1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Lantiq / Intel GSWIP switch driver for VRX200, xRX300 and xRX330 SoCs
4  *
5  * Copyright (C) 2010 Lantiq Deutschland
6  * Copyright (C) 2012 John Crispin <john@phrozen.org>
7  * Copyright (C) 2017 - 2019 Hauke Mehrtens <hauke@hauke-m.de>
8  *
9  * The VLAN and bridge model the GSWIP hardware uses does not directly
10  * matches the model DSA uses.
11  *
12  * The hardware has 64 possible table entries for bridges with one VLAN
13  * ID, one flow id and a list of ports for each bridge. All entries which
14  * match the same flow ID are combined in the mac learning table, they
15  * act as one global bridge.
16  * The hardware does not support VLAN filter on the port, but on the
17  * bridge, this driver converts the DSA model to the hardware.
18  *
19  * The CPU gets all the exception frames which do not match any forwarding
20  * rule and the CPU port is also added to all bridges. This makes it possible
21  * to handle all the special cases easily in software.
22  * At the initialization the driver allocates one bridge table entry for
23  * each switch port which is used when the port is used without an
24  * explicit bridge. This prevents the frames from being forwarded
25  * between all LAN ports by default.
26  */
27 
28 #include <linux/clk.h>
29 #include <linux/delay.h>
30 #include <linux/etherdevice.h>
31 #include <linux/firmware.h>
32 #include <linux/if_bridge.h>
33 #include <linux/if_vlan.h>
34 #include <linux/iopoll.h>
35 #include <linux/mfd/syscon.h>
36 #include <linux/module.h>
37 #include <linux/of_mdio.h>
38 #include <linux/of_net.h>
39 #include <linux/of_platform.h>
40 #include <linux/phy.h>
41 #include <linux/phylink.h>
42 #include <linux/platform_device.h>
43 #include <linux/regmap.h>
44 #include <linux/reset.h>
45 #include <net/dsa.h>
46 #include <dt-bindings/mips/lantiq_rcu_gphy.h>
47 
48 #include "lantiq_pce.h"
49 
50 /* GSWIP MDIO Registers */
51 #define GSWIP_MDIO_GLOB			0x00
52 #define  GSWIP_MDIO_GLOB_ENABLE		BIT(15)
53 #define GSWIP_MDIO_CTRL			0x08
54 #define  GSWIP_MDIO_CTRL_BUSY		BIT(12)
55 #define  GSWIP_MDIO_CTRL_RD		BIT(11)
56 #define  GSWIP_MDIO_CTRL_WR		BIT(10)
57 #define  GSWIP_MDIO_CTRL_PHYAD_MASK	0x1f
58 #define  GSWIP_MDIO_CTRL_PHYAD_SHIFT	5
59 #define  GSWIP_MDIO_CTRL_REGAD_MASK	0x1f
60 #define GSWIP_MDIO_READ			0x09
61 #define GSWIP_MDIO_WRITE		0x0A
62 #define GSWIP_MDIO_MDC_CFG0		0x0B
63 #define GSWIP_MDIO_MDC_CFG1		0x0C
64 #define GSWIP_MDIO_PHYp(p)		(0x15 - (p))
65 #define  GSWIP_MDIO_PHY_LINK_MASK	0x6000
66 #define  GSWIP_MDIO_PHY_LINK_AUTO	0x0000
67 #define  GSWIP_MDIO_PHY_LINK_DOWN	0x4000
68 #define  GSWIP_MDIO_PHY_LINK_UP		0x2000
69 #define  GSWIP_MDIO_PHY_SPEED_MASK	0x1800
70 #define  GSWIP_MDIO_PHY_SPEED_AUTO	0x1800
71 #define  GSWIP_MDIO_PHY_SPEED_M10	0x0000
72 #define  GSWIP_MDIO_PHY_SPEED_M100	0x0800
73 #define  GSWIP_MDIO_PHY_SPEED_G1	0x1000
74 #define  GSWIP_MDIO_PHY_FDUP_MASK	0x0600
75 #define  GSWIP_MDIO_PHY_FDUP_AUTO	0x0000
76 #define  GSWIP_MDIO_PHY_FDUP_EN		0x0200
77 #define  GSWIP_MDIO_PHY_FDUP_DIS	0x0600
78 #define  GSWIP_MDIO_PHY_FCONTX_MASK	0x0180
79 #define  GSWIP_MDIO_PHY_FCONTX_AUTO	0x0000
80 #define  GSWIP_MDIO_PHY_FCONTX_EN	0x0100
81 #define  GSWIP_MDIO_PHY_FCONTX_DIS	0x0180
82 #define  GSWIP_MDIO_PHY_FCONRX_MASK	0x0060
83 #define  GSWIP_MDIO_PHY_FCONRX_AUTO	0x0000
84 #define  GSWIP_MDIO_PHY_FCONRX_EN	0x0020
85 #define  GSWIP_MDIO_PHY_FCONRX_DIS	0x0060
86 #define  GSWIP_MDIO_PHY_ADDR_MASK	0x001f
87 #define  GSWIP_MDIO_PHY_MASK		(GSWIP_MDIO_PHY_ADDR_MASK | \
88 					 GSWIP_MDIO_PHY_FCONRX_MASK | \
89 					 GSWIP_MDIO_PHY_FCONTX_MASK | \
90 					 GSWIP_MDIO_PHY_LINK_MASK | \
91 					 GSWIP_MDIO_PHY_SPEED_MASK | \
92 					 GSWIP_MDIO_PHY_FDUP_MASK)
93 
94 /* GSWIP MII Registers */
95 #define GSWIP_MII_CFGp(p)		(0x2 * (p))
96 #define  GSWIP_MII_CFG_RESET		BIT(15)
97 #define  GSWIP_MII_CFG_EN		BIT(14)
98 #define  GSWIP_MII_CFG_ISOLATE		BIT(13)
99 #define  GSWIP_MII_CFG_LDCLKDIS		BIT(12)
100 #define  GSWIP_MII_CFG_RGMII_IBS	BIT(8)
101 #define  GSWIP_MII_CFG_RMII_CLK		BIT(7)
102 #define  GSWIP_MII_CFG_MODE_MIIP	0x0
103 #define  GSWIP_MII_CFG_MODE_MIIM	0x1
104 #define  GSWIP_MII_CFG_MODE_RMIIP	0x2
105 #define  GSWIP_MII_CFG_MODE_RMIIM	0x3
106 #define  GSWIP_MII_CFG_MODE_RGMII	0x4
107 #define  GSWIP_MII_CFG_MODE_GMII	0x9
108 #define  GSWIP_MII_CFG_MODE_MASK	0xf
109 #define  GSWIP_MII_CFG_RATE_M2P5	0x00
110 #define  GSWIP_MII_CFG_RATE_M25	0x10
111 #define  GSWIP_MII_CFG_RATE_M125	0x20
112 #define  GSWIP_MII_CFG_RATE_M50	0x30
113 #define  GSWIP_MII_CFG_RATE_AUTO	0x40
114 #define  GSWIP_MII_CFG_RATE_MASK	0x70
115 #define GSWIP_MII_PCDU0			0x01
116 #define GSWIP_MII_PCDU1			0x03
117 #define GSWIP_MII_PCDU5			0x05
118 #define  GSWIP_MII_PCDU_TXDLY_MASK	GENMASK(2, 0)
119 #define  GSWIP_MII_PCDU_RXDLY_MASK	GENMASK(9, 7)
120 
121 /* GSWIP Core Registers */
122 #define GSWIP_SWRES			0x000
123 #define  GSWIP_SWRES_R1			BIT(1)	/* GSWIP Software reset */
124 #define  GSWIP_SWRES_R0			BIT(0)	/* GSWIP Hardware reset */
125 #define GSWIP_VERSION			0x013
126 #define  GSWIP_VERSION_REV_SHIFT	0
127 #define  GSWIP_VERSION_REV_MASK		GENMASK(7, 0)
128 #define  GSWIP_VERSION_MOD_SHIFT	8
129 #define  GSWIP_VERSION_MOD_MASK		GENMASK(15, 8)
130 #define   GSWIP_VERSION_2_0		0x100
131 #define   GSWIP_VERSION_2_1		0x021
132 #define   GSWIP_VERSION_2_2		0x122
133 #define   GSWIP_VERSION_2_2_ETC		0x022
134 
135 #define GSWIP_BM_RAM_VAL(x)		(0x043 - (x))
136 #define GSWIP_BM_RAM_ADDR		0x044
137 #define GSWIP_BM_RAM_CTRL		0x045
138 #define  GSWIP_BM_RAM_CTRL_BAS		BIT(15)
139 #define  GSWIP_BM_RAM_CTRL_OPMOD	BIT(5)
140 #define  GSWIP_BM_RAM_CTRL_ADDR_MASK	GENMASK(4, 0)
141 #define GSWIP_BM_QUEUE_GCTRL		0x04A
142 #define  GSWIP_BM_QUEUE_GCTRL_GL_MOD	BIT(10)
143 /* buffer management Port Configuration Register */
144 #define GSWIP_BM_PCFGp(p)		(0x080 + ((p) * 2))
145 #define  GSWIP_BM_PCFG_CNTEN		BIT(0)	/* RMON Counter Enable */
146 #define  GSWIP_BM_PCFG_IGCNT		BIT(1)	/* Ingres Special Tag RMON count */
147 /* buffer management Port Control Register */
148 #define GSWIP_BM_RMON_CTRLp(p)		(0x81 + ((p) * 2))
149 #define  GSWIP_BM_CTRL_RMON_RAM1_RES	BIT(0)	/* Software Reset for RMON RAM 1 */
150 #define  GSWIP_BM_CTRL_RMON_RAM2_RES	BIT(1)	/* Software Reset for RMON RAM 2 */
151 
152 /* PCE */
153 #define GSWIP_PCE_TBL_KEY(x)		(0x447 - (x))
154 #define GSWIP_PCE_TBL_MASK		0x448
155 #define GSWIP_PCE_TBL_VAL(x)		(0x44D - (x))
156 #define GSWIP_PCE_TBL_ADDR		0x44E
157 #define GSWIP_PCE_TBL_CTRL		0x44F
158 #define  GSWIP_PCE_TBL_CTRL_BAS		BIT(15)
159 #define  GSWIP_PCE_TBL_CTRL_TYPE	BIT(13)
160 #define  GSWIP_PCE_TBL_CTRL_VLD		BIT(12)
161 #define  GSWIP_PCE_TBL_CTRL_KEYFORM	BIT(11)
162 #define  GSWIP_PCE_TBL_CTRL_GMAP_MASK	GENMASK(10, 7)
163 #define  GSWIP_PCE_TBL_CTRL_OPMOD_MASK	GENMASK(6, 5)
164 #define  GSWIP_PCE_TBL_CTRL_OPMOD_ADRD	0x00
165 #define  GSWIP_PCE_TBL_CTRL_OPMOD_ADWR	0x20
166 #define  GSWIP_PCE_TBL_CTRL_OPMOD_KSRD	0x40
167 #define  GSWIP_PCE_TBL_CTRL_OPMOD_KSWR	0x60
168 #define  GSWIP_PCE_TBL_CTRL_ADDR_MASK	GENMASK(4, 0)
169 #define GSWIP_PCE_PMAP1			0x453	/* Monitoring port map */
170 #define GSWIP_PCE_PMAP2			0x454	/* Default Multicast port map */
171 #define GSWIP_PCE_PMAP3			0x455	/* Default Unknown Unicast port map */
172 #define GSWIP_PCE_GCTRL_0		0x456
173 #define  GSWIP_PCE_GCTRL_0_MTFL		BIT(0)  /* MAC Table Flushing */
174 #define  GSWIP_PCE_GCTRL_0_MC_VALID	BIT(3)
175 #define  GSWIP_PCE_GCTRL_0_VLAN		BIT(14) /* VLAN aware Switching */
176 #define GSWIP_PCE_GCTRL_1		0x457
177 #define  GSWIP_PCE_GCTRL_1_MAC_GLOCK	BIT(2)	/* MAC Address table lock */
178 #define  GSWIP_PCE_GCTRL_1_MAC_GLOCK_MOD	BIT(3) /* Mac address table lock forwarding mode */
179 #define GSWIP_PCE_PCTRL_0p(p)		(0x480 + ((p) * 0xA))
180 #define  GSWIP_PCE_PCTRL_0_TVM		BIT(5)	/* Transparent VLAN mode */
181 #define  GSWIP_PCE_PCTRL_0_VREP		BIT(6)	/* VLAN Replace Mode */
182 #define  GSWIP_PCE_PCTRL_0_INGRESS	BIT(11)	/* Accept special tag in ingress */
183 #define  GSWIP_PCE_PCTRL_0_PSTATE_LISTEN	0x0
184 #define  GSWIP_PCE_PCTRL_0_PSTATE_RX		0x1
185 #define  GSWIP_PCE_PCTRL_0_PSTATE_TX		0x2
186 #define  GSWIP_PCE_PCTRL_0_PSTATE_LEARNING	0x3
187 #define  GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING	0x7
188 #define  GSWIP_PCE_PCTRL_0_PSTATE_MASK	GENMASK(2, 0)
189 #define GSWIP_PCE_VCTRL(p)		(0x485 + ((p) * 0xA))
190 #define  GSWIP_PCE_VCTRL_UVR		BIT(0)	/* Unknown VLAN Rule */
191 #define  GSWIP_PCE_VCTRL_VIMR		BIT(3)	/* VLAN Ingress Member violation rule */
192 #define  GSWIP_PCE_VCTRL_VEMR		BIT(4)	/* VLAN Egress Member violation rule */
193 #define  GSWIP_PCE_VCTRL_VSR		BIT(5)	/* VLAN Security */
194 #define  GSWIP_PCE_VCTRL_VID0		BIT(6)	/* Priority Tagged Rule */
195 #define GSWIP_PCE_DEFPVID(p)		(0x486 + ((p) * 0xA))
196 
197 #define GSWIP_MAC_FLEN			0x8C5
198 #define GSWIP_MAC_CTRL_0p(p)		(0x903 + ((p) * 0xC))
199 #define  GSWIP_MAC_CTRL_0_PADEN		BIT(8)
200 #define  GSWIP_MAC_CTRL_0_FCS_EN	BIT(7)
201 #define  GSWIP_MAC_CTRL_0_FCON_MASK	0x0070
202 #define  GSWIP_MAC_CTRL_0_FCON_AUTO	0x0000
203 #define  GSWIP_MAC_CTRL_0_FCON_RX	0x0010
204 #define  GSWIP_MAC_CTRL_0_FCON_TX	0x0020
205 #define  GSWIP_MAC_CTRL_0_FCON_RXTX	0x0030
206 #define  GSWIP_MAC_CTRL_0_FCON_NONE	0x0040
207 #define  GSWIP_MAC_CTRL_0_FDUP_MASK	0x000C
208 #define  GSWIP_MAC_CTRL_0_FDUP_AUTO	0x0000
209 #define  GSWIP_MAC_CTRL_0_FDUP_EN	0x0004
210 #define  GSWIP_MAC_CTRL_0_FDUP_DIS	0x000C
211 #define  GSWIP_MAC_CTRL_0_GMII_MASK	0x0003
212 #define  GSWIP_MAC_CTRL_0_GMII_AUTO	0x0000
213 #define  GSWIP_MAC_CTRL_0_GMII_MII	0x0001
214 #define  GSWIP_MAC_CTRL_0_GMII_RGMII	0x0002
215 #define GSWIP_MAC_CTRL_2p(p)		(0x905 + ((p) * 0xC))
216 #define GSWIP_MAC_CTRL_2_MLEN		BIT(3) /* Maximum Untagged Frame Lnegth */
217 
218 /* Ethernet Switch Fetch DMA Port Control Register */
219 #define GSWIP_FDMA_PCTRLp(p)		(0xA80 + ((p) * 0x6))
220 #define  GSWIP_FDMA_PCTRL_EN		BIT(0)	/* FDMA Port Enable */
221 #define  GSWIP_FDMA_PCTRL_STEN		BIT(1)	/* Special Tag Insertion Enable */
222 #define  GSWIP_FDMA_PCTRL_VLANMOD_MASK	GENMASK(4, 3)	/* VLAN Modification Control */
223 #define  GSWIP_FDMA_PCTRL_VLANMOD_SHIFT	3	/* VLAN Modification Control */
224 #define  GSWIP_FDMA_PCTRL_VLANMOD_DIS	(0x0 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
225 #define  GSWIP_FDMA_PCTRL_VLANMOD_PRIO	(0x1 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
226 #define  GSWIP_FDMA_PCTRL_VLANMOD_ID	(0x2 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
227 #define  GSWIP_FDMA_PCTRL_VLANMOD_BOTH	(0x3 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
228 
229 /* Ethernet Switch Store DMA Port Control Register */
230 #define GSWIP_SDMA_PCTRLp(p)		(0xBC0 + ((p) * 0x6))
231 #define  GSWIP_SDMA_PCTRL_EN		BIT(0)	/* SDMA Port Enable */
232 #define  GSWIP_SDMA_PCTRL_FCEN		BIT(1)	/* Flow Control Enable */
233 #define  GSWIP_SDMA_PCTRL_PAUFWD	BIT(3)	/* Pause Frame Forwarding */
234 
235 #define GSWIP_TABLE_ACTIVE_VLAN		0x01
236 #define GSWIP_TABLE_VLAN_MAPPING	0x02
237 #define GSWIP_TABLE_MAC_BRIDGE		0x0b
238 #define  GSWIP_TABLE_MAC_BRIDGE_STATIC	0x01	/* Static not, aging entry */
239 
240 #define XRX200_GPHY_FW_ALIGN	(16 * 1024)
241 
242 struct gswip_hw_info {
243 	int max_ports;
244 	int cpu_port;
245 	const struct dsa_switch_ops *ops;
246 };
247 
248 struct xway_gphy_match_data {
249 	char *fe_firmware_name;
250 	char *ge_firmware_name;
251 };
252 
253 struct gswip_gphy_fw {
254 	struct clk *clk_gate;
255 	struct reset_control *reset;
256 	u32 fw_addr_offset;
257 	char *fw_name;
258 };
259 
260 struct gswip_vlan {
261 	struct net_device *bridge;
262 	u16 vid;
263 	u8 fid;
264 };
265 
266 struct gswip_priv {
267 	__iomem void *gswip;
268 	__iomem void *mdio;
269 	__iomem void *mii;
270 	const struct gswip_hw_info *hw_info;
271 	const struct xway_gphy_match_data *gphy_fw_name_cfg;
272 	struct dsa_switch *ds;
273 	struct device *dev;
274 	struct regmap *rcu_regmap;
275 	struct gswip_vlan vlans[64];
276 	int num_gphy_fw;
277 	struct gswip_gphy_fw *gphy_fw;
278 	u32 port_vlan_filter;
279 };
280 
281 struct gswip_pce_table_entry {
282 	u16 index;      // PCE_TBL_ADDR.ADDR = pData->table_index
283 	u16 table;      // PCE_TBL_CTRL.ADDR = pData->table
284 	u16 key[8];
285 	u16 val[5];
286 	u16 mask;
287 	u8 gmap;
288 	bool type;
289 	bool valid;
290 	bool key_mode;
291 };
292 
293 struct gswip_rmon_cnt_desc {
294 	unsigned int size;
295 	unsigned int offset;
296 	const char *name;
297 };
298 
299 #define MIB_DESC(_size, _offset, _name) {.size = _size, .offset = _offset, .name = _name}
300 
301 static const struct gswip_rmon_cnt_desc gswip_rmon_cnt[] = {
302 	/** Receive Packet Count (only packets that are accepted and not discarded). */
303 	MIB_DESC(1, 0x1F, "RxGoodPkts"),
304 	MIB_DESC(1, 0x23, "RxUnicastPkts"),
305 	MIB_DESC(1, 0x22, "RxMulticastPkts"),
306 	MIB_DESC(1, 0x21, "RxFCSErrorPkts"),
307 	MIB_DESC(1, 0x1D, "RxUnderSizeGoodPkts"),
308 	MIB_DESC(1, 0x1E, "RxUnderSizeErrorPkts"),
309 	MIB_DESC(1, 0x1B, "RxOversizeGoodPkts"),
310 	MIB_DESC(1, 0x1C, "RxOversizeErrorPkts"),
311 	MIB_DESC(1, 0x20, "RxGoodPausePkts"),
312 	MIB_DESC(1, 0x1A, "RxAlignErrorPkts"),
313 	MIB_DESC(1, 0x12, "Rx64BytePkts"),
314 	MIB_DESC(1, 0x13, "Rx127BytePkts"),
315 	MIB_DESC(1, 0x14, "Rx255BytePkts"),
316 	MIB_DESC(1, 0x15, "Rx511BytePkts"),
317 	MIB_DESC(1, 0x16, "Rx1023BytePkts"),
318 	/** Receive Size 1024-1522 (or more, if configured) Packet Count. */
319 	MIB_DESC(1, 0x17, "RxMaxBytePkts"),
320 	MIB_DESC(1, 0x18, "RxDroppedPkts"),
321 	MIB_DESC(1, 0x19, "RxFilteredPkts"),
322 	MIB_DESC(2, 0x24, "RxGoodBytes"),
323 	MIB_DESC(2, 0x26, "RxBadBytes"),
324 	MIB_DESC(1, 0x11, "TxAcmDroppedPkts"),
325 	MIB_DESC(1, 0x0C, "TxGoodPkts"),
326 	MIB_DESC(1, 0x06, "TxUnicastPkts"),
327 	MIB_DESC(1, 0x07, "TxMulticastPkts"),
328 	MIB_DESC(1, 0x00, "Tx64BytePkts"),
329 	MIB_DESC(1, 0x01, "Tx127BytePkts"),
330 	MIB_DESC(1, 0x02, "Tx255BytePkts"),
331 	MIB_DESC(1, 0x03, "Tx511BytePkts"),
332 	MIB_DESC(1, 0x04, "Tx1023BytePkts"),
333 	/** Transmit Size 1024-1522 (or more, if configured) Packet Count. */
334 	MIB_DESC(1, 0x05, "TxMaxBytePkts"),
335 	MIB_DESC(1, 0x08, "TxSingleCollCount"),
336 	MIB_DESC(1, 0x09, "TxMultCollCount"),
337 	MIB_DESC(1, 0x0A, "TxLateCollCount"),
338 	MIB_DESC(1, 0x0B, "TxExcessCollCount"),
339 	MIB_DESC(1, 0x0D, "TxPauseCount"),
340 	MIB_DESC(1, 0x10, "TxDroppedPkts"),
341 	MIB_DESC(2, 0x0E, "TxGoodBytes"),
342 };
343 
gswip_switch_r(struct gswip_priv * priv,u32 offset)344 static u32 gswip_switch_r(struct gswip_priv *priv, u32 offset)
345 {
346 	return __raw_readl(priv->gswip + (offset * 4));
347 }
348 
gswip_switch_w(struct gswip_priv * priv,u32 val,u32 offset)349 static void gswip_switch_w(struct gswip_priv *priv, u32 val, u32 offset)
350 {
351 	__raw_writel(val, priv->gswip + (offset * 4));
352 }
353 
gswip_switch_mask(struct gswip_priv * priv,u32 clear,u32 set,u32 offset)354 static void gswip_switch_mask(struct gswip_priv *priv, u32 clear, u32 set,
355 			      u32 offset)
356 {
357 	u32 val = gswip_switch_r(priv, offset);
358 
359 	val &= ~(clear);
360 	val |= set;
361 	gswip_switch_w(priv, val, offset);
362 }
363 
gswip_switch_r_timeout(struct gswip_priv * priv,u32 offset,u32 cleared)364 static u32 gswip_switch_r_timeout(struct gswip_priv *priv, u32 offset,
365 				  u32 cleared)
366 {
367 	u32 val;
368 
369 	return readx_poll_timeout(__raw_readl, priv->gswip + (offset * 4), val,
370 				  (val & cleared) == 0, 20, 50000);
371 }
372 
gswip_mdio_r(struct gswip_priv * priv,u32 offset)373 static u32 gswip_mdio_r(struct gswip_priv *priv, u32 offset)
374 {
375 	return __raw_readl(priv->mdio + (offset * 4));
376 }
377 
gswip_mdio_w(struct gswip_priv * priv,u32 val,u32 offset)378 static void gswip_mdio_w(struct gswip_priv *priv, u32 val, u32 offset)
379 {
380 	__raw_writel(val, priv->mdio + (offset * 4));
381 }
382 
gswip_mdio_mask(struct gswip_priv * priv,u32 clear,u32 set,u32 offset)383 static void gswip_mdio_mask(struct gswip_priv *priv, u32 clear, u32 set,
384 			    u32 offset)
385 {
386 	u32 val = gswip_mdio_r(priv, offset);
387 
388 	val &= ~(clear);
389 	val |= set;
390 	gswip_mdio_w(priv, val, offset);
391 }
392 
gswip_mii_r(struct gswip_priv * priv,u32 offset)393 static u32 gswip_mii_r(struct gswip_priv *priv, u32 offset)
394 {
395 	return __raw_readl(priv->mii + (offset * 4));
396 }
397 
gswip_mii_w(struct gswip_priv * priv,u32 val,u32 offset)398 static void gswip_mii_w(struct gswip_priv *priv, u32 val, u32 offset)
399 {
400 	__raw_writel(val, priv->mii + (offset * 4));
401 }
402 
gswip_mii_mask(struct gswip_priv * priv,u32 clear,u32 set,u32 offset)403 static void gswip_mii_mask(struct gswip_priv *priv, u32 clear, u32 set,
404 			   u32 offset)
405 {
406 	u32 val = gswip_mii_r(priv, offset);
407 
408 	val &= ~(clear);
409 	val |= set;
410 	gswip_mii_w(priv, val, offset);
411 }
412 
gswip_mii_mask_cfg(struct gswip_priv * priv,u32 clear,u32 set,int port)413 static void gswip_mii_mask_cfg(struct gswip_priv *priv, u32 clear, u32 set,
414 			       int port)
415 {
416 	/* There's no MII_CFG register for the CPU port */
417 	if (!dsa_is_cpu_port(priv->ds, port))
418 		gswip_mii_mask(priv, clear, set, GSWIP_MII_CFGp(port));
419 }
420 
gswip_mii_mask_pcdu(struct gswip_priv * priv,u32 clear,u32 set,int port)421 static void gswip_mii_mask_pcdu(struct gswip_priv *priv, u32 clear, u32 set,
422 				int port)
423 {
424 	switch (port) {
425 	case 0:
426 		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU0);
427 		break;
428 	case 1:
429 		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU1);
430 		break;
431 	case 5:
432 		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU5);
433 		break;
434 	}
435 }
436 
gswip_mdio_poll(struct gswip_priv * priv)437 static int gswip_mdio_poll(struct gswip_priv *priv)
438 {
439 	int cnt = 100;
440 
441 	while (likely(cnt--)) {
442 		u32 ctrl = gswip_mdio_r(priv, GSWIP_MDIO_CTRL);
443 
444 		if ((ctrl & GSWIP_MDIO_CTRL_BUSY) == 0)
445 			return 0;
446 		usleep_range(20, 40);
447 	}
448 
449 	return -ETIMEDOUT;
450 }
451 
gswip_mdio_wr(struct mii_bus * bus,int addr,int reg,u16 val)452 static int gswip_mdio_wr(struct mii_bus *bus, int addr, int reg, u16 val)
453 {
454 	struct gswip_priv *priv = bus->priv;
455 	int err;
456 
457 	err = gswip_mdio_poll(priv);
458 	if (err) {
459 		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
460 		return err;
461 	}
462 
463 	gswip_mdio_w(priv, val, GSWIP_MDIO_WRITE);
464 	gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_WR |
465 		((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
466 		(reg & GSWIP_MDIO_CTRL_REGAD_MASK),
467 		GSWIP_MDIO_CTRL);
468 
469 	return 0;
470 }
471 
gswip_mdio_rd(struct mii_bus * bus,int addr,int reg)472 static int gswip_mdio_rd(struct mii_bus *bus, int addr, int reg)
473 {
474 	struct gswip_priv *priv = bus->priv;
475 	int err;
476 
477 	err = gswip_mdio_poll(priv);
478 	if (err) {
479 		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
480 		return err;
481 	}
482 
483 	gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_RD |
484 		((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
485 		(reg & GSWIP_MDIO_CTRL_REGAD_MASK),
486 		GSWIP_MDIO_CTRL);
487 
488 	err = gswip_mdio_poll(priv);
489 	if (err) {
490 		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
491 		return err;
492 	}
493 
494 	return gswip_mdio_r(priv, GSWIP_MDIO_READ);
495 }
496 
gswip_mdio(struct gswip_priv * priv,struct device_node * mdio_np)497 static int gswip_mdio(struct gswip_priv *priv, struct device_node *mdio_np)
498 {
499 	struct dsa_switch *ds = priv->ds;
500 
501 	ds->slave_mii_bus = devm_mdiobus_alloc(priv->dev);
502 	if (!ds->slave_mii_bus)
503 		return -ENOMEM;
504 
505 	ds->slave_mii_bus->priv = priv;
506 	ds->slave_mii_bus->read = gswip_mdio_rd;
507 	ds->slave_mii_bus->write = gswip_mdio_wr;
508 	ds->slave_mii_bus->name = "lantiq,xrx200-mdio";
509 	snprintf(ds->slave_mii_bus->id, MII_BUS_ID_SIZE, "%s-mii",
510 		 dev_name(priv->dev));
511 	ds->slave_mii_bus->parent = priv->dev;
512 	ds->slave_mii_bus->phy_mask = ~ds->phys_mii_mask;
513 
514 	return of_mdiobus_register(ds->slave_mii_bus, mdio_np);
515 }
516 
gswip_pce_table_entry_read(struct gswip_priv * priv,struct gswip_pce_table_entry * tbl)517 static int gswip_pce_table_entry_read(struct gswip_priv *priv,
518 				      struct gswip_pce_table_entry *tbl)
519 {
520 	int i;
521 	int err;
522 	u16 crtl;
523 	u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSRD :
524 					GSWIP_PCE_TBL_CTRL_OPMOD_ADRD;
525 
526 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
527 				     GSWIP_PCE_TBL_CTRL_BAS);
528 	if (err)
529 		return err;
530 
531 	gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
532 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
533 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
534 			  tbl->table | addr_mode | GSWIP_PCE_TBL_CTRL_BAS,
535 			  GSWIP_PCE_TBL_CTRL);
536 
537 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
538 				     GSWIP_PCE_TBL_CTRL_BAS);
539 	if (err)
540 		return err;
541 
542 	for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
543 		tbl->key[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_KEY(i));
544 
545 	for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
546 		tbl->val[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_VAL(i));
547 
548 	tbl->mask = gswip_switch_r(priv, GSWIP_PCE_TBL_MASK);
549 
550 	crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
551 
552 	tbl->type = !!(crtl & GSWIP_PCE_TBL_CTRL_TYPE);
553 	tbl->valid = !!(crtl & GSWIP_PCE_TBL_CTRL_VLD);
554 	tbl->gmap = (crtl & GSWIP_PCE_TBL_CTRL_GMAP_MASK) >> 7;
555 
556 	return 0;
557 }
558 
gswip_pce_table_entry_write(struct gswip_priv * priv,struct gswip_pce_table_entry * tbl)559 static int gswip_pce_table_entry_write(struct gswip_priv *priv,
560 				       struct gswip_pce_table_entry *tbl)
561 {
562 	int i;
563 	int err;
564 	u16 crtl;
565 	u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSWR :
566 					GSWIP_PCE_TBL_CTRL_OPMOD_ADWR;
567 
568 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
569 				     GSWIP_PCE_TBL_CTRL_BAS);
570 	if (err)
571 		return err;
572 
573 	gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
574 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
575 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
576 			  tbl->table | addr_mode,
577 			  GSWIP_PCE_TBL_CTRL);
578 
579 	for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
580 		gswip_switch_w(priv, tbl->key[i], GSWIP_PCE_TBL_KEY(i));
581 
582 	for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
583 		gswip_switch_w(priv, tbl->val[i], GSWIP_PCE_TBL_VAL(i));
584 
585 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
586 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
587 			  tbl->table | addr_mode,
588 			  GSWIP_PCE_TBL_CTRL);
589 
590 	gswip_switch_w(priv, tbl->mask, GSWIP_PCE_TBL_MASK);
591 
592 	crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
593 	crtl &= ~(GSWIP_PCE_TBL_CTRL_TYPE | GSWIP_PCE_TBL_CTRL_VLD |
594 		  GSWIP_PCE_TBL_CTRL_GMAP_MASK);
595 	if (tbl->type)
596 		crtl |= GSWIP_PCE_TBL_CTRL_TYPE;
597 	if (tbl->valid)
598 		crtl |= GSWIP_PCE_TBL_CTRL_VLD;
599 	crtl |= (tbl->gmap << 7) & GSWIP_PCE_TBL_CTRL_GMAP_MASK;
600 	crtl |= GSWIP_PCE_TBL_CTRL_BAS;
601 	gswip_switch_w(priv, crtl, GSWIP_PCE_TBL_CTRL);
602 
603 	return gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
604 				      GSWIP_PCE_TBL_CTRL_BAS);
605 }
606 
607 /* Add the LAN port into a bridge with the CPU port by
608  * default. This prevents automatic forwarding of
609  * packages between the LAN ports when no explicit
610  * bridge is configured.
611  */
gswip_add_single_port_br(struct gswip_priv * priv,int port,bool add)612 static int gswip_add_single_port_br(struct gswip_priv *priv, int port, bool add)
613 {
614 	struct gswip_pce_table_entry vlan_active = {0,};
615 	struct gswip_pce_table_entry vlan_mapping = {0,};
616 	unsigned int cpu_port = priv->hw_info->cpu_port;
617 	unsigned int max_ports = priv->hw_info->max_ports;
618 	int err;
619 
620 	if (port >= max_ports) {
621 		dev_err(priv->dev, "single port for %i supported\n", port);
622 		return -EIO;
623 	}
624 
625 	vlan_active.index = port + 1;
626 	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
627 	vlan_active.key[0] = 0; /* vid */
628 	vlan_active.val[0] = port + 1 /* fid */;
629 	vlan_active.valid = add;
630 	err = gswip_pce_table_entry_write(priv, &vlan_active);
631 	if (err) {
632 		dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
633 		return err;
634 	}
635 
636 	if (!add)
637 		return 0;
638 
639 	vlan_mapping.index = port + 1;
640 	vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
641 	vlan_mapping.val[0] = 0 /* vid */;
642 	vlan_mapping.val[1] = BIT(port) | BIT(cpu_port);
643 	vlan_mapping.val[2] = 0;
644 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
645 	if (err) {
646 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
647 		return err;
648 	}
649 
650 	return 0;
651 }
652 
gswip_port_enable(struct dsa_switch * ds,int port,struct phy_device * phydev)653 static int gswip_port_enable(struct dsa_switch *ds, int port,
654 			     struct phy_device *phydev)
655 {
656 	struct gswip_priv *priv = ds->priv;
657 	int err;
658 
659 	if (!dsa_is_user_port(ds, port))
660 		return 0;
661 
662 	if (!dsa_is_cpu_port(ds, port)) {
663 		err = gswip_add_single_port_br(priv, port, true);
664 		if (err)
665 			return err;
666 	}
667 
668 	/* RMON Counter Enable for port */
669 	gswip_switch_w(priv, GSWIP_BM_PCFG_CNTEN, GSWIP_BM_PCFGp(port));
670 
671 	/* enable port fetch/store dma & VLAN Modification */
672 	gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_EN |
673 				   GSWIP_FDMA_PCTRL_VLANMOD_BOTH,
674 			 GSWIP_FDMA_PCTRLp(port));
675 	gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
676 			  GSWIP_SDMA_PCTRLp(port));
677 
678 	if (!dsa_is_cpu_port(ds, port)) {
679 		u32 mdio_phy = 0;
680 
681 		if (phydev)
682 			mdio_phy = phydev->mdio.addr & GSWIP_MDIO_PHY_ADDR_MASK;
683 
684 		gswip_mdio_mask(priv, GSWIP_MDIO_PHY_ADDR_MASK, mdio_phy,
685 				GSWIP_MDIO_PHYp(port));
686 	}
687 
688 	return 0;
689 }
690 
gswip_port_disable(struct dsa_switch * ds,int port)691 static void gswip_port_disable(struct dsa_switch *ds, int port)
692 {
693 	struct gswip_priv *priv = ds->priv;
694 
695 	if (!dsa_is_user_port(ds, port))
696 		return;
697 
698 	gswip_switch_mask(priv, GSWIP_FDMA_PCTRL_EN, 0,
699 			  GSWIP_FDMA_PCTRLp(port));
700 	gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
701 			  GSWIP_SDMA_PCTRLp(port));
702 }
703 
gswip_pce_load_microcode(struct gswip_priv * priv)704 static int gswip_pce_load_microcode(struct gswip_priv *priv)
705 {
706 	int i;
707 	int err;
708 
709 	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
710 				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
711 			  GSWIP_PCE_TBL_CTRL_OPMOD_ADWR, GSWIP_PCE_TBL_CTRL);
712 	gswip_switch_w(priv, 0, GSWIP_PCE_TBL_MASK);
713 
714 	for (i = 0; i < ARRAY_SIZE(gswip_pce_microcode); i++) {
715 		gswip_switch_w(priv, i, GSWIP_PCE_TBL_ADDR);
716 		gswip_switch_w(priv, gswip_pce_microcode[i].val_0,
717 			       GSWIP_PCE_TBL_VAL(0));
718 		gswip_switch_w(priv, gswip_pce_microcode[i].val_1,
719 			       GSWIP_PCE_TBL_VAL(1));
720 		gswip_switch_w(priv, gswip_pce_microcode[i].val_2,
721 			       GSWIP_PCE_TBL_VAL(2));
722 		gswip_switch_w(priv, gswip_pce_microcode[i].val_3,
723 			       GSWIP_PCE_TBL_VAL(3));
724 
725 		/* start the table access: */
726 		gswip_switch_mask(priv, 0, GSWIP_PCE_TBL_CTRL_BAS,
727 				  GSWIP_PCE_TBL_CTRL);
728 		err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
729 					     GSWIP_PCE_TBL_CTRL_BAS);
730 		if (err)
731 			return err;
732 	}
733 
734 	/* tell the switch that the microcode is loaded */
735 	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MC_VALID,
736 			  GSWIP_PCE_GCTRL_0);
737 
738 	return 0;
739 }
740 
gswip_port_vlan_filtering(struct dsa_switch * ds,int port,bool vlan_filtering,struct netlink_ext_ack * extack)741 static int gswip_port_vlan_filtering(struct dsa_switch *ds, int port,
742 				     bool vlan_filtering,
743 				     struct netlink_ext_ack *extack)
744 {
745 	struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
746 	struct gswip_priv *priv = ds->priv;
747 
748 	/* Do not allow changing the VLAN filtering options while in bridge */
749 	if (bridge && !!(priv->port_vlan_filter & BIT(port)) != vlan_filtering) {
750 		NL_SET_ERR_MSG_MOD(extack,
751 				   "Dynamic toggling of vlan_filtering not supported");
752 		return -EIO;
753 	}
754 
755 	if (vlan_filtering) {
756 		/* Use port based VLAN tag */
757 		gswip_switch_mask(priv,
758 				  GSWIP_PCE_VCTRL_VSR,
759 				  GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
760 				  GSWIP_PCE_VCTRL_VEMR,
761 				  GSWIP_PCE_VCTRL(port));
762 		gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_TVM, 0,
763 				  GSWIP_PCE_PCTRL_0p(port));
764 	} else {
765 		/* Use port based VLAN tag */
766 		gswip_switch_mask(priv,
767 				  GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
768 				  GSWIP_PCE_VCTRL_VEMR,
769 				  GSWIP_PCE_VCTRL_VSR,
770 				  GSWIP_PCE_VCTRL(port));
771 		gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_TVM,
772 				  GSWIP_PCE_PCTRL_0p(port));
773 	}
774 
775 	return 0;
776 }
777 
gswip_setup(struct dsa_switch * ds)778 static int gswip_setup(struct dsa_switch *ds)
779 {
780 	struct gswip_priv *priv = ds->priv;
781 	unsigned int cpu_port = priv->hw_info->cpu_port;
782 	int i;
783 	int err;
784 
785 	gswip_switch_w(priv, GSWIP_SWRES_R0, GSWIP_SWRES);
786 	usleep_range(5000, 10000);
787 	gswip_switch_w(priv, 0, GSWIP_SWRES);
788 
789 	/* disable port fetch/store dma on all ports */
790 	for (i = 0; i < priv->hw_info->max_ports; i++) {
791 		gswip_port_disable(ds, i);
792 		gswip_port_vlan_filtering(ds, i, false, NULL);
793 	}
794 
795 	/* enable Switch */
796 	gswip_mdio_mask(priv, 0, GSWIP_MDIO_GLOB_ENABLE, GSWIP_MDIO_GLOB);
797 
798 	err = gswip_pce_load_microcode(priv);
799 	if (err) {
800 		dev_err(priv->dev, "writing PCE microcode failed, %i", err);
801 		return err;
802 	}
803 
804 	/* Default unknown Broadcast/Multicast/Unicast port maps */
805 	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP1);
806 	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP2);
807 	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP3);
808 
809 	/* Deactivate MDIO PHY auto polling. Some PHYs as the AR8030 have an
810 	 * interoperability problem with this auto polling mechanism because
811 	 * their status registers think that the link is in a different state
812 	 * than it actually is. For the AR8030 it has the BMSR_ESTATEN bit set
813 	 * as well as ESTATUS_1000_TFULL and ESTATUS_1000_XFULL. This makes the
814 	 * auto polling state machine consider the link being negotiated with
815 	 * 1Gbit/s. Since the PHY itself is a Fast Ethernet RMII PHY this leads
816 	 * to the switch port being completely dead (RX and TX are both not
817 	 * working).
818 	 * Also with various other PHY / port combinations (PHY11G GPHY, PHY22F
819 	 * GPHY, external RGMII PEF7071/7072) any traffic would stop. Sometimes
820 	 * it would work fine for a few minutes to hours and then stop, on
821 	 * other device it would no traffic could be sent or received at all.
822 	 * Testing shows that when PHY auto polling is disabled these problems
823 	 * go away.
824 	 */
825 	gswip_mdio_w(priv, 0x0, GSWIP_MDIO_MDC_CFG0);
826 
827 	/* Configure the MDIO Clock 2.5 MHz */
828 	gswip_mdio_mask(priv, 0xff, 0x09, GSWIP_MDIO_MDC_CFG1);
829 
830 	/* Disable the xMII interface and clear it's isolation bit */
831 	for (i = 0; i < priv->hw_info->max_ports; i++)
832 		gswip_mii_mask_cfg(priv,
833 				   GSWIP_MII_CFG_EN | GSWIP_MII_CFG_ISOLATE,
834 				   0, i);
835 
836 	/* enable special tag insertion on cpu port */
837 	gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_STEN,
838 			  GSWIP_FDMA_PCTRLp(cpu_port));
839 
840 	/* accept special tag in ingress direction */
841 	gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_INGRESS,
842 			  GSWIP_PCE_PCTRL_0p(cpu_port));
843 
844 	gswip_switch_mask(priv, 0, GSWIP_MAC_CTRL_2_MLEN,
845 			  GSWIP_MAC_CTRL_2p(cpu_port));
846 	gswip_switch_w(priv, VLAN_ETH_FRAME_LEN + 8 + ETH_FCS_LEN,
847 		       GSWIP_MAC_FLEN);
848 	gswip_switch_mask(priv, 0, GSWIP_BM_QUEUE_GCTRL_GL_MOD,
849 			  GSWIP_BM_QUEUE_GCTRL);
850 
851 	/* VLAN aware Switching */
852 	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_VLAN, GSWIP_PCE_GCTRL_0);
853 
854 	/* Flush MAC Table */
855 	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MTFL, GSWIP_PCE_GCTRL_0);
856 
857 	err = gswip_switch_r_timeout(priv, GSWIP_PCE_GCTRL_0,
858 				     GSWIP_PCE_GCTRL_0_MTFL);
859 	if (err) {
860 		dev_err(priv->dev, "MAC flushing didn't finish\n");
861 		return err;
862 	}
863 
864 	gswip_port_enable(ds, cpu_port, NULL);
865 
866 	ds->configure_vlan_while_not_filtering = false;
867 
868 	return 0;
869 }
870 
gswip_get_tag_protocol(struct dsa_switch * ds,int port,enum dsa_tag_protocol mp)871 static enum dsa_tag_protocol gswip_get_tag_protocol(struct dsa_switch *ds,
872 						    int port,
873 						    enum dsa_tag_protocol mp)
874 {
875 	return DSA_TAG_PROTO_GSWIP;
876 }
877 
gswip_vlan_active_create(struct gswip_priv * priv,struct net_device * bridge,int fid,u16 vid)878 static int gswip_vlan_active_create(struct gswip_priv *priv,
879 				    struct net_device *bridge,
880 				    int fid, u16 vid)
881 {
882 	struct gswip_pce_table_entry vlan_active = {0,};
883 	unsigned int max_ports = priv->hw_info->max_ports;
884 	int idx = -1;
885 	int err;
886 	int i;
887 
888 	/* Look for a free slot */
889 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
890 		if (!priv->vlans[i].bridge) {
891 			idx = i;
892 			break;
893 		}
894 	}
895 
896 	if (idx == -1)
897 		return -ENOSPC;
898 
899 	if (fid == -1)
900 		fid = idx;
901 
902 	vlan_active.index = idx;
903 	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
904 	vlan_active.key[0] = vid;
905 	vlan_active.val[0] = fid;
906 	vlan_active.valid = true;
907 
908 	err = gswip_pce_table_entry_write(priv, &vlan_active);
909 	if (err) {
910 		dev_err(priv->dev, "failed to write active VLAN: %d\n",	err);
911 		return err;
912 	}
913 
914 	priv->vlans[idx].bridge = bridge;
915 	priv->vlans[idx].vid = vid;
916 	priv->vlans[idx].fid = fid;
917 
918 	return idx;
919 }
920 
gswip_vlan_active_remove(struct gswip_priv * priv,int idx)921 static int gswip_vlan_active_remove(struct gswip_priv *priv, int idx)
922 {
923 	struct gswip_pce_table_entry vlan_active = {0,};
924 	int err;
925 
926 	vlan_active.index = idx;
927 	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
928 	vlan_active.valid = false;
929 	err = gswip_pce_table_entry_write(priv, &vlan_active);
930 	if (err)
931 		dev_err(priv->dev, "failed to delete active VLAN: %d\n", err);
932 	priv->vlans[idx].bridge = NULL;
933 
934 	return err;
935 }
936 
gswip_vlan_add_unaware(struct gswip_priv * priv,struct net_device * bridge,int port)937 static int gswip_vlan_add_unaware(struct gswip_priv *priv,
938 				  struct net_device *bridge, int port)
939 {
940 	struct gswip_pce_table_entry vlan_mapping = {0,};
941 	unsigned int max_ports = priv->hw_info->max_ports;
942 	unsigned int cpu_port = priv->hw_info->cpu_port;
943 	bool active_vlan_created = false;
944 	int idx = -1;
945 	int i;
946 	int err;
947 
948 	/* Check if there is already a page for this bridge */
949 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
950 		if (priv->vlans[i].bridge == bridge) {
951 			idx = i;
952 			break;
953 		}
954 	}
955 
956 	/* If this bridge is not programmed yet, add a Active VLAN table
957 	 * entry in a free slot and prepare the VLAN mapping table entry.
958 	 */
959 	if (idx == -1) {
960 		idx = gswip_vlan_active_create(priv, bridge, -1, 0);
961 		if (idx < 0)
962 			return idx;
963 		active_vlan_created = true;
964 
965 		vlan_mapping.index = idx;
966 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
967 		/* VLAN ID byte, maps to the VLAN ID of vlan active table */
968 		vlan_mapping.val[0] = 0;
969 	} else {
970 		/* Read the existing VLAN mapping entry from the switch */
971 		vlan_mapping.index = idx;
972 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
973 		err = gswip_pce_table_entry_read(priv, &vlan_mapping);
974 		if (err) {
975 			dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
976 				err);
977 			return err;
978 		}
979 	}
980 
981 	/* Update the VLAN mapping entry and write it to the switch */
982 	vlan_mapping.val[1] |= BIT(cpu_port);
983 	vlan_mapping.val[1] |= BIT(port);
984 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
985 	if (err) {
986 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
987 		/* In case an Active VLAN was creaetd delete it again */
988 		if (active_vlan_created)
989 			gswip_vlan_active_remove(priv, idx);
990 		return err;
991 	}
992 
993 	gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
994 	return 0;
995 }
996 
gswip_vlan_add_aware(struct gswip_priv * priv,struct net_device * bridge,int port,u16 vid,bool untagged,bool pvid)997 static int gswip_vlan_add_aware(struct gswip_priv *priv,
998 				struct net_device *bridge, int port,
999 				u16 vid, bool untagged,
1000 				bool pvid)
1001 {
1002 	struct gswip_pce_table_entry vlan_mapping = {0,};
1003 	unsigned int max_ports = priv->hw_info->max_ports;
1004 	unsigned int cpu_port = priv->hw_info->cpu_port;
1005 	bool active_vlan_created = false;
1006 	int idx = -1;
1007 	int fid = -1;
1008 	int i;
1009 	int err;
1010 
1011 	/* Check if there is already a page for this bridge */
1012 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1013 		if (priv->vlans[i].bridge == bridge) {
1014 			if (fid != -1 && fid != priv->vlans[i].fid)
1015 				dev_err(priv->dev, "one bridge with multiple flow ids\n");
1016 			fid = priv->vlans[i].fid;
1017 			if (priv->vlans[i].vid == vid) {
1018 				idx = i;
1019 				break;
1020 			}
1021 		}
1022 	}
1023 
1024 	/* If this bridge is not programmed yet, add a Active VLAN table
1025 	 * entry in a free slot and prepare the VLAN mapping table entry.
1026 	 */
1027 	if (idx == -1) {
1028 		idx = gswip_vlan_active_create(priv, bridge, fid, vid);
1029 		if (idx < 0)
1030 			return idx;
1031 		active_vlan_created = true;
1032 
1033 		vlan_mapping.index = idx;
1034 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1035 		/* VLAN ID byte, maps to the VLAN ID of vlan active table */
1036 		vlan_mapping.val[0] = vid;
1037 	} else {
1038 		/* Read the existing VLAN mapping entry from the switch */
1039 		vlan_mapping.index = idx;
1040 		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1041 		err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1042 		if (err) {
1043 			dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
1044 				err);
1045 			return err;
1046 		}
1047 	}
1048 
1049 	vlan_mapping.val[0] = vid;
1050 	/* Update the VLAN mapping entry and write it to the switch */
1051 	vlan_mapping.val[1] |= BIT(cpu_port);
1052 	vlan_mapping.val[2] |= BIT(cpu_port);
1053 	vlan_mapping.val[1] |= BIT(port);
1054 	if (untagged)
1055 		vlan_mapping.val[2] &= ~BIT(port);
1056 	else
1057 		vlan_mapping.val[2] |= BIT(port);
1058 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1059 	if (err) {
1060 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1061 		/* In case an Active VLAN was creaetd delete it again */
1062 		if (active_vlan_created)
1063 			gswip_vlan_active_remove(priv, idx);
1064 		return err;
1065 	}
1066 
1067 	if (pvid)
1068 		gswip_switch_w(priv, idx, GSWIP_PCE_DEFPVID(port));
1069 
1070 	return 0;
1071 }
1072 
gswip_vlan_remove(struct gswip_priv * priv,struct net_device * bridge,int port,u16 vid,bool pvid,bool vlan_aware)1073 static int gswip_vlan_remove(struct gswip_priv *priv,
1074 			     struct net_device *bridge, int port,
1075 			     u16 vid, bool pvid, bool vlan_aware)
1076 {
1077 	struct gswip_pce_table_entry vlan_mapping = {0,};
1078 	unsigned int max_ports = priv->hw_info->max_ports;
1079 	unsigned int cpu_port = priv->hw_info->cpu_port;
1080 	int idx = -1;
1081 	int i;
1082 	int err;
1083 
1084 	/* Check if there is already a page for this bridge */
1085 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1086 		if (priv->vlans[i].bridge == bridge &&
1087 		    (!vlan_aware || priv->vlans[i].vid == vid)) {
1088 			idx = i;
1089 			break;
1090 		}
1091 	}
1092 
1093 	if (idx == -1) {
1094 		dev_err(priv->dev, "bridge to leave does not exists\n");
1095 		return -ENOENT;
1096 	}
1097 
1098 	vlan_mapping.index = idx;
1099 	vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1100 	err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1101 	if (err) {
1102 		dev_err(priv->dev, "failed to read VLAN mapping: %d\n",	err);
1103 		return err;
1104 	}
1105 
1106 	vlan_mapping.val[1] &= ~BIT(port);
1107 	vlan_mapping.val[2] &= ~BIT(port);
1108 	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1109 	if (err) {
1110 		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1111 		return err;
1112 	}
1113 
1114 	/* In case all ports are removed from the bridge, remove the VLAN */
1115 	if ((vlan_mapping.val[1] & ~BIT(cpu_port)) == 0) {
1116 		err = gswip_vlan_active_remove(priv, idx);
1117 		if (err) {
1118 			dev_err(priv->dev, "failed to write active VLAN: %d\n",
1119 				err);
1120 			return err;
1121 		}
1122 	}
1123 
1124 	/* GSWIP 2.2 (GRX300) and later program here the VID directly. */
1125 	if (pvid)
1126 		gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
1127 
1128 	return 0;
1129 }
1130 
gswip_port_bridge_join(struct dsa_switch * ds,int port,struct net_device * bridge)1131 static int gswip_port_bridge_join(struct dsa_switch *ds, int port,
1132 				  struct net_device *bridge)
1133 {
1134 	struct gswip_priv *priv = ds->priv;
1135 	int err;
1136 
1137 	/* When the bridge uses VLAN filtering we have to configure VLAN
1138 	 * specific bridges. No bridge is configured here.
1139 	 */
1140 	if (!br_vlan_enabled(bridge)) {
1141 		err = gswip_vlan_add_unaware(priv, bridge, port);
1142 		if (err)
1143 			return err;
1144 		priv->port_vlan_filter &= ~BIT(port);
1145 	} else {
1146 		priv->port_vlan_filter |= BIT(port);
1147 	}
1148 	return gswip_add_single_port_br(priv, port, false);
1149 }
1150 
gswip_port_bridge_leave(struct dsa_switch * ds,int port,struct net_device * bridge)1151 static void gswip_port_bridge_leave(struct dsa_switch *ds, int port,
1152 				    struct net_device *bridge)
1153 {
1154 	struct gswip_priv *priv = ds->priv;
1155 
1156 	gswip_add_single_port_br(priv, port, true);
1157 
1158 	/* When the bridge uses VLAN filtering we have to configure VLAN
1159 	 * specific bridges. No bridge is configured here.
1160 	 */
1161 	if (!br_vlan_enabled(bridge))
1162 		gswip_vlan_remove(priv, bridge, port, 0, true, false);
1163 }
1164 
gswip_port_vlan_prepare(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan,struct netlink_ext_ack * extack)1165 static int gswip_port_vlan_prepare(struct dsa_switch *ds, int port,
1166 				   const struct switchdev_obj_port_vlan *vlan,
1167 				   struct netlink_ext_ack *extack)
1168 {
1169 	struct gswip_priv *priv = ds->priv;
1170 	struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1171 	unsigned int max_ports = priv->hw_info->max_ports;
1172 	int pos = max_ports;
1173 	int i, idx = -1;
1174 
1175 	/* We only support VLAN filtering on bridges */
1176 	if (!dsa_is_cpu_port(ds, port) && !bridge)
1177 		return -EOPNOTSUPP;
1178 
1179 	/* Check if there is already a page for this VLAN */
1180 	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1181 		if (priv->vlans[i].bridge == bridge &&
1182 		    priv->vlans[i].vid == vlan->vid) {
1183 			idx = i;
1184 			break;
1185 		}
1186 	}
1187 
1188 	/* If this VLAN is not programmed yet, we have to reserve
1189 	 * one entry in the VLAN table. Make sure we start at the
1190 	 * next position round.
1191 	 */
1192 	if (idx == -1) {
1193 		/* Look for a free slot */
1194 		for (; pos < ARRAY_SIZE(priv->vlans); pos++) {
1195 			if (!priv->vlans[pos].bridge) {
1196 				idx = pos;
1197 				pos++;
1198 				break;
1199 			}
1200 		}
1201 
1202 		if (idx == -1) {
1203 			NL_SET_ERR_MSG_MOD(extack, "No slot in VLAN table");
1204 			return -ENOSPC;
1205 		}
1206 	}
1207 
1208 	return 0;
1209 }
1210 
gswip_port_vlan_add(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan,struct netlink_ext_ack * extack)1211 static int gswip_port_vlan_add(struct dsa_switch *ds, int port,
1212 			       const struct switchdev_obj_port_vlan *vlan,
1213 			       struct netlink_ext_ack *extack)
1214 {
1215 	struct gswip_priv *priv = ds->priv;
1216 	struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1217 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1218 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1219 	int err;
1220 
1221 	err = gswip_port_vlan_prepare(ds, port, vlan, extack);
1222 	if (err)
1223 		return err;
1224 
1225 	/* We have to receive all packets on the CPU port and should not
1226 	 * do any VLAN filtering here. This is also called with bridge
1227 	 * NULL and then we do not know for which bridge to configure
1228 	 * this.
1229 	 */
1230 	if (dsa_is_cpu_port(ds, port))
1231 		return 0;
1232 
1233 	return gswip_vlan_add_aware(priv, bridge, port, vlan->vid,
1234 				    untagged, pvid);
1235 }
1236 
gswip_port_vlan_del(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan)1237 static int gswip_port_vlan_del(struct dsa_switch *ds, int port,
1238 			       const struct switchdev_obj_port_vlan *vlan)
1239 {
1240 	struct gswip_priv *priv = ds->priv;
1241 	struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1242 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1243 
1244 	/* We have to receive all packets on the CPU port and should not
1245 	 * do any VLAN filtering here. This is also called with bridge
1246 	 * NULL and then we do not know for which bridge to configure
1247 	 * this.
1248 	 */
1249 	if (dsa_is_cpu_port(ds, port))
1250 		return 0;
1251 
1252 	return gswip_vlan_remove(priv, bridge, port, vlan->vid, pvid, true);
1253 }
1254 
gswip_port_fast_age(struct dsa_switch * ds,int port)1255 static void gswip_port_fast_age(struct dsa_switch *ds, int port)
1256 {
1257 	struct gswip_priv *priv = ds->priv;
1258 	struct gswip_pce_table_entry mac_bridge = {0,};
1259 	int i;
1260 	int err;
1261 
1262 	for (i = 0; i < 2048; i++) {
1263 		mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1264 		mac_bridge.index = i;
1265 
1266 		err = gswip_pce_table_entry_read(priv, &mac_bridge);
1267 		if (err) {
1268 			dev_err(priv->dev, "failed to read mac bridge: %d\n",
1269 				err);
1270 			return;
1271 		}
1272 
1273 		if (!mac_bridge.valid)
1274 			continue;
1275 
1276 		if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC)
1277 			continue;
1278 
1279 		if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) != port)
1280 			continue;
1281 
1282 		mac_bridge.valid = false;
1283 		err = gswip_pce_table_entry_write(priv, &mac_bridge);
1284 		if (err) {
1285 			dev_err(priv->dev, "failed to write mac bridge: %d\n",
1286 				err);
1287 			return;
1288 		}
1289 	}
1290 }
1291 
gswip_port_stp_state_set(struct dsa_switch * ds,int port,u8 state)1292 static void gswip_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1293 {
1294 	struct gswip_priv *priv = ds->priv;
1295 	u32 stp_state;
1296 
1297 	switch (state) {
1298 	case BR_STATE_DISABLED:
1299 		gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
1300 				  GSWIP_SDMA_PCTRLp(port));
1301 		return;
1302 	case BR_STATE_BLOCKING:
1303 	case BR_STATE_LISTENING:
1304 		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LISTEN;
1305 		break;
1306 	case BR_STATE_LEARNING:
1307 		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LEARNING;
1308 		break;
1309 	case BR_STATE_FORWARDING:
1310 		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING;
1311 		break;
1312 	default:
1313 		dev_err(priv->dev, "invalid STP state: %d\n", state);
1314 		return;
1315 	}
1316 
1317 	gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
1318 			  GSWIP_SDMA_PCTRLp(port));
1319 	gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_PSTATE_MASK, stp_state,
1320 			  GSWIP_PCE_PCTRL_0p(port));
1321 }
1322 
gswip_port_fdb(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid,bool add)1323 static int gswip_port_fdb(struct dsa_switch *ds, int port,
1324 			  const unsigned char *addr, u16 vid, bool add)
1325 {
1326 	struct gswip_priv *priv = ds->priv;
1327 	struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1328 	struct gswip_pce_table_entry mac_bridge = {0,};
1329 	unsigned int cpu_port = priv->hw_info->cpu_port;
1330 	int fid = -1;
1331 	int i;
1332 	int err;
1333 
1334 	if (!bridge)
1335 		return -EINVAL;
1336 
1337 	for (i = cpu_port; i < ARRAY_SIZE(priv->vlans); i++) {
1338 		if (priv->vlans[i].bridge == bridge) {
1339 			fid = priv->vlans[i].fid;
1340 			break;
1341 		}
1342 	}
1343 
1344 	if (fid == -1) {
1345 		dev_err(priv->dev, "Port not part of a bridge\n");
1346 		return -EINVAL;
1347 	}
1348 
1349 	mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1350 	mac_bridge.key_mode = true;
1351 	mac_bridge.key[0] = addr[5] | (addr[4] << 8);
1352 	mac_bridge.key[1] = addr[3] | (addr[2] << 8);
1353 	mac_bridge.key[2] = addr[1] | (addr[0] << 8);
1354 	mac_bridge.key[3] = fid;
1355 	mac_bridge.val[0] = add ? BIT(port) : 0; /* port map */
1356 	mac_bridge.val[1] = GSWIP_TABLE_MAC_BRIDGE_STATIC;
1357 	mac_bridge.valid = add;
1358 
1359 	err = gswip_pce_table_entry_write(priv, &mac_bridge);
1360 	if (err)
1361 		dev_err(priv->dev, "failed to write mac bridge: %d\n", err);
1362 
1363 	return err;
1364 }
1365 
gswip_port_fdb_add(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid)1366 static int gswip_port_fdb_add(struct dsa_switch *ds, int port,
1367 			      const unsigned char *addr, u16 vid)
1368 {
1369 	return gswip_port_fdb(ds, port, addr, vid, true);
1370 }
1371 
gswip_port_fdb_del(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid)1372 static int gswip_port_fdb_del(struct dsa_switch *ds, int port,
1373 			      const unsigned char *addr, u16 vid)
1374 {
1375 	return gswip_port_fdb(ds, port, addr, vid, false);
1376 }
1377 
gswip_port_fdb_dump(struct dsa_switch * ds,int port,dsa_fdb_dump_cb_t * cb,void * data)1378 static int gswip_port_fdb_dump(struct dsa_switch *ds, int port,
1379 			       dsa_fdb_dump_cb_t *cb, void *data)
1380 {
1381 	struct gswip_priv *priv = ds->priv;
1382 	struct gswip_pce_table_entry mac_bridge = {0,};
1383 	unsigned char addr[6];
1384 	int i;
1385 	int err;
1386 
1387 	for (i = 0; i < 2048; i++) {
1388 		mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1389 		mac_bridge.index = i;
1390 
1391 		err = gswip_pce_table_entry_read(priv, &mac_bridge);
1392 		if (err) {
1393 			dev_err(priv->dev, "failed to write mac bridge: %d\n",
1394 				err);
1395 			return err;
1396 		}
1397 
1398 		if (!mac_bridge.valid)
1399 			continue;
1400 
1401 		addr[5] = mac_bridge.key[0] & 0xff;
1402 		addr[4] = (mac_bridge.key[0] >> 8) & 0xff;
1403 		addr[3] = mac_bridge.key[1] & 0xff;
1404 		addr[2] = (mac_bridge.key[1] >> 8) & 0xff;
1405 		addr[1] = mac_bridge.key[2] & 0xff;
1406 		addr[0] = (mac_bridge.key[2] >> 8) & 0xff;
1407 		if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC) {
1408 			if (mac_bridge.val[0] & BIT(port)) {
1409 				err = cb(addr, 0, true, data);
1410 				if (err)
1411 					return err;
1412 			}
1413 		} else {
1414 			if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) == port) {
1415 				err = cb(addr, 0, false, data);
1416 				if (err)
1417 					return err;
1418 			}
1419 		}
1420 	}
1421 	return 0;
1422 }
1423 
gswip_phylink_set_capab(unsigned long * supported,struct phylink_link_state * state)1424 static void gswip_phylink_set_capab(unsigned long *supported,
1425 				    struct phylink_link_state *state)
1426 {
1427 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1428 
1429 	/* Allow all the expected bits */
1430 	phylink_set(mask, Autoneg);
1431 	phylink_set_port_modes(mask);
1432 	phylink_set(mask, Pause);
1433 	phylink_set(mask, Asym_Pause);
1434 
1435 	/* With the exclusion of MII, Reverse MII and Reduced MII, we
1436 	 * support Gigabit, including Half duplex
1437 	 */
1438 	if (state->interface != PHY_INTERFACE_MODE_MII &&
1439 	    state->interface != PHY_INTERFACE_MODE_REVMII &&
1440 	    state->interface != PHY_INTERFACE_MODE_RMII) {
1441 		phylink_set(mask, 1000baseT_Full);
1442 		phylink_set(mask, 1000baseT_Half);
1443 	}
1444 
1445 	phylink_set(mask, 10baseT_Half);
1446 	phylink_set(mask, 10baseT_Full);
1447 	phylink_set(mask, 100baseT_Half);
1448 	phylink_set(mask, 100baseT_Full);
1449 
1450 	bitmap_and(supported, supported, mask,
1451 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
1452 	bitmap_and(state->advertising, state->advertising, mask,
1453 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
1454 }
1455 
gswip_xrx200_phylink_validate(struct dsa_switch * ds,int port,unsigned long * supported,struct phylink_link_state * state)1456 static void gswip_xrx200_phylink_validate(struct dsa_switch *ds, int port,
1457 					  unsigned long *supported,
1458 					  struct phylink_link_state *state)
1459 {
1460 	switch (port) {
1461 	case 0:
1462 	case 1:
1463 		if (!phy_interface_mode_is_rgmii(state->interface) &&
1464 		    state->interface != PHY_INTERFACE_MODE_MII &&
1465 		    state->interface != PHY_INTERFACE_MODE_REVMII &&
1466 		    state->interface != PHY_INTERFACE_MODE_RMII)
1467 			goto unsupported;
1468 		break;
1469 	case 2:
1470 	case 3:
1471 	case 4:
1472 		if (state->interface != PHY_INTERFACE_MODE_INTERNAL)
1473 			goto unsupported;
1474 		break;
1475 	case 5:
1476 		if (!phy_interface_mode_is_rgmii(state->interface) &&
1477 		    state->interface != PHY_INTERFACE_MODE_INTERNAL)
1478 			goto unsupported;
1479 		break;
1480 	default:
1481 		bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1482 		dev_err(ds->dev, "Unsupported port: %i\n", port);
1483 		return;
1484 	}
1485 
1486 	gswip_phylink_set_capab(supported, state);
1487 
1488 	return;
1489 
1490 unsupported:
1491 	bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1492 	dev_err(ds->dev, "Unsupported interface '%s' for port %d\n",
1493 		phy_modes(state->interface), port);
1494 }
1495 
gswip_xrx300_phylink_validate(struct dsa_switch * ds,int port,unsigned long * supported,struct phylink_link_state * state)1496 static void gswip_xrx300_phylink_validate(struct dsa_switch *ds, int port,
1497 					  unsigned long *supported,
1498 					  struct phylink_link_state *state)
1499 {
1500 	switch (port) {
1501 	case 0:
1502 		if (!phy_interface_mode_is_rgmii(state->interface) &&
1503 		    state->interface != PHY_INTERFACE_MODE_GMII &&
1504 		    state->interface != PHY_INTERFACE_MODE_RMII)
1505 			goto unsupported;
1506 		break;
1507 	case 1:
1508 	case 2:
1509 	case 3:
1510 	case 4:
1511 		if (state->interface != PHY_INTERFACE_MODE_INTERNAL)
1512 			goto unsupported;
1513 		break;
1514 	case 5:
1515 		if (!phy_interface_mode_is_rgmii(state->interface) &&
1516 		    state->interface != PHY_INTERFACE_MODE_INTERNAL &&
1517 		    state->interface != PHY_INTERFACE_MODE_RMII)
1518 			goto unsupported;
1519 		break;
1520 	default:
1521 		bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1522 		dev_err(ds->dev, "Unsupported port: %i\n", port);
1523 		return;
1524 	}
1525 
1526 	gswip_phylink_set_capab(supported, state);
1527 
1528 	return;
1529 
1530 unsupported:
1531 	bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1532 	dev_err(ds->dev, "Unsupported interface '%s' for port %d\n",
1533 		phy_modes(state->interface), port);
1534 }
1535 
gswip_port_set_link(struct gswip_priv * priv,int port,bool link)1536 static void gswip_port_set_link(struct gswip_priv *priv, int port, bool link)
1537 {
1538 	u32 mdio_phy;
1539 
1540 	if (link)
1541 		mdio_phy = GSWIP_MDIO_PHY_LINK_UP;
1542 	else
1543 		mdio_phy = GSWIP_MDIO_PHY_LINK_DOWN;
1544 
1545 	gswip_mdio_mask(priv, GSWIP_MDIO_PHY_LINK_MASK, mdio_phy,
1546 			GSWIP_MDIO_PHYp(port));
1547 }
1548 
gswip_port_set_speed(struct gswip_priv * priv,int port,int speed,phy_interface_t interface)1549 static void gswip_port_set_speed(struct gswip_priv *priv, int port, int speed,
1550 				 phy_interface_t interface)
1551 {
1552 	u32 mdio_phy = 0, mii_cfg = 0, mac_ctrl_0 = 0;
1553 
1554 	switch (speed) {
1555 	case SPEED_10:
1556 		mdio_phy = GSWIP_MDIO_PHY_SPEED_M10;
1557 
1558 		if (interface == PHY_INTERFACE_MODE_RMII)
1559 			mii_cfg = GSWIP_MII_CFG_RATE_M50;
1560 		else
1561 			mii_cfg = GSWIP_MII_CFG_RATE_M2P5;
1562 
1563 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII;
1564 		break;
1565 
1566 	case SPEED_100:
1567 		mdio_phy = GSWIP_MDIO_PHY_SPEED_M100;
1568 
1569 		if (interface == PHY_INTERFACE_MODE_RMII)
1570 			mii_cfg = GSWIP_MII_CFG_RATE_M50;
1571 		else
1572 			mii_cfg = GSWIP_MII_CFG_RATE_M25;
1573 
1574 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII;
1575 		break;
1576 
1577 	case SPEED_1000:
1578 		mdio_phy = GSWIP_MDIO_PHY_SPEED_G1;
1579 
1580 		mii_cfg = GSWIP_MII_CFG_RATE_M125;
1581 
1582 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_RGMII;
1583 		break;
1584 	}
1585 
1586 	gswip_mdio_mask(priv, GSWIP_MDIO_PHY_SPEED_MASK, mdio_phy,
1587 			GSWIP_MDIO_PHYp(port));
1588 	gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_RATE_MASK, mii_cfg, port);
1589 	gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_GMII_MASK, mac_ctrl_0,
1590 			  GSWIP_MAC_CTRL_0p(port));
1591 }
1592 
gswip_port_set_duplex(struct gswip_priv * priv,int port,int duplex)1593 static void gswip_port_set_duplex(struct gswip_priv *priv, int port, int duplex)
1594 {
1595 	u32 mac_ctrl_0, mdio_phy;
1596 
1597 	if (duplex == DUPLEX_FULL) {
1598 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_EN;
1599 		mdio_phy = GSWIP_MDIO_PHY_FDUP_EN;
1600 	} else {
1601 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_DIS;
1602 		mdio_phy = GSWIP_MDIO_PHY_FDUP_DIS;
1603 	}
1604 
1605 	gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FDUP_MASK, mac_ctrl_0,
1606 			  GSWIP_MAC_CTRL_0p(port));
1607 	gswip_mdio_mask(priv, GSWIP_MDIO_PHY_FDUP_MASK, mdio_phy,
1608 			GSWIP_MDIO_PHYp(port));
1609 }
1610 
gswip_port_set_pause(struct gswip_priv * priv,int port,bool tx_pause,bool rx_pause)1611 static void gswip_port_set_pause(struct gswip_priv *priv, int port,
1612 				 bool tx_pause, bool rx_pause)
1613 {
1614 	u32 mac_ctrl_0, mdio_phy;
1615 
1616 	if (tx_pause && rx_pause) {
1617 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RXTX;
1618 		mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN |
1619 			   GSWIP_MDIO_PHY_FCONRX_EN;
1620 	} else if (tx_pause) {
1621 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_TX;
1622 		mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN |
1623 			   GSWIP_MDIO_PHY_FCONRX_DIS;
1624 	} else if (rx_pause) {
1625 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RX;
1626 		mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS |
1627 			   GSWIP_MDIO_PHY_FCONRX_EN;
1628 	} else {
1629 		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_NONE;
1630 		mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS |
1631 			   GSWIP_MDIO_PHY_FCONRX_DIS;
1632 	}
1633 
1634 	gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FCON_MASK,
1635 			  mac_ctrl_0, GSWIP_MAC_CTRL_0p(port));
1636 	gswip_mdio_mask(priv,
1637 			GSWIP_MDIO_PHY_FCONTX_MASK |
1638 			GSWIP_MDIO_PHY_FCONRX_MASK,
1639 			mdio_phy, GSWIP_MDIO_PHYp(port));
1640 }
1641 
gswip_phylink_mac_config(struct dsa_switch * ds,int port,unsigned int mode,const struct phylink_link_state * state)1642 static void gswip_phylink_mac_config(struct dsa_switch *ds, int port,
1643 				     unsigned int mode,
1644 				     const struct phylink_link_state *state)
1645 {
1646 	struct gswip_priv *priv = ds->priv;
1647 	u32 miicfg = 0;
1648 
1649 	miicfg |= GSWIP_MII_CFG_LDCLKDIS;
1650 
1651 	switch (state->interface) {
1652 	case PHY_INTERFACE_MODE_MII:
1653 	case PHY_INTERFACE_MODE_INTERNAL:
1654 		miicfg |= GSWIP_MII_CFG_MODE_MIIM;
1655 		break;
1656 	case PHY_INTERFACE_MODE_REVMII:
1657 		miicfg |= GSWIP_MII_CFG_MODE_MIIP;
1658 		break;
1659 	case PHY_INTERFACE_MODE_RMII:
1660 		miicfg |= GSWIP_MII_CFG_MODE_RMIIM;
1661 
1662 		/* Configure the RMII clock as output: */
1663 		miicfg |= GSWIP_MII_CFG_RMII_CLK;
1664 		break;
1665 	case PHY_INTERFACE_MODE_RGMII:
1666 	case PHY_INTERFACE_MODE_RGMII_ID:
1667 	case PHY_INTERFACE_MODE_RGMII_RXID:
1668 	case PHY_INTERFACE_MODE_RGMII_TXID:
1669 		miicfg |= GSWIP_MII_CFG_MODE_RGMII;
1670 		break;
1671 	case PHY_INTERFACE_MODE_GMII:
1672 		miicfg |= GSWIP_MII_CFG_MODE_GMII;
1673 		break;
1674 	default:
1675 		dev_err(ds->dev,
1676 			"Unsupported interface: %d\n", state->interface);
1677 		return;
1678 	}
1679 
1680 	gswip_mii_mask_cfg(priv,
1681 			   GSWIP_MII_CFG_MODE_MASK | GSWIP_MII_CFG_RMII_CLK |
1682 			   GSWIP_MII_CFG_RGMII_IBS | GSWIP_MII_CFG_LDCLKDIS,
1683 			   miicfg, port);
1684 
1685 	switch (state->interface) {
1686 	case PHY_INTERFACE_MODE_RGMII_ID:
1687 		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK |
1688 					  GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1689 		break;
1690 	case PHY_INTERFACE_MODE_RGMII_RXID:
1691 		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1692 		break;
1693 	case PHY_INTERFACE_MODE_RGMII_TXID:
1694 		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK, 0, port);
1695 		break;
1696 	default:
1697 		break;
1698 	}
1699 }
1700 
gswip_phylink_mac_link_down(struct dsa_switch * ds,int port,unsigned int mode,phy_interface_t interface)1701 static void gswip_phylink_mac_link_down(struct dsa_switch *ds, int port,
1702 					unsigned int mode,
1703 					phy_interface_t interface)
1704 {
1705 	struct gswip_priv *priv = ds->priv;
1706 
1707 	gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, port);
1708 
1709 	if (!dsa_is_cpu_port(ds, port))
1710 		gswip_port_set_link(priv, port, false);
1711 }
1712 
gswip_phylink_mac_link_up(struct dsa_switch * ds,int port,unsigned int mode,phy_interface_t interface,struct phy_device * phydev,int speed,int duplex,bool tx_pause,bool rx_pause)1713 static void gswip_phylink_mac_link_up(struct dsa_switch *ds, int port,
1714 				      unsigned int mode,
1715 				      phy_interface_t interface,
1716 				      struct phy_device *phydev,
1717 				      int speed, int duplex,
1718 				      bool tx_pause, bool rx_pause)
1719 {
1720 	struct gswip_priv *priv = ds->priv;
1721 
1722 	if (!dsa_is_cpu_port(ds, port)) {
1723 		gswip_port_set_link(priv, port, true);
1724 		gswip_port_set_speed(priv, port, speed, interface);
1725 		gswip_port_set_duplex(priv, port, duplex);
1726 		gswip_port_set_pause(priv, port, tx_pause, rx_pause);
1727 	}
1728 
1729 	gswip_mii_mask_cfg(priv, 0, GSWIP_MII_CFG_EN, port);
1730 }
1731 
gswip_get_strings(struct dsa_switch * ds,int port,u32 stringset,uint8_t * data)1732 static void gswip_get_strings(struct dsa_switch *ds, int port, u32 stringset,
1733 			      uint8_t *data)
1734 {
1735 	int i;
1736 
1737 	if (stringset != ETH_SS_STATS)
1738 		return;
1739 
1740 	for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++)
1741 		strncpy(data + i * ETH_GSTRING_LEN, gswip_rmon_cnt[i].name,
1742 			ETH_GSTRING_LEN);
1743 }
1744 
gswip_bcm_ram_entry_read(struct gswip_priv * priv,u32 table,u32 index)1745 static u32 gswip_bcm_ram_entry_read(struct gswip_priv *priv, u32 table,
1746 				    u32 index)
1747 {
1748 	u32 result;
1749 	int err;
1750 
1751 	gswip_switch_w(priv, index, GSWIP_BM_RAM_ADDR);
1752 	gswip_switch_mask(priv, GSWIP_BM_RAM_CTRL_ADDR_MASK |
1753 				GSWIP_BM_RAM_CTRL_OPMOD,
1754 			      table | GSWIP_BM_RAM_CTRL_BAS,
1755 			      GSWIP_BM_RAM_CTRL);
1756 
1757 	err = gswip_switch_r_timeout(priv, GSWIP_BM_RAM_CTRL,
1758 				     GSWIP_BM_RAM_CTRL_BAS);
1759 	if (err) {
1760 		dev_err(priv->dev, "timeout while reading table: %u, index: %u",
1761 			table, index);
1762 		return 0;
1763 	}
1764 
1765 	result = gswip_switch_r(priv, GSWIP_BM_RAM_VAL(0));
1766 	result |= gswip_switch_r(priv, GSWIP_BM_RAM_VAL(1)) << 16;
1767 
1768 	return result;
1769 }
1770 
gswip_get_ethtool_stats(struct dsa_switch * ds,int port,uint64_t * data)1771 static void gswip_get_ethtool_stats(struct dsa_switch *ds, int port,
1772 				    uint64_t *data)
1773 {
1774 	struct gswip_priv *priv = ds->priv;
1775 	const struct gswip_rmon_cnt_desc *rmon_cnt;
1776 	int i;
1777 	u64 high;
1778 
1779 	for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++) {
1780 		rmon_cnt = &gswip_rmon_cnt[i];
1781 
1782 		data[i] = gswip_bcm_ram_entry_read(priv, port,
1783 						   rmon_cnt->offset);
1784 		if (rmon_cnt->size == 2) {
1785 			high = gswip_bcm_ram_entry_read(priv, port,
1786 							rmon_cnt->offset + 1);
1787 			data[i] |= high << 32;
1788 		}
1789 	}
1790 }
1791 
gswip_get_sset_count(struct dsa_switch * ds,int port,int sset)1792 static int gswip_get_sset_count(struct dsa_switch *ds, int port, int sset)
1793 {
1794 	if (sset != ETH_SS_STATS)
1795 		return 0;
1796 
1797 	return ARRAY_SIZE(gswip_rmon_cnt);
1798 }
1799 
1800 static const struct dsa_switch_ops gswip_xrx200_switch_ops = {
1801 	.get_tag_protocol	= gswip_get_tag_protocol,
1802 	.setup			= gswip_setup,
1803 	.port_enable		= gswip_port_enable,
1804 	.port_disable		= gswip_port_disable,
1805 	.port_bridge_join	= gswip_port_bridge_join,
1806 	.port_bridge_leave	= gswip_port_bridge_leave,
1807 	.port_fast_age		= gswip_port_fast_age,
1808 	.port_vlan_filtering	= gswip_port_vlan_filtering,
1809 	.port_vlan_add		= gswip_port_vlan_add,
1810 	.port_vlan_del		= gswip_port_vlan_del,
1811 	.port_stp_state_set	= gswip_port_stp_state_set,
1812 	.port_fdb_add		= gswip_port_fdb_add,
1813 	.port_fdb_del		= gswip_port_fdb_del,
1814 	.port_fdb_dump		= gswip_port_fdb_dump,
1815 	.phylink_validate	= gswip_xrx200_phylink_validate,
1816 	.phylink_mac_config	= gswip_phylink_mac_config,
1817 	.phylink_mac_link_down	= gswip_phylink_mac_link_down,
1818 	.phylink_mac_link_up	= gswip_phylink_mac_link_up,
1819 	.get_strings		= gswip_get_strings,
1820 	.get_ethtool_stats	= gswip_get_ethtool_stats,
1821 	.get_sset_count		= gswip_get_sset_count,
1822 };
1823 
1824 static const struct dsa_switch_ops gswip_xrx300_switch_ops = {
1825 	.get_tag_protocol	= gswip_get_tag_protocol,
1826 	.setup			= gswip_setup,
1827 	.port_enable		= gswip_port_enable,
1828 	.port_disable		= gswip_port_disable,
1829 	.port_bridge_join	= gswip_port_bridge_join,
1830 	.port_bridge_leave	= gswip_port_bridge_leave,
1831 	.port_fast_age		= gswip_port_fast_age,
1832 	.port_vlan_filtering	= gswip_port_vlan_filtering,
1833 	.port_vlan_add		= gswip_port_vlan_add,
1834 	.port_vlan_del		= gswip_port_vlan_del,
1835 	.port_stp_state_set	= gswip_port_stp_state_set,
1836 	.port_fdb_add		= gswip_port_fdb_add,
1837 	.port_fdb_del		= gswip_port_fdb_del,
1838 	.port_fdb_dump		= gswip_port_fdb_dump,
1839 	.phylink_validate	= gswip_xrx300_phylink_validate,
1840 	.phylink_mac_config	= gswip_phylink_mac_config,
1841 	.phylink_mac_link_down	= gswip_phylink_mac_link_down,
1842 	.phylink_mac_link_up	= gswip_phylink_mac_link_up,
1843 	.get_strings		= gswip_get_strings,
1844 	.get_ethtool_stats	= gswip_get_ethtool_stats,
1845 	.get_sset_count		= gswip_get_sset_count,
1846 };
1847 
1848 static const struct xway_gphy_match_data xrx200a1x_gphy_data = {
1849 	.fe_firmware_name = "lantiq/xrx200_phy22f_a14.bin",
1850 	.ge_firmware_name = "lantiq/xrx200_phy11g_a14.bin",
1851 };
1852 
1853 static const struct xway_gphy_match_data xrx200a2x_gphy_data = {
1854 	.fe_firmware_name = "lantiq/xrx200_phy22f_a22.bin",
1855 	.ge_firmware_name = "lantiq/xrx200_phy11g_a22.bin",
1856 };
1857 
1858 static const struct xway_gphy_match_data xrx300_gphy_data = {
1859 	.fe_firmware_name = "lantiq/xrx300_phy22f_a21.bin",
1860 	.ge_firmware_name = "lantiq/xrx300_phy11g_a21.bin",
1861 };
1862 
1863 static const struct of_device_id xway_gphy_match[] = {
1864 	{ .compatible = "lantiq,xrx200-gphy-fw", .data = NULL },
1865 	{ .compatible = "lantiq,xrx200a1x-gphy-fw", .data = &xrx200a1x_gphy_data },
1866 	{ .compatible = "lantiq,xrx200a2x-gphy-fw", .data = &xrx200a2x_gphy_data },
1867 	{ .compatible = "lantiq,xrx300-gphy-fw", .data = &xrx300_gphy_data },
1868 	{ .compatible = "lantiq,xrx330-gphy-fw", .data = &xrx300_gphy_data },
1869 	{},
1870 };
1871 
gswip_gphy_fw_load(struct gswip_priv * priv,struct gswip_gphy_fw * gphy_fw)1872 static int gswip_gphy_fw_load(struct gswip_priv *priv, struct gswip_gphy_fw *gphy_fw)
1873 {
1874 	struct device *dev = priv->dev;
1875 	const struct firmware *fw;
1876 	void *fw_addr;
1877 	dma_addr_t dma_addr;
1878 	dma_addr_t dev_addr;
1879 	size_t size;
1880 	int ret;
1881 
1882 	ret = clk_prepare_enable(gphy_fw->clk_gate);
1883 	if (ret)
1884 		return ret;
1885 
1886 	reset_control_assert(gphy_fw->reset);
1887 
1888 	/* The vendor BSP uses a 200ms delay after asserting the reset line.
1889 	 * Without this some users are observing that the PHY is not coming up
1890 	 * on the MDIO bus.
1891 	 */
1892 	msleep(200);
1893 
1894 	ret = request_firmware(&fw, gphy_fw->fw_name, dev);
1895 	if (ret) {
1896 		dev_err(dev, "failed to load firmware: %s, error: %i\n",
1897 			gphy_fw->fw_name, ret);
1898 		return ret;
1899 	}
1900 
1901 	/* GPHY cores need the firmware code in a persistent and contiguous
1902 	 * memory area with a 16 kB boundary aligned start address.
1903 	 */
1904 	size = fw->size + XRX200_GPHY_FW_ALIGN;
1905 
1906 	fw_addr = dmam_alloc_coherent(dev, size, &dma_addr, GFP_KERNEL);
1907 	if (fw_addr) {
1908 		fw_addr = PTR_ALIGN(fw_addr, XRX200_GPHY_FW_ALIGN);
1909 		dev_addr = ALIGN(dma_addr, XRX200_GPHY_FW_ALIGN);
1910 		memcpy(fw_addr, fw->data, fw->size);
1911 	} else {
1912 		dev_err(dev, "failed to alloc firmware memory\n");
1913 		release_firmware(fw);
1914 		return -ENOMEM;
1915 	}
1916 
1917 	release_firmware(fw);
1918 
1919 	ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, dev_addr);
1920 	if (ret)
1921 		return ret;
1922 
1923 	reset_control_deassert(gphy_fw->reset);
1924 
1925 	return ret;
1926 }
1927 
gswip_gphy_fw_probe(struct gswip_priv * priv,struct gswip_gphy_fw * gphy_fw,struct device_node * gphy_fw_np,int i)1928 static int gswip_gphy_fw_probe(struct gswip_priv *priv,
1929 			       struct gswip_gphy_fw *gphy_fw,
1930 			       struct device_node *gphy_fw_np, int i)
1931 {
1932 	struct device *dev = priv->dev;
1933 	u32 gphy_mode;
1934 	int ret;
1935 	char gphyname[10];
1936 
1937 	snprintf(gphyname, sizeof(gphyname), "gphy%d", i);
1938 
1939 	gphy_fw->clk_gate = devm_clk_get(dev, gphyname);
1940 	if (IS_ERR(gphy_fw->clk_gate)) {
1941 		dev_err(dev, "Failed to lookup gate clock\n");
1942 		return PTR_ERR(gphy_fw->clk_gate);
1943 	}
1944 
1945 	ret = of_property_read_u32(gphy_fw_np, "reg", &gphy_fw->fw_addr_offset);
1946 	if (ret)
1947 		return ret;
1948 
1949 	ret = of_property_read_u32(gphy_fw_np, "lantiq,gphy-mode", &gphy_mode);
1950 	/* Default to GE mode */
1951 	if (ret)
1952 		gphy_mode = GPHY_MODE_GE;
1953 
1954 	switch (gphy_mode) {
1955 	case GPHY_MODE_FE:
1956 		gphy_fw->fw_name = priv->gphy_fw_name_cfg->fe_firmware_name;
1957 		break;
1958 	case GPHY_MODE_GE:
1959 		gphy_fw->fw_name = priv->gphy_fw_name_cfg->ge_firmware_name;
1960 		break;
1961 	default:
1962 		dev_err(dev, "Unknown GPHY mode %d\n", gphy_mode);
1963 		return -EINVAL;
1964 	}
1965 
1966 	gphy_fw->reset = of_reset_control_array_get_exclusive(gphy_fw_np);
1967 	if (IS_ERR(gphy_fw->reset)) {
1968 		if (PTR_ERR(gphy_fw->reset) != -EPROBE_DEFER)
1969 			dev_err(dev, "Failed to lookup gphy reset\n");
1970 		return PTR_ERR(gphy_fw->reset);
1971 	}
1972 
1973 	return gswip_gphy_fw_load(priv, gphy_fw);
1974 }
1975 
gswip_gphy_fw_remove(struct gswip_priv * priv,struct gswip_gphy_fw * gphy_fw)1976 static void gswip_gphy_fw_remove(struct gswip_priv *priv,
1977 				 struct gswip_gphy_fw *gphy_fw)
1978 {
1979 	int ret;
1980 
1981 	/* check if the device was fully probed */
1982 	if (!gphy_fw->fw_name)
1983 		return;
1984 
1985 	ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, 0);
1986 	if (ret)
1987 		dev_err(priv->dev, "can not reset GPHY FW pointer");
1988 
1989 	clk_disable_unprepare(gphy_fw->clk_gate);
1990 
1991 	reset_control_put(gphy_fw->reset);
1992 }
1993 
gswip_gphy_fw_list(struct gswip_priv * priv,struct device_node * gphy_fw_list_np,u32 version)1994 static int gswip_gphy_fw_list(struct gswip_priv *priv,
1995 			      struct device_node *gphy_fw_list_np, u32 version)
1996 {
1997 	struct device *dev = priv->dev;
1998 	struct device_node *gphy_fw_np;
1999 	const struct of_device_id *match;
2000 	int err;
2001 	int i = 0;
2002 
2003 	/* The VRX200 rev 1.1 uses the GSWIP 2.0 and needs the older
2004 	 * GPHY firmware. The VRX200 rev 1.2 uses the GSWIP 2.1 and also
2005 	 * needs a different GPHY firmware.
2006 	 */
2007 	if (of_device_is_compatible(gphy_fw_list_np, "lantiq,xrx200-gphy-fw")) {
2008 		switch (version) {
2009 		case GSWIP_VERSION_2_0:
2010 			priv->gphy_fw_name_cfg = &xrx200a1x_gphy_data;
2011 			break;
2012 		case GSWIP_VERSION_2_1:
2013 			priv->gphy_fw_name_cfg = &xrx200a2x_gphy_data;
2014 			break;
2015 		default:
2016 			dev_err(dev, "unknown GSWIP version: 0x%x", version);
2017 			return -ENOENT;
2018 		}
2019 	}
2020 
2021 	match = of_match_node(xway_gphy_match, gphy_fw_list_np);
2022 	if (match && match->data)
2023 		priv->gphy_fw_name_cfg = match->data;
2024 
2025 	if (!priv->gphy_fw_name_cfg) {
2026 		dev_err(dev, "GPHY compatible type not supported");
2027 		return -ENOENT;
2028 	}
2029 
2030 	priv->num_gphy_fw = of_get_available_child_count(gphy_fw_list_np);
2031 	if (!priv->num_gphy_fw)
2032 		return -ENOENT;
2033 
2034 	priv->rcu_regmap = syscon_regmap_lookup_by_phandle(gphy_fw_list_np,
2035 							   "lantiq,rcu");
2036 	if (IS_ERR(priv->rcu_regmap))
2037 		return PTR_ERR(priv->rcu_regmap);
2038 
2039 	priv->gphy_fw = devm_kmalloc_array(dev, priv->num_gphy_fw,
2040 					   sizeof(*priv->gphy_fw),
2041 					   GFP_KERNEL | __GFP_ZERO);
2042 	if (!priv->gphy_fw)
2043 		return -ENOMEM;
2044 
2045 	for_each_available_child_of_node(gphy_fw_list_np, gphy_fw_np) {
2046 		err = gswip_gphy_fw_probe(priv, &priv->gphy_fw[i],
2047 					  gphy_fw_np, i);
2048 		if (err)
2049 			goto remove_gphy;
2050 		i++;
2051 	}
2052 
2053 	/* The standalone PHY11G requires 300ms to be fully
2054 	 * initialized and ready for any MDIO communication after being
2055 	 * taken out of reset. For the SoC-internal GPHY variant there
2056 	 * is no (known) documentation for the minimum time after a
2057 	 * reset. Use the same value as for the standalone variant as
2058 	 * some users have reported internal PHYs not being detected
2059 	 * without any delay.
2060 	 */
2061 	msleep(300);
2062 
2063 	return 0;
2064 
2065 remove_gphy:
2066 	for (i = 0; i < priv->num_gphy_fw; i++)
2067 		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2068 	return err;
2069 }
2070 
gswip_probe(struct platform_device * pdev)2071 static int gswip_probe(struct platform_device *pdev)
2072 {
2073 	struct gswip_priv *priv;
2074 	struct device_node *np, *mdio_np, *gphy_fw_np;
2075 	struct device *dev = &pdev->dev;
2076 	int err;
2077 	int i;
2078 	u32 version;
2079 
2080 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
2081 	if (!priv)
2082 		return -ENOMEM;
2083 
2084 	priv->gswip = devm_platform_ioremap_resource(pdev, 0);
2085 	if (IS_ERR(priv->gswip))
2086 		return PTR_ERR(priv->gswip);
2087 
2088 	priv->mdio = devm_platform_ioremap_resource(pdev, 1);
2089 	if (IS_ERR(priv->mdio))
2090 		return PTR_ERR(priv->mdio);
2091 
2092 	priv->mii = devm_platform_ioremap_resource(pdev, 2);
2093 	if (IS_ERR(priv->mii))
2094 		return PTR_ERR(priv->mii);
2095 
2096 	priv->hw_info = of_device_get_match_data(dev);
2097 	if (!priv->hw_info)
2098 		return -EINVAL;
2099 
2100 	priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
2101 	if (!priv->ds)
2102 		return -ENOMEM;
2103 
2104 	priv->ds->dev = dev;
2105 	priv->ds->num_ports = priv->hw_info->max_ports;
2106 	priv->ds->priv = priv;
2107 	priv->ds->ops = priv->hw_info->ops;
2108 	priv->dev = dev;
2109 	version = gswip_switch_r(priv, GSWIP_VERSION);
2110 
2111 	np = dev->of_node;
2112 	switch (version) {
2113 	case GSWIP_VERSION_2_0:
2114 	case GSWIP_VERSION_2_1:
2115 		if (!of_device_is_compatible(np, "lantiq,xrx200-gswip"))
2116 			return -EINVAL;
2117 		break;
2118 	case GSWIP_VERSION_2_2:
2119 	case GSWIP_VERSION_2_2_ETC:
2120 		if (!of_device_is_compatible(np, "lantiq,xrx300-gswip") &&
2121 		    !of_device_is_compatible(np, "lantiq,xrx330-gswip"))
2122 			return -EINVAL;
2123 		break;
2124 	default:
2125 		dev_err(dev, "unknown GSWIP version: 0x%x", version);
2126 		return -ENOENT;
2127 	}
2128 
2129 	/* bring up the mdio bus */
2130 	gphy_fw_np = of_get_compatible_child(dev->of_node, "lantiq,gphy-fw");
2131 	if (gphy_fw_np) {
2132 		err = gswip_gphy_fw_list(priv, gphy_fw_np, version);
2133 		of_node_put(gphy_fw_np);
2134 		if (err) {
2135 			dev_err(dev, "gphy fw probe failed\n");
2136 			return err;
2137 		}
2138 	}
2139 
2140 	/* bring up the mdio bus */
2141 	mdio_np = of_get_compatible_child(dev->of_node, "lantiq,xrx200-mdio");
2142 	if (mdio_np) {
2143 		err = gswip_mdio(priv, mdio_np);
2144 		if (err) {
2145 			dev_err(dev, "mdio probe failed\n");
2146 			goto put_mdio_node;
2147 		}
2148 	}
2149 
2150 	err = dsa_register_switch(priv->ds);
2151 	if (err) {
2152 		dev_err(dev, "dsa switch register failed: %i\n", err);
2153 		goto mdio_bus;
2154 	}
2155 	if (!dsa_is_cpu_port(priv->ds, priv->hw_info->cpu_port)) {
2156 		dev_err(dev, "wrong CPU port defined, HW only supports port: %i",
2157 			priv->hw_info->cpu_port);
2158 		err = -EINVAL;
2159 		goto disable_switch;
2160 	}
2161 
2162 	platform_set_drvdata(pdev, priv);
2163 
2164 	dev_info(dev, "probed GSWIP version %lx mod %lx\n",
2165 		 (version & GSWIP_VERSION_REV_MASK) >> GSWIP_VERSION_REV_SHIFT,
2166 		 (version & GSWIP_VERSION_MOD_MASK) >> GSWIP_VERSION_MOD_SHIFT);
2167 	return 0;
2168 
2169 disable_switch:
2170 	gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
2171 	dsa_unregister_switch(priv->ds);
2172 mdio_bus:
2173 	if (mdio_np)
2174 		mdiobus_unregister(priv->ds->slave_mii_bus);
2175 put_mdio_node:
2176 	of_node_put(mdio_np);
2177 	for (i = 0; i < priv->num_gphy_fw; i++)
2178 		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2179 	return err;
2180 }
2181 
gswip_remove(struct platform_device * pdev)2182 static int gswip_remove(struct platform_device *pdev)
2183 {
2184 	struct gswip_priv *priv = platform_get_drvdata(pdev);
2185 	int i;
2186 
2187 	if (!priv)
2188 		return 0;
2189 
2190 	/* disable the switch */
2191 	gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
2192 
2193 	dsa_unregister_switch(priv->ds);
2194 
2195 	if (priv->ds->slave_mii_bus) {
2196 		mdiobus_unregister(priv->ds->slave_mii_bus);
2197 		of_node_put(priv->ds->slave_mii_bus->dev.of_node);
2198 	}
2199 
2200 	for (i = 0; i < priv->num_gphy_fw; i++)
2201 		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2202 
2203 	platform_set_drvdata(pdev, NULL);
2204 
2205 	return 0;
2206 }
2207 
gswip_shutdown(struct platform_device * pdev)2208 static void gswip_shutdown(struct platform_device *pdev)
2209 {
2210 	struct gswip_priv *priv = platform_get_drvdata(pdev);
2211 
2212 	if (!priv)
2213 		return;
2214 
2215 	dsa_switch_shutdown(priv->ds);
2216 
2217 	platform_set_drvdata(pdev, NULL);
2218 }
2219 
2220 static const struct gswip_hw_info gswip_xrx200 = {
2221 	.max_ports = 7,
2222 	.cpu_port = 6,
2223 	.ops = &gswip_xrx200_switch_ops,
2224 };
2225 
2226 static const struct gswip_hw_info gswip_xrx300 = {
2227 	.max_ports = 7,
2228 	.cpu_port = 6,
2229 	.ops = &gswip_xrx300_switch_ops,
2230 };
2231 
2232 static const struct of_device_id gswip_of_match[] = {
2233 	{ .compatible = "lantiq,xrx200-gswip", .data = &gswip_xrx200 },
2234 	{ .compatible = "lantiq,xrx300-gswip", .data = &gswip_xrx300 },
2235 	{ .compatible = "lantiq,xrx330-gswip", .data = &gswip_xrx300 },
2236 	{},
2237 };
2238 MODULE_DEVICE_TABLE(of, gswip_of_match);
2239 
2240 static struct platform_driver gswip_driver = {
2241 	.probe = gswip_probe,
2242 	.remove = gswip_remove,
2243 	.shutdown = gswip_shutdown,
2244 	.driver = {
2245 		.name = "gswip",
2246 		.of_match_table = gswip_of_match,
2247 	},
2248 };
2249 
2250 module_platform_driver(gswip_driver);
2251 
2252 MODULE_FIRMWARE("lantiq/xrx300_phy11g_a21.bin");
2253 MODULE_FIRMWARE("lantiq/xrx300_phy22f_a21.bin");
2254 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a14.bin");
2255 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a22.bin");
2256 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a14.bin");
2257 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a22.bin");
2258 MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
2259 MODULE_DESCRIPTION("Lantiq / Intel GSWIP driver");
2260 MODULE_LICENSE("GPL v2");
2261