command = cpu_to_le32(VM_CtBlockWrite);
1450 writecmd->cid = cpu_to_le32(scmd_id(cmd));
1451 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1452 writecmd->count = cpu_to_le32(count *
1453 dev->fsa_dev[scmd_id(cmd)].block_size);
1454 writecmd->sg.count = cpu_to_le32(1);
1455 /* ->stable is not used - it did mean which type of write */
1456
1457 ret = aac_build_sg(cmd, &writecmd->sg);
1458 if (ret < 0)
1459 return ret;
1460 fibsize = sizeof(struct aac_write) +
1461 ((le32_to_cpu(writecmd->sg.count) - 1) *
1462 sizeof (struct sgentry));
1463 BUG_ON (fibsize > (fib->dev->max_fib_size -
1464 sizeof(struct aac_fibhdr)));
1465 /*
1466 * Now send the Fib to the adapter
1467 */
1468 return aac_fib_send(ContainerCommand,
1469 fib,
1470 fibsize,
1471 FsaNormal,
1472 0, 1,
1473 (fib_callback) io_callback,
1474 (void *) cmd);
1475 }
1476
aac_scsi_common(struct fib * fib,struct scsi_cmnd * cmd)1477 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd)
1478 {
1479 struct aac_srb * srbcmd;
1480 u32 flag;
1481 u32 timeout;
1482 struct aac_dev *dev = fib->dev;
1483
1484 aac_fib_init(fib);
1485 switch(cmd->sc_data_direction){
1486 case DMA_TO_DEVICE:
1487 flag = SRB_DataOut;
1488 break;
1489 case DMA_BIDIRECTIONAL:
1490 flag = SRB_DataIn | SRB_DataOut;
1491 break;
1492 case DMA_FROM_DEVICE:
1493 flag = SRB_DataIn;
1494 break;
1495 case DMA_NONE:
1496 default: /* shuts up some versions of gcc */
1497 flag = SRB_NoDataXfer;
1498 break;
1499 }
1500
1501 srbcmd = (struct aac_srb*) fib_data(fib);
1502 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1503 srbcmd->channel = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd)));
1504 srbcmd->id = cpu_to_le32(scmd_id(cmd));
1505 srbcmd->lun = cpu_to_le32(cmd->device->lun);
1506 srbcmd->flags = cpu_to_le32(flag);
1507 timeout = scsi_cmd_to_rq(cmd)->timeout / HZ;
1508 if (timeout == 0)
1509 timeout = (dev->sa_firmware ? AAC_SA_TIMEOUT : AAC_ARC_TIMEOUT);
1510 srbcmd->timeout = cpu_to_le32(timeout); // timeout in seconds
1511 srbcmd->retry_limit = 0; /* Obsolete parameter */
1512 srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len);
1513 return srbcmd;
1514 }
1515
aac_construct_hbacmd(struct fib * fib,struct scsi_cmnd * cmd)1516 static struct aac_hba_cmd_req *aac_construct_hbacmd(struct fib *fib,
1517 struct scsi_cmnd *cmd)
1518 {
1519 struct aac_hba_cmd_req *hbacmd;
1520 struct aac_dev *dev;
1521 int bus, target;
1522 u64 address;
1523
1524 dev = (struct aac_dev *)cmd->device->host->hostdata;
1525
1526 hbacmd = (struct aac_hba_cmd_req *)fib->hw_fib_va;
1527 memset(hbacmd, 0, 96); /* sizeof(*hbacmd) is not necessary */
1528 /* iu_type is a parameter of aac_hba_send */
1529 switch (cmd->sc_data_direction) {
1530 case DMA_TO_DEVICE:
1531 hbacmd->byte1 = 2;
1532 break;
1533 case DMA_FROM_DEVICE:
1534 case DMA_BIDIRECTIONAL:
1535 hbacmd->byte1 = 1;
1536 break;
1537 case DMA_NONE:
1538 default:
1539 break;
1540 }
1541 hbacmd->lun[1] = cpu_to_le32(cmd->device->lun);
1542
1543 bus = aac_logical_to_phys(scmd_channel(cmd));
1544 target = scmd_id(cmd);
1545 hbacmd->it_nexus = dev->hba_map[bus][target].rmw_nexus;
1546
1547 /* we fill in reply_qid later in aac_src_deliver_message */
1548 /* we fill in iu_type, request_id later in aac_hba_send */
1549 /* we fill in emb_data_desc_count later in aac_build_sghba */
1550
1551 memcpy(hbacmd->cdb, cmd->cmnd, cmd->cmd_len);
1552 hbacmd->data_length = cpu_to_le32(scsi_bufflen(cmd));
1553
1554 address = (u64)fib->hw_error_pa;
1555 hbacmd->error_ptr_hi = cpu_to_le32((u32)(address >> 32));
1556 hbacmd->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff));
1557 hbacmd->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE);
1558
1559 return hbacmd;
1560 }
1561
1562 static void aac_srb_callback(void *context, struct fib * fibptr);
1563
aac_scsi_64(struct fib * fib,struct scsi_cmnd * cmd)1564 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd)
1565 {
1566 u16 fibsize;
1567 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1568 long ret;
1569
1570 ret = aac_build_sg64(cmd, (struct sgmap64 *) &srbcmd->sg);
1571 if (ret < 0)
1572 return ret;
1573 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1574
1575 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1576 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1577 /*
1578 * Build Scatter/Gather list
1579 */
1580 fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) +
1581 ((le32_to_cpu(srbcmd->sg.count) & 0xff) *
1582 sizeof (struct sgentry64));
1583 BUG_ON (fibsize > (fib->dev->max_fib_size -
1584 sizeof(struct aac_fibhdr)));
1585
1586 /*
1587 * Now send the Fib to the adapter
1588 */
1589 return aac_fib_send(ScsiPortCommand64, fib,
1590 fibsize, FsaNormal, 0, 1,
1591 (fib_callback) aac_srb_callback,
1592 (void *) cmd);
1593 }
1594
aac_scsi_32(struct fib * fib,struct scsi_cmnd * cmd)1595 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd)
1596 {
1597 u16 fibsize;
1598 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1599 long ret;
1600
1601 ret = aac_build_sg(cmd, (struct sgmap *)&srbcmd->sg);
1602 if (ret < 0)
1603 return ret;
1604 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1605
1606 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1607 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1608 /*
1609 * Build Scatter/Gather list
1610 */
1611 fibsize = sizeof (struct aac_srb) +
1612 (((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) *
1613 sizeof (struct sgentry));
1614 BUG_ON (fibsize > (fib->dev->max_fib_size -
1615 sizeof(struct aac_fibhdr)));
1616
1617 /*
1618 * Now send the Fib to the adapter
1619 */
1620 return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1,
1621 (fib_callback) aac_srb_callback, (void *) cmd);
1622 }
1623
aac_scsi_32_64(struct fib * fib,struct scsi_cmnd * cmd)1624 static int aac_scsi_32_64(struct fib * fib, struct scsi_cmnd * cmd)
1625 {
1626 if ((sizeof(dma_addr_t) > 4) && fib->dev->needs_dac &&
1627 (fib->dev->adapter_info.options & AAC_OPT_SGMAP_HOST64))
1628 return FAILED;
1629 return aac_scsi_32(fib, cmd);
1630 }
1631
aac_adapter_hba(struct fib * fib,struct scsi_cmnd * cmd)1632 static int aac_adapter_hba(struct fib *fib, struct scsi_cmnd *cmd)
1633 {
1634 struct aac_hba_cmd_req *hbacmd = aac_construct_hbacmd(fib, cmd);
1635 struct aac_dev *dev;
1636 long ret;
1637
1638 dev = (struct aac_dev *)cmd->device->host->hostdata;
1639
1640 ret = aac_build_sghba(cmd, hbacmd,
1641 dev->scsi_host_ptr->sg_tablesize, (u64)fib->hw_sgl_pa);
1642 if (ret < 0)
1643 return ret;
1644
1645 /*
1646 * Now send the HBA command to the adapter
1647 */
1648 fib->hbacmd_size = 64 + le32_to_cpu(hbacmd->emb_data_desc_count) *
1649 sizeof(struct aac_hba_sgl);
1650
1651 return aac_hba_send(HBA_IU_TYPE_SCSI_CMD_REQ, fib,
1652 (fib_callback) aac_hba_callback,
1653 (void *) cmd);
1654 }
1655
aac_send_safw_bmic_cmd(struct aac_dev * dev,struct aac_srb_unit * srbu,void * xfer_buf,int xfer_len)1656 static int aac_send_safw_bmic_cmd(struct aac_dev *dev,
1657 struct aac_srb_unit *srbu, void *xfer_buf, int xfer_len)
1658 {
1659 struct fib *fibptr;
1660 dma_addr_t addr;
1661 int rcode;
1662 int fibsize;
1663 struct aac_srb *srb;
1664 struct aac_srb_reply *srb_reply;
1665 struct sgmap64 *sg64;
1666 u32 vbus;
1667 u32 vid;
1668
1669 if (!dev->sa_firmware)
1670 return 0;
1671
1672 /* allocate FIB */
1673 fibptr = aac_fib_alloc(dev);
1674 if (!fibptr)
1675 return -ENOMEM;
1676
1677 aac_fib_init(fibptr);
1678 fibptr->hw_fib_va->header.XferState &=
1679 ~cpu_to_le32(FastResponseCapable);
1680
1681 fibsize = sizeof(struct aac_srb) - sizeof(struct sgentry) +
1682 sizeof(struct sgentry64);
1683
1684 /* allocate DMA buffer for response */
1685 addr = dma_map_single(&dev->pdev->dev, xfer_buf, xfer_len,
1686 DMA_BIDIRECTIONAL);
1687 if (dma_mapping_error(&dev->pdev->dev, addr)) {
1688 rcode = -ENOMEM;
1689 goto fib_error;
1690 }
1691
1692 srb = fib_data(fibptr);
1693 memcpy(srb, &srbu->srb, sizeof(struct aac_srb));
1694
1695 vbus = (u32)le16_to_cpu(
1696 dev->supplement_adapter_info.virt_device_bus);
1697 vid = (u32)le16_to_cpu(
1698 dev->supplement_adapter_info.virt_device_target);
1699
1700 /* set the common request fields */
1701 srb->channel = cpu_to_le32(vbus);
1702 srb->id = cpu_to_le32(vid);
1703 srb->lun = 0;
1704 srb->function = cpu_to_le32(SRBF_ExecuteScsi);
1705 srb->timeout = 0;
1706 srb->retry_limit = 0;
1707 srb->cdb_size = cpu_to_le32(16);
1708 srb->count = cpu_to_le32(xfer_len);
1709
1710 sg64 = (struct sgmap64 *)&srb->sg;
1711 sg64->count = cpu_to_le32(1);
1712 sg64->sg[0].addr[1] = cpu_to_le32(upper_32_bits(addr));
1713 sg64->sg[0].addr[0] = cpu_to_le32(lower_32_bits(addr));
1714 sg64->sg[0].count = cpu_to_le32(xfer_len);
1715
1716 /*
1717 * Copy the updated data for other dumping or other usage if needed
1718 */
1719 memcpy(&srbu->srb, srb, sizeof(struct aac_srb));
1720
1721 /* issue request to the controller */
1722 rcode = aac_fib_send(ScsiPortCommand64, fibptr, fibsize, FsaNormal,
1723 1, 1, NULL, NULL);
1724
1725 if (rcode == -ERESTARTSYS)
1726 rcode = -ERESTART;
1727
1728 if (unlikely(rcode < 0))
1729 goto bmic_error;
1730
1731 srb_reply = (struct aac_srb_reply *)fib_data(fibptr);
1732 memcpy(&srbu->srb_reply, srb_reply, sizeof(struct aac_srb_reply));
1733
1734 bmic_error:
1735 dma_unmap_single(&dev->pdev->dev, addr, xfer_len, DMA_BIDIRECTIONAL);
1736 fib_error:
1737 aac_fib_complete(fibptr);
1738 aac_fib_free(fibptr);
1739 return rcode;
1740 }
1741
aac_set_safw_target_qd(struct aac_dev * dev,int bus,int target)1742 static void aac_set_safw_target_qd(struct aac_dev *dev, int bus, int target)
1743 {
1744
1745 struct aac_ciss_identify_pd *identify_resp;
1746
1747 if (dev->hba_map[bus][target].devtype != AAC_DEVTYPE_NATIVE_RAW)
1748 return;
1749
1750 identify_resp = dev->hba_map[bus][target].safw_identify_resp;
1751 if (identify_resp == NULL) {
1752 dev->hba_map[bus][target].qd_limit = 32;
1753 return;
1754 }
1755
1756 if (identify_resp->current_queue_depth_limit <= 0 ||
1757 identify_resp->current_queue_depth_limit > 255)
1758 dev->hba_map[bus][target].qd_limit = 32;
1759 else
1760 dev->hba_map[bus][target].qd_limit =
1761 identify_resp->current_queue_depth_limit;
1762 }
1763
aac_issue_safw_bmic_identify(struct aac_dev * dev,struct aac_ciss_identify_pd ** identify_resp,u32 bus,u32 target)1764 static int aac_issue_safw_bmic_identify(struct aac_dev *dev,
1765 struct aac_ciss_identify_pd **identify_resp, u32 bus, u32 target)
1766 {
1767 int rcode = -ENOMEM;
1768 int datasize;
1769 struct aac_srb_unit srbu;
1770 struct aac_srb *srbcmd;
1771 struct aac_ciss_identify_pd *identify_reply;
1772
1773 datasize = sizeof(struct aac_ciss_identify_pd);
1774 identify_reply = kmalloc(datasize, GFP_KERNEL);
1775 if (!identify_reply)
1776 goto out;
1777
1778 memset(&srbu, 0, sizeof(struct aac_srb_unit));
1779
1780 srbcmd = &srbu.srb;
1781 srbcmd->flags = cpu_to_le32(SRB_DataIn);
1782 srbcmd->cdb[0] = 0x26;
1783 srbcmd->cdb[2] = (u8)((AAC_MAX_LUN + target) & 0x00FF);
1784 srbcmd->cdb[6] = CISS_IDENTIFY_PHYSICAL_DEVICE;
1785
1786 rcode = aac_send_safw_bmic_cmd(dev, &srbu, identify_reply, datasize);
1787 if (unlikely(rcode < 0))
1788 goto mem_free_all;
1789
1790 *identify_resp = identify_reply;
1791
1792 out:
1793 return rcode;
1794 mem_free_all:
1795 kfree(identify_reply);
1796 goto out;
1797 }
1798
aac_free_safw_ciss_luns(struct aac_dev * dev)1799 static inline void aac_free_safw_ciss_luns(struct aac_dev *dev)
1800 {
1801 kfree(dev->safw_phys_luns);
1802 dev->safw_phys_luns = NULL;
1803 }
1804
1805 /**
1806 * aac_get_safw_ciss_luns() - Process topology change
1807 * @dev: aac_dev structure
1808 *
1809 * Execute a CISS REPORT PHYS LUNS and process the results into
1810 * the current hba_map.
1811 */
aac_get_safw_ciss_luns(struct aac_dev * dev)1812 static int aac_get_safw_ciss_luns(struct aac_dev *dev)
1813 {
1814 int rcode = -ENOMEM;
1815 int datasize;
1816 struct aac_srb *srbcmd;
1817 struct aac_srb_unit srbu;
1818 struct aac_ciss_phys_luns_resp *phys_luns;
1819
1820 datasize = sizeof(struct aac_ciss_phys_luns_resp) +
1821 (AAC_MAX_TARGETS - 1) * sizeof(struct _ciss_lun);
1822 phys_luns = kmalloc(datasize, GFP_KERNEL);
1823 if (phys_luns == NULL)
1824 goto out;
1825
1826 memset(&srbu, 0, sizeof(struct aac_srb_unit));
1827
1828 srbcmd = &srbu.srb;
1829 srbcmd->flags = cpu_to_le32(SRB_DataIn);
1830 srbcmd->cdb[0] = CISS_REPORT_PHYSICAL_LUNS;
1831 srbcmd->cdb[1] = 2; /* extended reporting */
1832 srbcmd->cdb[8] = (u8)(datasize >> 8);
1833 srbcmd->cdb[9] = (u8)(datasize);
1834
1835 rcode = aac_send_safw_bmic_cmd(dev, &srbu, phys_luns, datasize);
1836 if (unlikely(rcode < 0))
1837 goto mem_free_all;
1838
1839 if (phys_luns->resp_flag != 2) {
1840 rcode = -ENOMSG;
1841 goto mem_free_all;
1842 }
1843
1844 dev->safw_phys_luns = phys_luns;
1845
1846 out:
1847 return rcode;
1848 mem_free_all:
1849 kfree(phys_luns);
1850 goto out;
1851 }
1852
aac_get_safw_phys_lun_count(struct aac_dev * dev)1853 static inline u32 aac_get_safw_phys_lun_count(struct aac_dev *dev)
1854 {
1855 return get_unaligned_be32(&dev->safw_phys_luns->list_length[0])/24;
1856 }
1857
aac_get_safw_phys_bus(struct aac_dev * dev,int lun)1858 static inline u32 aac_get_safw_phys_bus(struct aac_dev *dev, int lun)
1859 {
1860 return dev->safw_phys_luns->lun[lun].level2[1] & 0x3f;
1861 }
1862
aac_get_safw_phys_target(struct aac_dev * dev,int lun)1863 static inline u32 aac_get_safw_phys_target(struct aac_dev *dev, int lun)
1864 {
1865 return dev->safw_phys_luns->lun[lun].level2[0];
1866 }
1867
aac_get_safw_phys_expose_flag(struct aac_dev * dev,int lun)1868 static inline u32 aac_get_safw_phys_expose_flag(struct aac_dev *dev, int lun)
1869 {
1870 return dev->safw_phys_luns->lun[lun].bus >> 6;
1871 }
1872
aac_get_safw_phys_attribs(struct aac_dev * dev,int lun)1873 static inline u32 aac_get_safw_phys_attribs(struct aac_dev *dev, int lun)
1874 {
1875 return dev->safw_phys_luns->lun[lun].node_ident[9];
1876 }
1877
aac_get_safw_phys_nexus(struct aac_dev * dev,int lun)1878 static inline u32 aac_get_safw_phys_nexus(struct aac_dev *dev, int lun)
1879 {
1880 return *((u32 *)&dev->safw_phys_luns->lun[lun].node_ident[12]);
1881 }
1882
aac_free_safw_identify_resp(struct aac_dev * dev,int bus,int target)1883 static inline void aac_free_safw_identify_resp(struct aac_dev *dev,
1884 int bus, int target)
1885 {
1886 kfree(dev->hba_map[bus][target].safw_identify_resp);
1887 dev->hba_map[bus][target].safw_identify_resp = NULL;
1888 }
1889
aac_free_safw_all_identify_resp(struct aac_dev * dev,int lun_count)1890 static inline void aac_free_safw_all_identify_resp(struct aac_dev *dev,
1891 int lun_count)
1892 {
1893 int luns;
1894 int i;
1895 u32 bus;
1896 u32 target;
1897
1898 luns = aac_get_safw_phys_lun_count(dev);
1899
1900 if (luns < lun_count)
1901 lun_count = luns;
1902 else if (lun_count < 0)
1903 lun_count = luns;
1904
1905 for (i = 0; i < lun_count; i++) {
1906 bus = aac_get_safw_phys_bus(dev, i);
1907 target = aac_get_safw_phys_target(dev, i);
1908
1909 aac_free_safw_identify_resp(dev, bus, target);
1910 }
1911 }
1912
aac_get_safw_attr_all_targets(struct aac_dev * dev)1913 static int aac_get_safw_attr_all_targets(struct aac_dev *dev)
1914 {
1915 int i;
1916 int rcode = 0;
1917 u32 lun_count;
1918 u32 bus;
1919 u32 target;
1920 struct aac_ciss_identify_pd *identify_resp = NULL;
1921
1922 lun_count = aac_get_safw_phys_lun_count(dev);
1923
1924 for (i = 0; i < lun_count; ++i) {
1925
1926 bus = aac_get_safw_phys_bus(dev, i);
1927 target = aac_get_safw_phys_target(dev, i);
1928
1929 rcode = aac_issue_safw_bmic_identify(dev,
1930 &identify_resp, bus, target);
1931
1932 if (unlikely(rcode < 0))
1933 goto free_identify_resp;
1934
1935 dev->hba_map[bus][target].safw_identify_resp = identify_resp;
1936 }
1937
1938 out:
1939 return rcode;
1940 free_identify_resp:
1941 aac_free_safw_all_identify_resp(dev, i);
1942 goto out;
1943 }
1944
1945 /**
1946 * aac_set_safw_attr_all_targets- update current hba map with data from FW
1947 * @dev: aac_dev structure
1948 *
1949 * Update our hba map with the information gathered from the FW
1950 */
aac_set_safw_attr_all_targets(struct aac_dev * dev)1951 static void aac_set_safw_attr_all_targets(struct aac_dev *dev)
1952 {
1953 /* ok and extended reporting */
1954 u32 lun_count, nexus;
1955 u32 i, bus, target;
1956 u8 expose_flag, attribs;
1957
1958 lun_count = aac_get_safw_phys_lun_count(dev);
1959
1960 dev->scan_counter++;
1961
1962 for (i = 0; i < lun_count; ++i) {
1963
1964 bus = aac_get_safw_phys_bus(dev, i);
1965 target = aac_get_safw_phys_target(dev, i);
1966 expose_flag = aac_get_safw_phys_expose_flag(dev, i);
1967 attribs = aac_get_safw_phys_attribs(dev, i);
1968 nexus = aac_get_safw_phys_nexus(dev, i);
1969
1970 if (bus >= AAC_MAX_BUSES || target >= AAC_MAX_TARGETS)
1971 continue;
1972
1973 if (expose_flag != 0) {
1974 dev->hba_map[bus][target].devtype =
1975 AAC_DEVTYPE_RAID_MEMBER;
1976 continue;
1977 }
1978
1979 if (nexus != 0 && (attribs & 8)) {
1980 dev->hba_map[bus][target].devtype =
1981 AAC_DEVTYPE_NATIVE_RAW;
1982 dev->hba_map[bus][target].rmw_nexus =
1983 nexus;
1984 } else
1985 dev->hba_map[bus][target].devtype =
1986 AAC_DEVTYPE_ARC_RAW;
1987
1988 dev->hba_map[bus][target].scan_counter = dev->scan_counter;
1989
1990 aac_set_safw_target_qd(dev, bus, target);
1991 }
1992 }
1993
aac_setup_safw_targets(struct aac_dev * dev)1994 static int aac_setup_safw_targets(struct aac_dev *dev)
1995 {
1996 int rcode = 0;
1997
1998 rcode = aac_get_containers(dev);
1999 if (unlikely(rcode < 0))
2000 goto out;
2001
2002 rcode = aac_get_safw_ciss_luns(dev);
2003 if (unlikely(rcode < 0))
2004 goto out;
2005
2006 rcode = aac_get_safw_attr_all_targets(dev);
2007 if (unlikely(rcode < 0))
2008 goto free_ciss_luns;
2009
2010 aac_set_safw_attr_all_targets(dev);
2011
2012 aac_free_safw_all_identify_resp(dev, -1);
2013 free_ciss_luns:
2014 aac_free_safw_ciss_luns(dev);
2015 out:
2016 return rcode;
2017 }
2018
aac_setup_safw_adapter(struct aac_dev * dev)2019 int aac_setup_safw_adapter(struct aac_dev *dev)
2020 {
2021 return aac_setup_safw_targets(dev);
2022 }
2023
aac_get_adapter_info(struct aac_dev * dev)2024 int aac_get_adapter_info(struct aac_dev* dev)
2025 {
2026 struct fib* fibptr;
2027 int rcode;
2028 u32 tmp, bus, target;
2029 struct aac_adapter_info *info;
2030 struct aac_bus_info *command;
2031 struct aac_bus_info_response *bus_info;
2032
2033 if (!(fibptr = aac_fib_alloc(dev)))
2034 return -ENOMEM;
2035
2036 aac_fib_init(fibptr);
2037 info = (struct aac_adapter_info *) fib_data(fibptr);
2038 memset(info,0,sizeof(*info));
2039
2040 rcode = aac_fib_send(RequestAdapterInfo,
2041 fibptr,
2042 sizeof(*info),
2043 FsaNormal,
2044 -1, 1, /* First `interrupt' command uses special wait */
2045 NULL,
2046 NULL);
2047
2048 if (rcode < 0) {
2049 /* FIB should be freed only after
2050 * getting the response from the F/W */
2051 if (rcode != -ERESTARTSYS) {
2052 aac_fib_complete(fibptr);
2053 aac_fib_free(fibptr);
2054 }
2055 return rcode;
2056 }
2057 memcpy(&dev->adapter_info, info, sizeof(*info));
2058
2059 dev->supplement_adapter_info.virt_device_bus = 0xffff;
2060 if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
2061 struct aac_supplement_adapter_info * sinfo;
2062
2063 aac_fib_init(fibptr);
2064
2065 sinfo = (struct aac_supplement_adapter_info *) fib_data(fibptr);
2066
2067 memset(sinfo,0,sizeof(*sinfo));
2068
2069 rcode = aac_fib_send(RequestSupplementAdapterInfo,
2070 fibptr,
2071 sizeof(*sinfo),
2072 FsaNormal,
2073 1, 1,
2074 NULL,
2075 NULL);
2076
2077 if (rcode >= 0)
2078 memcpy(&dev->supplement_adapter_info, sinfo, sizeof(*sinfo));
2079 if (rcode == -ERESTARTSYS) {
2080 fibptr = aac_fib_alloc(dev);
2081 if (!fibptr)
2082 return -ENOMEM;
2083 }
2084
2085 }
2086
2087 /* reset all previous mapped devices (i.e. for init. after IOP_RESET) */
2088 for (bus = 0; bus < AAC_MAX_BUSES; bus++) {
2089 for (target = 0; target < AAC_MAX_TARGETS; target++) {
2090 dev->hba_map[bus][target].devtype = 0;
2091 dev->hba_map[bus][target].qd_limit = 0;
2092 }
2093 }
2094
2095 /*
2096 * GetBusInfo
2097 */
2098
2099 aac_fib_init(fibptr);
2100
2101 bus_info = (struct aac_bus_info_response *) fib_data(fibptr);
2102
2103 memset(bus_info, 0, sizeof(*bus_info));
2104
2105 command = (struct aac_bus_info *)bus_info;
2106
2107 command->Command = cpu_to_le32(VM_Ioctl);
2108 command->ObjType = cpu_to_le32(FT_DRIVE);
2109 command->MethodId = cpu_to_le32(1);
2110 command->CtlCmd = cpu_to_le32(GetBusInfo);
2111
2112 rcode = aac_fib_send(ContainerCommand,
2113 fibptr,
2114 sizeof (*bus_info),
2115 FsaNormal,
2116 1, 1,
2117 NULL, NULL);
2118
2119 /* reasoned default */
2120 dev->maximum_num_physicals = 16;
2121 if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) {
2122 dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus);
2123 dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount);
2124 }
2125
2126 if (!dev->in_reset) {
2127 char buffer[16];
2128 tmp = le32_to_cpu(dev->adapter_info.kernelrev);
2129 printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n",
2130 dev->name,
2131 dev->id,
2132 tmp>>24,
2133 (tmp>>16)&0xff,
2134 tmp&0xff,
2135 le32_to_cpu(dev->adapter_info.kernelbuild),
2136 (int)sizeof(dev->supplement_adapter_info.build_date),
2137 dev->supplement_adapter_info.build_date);
2138 tmp = le32_to_cpu(dev->adapter_info.monitorrev);
2139 printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n",
2140 dev->name, dev->id,
2141 tmp>>24,(tmp>>16)&0xff,tmp&0xff,
2142 le32_to_cpu(dev->adapter_info.monitorbuild));
2143 tmp = le32_to_cpu(dev->adapter_info.biosrev);
2144 printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n",
2145 dev->name, dev->id,
2146 tmp>>24,(tmp>>16)&0xff,tmp&0xff,
2147 le32_to_cpu(dev->adapter_info.biosbuild));
2148 buffer[0] = '\0';
2149 if (aac_get_serial_number(
2150 shost_to_class(dev->scsi_host_ptr), buffer))
2151 printk(KERN_INFO "%s%d: serial %s",
2152 dev->name, dev->id, buffer);
2153 if (dev->supplement_adapter_info.vpd_info.tsid[0]) {
2154 printk(KERN_INFO "%s%d: TSID %.*s\n",
2155 dev->name, dev->id,
2156 (int)sizeof(dev->supplement_adapter_info
2157 .vpd_info.tsid),
2158 dev->supplement_adapter_info.vpd_info.tsid);
2159 }
2160 if (!aac_check_reset || ((aac_check_reset == 1) &&
2161 (dev->supplement_adapter_info.supported_options2 &
2162 AAC_OPTION_IGNORE_RESET))) {
2163 printk(KERN_INFO "%s%d: Reset Adapter Ignored\n",
2164 dev->name, dev->id);
2165 }
2166 }
2167
2168 dev->cache_protected = 0;
2169 dev->jbod = ((dev->supplement_adapter_info.feature_bits &
2170 AAC_FEATURE_JBOD) != 0);
2171 dev->nondasd_support = 0;
2172 dev->raid_scsi_mode = 0;
2173 if(dev->adapter_info.options & AAC_OPT_NONDASD)
2174 dev->nondasd_support = 1;
2175
2176 /*
2177 * If the firmware supports ROMB RAID/SCSI mode and we are currently
2178 * in RAID/SCSI mode, set the flag. For now if in this mode we will
2179 * force nondasd support on. If we decide to allow the non-dasd flag
2180 * additional changes changes will have to be made to support
2181 * RAID/SCSI. the function aac_scsi_cmd in this module will have to be
2182 * changed to support the new dev->raid_scsi_mode flag instead of
2183 * leaching off of the dev->nondasd_support flag. Also in linit.c the
2184 * function aac_detect will have to be modified where it sets up the
2185 * max number of channels based on the aac->nondasd_support flag only.
2186 */
2187 if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
2188 (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
2189 dev->nondasd_support = 1;
2190 dev->raid_scsi_mode = 1;
2191 }
2192 if (dev->raid_scsi_mode != 0)
2193 printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
2194 dev->name, dev->id);
2195
2196 if (nondasd != -1)
2197 dev->nondasd_support = (nondasd!=0);
2198 if (dev->nondasd_support && !dev->in_reset)
2199 printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
2200
2201 if (dma_get_required_mask(&dev->pdev->dev) > DMA_BIT_MASK(32))
2202 dev->needs_dac = 1;
2203 dev->dac_support = 0;
2204 if ((sizeof(dma_addr_t) > 4) && dev->needs_dac &&
2205 (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) {
2206 if (!dev->in_reset)
2207 printk(KERN_INFO "%s%d: 64bit support enabled.\n",
2208 dev->name, dev->id);
2209 dev->dac_support = 1;
2210 }
2211
2212 if(dacmode != -1) {
2213 dev->dac_support = (dacmode!=0);
2214 }
2215
2216 /* avoid problems with AAC_QUIRK_SCSI_32 controllers */
2217 if (dev->dac_support && (aac_get_driver_ident(dev->cardtype)->quirks
2218 & AAC_QUIRK_SCSI_32)) {
2219 dev->nondasd_support = 0;
2220 dev->jbod = 0;
2221 expose_physicals = 0;
2222 }
2223
2224 if (dev->dac_support) {
2225 if (!dma_set_mask(&dev->pdev->dev, DMA_BIT_MASK(64))) {
2226 if (!dev->in_reset)
2227 dev_info(&dev->pdev->dev, "64 Bit DAC enabled\n");
2228 } else if (!dma_set_mask(&dev->pdev->dev, DMA_BIT_MASK(32))) {
2229 dev_info(&dev->pdev->dev, "DMA mask set failed, 64 Bit DAC disabled\n");
2230 dev->dac_support = 0;
2231 } else {
2232 dev_info(&dev->pdev->dev, "No suitable DMA available\n");
2233 rcode = -ENOMEM;
2234 }
2235 }
2236 /*
2237 * Deal with configuring for the individualized limits of each packet
2238 * interface.
2239 */
2240 dev->a_ops.adapter_scsi = (dev->dac_support)
2241 ? ((aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32)
2242 ? aac_scsi_32_64
2243 : aac_scsi_64)
2244 : aac_scsi_32;
2245 if (dev->raw_io_interface) {
2246 dev->a_ops.adapter_bounds = (dev->raw_io_64)
2247 ? aac_bounds_64
2248 : aac_bounds_32;
2249 dev->a_ops.adapter_read = aac_read_raw_io;
2250 dev->a_ops.adapter_write = aac_write_raw_io;
2251 } else {
2252 dev->a_ops.adapter_bounds = aac_bounds_32;
2253 dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
2254 sizeof(struct aac_fibhdr) -
2255 sizeof(struct aac_write) + sizeof(struct sgentry)) /
2256 sizeof(struct sgentry);
2257 if (dev->dac_support) {
2258 dev->a_ops.adapter_read = aac_read_block64;
2259 dev->a_ops.adapter_write = aac_write_block64;
2260 /*
2261 * 38 scatter gather elements
2262 */
2263 dev->scsi_host_ptr->sg_tablesize =
2264 (dev->max_fib_size -
2265 sizeof(struct aac_fibhdr) -
2266 sizeof(struct aac_write64) +
2267 sizeof(struct sgentry64)) /
2268 sizeof(struct sgentry64);
2269 } else {
2270 dev->a_ops.adapter_read = aac_read_block;
2271 dev->a_ops.adapter_write = aac_write_block;
2272 }
2273 dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
2274 if (!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
2275 /*
2276 * Worst case size that could cause sg overflow when
2277 * we break up SG elements that are larger than 64KB.
2278 * Would be nice if we could tell the SCSI layer what
2279 * the maximum SG element size can be. Worst case is
2280 * (sg_tablesize-1) 4KB elements with one 64KB
2281 * element.
2282 * 32bit -> 468 or 238KB 64bit -> 424 or 212KB
2283 */
2284 dev->scsi_host_ptr->max_sectors =
2285 (dev->scsi_host_ptr->sg_tablesize * 8) + 112;
2286 }
2287 }
2288 if (!dev->sync_mode && dev->sa_firmware &&
2289 dev->scsi_host_ptr->sg_tablesize > HBA_MAX_SG_SEPARATE)
2290 dev->scsi_host_ptr->sg_tablesize = dev->sg_tablesize =
2291 HBA_MAX_SG_SEPARATE;
2292
2293 /* FIB should be freed only after getting the response from the F/W */
2294 if (rcode != -ERESTARTSYS) {
2295 aac_fib_complete(fibptr);
2296 aac_fib_free(fibptr);
2297 }
2298
2299 return rcode;
2300 }
2301
2302
io_callback(void * context,struct fib * fibptr)2303 static void io_callback(void *context, struct fib * fibptr)
2304 {
2305 struct aac_dev *dev;
2306 struct aac_read_reply *readreply;
2307 struct scsi_cmnd *scsicmd;
2308 u32 cid;
2309
2310 scsicmd = (struct scsi_cmnd *) context;
2311
2312 if (!aac_valid_context(scsicmd, fibptr))
2313 return;
2314
2315 dev = fibptr->dev;
2316 cid = scmd_id(scsicmd);
2317
2318 if (nblank(dprintk(x))) {
2319 u64 lba;
2320 switch (scsicmd->cmnd[0]) {
2321 case WRITE_6:
2322 case READ_6:
2323 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
2324 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
2325 break;
2326 case WRITE_16:
2327 case READ_16:
2328 lba = ((u64)scsicmd->cmnd[2] << 56) |
2329 ((u64)scsicmd->cmnd[3] << 48) |
2330 ((u64)scsicmd->cmnd[4] << 40) |
2331 ((u64)scsicmd->cmnd[5] << 32) |
2332 ((u64)scsicmd->cmnd[6] << 24) |
2333 (scsicmd->cmnd[7] << 16) |
2334 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2335 break;
2336 case WRITE_12:
2337 case READ_12:
2338 lba = ((u64)scsicmd->cmnd[2] << 24) |
2339 (scsicmd->cmnd[3] << 16) |
2340 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2341 break;
2342 default:
2343 lba = ((u64)scsicmd->cmnd[2] << 24) |
2344 (scsicmd->cmnd[3] << 16) |
2345 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2346 break;
2347 }
2348 printk(KERN_DEBUG
2349 "io_callback[cpu %d]: lba = %llu, t = %ld.\n",
2350 smp_processor_id(), (unsigned long long)lba, jiffies);
2351 }
2352
2353 BUG_ON(fibptr == NULL);
2354
2355 scsi_dma_unmap(scsicmd);
2356
2357 readreply = (struct aac_read_reply *)fib_data(fibptr);
2358 switch (le32_to_cpu(readreply->status)) {
2359 case ST_OK:
2360 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
2361 dev->fsa_dev[cid].sense_data.sense_key = NO_SENSE;
2362 break;
2363 case ST_NOT_READY:
2364 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION;
2365 set_sense(&dev->fsa_dev[cid].sense_data, NOT_READY,
2366 SENCODE_BECOMING_READY, ASENCODE_BECOMING_READY, 0, 0);
2367 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2368 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2369 SCSI_SENSE_BUFFERSIZE));
2370 break;
2371 case ST_MEDERR:
2372 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION;
2373 set_sense(&dev->fsa_dev[cid].sense_data, MEDIUM_ERROR,
2374 SENCODE_UNRECOVERED_READ_ERROR, ASENCODE_NO_SENSE, 0, 0);
2375 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2376 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2377 SCSI_SENSE_BUFFERSIZE));
2378 break;
2379 default:
2380 #ifdef AAC_DETAILED_STATUS_INFO
2381 printk(KERN_WARNING "io_callback: io failed, status = %d\n",
2382 le32_to_cpu(readreply->status));
2383 #endif
2384 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION;
2385 set_sense(&dev->fsa_dev[cid].sense_data,
2386 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2387 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2388 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2389 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2390 SCSI_SENSE_BUFFERSIZE));
2391 break;
2392 }
2393 aac_fib_complete(fibptr);
2394
2395 scsicmd->scsi_done(scsicmd);
2396 }
2397
aac_read(struct scsi_cmnd * scsicmd)2398 static int aac_read(struct scsi_cmnd * scsicmd)
2399 {
2400 u64 lba;
2401 u32 count;
2402 int status;
2403 struct aac_dev *dev;
2404 struct fib * cmd_fibcontext;
2405 int cid;
2406
2407 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2408 /*
2409 * Get block address and transfer length
2410 */
2411 switch (scsicmd->cmnd[0]) {
2412 case READ_6:
2413 dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd)));
2414
2415 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
2416 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
2417 count = scsicmd->cmnd[4];
2418
2419 if (count == 0)
2420 count = 256;
2421 break;
2422 case READ_16:
2423 dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd)));
2424
2425 lba = ((u64)scsicmd->cmnd[2] << 56) |
2426 ((u64)scsicmd->cmnd[3] << 48) |
2427 ((u64)scsicmd->cmnd[4] << 40) |
2428 ((u64)scsicmd->cmnd[5] << 32) |
2429 ((u64)scsicmd->cmnd[6] << 24) |
2430 (scsicmd->cmnd[7] << 16) |
2431 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2432 count = (scsicmd->cmnd[10] << 24) |
2433 (scsicmd->cmnd[11] << 16) |
2434 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
2435 break;
2436 case READ_12:
2437 dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd)));
2438
2439 lba = ((u64)scsicmd->cmnd[2] << 24) |
2440 (scsicmd->cmnd[3] << 16) |
2441 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2442 count = (scsicmd->cmnd[6] << 24) |
2443 (scsicmd->cmnd[7] << 16) |
2444 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2445 break;
2446 default:
2447 dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd)));
2448
2449 lba = ((u64)scsicmd->cmnd[2] << 24) |
2450 (scsicmd->cmnd[3] << 16) |
2451 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2452 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
2453 break;
2454 }
2455
2456 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
2457 cid = scmd_id(scsicmd);
2458 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
2459 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION;
2460 set_sense(&dev->fsa_dev[cid].sense_data,
2461 ILLEGAL_REQUEST, SENCODE_LBA_OUT_OF_RANGE,
2462 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2463 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2464 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2465 SCSI_SENSE_BUFFERSIZE));
2466 scsicmd->scsi_done(scsicmd);
2467 return 0;
2468 }
2469
2470 dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n",
2471 smp_processor_id(), (unsigned long long)lba, jiffies));
2472 if (aac_adapter_bounds(dev,scsicmd,lba))
2473 return 0;
2474 /*
2475 * Alocate and initialize a Fib
2476 */
2477 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
2478 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2479 status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count);
2480
2481 /*
2482 * Check that the command queued to the controller
2483 */
2484 if (status == -EINPROGRESS)
2485 return 0;
2486
2487 printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status);
2488 /*
2489 * For some reason, the Fib didn't queue, return QUEUE_FULL
2490 */
2491 scsicmd->result = DID_OK << 16 | SAM_STAT_TASK_SET_FULL;
2492 scsicmd->scsi_done(scsicmd);
2493 aac_fib_complete(cmd_fibcontext);
2494 aac_fib_free(cmd_fibcontext);
2495 return 0;
2496 }
2497
aac_write(struct scsi_cmnd * scsicmd)2498 static int aac_write(struct scsi_cmnd * scsicmd)
2499 {
2500 u64 lba;
2501 u32 count;
2502 int fua;
2503 int status;
2504 struct aac_dev *dev;
2505 struct fib * cmd_fibcontext;
2506 int cid;
2507
2508 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2509 /*
2510 * Get block address and transfer length
2511 */
2512 if (scsicmd->cmnd[0] == WRITE_6) /* 6 byte command */
2513 {
2514 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
2515 count = scsicmd->cmnd[4];
2516 if (count == 0)
2517 count = 256;
2518 fua = 0;
2519 } else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */
2520 dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd)));
2521
2522 lba = ((u64)scsicmd->cmnd[2] << 56) |
2523 ((u64)scsicmd->cmnd[3] << 48) |
2524 ((u64)scsicmd->cmnd[4] << 40) |
2525 ((u64)scsicmd->cmnd[5] << 32) |
2526 ((u64)scsicmd->cmnd[6] << 24) |
2527 (scsicmd->cmnd[7] << 16) |
2528 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2529 count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) |
2530 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
2531 fua = scsicmd->cmnd[1] & 0x8;
2532 } else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */
2533 dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd)));
2534
2535 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16)
2536 | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2537 count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16)
2538 | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2539 fua = scsicmd->cmnd[1] & 0x8;
2540 } else {
2541 dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd)));
2542 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2543 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
2544 fua = scsicmd->cmnd[1] & 0x8;
2545 }
2546
2547 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
2548 cid = scmd_id(scsicmd);
2549 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
2550 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION;
2551 set_sense(&dev->fsa_dev[cid].sense_data,
2552 ILLEGAL_REQUEST, SENCODE_LBA_OUT_OF_RANGE,
2553 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2554 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2555 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2556 SCSI_SENSE_BUFFERSIZE));
2557 scsicmd->scsi_done(scsicmd);
2558 return 0;
2559 }
2560
2561 dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n",
2562 smp_processor_id(), (unsigned long long)lba, jiffies));
2563 if (aac_adapter_bounds(dev,scsicmd,lba))
2564 return 0;
2565 /*
2566 * Allocate and initialize a Fib then setup a BlockWrite command
2567 */
2568 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
2569 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2570 status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua);
2571
2572 /*
2573 * Check that the command queued to the controller
2574 */
2575 if (status == -EINPROGRESS)
2576 return 0;
2577
2578 printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status);
2579 /*
2580 * For some reason, the Fib didn't queue, return QUEUE_FULL
2581 */
2582 scsicmd->result = DID_OK << 16 | SAM_STAT_TASK_SET_FULL;
2583 scsicmd->scsi_done(scsicmd);
2584
2585 aac_fib_complete(cmd_fibcontext);
2586 aac_fib_free(cmd_fibcontext);
2587 return 0;
2588 }
2589
synchronize_callback(void * context,struct fib * fibptr)2590 static void synchronize_callback(void *context, struct fib *fibptr)
2591 {
2592 struct aac_synchronize_reply *synchronizereply;
2593 struct scsi_cmnd *cmd = context;
2594
2595 if (!aac_valid_context(cmd, fibptr))
2596 return;
2597
2598 dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n",
2599 smp_processor_id(), jiffies));
2600 BUG_ON(fibptr == NULL);
2601
2602
2603 synchronizereply = fib_data(fibptr);
2604 if (le32_to_cpu(synchronizereply->status) == CT_OK)
2605 cmd->result = DID_OK << 16 | SAM_STAT_GOOD;
2606 else {
2607 struct scsi_device *sdev = cmd->device;
2608 struct aac_dev *dev = fibptr->dev;
2609 u32 cid = sdev_id(sdev);
2610 printk(KERN_WARNING
2611 "synchronize_callback: synchronize failed, status = %d\n",
2612 le32_to_cpu(synchronizereply->status));
2613 cmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION;
2614 set_sense(&dev->fsa_dev[cid].sense_data,
2615 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2616 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2617 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2618 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2619 SCSI_SENSE_BUFFERSIZE));
2620 }
2621
2622 aac_fib_complete(fibptr);
2623 aac_fib_free(fibptr);
2624 cmd->scsi_done(cmd);
2625 }
2626
aac_synchronize(struct scsi_cmnd * scsicmd)2627 static int aac_synchronize(struct scsi_cmnd *scsicmd)
2628 {
2629 int status;
2630 struct fib *cmd_fibcontext;
2631 struct aac_synchronize *synchronizecmd;
2632 struct scsi_device *sdev = scsicmd->device;
2633 struct aac_dev *aac;
2634
2635 aac = (struct aac_dev *)sdev->host->hostdata;
2636 if (aac->in_reset)
2637 return SCSI_MLQUEUE_HOST_BUSY;
2638
2639 /*
2640 * Allocate and initialize a Fib
2641 */
2642 cmd_fibcontext = aac_fib_alloc_tag(aac, scsicmd);
2643
2644 aac_fib_init(cmd_fibcontext);
2645
2646 synchronizecmd = fib_data(cmd_fibcontext);
2647 synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
2648 synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
2649 synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd));
2650 synchronizecmd->count =
2651 cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));
2652 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2653
2654 /*
2655 * Now send the Fib to the adapter
2656 */
2657 status = aac_fib_send(ContainerCommand,
2658 cmd_fibcontext,
2659 sizeof(struct aac_synchronize),
2660 FsaNormal,
2661 0, 1,
2662 (fib_callback)synchronize_callback,
2663 (void *)scsicmd);
2664
2665 /*
2666 * Check that the command queued to the controller
2667 */
2668 if (status == -EINPROGRESS)
2669 return 0;
2670
2671 printk(KERN_WARNING
2672 "aac_synchronize: aac_fib_send failed with status: %d.\n", status);
2673 aac_fib_complete(cmd_fibcontext);
2674 aac_fib_free(cmd_fibcontext);
2675 return SCSI_MLQUEUE_HOST_BUSY;
2676 }
2677
aac_start_stop_callback(void * context,struct fib * fibptr)2678 static void aac_start_stop_callback(void *context, struct fib *fibptr)
2679 {
2680 struct scsi_cmnd *scsicmd = context;
2681
2682 if (!aac_valid_context(scsicmd, fibptr))
2683 return;
2684
2685 BUG_ON(fibptr == NULL);
2686
2687 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
2688
2689 aac_fib_complete(fibptr);
2690 aac_fib_free(fibptr);
2691 scsicmd->scsi_done(scsicmd);
2692 }
2693
aac_start_stop(struct scsi_cmnd * scsicmd)2694 static int aac_start_stop(struct scsi_cmnd *scsicmd)
2695 {
2696 int status;
2697 struct fib *cmd_fibcontext;
2698 struct aac_power_management *pmcmd;
2699 struct scsi_device *sdev = scsicmd->device;
2700 struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata;
2701
2702 if (!(aac->supplement_adapter_info.supported_options2 &
2703 AAC_OPTION_POWER_MANAGEMENT)) {
2704 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
2705 scsicmd->scsi_done(scsicmd);
2706 return 0;
2707 }
2708
2709 if (aac->in_reset)
2710 return SCSI_MLQUEUE_HOST_BUSY;
2711
2712 /*
2713 * Allocate and initialize a Fib
2714 */
2715 cmd_fibcontext = aac_fib_alloc_tag(aac, scsicmd);
2716
2717 aac_fib_init(cmd_fibcontext);
2718
2719 pmcmd = fib_data(cmd_fibcontext);
2720 pmcmd->command = cpu_to_le32(VM_ContainerConfig);
2721 pmcmd->type = cpu_to_le32(CT_POWER_MANAGEMENT);
2722 /* Eject bit ignored, not relevant */
2723 pmcmd->sub = (scsicmd->cmnd[4] & 1) ?
2724 cpu_to_le32(CT_PM_START_UNIT) : cpu_to_le32(CT_PM_STOP_UNIT);
2725 pmcmd->cid = cpu_to_le32(sdev_id(sdev));
2726 pmcmd->parm = (scsicmd->cmnd[1] & 1) ?
2727 cpu_to_le32(CT_PM_UNIT_IMMEDIATE) : 0;
2728 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2729
2730 /*
2731 * Now send the Fib to the adapter
2732 */
2733 status = aac_fib_send(ContainerCommand,
2734 cmd_fibcontext,
2735 sizeof(struct aac_power_management),
2736 FsaNormal,
2737 0, 1,
2738 (fib_callback)aac_start_stop_callback,
2739 (void *)scsicmd);
2740
2741 /*
2742 * Check that the command queued to the controller
2743 */
2744 if (status == -EINPROGRESS)
2745 return 0;
2746
2747 aac_fib_complete(cmd_fibcontext);
2748 aac_fib_free(cmd_fibcontext);
2749 return SCSI_MLQUEUE_HOST_BUSY;
2750 }
2751
2752 /**
2753 * aac_scsi_cmd() - Process SCSI command
2754 * @scsicmd: SCSI command block
2755 *
2756 * Emulate a SCSI command and queue the required request for the
2757 * aacraid firmware.
2758 */
2759
aac_scsi_cmd(struct scsi_cmnd * scsicmd)2760 int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
2761 {
2762 u32 cid, bus;
2763 struct Scsi_Host *host = scsicmd->device->host;
2764 struct aac_dev *dev = (struct aac_dev *)host->hostdata;
2765 struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
2766
2767 if (fsa_dev_ptr == NULL)
2768 return -1;
2769 /*
2770 * If the bus, id or lun is out of range, return fail
2771 * Test does not apply to ID 16, the pseudo id for the controller
2772 * itself.
2773 */
2774 cid = scmd_id(scsicmd);
2775 if (cid != host->this_id) {
2776 if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) {
2777 if((cid >= dev->maximum_num_containers) ||
2778 (scsicmd->device->lun != 0)) {
2779 scsicmd->result = DID_NO_CONNECT << 16;
2780 goto scsi_done_ret;
2781 }
2782
2783 /*
2784 * If the target container doesn't exist, it may have
2785 * been newly created
2786 */
2787 if (((fsa_dev_ptr[cid].valid & 1) == 0) ||
2788 (fsa_dev_ptr[cid].sense_data.sense_key ==
2789 NOT_READY)) {
2790 switch (scsicmd->cmnd[0]) {
2791 case SERVICE_ACTION_IN_16:
2792 if (!(dev->raw_io_interface) ||
2793 !(dev->raw_io_64) ||
2794 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2795 break;
2796 fallthrough;
2797 case INQUIRY:
2798 case READ_CAPACITY:
2799 case TEST_UNIT_READY:
2800 if (dev->in_reset)
2801 return -1;
2802 return _aac_probe_container(scsicmd,
2803 aac_probe_container_callback2);
2804 default:
2805 break;
2806 }
2807 }
2808 } else { /* check for physical non-dasd devices */
2809 bus = aac_logical_to_phys(scmd_channel(scsicmd));
2810
2811 if (bus < AAC_MAX_BUSES && cid < AAC_MAX_TARGETS &&
2812 dev->hba_map[bus][cid].devtype
2813 == AAC_DEVTYPE_NATIVE_RAW) {
2814 if (dev->in_reset)
2815 return -1;
2816 return aac_send_hba_fib(scsicmd);
2817 } else if (dev->nondasd_support || expose_physicals ||
2818 dev->jbod) {
2819 if (dev->in_reset)
2820 return -1;
2821 return aac_send_srb_fib(scsicmd);
2822 } else {
2823 scsicmd->result = DID_NO_CONNECT << 16;
2824 goto scsi_done_ret;
2825 }
2826 }
2827 }
2828 /*
2829 * else Command for the controller itself
2830 */
2831 else if ((scsicmd->cmnd[0] != INQUIRY) && /* only INQUIRY & TUR cmnd supported for controller */
2832 (scsicmd->cmnd[0] != TEST_UNIT_READY))
2833 {
2834 dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
2835 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION;
2836 set_sense(&dev->fsa_dev[cid].sense_data,
2837 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
2838 ASENCODE_INVALID_COMMAND, 0, 0);
2839 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2840 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2841 SCSI_SENSE_BUFFERSIZE));
2842 goto scsi_done_ret;
2843 }
2844
2845 switch (scsicmd->cmnd[0]) {
2846 case READ_6:
2847 case READ_10:
2848 case READ_12:
2849 case READ_16:
2850 if (dev->in_reset)
2851 return -1;
2852 return aac_read(scsicmd);
2853
2854 case WRITE_6:
2855 case WRITE_10:
2856 case WRITE_12:
2857 case WRITE_16:
2858 if (dev->in_reset)
2859 return -1;
2860 return aac_write(scsicmd);
2861
2862 case SYNCHRONIZE_CACHE:
2863 if (((aac_cache & 6) == 6) && dev->cache_protected) {
2864 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
2865 break;
2866 }
2867 /* Issue FIB to tell Firmware to flush it's cache */
2868 if ((aac_cache & 6) != 2)
2869 return aac_synchronize(scsicmd);
2870 fallthrough;
2871 case INQUIRY:
2872 {
2873 struct inquiry_data inq_data;
2874
2875 dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid));
2876 memset(&inq_data, 0, sizeof (struct inquiry_data));
2877
2878 if ((scsicmd->cmnd[1] & 0x1) && aac_wwn) {
2879 char *arr = (char *)&inq_data;
2880
2881 /* EVPD bit set */
2882 arr[0] = (scmd_id(scsicmd) == host->this_id) ?
2883 INQD_PDT_PROC : INQD_PDT_DA;
2884 if (scsicmd->cmnd[2] == 0) {
2885 /* supported vital product data pages */
2886 arr[3] = 3;
2887 arr[4] = 0x0;
2888 arr[5] = 0x80;
2889 arr[6] = 0x83;
2890 arr[1] = scsicmd->cmnd[2];
2891 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2892 sizeof(inq_data));
2893 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
2894 } else if (scsicmd->cmnd[2] == 0x80) {
2895 /* unit serial number page */
2896 arr[3] = setinqserial(dev, &arr[4],
2897 scmd_id(scsicmd));
2898 arr[1] = scsicmd->cmnd[2];
2899 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2900 sizeof(inq_data));
2901 if (aac_wwn != 2)
2902 return aac_get_container_serial(
2903 scsicmd);
2904 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
2905 } else if (scsicmd->cmnd[2] == 0x83) {
2906 /* vpd page 0x83 - Device Identification Page */
2907 char *sno = (char *)&inq_data;
2908 sno[3] = setinqserial(dev, &sno[4],
2909 scmd_id(scsicmd));
2910 if (aac_wwn != 2)
2911 return aac_get_container_serial(
2912 scsicmd);
2913 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
2914 } else {
2915 /* vpd page not implemented */
2916 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION;
2917 set_sense(&dev->fsa_dev[cid].sense_data,
2918 ILLEGAL_REQUEST, SENCODE_INVALID_CDB_FIELD,
2919 ASENCODE_NO_SENSE, 7, 2);
2920 memcpy(scsicmd->sense_buffer,
2921 &dev->fsa_dev[cid].sense_data,
2922 min_t(size_t,
2923 sizeof(dev->fsa_dev[cid].sense_data),
2924 SCSI_SENSE_BUFFERSIZE));
2925 }
2926 break;
2927 }
2928 inq_data.inqd_ver = 2; /* claim compliance to SCSI-2 */
2929 inq_data.inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
2930 inq_data.inqd_len = 31;
2931 /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
2932 inq_data.inqd_pad2= 0x32 ; /*WBus16|Sync|CmdQue */
2933 /*
2934 * Set the Vendor, Product, and Revision Level
2935 * see: <vendor>.c i.e. aac.c
2936 */
2937 if (cid == host->this_id) {
2938 setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types));
2939 inq_data.inqd_pdt = INQD_PDT_PROC; /* Processor device */
2940 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2941 sizeof(inq_data));
2942 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
2943 break;
2944 }
2945 if (dev->in_reset)
2946 return -1;
2947 setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type);
2948 inq_data.inqd_pdt = INQD_PDT_DA; /* Direct/random access device */
2949 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
2950 return aac_get_container_name(scsicmd);
2951 }
2952 case SERVICE_ACTION_IN_16:
2953 if (!(dev->raw_io_interface) ||
2954 !(dev->raw_io_64) ||
2955 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2956 break;
2957 {
2958 u64 capacity;
2959 char cp[13];
2960 unsigned int alloc_len;
2961
2962 dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n"));
2963 capacity = fsa_dev_ptr[cid].size - 1;
2964 cp[0] = (capacity >> 56) & 0xff;
2965 cp[1] = (capacity >> 48) & 0xff;
2966 cp[2] = (capacity >> 40) & 0xff;
2967 cp[3] = (capacity >> 32) & 0xff;
2968 cp[4] = (capacity >> 24) & 0xff;
2969 cp[5] = (capacity >> 16) & 0xff;
2970 cp[6] = (capacity >> 8) & 0xff;
2971 cp[7] = (capacity >> 0) & 0xff;
2972 cp[8] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff;
2973 cp[9] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
2974 cp[10] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
2975 cp[11] = (fsa_dev_ptr[cid].block_size) & 0xff;
2976 cp[12] = 0;
2977
2978 alloc_len = ((scsicmd->cmnd[10] << 24)
2979 + (scsicmd->cmnd[11] << 16)
2980 + (scsicmd->cmnd[12] << 8) + scsicmd->cmnd[13]);
2981
2982 alloc_len = min_t(size_t, alloc_len, sizeof(cp));
2983 scsi_sg_copy_from_buffer(scsicmd, cp, alloc_len);
2984 if (alloc_len < scsi_bufflen(scsicmd))
2985 scsi_set_resid(scsicmd,
2986 scsi_bufflen(scsicmd) - alloc_len);
2987
2988 /* Do not cache partition table for arrays */
2989 scsicmd->device->removable = 1;
2990
2991 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
2992 break;
2993 }
2994
2995 case READ_CAPACITY:
2996 {
2997 u32 capacity;
2998 char cp[8];
2999
3000 dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
3001 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
3002 capacity = fsa_dev_ptr[cid].size - 1;
3003 else
3004 capacity = (u32)-1;
3005
3006 cp[0] = (capacity >> 24) & 0xff;
3007 cp[1] = (capacity >> 16) & 0xff;
3008 cp[2] = (capacity >> 8) & 0xff;
3009 cp[3] = (capacity >> 0) & 0xff;
3010 cp[4] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff;
3011 cp[5] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
3012 cp[6] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
3013 cp[7] = (fsa_dev_ptr[cid].block_size) & 0xff;
3014 scsi_sg_copy_from_buffer(scsicmd, cp, sizeof(cp));
3015 /* Do not cache partition table for arrays */
3016 scsicmd->device->removable = 1;
3017 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
3018 break;
3019 }
3020
3021 case MODE_SENSE:
3022 {
3023 int mode_buf_length = 4;
3024 u32 capacity;
3025 aac_modep_data mpd;
3026
3027 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
3028 capacity = fsa_dev_ptr[cid].size - 1;
3029 else
3030 capacity = (u32)-1;
3031
3032 dprintk((KERN_DEBUG "MODE SENSE command.\n"));
3033 memset((char *)&mpd, 0, sizeof(aac_modep_data));
3034
3035 /* Mode data length */
3036 mpd.hd.data_length = sizeof(mpd.hd) - 1;
3037 /* Medium type - default */
3038 mpd.hd.med_type = 0;
3039 /* Device-specific param,
3040 bit 8: 0/1 = write enabled/protected
3041 bit 4: 0/1 = FUA enabled */
3042 mpd.hd.dev_par = 0;
3043
3044 if (dev->raw_io_interface && ((aac_cache & 5) != 1))
3045 mpd.hd.dev_par = 0x10;
3046 if (scsicmd->cmnd[1] & 0x8)
3047 mpd.hd.bd_length = 0; /* Block descriptor length */
3048 else {
3049 mpd.hd.bd_length = sizeof(mpd.bd);
3050 mpd.hd.data_length += mpd.hd.bd_length;
3051 mpd.bd.block_length[0] =
3052 (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
3053 mpd.bd.block_length[1] =
3054 (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
3055 mpd.bd.block_length[2] =
3056 fsa_dev_ptr[cid].block_size & 0xff;
3057
3058 mpd.mpc_buf[0] = scsicmd->cmnd[2];
3059 if (scsicmd->cmnd[2] == 0x1C) {
3060 /* page length */
3061 mpd.mpc_buf[1] = 0xa;
3062 /* Mode data length */
3063 mpd.hd.data_length = 23;
3064 } else {
3065 /* Mode data length */
3066 mpd.hd.data_length = 15;
3067 }
3068
3069 if (capacity > 0xffffff) {
3070 mpd.bd.block_count[0] = 0xff;
3071 mpd.bd.block_count[1] = 0xff;
3072 mpd.bd.block_count[2] = 0xff;
3073 } else {
3074 mpd.bd.block_count[0] = (capacity >> 16) & 0xff;
3075 mpd.bd.block_count[1] = (capacity >> 8) & 0xff;
3076 mpd.bd.block_count[2] = capacity & 0xff;
3077 }
3078 }
3079 if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
3080 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
3081 mpd.hd.data_length += 3;
3082 mpd.mpc_buf[0] = 8;
3083 mpd.mpc_buf[1] = 1;
3084 mpd.mpc_buf[2] = ((aac_cache & 6) == 2)
3085 ? 0 : 0x04; /* WCE */
3086 mode_buf_length = sizeof(mpd);
3087 }
3088
3089 if (mode_buf_length > scsicmd->cmnd[4])
3090 mode_buf_length = scsicmd->cmnd[4];
3091 else
3092 mode_buf_length = sizeof(mpd);
3093 scsi_sg_copy_from_buffer(scsicmd,
3094 (char *)&mpd,
3095 mode_buf_length);
3096 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
3097 break;
3098 }
3099 case MODE_SENSE_10:
3100 {
3101 u32 capacity;
3102 int mode_buf_length = 8;
3103 aac_modep10_data mpd10;
3104
3105 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
3106 capacity = fsa_dev_ptr[cid].size - 1;
3107 else
3108 capacity = (u32)-1;
3109
3110 dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
3111 memset((char *)&mpd10, 0, sizeof(aac_modep10_data));
3112 /* Mode data length (MSB) */
3113 mpd10.hd.data_length[0] = 0;
3114 /* Mode data length (LSB) */
3115 mpd10.hd.data_length[1] = sizeof(mpd10.hd) - 1;
3116 /* Medium type - default */
3117 mpd10.hd.med_type = 0;
3118 /* Device-specific param,
3119 bit 8: 0/1 = write enabled/protected
3120 bit 4: 0/1 = FUA enabled */
3121 mpd10.hd.dev_par = 0;
3122
3123 if (dev->raw_io_interface && ((aac_cache & 5) != 1))
3124 mpd10.hd.dev_par = 0x10;
3125 mpd10.hd.rsrvd[0] = 0; /* reserved */
3126 mpd10.hd.rsrvd[1] = 0; /* reserved */
3127 if (scsicmd->cmnd[1] & 0x8) {
3128 /* Block descriptor length (MSB) */
3129 mpd10.hd.bd_length[0] = 0;
3130 /* Block descriptor length (LSB) */
3131 mpd10.hd.bd_length[1] = 0;
3132 } else {
3133 mpd10.hd.bd_length[0] = 0;
3134 mpd10.hd.bd_length[1] = sizeof(mpd10.bd);
3135
3136 mpd10.hd.data_length[1] += mpd10.hd.bd_length[1];
3137
3138 mpd10.bd.block_length[0] =
3139 (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
3140 mpd10.bd.block_length[1] =
3141 (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
3142 mpd10.bd.block_length[2] =
3143 fsa_dev_ptr[cid].block_size & 0xff;
3144
3145 if (capacity > 0xffffff) {
3146 mpd10.bd.block_count[0] = 0xff;
3147 mpd10.bd.block_count[1] = 0xff;
3148 mpd10.bd.block_count[2] = 0xff;
3149 } else {
3150 mpd10.bd.block_count[0] =
3151 (capacity >> 16) & 0xff;
3152 mpd10.bd.block_count[1] =
3153 (capacity >> 8) & 0xff;
3154 mpd10.bd.block_count[2] =
3155 capacity & 0xff;
3156 }
3157 }
3158 if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
3159 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
3160 mpd10.hd.data_length[1] += 3;
3161 mpd10.mpc_buf[0] = 8;
3162 mpd10.mpc_buf[1] = 1;
3163 mpd10.mpc_buf[2] = ((aac_cache & 6) == 2)
3164 ? 0 : 0x04; /* WCE */
3165 mode_buf_length = sizeof(mpd10);
3166 if (mode_buf_length > scsicmd->cmnd[8])
3167 mode_buf_length = scsicmd->cmnd[8];
3168 }
3169 scsi_sg_copy_from_buffer(scsicmd,
3170 (char *)&mpd10,
3171 mode_buf_length);
3172
3173 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
3174 break;
3175 }
3176 case REQUEST_SENSE:
3177 dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
3178 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
3179 sizeof(struct sense_data));
3180 memset(&dev->fsa_dev[cid].sense_data, 0,
3181 sizeof(struct sense_data));
3182 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
3183 break;
3184
3185 case ALLOW_MEDIUM_REMOVAL:
3186 dprintk((KERN_DEBUG "LOCK command.\n"));
3187 if (scsicmd->cmnd[4])
3188 fsa_dev_ptr[cid].locked = 1;
3189 else
3190 fsa_dev_ptr[cid].locked = 0;
3191
3192 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
3193 break;
3194 /*
3195 * These commands are all No-Ops
3196 */
3197 case TEST_UNIT_READY:
3198 if (fsa_dev_ptr[cid].sense_data.sense_key == NOT_READY) {
3199 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION;
3200 set_sense(&dev->fsa_dev[cid].sense_data,
3201 NOT_READY, SENCODE_BECOMING_READY,
3202 ASENCODE_BECOMING_READY, 0, 0);
3203 memcpy(scsicmd->sense_buffer,
3204 &dev->fsa_dev[cid].sense_data,
3205 min_t(size_t,
3206 sizeof(dev->fsa_dev[cid].sense_data),
3207 SCSI_SENSE_BUFFERSIZE));
3208 break;
3209 }
3210 fallthrough;
3211 case RESERVE:
3212 case RELEASE:
3213 case REZERO_UNIT:
3214 case REASSIGN_BLOCKS:
3215 case SEEK_10:
3216 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
3217 break;
3218
3219 case START_STOP:
3220 return aac_start_stop(scsicmd);
3221
3222 default:
3223 /*
3224 * Unhandled commands
3225 */
3226 dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n",
3227 scsicmd->cmnd[0]));
3228 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION;
3229 set_sense(&dev->fsa_dev[cid].sense_data,
3230 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
3231 ASENCODE_INVALID_COMMAND, 0, 0);
3232 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
3233 min_t(size_t,
3234 sizeof(dev->fsa_dev[cid].sense_data),
3235 SCSI_SENSE_BUFFERSIZE));
3236 }
3237
3238 scsi_done_ret:
3239
3240 scsicmd->scsi_done(scsicmd);
3241 return 0;
3242 }
3243
query_disk(struct aac_dev * dev,void __user * arg)3244 static int query_disk(struct aac_dev *dev, void __user *arg)
3245 {
3246 struct aac_query_disk qd;
3247 struct fsa_dev_info *fsa_dev_ptr;
3248
3249 fsa_dev_ptr = dev->fsa_dev;
3250 if (!fsa_dev_ptr)
3251 return -EBUSY;
3252 if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
3253 return -EFAULT;
3254 if (qd.cnum == -1) {
3255 if (qd.id < 0 || qd.id >= dev->maximum_num_containers)
3256 return -EINVAL;
3257 qd.cnum = qd.id;
3258 } else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1)) {
3259 if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
3260 return -EINVAL;
3261 qd.instance = dev->scsi_host_ptr->host_no;
3262 qd.bus = 0;
3263 qd.id = CONTAINER_TO_ID(qd.cnum);
3264 qd.lun = CONTAINER_TO_LUN(qd.cnum);
3265 }
3266 else return -EINVAL;
3267
3268 qd.valid = fsa_dev_ptr[qd.cnum].valid != 0;
3269 qd.locked = fsa_dev_ptr[qd.cnum].locked;
3270 qd.deleted = fsa_dev_ptr[qd.cnum].deleted;
3271
3272 if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
3273 qd.unmapped = 1;
3274 else
3275 qd.unmapped = 0;
3276
3277 strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
3278 min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));
3279
3280 if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
3281 return -EFAULT;
3282 return 0;
3283 }
3284
force_delete_disk(struct aac_dev * dev,void __user * arg)3285 static int force_delete_disk(struct aac_dev *dev, void __user *arg)
3286 {
3287 struct aac_delete_disk dd;
3288 struct fsa_dev_info *fsa_dev_ptr;
3289
3290 fsa_dev_ptr = dev->fsa_dev;
3291 if (!fsa_dev_ptr)
3292 return -EBUSY;
3293
3294 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
3295 return -EFAULT;
3296
3297 if (dd.cnum >= dev->maximum_num_containers)
3298 return -EINVAL;
3299 /*
3300 * Mark this container as being deleted.
3301 */
3302 fsa_dev_ptr[dd.cnum].deleted = 1;
3303 /*
3304 * Mark the container as no longer valid
3305 */
3306 fsa_dev_ptr[dd.cnum].valid = 0;
3307 return 0;
3308 }
3309
delete_disk(struct aac_dev * dev,void __user * arg)3310 static int delete_disk(struct aac_dev *dev, void __user *arg)
3311 {
3312 struct aac_delete_disk dd;
3313 struct fsa_dev_info *fsa_dev_ptr;
3314
3315 fsa_dev_ptr = dev->fsa_dev;
3316 if (!fsa_dev_ptr)
3317 return -EBUSY;
3318
3319 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
3320 return -EFAULT;
3321
3322 if (dd.cnum >= dev->maximum_num_containers)
3323 return -EINVAL;
3324 /*
3325 * If the container is locked, it can not be deleted by the API.
3326 */
3327 if (fsa_dev_ptr[dd.cnum].locked)
3328 return -EBUSY;
3329 else {
3330 /*
3331 * Mark the container as no longer being valid.
3332 */
3333 fsa_dev_ptr[dd.cnum].valid = 0;
3334 fsa_dev_ptr[dd.cnum].devname[0] = '\0';
3335 return 0;
3336 }
3337 }
3338
aac_dev_ioctl(struct aac_dev * dev,unsigned int cmd,void __user * arg)3339 int aac_dev_ioctl(struct aac_dev *dev, unsigned int cmd, void __user *arg)
3340 {
3341 switch (cmd) {
3342 case FSACTL_QUERY_DISK:
3343 return query_disk(dev, arg);
3344 case FSACTL_DELETE_DISK:
3345 return delete_disk(dev, arg);
3346 case FSACTL_FORCE_DELETE_DISK:
3347 return force_delete_disk(dev, arg);
3348 case FSACTL_GET_CONTAINERS:
3349 return aac_get_containers(dev);
3350 default:
3351 return -ENOTTY;
3352 }
3353 }
3354
3355 /**
3356 * aac_srb_callback
3357 * @context: the context set in the fib - here it is scsi cmd
3358 * @fibptr: pointer to the fib
3359 *
3360 * Handles the completion of a scsi command to a non dasd device
3361 */
aac_srb_callback(void * context,struct fib * fibptr)3362 static void aac_srb_callback(void *context, struct fib * fibptr)
3363 {
3364 struct aac_srb_reply *srbreply;
3365 struct scsi_cmnd *scsicmd;
3366
3367 scsicmd = (struct scsi_cmnd *) context;
3368
3369 if (!aac_valid_context(scsicmd, fibptr))
3370 return;
3371
3372 BUG_ON(fibptr == NULL);
3373
3374 srbreply = (struct aac_srb_reply *) fib_data(fibptr);
3375
3376 scsicmd->sense_buffer[0] = '\0'; /* Initialize sense valid flag to false */
3377
3378 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) {
3379 /* fast response */
3380 srbreply->srb_status = cpu_to_le32(SRB_STATUS_SUCCESS);
3381 srbreply->scsi_status = cpu_to_le32(SAM_STAT_GOOD);
3382 } else {
3383 /*
3384 * Calculate resid for sg
3385 */
3386 scsi_set_resid(scsicmd, scsi_bufflen(scsicmd)
3387 - le32_to_cpu(srbreply->data_xfer_length));
3388 }
3389
3390
3391 scsi_dma_unmap(scsicmd);
3392
3393 /* expose physical device if expose_physicald flag is on */
3394 if (scsicmd->cmnd[0] == INQUIRY && !(scsicmd->cmnd[1] & 0x01)
3395 && expose_physicals > 0)
3396 aac_expose_phy_device(scsicmd);
3397
3398 /*
3399 * First check the fib status
3400 */
3401
3402 if (le32_to_cpu(srbreply->status) != ST_OK) {
3403 int len;
3404
3405 pr_warn("aac_srb_callback: srb failed, status = %d\n",
3406 le32_to_cpu(srbreply->status));
3407 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
3408 SCSI_SENSE_BUFFERSIZE);
3409 scsicmd->result = DID_ERROR << 16 | SAM_STAT_CHECK_CONDITION;
3410 memcpy(scsicmd->sense_buffer,
3411 srbreply->sense_data, len);
3412 }
3413
3414 /*
3415 * Next check the srb status
3416 */
3417 switch ((le32_to_cpu(srbreply->srb_status))&0x3f) {
3418 case SRB_STATUS_ERROR_RECOVERY:
3419 case SRB_STATUS_PENDING:
3420 case SRB_STATUS_SUCCESS:
3421 scsicmd->result = DID_OK << 16;
3422 break;
3423 case SRB_STATUS_DATA_OVERRUN:
3424 switch (scsicmd->cmnd[0]) {
3425 case READ_6:
3426 case WRITE_6:
3427 case READ_10:
3428 case WRITE_10:
3429 case READ_12:
3430 case WRITE_12:
3431 case READ_16:
3432 case WRITE_16:
3433 if (le32_to_cpu(srbreply->data_xfer_length)
3434 < scsicmd->underflow)
3435 pr_warn("aacraid: SCSI CMD underflow\n");
3436 else
3437 pr_warn("aacraid: SCSI CMD Data Overrun\n");
3438 scsicmd->result = DID_ERROR << 16;
3439 break;
3440 case INQUIRY:
3441 scsicmd->result = DID_OK << 16;
3442 break;
3443 default:
3444 scsicmd->result = DID_OK << 16;
3445 break;
3446 }
3447 break;
3448 case SRB_STATUS_ABORTED:
3449 scsicmd->result = DID_ABORT << 16;
3450 break;
3451 case SRB_STATUS_ABORT_FAILED:
3452 /*
3453 * Not sure about this one - but assuming the
3454 * hba was trying to abort for some reason
3455 */
3456 scsicmd->result = DID_ERROR << 16;
3457 break;
3458 case SRB_STATUS_PARITY_ERROR:
3459 scsicmd->result = DID_PARITY << 16;
3460 break;
3461 case SRB_STATUS_NO_DEVICE:
3462 case SRB_STATUS_INVALID_PATH_ID:
3463 case SRB_STATUS_INVALID_TARGET_ID:
3464 case SRB_STATUS_INVALID_LUN:
3465 case SRB_STATUS_SELECTION_TIMEOUT:
3466 scsicmd->result = DID_NO_CONNECT << 16;
3467 break;
3468
3469 case SRB_STATUS_COMMAND_TIMEOUT:
3470 case SRB_STATUS_TIMEOUT:
3471 scsicmd->result = DID_TIME_OUT << 16;
3472 break;
3473
3474 case SRB_STATUS_BUSY:
3475 scsicmd->result = DID_BUS_BUSY << 16;
3476 break;
3477
3478 case SRB_STATUS_BUS_RESET:
3479 scsicmd->result = DID_RESET << 16;
3480 break;
3481
3482 case SRB_STATUS_MESSAGE_REJECTED:
3483 scsicmd->result = DID_ERROR << 16;
3484 break;
3485 case SRB_STATUS_REQUEST_FLUSHED:
3486 case SRB_STATUS_ERROR:
3487 case SRB_STATUS_INVALID_REQUEST:
3488 case SRB_STATUS_REQUEST_SENSE_FAILED:
3489 case SRB_STATUS_NO_HBA:
3490 case SRB_STATUS_UNEXPECTED_BUS_FREE:
3491 case SRB_STATUS_PHASE_SEQUENCE_FAILURE:
3492 case SRB_STATUS_BAD_SRB_BLOCK_LENGTH:
3493 case SRB_STATUS_DELAYED_RETRY:
3494 case SRB_STATUS_BAD_FUNCTION:
3495 case SRB_STATUS_NOT_STARTED:
3496 case SRB_STATUS_NOT_IN_USE:
3497 case SRB_STATUS_FORCE_ABORT:
3498 case SRB_STATUS_DOMAIN_VALIDATION_FAIL:
3499 default:
3500 #ifdef AAC_DETAILED_STATUS_INFO
3501 pr_info("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x -scsi status 0x%x\n",
3502 le32_to_cpu(srbreply->srb_status) & 0x3F,
3503 aac_get_status_string(
3504 le32_to_cpu(srbreply->srb_status) & 0x3F),
3505 scsicmd->cmnd[0],
3506 le32_to_cpu(srbreply->scsi_status));
3507 #endif
3508 /*
3509 * When the CC bit is SET by the host in ATA pass thru CDB,
3510 * driver is supposed to return DID_OK
3511 *
3512 * When the CC bit is RESET by the host, driver should
3513 * return DID_ERROR
3514 */
3515 if ((scsicmd->cmnd[0] == ATA_12)
3516 || (scsicmd->cmnd[0] == ATA_16)) {
3517
3518 if (scsicmd->cmnd[2] & (0x01 << 5)) {
3519 scsicmd->result = DID_OK << 16;
3520 } else {
3521 scsicmd->result = DID_ERROR << 16;
3522 }
3523 } else {
3524 scsicmd->result = DID_ERROR << 16;
3525 }
3526 break;
3527 }
3528 if (le32_to_cpu(srbreply->scsi_status)
3529 == SAM_STAT_CHECK_CONDITION) {
3530 int len;
3531
3532 scsicmd->result |= SAM_STAT_CHECK_CONDITION;
3533 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
3534 SCSI_SENSE_BUFFERSIZE);
3535 #ifdef AAC_DETAILED_STATUS_INFO
3536 pr_warn("aac_srb_callback: check condition, status = %d len=%d\n",
3537 le32_to_cpu(srbreply->status), len);
3538 #endif
3539 memcpy(scsicmd->sense_buffer,
3540 srbreply->sense_data, len);
3541 }
3542
3543 /*
3544 * OR in the scsi status (already shifted up a bit)
3545 */
3546 scsicmd->result |= le32_to_cpu(srbreply->scsi_status);
3547
3548 aac_fib_complete(fibptr);
3549 scsicmd->scsi_done(scsicmd);
3550 }
3551
hba_resp_task_complete(struct aac_dev * dev,struct scsi_cmnd * scsicmd,struct aac_hba_resp * err)3552 static void hba_resp_task_complete(struct aac_dev *dev,
3553 struct scsi_cmnd *scsicmd,
3554 struct aac_hba_resp *err) {
3555
3556 scsicmd->result = err->status;
3557 /* set residual count */
3558 scsi_set_resid(scsicmd, le32_to_cpu(err->residual_count));
3559
3560 switch (err->status) {
3561 case SAM_STAT_GOOD:
3562 scsicmd->result |= DID_OK << 16;
3563 break;
3564 case SAM_STAT_CHECK_CONDITION:
3565 {
3566 int len;
3567
3568 len = min_t(u8, err->sense_response_data_len,
3569 SCSI_SENSE_BUFFERSIZE);
3570 if (len)
3571 memcpy(scsicmd->sense_buffer,
3572 err->sense_response_buf, len);
3573 scsicmd->result |= DID_OK << 16;
3574 break;
3575 }
3576 case SAM_STAT_BUSY:
3577 scsicmd->result |= DID_BUS_BUSY << 16;
3578 break;
3579 case SAM_STAT_TASK_ABORTED:
3580 scsicmd->result |= DID_ABORT << 16;
3581 break;
3582 case SAM_STAT_RESERVATION_CONFLICT:
3583 case SAM_STAT_TASK_SET_FULL:
3584 default:
3585 scsicmd->result |= DID_ERROR << 16;
3586 break;
3587 }
3588 }
3589
hba_resp_task_failure(struct aac_dev * dev,struct scsi_cmnd * scsicmd,struct aac_hba_resp * err)3590 static void hba_resp_task_failure(struct aac_dev *dev,
3591 struct scsi_cmnd *scsicmd,
3592 struct aac_hba_resp *err)
3593 {
3594 switch (err->status) {
3595 case HBA_RESP_STAT_HBAMODE_DISABLED:
3596 {
3597 u32 bus, cid;
3598
3599 bus = aac_logical_to_phys(scmd_channel(scsicmd));
3600 cid = scmd_id(scsicmd);
3601 if (dev->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) {
3602 dev->hba_map[bus][cid].devtype = AAC_DEVTYPE_ARC_RAW;
3603 dev->hba_map[bus][cid].rmw_nexus = 0xffffffff;
3604 }
3605 scsicmd->result = DID_NO_CONNECT << 16;
3606 break;
3607 }
3608 case HBA_RESP_STAT_IO_ERROR:
3609 case HBA_RESP_STAT_NO_PATH_TO_DEVICE:
3610 scsicmd->result = DID_OK << 16 | SAM_STAT_BUSY;
3611 break;
3612 case HBA_RESP_STAT_IO_ABORTED:
3613 scsicmd->result = DID_ABORT << 16;
3614 break;
3615 case HBA_RESP_STAT_INVALID_DEVICE:
3616 scsicmd->result = DID_NO_CONNECT << 16;
3617 break;
3618 case HBA_RESP_STAT_UNDERRUN:
3619 /* UNDERRUN is OK */
3620 scsicmd->result = DID_OK << 16;
3621 break;
3622 case HBA_RESP_STAT_OVERRUN:
3623 default:
3624 scsicmd->result = DID_ERROR << 16;
3625 break;
3626 }
3627 }
3628
3629 /**
3630 * aac_hba_callback
3631 * @context: the context set in the fib - here it is scsi cmd
3632 * @fibptr: pointer to the fib
3633 *
3634 * Handles the completion of a native HBA scsi command
3635 */
aac_hba_callback(void * context,struct fib * fibptr)3636 void aac_hba_callback(void *context, struct fib *fibptr)
3637 {
3638 struct aac_dev *dev;
3639 struct scsi_cmnd *scsicmd;
3640
3641 struct aac_hba_resp *err =
3642 &((struct aac_native_hba *)fibptr->hw_fib_va)->resp.err;
3643
3644 scsicmd = (struct scsi_cmnd *) context;
3645
3646 if (!aac_valid_context(scsicmd, fibptr))
3647 return;
3648
3649 WARN_ON(fibptr == NULL);
3650 dev = fibptr->dev;
3651
3652 if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF))
3653 scsi_dma_unmap(scsicmd);
3654
3655 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) {
3656 /* fast response */
3657 scsicmd->result = DID_OK << 16;
3658 goto out;
3659 }
3660
3661 switch (err->service_response) {
3662 case HBA_RESP_SVCRES_TASK_COMPLETE:
3663 hba_resp_task_complete(dev, scsicmd, err);
3664 break;
3665 case HBA_RESP_SVCRES_FAILURE:
3666 hba_resp_task_failure(dev, scsicmd, err);
3667 break;
3668 case HBA_RESP_SVCRES_TMF_REJECTED:
3669 scsicmd->result = DID_ERROR << 16;
3670 break;
3671 case HBA_RESP_SVCRES_TMF_LUN_INVALID:
3672 scsicmd->result = DID_NO_CONNECT << 16;
3673 break;
3674 case HBA_RESP_SVCRES_TMF_COMPLETE:
3675 case HBA_RESP_SVCRES_TMF_SUCCEEDED:
3676 scsicmd->result = DID_OK << 16;
3677 break;
3678 default:
3679 scsicmd->result = DID_ERROR << 16;
3680 break;
3681 }
3682
3683 out:
3684 aac_fib_complete(fibptr);
3685
3686 if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF)
3687 scsicmd->SCp.sent_command = 1;
3688 else
3689 scsicmd->scsi_done(scsicmd);
3690 }
3691
3692 /**
3693 * aac_send_srb_fib
3694 * @scsicmd: the scsi command block
3695 *
3696 * This routine will form a FIB and fill in the aac_srb from the
3697 * scsicmd passed in.
3698 */
aac_send_srb_fib(struct scsi_cmnd * scsicmd)3699 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
3700 {
3701 struct fib* cmd_fibcontext;
3702 struct aac_dev* dev;
3703 int status;
3704
3705 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
3706 if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
3707 scsicmd->device->lun > 7) {
3708 scsicmd->result = DID_NO_CONNECT << 16;
3709 scsicmd->scsi_done(scsicmd);
3710 return 0;
3711 }
3712
3713 /*
3714 * Allocate and initialize a Fib then setup a BlockWrite command
3715 */
3716 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
3717 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
3718 status = aac_adapter_scsi(cmd_fibcontext, scsicmd);
3719
3720 /*
3721 * Check that the command queued to the controller
3722 */
3723 if (status == -EINPROGRESS)
3724 return 0;
3725
3726 printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status);
3727 aac_fib_complete(cmd_fibcontext);
3728 aac_fib_free(cmd_fibcontext);
3729
3730 return -1;
3731 }
3732
3733 /**
3734 * aac_send_hba_fib
3735 * @scsicmd: the scsi command block
3736 *
3737 * This routine will form a FIB and fill in the aac_hba_cmd_req from the
3738 * scsicmd passed in.
3739 */
aac_send_hba_fib(struct scsi_cmnd * scsicmd)3740 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd)
3741 {
3742 struct fib *cmd_fibcontext;
3743 struct aac_dev *dev;
3744 int status;
3745
3746 dev = shost_priv(scsicmd->device->host);
3747 if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
3748 scsicmd->device->lun > AAC_MAX_LUN - 1) {
3749 scsicmd->result = DID_NO_CONNECT << 16;
3750 scsicmd->scsi_done(scsicmd);
3751 return 0;
3752 }
3753
3754 /*
3755 * Allocate and initialize a Fib then setup a BlockWrite command
3756 */
3757 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
3758 if (!cmd_fibcontext)
3759 return -1;
3760
3761 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
3762 status = aac_adapter_hba(cmd_fibcontext, scsicmd);
3763
3764 /*
3765 * Check that the command queued to the controller
3766 */
3767 if (status == -EINPROGRESS)
3768 return 0;
3769
3770 pr_warn("aac_hba_cmd_req: aac_fib_send failed with status: %d\n",
3771 status);
3772 aac_fib_complete(cmd_fibcontext);
3773 aac_fib_free(cmd_fibcontext);
3774
3775 return -1;
3776 }
3777
3778
aac_build_sg(struct scsi_cmnd * scsicmd,struct sgmap * psg)3779 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *psg)
3780 {
3781 unsigned long byte_count = 0;
3782 int nseg;
3783 struct scatterlist *sg;
3784 int i;
3785
3786 // Get rid of old data
3787 psg->count = 0;
3788 psg->sg[0].addr = 0;
3789 psg->sg[0].count = 0;
3790
3791 nseg = scsi_dma_map(scsicmd);
3792 if (nseg <= 0)
3793 return nseg;
3794
3795 psg->count = cpu_to_le32(nseg);
3796
3797 scsi_for_each_sg(scsicmd, sg, nseg, i) {
3798 psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
3799 psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
3800 byte_count += sg_dma_len(sg);
3801 }
3802 /* hba wants the size to be exact */
3803 if (byte_count > scsi_bufflen(scsicmd)) {
3804 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3805 (byte_count - scsi_bufflen(scsicmd));
3806 psg->sg[i-1].count = cpu_to_le32(temp);
3807 byte_count = scsi_bufflen(scsicmd);
3808 }
3809 /* Check for command underflow */
3810 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
3811 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3812 byte_count, scsicmd->underflow);
3813 }
3814
3815 return byte_count;
3816 }
3817
3818
aac_build_sg64(struct scsi_cmnd * scsicmd,struct sgmap64 * psg)3819 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg)
3820 {
3821 unsigned long byte_count = 0;
3822 u64 addr;
3823 int nseg;
3824 struct scatterlist *sg;
3825 int i;
3826
3827 // Get rid of old data
3828 psg->count = 0;
3829 psg->sg[0].addr[0] = 0;
3830 psg->sg[0].addr[1] = 0;
3831 psg->sg[0].count = 0;
3832
3833 nseg = scsi_dma_map(scsicmd);
3834 if (nseg <= 0)
3835 return nseg;
3836
3837 scsi_for_each_sg(scsicmd, sg, nseg, i) {
3838 int count = sg_dma_len(sg);
3839 addr = sg_dma_address(sg);
3840 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
3841 psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
3842 psg->sg[i].count = cpu_to_le32(count);
3843 byte_count += count;
3844 }
3845 psg->count = cpu_to_le32(nseg);
3846 /* hba wants the size to be exact */
3847 if (byte_count > scsi_bufflen(scsicmd)) {
3848 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3849 (byte_count - scsi_bufflen(scsicmd));
3850 psg->sg[i-1].count = cpu_to_le32(temp);
3851 byte_count = scsi_bufflen(scsicmd);
3852 }
3853 /* Check for command underflow */
3854 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
3855 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3856 byte_count, scsicmd->underflow);
3857 }
3858
3859 return byte_count;
3860 }
3861
aac_build_sgraw(struct scsi_cmnd * scsicmd,struct sgmapraw * psg)3862 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg)
3863 {
3864 unsigned long byte_count = 0;
3865 int nseg;
3866 struct scatterlist *sg;
3867 int i;
3868
3869 // Get rid of old data
3870 psg->count = 0;
3871 psg->sg[0].next = 0;
3872 psg->sg[0].prev = 0;
3873 psg->sg[0].addr[0] = 0;
3874 psg->sg[0].addr[1] = 0;
3875 psg->sg[0].count = 0;
3876 psg->sg[0].flags = 0;
3877
3878 nseg = scsi_dma_map(scsicmd);
3879 if (nseg <= 0)
3880 return nseg;
3881
3882 scsi_for_each_sg(scsicmd, sg, nseg, i) {
3883 int count = sg_dma_len(sg);
3884 u64 addr = sg_dma_address(sg);
3885 psg->sg[i].next = 0;
3886 psg->sg[i].prev = 0;
3887 psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32));
3888 psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
3889 psg->sg[i].count = cpu_to_le32(count);
3890 psg->sg[i].flags = 0;
3891 byte_count += count;
3892 }
3893 psg->count = cpu_to_le32(nseg);
3894 /* hba wants the size to be exact */
3895 if (byte_count > scsi_bufflen(scsicmd)) {
3896 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3897 (byte_count - scsi_bufflen(scsicmd));
3898 psg->sg[i-1].count = cpu_to_le32(temp);
3899 byte_count = scsi_bufflen(scsicmd);
3900 }
3901 /* Check for command underflow */
3902 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
3903 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3904 byte_count, scsicmd->underflow);
3905 }
3906
3907 return byte_count;
3908 }
3909
aac_build_sgraw2(struct scsi_cmnd * scsicmd,struct aac_raw_io2 * rio2,int sg_max)3910 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd,
3911 struct aac_raw_io2 *rio2, int sg_max)
3912 {
3913 unsigned long byte_count = 0;
3914 int nseg;
3915 struct scatterlist *sg;
3916 int i, conformable = 0;
3917 u32 min_size = PAGE_SIZE, cur_size;
3918
3919 nseg = scsi_dma_map(scsicmd);
3920 if (nseg <= 0)
3921 return nseg;
3922
3923 scsi_for_each_sg(scsicmd, sg, nseg, i) {
3924 int count = sg_dma_len(sg);
3925 u64 addr = sg_dma_address(sg);
3926
3927 BUG_ON(i >= sg_max);
3928 rio2->sge[i].addrHigh = cpu_to_le32((u32)(addr>>32));
3929 rio2->sge[i].addrLow = cpu_to_le32((u32)(addr & 0xffffffff));
3930 cur_size = cpu_to_le32(count);
3931 rio2->sge[i].length = cur_size;
3932 rio2->sge[i].flags = 0;
3933 if (i == 0) {
3934 conformable = 1;
3935 rio2->sgeFirstSize = cur_size;
3936 } else if (i == 1) {
3937 rio2->sgeNominalSize = cur_size;
3938 min_size = cur_size;
3939 } else if ((i+1) < nseg && cur_size != rio2->sgeNominalSize) {
3940 conformable = 0;
3941 if (cur_size < min_size)
3942 min_size = cur_size;
3943 }
3944 byte_count += count;
3945 }
3946
3947 /* hba wants the size to be exact */
3948 if (byte_count > scsi_bufflen(scsicmd)) {
3949 u32 temp = le32_to_cpu(rio2->sge[i-1].length) -
3950 (byte_count - scsi_bufflen(scsicmd));
3951 rio2->sge[i-1].length = cpu_to_le32(temp);
3952 byte_count = scsi_bufflen(scsicmd);
3953 }
3954
3955 rio2->sgeCnt = cpu_to_le32(nseg);
3956 rio2->flags |= cpu_to_le16(RIO2_SG_FORMAT_IEEE1212);
3957 /* not conformable: evaluate required sg elements */
3958 if (!conformable) {
3959 int j, nseg_new = nseg, err_found;
3960 for (i = min_size / PAGE_SIZE; i >= 1; --i) {
3961 err_found = 0;
3962 nseg_new = 2;
3963 for (j = 1; j < nseg - 1; ++j) {
3964 if (rio2->sge[j].length % (i*PAGE_SIZE)) {
3965 err_found = 1;
3966 break;
3967 }
3968 nseg_new += (rio2->sge[j].length / (i*PAGE_SIZE));
3969 }
3970 if (!err_found)
3971 break;
3972 }
3973 if (i > 0 && nseg_new <= sg_max) {
3974 int ret = aac_convert_sgraw2(rio2, i, nseg, nseg_new);
3975
3976 if (ret < 0)
3977 return ret;
3978 }
3979 } else
3980 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT);
3981
3982 /* Check for command underflow */
3983 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
3984 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3985 byte_count, scsicmd->underflow);
3986 }
3987
3988 return byte_count;
3989 }
3990
aac_convert_sgraw2(struct aac_raw_io2 * rio2,int pages,int nseg,int nseg_new)3991 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, int pages, int nseg, int nseg_new)
3992 {
3993 struct sge_ieee1212 *sge;
3994 int i, j, pos;
3995 u32 addr_low;
3996
3997 if (aac_convert_sgl == 0)
3998 return 0;
3999
4000 sge = kmalloc_array(nseg_new, sizeof(*sge), GFP_ATOMIC);
4001 if (sge == NULL)
4002 return -ENOMEM;
4003
4004 for (i = 1, pos = 1; i < nseg-1; ++i) {
4005 for (j = 0; j < rio2->sge[i].length / (pages * PAGE_SIZE); ++j) {
4006 addr_low = rio2->sge[i].addrLow + j * pages * PAGE_SIZE;
4007 sge[pos].addrLow = addr_low;
4008 sge[pos].addrHigh = rio2->sge[i].addrHigh;
4009 if (addr_low < rio2->sge[i].addrLow)
4010 sge[pos].addrHigh++;
4011 sge[pos].length = pages * PAGE_SIZE;
4012 sge[pos].flags = 0;
4013 pos++;
4014 }
4015 }
4016 sge[pos] = rio2->sge[nseg-1];
4017 memcpy(&rio2->sge[1], &sge[1], (nseg_new-1)*sizeof(struct sge_ieee1212));
4018
4019 kfree(sge);
4020 rio2->sgeCnt = cpu_to_le32(nseg_new);
4021 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT);
4022 rio2->sgeNominalSize = pages * PAGE_SIZE;
4023 return 0;
4024 }
4025
aac_build_sghba(struct scsi_cmnd * scsicmd,struct aac_hba_cmd_req * hbacmd,int sg_max,u64 sg_address)4026 static long aac_build_sghba(struct scsi_cmnd *scsicmd,
4027 struct aac_hba_cmd_req *hbacmd,
4028 int sg_max,
4029 u64 sg_address)
4030 {
4031 unsigned long byte_count = 0;
4032 int nseg;
4033 struct scatterlist *sg;
4034 int i;
4035 u32 cur_size;
4036 struct aac_hba_sgl *sge;
4037
4038 nseg = scsi_dma_map(scsicmd);
4039 if (nseg <= 0) {
4040 byte_count = nseg;
4041 goto out;
4042 }
4043
4044 if (nseg > HBA_MAX_SG_EMBEDDED)
4045 sge = &hbacmd->sge[2];
4046 else
4047 sge = &hbacmd->sge[0];
4048
4049 scsi_for_each_sg(scsicmd, sg, nseg, i) {
4050 int count = sg_dma_len(sg);
4051 u64 addr = sg_dma_address(sg);
4052
4053 WARN_ON(i >= sg_max);
4054 sge->addr_hi = cpu_to_le32((u32)(addr>>32));
4055 sge->addr_lo = cpu_to_le32((u32)(addr & 0xffffffff));
4056 cur_size = cpu_to_le32(count);
4057 sge->len = cur_size;
4058 sge->flags = 0;
4059 byte_count += count;
4060 sge++;
4061 }
4062
4063 sge--;
4064 /* hba wants the size to be exact */
4065 if (byte_count > scsi_bufflen(scsicmd)) {
4066 u32 temp;
4067
4068 temp = le32_to_cpu(sge->len) - byte_count
4069 - scsi_bufflen(scsicmd);
4070 sge->len = cpu_to_le32(temp);
4071 byte_count = scsi_bufflen(scsicmd);
4072 }
4073
4074 if (nseg <= HBA_MAX_SG_EMBEDDED) {
4075 hbacmd->emb_data_desc_count = cpu_to_le32(nseg);
4076 sge->flags = cpu_to_le32(0x40000000);
4077 } else {
4078 /* not embedded */
4079 hbacmd->sge[0].flags = cpu_to_le32(0x80000000);
4080 hbacmd->emb_data_desc_count = (u8)cpu_to_le32(1);
4081 hbacmd->sge[0].addr_hi = (u32)cpu_to_le32(sg_address >> 32);
4082 hbacmd->sge[0].addr_lo =
4083 cpu_to_le32((u32)(sg_address & 0xffffffff));
4084 }
4085
4086 /* Check for command underflow */
4087 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
4088 pr_warn("aacraid: cmd len %08lX cmd underflow %08X\n",
4089 byte_count, scsicmd->underflow);
4090 }
4091 out:
4092 return byte_count;
4093 }
4094
4095 #ifdef AAC_DETAILED_STATUS_INFO
4096
4097 struct aac_srb_status_info {
4098 u32 status;
4099 char *str;
4100 };
4101
4102
4103 static struct aac_srb_status_info srb_status_info[] = {
4104 { SRB_STATUS_PENDING, "Pending Status"},
4105 { SRB_STATUS_SUCCESS, "Success"},
4106 { SRB_STATUS_ABORTED, "Aborted Command"},
4107 { SRB_STATUS_ABORT_FAILED, "Abort Failed"},
4108 { SRB_STATUS_ERROR, "Error Event"},
4109 { SRB_STATUS_BUSY, "Device Busy"},
4110 { SRB_STATUS_INVALID_REQUEST, "Invalid Request"},
4111 { SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"},
4112 { SRB_STATUS_NO_DEVICE, "No Device"},
4113 { SRB_STATUS_TIMEOUT, "Timeout"},
4114 { SRB_STATUS_SELECTION_TIMEOUT, "Selection Timeout"},
4115 { SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"},
4116 { SRB_STATUS_MESSAGE_REJECTED, "Message Rejected"},
4117 { SRB_STATUS_BUS_RESET, "Bus Reset"},
4118 { SRB_STATUS_PARITY_ERROR, "Parity Error"},
4119 { SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
4120 { SRB_STATUS_NO_HBA, "No HBA"},
4121 { SRB_STATUS_DATA_OVERRUN, "Data Overrun/Data Underrun"},
4122 { SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
4123 { SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
4124 { SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
4125 { SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"},
4126 { SRB_STATUS_DELAYED_RETRY, "Delayed Retry"},
4127 { SRB_STATUS_INVALID_LUN, "Invalid LUN"},
4128 { SRB_STATUS_INVALID_TARGET_ID, "Invalid TARGET ID"},
4129 { SRB_STATUS_BAD_FUNCTION, "Bad Function"},
4130 { SRB_STATUS_ERROR_RECOVERY, "Error Recovery"},
4131 { SRB_STATUS_NOT_STARTED, "Not Started"},
4132 { SRB_STATUS_NOT_IN_USE, "Not In Use"},
4133 { SRB_STATUS_FORCE_ABORT, "Force Abort"},
4134 { SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
4135 { 0xff, "Unknown Error"}
4136 };
4137
aac_get_status_string(u32 status)4138 char *aac_get_status_string(u32 status)
4139 {
4140 int i;
4141
4142 for (i = 0; i < ARRAY_SIZE(srb_status_info); i++)
4143 if (srb_status_info[i].status == status)
4144 return srb_status_info[i].str;
4145
4146 return "Bad Status Code";
4147 }
4148
4149 #endif
4150