1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * GPMC support functions
4  *
5  * Copyright (C) 2005-2006 Nokia Corporation
6  *
7  * Author: Juha Yrjola
8  *
9  * Copyright (C) 2009 Texas Instruments
10  * Added OMAP4 support - Santosh Shilimkar <santosh.shilimkar@ti.com>
11  */
12 #include <linux/cpu_pm.h>
13 #include <linux/irq.h>
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/err.h>
17 #include <linux/clk.h>
18 #include <linux/ioport.h>
19 #include <linux/spinlock.h>
20 #include <linux/io.h>
21 #include <linux/gpio/driver.h>
22 #include <linux/gpio/consumer.h> /* GPIO descriptor enum */
23 #include <linux/gpio/machine.h>
24 #include <linux/interrupt.h>
25 #include <linux/irqdomain.h>
26 #include <linux/platform_device.h>
27 #include <linux/of.h>
28 #include <linux/of_address.h>
29 #include <linux/of_device.h>
30 #include <linux/of_platform.h>
31 #include <linux/omap-gpmc.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/sizes.h>
34 
35 #include <linux/platform_data/mtd-nand-omap2.h>
36 
37 #define	DEVICE_NAME		"omap-gpmc"
38 
39 /* GPMC register offsets */
40 #define GPMC_REVISION		0x00
41 #define GPMC_SYSCONFIG		0x10
42 #define GPMC_SYSSTATUS		0x14
43 #define GPMC_IRQSTATUS		0x18
44 #define GPMC_IRQENABLE		0x1c
45 #define GPMC_TIMEOUT_CONTROL	0x40
46 #define GPMC_ERR_ADDRESS	0x44
47 #define GPMC_ERR_TYPE		0x48
48 #define GPMC_CONFIG		0x50
49 #define GPMC_STATUS		0x54
50 #define GPMC_PREFETCH_CONFIG1	0x1e0
51 #define GPMC_PREFETCH_CONFIG2	0x1e4
52 #define GPMC_PREFETCH_CONTROL	0x1ec
53 #define GPMC_PREFETCH_STATUS	0x1f0
54 #define GPMC_ECC_CONFIG		0x1f4
55 #define GPMC_ECC_CONTROL	0x1f8
56 #define GPMC_ECC_SIZE_CONFIG	0x1fc
57 #define GPMC_ECC1_RESULT        0x200
58 #define GPMC_ECC_BCH_RESULT_0   0x240   /* not available on OMAP2 */
59 #define	GPMC_ECC_BCH_RESULT_1	0x244	/* not available on OMAP2 */
60 #define	GPMC_ECC_BCH_RESULT_2	0x248	/* not available on OMAP2 */
61 #define	GPMC_ECC_BCH_RESULT_3	0x24c	/* not available on OMAP2 */
62 #define	GPMC_ECC_BCH_RESULT_4	0x300	/* not available on OMAP2 */
63 #define	GPMC_ECC_BCH_RESULT_5	0x304	/* not available on OMAP2 */
64 #define	GPMC_ECC_BCH_RESULT_6	0x308	/* not available on OMAP2 */
65 
66 /* GPMC ECC control settings */
67 #define GPMC_ECC_CTRL_ECCCLEAR		0x100
68 #define GPMC_ECC_CTRL_ECCDISABLE	0x000
69 #define GPMC_ECC_CTRL_ECCREG1		0x001
70 #define GPMC_ECC_CTRL_ECCREG2		0x002
71 #define GPMC_ECC_CTRL_ECCREG3		0x003
72 #define GPMC_ECC_CTRL_ECCREG4		0x004
73 #define GPMC_ECC_CTRL_ECCREG5		0x005
74 #define GPMC_ECC_CTRL_ECCREG6		0x006
75 #define GPMC_ECC_CTRL_ECCREG7		0x007
76 #define GPMC_ECC_CTRL_ECCREG8		0x008
77 #define GPMC_ECC_CTRL_ECCREG9		0x009
78 
79 #define GPMC_CONFIG_LIMITEDADDRESS		BIT(1)
80 
81 #define GPMC_STATUS_EMPTYWRITEBUFFERSTATUS	BIT(0)
82 
83 #define	GPMC_CONFIG2_CSEXTRADELAY		BIT(7)
84 #define	GPMC_CONFIG3_ADVEXTRADELAY		BIT(7)
85 #define	GPMC_CONFIG4_OEEXTRADELAY		BIT(7)
86 #define	GPMC_CONFIG4_WEEXTRADELAY		BIT(23)
87 #define	GPMC_CONFIG6_CYCLE2CYCLEDIFFCSEN	BIT(6)
88 #define	GPMC_CONFIG6_CYCLE2CYCLESAMECSEN	BIT(7)
89 
90 #define GPMC_CS0_OFFSET		0x60
91 #define GPMC_CS_SIZE		0x30
92 #define	GPMC_BCH_SIZE		0x10
93 
94 /*
95  * The first 1MB of GPMC address space is typically mapped to
96  * the internal ROM. Never allocate the first page, to
97  * facilitate bug detection; even if we didn't boot from ROM.
98  * As GPMC minimum partition size is 16MB we can only start from
99  * there.
100  */
101 #define GPMC_MEM_START		0x1000000
102 #define GPMC_MEM_END		0x3FFFFFFF
103 
104 #define GPMC_CHUNK_SHIFT	24		/* 16 MB */
105 #define GPMC_SECTION_SHIFT	28		/* 128 MB */
106 
107 #define CS_NUM_SHIFT		24
108 #define ENABLE_PREFETCH		(0x1 << 7)
109 #define DMA_MPU_MODE		2
110 
111 #define	GPMC_REVISION_MAJOR(l)		(((l) >> 4) & 0xf)
112 #define	GPMC_REVISION_MINOR(l)		((l) & 0xf)
113 
114 #define	GPMC_HAS_WR_ACCESS		0x1
115 #define	GPMC_HAS_WR_DATA_MUX_BUS	0x2
116 #define	GPMC_HAS_MUX_AAD		0x4
117 
118 #define GPMC_NR_WAITPINS		4
119 
120 #define GPMC_CS_CONFIG1		0x00
121 #define GPMC_CS_CONFIG2		0x04
122 #define GPMC_CS_CONFIG3		0x08
123 #define GPMC_CS_CONFIG4		0x0c
124 #define GPMC_CS_CONFIG5		0x10
125 #define GPMC_CS_CONFIG6		0x14
126 #define GPMC_CS_CONFIG7		0x18
127 #define GPMC_CS_NAND_COMMAND	0x1c
128 #define GPMC_CS_NAND_ADDRESS	0x20
129 #define GPMC_CS_NAND_DATA	0x24
130 
131 /* Control Commands */
132 #define GPMC_CONFIG_RDY_BSY	0x00000001
133 #define GPMC_CONFIG_DEV_SIZE	0x00000002
134 #define GPMC_CONFIG_DEV_TYPE	0x00000003
135 
136 #define GPMC_CONFIG1_WRAPBURST_SUPP     (1 << 31)
137 #define GPMC_CONFIG1_READMULTIPLE_SUPP  (1 << 30)
138 #define GPMC_CONFIG1_READTYPE_ASYNC     (0 << 29)
139 #define GPMC_CONFIG1_READTYPE_SYNC      (1 << 29)
140 #define GPMC_CONFIG1_WRITEMULTIPLE_SUPP (1 << 28)
141 #define GPMC_CONFIG1_WRITETYPE_ASYNC    (0 << 27)
142 #define GPMC_CONFIG1_WRITETYPE_SYNC     (1 << 27)
143 #define GPMC_CONFIG1_CLKACTIVATIONTIME(val) (((val) & 3) << 25)
144 /** CLKACTIVATIONTIME Max Ticks */
145 #define GPMC_CONFIG1_CLKACTIVATIONTIME_MAX 2
146 #define GPMC_CONFIG1_PAGE_LEN(val)      (((val) & 3) << 23)
147 /** ATTACHEDDEVICEPAGELENGTH Max Value */
148 #define GPMC_CONFIG1_ATTACHEDDEVICEPAGELENGTH_MAX 2
149 #define GPMC_CONFIG1_WAIT_READ_MON      (1 << 22)
150 #define GPMC_CONFIG1_WAIT_WRITE_MON     (1 << 21)
151 #define GPMC_CONFIG1_WAIT_MON_TIME(val) (((val) & 3) << 18)
152 /** WAITMONITORINGTIME Max Ticks */
153 #define GPMC_CONFIG1_WAITMONITORINGTIME_MAX  2
154 #define GPMC_CONFIG1_WAIT_PIN_SEL(val)  (((val) & 3) << 16)
155 #define GPMC_CONFIG1_DEVICESIZE(val)    (((val) & 3) << 12)
156 #define GPMC_CONFIG1_DEVICESIZE_16      GPMC_CONFIG1_DEVICESIZE(1)
157 /** DEVICESIZE Max Value */
158 #define GPMC_CONFIG1_DEVICESIZE_MAX     1
159 #define GPMC_CONFIG1_DEVICETYPE(val)    (((val) & 3) << 10)
160 #define GPMC_CONFIG1_DEVICETYPE_NOR     GPMC_CONFIG1_DEVICETYPE(0)
161 #define GPMC_CONFIG1_MUXTYPE(val)       (((val) & 3) << 8)
162 #define GPMC_CONFIG1_TIME_PARA_GRAN     (1 << 4)
163 #define GPMC_CONFIG1_FCLK_DIV(val)      ((val) & 3)
164 #define GPMC_CONFIG1_FCLK_DIV2          (GPMC_CONFIG1_FCLK_DIV(1))
165 #define GPMC_CONFIG1_FCLK_DIV3          (GPMC_CONFIG1_FCLK_DIV(2))
166 #define GPMC_CONFIG1_FCLK_DIV4          (GPMC_CONFIG1_FCLK_DIV(3))
167 #define GPMC_CONFIG7_CSVALID		(1 << 6)
168 
169 #define GPMC_CONFIG7_BASEADDRESS_MASK	0x3f
170 #define GPMC_CONFIG7_CSVALID_MASK	BIT(6)
171 #define GPMC_CONFIG7_MASKADDRESS_OFFSET	8
172 #define GPMC_CONFIG7_MASKADDRESS_MASK	(0xf << GPMC_CONFIG7_MASKADDRESS_OFFSET)
173 /* All CONFIG7 bits except reserved bits */
174 #define GPMC_CONFIG7_MASK		(GPMC_CONFIG7_BASEADDRESS_MASK | \
175 					 GPMC_CONFIG7_CSVALID_MASK |     \
176 					 GPMC_CONFIG7_MASKADDRESS_MASK)
177 
178 #define GPMC_DEVICETYPE_NOR		0
179 #define GPMC_DEVICETYPE_NAND		2
180 #define GPMC_CONFIG_WRITEPROTECT	0x00000010
181 #define WR_RD_PIN_MONITORING		0x00600000
182 
183 /* ECC commands */
184 #define GPMC_ECC_READ		0 /* Reset Hardware ECC for read */
185 #define GPMC_ECC_WRITE		1 /* Reset Hardware ECC for write */
186 #define GPMC_ECC_READSYN	2 /* Reset before syndrom is read back */
187 
188 #define	GPMC_NR_NAND_IRQS	2 /* number of NAND specific IRQs */
189 
190 enum gpmc_clk_domain {
191 	GPMC_CD_FCLK,
192 	GPMC_CD_CLK
193 };
194 
195 struct gpmc_cs_data {
196 	const char *name;
197 
198 #define GPMC_CS_RESERVED	(1 << 0)
199 	u32 flags;
200 
201 	struct resource mem;
202 };
203 
204 /* Structure to save gpmc cs context */
205 struct gpmc_cs_config {
206 	u32 config1;
207 	u32 config2;
208 	u32 config3;
209 	u32 config4;
210 	u32 config5;
211 	u32 config6;
212 	u32 config7;
213 	int is_valid;
214 };
215 
216 /*
217  * Structure to save/restore gpmc context
218  * to support core off on OMAP3
219  */
220 struct omap3_gpmc_regs {
221 	u32 sysconfig;
222 	u32 irqenable;
223 	u32 timeout_ctrl;
224 	u32 config;
225 	u32 prefetch_config1;
226 	u32 prefetch_config2;
227 	u32 prefetch_control;
228 	struct gpmc_cs_config cs_context[GPMC_CS_NUM];
229 };
230 
231 struct gpmc_device {
232 	struct device *dev;
233 	int irq;
234 	struct irq_chip irq_chip;
235 	struct gpio_chip gpio_chip;
236 	struct notifier_block nb;
237 	struct omap3_gpmc_regs context;
238 	int nirqs;
239 	unsigned int is_suspended:1;
240 };
241 
242 static struct irq_domain *gpmc_irq_domain;
243 
244 static struct resource	gpmc_mem_root;
245 static struct gpmc_cs_data gpmc_cs[GPMC_CS_NUM];
246 static DEFINE_SPINLOCK(gpmc_mem_lock);
247 /* Define chip-selects as reserved by default until probe completes */
248 static unsigned int gpmc_cs_num = GPMC_CS_NUM;
249 static unsigned int gpmc_nr_waitpins;
250 static unsigned int gpmc_capability;
251 static void __iomem *gpmc_base;
252 
253 static struct clk *gpmc_l3_clk;
254 
255 static irqreturn_t gpmc_handle_irq(int irq, void *dev);
256 
gpmc_write_reg(int idx,u32 val)257 static void gpmc_write_reg(int idx, u32 val)
258 {
259 	writel_relaxed(val, gpmc_base + idx);
260 }
261 
gpmc_read_reg(int idx)262 static u32 gpmc_read_reg(int idx)
263 {
264 	return readl_relaxed(gpmc_base + idx);
265 }
266 
gpmc_cs_write_reg(int cs,int idx,u32 val)267 void gpmc_cs_write_reg(int cs, int idx, u32 val)
268 {
269 	void __iomem *reg_addr;
270 
271 	reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx;
272 	writel_relaxed(val, reg_addr);
273 }
274 
gpmc_cs_read_reg(int cs,int idx)275 static u32 gpmc_cs_read_reg(int cs, int idx)
276 {
277 	void __iomem *reg_addr;
278 
279 	reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx;
280 	return readl_relaxed(reg_addr);
281 }
282 
283 /* TODO: Add support for gpmc_fck to clock framework and use it */
gpmc_get_fclk_period(void)284 static unsigned long gpmc_get_fclk_period(void)
285 {
286 	unsigned long rate = clk_get_rate(gpmc_l3_clk);
287 
288 	rate /= 1000;
289 	rate = 1000000000 / rate;	/* In picoseconds */
290 
291 	return rate;
292 }
293 
294 /**
295  * gpmc_get_clk_period - get period of selected clock domain in ps
296  * @cs: Chip Select Region.
297  * @cd: Clock Domain.
298  *
299  * GPMC_CS_CONFIG1 GPMCFCLKDIVIDER for cs has to be setup
300  * prior to calling this function with GPMC_CD_CLK.
301  */
gpmc_get_clk_period(int cs,enum gpmc_clk_domain cd)302 static unsigned long gpmc_get_clk_period(int cs, enum gpmc_clk_domain cd)
303 {
304 	unsigned long tick_ps = gpmc_get_fclk_period();
305 	u32 l;
306 	int div;
307 
308 	switch (cd) {
309 	case GPMC_CD_CLK:
310 		/* get current clk divider */
311 		l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG1);
312 		div = (l & 0x03) + 1;
313 		/* get GPMC_CLK period */
314 		tick_ps *= div;
315 		break;
316 	case GPMC_CD_FCLK:
317 	default:
318 		break;
319 	}
320 
321 	return tick_ps;
322 }
323 
gpmc_ns_to_clk_ticks(unsigned int time_ns,int cs,enum gpmc_clk_domain cd)324 static unsigned int gpmc_ns_to_clk_ticks(unsigned int time_ns, int cs,
325 					 enum gpmc_clk_domain cd)
326 {
327 	unsigned long tick_ps;
328 
329 	/* Calculate in picosecs to yield more exact results */
330 	tick_ps = gpmc_get_clk_period(cs, cd);
331 
332 	return (time_ns * 1000 + tick_ps - 1) / tick_ps;
333 }
334 
gpmc_ns_to_ticks(unsigned int time_ns)335 static unsigned int gpmc_ns_to_ticks(unsigned int time_ns)
336 {
337 	return gpmc_ns_to_clk_ticks(time_ns, /* any CS */ 0, GPMC_CD_FCLK);
338 }
339 
gpmc_ps_to_ticks(unsigned int time_ps)340 static unsigned int gpmc_ps_to_ticks(unsigned int time_ps)
341 {
342 	unsigned long tick_ps;
343 
344 	/* Calculate in picosecs to yield more exact results */
345 	tick_ps = gpmc_get_fclk_period();
346 
347 	return (time_ps + tick_ps - 1) / tick_ps;
348 }
349 
gpmc_clk_ticks_to_ns(unsigned int ticks,int cs,enum gpmc_clk_domain cd)350 static unsigned int gpmc_clk_ticks_to_ns(unsigned int ticks, int cs,
351 					 enum gpmc_clk_domain cd)
352 {
353 	return ticks * gpmc_get_clk_period(cs, cd) / 1000;
354 }
355 
gpmc_ticks_to_ns(unsigned int ticks)356 unsigned int gpmc_ticks_to_ns(unsigned int ticks)
357 {
358 	return gpmc_clk_ticks_to_ns(ticks, /* any CS */ 0, GPMC_CD_FCLK);
359 }
360 
gpmc_ticks_to_ps(unsigned int ticks)361 static unsigned int gpmc_ticks_to_ps(unsigned int ticks)
362 {
363 	return ticks * gpmc_get_fclk_period();
364 }
365 
gpmc_round_ps_to_ticks(unsigned int time_ps)366 static unsigned int gpmc_round_ps_to_ticks(unsigned int time_ps)
367 {
368 	unsigned long ticks = gpmc_ps_to_ticks(time_ps);
369 
370 	return ticks * gpmc_get_fclk_period();
371 }
372 
gpmc_cs_modify_reg(int cs,int reg,u32 mask,bool value)373 static inline void gpmc_cs_modify_reg(int cs, int reg, u32 mask, bool value)
374 {
375 	u32 l;
376 
377 	l = gpmc_cs_read_reg(cs, reg);
378 	if (value)
379 		l |= mask;
380 	else
381 		l &= ~mask;
382 	gpmc_cs_write_reg(cs, reg, l);
383 }
384 
gpmc_cs_bool_timings(int cs,const struct gpmc_bool_timings * p)385 static void gpmc_cs_bool_timings(int cs, const struct gpmc_bool_timings *p)
386 {
387 	gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG1,
388 			   GPMC_CONFIG1_TIME_PARA_GRAN,
389 			   p->time_para_granularity);
390 	gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG2,
391 			   GPMC_CONFIG2_CSEXTRADELAY, p->cs_extra_delay);
392 	gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG3,
393 			   GPMC_CONFIG3_ADVEXTRADELAY, p->adv_extra_delay);
394 	gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG4,
395 			   GPMC_CONFIG4_OEEXTRADELAY, p->oe_extra_delay);
396 	gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG4,
397 			   GPMC_CONFIG4_WEEXTRADELAY, p->we_extra_delay);
398 	gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG6,
399 			   GPMC_CONFIG6_CYCLE2CYCLESAMECSEN,
400 			   p->cycle2cyclesamecsen);
401 	gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG6,
402 			   GPMC_CONFIG6_CYCLE2CYCLEDIFFCSEN,
403 			   p->cycle2cyclediffcsen);
404 }
405 
406 #ifdef CONFIG_OMAP_GPMC_DEBUG
407 /**
408  * get_gpmc_timing_reg - read a timing parameter and print DTS settings for it.
409  * @cs:      Chip Select Region
410  * @reg:     GPMC_CS_CONFIGn register offset.
411  * @st_bit:  Start Bit
412  * @end_bit: End Bit. Must be >= @st_bit.
413  * @max:     Maximum parameter value (before optional @shift).
414  *           If 0, maximum is as high as @st_bit and @end_bit allow.
415  * @name:    DTS node name, w/o "gpmc,"
416  * @cd:      Clock Domain of timing parameter.
417  * @shift:   Parameter value left shifts @shift, which is then printed instead of value.
418  * @raw:     Raw Format Option.
419  *           raw format:  gpmc,name = <value>
420  *           tick format: gpmc,name = <value> /&zwj;* x ns -- y ns; x ticks *&zwj;/
421  *           Where x ns -- y ns result in the same tick value.
422  *           When @max is exceeded, "invalid" is printed inside comment.
423  * @noval:   Parameter values equal to 0 are not printed.
424  * @return:  Specified timing parameter (after optional @shift).
425  *
426  */
get_gpmc_timing_reg(int cs,int reg,int st_bit,int end_bit,int max,const char * name,const enum gpmc_clk_domain cd,int shift,bool raw,bool noval)427 static int get_gpmc_timing_reg(
428 	/* timing specifiers */
429 	int cs, int reg, int st_bit, int end_bit, int max,
430 	const char *name, const enum gpmc_clk_domain cd,
431 	/* value transform */
432 	int shift,
433 	/* format specifiers */
434 	bool raw, bool noval)
435 {
436 	u32 l;
437 	int nr_bits;
438 	int mask;
439 	bool invalid;
440 
441 	l = gpmc_cs_read_reg(cs, reg);
442 	nr_bits = end_bit - st_bit + 1;
443 	mask = (1 << nr_bits) - 1;
444 	l = (l >> st_bit) & mask;
445 	if (!max)
446 		max = mask;
447 	invalid = l > max;
448 	if (shift)
449 		l = (shift << l);
450 	if (noval && (l == 0))
451 		return 0;
452 	if (!raw) {
453 		/* DTS tick format for timings in ns */
454 		unsigned int time_ns;
455 		unsigned int time_ns_min = 0;
456 
457 		if (l)
458 			time_ns_min = gpmc_clk_ticks_to_ns(l - 1, cs, cd) + 1;
459 		time_ns = gpmc_clk_ticks_to_ns(l, cs, cd);
460 		pr_info("gpmc,%s = <%u>; /* %u ns - %u ns; %i ticks%s*/\n",
461 			name, time_ns, time_ns_min, time_ns, l,
462 			invalid ? "; invalid " : " ");
463 	} else {
464 		/* raw format */
465 		pr_info("gpmc,%s = <%u>;%s\n", name, l,
466 			invalid ? " /* invalid */" : "");
467 	}
468 
469 	return l;
470 }
471 
472 #define GPMC_PRINT_CONFIG(cs, config) \
473 	pr_info("cs%i %s: 0x%08x\n", cs, #config, \
474 		gpmc_cs_read_reg(cs, config))
475 #define GPMC_GET_RAW(reg, st, end, field) \
476 	get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 1, 0)
477 #define GPMC_GET_RAW_MAX(reg, st, end, max, field) \
478 	get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, GPMC_CD_FCLK, 0, 1, 0)
479 #define GPMC_GET_RAW_BOOL(reg, st, end, field) \
480 	get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 1, 1)
481 #define GPMC_GET_RAW_SHIFT_MAX(reg, st, end, shift, max, field) \
482 	get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, GPMC_CD_FCLK, (shift), 1, 1)
483 #define GPMC_GET_TICKS(reg, st, end, field) \
484 	get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 0, 0)
485 #define GPMC_GET_TICKS_CD(reg, st, end, field, cd) \
486 	get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, (cd), 0, 0, 0)
487 #define GPMC_GET_TICKS_CD_MAX(reg, st, end, max, field, cd) \
488 	get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, (cd), 0, 0, 0)
489 
gpmc_show_regs(int cs,const char * desc)490 static void gpmc_show_regs(int cs, const char *desc)
491 {
492 	pr_info("gpmc cs%i %s:\n", cs, desc);
493 	GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG1);
494 	GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG2);
495 	GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG3);
496 	GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG4);
497 	GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG5);
498 	GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG6);
499 }
500 
501 /*
502  * Note that gpmc,wait-pin handing wrongly assumes bit 8 is available,
503  * see commit c9fb809.
504  */
gpmc_cs_show_timings(int cs,const char * desc)505 static void gpmc_cs_show_timings(int cs, const char *desc)
506 {
507 	gpmc_show_regs(cs, desc);
508 
509 	pr_info("gpmc cs%i access configuration:\n", cs);
510 	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1,  4,  4, "time-para-granularity");
511 	GPMC_GET_RAW(GPMC_CS_CONFIG1,  8,  9, "mux-add-data");
512 	GPMC_GET_RAW_SHIFT_MAX(GPMC_CS_CONFIG1, 12, 13, 1,
513 			       GPMC_CONFIG1_DEVICESIZE_MAX, "device-width");
514 	GPMC_GET_RAW(GPMC_CS_CONFIG1, 16, 17, "wait-pin");
515 	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 21, 21, "wait-on-write");
516 	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 22, 22, "wait-on-read");
517 	GPMC_GET_RAW_SHIFT_MAX(GPMC_CS_CONFIG1, 23, 24, 4,
518 			       GPMC_CONFIG1_ATTACHEDDEVICEPAGELENGTH_MAX,
519 			       "burst-length");
520 	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 27, 27, "sync-write");
521 	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 28, 28, "burst-write");
522 	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 29, 29, "gpmc,sync-read");
523 	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 30, 30, "burst-read");
524 	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 31, 31, "burst-wrap");
525 
526 	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG2,  7,  7, "cs-extra-delay");
527 
528 	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG3,  7,  7, "adv-extra-delay");
529 
530 	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG4, 23, 23, "we-extra-delay");
531 	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG4,  7,  7, "oe-extra-delay");
532 
533 	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG6,  7,  7, "cycle2cycle-samecsen");
534 	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG6,  6,  6, "cycle2cycle-diffcsen");
535 
536 	pr_info("gpmc cs%i timings configuration:\n", cs);
537 	GPMC_GET_TICKS(GPMC_CS_CONFIG2,  0,  3, "cs-on-ns");
538 	GPMC_GET_TICKS(GPMC_CS_CONFIG2,  8, 12, "cs-rd-off-ns");
539 	GPMC_GET_TICKS(GPMC_CS_CONFIG2, 16, 20, "cs-wr-off-ns");
540 
541 	GPMC_GET_TICKS(GPMC_CS_CONFIG3,  0,  3, "adv-on-ns");
542 	GPMC_GET_TICKS(GPMC_CS_CONFIG3,  8, 12, "adv-rd-off-ns");
543 	GPMC_GET_TICKS(GPMC_CS_CONFIG3, 16, 20, "adv-wr-off-ns");
544 	if (gpmc_capability & GPMC_HAS_MUX_AAD) {
545 		GPMC_GET_TICKS(GPMC_CS_CONFIG3, 4, 6, "adv-aad-mux-on-ns");
546 		GPMC_GET_TICKS(GPMC_CS_CONFIG3, 24, 26,
547 				"adv-aad-mux-rd-off-ns");
548 		GPMC_GET_TICKS(GPMC_CS_CONFIG3, 28, 30,
549 				"adv-aad-mux-wr-off-ns");
550 	}
551 
552 	GPMC_GET_TICKS(GPMC_CS_CONFIG4,  0,  3, "oe-on-ns");
553 	GPMC_GET_TICKS(GPMC_CS_CONFIG4,  8, 12, "oe-off-ns");
554 	if (gpmc_capability & GPMC_HAS_MUX_AAD) {
555 		GPMC_GET_TICKS(GPMC_CS_CONFIG4,  4,  6, "oe-aad-mux-on-ns");
556 		GPMC_GET_TICKS(GPMC_CS_CONFIG4, 13, 15, "oe-aad-mux-off-ns");
557 	}
558 	GPMC_GET_TICKS(GPMC_CS_CONFIG4, 16, 19, "we-on-ns");
559 	GPMC_GET_TICKS(GPMC_CS_CONFIG4, 24, 28, "we-off-ns");
560 
561 	GPMC_GET_TICKS(GPMC_CS_CONFIG5,  0,  4, "rd-cycle-ns");
562 	GPMC_GET_TICKS(GPMC_CS_CONFIG5,  8, 12, "wr-cycle-ns");
563 	GPMC_GET_TICKS(GPMC_CS_CONFIG5, 16, 20, "access-ns");
564 
565 	GPMC_GET_TICKS(GPMC_CS_CONFIG5, 24, 27, "page-burst-access-ns");
566 
567 	GPMC_GET_TICKS(GPMC_CS_CONFIG6, 0, 3, "bus-turnaround-ns");
568 	GPMC_GET_TICKS(GPMC_CS_CONFIG6, 8, 11, "cycle2cycle-delay-ns");
569 
570 	GPMC_GET_TICKS_CD_MAX(GPMC_CS_CONFIG1, 18, 19,
571 			      GPMC_CONFIG1_WAITMONITORINGTIME_MAX,
572 			      "wait-monitoring-ns", GPMC_CD_CLK);
573 	GPMC_GET_TICKS_CD_MAX(GPMC_CS_CONFIG1, 25, 26,
574 			      GPMC_CONFIG1_CLKACTIVATIONTIME_MAX,
575 			      "clk-activation-ns", GPMC_CD_FCLK);
576 
577 	GPMC_GET_TICKS(GPMC_CS_CONFIG6, 16, 19, "wr-data-mux-bus-ns");
578 	GPMC_GET_TICKS(GPMC_CS_CONFIG6, 24, 28, "wr-access-ns");
579 }
580 #else
gpmc_cs_show_timings(int cs,const char * desc)581 static inline void gpmc_cs_show_timings(int cs, const char *desc)
582 {
583 }
584 #endif
585 
586 /**
587  * set_gpmc_timing_reg - set a single timing parameter for Chip Select Region.
588  * Caller is expected to have initialized CONFIG1 GPMCFCLKDIVIDER
589  * prior to calling this function with @cd equal to GPMC_CD_CLK.
590  *
591  * @cs:      Chip Select Region.
592  * @reg:     GPMC_CS_CONFIGn register offset.
593  * @st_bit:  Start Bit
594  * @end_bit: End Bit. Must be >= @st_bit.
595  * @max:     Maximum parameter value.
596  *           If 0, maximum is as high as @st_bit and @end_bit allow.
597  * @time:    Timing parameter in ns.
598  * @cd:      Timing parameter clock domain.
599  * @name:    Timing parameter name.
600  * @return:  0 on success, -1 on error.
601  */
set_gpmc_timing_reg(int cs,int reg,int st_bit,int end_bit,int max,int time,enum gpmc_clk_domain cd,const char * name)602 static int set_gpmc_timing_reg(int cs, int reg, int st_bit, int end_bit, int max,
603 			       int time, enum gpmc_clk_domain cd, const char *name)
604 {
605 	u32 l;
606 	int ticks, mask, nr_bits;
607 
608 	if (time == 0)
609 		ticks = 0;
610 	else
611 		ticks = gpmc_ns_to_clk_ticks(time, cs, cd);
612 	nr_bits = end_bit - st_bit + 1;
613 	mask = (1 << nr_bits) - 1;
614 
615 	if (!max)
616 		max = mask;
617 
618 	if (ticks > max) {
619 		pr_err("%s: GPMC CS%d: %s %d ns, %d ticks > %d ticks\n",
620 		       __func__, cs, name, time, ticks, max);
621 
622 		return -1;
623 	}
624 
625 	l = gpmc_cs_read_reg(cs, reg);
626 #ifdef CONFIG_OMAP_GPMC_DEBUG
627 	pr_info("GPMC CS%d: %-17s: %3d ticks, %3lu ns (was %3i ticks) %3d ns\n",
628 		cs, name, ticks, gpmc_get_clk_period(cs, cd) * ticks / 1000,
629 			(l >> st_bit) & mask, time);
630 #endif
631 	l &= ~(mask << st_bit);
632 	l |= ticks << st_bit;
633 	gpmc_cs_write_reg(cs, reg, l);
634 
635 	return 0;
636 }
637 
638 /**
639  * gpmc_calc_waitmonitoring_divider - calculate proper GPMCFCLKDIVIDER based on WAITMONITORINGTIME
640  * WAITMONITORINGTIME will be _at least_ as long as desired, i.e.
641  * read  --> don't sample bus too early
642  * write --> data is longer on bus
643  *
644  * Formula:
645  * gpmc_clk_div + 1 = ceil(ceil(waitmonitoringtime_ns / gpmc_fclk_ns)
646  *                    / waitmonitoring_ticks)
647  * WAITMONITORINGTIME resulting in 0 or 1 tick with div = 1 are caught by
648  * div <= 0 check.
649  *
650  * @wait_monitoring: WAITMONITORINGTIME in ns.
651  * @return:          -1 on failure to scale, else proper divider > 0.
652  */
gpmc_calc_waitmonitoring_divider(unsigned int wait_monitoring)653 static int gpmc_calc_waitmonitoring_divider(unsigned int wait_monitoring)
654 {
655 	int div = gpmc_ns_to_ticks(wait_monitoring);
656 
657 	div += GPMC_CONFIG1_WAITMONITORINGTIME_MAX - 1;
658 	div /= GPMC_CONFIG1_WAITMONITORINGTIME_MAX;
659 
660 	if (div > 4)
661 		return -1;
662 	if (div <= 0)
663 		div = 1;
664 
665 	return div;
666 }
667 
668 /**
669  * gpmc_calc_divider - calculate GPMC_FCLK divider for sync_clk GPMC_CLK period.
670  * @sync_clk: GPMC_CLK period in ps.
671  * @return:   Returns at least 1 if GPMC_FCLK can be divided to GPMC_CLK.
672  *            Else, returns -1.
673  */
gpmc_calc_divider(unsigned int sync_clk)674 int gpmc_calc_divider(unsigned int sync_clk)
675 {
676 	int div = gpmc_ps_to_ticks(sync_clk);
677 
678 	if (div > 4)
679 		return -1;
680 	if (div <= 0)
681 		div = 1;
682 
683 	return div;
684 }
685 
686 /**
687  * gpmc_cs_set_timings - program timing parameters for Chip Select Region.
688  * @cs:     Chip Select Region.
689  * @t:      GPMC timing parameters.
690  * @s:      GPMC timing settings.
691  * @return: 0 on success, -1 on error.
692  */
gpmc_cs_set_timings(int cs,const struct gpmc_timings * t,const struct gpmc_settings * s)693 int gpmc_cs_set_timings(int cs, const struct gpmc_timings *t,
694 			const struct gpmc_settings *s)
695 {
696 	int div, ret;
697 	u32 l;
698 
699 	div = gpmc_calc_divider(t->sync_clk);
700 	if (div < 0)
701 		return -EINVAL;
702 
703 	/*
704 	 * See if we need to change the divider for waitmonitoringtime.
705 	 *
706 	 * Calculate GPMCFCLKDIVIDER independent of gpmc,sync-clk-ps in DT for
707 	 * pure asynchronous accesses, i.e. both read and write asynchronous.
708 	 * However, only do so if WAITMONITORINGTIME is actually used, i.e.
709 	 * either WAITREADMONITORING or WAITWRITEMONITORING is set.
710 	 *
711 	 * This statement must not change div to scale async WAITMONITORINGTIME
712 	 * to protect mixed synchronous and asynchronous accesses.
713 	 *
714 	 * We raise an error later if WAITMONITORINGTIME does not fit.
715 	 */
716 	if (!s->sync_read && !s->sync_write &&
717 	    (s->wait_on_read || s->wait_on_write)
718 	   ) {
719 		div = gpmc_calc_waitmonitoring_divider(t->wait_monitoring);
720 		if (div < 0) {
721 			pr_err("%s: waitmonitoringtime %3d ns too large for greatest gpmcfclkdivider.\n",
722 			       __func__,
723 			       t->wait_monitoring
724 			       );
725 			return -ENXIO;
726 		}
727 	}
728 
729 	ret = 0;
730 	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG2, 0, 3, 0, t->cs_on,
731 				   GPMC_CD_FCLK, "cs_on");
732 	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG2, 8, 12, 0, t->cs_rd_off,
733 				   GPMC_CD_FCLK, "cs_rd_off");
734 	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG2, 16, 20, 0, t->cs_wr_off,
735 				   GPMC_CD_FCLK, "cs_wr_off");
736 	if (ret)
737 		return -ENXIO;
738 
739 	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 0, 3, 0, t->adv_on,
740 				   GPMC_CD_FCLK, "adv_on");
741 	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 8, 12, 0, t->adv_rd_off,
742 				   GPMC_CD_FCLK, "adv_rd_off");
743 	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 16, 20, 0, t->adv_wr_off,
744 				   GPMC_CD_FCLK, "adv_wr_off");
745 	if (ret)
746 		return -ENXIO;
747 
748 	if (gpmc_capability & GPMC_HAS_MUX_AAD) {
749 		ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 4, 6, 0,
750 					   t->adv_aad_mux_on, GPMC_CD_FCLK,
751 					   "adv_aad_mux_on");
752 		ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 24, 26, 0,
753 					   t->adv_aad_mux_rd_off, GPMC_CD_FCLK,
754 					   "adv_aad_mux_rd_off");
755 		ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 28, 30, 0,
756 					   t->adv_aad_mux_wr_off, GPMC_CD_FCLK,
757 					   "adv_aad_mux_wr_off");
758 		if (ret)
759 			return -ENXIO;
760 	}
761 
762 	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 0, 3, 0, t->oe_on,
763 				   GPMC_CD_FCLK, "oe_on");
764 	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 8, 12, 0, t->oe_off,
765 				   GPMC_CD_FCLK, "oe_off");
766 	if (gpmc_capability & GPMC_HAS_MUX_AAD) {
767 		ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 4, 6, 0,
768 					   t->oe_aad_mux_on, GPMC_CD_FCLK,
769 					   "oe_aad_mux_on");
770 		ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 13, 15, 0,
771 					   t->oe_aad_mux_off, GPMC_CD_FCLK,
772 					   "oe_aad_mux_off");
773 	}
774 	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 16, 19, 0, t->we_on,
775 				   GPMC_CD_FCLK, "we_on");
776 	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 24, 28, 0, t->we_off,
777 				   GPMC_CD_FCLK, "we_off");
778 	if (ret)
779 		return -ENXIO;
780 
781 	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG5, 0, 4, 0, t->rd_cycle,
782 				   GPMC_CD_FCLK, "rd_cycle");
783 	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG5, 8, 12, 0, t->wr_cycle,
784 				   GPMC_CD_FCLK, "wr_cycle");
785 	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG5, 16, 20, 0, t->access,
786 				   GPMC_CD_FCLK, "access");
787 	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG5, 24, 27, 0,
788 				   t->page_burst_access, GPMC_CD_FCLK,
789 				   "page_burst_access");
790 	if (ret)
791 		return -ENXIO;
792 
793 	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG6, 0, 3, 0,
794 				   t->bus_turnaround, GPMC_CD_FCLK,
795 				   "bus_turnaround");
796 	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG6, 8, 11, 0,
797 				   t->cycle2cycle_delay, GPMC_CD_FCLK,
798 				   "cycle2cycle_delay");
799 	if (ret)
800 		return -ENXIO;
801 
802 	if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS) {
803 		ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG6, 16, 19, 0,
804 					   t->wr_data_mux_bus, GPMC_CD_FCLK,
805 					   "wr_data_mux_bus");
806 		if (ret)
807 			return -ENXIO;
808 	}
809 	if (gpmc_capability & GPMC_HAS_WR_ACCESS) {
810 		ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG6, 24, 28, 0,
811 					   t->wr_access, GPMC_CD_FCLK,
812 					   "wr_access");
813 		if (ret)
814 			return -ENXIO;
815 	}
816 
817 	l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG1);
818 	l &= ~0x03;
819 	l |= (div - 1);
820 	gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, l);
821 
822 	ret = 0;
823 	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG1, 18, 19,
824 				   GPMC_CONFIG1_WAITMONITORINGTIME_MAX,
825 				   t->wait_monitoring, GPMC_CD_CLK,
826 				   "wait_monitoring");
827 	ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG1, 25, 26,
828 				   GPMC_CONFIG1_CLKACTIVATIONTIME_MAX,
829 				   t->clk_activation, GPMC_CD_FCLK,
830 				   "clk_activation");
831 	if (ret)
832 		return -ENXIO;
833 
834 #ifdef CONFIG_OMAP_GPMC_DEBUG
835 	pr_info("GPMC CS%d CLK period is %lu ns (div %d)\n",
836 			cs, (div * gpmc_get_fclk_period()) / 1000, div);
837 #endif
838 
839 	gpmc_cs_bool_timings(cs, &t->bool_timings);
840 	gpmc_cs_show_timings(cs, "after gpmc_cs_set_timings");
841 
842 	return 0;
843 }
844 
gpmc_cs_set_memconf(int cs,u32 base,u32 size)845 static int gpmc_cs_set_memconf(int cs, u32 base, u32 size)
846 {
847 	u32 l;
848 	u32 mask;
849 
850 	/*
851 	 * Ensure that base address is aligned on a
852 	 * boundary equal to or greater than size.
853 	 */
854 	if (base & (size - 1))
855 		return -EINVAL;
856 
857 	base >>= GPMC_CHUNK_SHIFT;
858 	mask = (1 << GPMC_SECTION_SHIFT) - size;
859 	mask >>= GPMC_CHUNK_SHIFT;
860 	mask <<= GPMC_CONFIG7_MASKADDRESS_OFFSET;
861 
862 	l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
863 	l &= ~GPMC_CONFIG7_MASK;
864 	l |= base & GPMC_CONFIG7_BASEADDRESS_MASK;
865 	l |= mask & GPMC_CONFIG7_MASKADDRESS_MASK;
866 	l |= GPMC_CONFIG7_CSVALID;
867 	gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l);
868 
869 	return 0;
870 }
871 
gpmc_cs_enable_mem(int cs)872 static void gpmc_cs_enable_mem(int cs)
873 {
874 	u32 l;
875 
876 	l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
877 	l |= GPMC_CONFIG7_CSVALID;
878 	gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l);
879 }
880 
gpmc_cs_disable_mem(int cs)881 static void gpmc_cs_disable_mem(int cs)
882 {
883 	u32 l;
884 
885 	l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
886 	l &= ~GPMC_CONFIG7_CSVALID;
887 	gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l);
888 }
889 
gpmc_cs_get_memconf(int cs,u32 * base,u32 * size)890 static void gpmc_cs_get_memconf(int cs, u32 *base, u32 *size)
891 {
892 	u32 l;
893 	u32 mask;
894 
895 	l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
896 	*base = (l & 0x3f) << GPMC_CHUNK_SHIFT;
897 	mask = (l >> 8) & 0x0f;
898 	*size = (1 << GPMC_SECTION_SHIFT) - (mask << GPMC_CHUNK_SHIFT);
899 }
900 
gpmc_cs_mem_enabled(int cs)901 static int gpmc_cs_mem_enabled(int cs)
902 {
903 	u32 l;
904 
905 	l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
906 	return l & GPMC_CONFIG7_CSVALID;
907 }
908 
gpmc_cs_set_reserved(int cs,int reserved)909 static void gpmc_cs_set_reserved(int cs, int reserved)
910 {
911 	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
912 
913 	gpmc->flags |= GPMC_CS_RESERVED;
914 }
915 
gpmc_cs_reserved(int cs)916 static bool gpmc_cs_reserved(int cs)
917 {
918 	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
919 
920 	return gpmc->flags & GPMC_CS_RESERVED;
921 }
922 
gpmc_mem_align(unsigned long size)923 static unsigned long gpmc_mem_align(unsigned long size)
924 {
925 	int order;
926 
927 	size = (size - 1) >> (GPMC_CHUNK_SHIFT - 1);
928 	order = GPMC_CHUNK_SHIFT - 1;
929 	do {
930 		size >>= 1;
931 		order++;
932 	} while (size);
933 	size = 1 << order;
934 	return size;
935 }
936 
gpmc_cs_insert_mem(int cs,unsigned long base,unsigned long size)937 static int gpmc_cs_insert_mem(int cs, unsigned long base, unsigned long size)
938 {
939 	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
940 	struct resource *res = &gpmc->mem;
941 	int r;
942 
943 	size = gpmc_mem_align(size);
944 	spin_lock(&gpmc_mem_lock);
945 	res->start = base;
946 	res->end = base + size - 1;
947 	r = request_resource(&gpmc_mem_root, res);
948 	spin_unlock(&gpmc_mem_lock);
949 
950 	return r;
951 }
952 
gpmc_cs_delete_mem(int cs)953 static int gpmc_cs_delete_mem(int cs)
954 {
955 	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
956 	struct resource *res = &gpmc->mem;
957 	int r;
958 
959 	spin_lock(&gpmc_mem_lock);
960 	r = release_resource(res);
961 	res->start = 0;
962 	res->end = 0;
963 	spin_unlock(&gpmc_mem_lock);
964 
965 	return r;
966 }
967 
gpmc_cs_request(int cs,unsigned long size,unsigned long * base)968 int gpmc_cs_request(int cs, unsigned long size, unsigned long *base)
969 {
970 	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
971 	struct resource *res = &gpmc->mem;
972 	int r = -1;
973 
974 	if (cs >= gpmc_cs_num) {
975 		pr_err("%s: requested chip-select is disabled\n", __func__);
976 		return -ENODEV;
977 	}
978 	size = gpmc_mem_align(size);
979 	if (size > (1 << GPMC_SECTION_SHIFT))
980 		return -ENOMEM;
981 
982 	spin_lock(&gpmc_mem_lock);
983 	if (gpmc_cs_reserved(cs)) {
984 		r = -EBUSY;
985 		goto out;
986 	}
987 	if (gpmc_cs_mem_enabled(cs))
988 		r = adjust_resource(res, res->start & ~(size - 1), size);
989 	if (r < 0)
990 		r = allocate_resource(&gpmc_mem_root, res, size, 0, ~0,
991 				      size, NULL, NULL);
992 	if (r < 0)
993 		goto out;
994 
995 	/* Disable CS while changing base address and size mask */
996 	gpmc_cs_disable_mem(cs);
997 
998 	r = gpmc_cs_set_memconf(cs, res->start, resource_size(res));
999 	if (r < 0) {
1000 		release_resource(res);
1001 		goto out;
1002 	}
1003 
1004 	/* Enable CS */
1005 	gpmc_cs_enable_mem(cs);
1006 	*base = res->start;
1007 	gpmc_cs_set_reserved(cs, 1);
1008 out:
1009 	spin_unlock(&gpmc_mem_lock);
1010 	return r;
1011 }
1012 EXPORT_SYMBOL(gpmc_cs_request);
1013 
gpmc_cs_free(int cs)1014 void gpmc_cs_free(int cs)
1015 {
1016 	struct gpmc_cs_data *gpmc;
1017 	struct resource *res;
1018 
1019 	spin_lock(&gpmc_mem_lock);
1020 	if (cs >= gpmc_cs_num || cs < 0 || !gpmc_cs_reserved(cs)) {
1021 		WARN(1, "Trying to free non-reserved GPMC CS%d\n", cs);
1022 		spin_unlock(&gpmc_mem_lock);
1023 		return;
1024 	}
1025 	gpmc = &gpmc_cs[cs];
1026 	res = &gpmc->mem;
1027 
1028 	gpmc_cs_disable_mem(cs);
1029 	if (res->flags)
1030 		release_resource(res);
1031 	gpmc_cs_set_reserved(cs, 0);
1032 	spin_unlock(&gpmc_mem_lock);
1033 }
1034 EXPORT_SYMBOL(gpmc_cs_free);
1035 
1036 /**
1037  * gpmc_configure - write request to configure gpmc
1038  * @cmd: command type
1039  * @wval: value to write
1040  * @return status of the operation
1041  */
gpmc_configure(int cmd,int wval)1042 int gpmc_configure(int cmd, int wval)
1043 {
1044 	u32 regval;
1045 
1046 	switch (cmd) {
1047 	case GPMC_CONFIG_WP:
1048 		regval = gpmc_read_reg(GPMC_CONFIG);
1049 		if (wval)
1050 			regval &= ~GPMC_CONFIG_WRITEPROTECT; /* WP is ON */
1051 		else
1052 			regval |= GPMC_CONFIG_WRITEPROTECT;  /* WP is OFF */
1053 		gpmc_write_reg(GPMC_CONFIG, regval);
1054 		break;
1055 
1056 	default:
1057 		pr_err("%s: command not supported\n", __func__);
1058 		return -EINVAL;
1059 	}
1060 
1061 	return 0;
1062 }
1063 EXPORT_SYMBOL(gpmc_configure);
1064 
gpmc_nand_writebuffer_empty(void)1065 static bool gpmc_nand_writebuffer_empty(void)
1066 {
1067 	if (gpmc_read_reg(GPMC_STATUS) & GPMC_STATUS_EMPTYWRITEBUFFERSTATUS)
1068 		return true;
1069 
1070 	return false;
1071 }
1072 
1073 static struct gpmc_nand_ops nand_ops = {
1074 	.nand_writebuffer_empty = gpmc_nand_writebuffer_empty,
1075 };
1076 
1077 /**
1078  * gpmc_omap_get_nand_ops - Get the GPMC NAND interface
1079  * @reg: the GPMC NAND register map exclusive for NAND use.
1080  * @cs: GPMC chip select number on which the NAND sits. The
1081  *      register map returned will be specific to this chip select.
1082  *
1083  * Returns NULL on error e.g. invalid cs.
1084  */
gpmc_omap_get_nand_ops(struct gpmc_nand_regs * reg,int cs)1085 struct gpmc_nand_ops *gpmc_omap_get_nand_ops(struct gpmc_nand_regs *reg, int cs)
1086 {
1087 	int i;
1088 
1089 	if (cs >= gpmc_cs_num)
1090 		return NULL;
1091 
1092 	reg->gpmc_nand_command = gpmc_base + GPMC_CS0_OFFSET +
1093 				GPMC_CS_NAND_COMMAND + GPMC_CS_SIZE * cs;
1094 	reg->gpmc_nand_address = gpmc_base + GPMC_CS0_OFFSET +
1095 				GPMC_CS_NAND_ADDRESS + GPMC_CS_SIZE * cs;
1096 	reg->gpmc_nand_data = gpmc_base + GPMC_CS0_OFFSET +
1097 				GPMC_CS_NAND_DATA + GPMC_CS_SIZE * cs;
1098 	reg->gpmc_prefetch_config1 = gpmc_base + GPMC_PREFETCH_CONFIG1;
1099 	reg->gpmc_prefetch_config2 = gpmc_base + GPMC_PREFETCH_CONFIG2;
1100 	reg->gpmc_prefetch_control = gpmc_base + GPMC_PREFETCH_CONTROL;
1101 	reg->gpmc_prefetch_status = gpmc_base + GPMC_PREFETCH_STATUS;
1102 	reg->gpmc_ecc_config = gpmc_base + GPMC_ECC_CONFIG;
1103 	reg->gpmc_ecc_control = gpmc_base + GPMC_ECC_CONTROL;
1104 	reg->gpmc_ecc_size_config = gpmc_base + GPMC_ECC_SIZE_CONFIG;
1105 	reg->gpmc_ecc1_result = gpmc_base + GPMC_ECC1_RESULT;
1106 
1107 	for (i = 0; i < GPMC_BCH_NUM_REMAINDER; i++) {
1108 		reg->gpmc_bch_result0[i] = gpmc_base + GPMC_ECC_BCH_RESULT_0 +
1109 					   GPMC_BCH_SIZE * i;
1110 		reg->gpmc_bch_result1[i] = gpmc_base + GPMC_ECC_BCH_RESULT_1 +
1111 					   GPMC_BCH_SIZE * i;
1112 		reg->gpmc_bch_result2[i] = gpmc_base + GPMC_ECC_BCH_RESULT_2 +
1113 					   GPMC_BCH_SIZE * i;
1114 		reg->gpmc_bch_result3[i] = gpmc_base + GPMC_ECC_BCH_RESULT_3 +
1115 					   GPMC_BCH_SIZE * i;
1116 		reg->gpmc_bch_result4[i] = gpmc_base + GPMC_ECC_BCH_RESULT_4 +
1117 					   i * GPMC_BCH_SIZE;
1118 		reg->gpmc_bch_result5[i] = gpmc_base + GPMC_ECC_BCH_RESULT_5 +
1119 					   i * GPMC_BCH_SIZE;
1120 		reg->gpmc_bch_result6[i] = gpmc_base + GPMC_ECC_BCH_RESULT_6 +
1121 					   i * GPMC_BCH_SIZE;
1122 	}
1123 
1124 	return &nand_ops;
1125 }
1126 EXPORT_SYMBOL_GPL(gpmc_omap_get_nand_ops);
1127 
gpmc_omap_onenand_calc_sync_timings(struct gpmc_timings * t,struct gpmc_settings * s,int freq,int latency)1128 static void gpmc_omap_onenand_calc_sync_timings(struct gpmc_timings *t,
1129 						struct gpmc_settings *s,
1130 						int freq, int latency)
1131 {
1132 	struct gpmc_device_timings dev_t;
1133 	const int t_cer  = 15;
1134 	const int t_avdp = 12;
1135 	const int t_cez  = 20; /* max of t_cez, t_oez */
1136 	const int t_wpl  = 40;
1137 	const int t_wph  = 30;
1138 	int min_gpmc_clk_period, t_ces, t_avds, t_avdh, t_ach, t_aavdh, t_rdyo;
1139 
1140 	switch (freq) {
1141 	case 104:
1142 		min_gpmc_clk_period = 9600; /* 104 MHz */
1143 		t_ces   = 3;
1144 		t_avds  = 4;
1145 		t_avdh  = 2;
1146 		t_ach   = 3;
1147 		t_aavdh = 6;
1148 		t_rdyo  = 6;
1149 		break;
1150 	case 83:
1151 		min_gpmc_clk_period = 12000; /* 83 MHz */
1152 		t_ces   = 5;
1153 		t_avds  = 4;
1154 		t_avdh  = 2;
1155 		t_ach   = 6;
1156 		t_aavdh = 6;
1157 		t_rdyo  = 9;
1158 		break;
1159 	case 66:
1160 		min_gpmc_clk_period = 15000; /* 66 MHz */
1161 		t_ces   = 6;
1162 		t_avds  = 5;
1163 		t_avdh  = 2;
1164 		t_ach   = 6;
1165 		t_aavdh = 6;
1166 		t_rdyo  = 11;
1167 		break;
1168 	default:
1169 		min_gpmc_clk_period = 18500; /* 54 MHz */
1170 		t_ces   = 7;
1171 		t_avds  = 7;
1172 		t_avdh  = 7;
1173 		t_ach   = 9;
1174 		t_aavdh = 7;
1175 		t_rdyo  = 15;
1176 		break;
1177 	}
1178 
1179 	/* Set synchronous read timings */
1180 	memset(&dev_t, 0, sizeof(dev_t));
1181 
1182 	if (!s->sync_write) {
1183 		dev_t.t_avdp_w = max(t_avdp, t_cer) * 1000;
1184 		dev_t.t_wpl = t_wpl * 1000;
1185 		dev_t.t_wph = t_wph * 1000;
1186 		dev_t.t_aavdh = t_aavdh * 1000;
1187 	}
1188 	dev_t.ce_xdelay = true;
1189 	dev_t.avd_xdelay = true;
1190 	dev_t.oe_xdelay = true;
1191 	dev_t.we_xdelay = true;
1192 	dev_t.clk = min_gpmc_clk_period;
1193 	dev_t.t_bacc = dev_t.clk;
1194 	dev_t.t_ces = t_ces * 1000;
1195 	dev_t.t_avds = t_avds * 1000;
1196 	dev_t.t_avdh = t_avdh * 1000;
1197 	dev_t.t_ach = t_ach * 1000;
1198 	dev_t.cyc_iaa = (latency + 1);
1199 	dev_t.t_cez_r = t_cez * 1000;
1200 	dev_t.t_cez_w = dev_t.t_cez_r;
1201 	dev_t.cyc_aavdh_oe = 1;
1202 	dev_t.t_rdyo = t_rdyo * 1000 + min_gpmc_clk_period;
1203 
1204 	gpmc_calc_timings(t, s, &dev_t);
1205 }
1206 
gpmc_omap_onenand_set_timings(struct device * dev,int cs,int freq,int latency,struct gpmc_onenand_info * info)1207 int gpmc_omap_onenand_set_timings(struct device *dev, int cs, int freq,
1208 				  int latency,
1209 				  struct gpmc_onenand_info *info)
1210 {
1211 	int ret;
1212 	struct gpmc_timings gpmc_t;
1213 	struct gpmc_settings gpmc_s;
1214 
1215 	gpmc_read_settings_dt(dev->of_node, &gpmc_s);
1216 
1217 	info->sync_read = gpmc_s.sync_read;
1218 	info->sync_write = gpmc_s.sync_write;
1219 	info->burst_len = gpmc_s.burst_len;
1220 
1221 	if (!gpmc_s.sync_read && !gpmc_s.sync_write)
1222 		return 0;
1223 
1224 	gpmc_omap_onenand_calc_sync_timings(&gpmc_t, &gpmc_s, freq, latency);
1225 
1226 	ret = gpmc_cs_program_settings(cs, &gpmc_s);
1227 	if (ret < 0)
1228 		return ret;
1229 
1230 	return gpmc_cs_set_timings(cs, &gpmc_t, &gpmc_s);
1231 }
1232 EXPORT_SYMBOL_GPL(gpmc_omap_onenand_set_timings);
1233 
gpmc_get_client_irq(unsigned int irq_config)1234 int gpmc_get_client_irq(unsigned int irq_config)
1235 {
1236 	if (!gpmc_irq_domain) {
1237 		pr_warn("%s called before GPMC IRQ domain available\n",
1238 			__func__);
1239 		return 0;
1240 	}
1241 
1242 	/* we restrict this to NAND IRQs only */
1243 	if (irq_config >= GPMC_NR_NAND_IRQS)
1244 		return 0;
1245 
1246 	return irq_create_mapping(gpmc_irq_domain, irq_config);
1247 }
1248 
gpmc_irq_endis(unsigned long hwirq,bool endis)1249 static int gpmc_irq_endis(unsigned long hwirq, bool endis)
1250 {
1251 	u32 regval;
1252 
1253 	/* bits GPMC_NR_NAND_IRQS to 8 are reserved */
1254 	if (hwirq >= GPMC_NR_NAND_IRQS)
1255 		hwirq += 8 - GPMC_NR_NAND_IRQS;
1256 
1257 	regval = gpmc_read_reg(GPMC_IRQENABLE);
1258 	if (endis)
1259 		regval |= BIT(hwirq);
1260 	else
1261 		regval &= ~BIT(hwirq);
1262 	gpmc_write_reg(GPMC_IRQENABLE, regval);
1263 
1264 	return 0;
1265 }
1266 
gpmc_irq_disable(struct irq_data * p)1267 static void gpmc_irq_disable(struct irq_data *p)
1268 {
1269 	gpmc_irq_endis(p->hwirq, false);
1270 }
1271 
gpmc_irq_enable(struct irq_data * p)1272 static void gpmc_irq_enable(struct irq_data *p)
1273 {
1274 	gpmc_irq_endis(p->hwirq, true);
1275 }
1276 
gpmc_irq_mask(struct irq_data * d)1277 static void gpmc_irq_mask(struct irq_data *d)
1278 {
1279 	gpmc_irq_endis(d->hwirq, false);
1280 }
1281 
gpmc_irq_unmask(struct irq_data * d)1282 static void gpmc_irq_unmask(struct irq_data *d)
1283 {
1284 	gpmc_irq_endis(d->hwirq, true);
1285 }
1286 
gpmc_irq_edge_config(unsigned long hwirq,bool rising_edge)1287 static void gpmc_irq_edge_config(unsigned long hwirq, bool rising_edge)
1288 {
1289 	u32 regval;
1290 
1291 	/* NAND IRQs polarity is not configurable */
1292 	if (hwirq < GPMC_NR_NAND_IRQS)
1293 		return;
1294 
1295 	/* WAITPIN starts at BIT 8 */
1296 	hwirq += 8 - GPMC_NR_NAND_IRQS;
1297 
1298 	regval = gpmc_read_reg(GPMC_CONFIG);
1299 	if (rising_edge)
1300 		regval &= ~BIT(hwirq);
1301 	else
1302 		regval |= BIT(hwirq);
1303 
1304 	gpmc_write_reg(GPMC_CONFIG, regval);
1305 }
1306 
gpmc_irq_ack(struct irq_data * d)1307 static void gpmc_irq_ack(struct irq_data *d)
1308 {
1309 	unsigned int hwirq = d->hwirq;
1310 
1311 	/* skip reserved bits */
1312 	if (hwirq >= GPMC_NR_NAND_IRQS)
1313 		hwirq += 8 - GPMC_NR_NAND_IRQS;
1314 
1315 	/* Setting bit to 1 clears (or Acks) the interrupt */
1316 	gpmc_write_reg(GPMC_IRQSTATUS, BIT(hwirq));
1317 }
1318 
gpmc_irq_set_type(struct irq_data * d,unsigned int trigger)1319 static int gpmc_irq_set_type(struct irq_data *d, unsigned int trigger)
1320 {
1321 	/* can't set type for NAND IRQs */
1322 	if (d->hwirq < GPMC_NR_NAND_IRQS)
1323 		return -EINVAL;
1324 
1325 	/* We can support either rising or falling edge at a time */
1326 	if (trigger == IRQ_TYPE_EDGE_FALLING)
1327 		gpmc_irq_edge_config(d->hwirq, false);
1328 	else if (trigger == IRQ_TYPE_EDGE_RISING)
1329 		gpmc_irq_edge_config(d->hwirq, true);
1330 	else
1331 		return -EINVAL;
1332 
1333 	return 0;
1334 }
1335 
gpmc_irq_map(struct irq_domain * d,unsigned int virq,irq_hw_number_t hw)1336 static int gpmc_irq_map(struct irq_domain *d, unsigned int virq,
1337 			irq_hw_number_t hw)
1338 {
1339 	struct gpmc_device *gpmc = d->host_data;
1340 
1341 	irq_set_chip_data(virq, gpmc);
1342 	if (hw < GPMC_NR_NAND_IRQS) {
1343 		irq_modify_status(virq, IRQ_NOREQUEST, IRQ_NOAUTOEN);
1344 		irq_set_chip_and_handler(virq, &gpmc->irq_chip,
1345 					 handle_simple_irq);
1346 	} else {
1347 		irq_set_chip_and_handler(virq, &gpmc->irq_chip,
1348 					 handle_edge_irq);
1349 	}
1350 
1351 	return 0;
1352 }
1353 
1354 static const struct irq_domain_ops gpmc_irq_domain_ops = {
1355 	.map    = gpmc_irq_map,
1356 	.xlate  = irq_domain_xlate_twocell,
1357 };
1358 
gpmc_handle_irq(int irq,void * data)1359 static irqreturn_t gpmc_handle_irq(int irq, void *data)
1360 {
1361 	int hwirq, virq;
1362 	u32 regval, regvalx;
1363 	struct gpmc_device *gpmc = data;
1364 
1365 	regval = gpmc_read_reg(GPMC_IRQSTATUS);
1366 	regvalx = regval;
1367 
1368 	if (!regval)
1369 		return IRQ_NONE;
1370 
1371 	for (hwirq = 0; hwirq < gpmc->nirqs; hwirq++) {
1372 		/* skip reserved status bits */
1373 		if (hwirq == GPMC_NR_NAND_IRQS)
1374 			regvalx >>= 8 - GPMC_NR_NAND_IRQS;
1375 
1376 		if (regvalx & BIT(hwirq)) {
1377 			virq = irq_find_mapping(gpmc_irq_domain, hwirq);
1378 			if (!virq) {
1379 				dev_warn(gpmc->dev,
1380 					 "spurious irq detected hwirq %d, virq %d\n",
1381 					 hwirq, virq);
1382 			}
1383 
1384 			generic_handle_irq(virq);
1385 		}
1386 	}
1387 
1388 	gpmc_write_reg(GPMC_IRQSTATUS, regval);
1389 
1390 	return IRQ_HANDLED;
1391 }
1392 
gpmc_setup_irq(struct gpmc_device * gpmc)1393 static int gpmc_setup_irq(struct gpmc_device *gpmc)
1394 {
1395 	u32 regval;
1396 	int rc;
1397 
1398 	/* Disable interrupts */
1399 	gpmc_write_reg(GPMC_IRQENABLE, 0);
1400 
1401 	/* clear interrupts */
1402 	regval = gpmc_read_reg(GPMC_IRQSTATUS);
1403 	gpmc_write_reg(GPMC_IRQSTATUS, regval);
1404 
1405 	gpmc->irq_chip.name = "gpmc";
1406 	gpmc->irq_chip.irq_enable = gpmc_irq_enable;
1407 	gpmc->irq_chip.irq_disable = gpmc_irq_disable;
1408 	gpmc->irq_chip.irq_ack = gpmc_irq_ack;
1409 	gpmc->irq_chip.irq_mask = gpmc_irq_mask;
1410 	gpmc->irq_chip.irq_unmask = gpmc_irq_unmask;
1411 	gpmc->irq_chip.irq_set_type = gpmc_irq_set_type;
1412 
1413 	gpmc_irq_domain = irq_domain_add_linear(gpmc->dev->of_node,
1414 						gpmc->nirqs,
1415 						&gpmc_irq_domain_ops,
1416 						gpmc);
1417 	if (!gpmc_irq_domain) {
1418 		dev_err(gpmc->dev, "IRQ domain add failed\n");
1419 		return -ENODEV;
1420 	}
1421 
1422 	rc = request_irq(gpmc->irq, gpmc_handle_irq, 0, "gpmc", gpmc);
1423 	if (rc) {
1424 		dev_err(gpmc->dev, "failed to request irq %d: %d\n",
1425 			gpmc->irq, rc);
1426 		irq_domain_remove(gpmc_irq_domain);
1427 		gpmc_irq_domain = NULL;
1428 	}
1429 
1430 	return rc;
1431 }
1432 
gpmc_free_irq(struct gpmc_device * gpmc)1433 static int gpmc_free_irq(struct gpmc_device *gpmc)
1434 {
1435 	int hwirq;
1436 
1437 	free_irq(gpmc->irq, gpmc);
1438 
1439 	for (hwirq = 0; hwirq < gpmc->nirqs; hwirq++)
1440 		irq_dispose_mapping(irq_find_mapping(gpmc_irq_domain, hwirq));
1441 
1442 	irq_domain_remove(gpmc_irq_domain);
1443 	gpmc_irq_domain = NULL;
1444 
1445 	return 0;
1446 }
1447 
gpmc_mem_exit(void)1448 static void gpmc_mem_exit(void)
1449 {
1450 	int cs;
1451 
1452 	for (cs = 0; cs < gpmc_cs_num; cs++) {
1453 		if (!gpmc_cs_mem_enabled(cs))
1454 			continue;
1455 		gpmc_cs_delete_mem(cs);
1456 	}
1457 }
1458 
gpmc_mem_init(void)1459 static void gpmc_mem_init(void)
1460 {
1461 	int cs;
1462 
1463 	gpmc_mem_root.start = GPMC_MEM_START;
1464 	gpmc_mem_root.end = GPMC_MEM_END;
1465 
1466 	/* Reserve all regions that has been set up by bootloader */
1467 	for (cs = 0; cs < gpmc_cs_num; cs++) {
1468 		u32 base, size;
1469 
1470 		if (!gpmc_cs_mem_enabled(cs))
1471 			continue;
1472 		gpmc_cs_get_memconf(cs, &base, &size);
1473 		if (gpmc_cs_insert_mem(cs, base, size)) {
1474 			pr_warn("%s: disabling cs %d mapped at 0x%x-0x%x\n",
1475 				__func__, cs, base, base + size);
1476 			gpmc_cs_disable_mem(cs);
1477 		}
1478 	}
1479 }
1480 
gpmc_round_ps_to_sync_clk(u32 time_ps,u32 sync_clk)1481 static u32 gpmc_round_ps_to_sync_clk(u32 time_ps, u32 sync_clk)
1482 {
1483 	u32 temp;
1484 	int div;
1485 
1486 	div = gpmc_calc_divider(sync_clk);
1487 	temp = gpmc_ps_to_ticks(time_ps);
1488 	temp = (temp + div - 1) / div;
1489 	return gpmc_ticks_to_ps(temp * div);
1490 }
1491 
1492 /* XXX: can the cycles be avoided ? */
gpmc_calc_sync_read_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t,bool mux)1493 static int gpmc_calc_sync_read_timings(struct gpmc_timings *gpmc_t,
1494 				       struct gpmc_device_timings *dev_t,
1495 				       bool mux)
1496 {
1497 	u32 temp;
1498 
1499 	/* adv_rd_off */
1500 	temp = dev_t->t_avdp_r;
1501 	/* XXX: mux check required ? */
1502 	if (mux) {
1503 		/* XXX: t_avdp not to be required for sync, only added for tusb
1504 		 * this indirectly necessitates requirement of t_avdp_r and
1505 		 * t_avdp_w instead of having a single t_avdp
1506 		 */
1507 		temp = max_t(u32, temp,	gpmc_t->clk_activation + dev_t->t_avdh);
1508 		temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
1509 	}
1510 	gpmc_t->adv_rd_off = gpmc_round_ps_to_ticks(temp);
1511 
1512 	/* oe_on */
1513 	temp = dev_t->t_oeasu; /* XXX: remove this ? */
1514 	if (mux) {
1515 		temp = max_t(u32, temp,	gpmc_t->clk_activation + dev_t->t_ach);
1516 		temp = max_t(u32, temp, gpmc_t->adv_rd_off +
1517 				gpmc_ticks_to_ps(dev_t->cyc_aavdh_oe));
1518 	}
1519 	gpmc_t->oe_on = gpmc_round_ps_to_ticks(temp);
1520 
1521 	/* access */
1522 	/* XXX: any scope for improvement ?, by combining oe_on
1523 	 * and clk_activation, need to check whether
1524 	 * access = clk_activation + round to sync clk ?
1525 	 */
1526 	temp = max_t(u32, dev_t->t_iaa,	dev_t->cyc_iaa * gpmc_t->sync_clk);
1527 	temp += gpmc_t->clk_activation;
1528 	if (dev_t->cyc_oe)
1529 		temp = max_t(u32, temp, gpmc_t->oe_on +
1530 				gpmc_ticks_to_ps(dev_t->cyc_oe));
1531 	gpmc_t->access = gpmc_round_ps_to_ticks(temp);
1532 
1533 	gpmc_t->oe_off = gpmc_t->access + gpmc_ticks_to_ps(1);
1534 	gpmc_t->cs_rd_off = gpmc_t->oe_off;
1535 
1536 	/* rd_cycle */
1537 	temp = max_t(u32, dev_t->t_cez_r, dev_t->t_oez);
1538 	temp = gpmc_round_ps_to_sync_clk(temp, gpmc_t->sync_clk) +
1539 							gpmc_t->access;
1540 	/* XXX: barter t_ce_rdyz with t_cez_r ? */
1541 	if (dev_t->t_ce_rdyz)
1542 		temp = max_t(u32, temp,	gpmc_t->cs_rd_off + dev_t->t_ce_rdyz);
1543 	gpmc_t->rd_cycle = gpmc_round_ps_to_ticks(temp);
1544 
1545 	return 0;
1546 }
1547 
gpmc_calc_sync_write_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t,bool mux)1548 static int gpmc_calc_sync_write_timings(struct gpmc_timings *gpmc_t,
1549 					struct gpmc_device_timings *dev_t,
1550 					bool mux)
1551 {
1552 	u32 temp;
1553 
1554 	/* adv_wr_off */
1555 	temp = dev_t->t_avdp_w;
1556 	if (mux) {
1557 		temp = max_t(u32, temp,
1558 			gpmc_t->clk_activation + dev_t->t_avdh);
1559 		temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
1560 	}
1561 	gpmc_t->adv_wr_off = gpmc_round_ps_to_ticks(temp);
1562 
1563 	/* wr_data_mux_bus */
1564 	temp = max_t(u32, dev_t->t_weasu,
1565 			gpmc_t->clk_activation + dev_t->t_rdyo);
1566 	/* XXX: shouldn't mux be kept as a whole for wr_data_mux_bus ?,
1567 	 * and in that case remember to handle we_on properly
1568 	 */
1569 	if (mux) {
1570 		temp = max_t(u32, temp,
1571 			gpmc_t->adv_wr_off + dev_t->t_aavdh);
1572 		temp = max_t(u32, temp, gpmc_t->adv_wr_off +
1573 				gpmc_ticks_to_ps(dev_t->cyc_aavdh_we));
1574 	}
1575 	gpmc_t->wr_data_mux_bus = gpmc_round_ps_to_ticks(temp);
1576 
1577 	/* we_on */
1578 	if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS)
1579 		gpmc_t->we_on = gpmc_round_ps_to_ticks(dev_t->t_weasu);
1580 	else
1581 		gpmc_t->we_on = gpmc_t->wr_data_mux_bus;
1582 
1583 	/* wr_access */
1584 	/* XXX: gpmc_capability check reqd ? , even if not, will not harm */
1585 	gpmc_t->wr_access = gpmc_t->access;
1586 
1587 	/* we_off */
1588 	temp = gpmc_t->we_on + dev_t->t_wpl;
1589 	temp = max_t(u32, temp,
1590 			gpmc_t->wr_access + gpmc_ticks_to_ps(1));
1591 	temp = max_t(u32, temp,
1592 		gpmc_t->we_on + gpmc_ticks_to_ps(dev_t->cyc_wpl));
1593 	gpmc_t->we_off = gpmc_round_ps_to_ticks(temp);
1594 
1595 	gpmc_t->cs_wr_off = gpmc_round_ps_to_ticks(gpmc_t->we_off +
1596 							dev_t->t_wph);
1597 
1598 	/* wr_cycle */
1599 	temp = gpmc_round_ps_to_sync_clk(dev_t->t_cez_w, gpmc_t->sync_clk);
1600 	temp += gpmc_t->wr_access;
1601 	/* XXX: barter t_ce_rdyz with t_cez_w ? */
1602 	if (dev_t->t_ce_rdyz)
1603 		temp = max_t(u32, temp,
1604 				 gpmc_t->cs_wr_off + dev_t->t_ce_rdyz);
1605 	gpmc_t->wr_cycle = gpmc_round_ps_to_ticks(temp);
1606 
1607 	return 0;
1608 }
1609 
gpmc_calc_async_read_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t,bool mux)1610 static int gpmc_calc_async_read_timings(struct gpmc_timings *gpmc_t,
1611 					struct gpmc_device_timings *dev_t,
1612 					bool mux)
1613 {
1614 	u32 temp;
1615 
1616 	/* adv_rd_off */
1617 	temp = dev_t->t_avdp_r;
1618 	if (mux)
1619 		temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
1620 	gpmc_t->adv_rd_off = gpmc_round_ps_to_ticks(temp);
1621 
1622 	/* oe_on */
1623 	temp = dev_t->t_oeasu;
1624 	if (mux)
1625 		temp = max_t(u32, temp, gpmc_t->adv_rd_off + dev_t->t_aavdh);
1626 	gpmc_t->oe_on = gpmc_round_ps_to_ticks(temp);
1627 
1628 	/* access */
1629 	temp = max_t(u32, dev_t->t_iaa, /* XXX: remove t_iaa in async ? */
1630 		     gpmc_t->oe_on + dev_t->t_oe);
1631 	temp = max_t(u32, temp, gpmc_t->cs_on + dev_t->t_ce);
1632 	temp = max_t(u32, temp, gpmc_t->adv_on + dev_t->t_aa);
1633 	gpmc_t->access = gpmc_round_ps_to_ticks(temp);
1634 
1635 	gpmc_t->oe_off = gpmc_t->access + gpmc_ticks_to_ps(1);
1636 	gpmc_t->cs_rd_off = gpmc_t->oe_off;
1637 
1638 	/* rd_cycle */
1639 	temp = max_t(u32, dev_t->t_rd_cycle,
1640 			gpmc_t->cs_rd_off + dev_t->t_cez_r);
1641 	temp = max_t(u32, temp, gpmc_t->oe_off + dev_t->t_oez);
1642 	gpmc_t->rd_cycle = gpmc_round_ps_to_ticks(temp);
1643 
1644 	return 0;
1645 }
1646 
gpmc_calc_async_write_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t,bool mux)1647 static int gpmc_calc_async_write_timings(struct gpmc_timings *gpmc_t,
1648 					 struct gpmc_device_timings *dev_t,
1649 					 bool mux)
1650 {
1651 	u32 temp;
1652 
1653 	/* adv_wr_off */
1654 	temp = dev_t->t_avdp_w;
1655 	if (mux)
1656 		temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
1657 	gpmc_t->adv_wr_off = gpmc_round_ps_to_ticks(temp);
1658 
1659 	/* wr_data_mux_bus */
1660 	temp = dev_t->t_weasu;
1661 	if (mux) {
1662 		temp = max_t(u32, temp,	gpmc_t->adv_wr_off + dev_t->t_aavdh);
1663 		temp = max_t(u32, temp, gpmc_t->adv_wr_off +
1664 				gpmc_ticks_to_ps(dev_t->cyc_aavdh_we));
1665 	}
1666 	gpmc_t->wr_data_mux_bus = gpmc_round_ps_to_ticks(temp);
1667 
1668 	/* we_on */
1669 	if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS)
1670 		gpmc_t->we_on = gpmc_round_ps_to_ticks(dev_t->t_weasu);
1671 	else
1672 		gpmc_t->we_on = gpmc_t->wr_data_mux_bus;
1673 
1674 	/* we_off */
1675 	temp = gpmc_t->we_on + dev_t->t_wpl;
1676 	gpmc_t->we_off = gpmc_round_ps_to_ticks(temp);
1677 
1678 	gpmc_t->cs_wr_off = gpmc_round_ps_to_ticks(gpmc_t->we_off +
1679 							dev_t->t_wph);
1680 
1681 	/* wr_cycle */
1682 	temp = max_t(u32, dev_t->t_wr_cycle,
1683 				gpmc_t->cs_wr_off + dev_t->t_cez_w);
1684 	gpmc_t->wr_cycle = gpmc_round_ps_to_ticks(temp);
1685 
1686 	return 0;
1687 }
1688 
gpmc_calc_sync_common_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t)1689 static int gpmc_calc_sync_common_timings(struct gpmc_timings *gpmc_t,
1690 			struct gpmc_device_timings *dev_t)
1691 {
1692 	u32 temp;
1693 
1694 	gpmc_t->sync_clk = gpmc_calc_divider(dev_t->clk) *
1695 						gpmc_get_fclk_period();
1696 
1697 	gpmc_t->page_burst_access = gpmc_round_ps_to_sync_clk(
1698 					dev_t->t_bacc,
1699 					gpmc_t->sync_clk);
1700 
1701 	temp = max_t(u32, dev_t->t_ces, dev_t->t_avds);
1702 	gpmc_t->clk_activation = gpmc_round_ps_to_ticks(temp);
1703 
1704 	if (gpmc_calc_divider(gpmc_t->sync_clk) != 1)
1705 		return 0;
1706 
1707 	if (dev_t->ce_xdelay)
1708 		gpmc_t->bool_timings.cs_extra_delay = true;
1709 	if (dev_t->avd_xdelay)
1710 		gpmc_t->bool_timings.adv_extra_delay = true;
1711 	if (dev_t->oe_xdelay)
1712 		gpmc_t->bool_timings.oe_extra_delay = true;
1713 	if (dev_t->we_xdelay)
1714 		gpmc_t->bool_timings.we_extra_delay = true;
1715 
1716 	return 0;
1717 }
1718 
gpmc_calc_common_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t,bool sync)1719 static int gpmc_calc_common_timings(struct gpmc_timings *gpmc_t,
1720 				    struct gpmc_device_timings *dev_t,
1721 				    bool sync)
1722 {
1723 	u32 temp;
1724 
1725 	/* cs_on */
1726 	gpmc_t->cs_on = gpmc_round_ps_to_ticks(dev_t->t_ceasu);
1727 
1728 	/* adv_on */
1729 	temp = dev_t->t_avdasu;
1730 	if (dev_t->t_ce_avd)
1731 		temp = max_t(u32, temp,
1732 				gpmc_t->cs_on + dev_t->t_ce_avd);
1733 	gpmc_t->adv_on = gpmc_round_ps_to_ticks(temp);
1734 
1735 	if (sync)
1736 		gpmc_calc_sync_common_timings(gpmc_t, dev_t);
1737 
1738 	return 0;
1739 }
1740 
1741 /*
1742  * TODO: remove this function once all peripherals are confirmed to
1743  * work with generic timing. Simultaneously gpmc_cs_set_timings()
1744  * has to be modified to handle timings in ps instead of ns
1745  */
gpmc_convert_ps_to_ns(struct gpmc_timings * t)1746 static void gpmc_convert_ps_to_ns(struct gpmc_timings *t)
1747 {
1748 	t->cs_on /= 1000;
1749 	t->cs_rd_off /= 1000;
1750 	t->cs_wr_off /= 1000;
1751 	t->adv_on /= 1000;
1752 	t->adv_rd_off /= 1000;
1753 	t->adv_wr_off /= 1000;
1754 	t->we_on /= 1000;
1755 	t->we_off /= 1000;
1756 	t->oe_on /= 1000;
1757 	t->oe_off /= 1000;
1758 	t->page_burst_access /= 1000;
1759 	t->access /= 1000;
1760 	t->rd_cycle /= 1000;
1761 	t->wr_cycle /= 1000;
1762 	t->bus_turnaround /= 1000;
1763 	t->cycle2cycle_delay /= 1000;
1764 	t->wait_monitoring /= 1000;
1765 	t->clk_activation /= 1000;
1766 	t->wr_access /= 1000;
1767 	t->wr_data_mux_bus /= 1000;
1768 }
1769 
gpmc_calc_timings(struct gpmc_timings * gpmc_t,struct gpmc_settings * gpmc_s,struct gpmc_device_timings * dev_t)1770 int gpmc_calc_timings(struct gpmc_timings *gpmc_t,
1771 		      struct gpmc_settings *gpmc_s,
1772 		      struct gpmc_device_timings *dev_t)
1773 {
1774 	bool mux = false, sync = false;
1775 
1776 	if (gpmc_s) {
1777 		mux = gpmc_s->mux_add_data ? true : false;
1778 		sync = (gpmc_s->sync_read || gpmc_s->sync_write);
1779 	}
1780 
1781 	memset(gpmc_t, 0, sizeof(*gpmc_t));
1782 
1783 	gpmc_calc_common_timings(gpmc_t, dev_t, sync);
1784 
1785 	if (gpmc_s && gpmc_s->sync_read)
1786 		gpmc_calc_sync_read_timings(gpmc_t, dev_t, mux);
1787 	else
1788 		gpmc_calc_async_read_timings(gpmc_t, dev_t, mux);
1789 
1790 	if (gpmc_s && gpmc_s->sync_write)
1791 		gpmc_calc_sync_write_timings(gpmc_t, dev_t, mux);
1792 	else
1793 		gpmc_calc_async_write_timings(gpmc_t, dev_t, mux);
1794 
1795 	/* TODO: remove, see function definition */
1796 	gpmc_convert_ps_to_ns(gpmc_t);
1797 
1798 	return 0;
1799 }
1800 
1801 /**
1802  * gpmc_cs_program_settings - programs non-timing related settings
1803  * @cs:		GPMC chip-select to program
1804  * @p:		pointer to GPMC settings structure
1805  *
1806  * Programs non-timing related settings for a GPMC chip-select, such as
1807  * bus-width, burst configuration, etc. Function should be called once
1808  * for each chip-select that is being used and must be called before
1809  * calling gpmc_cs_set_timings() as timing parameters in the CONFIG1
1810  * register will be initialised to zero by this function. Returns 0 on
1811  * success and appropriate negative error code on failure.
1812  */
gpmc_cs_program_settings(int cs,struct gpmc_settings * p)1813 int gpmc_cs_program_settings(int cs, struct gpmc_settings *p)
1814 {
1815 	u32 config1;
1816 
1817 	if ((!p->device_width) || (p->device_width > GPMC_DEVWIDTH_16BIT)) {
1818 		pr_err("%s: invalid width %d!", __func__, p->device_width);
1819 		return -EINVAL;
1820 	}
1821 
1822 	/* Address-data multiplexing not supported for NAND devices */
1823 	if (p->device_nand && p->mux_add_data) {
1824 		pr_err("%s: invalid configuration!\n", __func__);
1825 		return -EINVAL;
1826 	}
1827 
1828 	if ((p->mux_add_data > GPMC_MUX_AD) ||
1829 	    ((p->mux_add_data == GPMC_MUX_AAD) &&
1830 	     !(gpmc_capability & GPMC_HAS_MUX_AAD))) {
1831 		pr_err("%s: invalid multiplex configuration!\n", __func__);
1832 		return -EINVAL;
1833 	}
1834 
1835 	/* Page/burst mode supports lengths of 4, 8 and 16 bytes */
1836 	if (p->burst_read || p->burst_write) {
1837 		switch (p->burst_len) {
1838 		case GPMC_BURST_4:
1839 		case GPMC_BURST_8:
1840 		case GPMC_BURST_16:
1841 			break;
1842 		default:
1843 			pr_err("%s: invalid page/burst-length (%d)\n",
1844 			       __func__, p->burst_len);
1845 			return -EINVAL;
1846 		}
1847 	}
1848 
1849 	if (p->wait_pin > gpmc_nr_waitpins) {
1850 		pr_err("%s: invalid wait-pin (%d)\n", __func__, p->wait_pin);
1851 		return -EINVAL;
1852 	}
1853 
1854 	config1 = GPMC_CONFIG1_DEVICESIZE((p->device_width - 1));
1855 
1856 	if (p->sync_read)
1857 		config1 |= GPMC_CONFIG1_READTYPE_SYNC;
1858 	if (p->sync_write)
1859 		config1 |= GPMC_CONFIG1_WRITETYPE_SYNC;
1860 	if (p->wait_on_read)
1861 		config1 |= GPMC_CONFIG1_WAIT_READ_MON;
1862 	if (p->wait_on_write)
1863 		config1 |= GPMC_CONFIG1_WAIT_WRITE_MON;
1864 	if (p->wait_on_read || p->wait_on_write)
1865 		config1 |= GPMC_CONFIG1_WAIT_PIN_SEL(p->wait_pin);
1866 	if (p->device_nand)
1867 		config1	|= GPMC_CONFIG1_DEVICETYPE(GPMC_DEVICETYPE_NAND);
1868 	if (p->mux_add_data)
1869 		config1	|= GPMC_CONFIG1_MUXTYPE(p->mux_add_data);
1870 	if (p->burst_read)
1871 		config1 |= GPMC_CONFIG1_READMULTIPLE_SUPP;
1872 	if (p->burst_write)
1873 		config1 |= GPMC_CONFIG1_WRITEMULTIPLE_SUPP;
1874 	if (p->burst_read || p->burst_write) {
1875 		config1 |= GPMC_CONFIG1_PAGE_LEN(p->burst_len >> 3);
1876 		config1 |= p->burst_wrap ? GPMC_CONFIG1_WRAPBURST_SUPP : 0;
1877 	}
1878 
1879 	gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, config1);
1880 
1881 	return 0;
1882 }
1883 
1884 #ifdef CONFIG_OF
1885 static const struct of_device_id gpmc_dt_ids[] = {
1886 	{ .compatible = "ti,omap2420-gpmc" },
1887 	{ .compatible = "ti,omap2430-gpmc" },
1888 	{ .compatible = "ti,omap3430-gpmc" },	/* omap3430 & omap3630 */
1889 	{ .compatible = "ti,omap4430-gpmc" },	/* omap4430 & omap4460 & omap543x */
1890 	{ .compatible = "ti,am3352-gpmc" },	/* am335x devices */
1891 	{ }
1892 };
1893 
gpmc_cs_set_name(int cs,const char * name)1894 static void gpmc_cs_set_name(int cs, const char *name)
1895 {
1896 	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
1897 
1898 	gpmc->name = name;
1899 }
1900 
gpmc_cs_get_name(int cs)1901 static const char *gpmc_cs_get_name(int cs)
1902 {
1903 	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
1904 
1905 	return gpmc->name;
1906 }
1907 
1908 /**
1909  * gpmc_cs_remap - remaps a chip-select physical base address
1910  * @cs:		chip-select to remap
1911  * @base:	physical base address to re-map chip-select to
1912  *
1913  * Re-maps a chip-select to a new physical base address specified by
1914  * "base". Returns 0 on success and appropriate negative error code
1915  * on failure.
1916  */
gpmc_cs_remap(int cs,u32 base)1917 static int gpmc_cs_remap(int cs, u32 base)
1918 {
1919 	int ret;
1920 	u32 old_base, size;
1921 
1922 	if (cs >= gpmc_cs_num) {
1923 		pr_err("%s: requested chip-select is disabled\n", __func__);
1924 		return -ENODEV;
1925 	}
1926 
1927 	/*
1928 	 * Make sure we ignore any device offsets from the GPMC partition
1929 	 * allocated for the chip select and that the new base confirms
1930 	 * to the GPMC 16MB minimum granularity.
1931 	 */
1932 	base &= ~(SZ_16M - 1);
1933 
1934 	gpmc_cs_get_memconf(cs, &old_base, &size);
1935 	if (base == old_base)
1936 		return 0;
1937 
1938 	ret = gpmc_cs_delete_mem(cs);
1939 	if (ret < 0)
1940 		return ret;
1941 
1942 	ret = gpmc_cs_insert_mem(cs, base, size);
1943 	if (ret < 0)
1944 		return ret;
1945 
1946 	ret = gpmc_cs_set_memconf(cs, base, size);
1947 
1948 	return ret;
1949 }
1950 
1951 /**
1952  * gpmc_read_settings_dt - read gpmc settings from device-tree
1953  * @np:		pointer to device-tree node for a gpmc child device
1954  * @p:		pointer to gpmc settings structure
1955  *
1956  * Reads the GPMC settings for a GPMC child device from device-tree and
1957  * stores them in the GPMC settings structure passed. The GPMC settings
1958  * structure is initialised to zero by this function and so any
1959  * previously stored settings will be cleared.
1960  */
gpmc_read_settings_dt(struct device_node * np,struct gpmc_settings * p)1961 void gpmc_read_settings_dt(struct device_node *np, struct gpmc_settings *p)
1962 {
1963 	memset(p, 0, sizeof(struct gpmc_settings));
1964 
1965 	p->sync_read = of_property_read_bool(np, "gpmc,sync-read");
1966 	p->sync_write = of_property_read_bool(np, "gpmc,sync-write");
1967 	of_property_read_u32(np, "gpmc,device-width", &p->device_width);
1968 	of_property_read_u32(np, "gpmc,mux-add-data", &p->mux_add_data);
1969 
1970 	if (!of_property_read_u32(np, "gpmc,burst-length", &p->burst_len)) {
1971 		p->burst_wrap = of_property_read_bool(np, "gpmc,burst-wrap");
1972 		p->burst_read = of_property_read_bool(np, "gpmc,burst-read");
1973 		p->burst_write = of_property_read_bool(np, "gpmc,burst-write");
1974 		if (!p->burst_read && !p->burst_write)
1975 			pr_warn("%s: page/burst-length set but not used!\n",
1976 				__func__);
1977 	}
1978 
1979 	if (!of_property_read_u32(np, "gpmc,wait-pin", &p->wait_pin)) {
1980 		p->wait_on_read = of_property_read_bool(np,
1981 							"gpmc,wait-on-read");
1982 		p->wait_on_write = of_property_read_bool(np,
1983 							 "gpmc,wait-on-write");
1984 		if (!p->wait_on_read && !p->wait_on_write)
1985 			pr_debug("%s: rd/wr wait monitoring not enabled!\n",
1986 				 __func__);
1987 	}
1988 }
1989 
gpmc_read_timings_dt(struct device_node * np,struct gpmc_timings * gpmc_t)1990 static void __maybe_unused gpmc_read_timings_dt(struct device_node *np,
1991 						struct gpmc_timings *gpmc_t)
1992 {
1993 	struct gpmc_bool_timings *p;
1994 
1995 	if (!np || !gpmc_t)
1996 		return;
1997 
1998 	memset(gpmc_t, 0, sizeof(*gpmc_t));
1999 
2000 	/* minimum clock period for syncronous mode */
2001 	of_property_read_u32(np, "gpmc,sync-clk-ps", &gpmc_t->sync_clk);
2002 
2003 	/* chip select timtings */
2004 	of_property_read_u32(np, "gpmc,cs-on-ns", &gpmc_t->cs_on);
2005 	of_property_read_u32(np, "gpmc,cs-rd-off-ns", &gpmc_t->cs_rd_off);
2006 	of_property_read_u32(np, "gpmc,cs-wr-off-ns", &gpmc_t->cs_wr_off);
2007 
2008 	/* ADV signal timings */
2009 	of_property_read_u32(np, "gpmc,adv-on-ns", &gpmc_t->adv_on);
2010 	of_property_read_u32(np, "gpmc,adv-rd-off-ns", &gpmc_t->adv_rd_off);
2011 	of_property_read_u32(np, "gpmc,adv-wr-off-ns", &gpmc_t->adv_wr_off);
2012 	of_property_read_u32(np, "gpmc,adv-aad-mux-on-ns",
2013 			     &gpmc_t->adv_aad_mux_on);
2014 	of_property_read_u32(np, "gpmc,adv-aad-mux-rd-off-ns",
2015 			     &gpmc_t->adv_aad_mux_rd_off);
2016 	of_property_read_u32(np, "gpmc,adv-aad-mux-wr-off-ns",
2017 			     &gpmc_t->adv_aad_mux_wr_off);
2018 
2019 	/* WE signal timings */
2020 	of_property_read_u32(np, "gpmc,we-on-ns", &gpmc_t->we_on);
2021 	of_property_read_u32(np, "gpmc,we-off-ns", &gpmc_t->we_off);
2022 
2023 	/* OE signal timings */
2024 	of_property_read_u32(np, "gpmc,oe-on-ns", &gpmc_t->oe_on);
2025 	of_property_read_u32(np, "gpmc,oe-off-ns", &gpmc_t->oe_off);
2026 	of_property_read_u32(np, "gpmc,oe-aad-mux-on-ns",
2027 			     &gpmc_t->oe_aad_mux_on);
2028 	of_property_read_u32(np, "gpmc,oe-aad-mux-off-ns",
2029 			     &gpmc_t->oe_aad_mux_off);
2030 
2031 	/* access and cycle timings */
2032 	of_property_read_u32(np, "gpmc,page-burst-access-ns",
2033 			     &gpmc_t->page_burst_access);
2034 	of_property_read_u32(np, "gpmc,access-ns", &gpmc_t->access);
2035 	of_property_read_u32(np, "gpmc,rd-cycle-ns", &gpmc_t->rd_cycle);
2036 	of_property_read_u32(np, "gpmc,wr-cycle-ns", &gpmc_t->wr_cycle);
2037 	of_property_read_u32(np, "gpmc,bus-turnaround-ns",
2038 			     &gpmc_t->bus_turnaround);
2039 	of_property_read_u32(np, "gpmc,cycle2cycle-delay-ns",
2040 			     &gpmc_t->cycle2cycle_delay);
2041 	of_property_read_u32(np, "gpmc,wait-monitoring-ns",
2042 			     &gpmc_t->wait_monitoring);
2043 	of_property_read_u32(np, "gpmc,clk-activation-ns",
2044 			     &gpmc_t->clk_activation);
2045 
2046 	/* only applicable to OMAP3+ */
2047 	of_property_read_u32(np, "gpmc,wr-access-ns", &gpmc_t->wr_access);
2048 	of_property_read_u32(np, "gpmc,wr-data-mux-bus-ns",
2049 			     &gpmc_t->wr_data_mux_bus);
2050 
2051 	/* bool timing parameters */
2052 	p = &gpmc_t->bool_timings;
2053 
2054 	p->cycle2cyclediffcsen =
2055 		of_property_read_bool(np, "gpmc,cycle2cycle-diffcsen");
2056 	p->cycle2cyclesamecsen =
2057 		of_property_read_bool(np, "gpmc,cycle2cycle-samecsen");
2058 	p->we_extra_delay = of_property_read_bool(np, "gpmc,we-extra-delay");
2059 	p->oe_extra_delay = of_property_read_bool(np, "gpmc,oe-extra-delay");
2060 	p->adv_extra_delay = of_property_read_bool(np, "gpmc,adv-extra-delay");
2061 	p->cs_extra_delay = of_property_read_bool(np, "gpmc,cs-extra-delay");
2062 	p->time_para_granularity =
2063 		of_property_read_bool(np, "gpmc,time-para-granularity");
2064 }
2065 
2066 /**
2067  * gpmc_probe_generic_child - configures the gpmc for a child device
2068  * @pdev:	pointer to gpmc platform device
2069  * @child:	pointer to device-tree node for child device
2070  *
2071  * Allocates and configures a GPMC chip-select for a child device.
2072  * Returns 0 on success and appropriate negative error code on failure.
2073  */
gpmc_probe_generic_child(struct platform_device * pdev,struct device_node * child)2074 static int gpmc_probe_generic_child(struct platform_device *pdev,
2075 				struct device_node *child)
2076 {
2077 	struct gpmc_settings gpmc_s;
2078 	struct gpmc_timings gpmc_t;
2079 	struct resource res;
2080 	unsigned long base;
2081 	const char *name;
2082 	int ret, cs;
2083 	u32 val;
2084 	struct gpio_desc *waitpin_desc = NULL;
2085 	struct gpmc_device *gpmc = platform_get_drvdata(pdev);
2086 
2087 	if (of_property_read_u32(child, "reg", &cs) < 0) {
2088 		dev_err(&pdev->dev, "%pOF has no 'reg' property\n",
2089 			child);
2090 		return -ENODEV;
2091 	}
2092 
2093 	if (of_address_to_resource(child, 0, &res) < 0) {
2094 		dev_err(&pdev->dev, "%pOF has malformed 'reg' property\n",
2095 			child);
2096 		return -ENODEV;
2097 	}
2098 
2099 	/*
2100 	 * Check if we have multiple instances of the same device
2101 	 * on a single chip select. If so, use the already initialized
2102 	 * timings.
2103 	 */
2104 	name = gpmc_cs_get_name(cs);
2105 	if (name && of_node_name_eq(child, name))
2106 		goto no_timings;
2107 
2108 	ret = gpmc_cs_request(cs, resource_size(&res), &base);
2109 	if (ret < 0) {
2110 		dev_err(&pdev->dev, "cannot request GPMC CS %d\n", cs);
2111 		return ret;
2112 	}
2113 	gpmc_cs_set_name(cs, child->full_name);
2114 
2115 	gpmc_read_settings_dt(child, &gpmc_s);
2116 	gpmc_read_timings_dt(child, &gpmc_t);
2117 
2118 	/*
2119 	 * For some GPMC devices we still need to rely on the bootloader
2120 	 * timings because the devices can be connected via FPGA.
2121 	 * REVISIT: Add timing support from slls644g.pdf.
2122 	 */
2123 	if (!gpmc_t.cs_rd_off) {
2124 		WARN(1, "enable GPMC debug to configure .dts timings for CS%i\n",
2125 			cs);
2126 		gpmc_cs_show_timings(cs,
2127 				     "please add GPMC bootloader timings to .dts");
2128 		goto no_timings;
2129 	}
2130 
2131 	/* CS must be disabled while making changes to gpmc configuration */
2132 	gpmc_cs_disable_mem(cs);
2133 
2134 	/*
2135 	 * FIXME: gpmc_cs_request() will map the CS to an arbitrary
2136 	 * location in the gpmc address space. When booting with
2137 	 * device-tree we want the NOR flash to be mapped to the
2138 	 * location specified in the device-tree blob. So remap the
2139 	 * CS to this location. Once DT migration is complete should
2140 	 * just make gpmc_cs_request() map a specific address.
2141 	 */
2142 	ret = gpmc_cs_remap(cs, res.start);
2143 	if (ret < 0) {
2144 		dev_err(&pdev->dev, "cannot remap GPMC CS %d to %pa\n",
2145 			cs, &res.start);
2146 		if (res.start < GPMC_MEM_START) {
2147 			dev_info(&pdev->dev,
2148 				 "GPMC CS %d start cannot be lesser than 0x%x\n",
2149 				 cs, GPMC_MEM_START);
2150 		} else if (res.end > GPMC_MEM_END) {
2151 			dev_info(&pdev->dev,
2152 				 "GPMC CS %d end cannot be greater than 0x%x\n",
2153 				 cs, GPMC_MEM_END);
2154 		}
2155 		goto err;
2156 	}
2157 
2158 	if (of_node_name_eq(child, "nand")) {
2159 		/* Warn about older DT blobs with no compatible property */
2160 		if (!of_property_read_bool(child, "compatible")) {
2161 			dev_warn(&pdev->dev,
2162 				 "Incompatible NAND node: missing compatible");
2163 			ret = -EINVAL;
2164 			goto err;
2165 		}
2166 	}
2167 
2168 	if (of_node_name_eq(child, "onenand")) {
2169 		/* Warn about older DT blobs with no compatible property */
2170 		if (!of_property_read_bool(child, "compatible")) {
2171 			dev_warn(&pdev->dev,
2172 				 "Incompatible OneNAND node: missing compatible");
2173 			ret = -EINVAL;
2174 			goto err;
2175 		}
2176 	}
2177 
2178 	if (of_device_is_compatible(child, "ti,omap2-nand")) {
2179 		/* NAND specific setup */
2180 		val = 8;
2181 		of_property_read_u32(child, "nand-bus-width", &val);
2182 		switch (val) {
2183 		case 8:
2184 			gpmc_s.device_width = GPMC_DEVWIDTH_8BIT;
2185 			break;
2186 		case 16:
2187 			gpmc_s.device_width = GPMC_DEVWIDTH_16BIT;
2188 			break;
2189 		default:
2190 			dev_err(&pdev->dev, "%pOFn: invalid 'nand-bus-width'\n",
2191 				child);
2192 			ret = -EINVAL;
2193 			goto err;
2194 		}
2195 
2196 		/* disable write protect */
2197 		gpmc_configure(GPMC_CONFIG_WP, 0);
2198 		gpmc_s.device_nand = true;
2199 	} else {
2200 		ret = of_property_read_u32(child, "bank-width",
2201 					   &gpmc_s.device_width);
2202 		if (ret < 0 && !gpmc_s.device_width) {
2203 			dev_err(&pdev->dev,
2204 				"%pOF has no 'gpmc,device-width' property\n",
2205 				child);
2206 			goto err;
2207 		}
2208 	}
2209 
2210 	/* Reserve wait pin if it is required and valid */
2211 	if (gpmc_s.wait_on_read || gpmc_s.wait_on_write) {
2212 		unsigned int wait_pin = gpmc_s.wait_pin;
2213 
2214 		waitpin_desc = gpiochip_request_own_desc(&gpmc->gpio_chip,
2215 							 wait_pin, "WAITPIN",
2216 							 GPIO_ACTIVE_HIGH,
2217 							 GPIOD_IN);
2218 		if (IS_ERR(waitpin_desc)) {
2219 			dev_err(&pdev->dev, "invalid wait-pin: %d\n", wait_pin);
2220 			ret = PTR_ERR(waitpin_desc);
2221 			goto err;
2222 		}
2223 	}
2224 
2225 	gpmc_cs_show_timings(cs, "before gpmc_cs_program_settings");
2226 
2227 	ret = gpmc_cs_program_settings(cs, &gpmc_s);
2228 	if (ret < 0)
2229 		goto err_cs;
2230 
2231 	ret = gpmc_cs_set_timings(cs, &gpmc_t, &gpmc_s);
2232 	if (ret) {
2233 		dev_err(&pdev->dev, "failed to set gpmc timings for: %pOFn\n",
2234 			child);
2235 		goto err_cs;
2236 	}
2237 
2238 	/* Clear limited address i.e. enable A26-A11 */
2239 	val = gpmc_read_reg(GPMC_CONFIG);
2240 	val &= ~GPMC_CONFIG_LIMITEDADDRESS;
2241 	gpmc_write_reg(GPMC_CONFIG, val);
2242 
2243 	/* Enable CS region */
2244 	gpmc_cs_enable_mem(cs);
2245 
2246 no_timings:
2247 
2248 	/* create platform device, NULL on error or when disabled */
2249 	if (!of_platform_device_create(child, NULL, &pdev->dev))
2250 		goto err_child_fail;
2251 
2252 	/* is child a common bus? */
2253 	if (of_match_node(of_default_bus_match_table, child))
2254 		/* create children and other common bus children */
2255 		if (of_platform_default_populate(child, NULL, &pdev->dev))
2256 			goto err_child_fail;
2257 
2258 	return 0;
2259 
2260 err_child_fail:
2261 
2262 	dev_err(&pdev->dev, "failed to create gpmc child %pOFn\n", child);
2263 	ret = -ENODEV;
2264 
2265 err_cs:
2266 	gpiochip_free_own_desc(waitpin_desc);
2267 err:
2268 	gpmc_cs_free(cs);
2269 
2270 	return ret;
2271 }
2272 
gpmc_probe_dt(struct platform_device * pdev)2273 static int gpmc_probe_dt(struct platform_device *pdev)
2274 {
2275 	int ret;
2276 	const struct of_device_id *of_id =
2277 		of_match_device(gpmc_dt_ids, &pdev->dev);
2278 
2279 	if (!of_id)
2280 		return 0;
2281 
2282 	ret = of_property_read_u32(pdev->dev.of_node, "gpmc,num-cs",
2283 				   &gpmc_cs_num);
2284 	if (ret < 0) {
2285 		pr_err("%s: number of chip-selects not defined\n", __func__);
2286 		return ret;
2287 	} else if (gpmc_cs_num < 1) {
2288 		pr_err("%s: all chip-selects are disabled\n", __func__);
2289 		return -EINVAL;
2290 	} else if (gpmc_cs_num > GPMC_CS_NUM) {
2291 		pr_err("%s: number of supported chip-selects cannot be > %d\n",
2292 					 __func__, GPMC_CS_NUM);
2293 		return -EINVAL;
2294 	}
2295 
2296 	ret = of_property_read_u32(pdev->dev.of_node, "gpmc,num-waitpins",
2297 				   &gpmc_nr_waitpins);
2298 	if (ret < 0) {
2299 		pr_err("%s: number of wait pins not found!\n", __func__);
2300 		return ret;
2301 	}
2302 
2303 	return 0;
2304 }
2305 
gpmc_probe_dt_children(struct platform_device * pdev)2306 static void gpmc_probe_dt_children(struct platform_device *pdev)
2307 {
2308 	int ret;
2309 	struct device_node *child;
2310 
2311 	for_each_available_child_of_node(pdev->dev.of_node, child) {
2312 		ret = gpmc_probe_generic_child(pdev, child);
2313 		if (ret) {
2314 			dev_err(&pdev->dev, "failed to probe DT child '%pOFn': %d\n",
2315 				child, ret);
2316 		}
2317 	}
2318 }
2319 #else
gpmc_read_settings_dt(struct device_node * np,struct gpmc_settings * p)2320 void gpmc_read_settings_dt(struct device_node *np, struct gpmc_settings *p)
2321 {
2322 	memset(p, 0, sizeof(*p));
2323 }
gpmc_probe_dt(struct platform_device * pdev)2324 static int gpmc_probe_dt(struct platform_device *pdev)
2325 {
2326 	return 0;
2327 }
2328 
gpmc_probe_dt_children(struct platform_device * pdev)2329 static void gpmc_probe_dt_children(struct platform_device *pdev)
2330 {
2331 }
2332 #endif /* CONFIG_OF */
2333 
gpmc_gpio_get_direction(struct gpio_chip * chip,unsigned int offset)2334 static int gpmc_gpio_get_direction(struct gpio_chip *chip, unsigned int offset)
2335 {
2336 	return 1;	/* we're input only */
2337 }
2338 
gpmc_gpio_direction_input(struct gpio_chip * chip,unsigned int offset)2339 static int gpmc_gpio_direction_input(struct gpio_chip *chip,
2340 				     unsigned int offset)
2341 {
2342 	return 0;	/* we're input only */
2343 }
2344 
gpmc_gpio_direction_output(struct gpio_chip * chip,unsigned int offset,int value)2345 static int gpmc_gpio_direction_output(struct gpio_chip *chip,
2346 				      unsigned int offset, int value)
2347 {
2348 	return -EINVAL;	/* we're input only */
2349 }
2350 
gpmc_gpio_set(struct gpio_chip * chip,unsigned int offset,int value)2351 static void gpmc_gpio_set(struct gpio_chip *chip, unsigned int offset,
2352 			  int value)
2353 {
2354 }
2355 
gpmc_gpio_get(struct gpio_chip * chip,unsigned int offset)2356 static int gpmc_gpio_get(struct gpio_chip *chip, unsigned int offset)
2357 {
2358 	u32 reg;
2359 
2360 	offset += 8;
2361 
2362 	reg = gpmc_read_reg(GPMC_STATUS) & BIT(offset);
2363 
2364 	return !!reg;
2365 }
2366 
gpmc_gpio_init(struct gpmc_device * gpmc)2367 static int gpmc_gpio_init(struct gpmc_device *gpmc)
2368 {
2369 	int ret;
2370 
2371 	gpmc->gpio_chip.parent = gpmc->dev;
2372 	gpmc->gpio_chip.owner = THIS_MODULE;
2373 	gpmc->gpio_chip.label = DEVICE_NAME;
2374 	gpmc->gpio_chip.ngpio = gpmc_nr_waitpins;
2375 	gpmc->gpio_chip.get_direction = gpmc_gpio_get_direction;
2376 	gpmc->gpio_chip.direction_input = gpmc_gpio_direction_input;
2377 	gpmc->gpio_chip.direction_output = gpmc_gpio_direction_output;
2378 	gpmc->gpio_chip.set = gpmc_gpio_set;
2379 	gpmc->gpio_chip.get = gpmc_gpio_get;
2380 	gpmc->gpio_chip.base = -1;
2381 
2382 	ret = devm_gpiochip_add_data(gpmc->dev, &gpmc->gpio_chip, NULL);
2383 	if (ret < 0) {
2384 		dev_err(gpmc->dev, "could not register gpio chip: %d\n", ret);
2385 		return ret;
2386 	}
2387 
2388 	return 0;
2389 }
2390 
omap3_gpmc_save_context(struct gpmc_device * gpmc)2391 static void omap3_gpmc_save_context(struct gpmc_device *gpmc)
2392 {
2393 	struct omap3_gpmc_regs *gpmc_context;
2394 	int i;
2395 
2396 	if (!gpmc || !gpmc_base)
2397 		return;
2398 
2399 	gpmc_context = &gpmc->context;
2400 
2401 	gpmc_context->sysconfig = gpmc_read_reg(GPMC_SYSCONFIG);
2402 	gpmc_context->irqenable = gpmc_read_reg(GPMC_IRQENABLE);
2403 	gpmc_context->timeout_ctrl = gpmc_read_reg(GPMC_TIMEOUT_CONTROL);
2404 	gpmc_context->config = gpmc_read_reg(GPMC_CONFIG);
2405 	gpmc_context->prefetch_config1 = gpmc_read_reg(GPMC_PREFETCH_CONFIG1);
2406 	gpmc_context->prefetch_config2 = gpmc_read_reg(GPMC_PREFETCH_CONFIG2);
2407 	gpmc_context->prefetch_control = gpmc_read_reg(GPMC_PREFETCH_CONTROL);
2408 	for (i = 0; i < gpmc_cs_num; i++) {
2409 		gpmc_context->cs_context[i].is_valid = gpmc_cs_mem_enabled(i);
2410 		if (gpmc_context->cs_context[i].is_valid) {
2411 			gpmc_context->cs_context[i].config1 =
2412 				gpmc_cs_read_reg(i, GPMC_CS_CONFIG1);
2413 			gpmc_context->cs_context[i].config2 =
2414 				gpmc_cs_read_reg(i, GPMC_CS_CONFIG2);
2415 			gpmc_context->cs_context[i].config3 =
2416 				gpmc_cs_read_reg(i, GPMC_CS_CONFIG3);
2417 			gpmc_context->cs_context[i].config4 =
2418 				gpmc_cs_read_reg(i, GPMC_CS_CONFIG4);
2419 			gpmc_context->cs_context[i].config5 =
2420 				gpmc_cs_read_reg(i, GPMC_CS_CONFIG5);
2421 			gpmc_context->cs_context[i].config6 =
2422 				gpmc_cs_read_reg(i, GPMC_CS_CONFIG6);
2423 			gpmc_context->cs_context[i].config7 =
2424 				gpmc_cs_read_reg(i, GPMC_CS_CONFIG7);
2425 		}
2426 	}
2427 }
2428 
omap3_gpmc_restore_context(struct gpmc_device * gpmc)2429 static void omap3_gpmc_restore_context(struct gpmc_device *gpmc)
2430 {
2431 	struct omap3_gpmc_regs *gpmc_context;
2432 	int i;
2433 
2434 	if (!gpmc || !gpmc_base)
2435 		return;
2436 
2437 	gpmc_context = &gpmc->context;
2438 
2439 	gpmc_write_reg(GPMC_SYSCONFIG, gpmc_context->sysconfig);
2440 	gpmc_write_reg(GPMC_IRQENABLE, gpmc_context->irqenable);
2441 	gpmc_write_reg(GPMC_TIMEOUT_CONTROL, gpmc_context->timeout_ctrl);
2442 	gpmc_write_reg(GPMC_CONFIG, gpmc_context->config);
2443 	gpmc_write_reg(GPMC_PREFETCH_CONFIG1, gpmc_context->prefetch_config1);
2444 	gpmc_write_reg(GPMC_PREFETCH_CONFIG2, gpmc_context->prefetch_config2);
2445 	gpmc_write_reg(GPMC_PREFETCH_CONTROL, gpmc_context->prefetch_control);
2446 	for (i = 0; i < gpmc_cs_num; i++) {
2447 		if (gpmc_context->cs_context[i].is_valid) {
2448 			gpmc_cs_write_reg(i, GPMC_CS_CONFIG1,
2449 					  gpmc_context->cs_context[i].config1);
2450 			gpmc_cs_write_reg(i, GPMC_CS_CONFIG2,
2451 					  gpmc_context->cs_context[i].config2);
2452 			gpmc_cs_write_reg(i, GPMC_CS_CONFIG3,
2453 					  gpmc_context->cs_context[i].config3);
2454 			gpmc_cs_write_reg(i, GPMC_CS_CONFIG4,
2455 					  gpmc_context->cs_context[i].config4);
2456 			gpmc_cs_write_reg(i, GPMC_CS_CONFIG5,
2457 					  gpmc_context->cs_context[i].config5);
2458 			gpmc_cs_write_reg(i, GPMC_CS_CONFIG6,
2459 					  gpmc_context->cs_context[i].config6);
2460 			gpmc_cs_write_reg(i, GPMC_CS_CONFIG7,
2461 					  gpmc_context->cs_context[i].config7);
2462 		} else {
2463 			gpmc_cs_write_reg(i, GPMC_CS_CONFIG7, 0);
2464 		}
2465 	}
2466 }
2467 
omap_gpmc_context_notifier(struct notifier_block * nb,unsigned long cmd,void * v)2468 static int omap_gpmc_context_notifier(struct notifier_block *nb,
2469 				      unsigned long cmd, void *v)
2470 {
2471 	struct gpmc_device *gpmc;
2472 
2473 	gpmc = container_of(nb, struct gpmc_device, nb);
2474 	if (gpmc->is_suspended || pm_runtime_suspended(gpmc->dev))
2475 		return NOTIFY_OK;
2476 
2477 	switch (cmd) {
2478 	case CPU_CLUSTER_PM_ENTER:
2479 		omap3_gpmc_save_context(gpmc);
2480 		break;
2481 	case CPU_CLUSTER_PM_ENTER_FAILED:	/* No need to restore context */
2482 		break;
2483 	case CPU_CLUSTER_PM_EXIT:
2484 		omap3_gpmc_restore_context(gpmc);
2485 		break;
2486 	}
2487 
2488 	return NOTIFY_OK;
2489 }
2490 
gpmc_probe(struct platform_device * pdev)2491 static int gpmc_probe(struct platform_device *pdev)
2492 {
2493 	int rc;
2494 	u32 l;
2495 	struct resource *res;
2496 	struct gpmc_device *gpmc;
2497 
2498 	gpmc = devm_kzalloc(&pdev->dev, sizeof(*gpmc), GFP_KERNEL);
2499 	if (!gpmc)
2500 		return -ENOMEM;
2501 
2502 	gpmc->dev = &pdev->dev;
2503 	platform_set_drvdata(pdev, gpmc);
2504 
2505 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2506 	if (!res)
2507 		return -ENOENT;
2508 
2509 	gpmc_base = devm_ioremap_resource(&pdev->dev, res);
2510 	if (IS_ERR(gpmc_base))
2511 		return PTR_ERR(gpmc_base);
2512 
2513 	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
2514 	if (!res) {
2515 		dev_err(&pdev->dev, "Failed to get resource: irq\n");
2516 		return -ENOENT;
2517 	}
2518 
2519 	gpmc->irq = res->start;
2520 
2521 	gpmc_l3_clk = devm_clk_get(&pdev->dev, "fck");
2522 	if (IS_ERR(gpmc_l3_clk)) {
2523 		dev_err(&pdev->dev, "Failed to get GPMC fck\n");
2524 		return PTR_ERR(gpmc_l3_clk);
2525 	}
2526 
2527 	if (!clk_get_rate(gpmc_l3_clk)) {
2528 		dev_err(&pdev->dev, "Invalid GPMC fck clock rate\n");
2529 		return -EINVAL;
2530 	}
2531 
2532 	if (pdev->dev.of_node) {
2533 		rc = gpmc_probe_dt(pdev);
2534 		if (rc)
2535 			return rc;
2536 	} else {
2537 		gpmc_cs_num = GPMC_CS_NUM;
2538 		gpmc_nr_waitpins = GPMC_NR_WAITPINS;
2539 	}
2540 
2541 	pm_runtime_enable(&pdev->dev);
2542 	pm_runtime_get_sync(&pdev->dev);
2543 
2544 	l = gpmc_read_reg(GPMC_REVISION);
2545 
2546 	/*
2547 	 * FIXME: Once device-tree migration is complete the below flags
2548 	 * should be populated based upon the device-tree compatible
2549 	 * string. For now just use the IP revision. OMAP3+ devices have
2550 	 * the wr_access and wr_data_mux_bus register fields. OMAP4+
2551 	 * devices support the addr-addr-data multiplex protocol.
2552 	 *
2553 	 * GPMC IP revisions:
2554 	 * - OMAP24xx			= 2.0
2555 	 * - OMAP3xxx			= 5.0
2556 	 * - OMAP44xx/54xx/AM335x	= 6.0
2557 	 */
2558 	if (GPMC_REVISION_MAJOR(l) > 0x4)
2559 		gpmc_capability = GPMC_HAS_WR_ACCESS | GPMC_HAS_WR_DATA_MUX_BUS;
2560 	if (GPMC_REVISION_MAJOR(l) > 0x5)
2561 		gpmc_capability |= GPMC_HAS_MUX_AAD;
2562 	dev_info(gpmc->dev, "GPMC revision %d.%d\n", GPMC_REVISION_MAJOR(l),
2563 		 GPMC_REVISION_MINOR(l));
2564 
2565 	gpmc_mem_init();
2566 	rc = gpmc_gpio_init(gpmc);
2567 	if (rc)
2568 		goto gpio_init_failed;
2569 
2570 	gpmc->nirqs = GPMC_NR_NAND_IRQS + gpmc_nr_waitpins;
2571 	rc = gpmc_setup_irq(gpmc);
2572 	if (rc) {
2573 		dev_err(gpmc->dev, "gpmc_setup_irq failed\n");
2574 		goto gpio_init_failed;
2575 	}
2576 
2577 	gpmc_probe_dt_children(pdev);
2578 
2579 	gpmc->nb.notifier_call = omap_gpmc_context_notifier;
2580 	cpu_pm_register_notifier(&gpmc->nb);
2581 
2582 	return 0;
2583 
2584 gpio_init_failed:
2585 	gpmc_mem_exit();
2586 	pm_runtime_put_sync(&pdev->dev);
2587 	pm_runtime_disable(&pdev->dev);
2588 
2589 	return rc;
2590 }
2591 
gpmc_remove(struct platform_device * pdev)2592 static int gpmc_remove(struct platform_device *pdev)
2593 {
2594 	struct gpmc_device *gpmc = platform_get_drvdata(pdev);
2595 
2596 	cpu_pm_unregister_notifier(&gpmc->nb);
2597 	gpmc_free_irq(gpmc);
2598 	gpmc_mem_exit();
2599 	pm_runtime_put_sync(&pdev->dev);
2600 	pm_runtime_disable(&pdev->dev);
2601 
2602 	return 0;
2603 }
2604 
2605 #ifdef CONFIG_PM_SLEEP
gpmc_suspend(struct device * dev)2606 static int gpmc_suspend(struct device *dev)
2607 {
2608 	struct gpmc_device *gpmc = dev_get_drvdata(dev);
2609 
2610 	omap3_gpmc_save_context(gpmc);
2611 	pm_runtime_put_sync(dev);
2612 	gpmc->is_suspended = 1;
2613 
2614 	return 0;
2615 }
2616 
gpmc_resume(struct device * dev)2617 static int gpmc_resume(struct device *dev)
2618 {
2619 	struct gpmc_device *gpmc = dev_get_drvdata(dev);
2620 
2621 	pm_runtime_get_sync(dev);
2622 	omap3_gpmc_restore_context(gpmc);
2623 	gpmc->is_suspended = 0;
2624 
2625 	return 0;
2626 }
2627 #endif
2628 
2629 static SIMPLE_DEV_PM_OPS(gpmc_pm_ops, gpmc_suspend, gpmc_resume);
2630 
2631 static struct platform_driver gpmc_driver = {
2632 	.probe		= gpmc_probe,
2633 	.remove		= gpmc_remove,
2634 	.driver		= {
2635 		.name	= DEVICE_NAME,
2636 		.of_match_table = of_match_ptr(gpmc_dt_ids),
2637 		.pm	= &gpmc_pm_ops,
2638 	},
2639 };
2640 
gpmc_init(void)2641 static __init int gpmc_init(void)
2642 {
2643 	return platform_driver_register(&gpmc_driver);
2644 }
2645 postcore_initcall(gpmc_init);
2646