1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Driver for Renesas R-Car MIPI CSI-2 Receiver
4 *
5 * Copyright (C) 2018 Renesas Electronics Corp.
6 */
7
8 #include <linux/delay.h>
9 #include <linux/interrupt.h>
10 #include <linux/io.h>
11 #include <linux/module.h>
12 #include <linux/of.h>
13 #include <linux/of_device.h>
14 #include <linux/of_graph.h>
15 #include <linux/platform_device.h>
16 #include <linux/pm_runtime.h>
17 #include <linux/reset.h>
18 #include <linux/sys_soc.h>
19
20 #include <media/v4l2-ctrls.h>
21 #include <media/v4l2-device.h>
22 #include <media/v4l2-fwnode.h>
23 #include <media/v4l2-mc.h>
24 #include <media/v4l2-subdev.h>
25
26 struct rcar_csi2;
27
28 /* Register offsets and bits */
29
30 /* Control Timing Select */
31 #define TREF_REG 0x00
32 #define TREF_TREF BIT(0)
33
34 /* Software Reset */
35 #define SRST_REG 0x04
36 #define SRST_SRST BIT(0)
37
38 /* PHY Operation Control */
39 #define PHYCNT_REG 0x08
40 #define PHYCNT_SHUTDOWNZ BIT(17)
41 #define PHYCNT_RSTZ BIT(16)
42 #define PHYCNT_ENABLECLK BIT(4)
43 #define PHYCNT_ENABLE_3 BIT(3)
44 #define PHYCNT_ENABLE_2 BIT(2)
45 #define PHYCNT_ENABLE_1 BIT(1)
46 #define PHYCNT_ENABLE_0 BIT(0)
47
48 /* Checksum Control */
49 #define CHKSUM_REG 0x0c
50 #define CHKSUM_ECC_EN BIT(1)
51 #define CHKSUM_CRC_EN BIT(0)
52
53 /*
54 * Channel Data Type Select
55 * VCDT[0-15]: Channel 0 VCDT[16-31]: Channel 1
56 * VCDT2[0-15]: Channel 2 VCDT2[16-31]: Channel 3
57 */
58 #define VCDT_REG 0x10
59 #define VCDT2_REG 0x14
60 #define VCDT_VCDTN_EN BIT(15)
61 #define VCDT_SEL_VC(n) (((n) & 0x3) << 8)
62 #define VCDT_SEL_DTN_ON BIT(6)
63 #define VCDT_SEL_DT(n) (((n) & 0x3f) << 0)
64
65 /* Frame Data Type Select */
66 #define FRDT_REG 0x18
67
68 /* Field Detection Control */
69 #define FLD_REG 0x1c
70 #define FLD_FLD_NUM(n) (((n) & 0xff) << 16)
71 #define FLD_DET_SEL(n) (((n) & 0x3) << 4)
72 #define FLD_FLD_EN4 BIT(3)
73 #define FLD_FLD_EN3 BIT(2)
74 #define FLD_FLD_EN2 BIT(1)
75 #define FLD_FLD_EN BIT(0)
76
77 /* Automatic Standby Control */
78 #define ASTBY_REG 0x20
79
80 /* Long Data Type Setting 0 */
81 #define LNGDT0_REG 0x28
82
83 /* Long Data Type Setting 1 */
84 #define LNGDT1_REG 0x2c
85
86 /* Interrupt Enable */
87 #define INTEN_REG 0x30
88 #define INTEN_INT_AFIFO_OF BIT(27)
89 #define INTEN_INT_ERRSOTHS BIT(4)
90 #define INTEN_INT_ERRSOTSYNCHS BIT(3)
91
92 /* Interrupt Source Mask */
93 #define INTCLOSE_REG 0x34
94
95 /* Interrupt Status Monitor */
96 #define INTSTATE_REG 0x38
97 #define INTSTATE_INT_ULPS_START BIT(7)
98 #define INTSTATE_INT_ULPS_END BIT(6)
99
100 /* Interrupt Error Status Monitor */
101 #define INTERRSTATE_REG 0x3c
102
103 /* Short Packet Data */
104 #define SHPDAT_REG 0x40
105
106 /* Short Packet Count */
107 #define SHPCNT_REG 0x44
108
109 /* LINK Operation Control */
110 #define LINKCNT_REG 0x48
111 #define LINKCNT_MONITOR_EN BIT(31)
112 #define LINKCNT_REG_MONI_PACT_EN BIT(25)
113 #define LINKCNT_ICLK_NONSTOP BIT(24)
114
115 /* Lane Swap */
116 #define LSWAP_REG 0x4c
117 #define LSWAP_L3SEL(n) (((n) & 0x3) << 6)
118 #define LSWAP_L2SEL(n) (((n) & 0x3) << 4)
119 #define LSWAP_L1SEL(n) (((n) & 0x3) << 2)
120 #define LSWAP_L0SEL(n) (((n) & 0x3) << 0)
121
122 /* PHY Test Interface Write Register */
123 #define PHTW_REG 0x50
124 #define PHTW_DWEN BIT(24)
125 #define PHTW_TESTDIN_DATA(n) (((n & 0xff)) << 16)
126 #define PHTW_CWEN BIT(8)
127 #define PHTW_TESTDIN_CODE(n) ((n & 0xff))
128
129 struct phtw_value {
130 u16 data;
131 u16 code;
132 };
133
134 struct rcsi2_mbps_reg {
135 u16 mbps;
136 u16 reg;
137 };
138
139 static const struct rcsi2_mbps_reg phtw_mbps_h3_v3h_m3n[] = {
140 { .mbps = 80, .reg = 0x86 },
141 { .mbps = 90, .reg = 0x86 },
142 { .mbps = 100, .reg = 0x87 },
143 { .mbps = 110, .reg = 0x87 },
144 { .mbps = 120, .reg = 0x88 },
145 { .mbps = 130, .reg = 0x88 },
146 { .mbps = 140, .reg = 0x89 },
147 { .mbps = 150, .reg = 0x89 },
148 { .mbps = 160, .reg = 0x8a },
149 { .mbps = 170, .reg = 0x8a },
150 { .mbps = 180, .reg = 0x8b },
151 { .mbps = 190, .reg = 0x8b },
152 { .mbps = 205, .reg = 0x8c },
153 { .mbps = 220, .reg = 0x8d },
154 { .mbps = 235, .reg = 0x8e },
155 { .mbps = 250, .reg = 0x8e },
156 { /* sentinel */ },
157 };
158
159 static const struct rcsi2_mbps_reg phtw_mbps_v3m_e3[] = {
160 { .mbps = 80, .reg = 0x00 },
161 { .mbps = 90, .reg = 0x20 },
162 { .mbps = 100, .reg = 0x40 },
163 { .mbps = 110, .reg = 0x02 },
164 { .mbps = 130, .reg = 0x22 },
165 { .mbps = 140, .reg = 0x42 },
166 { .mbps = 150, .reg = 0x04 },
167 { .mbps = 170, .reg = 0x24 },
168 { .mbps = 180, .reg = 0x44 },
169 { .mbps = 200, .reg = 0x06 },
170 { .mbps = 220, .reg = 0x26 },
171 { .mbps = 240, .reg = 0x46 },
172 { .mbps = 250, .reg = 0x08 },
173 { .mbps = 270, .reg = 0x28 },
174 { .mbps = 300, .reg = 0x0a },
175 { .mbps = 330, .reg = 0x2a },
176 { .mbps = 360, .reg = 0x4a },
177 { .mbps = 400, .reg = 0x0c },
178 { .mbps = 450, .reg = 0x2c },
179 { .mbps = 500, .reg = 0x0e },
180 { .mbps = 550, .reg = 0x2e },
181 { .mbps = 600, .reg = 0x10 },
182 { .mbps = 650, .reg = 0x30 },
183 { .mbps = 700, .reg = 0x12 },
184 { .mbps = 750, .reg = 0x32 },
185 { .mbps = 800, .reg = 0x52 },
186 { .mbps = 850, .reg = 0x72 },
187 { .mbps = 900, .reg = 0x14 },
188 { .mbps = 950, .reg = 0x34 },
189 { .mbps = 1000, .reg = 0x54 },
190 { .mbps = 1050, .reg = 0x74 },
191 { .mbps = 1125, .reg = 0x16 },
192 { /* sentinel */ },
193 };
194
195 /* PHY Test Interface Clear */
196 #define PHTC_REG 0x58
197 #define PHTC_TESTCLR BIT(0)
198
199 /* PHY Frequency Control */
200 #define PHYPLL_REG 0x68
201 #define PHYPLL_HSFREQRANGE(n) ((n) << 16)
202
203 static const struct rcsi2_mbps_reg hsfreqrange_h3_v3h_m3n[] = {
204 { .mbps = 80, .reg = 0x00 },
205 { .mbps = 90, .reg = 0x10 },
206 { .mbps = 100, .reg = 0x20 },
207 { .mbps = 110, .reg = 0x30 },
208 { .mbps = 120, .reg = 0x01 },
209 { .mbps = 130, .reg = 0x11 },
210 { .mbps = 140, .reg = 0x21 },
211 { .mbps = 150, .reg = 0x31 },
212 { .mbps = 160, .reg = 0x02 },
213 { .mbps = 170, .reg = 0x12 },
214 { .mbps = 180, .reg = 0x22 },
215 { .mbps = 190, .reg = 0x32 },
216 { .mbps = 205, .reg = 0x03 },
217 { .mbps = 220, .reg = 0x13 },
218 { .mbps = 235, .reg = 0x23 },
219 { .mbps = 250, .reg = 0x33 },
220 { .mbps = 275, .reg = 0x04 },
221 { .mbps = 300, .reg = 0x14 },
222 { .mbps = 325, .reg = 0x25 },
223 { .mbps = 350, .reg = 0x35 },
224 { .mbps = 400, .reg = 0x05 },
225 { .mbps = 450, .reg = 0x16 },
226 { .mbps = 500, .reg = 0x26 },
227 { .mbps = 550, .reg = 0x37 },
228 { .mbps = 600, .reg = 0x07 },
229 { .mbps = 650, .reg = 0x18 },
230 { .mbps = 700, .reg = 0x28 },
231 { .mbps = 750, .reg = 0x39 },
232 { .mbps = 800, .reg = 0x09 },
233 { .mbps = 850, .reg = 0x19 },
234 { .mbps = 900, .reg = 0x29 },
235 { .mbps = 950, .reg = 0x3a },
236 { .mbps = 1000, .reg = 0x0a },
237 { .mbps = 1050, .reg = 0x1a },
238 { .mbps = 1100, .reg = 0x2a },
239 { .mbps = 1150, .reg = 0x3b },
240 { .mbps = 1200, .reg = 0x0b },
241 { .mbps = 1250, .reg = 0x1b },
242 { .mbps = 1300, .reg = 0x2b },
243 { .mbps = 1350, .reg = 0x3c },
244 { .mbps = 1400, .reg = 0x0c },
245 { .mbps = 1450, .reg = 0x1c },
246 { .mbps = 1500, .reg = 0x2c },
247 { /* sentinel */ },
248 };
249
250 static const struct rcsi2_mbps_reg hsfreqrange_m3w_h3es1[] = {
251 { .mbps = 80, .reg = 0x00 },
252 { .mbps = 90, .reg = 0x10 },
253 { .mbps = 100, .reg = 0x20 },
254 { .mbps = 110, .reg = 0x30 },
255 { .mbps = 120, .reg = 0x01 },
256 { .mbps = 130, .reg = 0x11 },
257 { .mbps = 140, .reg = 0x21 },
258 { .mbps = 150, .reg = 0x31 },
259 { .mbps = 160, .reg = 0x02 },
260 { .mbps = 170, .reg = 0x12 },
261 { .mbps = 180, .reg = 0x22 },
262 { .mbps = 190, .reg = 0x32 },
263 { .mbps = 205, .reg = 0x03 },
264 { .mbps = 220, .reg = 0x13 },
265 { .mbps = 235, .reg = 0x23 },
266 { .mbps = 250, .reg = 0x33 },
267 { .mbps = 275, .reg = 0x04 },
268 { .mbps = 300, .reg = 0x14 },
269 { .mbps = 325, .reg = 0x05 },
270 { .mbps = 350, .reg = 0x15 },
271 { .mbps = 400, .reg = 0x25 },
272 { .mbps = 450, .reg = 0x06 },
273 { .mbps = 500, .reg = 0x16 },
274 { .mbps = 550, .reg = 0x07 },
275 { .mbps = 600, .reg = 0x17 },
276 { .mbps = 650, .reg = 0x08 },
277 { .mbps = 700, .reg = 0x18 },
278 { .mbps = 750, .reg = 0x09 },
279 { .mbps = 800, .reg = 0x19 },
280 { .mbps = 850, .reg = 0x29 },
281 { .mbps = 900, .reg = 0x39 },
282 { .mbps = 950, .reg = 0x0a },
283 { .mbps = 1000, .reg = 0x1a },
284 { .mbps = 1050, .reg = 0x2a },
285 { .mbps = 1100, .reg = 0x3a },
286 { .mbps = 1150, .reg = 0x0b },
287 { .mbps = 1200, .reg = 0x1b },
288 { .mbps = 1250, .reg = 0x2b },
289 { .mbps = 1300, .reg = 0x3b },
290 { .mbps = 1350, .reg = 0x0c },
291 { .mbps = 1400, .reg = 0x1c },
292 { .mbps = 1450, .reg = 0x2c },
293 { .mbps = 1500, .reg = 0x3c },
294 { /* sentinel */ },
295 };
296
297 /* PHY ESC Error Monitor */
298 #define PHEERM_REG 0x74
299
300 /* PHY Clock Lane Monitor */
301 #define PHCLM_REG 0x78
302 #define PHCLM_STOPSTATECKL BIT(0)
303
304 /* PHY Data Lane Monitor */
305 #define PHDLM_REG 0x7c
306
307 /* CSI0CLK Frequency Configuration Preset Register */
308 #define CSI0CLKFCPR_REG 0x260
309 #define CSI0CLKFREQRANGE(n) ((n & 0x3f) << 16)
310
311 struct rcar_csi2_format {
312 u32 code;
313 unsigned int datatype;
314 unsigned int bpp;
315 };
316
317 static const struct rcar_csi2_format rcar_csi2_formats[] = {
318 { .code = MEDIA_BUS_FMT_RGB888_1X24, .datatype = 0x24, .bpp = 24 },
319 { .code = MEDIA_BUS_FMT_UYVY8_1X16, .datatype = 0x1e, .bpp = 16 },
320 { .code = MEDIA_BUS_FMT_YUYV8_1X16, .datatype = 0x1e, .bpp = 16 },
321 { .code = MEDIA_BUS_FMT_UYVY8_2X8, .datatype = 0x1e, .bpp = 16 },
322 { .code = MEDIA_BUS_FMT_YUYV10_2X10, .datatype = 0x1e, .bpp = 20 },
323 { .code = MEDIA_BUS_FMT_Y10_1X10, .datatype = 0x2b, .bpp = 10 },
324 { .code = MEDIA_BUS_FMT_SBGGR8_1X8, .datatype = 0x2a, .bpp = 8 },
325 { .code = MEDIA_BUS_FMT_SGBRG8_1X8, .datatype = 0x2a, .bpp = 8 },
326 { .code = MEDIA_BUS_FMT_SGRBG8_1X8, .datatype = 0x2a, .bpp = 8 },
327 { .code = MEDIA_BUS_FMT_SRGGB8_1X8, .datatype = 0x2a, .bpp = 8 },
328 { .code = MEDIA_BUS_FMT_Y8_1X8, .datatype = 0x2a, .bpp = 8 },
329 };
330
rcsi2_code_to_fmt(unsigned int code)331 static const struct rcar_csi2_format *rcsi2_code_to_fmt(unsigned int code)
332 {
333 unsigned int i;
334
335 for (i = 0; i < ARRAY_SIZE(rcar_csi2_formats); i++)
336 if (rcar_csi2_formats[i].code == code)
337 return &rcar_csi2_formats[i];
338
339 return NULL;
340 }
341
342 enum rcar_csi2_pads {
343 RCAR_CSI2_SINK,
344 RCAR_CSI2_SOURCE_VC0,
345 RCAR_CSI2_SOURCE_VC1,
346 RCAR_CSI2_SOURCE_VC2,
347 RCAR_CSI2_SOURCE_VC3,
348 NR_OF_RCAR_CSI2_PAD,
349 };
350
351 struct rcar_csi2_info {
352 int (*init_phtw)(struct rcar_csi2 *priv, unsigned int mbps);
353 int (*phy_post_init)(struct rcar_csi2 *priv);
354 const struct rcsi2_mbps_reg *hsfreqrange;
355 unsigned int csi0clkfreqrange;
356 unsigned int num_channels;
357 bool clear_ulps;
358 };
359
360 struct rcar_csi2 {
361 struct device *dev;
362 void __iomem *base;
363 const struct rcar_csi2_info *info;
364 struct reset_control *rstc;
365
366 struct v4l2_subdev subdev;
367 struct media_pad pads[NR_OF_RCAR_CSI2_PAD];
368
369 struct v4l2_async_notifier notifier;
370 struct v4l2_subdev *remote;
371 unsigned int remote_pad;
372
373 struct v4l2_mbus_framefmt mf;
374
375 struct mutex lock;
376 int stream_count;
377
378 unsigned short lanes;
379 unsigned char lane_swap[4];
380 };
381
sd_to_csi2(struct v4l2_subdev * sd)382 static inline struct rcar_csi2 *sd_to_csi2(struct v4l2_subdev *sd)
383 {
384 return container_of(sd, struct rcar_csi2, subdev);
385 }
386
notifier_to_csi2(struct v4l2_async_notifier * n)387 static inline struct rcar_csi2 *notifier_to_csi2(struct v4l2_async_notifier *n)
388 {
389 return container_of(n, struct rcar_csi2, notifier);
390 }
391
rcsi2_read(struct rcar_csi2 * priv,unsigned int reg)392 static u32 rcsi2_read(struct rcar_csi2 *priv, unsigned int reg)
393 {
394 return ioread32(priv->base + reg);
395 }
396
rcsi2_write(struct rcar_csi2 * priv,unsigned int reg,u32 data)397 static void rcsi2_write(struct rcar_csi2 *priv, unsigned int reg, u32 data)
398 {
399 iowrite32(data, priv->base + reg);
400 }
401
rcsi2_enter_standby(struct rcar_csi2 * priv)402 static void rcsi2_enter_standby(struct rcar_csi2 *priv)
403 {
404 rcsi2_write(priv, PHYCNT_REG, 0);
405 rcsi2_write(priv, PHTC_REG, PHTC_TESTCLR);
406 reset_control_assert(priv->rstc);
407 usleep_range(100, 150);
408 pm_runtime_put(priv->dev);
409 }
410
rcsi2_exit_standby(struct rcar_csi2 * priv)411 static int rcsi2_exit_standby(struct rcar_csi2 *priv)
412 {
413 int ret;
414
415 ret = pm_runtime_resume_and_get(priv->dev);
416 if (ret < 0)
417 return ret;
418
419 reset_control_deassert(priv->rstc);
420
421 return 0;
422 }
423
rcsi2_wait_phy_start(struct rcar_csi2 * priv,unsigned int lanes)424 static int rcsi2_wait_phy_start(struct rcar_csi2 *priv,
425 unsigned int lanes)
426 {
427 unsigned int timeout;
428
429 /* Wait for the clock and data lanes to enter LP-11 state. */
430 for (timeout = 0; timeout <= 20; timeout++) {
431 const u32 lane_mask = (1 << lanes) - 1;
432
433 if ((rcsi2_read(priv, PHCLM_REG) & PHCLM_STOPSTATECKL) &&
434 (rcsi2_read(priv, PHDLM_REG) & lane_mask) == lane_mask)
435 return 0;
436
437 usleep_range(1000, 2000);
438 }
439
440 dev_err(priv->dev, "Timeout waiting for LP-11 state\n");
441
442 return -ETIMEDOUT;
443 }
444
rcsi2_set_phypll(struct rcar_csi2 * priv,unsigned int mbps)445 static int rcsi2_set_phypll(struct rcar_csi2 *priv, unsigned int mbps)
446 {
447 const struct rcsi2_mbps_reg *hsfreq;
448
449 for (hsfreq = priv->info->hsfreqrange; hsfreq->mbps != 0; hsfreq++)
450 if (hsfreq->mbps >= mbps)
451 break;
452
453 if (!hsfreq->mbps) {
454 dev_err(priv->dev, "Unsupported PHY speed (%u Mbps)", mbps);
455 return -ERANGE;
456 }
457
458 rcsi2_write(priv, PHYPLL_REG, PHYPLL_HSFREQRANGE(hsfreq->reg));
459
460 return 0;
461 }
462
rcsi2_calc_mbps(struct rcar_csi2 * priv,unsigned int bpp,unsigned int lanes)463 static int rcsi2_calc_mbps(struct rcar_csi2 *priv, unsigned int bpp,
464 unsigned int lanes)
465 {
466 struct v4l2_subdev *source;
467 struct v4l2_ctrl *ctrl;
468 u64 mbps;
469
470 if (!priv->remote)
471 return -ENODEV;
472
473 source = priv->remote;
474
475 /* Read the pixel rate control from remote. */
476 ctrl = v4l2_ctrl_find(source->ctrl_handler, V4L2_CID_PIXEL_RATE);
477 if (!ctrl) {
478 dev_err(priv->dev, "no pixel rate control in subdev %s\n",
479 source->name);
480 return -EINVAL;
481 }
482
483 /*
484 * Calculate the phypll in mbps.
485 * link_freq = (pixel_rate * bits_per_sample) / (2 * nr_of_lanes)
486 * bps = link_freq * 2
487 */
488 mbps = v4l2_ctrl_g_ctrl_int64(ctrl) * bpp;
489 do_div(mbps, lanes * 1000000);
490
491 return mbps;
492 }
493
rcsi2_get_active_lanes(struct rcar_csi2 * priv,unsigned int * lanes)494 static int rcsi2_get_active_lanes(struct rcar_csi2 *priv,
495 unsigned int *lanes)
496 {
497 struct v4l2_mbus_config mbus_config = { 0 };
498 unsigned int num_lanes = UINT_MAX;
499 int ret;
500
501 *lanes = priv->lanes;
502
503 ret = v4l2_subdev_call(priv->remote, pad, get_mbus_config,
504 priv->remote_pad, &mbus_config);
505 if (ret == -ENOIOCTLCMD) {
506 dev_dbg(priv->dev, "No remote mbus configuration available\n");
507 return 0;
508 }
509
510 if (ret) {
511 dev_err(priv->dev, "Failed to get remote mbus configuration\n");
512 return ret;
513 }
514
515 if (mbus_config.type != V4L2_MBUS_CSI2_DPHY) {
516 dev_err(priv->dev, "Unsupported media bus type %u\n",
517 mbus_config.type);
518 return -EINVAL;
519 }
520
521 if (mbus_config.flags & V4L2_MBUS_CSI2_1_LANE)
522 num_lanes = 1;
523 else if (mbus_config.flags & V4L2_MBUS_CSI2_2_LANE)
524 num_lanes = 2;
525 else if (mbus_config.flags & V4L2_MBUS_CSI2_3_LANE)
526 num_lanes = 3;
527 else if (mbus_config.flags & V4L2_MBUS_CSI2_4_LANE)
528 num_lanes = 4;
529
530 if (num_lanes > priv->lanes) {
531 dev_err(priv->dev,
532 "Unsupported mbus config: too many data lanes %u\n",
533 num_lanes);
534 return -EINVAL;
535 }
536
537 *lanes = num_lanes;
538
539 return 0;
540 }
541
rcsi2_start_receiver(struct rcar_csi2 * priv)542 static int rcsi2_start_receiver(struct rcar_csi2 *priv)
543 {
544 const struct rcar_csi2_format *format;
545 u32 phycnt, vcdt = 0, vcdt2 = 0, fld = 0;
546 unsigned int lanes;
547 unsigned int i;
548 int mbps, ret;
549
550 dev_dbg(priv->dev, "Input size (%ux%u%c)\n",
551 priv->mf.width, priv->mf.height,
552 priv->mf.field == V4L2_FIELD_NONE ? 'p' : 'i');
553
554 /* Code is validated in set_fmt. */
555 format = rcsi2_code_to_fmt(priv->mf.code);
556
557 /*
558 * Enable all supported CSI-2 channels with virtual channel and
559 * data type matching.
560 *
561 * NOTE: It's not possible to get individual datatype for each
562 * source virtual channel. Once this is possible in V4L2
563 * it should be used here.
564 */
565 for (i = 0; i < priv->info->num_channels; i++) {
566 u32 vcdt_part;
567
568 vcdt_part = VCDT_SEL_VC(i) | VCDT_VCDTN_EN | VCDT_SEL_DTN_ON |
569 VCDT_SEL_DT(format->datatype);
570
571 /* Store in correct reg and offset. */
572 if (i < 2)
573 vcdt |= vcdt_part << ((i % 2) * 16);
574 else
575 vcdt2 |= vcdt_part << ((i % 2) * 16);
576 }
577
578 if (priv->mf.field == V4L2_FIELD_ALTERNATE) {
579 fld = FLD_DET_SEL(1) | FLD_FLD_EN4 | FLD_FLD_EN3 | FLD_FLD_EN2
580 | FLD_FLD_EN;
581
582 if (priv->mf.height == 240)
583 fld |= FLD_FLD_NUM(0);
584 else
585 fld |= FLD_FLD_NUM(1);
586 }
587
588 /*
589 * Get the number of active data lanes inspecting the remote mbus
590 * configuration.
591 */
592 ret = rcsi2_get_active_lanes(priv, &lanes);
593 if (ret)
594 return ret;
595
596 phycnt = PHYCNT_ENABLECLK;
597 phycnt |= (1 << lanes) - 1;
598
599 mbps = rcsi2_calc_mbps(priv, format->bpp, lanes);
600 if (mbps < 0)
601 return mbps;
602
603 /* Enable interrupts. */
604 rcsi2_write(priv, INTEN_REG, INTEN_INT_AFIFO_OF | INTEN_INT_ERRSOTHS
605 | INTEN_INT_ERRSOTSYNCHS);
606
607 /* Init */
608 rcsi2_write(priv, TREF_REG, TREF_TREF);
609 rcsi2_write(priv, PHTC_REG, 0);
610
611 /* Configure */
612 rcsi2_write(priv, VCDT_REG, vcdt);
613 if (vcdt2)
614 rcsi2_write(priv, VCDT2_REG, vcdt2);
615 /* Lanes are zero indexed. */
616 rcsi2_write(priv, LSWAP_REG,
617 LSWAP_L0SEL(priv->lane_swap[0] - 1) |
618 LSWAP_L1SEL(priv->lane_swap[1] - 1) |
619 LSWAP_L2SEL(priv->lane_swap[2] - 1) |
620 LSWAP_L3SEL(priv->lane_swap[3] - 1));
621
622 /* Start */
623 if (priv->info->init_phtw) {
624 ret = priv->info->init_phtw(priv, mbps);
625 if (ret)
626 return ret;
627 }
628
629 if (priv->info->hsfreqrange) {
630 ret = rcsi2_set_phypll(priv, mbps);
631 if (ret)
632 return ret;
633 }
634
635 if (priv->info->csi0clkfreqrange)
636 rcsi2_write(priv, CSI0CLKFCPR_REG,
637 CSI0CLKFREQRANGE(priv->info->csi0clkfreqrange));
638
639 rcsi2_write(priv, PHYCNT_REG, phycnt);
640 rcsi2_write(priv, LINKCNT_REG, LINKCNT_MONITOR_EN |
641 LINKCNT_REG_MONI_PACT_EN | LINKCNT_ICLK_NONSTOP);
642 rcsi2_write(priv, FLD_REG, fld);
643 rcsi2_write(priv, PHYCNT_REG, phycnt | PHYCNT_SHUTDOWNZ);
644 rcsi2_write(priv, PHYCNT_REG, phycnt | PHYCNT_SHUTDOWNZ | PHYCNT_RSTZ);
645
646 ret = rcsi2_wait_phy_start(priv, lanes);
647 if (ret)
648 return ret;
649
650 /* Run post PHY start initialization, if needed. */
651 if (priv->info->phy_post_init) {
652 ret = priv->info->phy_post_init(priv);
653 if (ret)
654 return ret;
655 }
656
657 /* Clear Ultra Low Power interrupt. */
658 if (priv->info->clear_ulps)
659 rcsi2_write(priv, INTSTATE_REG,
660 INTSTATE_INT_ULPS_START |
661 INTSTATE_INT_ULPS_END);
662 return 0;
663 }
664
rcsi2_start(struct rcar_csi2 * priv)665 static int rcsi2_start(struct rcar_csi2 *priv)
666 {
667 int ret;
668
669 ret = rcsi2_exit_standby(priv);
670 if (ret < 0)
671 return ret;
672
673 ret = rcsi2_start_receiver(priv);
674 if (ret) {
675 rcsi2_enter_standby(priv);
676 return ret;
677 }
678
679 ret = v4l2_subdev_call(priv->remote, video, s_stream, 1);
680 if (ret) {
681 rcsi2_enter_standby(priv);
682 return ret;
683 }
684
685 return 0;
686 }
687
rcsi2_stop(struct rcar_csi2 * priv)688 static void rcsi2_stop(struct rcar_csi2 *priv)
689 {
690 rcsi2_enter_standby(priv);
691 v4l2_subdev_call(priv->remote, video, s_stream, 0);
692 }
693
rcsi2_s_stream(struct v4l2_subdev * sd,int enable)694 static int rcsi2_s_stream(struct v4l2_subdev *sd, int enable)
695 {
696 struct rcar_csi2 *priv = sd_to_csi2(sd);
697 int ret = 0;
698
699 mutex_lock(&priv->lock);
700
701 if (!priv->remote) {
702 ret = -ENODEV;
703 goto out;
704 }
705
706 if (enable && priv->stream_count == 0) {
707 ret = rcsi2_start(priv);
708 if (ret)
709 goto out;
710 } else if (!enable && priv->stream_count == 1) {
711 rcsi2_stop(priv);
712 }
713
714 priv->stream_count += enable ? 1 : -1;
715 out:
716 mutex_unlock(&priv->lock);
717
718 return ret;
719 }
720
rcsi2_set_pad_format(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_format * format)721 static int rcsi2_set_pad_format(struct v4l2_subdev *sd,
722 struct v4l2_subdev_state *sd_state,
723 struct v4l2_subdev_format *format)
724 {
725 struct rcar_csi2 *priv = sd_to_csi2(sd);
726 struct v4l2_mbus_framefmt *framefmt;
727
728 if (!rcsi2_code_to_fmt(format->format.code))
729 format->format.code = rcar_csi2_formats[0].code;
730
731 if (format->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
732 priv->mf = format->format;
733 } else {
734 framefmt = v4l2_subdev_get_try_format(sd, sd_state, 0);
735 *framefmt = format->format;
736 }
737
738 return 0;
739 }
740
rcsi2_get_pad_format(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_format * format)741 static int rcsi2_get_pad_format(struct v4l2_subdev *sd,
742 struct v4l2_subdev_state *sd_state,
743 struct v4l2_subdev_format *format)
744 {
745 struct rcar_csi2 *priv = sd_to_csi2(sd);
746
747 if (format->which == V4L2_SUBDEV_FORMAT_ACTIVE)
748 format->format = priv->mf;
749 else
750 format->format = *v4l2_subdev_get_try_format(sd, sd_state, 0);
751
752 return 0;
753 }
754
755 static const struct v4l2_subdev_video_ops rcar_csi2_video_ops = {
756 .s_stream = rcsi2_s_stream,
757 };
758
759 static const struct v4l2_subdev_pad_ops rcar_csi2_pad_ops = {
760 .set_fmt = rcsi2_set_pad_format,
761 .get_fmt = rcsi2_get_pad_format,
762 };
763
764 static const struct v4l2_subdev_ops rcar_csi2_subdev_ops = {
765 .video = &rcar_csi2_video_ops,
766 .pad = &rcar_csi2_pad_ops,
767 };
768
rcsi2_irq(int irq,void * data)769 static irqreturn_t rcsi2_irq(int irq, void *data)
770 {
771 struct rcar_csi2 *priv = data;
772 u32 status, err_status;
773
774 status = rcsi2_read(priv, INTSTATE_REG);
775 err_status = rcsi2_read(priv, INTERRSTATE_REG);
776
777 if (!status)
778 return IRQ_HANDLED;
779
780 rcsi2_write(priv, INTSTATE_REG, status);
781
782 if (!err_status)
783 return IRQ_HANDLED;
784
785 rcsi2_write(priv, INTERRSTATE_REG, err_status);
786
787 dev_info(priv->dev, "Transfer error, restarting CSI-2 receiver\n");
788
789 return IRQ_WAKE_THREAD;
790 }
791
rcsi2_irq_thread(int irq,void * data)792 static irqreturn_t rcsi2_irq_thread(int irq, void *data)
793 {
794 struct rcar_csi2 *priv = data;
795
796 mutex_lock(&priv->lock);
797 rcsi2_stop(priv);
798 usleep_range(1000, 2000);
799 if (rcsi2_start(priv))
800 dev_warn(priv->dev, "Failed to restart CSI-2 receiver\n");
801 mutex_unlock(&priv->lock);
802
803 return IRQ_HANDLED;
804 }
805
806 /* -----------------------------------------------------------------------------
807 * Async handling and registration of subdevices and links.
808 */
809
rcsi2_notify_bound(struct v4l2_async_notifier * notifier,struct v4l2_subdev * subdev,struct v4l2_async_subdev * asd)810 static int rcsi2_notify_bound(struct v4l2_async_notifier *notifier,
811 struct v4l2_subdev *subdev,
812 struct v4l2_async_subdev *asd)
813 {
814 struct rcar_csi2 *priv = notifier_to_csi2(notifier);
815 int pad;
816
817 pad = media_entity_get_fwnode_pad(&subdev->entity, asd->match.fwnode,
818 MEDIA_PAD_FL_SOURCE);
819 if (pad < 0) {
820 dev_err(priv->dev, "Failed to find pad for %s\n", subdev->name);
821 return pad;
822 }
823
824 priv->remote = subdev;
825 priv->remote_pad = pad;
826
827 dev_dbg(priv->dev, "Bound %s pad: %d\n", subdev->name, pad);
828
829 return media_create_pad_link(&subdev->entity, pad,
830 &priv->subdev.entity, 0,
831 MEDIA_LNK_FL_ENABLED |
832 MEDIA_LNK_FL_IMMUTABLE);
833 }
834
rcsi2_notify_unbind(struct v4l2_async_notifier * notifier,struct v4l2_subdev * subdev,struct v4l2_async_subdev * asd)835 static void rcsi2_notify_unbind(struct v4l2_async_notifier *notifier,
836 struct v4l2_subdev *subdev,
837 struct v4l2_async_subdev *asd)
838 {
839 struct rcar_csi2 *priv = notifier_to_csi2(notifier);
840
841 priv->remote = NULL;
842
843 dev_dbg(priv->dev, "Unbind %s\n", subdev->name);
844 }
845
846 static const struct v4l2_async_notifier_operations rcar_csi2_notify_ops = {
847 .bound = rcsi2_notify_bound,
848 .unbind = rcsi2_notify_unbind,
849 };
850
rcsi2_parse_v4l2(struct rcar_csi2 * priv,struct v4l2_fwnode_endpoint * vep)851 static int rcsi2_parse_v4l2(struct rcar_csi2 *priv,
852 struct v4l2_fwnode_endpoint *vep)
853 {
854 unsigned int i;
855
856 /* Only port 0 endpoint 0 is valid. */
857 if (vep->base.port || vep->base.id)
858 return -ENOTCONN;
859
860 if (vep->bus_type != V4L2_MBUS_CSI2_DPHY) {
861 dev_err(priv->dev, "Unsupported bus: %u\n", vep->bus_type);
862 return -EINVAL;
863 }
864
865 priv->lanes = vep->bus.mipi_csi2.num_data_lanes;
866 if (priv->lanes != 1 && priv->lanes != 2 && priv->lanes != 4) {
867 dev_err(priv->dev, "Unsupported number of data-lanes: %u\n",
868 priv->lanes);
869 return -EINVAL;
870 }
871
872 for (i = 0; i < ARRAY_SIZE(priv->lane_swap); i++) {
873 priv->lane_swap[i] = i < priv->lanes ?
874 vep->bus.mipi_csi2.data_lanes[i] : i;
875
876 /* Check for valid lane number. */
877 if (priv->lane_swap[i] < 1 || priv->lane_swap[i] > 4) {
878 dev_err(priv->dev, "data-lanes must be in 1-4 range\n");
879 return -EINVAL;
880 }
881 }
882
883 return 0;
884 }
885
rcsi2_parse_dt(struct rcar_csi2 * priv)886 static int rcsi2_parse_dt(struct rcar_csi2 *priv)
887 {
888 struct v4l2_async_subdev *asd;
889 struct fwnode_handle *fwnode;
890 struct fwnode_handle *ep;
891 struct v4l2_fwnode_endpoint v4l2_ep = {
892 .bus_type = V4L2_MBUS_CSI2_DPHY
893 };
894 int ret;
895
896 ep = fwnode_graph_get_endpoint_by_id(dev_fwnode(priv->dev), 0, 0, 0);
897 if (!ep) {
898 dev_err(priv->dev, "Not connected to subdevice\n");
899 return -EINVAL;
900 }
901
902 ret = v4l2_fwnode_endpoint_parse(ep, &v4l2_ep);
903 if (ret) {
904 dev_err(priv->dev, "Could not parse v4l2 endpoint\n");
905 fwnode_handle_put(ep);
906 return -EINVAL;
907 }
908
909 ret = rcsi2_parse_v4l2(priv, &v4l2_ep);
910 if (ret) {
911 fwnode_handle_put(ep);
912 return ret;
913 }
914
915 fwnode = fwnode_graph_get_remote_endpoint(ep);
916 fwnode_handle_put(ep);
917
918 dev_dbg(priv->dev, "Found '%pOF'\n", to_of_node(fwnode));
919
920 v4l2_async_notifier_init(&priv->notifier);
921 priv->notifier.ops = &rcar_csi2_notify_ops;
922
923 asd = v4l2_async_notifier_add_fwnode_subdev(&priv->notifier, fwnode,
924 struct v4l2_async_subdev);
925 fwnode_handle_put(fwnode);
926 if (IS_ERR(asd))
927 return PTR_ERR(asd);
928
929 ret = v4l2_async_subdev_notifier_register(&priv->subdev,
930 &priv->notifier);
931 if (ret)
932 v4l2_async_notifier_cleanup(&priv->notifier);
933
934 return ret;
935 }
936
937 /* -----------------------------------------------------------------------------
938 * PHTW initialization sequences.
939 *
940 * NOTE: Magic values are from the datasheet and lack documentation.
941 */
942
rcsi2_phtw_write(struct rcar_csi2 * priv,u16 data,u16 code)943 static int rcsi2_phtw_write(struct rcar_csi2 *priv, u16 data, u16 code)
944 {
945 unsigned int timeout;
946
947 rcsi2_write(priv, PHTW_REG,
948 PHTW_DWEN | PHTW_TESTDIN_DATA(data) |
949 PHTW_CWEN | PHTW_TESTDIN_CODE(code));
950
951 /* Wait for DWEN and CWEN to be cleared by hardware. */
952 for (timeout = 0; timeout <= 20; timeout++) {
953 if (!(rcsi2_read(priv, PHTW_REG) & (PHTW_DWEN | PHTW_CWEN)))
954 return 0;
955
956 usleep_range(1000, 2000);
957 }
958
959 dev_err(priv->dev, "Timeout waiting for PHTW_DWEN and/or PHTW_CWEN\n");
960
961 return -ETIMEDOUT;
962 }
963
rcsi2_phtw_write_array(struct rcar_csi2 * priv,const struct phtw_value * values)964 static int rcsi2_phtw_write_array(struct rcar_csi2 *priv,
965 const struct phtw_value *values)
966 {
967 const struct phtw_value *value;
968 int ret;
969
970 for (value = values; value->data || value->code; value++) {
971 ret = rcsi2_phtw_write(priv, value->data, value->code);
972 if (ret)
973 return ret;
974 }
975
976 return 0;
977 }
978
rcsi2_phtw_write_mbps(struct rcar_csi2 * priv,unsigned int mbps,const struct rcsi2_mbps_reg * values,u16 code)979 static int rcsi2_phtw_write_mbps(struct rcar_csi2 *priv, unsigned int mbps,
980 const struct rcsi2_mbps_reg *values, u16 code)
981 {
982 const struct rcsi2_mbps_reg *value;
983
984 for (value = values; value->mbps; value++)
985 if (value->mbps >= mbps)
986 break;
987
988 if (!value->mbps) {
989 dev_err(priv->dev, "Unsupported PHY speed (%u Mbps)", mbps);
990 return -ERANGE;
991 }
992
993 return rcsi2_phtw_write(priv, value->reg, code);
994 }
995
__rcsi2_init_phtw_h3_v3h_m3n(struct rcar_csi2 * priv,unsigned int mbps)996 static int __rcsi2_init_phtw_h3_v3h_m3n(struct rcar_csi2 *priv,
997 unsigned int mbps)
998 {
999 static const struct phtw_value step1[] = {
1000 { .data = 0xcc, .code = 0xe2 },
1001 { .data = 0x01, .code = 0xe3 },
1002 { .data = 0x11, .code = 0xe4 },
1003 { .data = 0x01, .code = 0xe5 },
1004 { .data = 0x10, .code = 0x04 },
1005 { /* sentinel */ },
1006 };
1007
1008 static const struct phtw_value step2[] = {
1009 { .data = 0x38, .code = 0x08 },
1010 { .data = 0x01, .code = 0x00 },
1011 { .data = 0x4b, .code = 0xac },
1012 { .data = 0x03, .code = 0x00 },
1013 { .data = 0x80, .code = 0x07 },
1014 { /* sentinel */ },
1015 };
1016
1017 int ret;
1018
1019 ret = rcsi2_phtw_write_array(priv, step1);
1020 if (ret)
1021 return ret;
1022
1023 if (mbps != 0 && mbps <= 250) {
1024 ret = rcsi2_phtw_write(priv, 0x39, 0x05);
1025 if (ret)
1026 return ret;
1027
1028 ret = rcsi2_phtw_write_mbps(priv, mbps, phtw_mbps_h3_v3h_m3n,
1029 0xf1);
1030 if (ret)
1031 return ret;
1032 }
1033
1034 return rcsi2_phtw_write_array(priv, step2);
1035 }
1036
rcsi2_init_phtw_h3_v3h_m3n(struct rcar_csi2 * priv,unsigned int mbps)1037 static int rcsi2_init_phtw_h3_v3h_m3n(struct rcar_csi2 *priv, unsigned int mbps)
1038 {
1039 return __rcsi2_init_phtw_h3_v3h_m3n(priv, mbps);
1040 }
1041
rcsi2_init_phtw_h3es2(struct rcar_csi2 * priv,unsigned int mbps)1042 static int rcsi2_init_phtw_h3es2(struct rcar_csi2 *priv, unsigned int mbps)
1043 {
1044 return __rcsi2_init_phtw_h3_v3h_m3n(priv, 0);
1045 }
1046
rcsi2_init_phtw_v3m_e3(struct rcar_csi2 * priv,unsigned int mbps)1047 static int rcsi2_init_phtw_v3m_e3(struct rcar_csi2 *priv, unsigned int mbps)
1048 {
1049 return rcsi2_phtw_write_mbps(priv, mbps, phtw_mbps_v3m_e3, 0x44);
1050 }
1051
rcsi2_phy_post_init_v3m_e3(struct rcar_csi2 * priv)1052 static int rcsi2_phy_post_init_v3m_e3(struct rcar_csi2 *priv)
1053 {
1054 static const struct phtw_value step1[] = {
1055 { .data = 0xee, .code = 0x34 },
1056 { .data = 0xee, .code = 0x44 },
1057 { .data = 0xee, .code = 0x54 },
1058 { .data = 0xee, .code = 0x84 },
1059 { .data = 0xee, .code = 0x94 },
1060 { /* sentinel */ },
1061 };
1062
1063 return rcsi2_phtw_write_array(priv, step1);
1064 }
1065
1066 /* -----------------------------------------------------------------------------
1067 * Platform Device Driver.
1068 */
1069
1070 static const struct media_entity_operations rcar_csi2_entity_ops = {
1071 .link_validate = v4l2_subdev_link_validate,
1072 };
1073
rcsi2_probe_resources(struct rcar_csi2 * priv,struct platform_device * pdev)1074 static int rcsi2_probe_resources(struct rcar_csi2 *priv,
1075 struct platform_device *pdev)
1076 {
1077 struct resource *res;
1078 int irq, ret;
1079
1080 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1081 priv->base = devm_ioremap_resource(&pdev->dev, res);
1082 if (IS_ERR(priv->base))
1083 return PTR_ERR(priv->base);
1084
1085 irq = platform_get_irq(pdev, 0);
1086 if (irq < 0)
1087 return irq;
1088
1089 ret = devm_request_threaded_irq(&pdev->dev, irq, rcsi2_irq,
1090 rcsi2_irq_thread, IRQF_SHARED,
1091 KBUILD_MODNAME, priv);
1092 if (ret)
1093 return ret;
1094
1095 priv->rstc = devm_reset_control_get(&pdev->dev, NULL);
1096
1097 return PTR_ERR_OR_ZERO(priv->rstc);
1098 }
1099
1100 static const struct rcar_csi2_info rcar_csi2_info_r8a7795 = {
1101 .init_phtw = rcsi2_init_phtw_h3_v3h_m3n,
1102 .hsfreqrange = hsfreqrange_h3_v3h_m3n,
1103 .csi0clkfreqrange = 0x20,
1104 .num_channels = 4,
1105 .clear_ulps = true,
1106 };
1107
1108 static const struct rcar_csi2_info rcar_csi2_info_r8a7795es1 = {
1109 .hsfreqrange = hsfreqrange_m3w_h3es1,
1110 .num_channels = 4,
1111 };
1112
1113 static const struct rcar_csi2_info rcar_csi2_info_r8a7795es2 = {
1114 .init_phtw = rcsi2_init_phtw_h3es2,
1115 .hsfreqrange = hsfreqrange_h3_v3h_m3n,
1116 .csi0clkfreqrange = 0x20,
1117 .num_channels = 4,
1118 .clear_ulps = true,
1119 };
1120
1121 static const struct rcar_csi2_info rcar_csi2_info_r8a7796 = {
1122 .hsfreqrange = hsfreqrange_m3w_h3es1,
1123 .num_channels = 4,
1124 };
1125
1126 static const struct rcar_csi2_info rcar_csi2_info_r8a77961 = {
1127 .hsfreqrange = hsfreqrange_m3w_h3es1,
1128 .num_channels = 4,
1129 };
1130
1131 static const struct rcar_csi2_info rcar_csi2_info_r8a77965 = {
1132 .init_phtw = rcsi2_init_phtw_h3_v3h_m3n,
1133 .hsfreqrange = hsfreqrange_h3_v3h_m3n,
1134 .csi0clkfreqrange = 0x20,
1135 .num_channels = 4,
1136 .clear_ulps = true,
1137 };
1138
1139 static const struct rcar_csi2_info rcar_csi2_info_r8a77970 = {
1140 .init_phtw = rcsi2_init_phtw_v3m_e3,
1141 .phy_post_init = rcsi2_phy_post_init_v3m_e3,
1142 .num_channels = 4,
1143 };
1144
1145 static const struct rcar_csi2_info rcar_csi2_info_r8a77980 = {
1146 .init_phtw = rcsi2_init_phtw_h3_v3h_m3n,
1147 .hsfreqrange = hsfreqrange_h3_v3h_m3n,
1148 .csi0clkfreqrange = 0x20,
1149 .clear_ulps = true,
1150 };
1151
1152 static const struct rcar_csi2_info rcar_csi2_info_r8a77990 = {
1153 .init_phtw = rcsi2_init_phtw_v3m_e3,
1154 .phy_post_init = rcsi2_phy_post_init_v3m_e3,
1155 .num_channels = 2,
1156 };
1157
1158 static const struct of_device_id rcar_csi2_of_table[] = {
1159 {
1160 .compatible = "renesas,r8a774a1-csi2",
1161 .data = &rcar_csi2_info_r8a7796,
1162 },
1163 {
1164 .compatible = "renesas,r8a774b1-csi2",
1165 .data = &rcar_csi2_info_r8a77965,
1166 },
1167 {
1168 .compatible = "renesas,r8a774c0-csi2",
1169 .data = &rcar_csi2_info_r8a77990,
1170 },
1171 {
1172 .compatible = "renesas,r8a774e1-csi2",
1173 .data = &rcar_csi2_info_r8a7795,
1174 },
1175 {
1176 .compatible = "renesas,r8a7795-csi2",
1177 .data = &rcar_csi2_info_r8a7795,
1178 },
1179 {
1180 .compatible = "renesas,r8a7796-csi2",
1181 .data = &rcar_csi2_info_r8a7796,
1182 },
1183 {
1184 .compatible = "renesas,r8a77961-csi2",
1185 .data = &rcar_csi2_info_r8a77961,
1186 },
1187 {
1188 .compatible = "renesas,r8a77965-csi2",
1189 .data = &rcar_csi2_info_r8a77965,
1190 },
1191 {
1192 .compatible = "renesas,r8a77970-csi2",
1193 .data = &rcar_csi2_info_r8a77970,
1194 },
1195 {
1196 .compatible = "renesas,r8a77980-csi2",
1197 .data = &rcar_csi2_info_r8a77980,
1198 },
1199 {
1200 .compatible = "renesas,r8a77990-csi2",
1201 .data = &rcar_csi2_info_r8a77990,
1202 },
1203 { /* sentinel */ },
1204 };
1205 MODULE_DEVICE_TABLE(of, rcar_csi2_of_table);
1206
1207 static const struct soc_device_attribute r8a7795[] = {
1208 {
1209 .soc_id = "r8a7795", .revision = "ES1.*",
1210 .data = &rcar_csi2_info_r8a7795es1,
1211 },
1212 {
1213 .soc_id = "r8a7795", .revision = "ES2.*",
1214 .data = &rcar_csi2_info_r8a7795es2,
1215 },
1216 { /* sentinel */ },
1217 };
1218
rcsi2_probe(struct platform_device * pdev)1219 static int rcsi2_probe(struct platform_device *pdev)
1220 {
1221 const struct soc_device_attribute *attr;
1222 struct rcar_csi2 *priv;
1223 unsigned int i;
1224 int ret;
1225
1226 priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
1227 if (!priv)
1228 return -ENOMEM;
1229
1230 priv->info = of_device_get_match_data(&pdev->dev);
1231
1232 /*
1233 * The different ES versions of r8a7795 (H3) behave differently but
1234 * share the same compatible string.
1235 */
1236 attr = soc_device_match(r8a7795);
1237 if (attr)
1238 priv->info = attr->data;
1239
1240 priv->dev = &pdev->dev;
1241
1242 mutex_init(&priv->lock);
1243 priv->stream_count = 0;
1244
1245 ret = rcsi2_probe_resources(priv, pdev);
1246 if (ret) {
1247 dev_err(priv->dev, "Failed to get resources\n");
1248 return ret;
1249 }
1250
1251 platform_set_drvdata(pdev, priv);
1252
1253 ret = rcsi2_parse_dt(priv);
1254 if (ret)
1255 return ret;
1256
1257 priv->subdev.owner = THIS_MODULE;
1258 priv->subdev.dev = &pdev->dev;
1259 v4l2_subdev_init(&priv->subdev, &rcar_csi2_subdev_ops);
1260 v4l2_set_subdevdata(&priv->subdev, &pdev->dev);
1261 snprintf(priv->subdev.name, V4L2_SUBDEV_NAME_SIZE, "%s %s",
1262 KBUILD_MODNAME, dev_name(&pdev->dev));
1263 priv->subdev.flags = V4L2_SUBDEV_FL_HAS_DEVNODE;
1264
1265 priv->subdev.entity.function = MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER;
1266 priv->subdev.entity.ops = &rcar_csi2_entity_ops;
1267
1268 priv->pads[RCAR_CSI2_SINK].flags = MEDIA_PAD_FL_SINK;
1269 for (i = RCAR_CSI2_SOURCE_VC0; i < NR_OF_RCAR_CSI2_PAD; i++)
1270 priv->pads[i].flags = MEDIA_PAD_FL_SOURCE;
1271
1272 ret = media_entity_pads_init(&priv->subdev.entity, NR_OF_RCAR_CSI2_PAD,
1273 priv->pads);
1274 if (ret)
1275 goto error;
1276
1277 pm_runtime_enable(&pdev->dev);
1278
1279 ret = v4l2_async_register_subdev(&priv->subdev);
1280 if (ret < 0)
1281 goto error;
1282
1283 dev_info(priv->dev, "%d lanes found\n", priv->lanes);
1284
1285 return 0;
1286
1287 error:
1288 v4l2_async_notifier_unregister(&priv->notifier);
1289 v4l2_async_notifier_cleanup(&priv->notifier);
1290
1291 return ret;
1292 }
1293
rcsi2_remove(struct platform_device * pdev)1294 static int rcsi2_remove(struct platform_device *pdev)
1295 {
1296 struct rcar_csi2 *priv = platform_get_drvdata(pdev);
1297
1298 v4l2_async_notifier_unregister(&priv->notifier);
1299 v4l2_async_notifier_cleanup(&priv->notifier);
1300 v4l2_async_unregister_subdev(&priv->subdev);
1301
1302 pm_runtime_disable(&pdev->dev);
1303
1304 return 0;
1305 }
1306
1307 static struct platform_driver rcar_csi2_pdrv = {
1308 .remove = rcsi2_remove,
1309 .probe = rcsi2_probe,
1310 .driver = {
1311 .name = "rcar-csi2",
1312 .of_match_table = rcar_csi2_of_table,
1313 },
1314 };
1315
1316 module_platform_driver(rcar_csi2_pdrv);
1317
1318 MODULE_AUTHOR("Niklas Söderlund <niklas.soderlund@ragnatech.se>");
1319 MODULE_DESCRIPTION("Renesas R-Car MIPI CSI-2 receiver driver");
1320 MODULE_LICENSE("GPL");
1321