1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Driver for DBRI sound chip found on Sparcs.
4   * Copyright (C) 2004, 2005 Martin Habets (mhabets@users.sourceforge.net)
5   *
6   * Converted to ring buffered version by Krzysztof Helt (krzysztof.h1@wp.pl)
7   *
8   * Based entirely upon drivers/sbus/audio/dbri.c which is:
9   * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
10   * Copyright (C) 1998, 1999 Brent Baccala (baccala@freesoft.org)
11   *
12   * This is the low level driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
13   * on Sun SPARCStation 10, 20, LX and Voyager models.
14   *
15   * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
16   *   data time multiplexer with ISDN support (aka T7259)
17   *   Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
18   *   CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
19   *   Documentation:
20   *   - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Transceiver" from
21   *     Sparc Technology Business (courtesy of Sun Support)
22   *   - Data sheet of the T7903, a newer but very similar ISA bus equivalent
23   *     available from the Lucent (formerly AT&T microelectronics) home
24   *     page.
25   *   - https://www.freesoft.org/Linux/DBRI/
26   * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
27   *   Interfaces: CHI, Audio In & Out, 2 bits parallel
28   *   Documentation: from the Crystal Semiconductor home page.
29   *
30   * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
31   * memory and a serial device (long pipes, no. 0-15) or between two serial
32   * devices (short pipes, no. 16-31), or simply send a fixed data to a serial
33   * device (short pipes).
34   * A timeslot defines the bit-offset and no. of bits read from a serial device.
35   * The timeslots are linked to 6 circular lists, one for each direction for
36   * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
37   * (the second one is a monitor/tee pipe, valid only for serial input).
38   *
39   * The mmcodec is connected via the CHI bus and needs the data & some
40   * parameters (volume, output selection) time multiplexed in 8 byte
41   * chunks. It also has a control mode, which serves for audio format setting.
42   *
43   * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
44   * the same CHI bus, so I thought perhaps it is possible to use the on-board
45   * & the speakerbox codec simultaneously, giving 2 (not very independent :-)
46   * audio devices. But the SUN HW group decided against it, at least on my
47   * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
48   * connected.
49   *
50   * I've tried to stick to the following function naming conventions:
51   * snd_*	ALSA stuff
52   * cs4215_*	CS4215 codec specific stuff
53   * dbri_*	DBRI high-level stuff
54   * other	DBRI low-level stuff
55   */
56  
57  #include <linux/interrupt.h>
58  #include <linux/delay.h>
59  #include <linux/irq.h>
60  #include <linux/io.h>
61  #include <linux/dma-mapping.h>
62  #include <linux/gfp.h>
63  
64  #include <sound/core.h>
65  #include <sound/pcm.h>
66  #include <sound/pcm_params.h>
67  #include <sound/info.h>
68  #include <sound/control.h>
69  #include <sound/initval.h>
70  
71  #include <linux/of.h>
72  #include <linux/of_device.h>
73  #include <linux/atomic.h>
74  #include <linux/module.h>
75  
76  MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
77  MODULE_DESCRIPTION("Sun DBRI");
78  MODULE_LICENSE("GPL");
79  
80  static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
81  static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
82  /* Enable this card */
83  static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
84  
85  module_param_array(index, int, NULL, 0444);
86  MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
87  module_param_array(id, charp, NULL, 0444);
88  MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
89  module_param_array(enable, bool, NULL, 0444);
90  MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
91  
92  #undef DBRI_DEBUG
93  
94  #define D_INT	(1<<0)
95  #define D_GEN	(1<<1)
96  #define D_CMD	(1<<2)
97  #define D_MM	(1<<3)
98  #define D_USR	(1<<4)
99  #define D_DESC	(1<<5)
100  
101  static int dbri_debug;
102  module_param(dbri_debug, int, 0644);
103  MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
104  
105  #ifdef DBRI_DEBUG
106  static const char * const cmds[] = {
107  	"WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
108  	"SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
109  };
110  
111  #define dprintk(a, x...) if (dbri_debug & a) printk(KERN_DEBUG x)
112  
113  #else
114  #define dprintk(a, x...) do { } while (0)
115  
116  #endif				/* DBRI_DEBUG */
117  
118  #define DBRI_CMD(cmd, intr, value) ((cmd << 28) |	\
119  				    (intr << 27) |	\
120  				    value)
121  
122  /***************************************************************************
123  	CS4215 specific definitions and structures
124  ****************************************************************************/
125  
126  struct cs4215 {
127  	__u8 data[4];		/* Data mode: Time slots 5-8 */
128  	__u8 ctrl[4];		/* Ctrl mode: Time slots 1-4 */
129  	__u8 onboard;
130  	__u8 offset;		/* Bit offset from frame sync to time slot 1 */
131  	volatile __u32 status;
132  	volatile __u32 version;
133  	__u8 precision;		/* In bits, either 8 or 16 */
134  	__u8 channels;		/* 1 or 2 */
135  };
136  
137  /*
138   * Control mode first
139   */
140  
141  /* Time Slot 1, Status register */
142  #define CS4215_CLB	(1<<2)	/* Control Latch Bit */
143  #define CS4215_OLB	(1<<3)	/* 1: line: 2.0V, speaker 4V */
144  				/* 0: line: 2.8V, speaker 8V */
145  #define CS4215_MLB	(1<<4)	/* 1: Microphone: 20dB gain disabled */
146  #define CS4215_RSRVD_1  (1<<5)
147  
148  /* Time Slot 2, Data Format Register */
149  #define CS4215_DFR_LINEAR16	0
150  #define CS4215_DFR_ULAW		1
151  #define CS4215_DFR_ALAW		2
152  #define CS4215_DFR_LINEAR8	3
153  #define CS4215_DFR_STEREO	(1<<2)
154  static struct {
155  	unsigned short freq;
156  	unsigned char xtal;
157  	unsigned char csval;
158  } CS4215_FREQ[] = {
159  	{  8000, (1 << 4), (0 << 3) },
160  	{ 16000, (1 << 4), (1 << 3) },
161  	{ 27429, (1 << 4), (2 << 3) },	/* Actually 24428.57 */
162  	{ 32000, (1 << 4), (3 << 3) },
163       /* {    NA, (1 << 4), (4 << 3) }, */
164       /* {    NA, (1 << 4), (5 << 3) }, */
165  	{ 48000, (1 << 4), (6 << 3) },
166  	{  9600, (1 << 4), (7 << 3) },
167  	{  5512, (2 << 4), (0 << 3) },	/* Actually 5512.5 */
168  	{ 11025, (2 << 4), (1 << 3) },
169  	{ 18900, (2 << 4), (2 << 3) },
170  	{ 22050, (2 << 4), (3 << 3) },
171  	{ 37800, (2 << 4), (4 << 3) },
172  	{ 44100, (2 << 4), (5 << 3) },
173  	{ 33075, (2 << 4), (6 << 3) },
174  	{  6615, (2 << 4), (7 << 3) },
175  	{ 0, 0, 0}
176  };
177  
178  #define CS4215_HPF	(1<<7)	/* High Pass Filter, 1: Enabled */
179  
180  #define CS4215_12_MASK	0xfcbf	/* Mask off reserved bits in slot 1 & 2 */
181  
182  /* Time Slot 3, Serial Port Control register */
183  #define CS4215_XEN	(1<<0)	/* 0: Enable serial output */
184  #define CS4215_XCLK	(1<<1)	/* 1: Master mode: Generate SCLK */
185  #define CS4215_BSEL_64	(0<<2)	/* Bitrate: 64 bits per frame */
186  #define CS4215_BSEL_128	(1<<2)
187  #define CS4215_BSEL_256	(2<<2)
188  #define CS4215_MCK_MAST (0<<4)	/* Master clock */
189  #define CS4215_MCK_XTL1 (1<<4)	/* 24.576 MHz clock source */
190  #define CS4215_MCK_XTL2 (2<<4)	/* 16.9344 MHz clock source */
191  #define CS4215_MCK_CLK1 (3<<4)	/* Clockin, 256 x Fs */
192  #define CS4215_MCK_CLK2 (4<<4)	/* Clockin, see DFR */
193  
194  /* Time Slot 4, Test Register */
195  #define CS4215_DAD	(1<<0)	/* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
196  #define CS4215_ENL	(1<<1)	/* Enable Loopback Testing */
197  
198  /* Time Slot 5, Parallel Port Register */
199  /* Read only here and the same as the in data mode */
200  
201  /* Time Slot 6, Reserved  */
202  
203  /* Time Slot 7, Version Register  */
204  #define CS4215_VERSION_MASK 0xf	/* Known versions 0/C, 1/D, 2/E */
205  
206  /* Time Slot 8, Reserved  */
207  
208  /*
209   * Data mode
210   */
211  /* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data  */
212  
213  /* Time Slot 5, Output Setting  */
214  #define CS4215_LO(v)	v	/* Left Output Attenuation 0x3f: -94.5 dB */
215  #define CS4215_LE	(1<<6)	/* Line Out Enable */
216  #define CS4215_HE	(1<<7)	/* Headphone Enable */
217  
218  /* Time Slot 6, Output Setting  */
219  #define CS4215_RO(v)	v	/* Right Output Attenuation 0x3f: -94.5 dB */
220  #define CS4215_SE	(1<<6)	/* Speaker Enable */
221  #define CS4215_ADI	(1<<7)	/* A/D Data Invalid: Busy in calibration */
222  
223  /* Time Slot 7, Input Setting */
224  #define CS4215_LG(v)	v	/* Left Gain Setting 0xf: 22.5 dB */
225  #define CS4215_IS	(1<<4)	/* Input Select: 1=Microphone, 0=Line */
226  #define CS4215_OVR	(1<<5)	/* 1: Over range condition occurred */
227  #define CS4215_PIO0	(1<<6)	/* Parallel I/O 0 */
228  #define CS4215_PIO1	(1<<7)
229  
230  /* Time Slot 8, Input Setting */
231  #define CS4215_RG(v)	v	/* Right Gain Setting 0xf: 22.5 dB */
232  #define CS4215_MA(v)	(v<<4)	/* Monitor Path Attenuation 0xf: mute */
233  
234  /***************************************************************************
235  		DBRI specific definitions and structures
236  ****************************************************************************/
237  
238  /* DBRI main registers */
239  #define REG0	0x00		/* Status and Control */
240  #define REG1	0x04		/* Mode and Interrupt */
241  #define REG2	0x08		/* Parallel IO */
242  #define REG3	0x0c		/* Test */
243  #define REG8	0x20		/* Command Queue Pointer */
244  #define REG9	0x24		/* Interrupt Queue Pointer */
245  
246  #define DBRI_NO_CMDS	64
247  #define DBRI_INT_BLK	64
248  #define DBRI_NO_DESCS	64
249  #define DBRI_NO_PIPES	32
250  #define DBRI_MAX_PIPE	(DBRI_NO_PIPES - 1)
251  
252  #define DBRI_REC	0
253  #define DBRI_PLAY	1
254  #define DBRI_NO_STREAMS	2
255  
256  /* One transmit/receive descriptor */
257  /* When ba != 0 descriptor is used */
258  struct dbri_mem {
259  	volatile __u32 word1;
260  	__u32 ba;	/* Transmit/Receive Buffer Address */
261  	__u32 nda;	/* Next Descriptor Address */
262  	volatile __u32 word4;
263  };
264  
265  /* This structure is in a DMA region where it can accessed by both
266   * the CPU and the DBRI
267   */
268  struct dbri_dma {
269  	s32 cmd[DBRI_NO_CMDS];			/* Place for commands */
270  	volatile s32 intr[DBRI_INT_BLK];	/* Interrupt field  */
271  	struct dbri_mem desc[DBRI_NO_DESCS];	/* Xmit/receive descriptors */
272  };
273  
274  #define dbri_dma_off(member, elem)	\
275  	((u32)(unsigned long)		\
276  	 (&(((struct dbri_dma *)0)->member[elem])))
277  
278  enum in_or_out { PIPEinput, PIPEoutput };
279  
280  struct dbri_pipe {
281  	u32 sdp;		/* SDP command word */
282  	int nextpipe;		/* Next pipe in linked list */
283  	int length;		/* Length of timeslot (bits) */
284  	int first_desc;		/* Index of first descriptor */
285  	int desc;		/* Index of active descriptor */
286  	volatile __u32 *recv_fixed_ptr;	/* Ptr to receive fixed data */
287  };
288  
289  /* Per stream (playback or record) information */
290  struct dbri_streaminfo {
291  	struct snd_pcm_substream *substream;
292  	u32 dvma_buffer;	/* Device view of ALSA DMA buffer */
293  	int size;		/* Size of DMA buffer             */
294  	size_t offset;		/* offset in user buffer          */
295  	int pipe;		/* Data pipe used                 */
296  	int left_gain;		/* mixer elements                 */
297  	int right_gain;
298  };
299  
300  /* This structure holds the information for both chips (DBRI & CS4215) */
301  struct snd_dbri {
302  	int regs_size, irq;	/* Needed for unload */
303  	struct platform_device *op;	/* OF device info */
304  	spinlock_t lock;
305  
306  	struct dbri_dma *dma;	/* Pointer to our DMA block */
307  	dma_addr_t dma_dvma;	/* DBRI visible DMA address */
308  
309  	void __iomem *regs;	/* dbri HW regs */
310  	int dbri_irqp;		/* intr queue pointer */
311  
312  	struct dbri_pipe pipes[DBRI_NO_PIPES];	/* DBRI's 32 data pipes */
313  	int next_desc[DBRI_NO_DESCS];		/* Index of next desc, or -1 */
314  	spinlock_t cmdlock;	/* Protects cmd queue accesses */
315  	s32 *cmdptr;		/* Pointer to the last queued cmd */
316  
317  	int chi_bpf;
318  
319  	struct cs4215 mm;	/* mmcodec special info */
320  				/* per stream (playback/record) info */
321  	struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
322  };
323  
324  #define DBRI_MAX_VOLUME		63	/* Output volume */
325  #define DBRI_MAX_GAIN		15	/* Input gain */
326  
327  /* DBRI Reg0 - Status Control Register - defines. (Page 17) */
328  #define D_P		(1<<15)	/* Program command & queue pointer valid */
329  #define D_G		(1<<14)	/* Allow 4-Word SBus Burst */
330  #define D_S		(1<<13)	/* Allow 16-Word SBus Burst */
331  #define D_E		(1<<12)	/* Allow 8-Word SBus Burst */
332  #define D_X		(1<<7)	/* Sanity Timer Disable */
333  #define D_T		(1<<6)	/* Permit activation of the TE interface */
334  #define D_N		(1<<5)	/* Permit activation of the NT interface */
335  #define D_C		(1<<4)	/* Permit activation of the CHI interface */
336  #define D_F		(1<<3)	/* Force Sanity Timer Time-Out */
337  #define D_D		(1<<2)	/* Disable Master Mode */
338  #define D_H		(1<<1)	/* Halt for Analysis */
339  #define D_R		(1<<0)	/* Soft Reset */
340  
341  /* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
342  #define D_LITTLE_END	(1<<8)	/* Byte Order */
343  #define D_BIG_END	(0<<8)	/* Byte Order */
344  #define D_MRR		(1<<4)	/* Multiple Error Ack on SBus (read only) */
345  #define D_MLE		(1<<3)	/* Multiple Late Error on SBus (read only) */
346  #define D_LBG		(1<<2)	/* Lost Bus Grant on SBus (read only) */
347  #define D_MBE		(1<<1)	/* Burst Error on SBus (read only) */
348  #define D_IR		(1<<0)	/* Interrupt Indicator (read only) */
349  
350  /* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
351  #define D_ENPIO3	(1<<7)	/* Enable Pin 3 */
352  #define D_ENPIO2	(1<<6)	/* Enable Pin 2 */
353  #define D_ENPIO1	(1<<5)	/* Enable Pin 1 */
354  #define D_ENPIO0	(1<<4)	/* Enable Pin 0 */
355  #define D_ENPIO		(0xf0)	/* Enable all the pins */
356  #define D_PIO3		(1<<3)	/* Pin 3: 1: Data mode, 0: Ctrl mode */
357  #define D_PIO2		(1<<2)	/* Pin 2: 1: Onboard PDN */
358  #define D_PIO1		(1<<1)	/* Pin 1: 0: Reset */
359  #define D_PIO0		(1<<0)	/* Pin 0: 1: Speakerbox PDN */
360  
361  /* DBRI Commands (Page 20) */
362  #define D_WAIT		0x0	/* Stop execution */
363  #define D_PAUSE		0x1	/* Flush long pipes */
364  #define D_JUMP		0x2	/* New command queue */
365  #define D_IIQ		0x3	/* Initialize Interrupt Queue */
366  #define D_REX		0x4	/* Report command execution via interrupt */
367  #define D_SDP		0x5	/* Setup Data Pipe */
368  #define D_CDP		0x6	/* Continue Data Pipe (reread NULL Pointer) */
369  #define D_DTS		0x7	/* Define Time Slot */
370  #define D_SSP		0x8	/* Set short Data Pipe */
371  #define D_CHI		0x9	/* Set CHI Global Mode */
372  #define D_NT		0xa	/* NT Command */
373  #define D_TE		0xb	/* TE Command */
374  #define D_CDEC		0xc	/* Codec setup */
375  #define D_TEST		0xd	/* No comment */
376  #define D_CDM		0xe	/* CHI Data mode command */
377  
378  /* Special bits for some commands */
379  #define D_PIPE(v)      ((v)<<0)	/* Pipe No.: 0-15 long, 16-21 short */
380  
381  /* Setup Data Pipe */
382  /* IRM */
383  #define D_SDP_2SAME	(1<<18)	/* Report 2nd time in a row value received */
384  #define D_SDP_CHANGE	(2<<18)	/* Report any changes */
385  #define D_SDP_EVERY	(3<<18)	/* Report any changes */
386  #define D_SDP_EOL	(1<<17)	/* EOL interrupt enable */
387  #define D_SDP_IDLE	(1<<16)	/* HDLC idle interrupt enable */
388  
389  /* Pipe data MODE */
390  #define D_SDP_MEM	(0<<13)	/* To/from memory */
391  #define D_SDP_HDLC	(2<<13)
392  #define D_SDP_HDLC_D	(3<<13)	/* D Channel (prio control) */
393  #define D_SDP_SER	(4<<13)	/* Serial to serial */
394  #define D_SDP_FIXED	(6<<13)	/* Short only */
395  #define D_SDP_MODE(v)	((v)&(7<<13))
396  
397  #define D_SDP_TO_SER	(1<<12)	/* Direction */
398  #define D_SDP_FROM_SER	(0<<12)	/* Direction */
399  #define D_SDP_MSB	(1<<11)	/* Bit order within Byte */
400  #define D_SDP_LSB	(0<<11)	/* Bit order within Byte */
401  #define D_SDP_P		(1<<10)	/* Pointer Valid */
402  #define D_SDP_A		(1<<8)	/* Abort */
403  #define D_SDP_C		(1<<7)	/* Clear */
404  
405  /* Define Time Slot */
406  #define D_DTS_VI	(1<<17)	/* Valid Input Time-Slot Descriptor */
407  #define D_DTS_VO	(1<<16)	/* Valid Output Time-Slot Descriptor */
408  #define D_DTS_INS	(1<<15)	/* Insert Time Slot */
409  #define D_DTS_DEL	(0<<15)	/* Delete Time Slot */
410  #define D_DTS_PRVIN(v) ((v)<<10)	/* Previous In Pipe */
411  #define D_DTS_PRVOUT(v)        ((v)<<5)	/* Previous Out Pipe */
412  
413  /* Time Slot defines */
414  #define D_TS_LEN(v)	((v)<<24)	/* Number of bits in this time slot */
415  #define D_TS_CYCLE(v)	((v)<<14)	/* Bit Count at start of TS */
416  #define D_TS_DI		(1<<13)	/* Data Invert */
417  #define D_TS_1CHANNEL	(0<<10)	/* Single Channel / Normal mode */
418  #define D_TS_MONITOR	(2<<10)	/* Monitor pipe */
419  #define D_TS_NONCONTIG	(3<<10)	/* Non contiguous mode */
420  #define D_TS_ANCHOR	(7<<10)	/* Starting short pipes */
421  #define D_TS_MON(v)    ((v)<<5)	/* Monitor Pipe */
422  #define D_TS_NEXT(v)   ((v)<<0)	/* Pipe no.: 0-15 long, 16-21 short */
423  
424  /* Concentration Highway Interface Modes */
425  #define D_CHI_CHICM(v)	((v)<<16)	/* Clock mode */
426  #define D_CHI_IR	(1<<15)	/* Immediate Interrupt Report */
427  #define D_CHI_EN	(1<<14)	/* CHIL Interrupt enabled */
428  #define D_CHI_OD	(1<<13)	/* Open Drain Enable */
429  #define D_CHI_FE	(1<<12)	/* Sample CHIFS on Rising Frame Edge */
430  #define D_CHI_FD	(1<<11)	/* Frame Drive */
431  #define D_CHI_BPF(v)	((v)<<0)	/* Bits per Frame */
432  
433  /* NT: These are here for completeness */
434  #define D_NT_FBIT	(1<<17)	/* Frame Bit */
435  #define D_NT_NBF	(1<<16)	/* Number of bad frames to loose framing */
436  #define D_NT_IRM_IMM	(1<<15)	/* Interrupt Report & Mask: Immediate */
437  #define D_NT_IRM_EN	(1<<14)	/* Interrupt Report & Mask: Enable */
438  #define D_NT_ISNT	(1<<13)	/* Configure interface as NT */
439  #define D_NT_FT		(1<<12)	/* Fixed Timing */
440  #define D_NT_EZ		(1<<11)	/* Echo Channel is Zeros */
441  #define D_NT_IFA	(1<<10)	/* Inhibit Final Activation */
442  #define D_NT_ACT	(1<<9)	/* Activate Interface */
443  #define D_NT_MFE	(1<<8)	/* Multiframe Enable */
444  #define D_NT_RLB(v)	((v)<<5)	/* Remote Loopback */
445  #define D_NT_LLB(v)	((v)<<2)	/* Local Loopback */
446  #define D_NT_FACT	(1<<1)	/* Force Activation */
447  #define D_NT_ABV	(1<<0)	/* Activate Bipolar Violation */
448  
449  /* Codec Setup */
450  #define D_CDEC_CK(v)	((v)<<24)	/* Clock Select */
451  #define D_CDEC_FED(v)	((v)<<12)	/* FSCOD Falling Edge Delay */
452  #define D_CDEC_RED(v)	((v)<<0)	/* FSCOD Rising Edge Delay */
453  
454  /* Test */
455  #define D_TEST_RAM(v)	((v)<<16)	/* RAM Pointer */
456  #define D_TEST_SIZE(v)	((v)<<11)	/* */
457  #define D_TEST_ROMONOFF	0x5	/* Toggle ROM opcode monitor on/off */
458  #define D_TEST_PROC	0x6	/* Microprocessor test */
459  #define D_TEST_SER	0x7	/* Serial-Controller test */
460  #define D_TEST_RAMREAD	0x8	/* Copy from Ram to system memory */
461  #define D_TEST_RAMWRITE	0x9	/* Copy into Ram from system memory */
462  #define D_TEST_RAMBIST	0xa	/* RAM Built-In Self Test */
463  #define D_TEST_MCBIST	0xb	/* Microcontroller Built-In Self Test */
464  #define D_TEST_DUMP	0xe	/* ROM Dump */
465  
466  /* CHI Data Mode */
467  #define D_CDM_THI	(1 << 8)	/* Transmit Data on CHIDR Pin */
468  #define D_CDM_RHI	(1 << 7)	/* Receive Data on CHIDX Pin */
469  #define D_CDM_RCE	(1 << 6)	/* Receive on Rising Edge of CHICK */
470  #define D_CDM_XCE	(1 << 2) /* Transmit Data on Rising Edge of CHICK */
471  #define D_CDM_XEN	(1 << 1)	/* Transmit Highway Enable */
472  #define D_CDM_REN	(1 << 0)	/* Receive Highway Enable */
473  
474  /* The Interrupts */
475  #define D_INTR_BRDY	1	/* Buffer Ready for processing */
476  #define D_INTR_MINT	2	/* Marked Interrupt in RD/TD */
477  #define D_INTR_IBEG	3	/* Flag to idle transition detected (HDLC) */
478  #define D_INTR_IEND	4	/* Idle to flag transition detected (HDLC) */
479  #define D_INTR_EOL	5	/* End of List */
480  #define D_INTR_CMDI	6	/* Command has bean read */
481  #define D_INTR_XCMP	8	/* Transmission of frame complete */
482  #define D_INTR_SBRI	9	/* BRI status change info */
483  #define D_INTR_FXDT	10	/* Fixed data change */
484  #define D_INTR_CHIL	11	/* CHI lost frame sync (channel 36 only) */
485  #define D_INTR_COLL	11	/* Unrecoverable D-Channel collision */
486  #define D_INTR_DBYT	12	/* Dropped by frame slip */
487  #define D_INTR_RBYT	13	/* Repeated by frame slip */
488  #define D_INTR_LINT	14	/* Lost Interrupt */
489  #define D_INTR_UNDR	15	/* DMA underrun */
490  
491  #define D_INTR_TE	32
492  #define D_INTR_NT	34
493  #define D_INTR_CHI	36
494  #define D_INTR_CMD	38
495  
496  #define D_INTR_GETCHAN(v)	(((v) >> 24) & 0x3f)
497  #define D_INTR_GETCODE(v)	(((v) >> 20) & 0xf)
498  #define D_INTR_GETCMD(v)	(((v) >> 16) & 0xf)
499  #define D_INTR_GETVAL(v)	((v) & 0xffff)
500  #define D_INTR_GETRVAL(v)	((v) & 0xfffff)
501  
502  #define D_P_0		0	/* TE receive anchor */
503  #define D_P_1		1	/* TE transmit anchor */
504  #define D_P_2		2	/* NT transmit anchor */
505  #define D_P_3		3	/* NT receive anchor */
506  #define D_P_4		4	/* CHI send data */
507  #define D_P_5		5	/* CHI receive data */
508  #define D_P_6		6	/* */
509  #define D_P_7		7	/* */
510  #define D_P_8		8	/* */
511  #define D_P_9		9	/* */
512  #define D_P_10		10	/* */
513  #define D_P_11		11	/* */
514  #define D_P_12		12	/* */
515  #define D_P_13		13	/* */
516  #define D_P_14		14	/* */
517  #define D_P_15		15	/* */
518  #define D_P_16		16	/* CHI anchor pipe */
519  #define D_P_17		17	/* CHI send */
520  #define D_P_18		18	/* CHI receive */
521  #define D_P_19		19	/* CHI receive */
522  #define D_P_20		20	/* CHI receive */
523  #define D_P_21		21	/* */
524  #define D_P_22		22	/* */
525  #define D_P_23		23	/* */
526  #define D_P_24		24	/* */
527  #define D_P_25		25	/* */
528  #define D_P_26		26	/* */
529  #define D_P_27		27	/* */
530  #define D_P_28		28	/* */
531  #define D_P_29		29	/* */
532  #define D_P_30		30	/* */
533  #define D_P_31		31	/* */
534  
535  /* Transmit descriptor defines */
536  #define DBRI_TD_F	(1 << 31)	/* End of Frame */
537  #define DBRI_TD_D	(1 << 30)	/* Do not append CRC */
538  #define DBRI_TD_CNT(v)	((v) << 16) /* Number of valid bytes in the buffer */
539  #define DBRI_TD_B	(1 << 15)	/* Final interrupt */
540  #define DBRI_TD_M	(1 << 14)	/* Marker interrupt */
541  #define DBRI_TD_I	(1 << 13)	/* Transmit Idle Characters */
542  #define DBRI_TD_FCNT(v)	(v)		/* Flag Count */
543  #define DBRI_TD_UNR	(1 << 3) /* Underrun: transmitter is out of data */
544  #define DBRI_TD_ABT	(1 << 2)	/* Abort: frame aborted */
545  #define DBRI_TD_TBC	(1 << 0)	/* Transmit buffer Complete */
546  #define DBRI_TD_STATUS(v)       ((v) & 0xff)	/* Transmit status */
547  			/* Maximum buffer size per TD: almost 8KB */
548  #define DBRI_TD_MAXCNT	((1 << 13) - 4)
549  
550  /* Receive descriptor defines */
551  #define DBRI_RD_F	(1 << 31)	/* End of Frame */
552  #define DBRI_RD_C	(1 << 30)	/* Completed buffer */
553  #define DBRI_RD_B	(1 << 15)	/* Final interrupt */
554  #define DBRI_RD_M	(1 << 14)	/* Marker interrupt */
555  #define DBRI_RD_BCNT(v)	(v)		/* Buffer size */
556  #define DBRI_RD_CRC	(1 << 7)	/* 0: CRC is correct */
557  #define DBRI_RD_BBC	(1 << 6)	/* 1: Bad Byte received */
558  #define DBRI_RD_ABT	(1 << 5)	/* Abort: frame aborted */
559  #define DBRI_RD_OVRN	(1 << 3)	/* Overrun: data lost */
560  #define DBRI_RD_STATUS(v)      ((v) & 0xff)	/* Receive status */
561  #define DBRI_RD_CNT(v) (((v) >> 16) & 0x1fff)	/* Valid bytes in the buffer */
562  
563  /* stream_info[] access */
564  /* Translate the ALSA direction into the array index */
565  #define DBRI_STREAMNO(substream)				\
566  		(substream->stream ==				\
567  		 SNDRV_PCM_STREAM_PLAYBACK ? DBRI_PLAY: DBRI_REC)
568  
569  /* Return a pointer to dbri_streaminfo */
570  #define DBRI_STREAM(dbri, substream)	\
571  		&dbri->stream_info[DBRI_STREAMNO(substream)]
572  
573  /*
574   * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
575   * So we have to reverse the bits. Note: not all bit lengths are supported
576   */
reverse_bytes(__u32 b,int len)577  static __u32 reverse_bytes(__u32 b, int len)
578  {
579  	switch (len) {
580  	case 32:
581  		b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
582  		fallthrough;
583  	case 16:
584  		b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
585  		fallthrough;
586  	case 8:
587  		b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
588  		fallthrough;
589  	case 4:
590  		b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
591  		fallthrough;
592  	case 2:
593  		b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
594  	case 1:
595  	case 0:
596  		break;
597  	default:
598  		printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
599  	}
600  
601  	return b;
602  }
603  
604  /*
605  ****************************************************************************
606  ************** DBRI initialization and command synchronization *************
607  ****************************************************************************
608  
609  Commands are sent to the DBRI by building a list of them in memory,
610  then writing the address of the first list item to DBRI register 8.
611  The list is terminated with a WAIT command, which generates a
612  CPU interrupt to signal completion.
613  
614  Since the DBRI can run in parallel with the CPU, several means of
615  synchronization present themselves. The method implemented here uses
616  the dbri_cmdwait() to wait for execution of batch of sent commands.
617  
618  A circular command buffer is used here. A new command is being added
619  while another can be executed. The scheme works by adding two WAIT commands
620  after each sent batch of commands. When the next batch is prepared it is
621  added after the WAIT commands then the WAITs are replaced with single JUMP
622  command to the new batch. Then the DBRI is forced to reread the last WAIT
623  command (replaced by the JUMP by then). If the DBRI is still executing
624  previous commands the request to reread the WAIT command is ignored.
625  
626  Every time a routine wants to write commands to the DBRI, it must
627  first call dbri_cmdlock() and get pointer to a free space in
628  dbri->dma->cmd buffer. After this, the commands can be written to
629  the buffer, and dbri_cmdsend() is called with the final pointer value
630  to send them to the DBRI.
631  
632  */
633  
634  #define MAXLOOPS 20
635  /*
636   * Wait for the current command string to execute
637   */
dbri_cmdwait(struct snd_dbri * dbri)638  static void dbri_cmdwait(struct snd_dbri *dbri)
639  {
640  	int maxloops = MAXLOOPS;
641  	unsigned long flags;
642  
643  	/* Delay if previous commands are still being processed */
644  	spin_lock_irqsave(&dbri->lock, flags);
645  	while ((--maxloops) > 0 && (sbus_readl(dbri->regs + REG0) & D_P)) {
646  		spin_unlock_irqrestore(&dbri->lock, flags);
647  		msleep_interruptible(1);
648  		spin_lock_irqsave(&dbri->lock, flags);
649  	}
650  	spin_unlock_irqrestore(&dbri->lock, flags);
651  
652  	if (maxloops == 0)
653  		printk(KERN_ERR "DBRI: Chip never completed command buffer\n");
654  	else
655  		dprintk(D_CMD, "Chip completed command buffer (%d)\n",
656  			MAXLOOPS - maxloops - 1);
657  }
658  /*
659   * Lock the command queue and return pointer to space for len cmd words
660   * It locks the cmdlock spinlock.
661   */
dbri_cmdlock(struct snd_dbri * dbri,int len)662  static s32 *dbri_cmdlock(struct snd_dbri *dbri, int len)
663  {
664  	u32 dvma_addr = (u32)dbri->dma_dvma;
665  
666  	/* Space for 2 WAIT cmds (replaced later by 1 JUMP cmd) */
667  	len += 2;
668  	spin_lock(&dbri->cmdlock);
669  	if (dbri->cmdptr - dbri->dma->cmd + len < DBRI_NO_CMDS - 2)
670  		return dbri->cmdptr + 2;
671  	else if (len < sbus_readl(dbri->regs + REG8) - dvma_addr)
672  		return dbri->dma->cmd;
673  	else
674  		printk(KERN_ERR "DBRI: no space for commands.");
675  
676  	return NULL;
677  }
678  
679  /*
680   * Send prepared cmd string. It works by writing a JUMP cmd into
681   * the last WAIT cmd and force DBRI to reread the cmd.
682   * The JUMP cmd points to the new cmd string.
683   * It also releases the cmdlock spinlock.
684   *
685   * Lock must be held before calling this.
686   */
dbri_cmdsend(struct snd_dbri * dbri,s32 * cmd,int len)687  static void dbri_cmdsend(struct snd_dbri *dbri, s32 *cmd, int len)
688  {
689  	u32 dvma_addr = (u32)dbri->dma_dvma;
690  	s32 tmp, addr;
691  	static int wait_id = 0;
692  
693  	wait_id++;
694  	wait_id &= 0xffff;	/* restrict it to a 16 bit counter. */
695  	*(cmd) = DBRI_CMD(D_WAIT, 1, wait_id);
696  	*(cmd+1) = DBRI_CMD(D_WAIT, 1, wait_id);
697  
698  	/* Replace the last command with JUMP */
699  	addr = dvma_addr + (cmd - len - dbri->dma->cmd) * sizeof(s32);
700  	*(dbri->cmdptr+1) = addr;
701  	*(dbri->cmdptr) = DBRI_CMD(D_JUMP, 0, 0);
702  
703  #ifdef DBRI_DEBUG
704  	if (cmd > dbri->cmdptr) {
705  		s32 *ptr;
706  
707  		for (ptr = dbri->cmdptr; ptr < cmd+2; ptr++)
708  			dprintk(D_CMD, "cmd: %lx:%08x\n",
709  				(unsigned long)ptr, *ptr);
710  	} else {
711  		s32 *ptr = dbri->cmdptr;
712  
713  		dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
714  		ptr++;
715  		dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
716  		for (ptr = dbri->dma->cmd; ptr < cmd+2; ptr++)
717  			dprintk(D_CMD, "cmd: %lx:%08x\n",
718  				(unsigned long)ptr, *ptr);
719  	}
720  #endif
721  
722  	/* Reread the last command */
723  	tmp = sbus_readl(dbri->regs + REG0);
724  	tmp |= D_P;
725  	sbus_writel(tmp, dbri->regs + REG0);
726  
727  	dbri->cmdptr = cmd;
728  	spin_unlock(&dbri->cmdlock);
729  }
730  
731  /* Lock must be held when calling this */
dbri_reset(struct snd_dbri * dbri)732  static void dbri_reset(struct snd_dbri *dbri)
733  {
734  	int i;
735  	u32 tmp;
736  
737  	dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
738  		sbus_readl(dbri->regs + REG0),
739  		sbus_readl(dbri->regs + REG2),
740  		sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
741  
742  	sbus_writel(D_R, dbri->regs + REG0);	/* Soft Reset */
743  	for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
744  		udelay(10);
745  
746  	/* A brute approach - DBRI falls back to working burst size by itself
747  	 * On SS20 D_S does not work, so do not try so high. */
748  	tmp = sbus_readl(dbri->regs + REG0);
749  	tmp |= D_G | D_E;
750  	tmp &= ~D_S;
751  	sbus_writel(tmp, dbri->regs + REG0);
752  }
753  
754  /* Lock must not be held before calling this */
dbri_initialize(struct snd_dbri * dbri)755  static void dbri_initialize(struct snd_dbri *dbri)
756  {
757  	u32 dvma_addr = (u32)dbri->dma_dvma;
758  	s32 *cmd;
759  	u32 dma_addr;
760  	unsigned long flags;
761  	int n;
762  
763  	spin_lock_irqsave(&dbri->lock, flags);
764  
765  	dbri_reset(dbri);
766  
767  	/* Initialize pipes */
768  	for (n = 0; n < DBRI_NO_PIPES; n++)
769  		dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
770  
771  	spin_lock_init(&dbri->cmdlock);
772  	/*
773  	 * Initialize the interrupt ring buffer.
774  	 */
775  	dma_addr = dvma_addr + dbri_dma_off(intr, 0);
776  	dbri->dma->intr[0] = dma_addr;
777  	dbri->dbri_irqp = 1;
778  	/*
779  	 * Set up the interrupt queue
780  	 */
781  	spin_lock(&dbri->cmdlock);
782  	cmd = dbri->cmdptr = dbri->dma->cmd;
783  	*(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
784  	*(cmd++) = dma_addr;
785  	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
786  	dbri->cmdptr = cmd;
787  	*(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
788  	*(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
789  	dma_addr = dvma_addr + dbri_dma_off(cmd, 0);
790  	sbus_writel(dma_addr, dbri->regs + REG8);
791  	spin_unlock(&dbri->cmdlock);
792  
793  	spin_unlock_irqrestore(&dbri->lock, flags);
794  	dbri_cmdwait(dbri);
795  }
796  
797  /*
798  ****************************************************************************
799  ************************** DBRI data pipe management ***********************
800  ****************************************************************************
801  
802  While DBRI control functions use the command and interrupt buffers, the
803  main data path takes the form of data pipes, which can be short (command
804  and interrupt driven), or long (attached to DMA buffers).  These functions
805  provide a rudimentary means of setting up and managing the DBRI's pipes,
806  but the calling functions have to make sure they respect the pipes' linked
807  list ordering, among other things.  The transmit and receive functions
808  here interface closely with the transmit and receive interrupt code.
809  
810  */
pipe_active(struct snd_dbri * dbri,int pipe)811  static inline int pipe_active(struct snd_dbri *dbri, int pipe)
812  {
813  	return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
814  }
815  
816  /* reset_pipe(dbri, pipe)
817   *
818   * Called on an in-use pipe to clear anything being transmitted or received
819   * Lock must be held before calling this.
820   */
reset_pipe(struct snd_dbri * dbri,int pipe)821  static void reset_pipe(struct snd_dbri *dbri, int pipe)
822  {
823  	int sdp;
824  	int desc;
825  	s32 *cmd;
826  
827  	if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
828  		printk(KERN_ERR "DBRI: reset_pipe called with "
829  			"illegal pipe number\n");
830  		return;
831  	}
832  
833  	sdp = dbri->pipes[pipe].sdp;
834  	if (sdp == 0) {
835  		printk(KERN_ERR "DBRI: reset_pipe called "
836  			"on uninitialized pipe\n");
837  		return;
838  	}
839  
840  	cmd = dbri_cmdlock(dbri, 3);
841  	*(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
842  	*(cmd++) = 0;
843  	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
844  	dbri_cmdsend(dbri, cmd, 3);
845  
846  	desc = dbri->pipes[pipe].first_desc;
847  	if (desc >= 0)
848  		do {
849  			dbri->dma->desc[desc].ba = 0;
850  			dbri->dma->desc[desc].nda = 0;
851  			desc = dbri->next_desc[desc];
852  		} while (desc != -1 && desc != dbri->pipes[pipe].first_desc);
853  
854  	dbri->pipes[pipe].desc = -1;
855  	dbri->pipes[pipe].first_desc = -1;
856  }
857  
858  /*
859   * Lock must be held before calling this.
860   */
setup_pipe(struct snd_dbri * dbri,int pipe,int sdp)861  static void setup_pipe(struct snd_dbri *dbri, int pipe, int sdp)
862  {
863  	if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
864  		printk(KERN_ERR "DBRI: setup_pipe called "
865  			"with illegal pipe number\n");
866  		return;
867  	}
868  
869  	if ((sdp & 0xf800) != sdp) {
870  		printk(KERN_ERR "DBRI: setup_pipe called "
871  			"with strange SDP value\n");
872  		/* sdp &= 0xf800; */
873  	}
874  
875  	/* If this is a fixed receive pipe, arrange for an interrupt
876  	 * every time its data changes
877  	 */
878  	if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
879  		sdp |= D_SDP_CHANGE;
880  
881  	sdp |= D_PIPE(pipe);
882  	dbri->pipes[pipe].sdp = sdp;
883  	dbri->pipes[pipe].desc = -1;
884  	dbri->pipes[pipe].first_desc = -1;
885  
886  	reset_pipe(dbri, pipe);
887  }
888  
889  /*
890   * Lock must be held before calling this.
891   */
link_time_slot(struct snd_dbri * dbri,int pipe,int prevpipe,int nextpipe,int length,int cycle)892  static void link_time_slot(struct snd_dbri *dbri, int pipe,
893  			   int prevpipe, int nextpipe,
894  			   int length, int cycle)
895  {
896  	s32 *cmd;
897  	int val;
898  
899  	if (pipe < 0 || pipe > DBRI_MAX_PIPE
900  			|| prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
901  			|| nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
902  		printk(KERN_ERR
903  		    "DBRI: link_time_slot called with illegal pipe number\n");
904  		return;
905  	}
906  
907  	if (dbri->pipes[pipe].sdp == 0
908  			|| dbri->pipes[prevpipe].sdp == 0
909  			|| dbri->pipes[nextpipe].sdp == 0) {
910  		printk(KERN_ERR "DBRI: link_time_slot called "
911  			"on uninitialized pipe\n");
912  		return;
913  	}
914  
915  	dbri->pipes[prevpipe].nextpipe = pipe;
916  	dbri->pipes[pipe].nextpipe = nextpipe;
917  	dbri->pipes[pipe].length = length;
918  
919  	cmd = dbri_cmdlock(dbri, 4);
920  
921  	if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
922  		/* Deal with CHI special case:
923  		 * "If transmission on edges 0 or 1 is desired, then cycle n
924  		 *  (where n = # of bit times per frame...) must be used."
925  		 *                  - DBRI data sheet, page 11
926  		 */
927  		if (prevpipe == 16 && cycle == 0)
928  			cycle = dbri->chi_bpf;
929  
930  		val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
931  		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
932  		*(cmd++) = 0;
933  		*(cmd++) =
934  		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
935  	} else {
936  		val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
937  		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
938  		*(cmd++) =
939  		    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
940  		*(cmd++) = 0;
941  	}
942  	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
943  
944  	dbri_cmdsend(dbri, cmd, 4);
945  }
946  
947  #if 0
948  /*
949   * Lock must be held before calling this.
950   */
951  static void unlink_time_slot(struct snd_dbri *dbri, int pipe,
952  			     enum in_or_out direction, int prevpipe,
953  			     int nextpipe)
954  {
955  	s32 *cmd;
956  	int val;
957  
958  	if (pipe < 0 || pipe > DBRI_MAX_PIPE
959  			|| prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
960  			|| nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
961  		printk(KERN_ERR
962  		    "DBRI: unlink_time_slot called with illegal pipe number\n");
963  		return;
964  	}
965  
966  	cmd = dbri_cmdlock(dbri, 4);
967  
968  	if (direction == PIPEinput) {
969  		val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
970  		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
971  		*(cmd++) = D_TS_NEXT(nextpipe);
972  		*(cmd++) = 0;
973  	} else {
974  		val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
975  		*(cmd++) = DBRI_CMD(D_DTS, 0, val);
976  		*(cmd++) = 0;
977  		*(cmd++) = D_TS_NEXT(nextpipe);
978  	}
979  	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
980  
981  	dbri_cmdsend(dbri, cmd, 4);
982  }
983  #endif
984  
985  /* xmit_fixed() / recv_fixed()
986   *
987   * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
988   * expected to change much, and which we don't need to buffer.
989   * The DBRI only interrupts us when the data changes (receive pipes),
990   * or only changes the data when this function is called (transmit pipes).
991   * Only short pipes (numbers 16-31) can be used in fixed data mode.
992   *
993   * These function operate on a 32-bit field, no matter how large
994   * the actual time slot is.  The interrupt handler takes care of bit
995   * ordering and alignment.  An 8-bit time slot will always end up
996   * in the low-order 8 bits, filled either MSB-first or LSB-first,
997   * depending on the settings passed to setup_pipe().
998   *
999   * Lock must not be held before calling it.
1000   */
xmit_fixed(struct snd_dbri * dbri,int pipe,unsigned int data)1001  static void xmit_fixed(struct snd_dbri *dbri, int pipe, unsigned int data)
1002  {
1003  	s32 *cmd;
1004  	unsigned long flags;
1005  
1006  	if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1007  		printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
1008  		return;
1009  	}
1010  
1011  	if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
1012  		printk(KERN_ERR "DBRI: xmit_fixed: "
1013  			"Uninitialized pipe %d\n", pipe);
1014  		return;
1015  	}
1016  
1017  	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1018  		printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
1019  		return;
1020  	}
1021  
1022  	if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
1023  		printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n",
1024  			pipe);
1025  		return;
1026  	}
1027  
1028  	/* DBRI short pipes always transmit LSB first */
1029  
1030  	if (dbri->pipes[pipe].sdp & D_SDP_MSB)
1031  		data = reverse_bytes(data, dbri->pipes[pipe].length);
1032  
1033  	cmd = dbri_cmdlock(dbri, 3);
1034  
1035  	*(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
1036  	*(cmd++) = data;
1037  	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1038  
1039  	spin_lock_irqsave(&dbri->lock, flags);
1040  	dbri_cmdsend(dbri, cmd, 3);
1041  	spin_unlock_irqrestore(&dbri->lock, flags);
1042  	dbri_cmdwait(dbri);
1043  
1044  }
1045  
recv_fixed(struct snd_dbri * dbri,int pipe,volatile __u32 * ptr)1046  static void recv_fixed(struct snd_dbri *dbri, int pipe, volatile __u32 *ptr)
1047  {
1048  	if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1049  		printk(KERN_ERR "DBRI: recv_fixed called with "
1050  			"illegal pipe number\n");
1051  		return;
1052  	}
1053  
1054  	if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1055  		printk(KERN_ERR "DBRI: recv_fixed called on "
1056  			"non-fixed pipe %d\n", pipe);
1057  		return;
1058  	}
1059  
1060  	if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1061  		printk(KERN_ERR "DBRI: recv_fixed called on "
1062  			"transmit pipe %d\n", pipe);
1063  		return;
1064  	}
1065  
1066  	dbri->pipes[pipe].recv_fixed_ptr = ptr;
1067  }
1068  
1069  /* setup_descs()
1070   *
1071   * Setup transmit/receive data on a "long" pipe - i.e, one associated
1072   * with a DMA buffer.
1073   *
1074   * Only pipe numbers 0-15 can be used in this mode.
1075   *
1076   * This function takes a stream number pointing to a data buffer,
1077   * and work by building chains of descriptors which identify the
1078   * data buffers.  Buffers too large for a single descriptor will
1079   * be spread across multiple descriptors.
1080   *
1081   * All descriptors create a ring buffer.
1082   *
1083   * Lock must be held before calling this.
1084   */
setup_descs(struct snd_dbri * dbri,int streamno,unsigned int period)1085  static int setup_descs(struct snd_dbri *dbri, int streamno, unsigned int period)
1086  {
1087  	struct dbri_streaminfo *info = &dbri->stream_info[streamno];
1088  	u32 dvma_addr = (u32)dbri->dma_dvma;
1089  	__u32 dvma_buffer;
1090  	int desc;
1091  	int len;
1092  	int first_desc = -1;
1093  	int last_desc = -1;
1094  
1095  	if (info->pipe < 0 || info->pipe > 15) {
1096  		printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
1097  		return -2;
1098  	}
1099  
1100  	if (dbri->pipes[info->pipe].sdp == 0) {
1101  		printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
1102  		       info->pipe);
1103  		return -2;
1104  	}
1105  
1106  	dvma_buffer = info->dvma_buffer;
1107  	len = info->size;
1108  
1109  	if (streamno == DBRI_PLAY) {
1110  		if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1111  			printk(KERN_ERR "DBRI: setup_descs: "
1112  				"Called on receive pipe %d\n", info->pipe);
1113  			return -2;
1114  		}
1115  	} else {
1116  		if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1117  			printk(KERN_ERR
1118  			    "DBRI: setup_descs: Called on transmit pipe %d\n",
1119  			     info->pipe);
1120  			return -2;
1121  		}
1122  		/* Should be able to queue multiple buffers
1123  		 * to receive on a pipe
1124  		 */
1125  		if (pipe_active(dbri, info->pipe)) {
1126  			printk(KERN_ERR "DBRI: recv_on_pipe: "
1127  				"Called on active pipe %d\n", info->pipe);
1128  			return -2;
1129  		}
1130  
1131  		/* Make sure buffer size is multiple of four */
1132  		len &= ~3;
1133  	}
1134  
1135  	/* Free descriptors if pipe has any */
1136  	desc = dbri->pipes[info->pipe].first_desc;
1137  	if (desc >= 0)
1138  		do {
1139  			dbri->dma->desc[desc].ba = 0;
1140  			dbri->dma->desc[desc].nda = 0;
1141  			desc = dbri->next_desc[desc];
1142  		} while (desc != -1 &&
1143  			 desc != dbri->pipes[info->pipe].first_desc);
1144  
1145  	dbri->pipes[info->pipe].desc = -1;
1146  	dbri->pipes[info->pipe].first_desc = -1;
1147  
1148  	desc = 0;
1149  	while (len > 0) {
1150  		int mylen;
1151  
1152  		for (; desc < DBRI_NO_DESCS; desc++) {
1153  			if (!dbri->dma->desc[desc].ba)
1154  				break;
1155  		}
1156  
1157  		if (desc == DBRI_NO_DESCS) {
1158  			printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
1159  			return -1;
1160  		}
1161  
1162  		if (len > DBRI_TD_MAXCNT)
1163  			mylen = DBRI_TD_MAXCNT;	/* 8KB - 4 */
1164  		else
1165  			mylen = len;
1166  
1167  		if (mylen > period)
1168  			mylen = period;
1169  
1170  		dbri->next_desc[desc] = -1;
1171  		dbri->dma->desc[desc].ba = dvma_buffer;
1172  		dbri->dma->desc[desc].nda = 0;
1173  
1174  		if (streamno == DBRI_PLAY) {
1175  			dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1176  			dbri->dma->desc[desc].word4 = 0;
1177  			dbri->dma->desc[desc].word1 |= DBRI_TD_F | DBRI_TD_B;
1178  		} else {
1179  			dbri->dma->desc[desc].word1 = 0;
1180  			dbri->dma->desc[desc].word4 =
1181  			    DBRI_RD_B | DBRI_RD_BCNT(mylen);
1182  		}
1183  
1184  		if (first_desc == -1)
1185  			first_desc = desc;
1186  		else {
1187  			dbri->next_desc[last_desc] = desc;
1188  			dbri->dma->desc[last_desc].nda =
1189  			    dvma_addr + dbri_dma_off(desc, desc);
1190  		}
1191  
1192  		last_desc = desc;
1193  		dvma_buffer += mylen;
1194  		len -= mylen;
1195  	}
1196  
1197  	if (first_desc == -1 || last_desc == -1) {
1198  		printk(KERN_ERR "DBRI: setup_descs: "
1199  			" Not enough descriptors available\n");
1200  		return -1;
1201  	}
1202  
1203  	dbri->dma->desc[last_desc].nda =
1204  	    dvma_addr + dbri_dma_off(desc, first_desc);
1205  	dbri->next_desc[last_desc] = first_desc;
1206  	dbri->pipes[info->pipe].first_desc = first_desc;
1207  	dbri->pipes[info->pipe].desc = first_desc;
1208  
1209  #ifdef DBRI_DEBUG
1210  	for (desc = first_desc; desc != -1;) {
1211  		dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1212  			desc,
1213  			dbri->dma->desc[desc].word1,
1214  			dbri->dma->desc[desc].ba,
1215  			dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1216  			desc = dbri->next_desc[desc];
1217  			if (desc == first_desc)
1218  				break;
1219  	}
1220  #endif
1221  	return 0;
1222  }
1223  
1224  /*
1225  ****************************************************************************
1226  ************************** DBRI - CHI interface ****************************
1227  ****************************************************************************
1228  
1229  The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1230  multiplexed serial interface which the DBRI can operate in either master
1231  (give clock/frame sync) or slave (take clock/frame sync) mode.
1232  
1233  */
1234  
1235  enum master_or_slave { CHImaster, CHIslave };
1236  
1237  /*
1238   * Lock must not be held before calling it.
1239   */
reset_chi(struct snd_dbri * dbri,enum master_or_slave master_or_slave,int bits_per_frame)1240  static void reset_chi(struct snd_dbri *dbri,
1241  		      enum master_or_slave master_or_slave,
1242  		      int bits_per_frame)
1243  {
1244  	s32 *cmd;
1245  	int val;
1246  
1247  	/* Set CHI Anchor: Pipe 16 */
1248  
1249  	cmd = dbri_cmdlock(dbri, 4);
1250  	val = D_DTS_VO | D_DTS_VI | D_DTS_INS
1251  		| D_DTS_PRVIN(16) | D_PIPE(16) | D_DTS_PRVOUT(16);
1252  	*(cmd++) = DBRI_CMD(D_DTS, 0, val);
1253  	*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1254  	*(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1255  	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1256  	dbri_cmdsend(dbri, cmd, 4);
1257  
1258  	dbri->pipes[16].sdp = 1;
1259  	dbri->pipes[16].nextpipe = 16;
1260  
1261  	cmd = dbri_cmdlock(dbri, 4);
1262  
1263  	if (master_or_slave == CHIslave) {
1264  		/* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1265  		 *
1266  		 * CHICM  = 0 (slave mode, 8 kHz frame rate)
1267  		 * IR     = give immediate CHI status interrupt
1268  		 * EN     = give CHI status interrupt upon change
1269  		 */
1270  		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1271  	} else {
1272  		/* Setup DBRI for CHI Master - generate clock, FS
1273  		 *
1274  		 * BPF				=  bits per 8 kHz frame
1275  		 * 12.288 MHz / CHICM_divisor	= clock rate
1276  		 * FD = 1 - drive CHIFS on rising edge of CHICK
1277  		 */
1278  		int clockrate = bits_per_frame * 8;
1279  		int divisor = 12288 / clockrate;
1280  
1281  		if (divisor > 255 || divisor * clockrate != 12288)
1282  			printk(KERN_ERR "DBRI: illegal bits_per_frame "
1283  				"in setup_chi\n");
1284  
1285  		*(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1286  				    | D_CHI_BPF(bits_per_frame));
1287  	}
1288  
1289  	dbri->chi_bpf = bits_per_frame;
1290  
1291  	/* CHI Data Mode
1292  	 *
1293  	 * RCE   =  0 - receive on falling edge of CHICK
1294  	 * XCE   =  1 - transmit on rising edge of CHICK
1295  	 * XEN   =  1 - enable transmitter
1296  	 * REN   =  1 - enable receiver
1297  	 */
1298  
1299  	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1300  	*(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1301  	*(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1302  
1303  	dbri_cmdsend(dbri, cmd, 4);
1304  }
1305  
1306  /*
1307  ****************************************************************************
1308  *********************** CS4215 audio codec management **********************
1309  ****************************************************************************
1310  
1311  In the standard SPARC audio configuration, the CS4215 codec is attached
1312  to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1313  
1314   * Lock must not be held before calling it.
1315  
1316  */
cs4215_setup_pipes(struct snd_dbri * dbri)1317  static void cs4215_setup_pipes(struct snd_dbri *dbri)
1318  {
1319  	unsigned long flags;
1320  
1321  	spin_lock_irqsave(&dbri->lock, flags);
1322  	/*
1323  	 * Data mode:
1324  	 * Pipe  4: Send timeslots 1-4 (audio data)
1325  	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1326  	 * Pipe  6: Receive timeslots 1-4 (audio data)
1327  	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1328  	 *          interrupt, and the rest of the data (slot 5 and 8) is
1329  	 *          not relevant for us (only for doublechecking).
1330  	 *
1331  	 * Control mode:
1332  	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1333  	 * Pipe 18: Receive timeslot 1 (clb).
1334  	 * Pipe 19: Receive timeslot 7 (version).
1335  	 */
1336  
1337  	setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1338  	setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1339  	setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1340  	setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1341  
1342  	setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1343  	setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1344  	setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1345  	spin_unlock_irqrestore(&dbri->lock, flags);
1346  
1347  	dbri_cmdwait(dbri);
1348  }
1349  
cs4215_init_data(struct cs4215 * mm)1350  static int cs4215_init_data(struct cs4215 *mm)
1351  {
1352  	/*
1353  	 * No action, memory resetting only.
1354  	 *
1355  	 * Data Time Slot 5-8
1356  	 * Speaker,Line and Headphone enable. Gain set to the half.
1357  	 * Input is mike.
1358  	 */
1359  	mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1360  	mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1361  	mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1362  	mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1363  
1364  	/*
1365  	 * Control Time Slot 1-4
1366  	 * 0: Default I/O voltage scale
1367  	 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1368  	 * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1369  	 * 3: Tests disabled
1370  	 */
1371  	mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1372  	mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1373  	mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1374  	mm->ctrl[3] = 0;
1375  
1376  	mm->status = 0;
1377  	mm->version = 0xff;
1378  	mm->precision = 8;	/* For ULAW */
1379  	mm->channels = 1;
1380  
1381  	return 0;
1382  }
1383  
cs4215_setdata(struct snd_dbri * dbri,int muted)1384  static void cs4215_setdata(struct snd_dbri *dbri, int muted)
1385  {
1386  	if (muted) {
1387  		dbri->mm.data[0] |= 63;
1388  		dbri->mm.data[1] |= 63;
1389  		dbri->mm.data[2] &= ~15;
1390  		dbri->mm.data[3] &= ~15;
1391  	} else {
1392  		/* Start by setting the playback attenuation. */
1393  		struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1394  		int left_gain = info->left_gain & 0x3f;
1395  		int right_gain = info->right_gain & 0x3f;
1396  
1397  		dbri->mm.data[0] &= ~0x3f;	/* Reset the volume bits */
1398  		dbri->mm.data[1] &= ~0x3f;
1399  		dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1400  		dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1401  
1402  		/* Now set the recording gain. */
1403  		info = &dbri->stream_info[DBRI_REC];
1404  		left_gain = info->left_gain & 0xf;
1405  		right_gain = info->right_gain & 0xf;
1406  		dbri->mm.data[2] |= CS4215_LG(left_gain);
1407  		dbri->mm.data[3] |= CS4215_RG(right_gain);
1408  	}
1409  
1410  	xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1411  }
1412  
1413  /*
1414   * Set the CS4215 to data mode.
1415   */
cs4215_open(struct snd_dbri * dbri)1416  static void cs4215_open(struct snd_dbri *dbri)
1417  {
1418  	int data_width;
1419  	u32 tmp;
1420  	unsigned long flags;
1421  
1422  	dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1423  		dbri->mm.channels, dbri->mm.precision);
1424  
1425  	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1426  	 * to make sure this takes.  This avoids clicking noises.
1427  	 */
1428  
1429  	cs4215_setdata(dbri, 1);
1430  	udelay(125);
1431  
1432  	/*
1433  	 * Data mode:
1434  	 * Pipe  4: Send timeslots 1-4 (audio data)
1435  	 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1436  	 * Pipe  6: Receive timeslots 1-4 (audio data)
1437  	 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1438  	 *          interrupt, and the rest of the data (slot 5 and 8) is
1439  	 *          not relevant for us (only for doublechecking).
1440  	 *
1441  	 * Just like in control mode, the time slots are all offset by eight
1442  	 * bits.  The CS4215, it seems, observes TSIN (the delayed signal)
1443  	 * even if it's the CHI master.  Don't ask me...
1444  	 */
1445  	spin_lock_irqsave(&dbri->lock, flags);
1446  	tmp = sbus_readl(dbri->regs + REG0);
1447  	tmp &= ~(D_C);		/* Disable CHI */
1448  	sbus_writel(tmp, dbri->regs + REG0);
1449  
1450  	/* Switch CS4215 to data mode - set PIO3 to 1 */
1451  	sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1452  		    (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1453  
1454  	reset_chi(dbri, CHIslave, 128);
1455  
1456  	/* Note: this next doesn't work for 8-bit stereo, because the two
1457  	 * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1458  	 * (See CS4215 datasheet Fig 15)
1459  	 *
1460  	 * DBRI non-contiguous mode would be required to make this work.
1461  	 */
1462  	data_width = dbri->mm.channels * dbri->mm.precision;
1463  
1464  	link_time_slot(dbri, 4, 16, 16, data_width, dbri->mm.offset);
1465  	link_time_slot(dbri, 20, 4, 16, 32, dbri->mm.offset + 32);
1466  	link_time_slot(dbri, 6, 16, 16, data_width, dbri->mm.offset);
1467  	link_time_slot(dbri, 21, 6, 16, 16, dbri->mm.offset + 40);
1468  
1469  	/* FIXME: enable CHI after _setdata? */
1470  	tmp = sbus_readl(dbri->regs + REG0);
1471  	tmp |= D_C;		/* Enable CHI */
1472  	sbus_writel(tmp, dbri->regs + REG0);
1473  	spin_unlock_irqrestore(&dbri->lock, flags);
1474  
1475  	cs4215_setdata(dbri, 0);
1476  }
1477  
1478  /*
1479   * Send the control information (i.e. audio format)
1480   */
cs4215_setctrl(struct snd_dbri * dbri)1481  static int cs4215_setctrl(struct snd_dbri *dbri)
1482  {
1483  	int i, val;
1484  	u32 tmp;
1485  	unsigned long flags;
1486  
1487  	/* FIXME - let the CPU do something useful during these delays */
1488  
1489  	/* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1490  	 * to make sure this takes.  This avoids clicking noises.
1491  	 */
1492  	cs4215_setdata(dbri, 1);
1493  	udelay(125);
1494  
1495  	/*
1496  	 * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1497  	 * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1498  	 */
1499  	val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1500  	sbus_writel(val, dbri->regs + REG2);
1501  	dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1502  	udelay(34);
1503  
1504  	/* In Control mode, the CS4215 is a slave device, so the DBRI must
1505  	 * operate as CHI master, supplying clocking and frame synchronization.
1506  	 *
1507  	 * In Data mode, however, the CS4215 must be CHI master to insure
1508  	 * that its data stream is synchronous with its codec.
1509  	 *
1510  	 * The upshot of all this?  We start by putting the DBRI into master
1511  	 * mode, program the CS4215 in Control mode, then switch the CS4215
1512  	 * into Data mode and put the DBRI into slave mode.  Various timing
1513  	 * requirements must be observed along the way.
1514  	 *
1515  	 * Oh, and one more thing, on a SPARCStation 20 (and maybe
1516  	 * others?), the addressing of the CS4215's time slots is
1517  	 * offset by eight bits, so we add eight to all the "cycle"
1518  	 * values in the Define Time Slot (DTS) commands.  This is
1519  	 * done in hardware by a TI 248 that delays the DBRI->4215
1520  	 * frame sync signal by eight clock cycles.  Anybody know why?
1521  	 */
1522  	spin_lock_irqsave(&dbri->lock, flags);
1523  	tmp = sbus_readl(dbri->regs + REG0);
1524  	tmp &= ~D_C;		/* Disable CHI */
1525  	sbus_writel(tmp, dbri->regs + REG0);
1526  
1527  	reset_chi(dbri, CHImaster, 128);
1528  
1529  	/*
1530  	 * Control mode:
1531  	 * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1532  	 * Pipe 18: Receive timeslot 1 (clb).
1533  	 * Pipe 19: Receive timeslot 7 (version).
1534  	 */
1535  
1536  	link_time_slot(dbri, 17, 16, 16, 32, dbri->mm.offset);
1537  	link_time_slot(dbri, 18, 16, 16, 8, dbri->mm.offset);
1538  	link_time_slot(dbri, 19, 18, 16, 8, dbri->mm.offset + 48);
1539  	spin_unlock_irqrestore(&dbri->lock, flags);
1540  
1541  	/* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1542  	dbri->mm.ctrl[0] &= ~CS4215_CLB;
1543  	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1544  
1545  	spin_lock_irqsave(&dbri->lock, flags);
1546  	tmp = sbus_readl(dbri->regs + REG0);
1547  	tmp |= D_C;		/* Enable CHI */
1548  	sbus_writel(tmp, dbri->regs + REG0);
1549  	spin_unlock_irqrestore(&dbri->lock, flags);
1550  
1551  	for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i)
1552  		msleep_interruptible(1);
1553  
1554  	if (i == 0) {
1555  		dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1556  			dbri->mm.status);
1557  		return -1;
1558  	}
1559  
1560  	/* Disable changes to our copy of the version number, as we are about
1561  	 * to leave control mode.
1562  	 */
1563  	recv_fixed(dbri, 19, NULL);
1564  
1565  	/* Terminate CS4215 control mode - data sheet says
1566  	 * "Set CLB=1 and send two more frames of valid control info"
1567  	 */
1568  	dbri->mm.ctrl[0] |= CS4215_CLB;
1569  	xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1570  
1571  	/* Two frames of control info @ 8kHz frame rate = 250 us delay */
1572  	udelay(250);
1573  
1574  	cs4215_setdata(dbri, 0);
1575  
1576  	return 0;
1577  }
1578  
1579  /*
1580   * Setup the codec with the sampling rate, audio format and number of
1581   * channels.
1582   * As part of the process we resend the settings for the data
1583   * timeslots as well.
1584   */
cs4215_prepare(struct snd_dbri * dbri,unsigned int rate,snd_pcm_format_t format,unsigned int channels)1585  static int cs4215_prepare(struct snd_dbri *dbri, unsigned int rate,
1586  			  snd_pcm_format_t format, unsigned int channels)
1587  {
1588  	int freq_idx;
1589  	int ret = 0;
1590  
1591  	/* Lookup index for this rate */
1592  	for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1593  		if (CS4215_FREQ[freq_idx].freq == rate)
1594  			break;
1595  	}
1596  	if (CS4215_FREQ[freq_idx].freq != rate) {
1597  		printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1598  		return -1;
1599  	}
1600  
1601  	switch (format) {
1602  	case SNDRV_PCM_FORMAT_MU_LAW:
1603  		dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1604  		dbri->mm.precision = 8;
1605  		break;
1606  	case SNDRV_PCM_FORMAT_A_LAW:
1607  		dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1608  		dbri->mm.precision = 8;
1609  		break;
1610  	case SNDRV_PCM_FORMAT_U8:
1611  		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1612  		dbri->mm.precision = 8;
1613  		break;
1614  	case SNDRV_PCM_FORMAT_S16_BE:
1615  		dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1616  		dbri->mm.precision = 16;
1617  		break;
1618  	default:
1619  		printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1620  		return -1;
1621  	}
1622  
1623  	/* Add rate parameters */
1624  	dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1625  	dbri->mm.ctrl[2] = CS4215_XCLK |
1626  	    CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1627  
1628  	dbri->mm.channels = channels;
1629  	if (channels == 2)
1630  		dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1631  
1632  	ret = cs4215_setctrl(dbri);
1633  	if (ret == 0)
1634  		cs4215_open(dbri);	/* set codec to data mode */
1635  
1636  	return ret;
1637  }
1638  
1639  /*
1640   *
1641   */
cs4215_init(struct snd_dbri * dbri)1642  static int cs4215_init(struct snd_dbri *dbri)
1643  {
1644  	u32 reg2 = sbus_readl(dbri->regs + REG2);
1645  	dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1646  
1647  	/* Look for the cs4215 chips */
1648  	if (reg2 & D_PIO2) {
1649  		dprintk(D_MM, "Onboard CS4215 detected\n");
1650  		dbri->mm.onboard = 1;
1651  	}
1652  	if (reg2 & D_PIO0) {
1653  		dprintk(D_MM, "Speakerbox detected\n");
1654  		dbri->mm.onboard = 0;
1655  
1656  		if (reg2 & D_PIO2) {
1657  			printk(KERN_INFO "DBRI: Using speakerbox / "
1658  			       "ignoring onboard mmcodec.\n");
1659  			sbus_writel(D_ENPIO2, dbri->regs + REG2);
1660  		}
1661  	}
1662  
1663  	if (!(reg2 & (D_PIO0 | D_PIO2))) {
1664  		printk(KERN_ERR "DBRI: no mmcodec found.\n");
1665  		return -EIO;
1666  	}
1667  
1668  	cs4215_setup_pipes(dbri);
1669  	cs4215_init_data(&dbri->mm);
1670  
1671  	/* Enable capture of the status & version timeslots. */
1672  	recv_fixed(dbri, 18, &dbri->mm.status);
1673  	recv_fixed(dbri, 19, &dbri->mm.version);
1674  
1675  	dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1676  	if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1677  		dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1678  			dbri->mm.offset);
1679  		return -EIO;
1680  	}
1681  	dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1682  
1683  	return 0;
1684  }
1685  
1686  /*
1687  ****************************************************************************
1688  *************************** DBRI interrupt handler *************************
1689  ****************************************************************************
1690  
1691  The DBRI communicates with the CPU mainly via a circular interrupt
1692  buffer.  When an interrupt is signaled, the CPU walks through the
1693  buffer and calls dbri_process_one_interrupt() for each interrupt word.
1694  Complicated interrupts are handled by dedicated functions (which
1695  appear first in this file).  Any pending interrupts can be serviced by
1696  calling dbri_process_interrupt_buffer(), which works even if the CPU's
1697  interrupts are disabled.
1698  
1699  */
1700  
1701  /* xmit_descs()
1702   *
1703   * Starts transmitting the current TD's for recording/playing.
1704   * For playback, ALSA has filled the DMA memory with new data (we hope).
1705   */
xmit_descs(struct snd_dbri * dbri)1706  static void xmit_descs(struct snd_dbri *dbri)
1707  {
1708  	struct dbri_streaminfo *info;
1709  	u32 dvma_addr;
1710  	s32 *cmd;
1711  	unsigned long flags;
1712  	int first_td;
1713  
1714  	if (dbri == NULL)
1715  		return;		/* Disabled */
1716  
1717  	dvma_addr = (u32)dbri->dma_dvma;
1718  	info = &dbri->stream_info[DBRI_REC];
1719  	spin_lock_irqsave(&dbri->lock, flags);
1720  
1721  	if (info->pipe >= 0) {
1722  		first_td = dbri->pipes[info->pipe].first_desc;
1723  
1724  		dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1725  
1726  		/* Stream could be closed by the time we run. */
1727  		if (first_td >= 0) {
1728  			cmd = dbri_cmdlock(dbri, 2);
1729  			*(cmd++) = DBRI_CMD(D_SDP, 0,
1730  					    dbri->pipes[info->pipe].sdp
1731  					    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1732  			*(cmd++) = dvma_addr +
1733  				   dbri_dma_off(desc, first_td);
1734  			dbri_cmdsend(dbri, cmd, 2);
1735  
1736  			/* Reset our admin of the pipe. */
1737  			dbri->pipes[info->pipe].desc = first_td;
1738  		}
1739  	}
1740  
1741  	info = &dbri->stream_info[DBRI_PLAY];
1742  
1743  	if (info->pipe >= 0) {
1744  		first_td = dbri->pipes[info->pipe].first_desc;
1745  
1746  		dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1747  
1748  		/* Stream could be closed by the time we run. */
1749  		if (first_td >= 0) {
1750  			cmd = dbri_cmdlock(dbri, 2);
1751  			*(cmd++) = DBRI_CMD(D_SDP, 0,
1752  					    dbri->pipes[info->pipe].sdp
1753  					    | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1754  			*(cmd++) = dvma_addr +
1755  				   dbri_dma_off(desc, first_td);
1756  			dbri_cmdsend(dbri, cmd, 2);
1757  
1758  			/* Reset our admin of the pipe. */
1759  			dbri->pipes[info->pipe].desc = first_td;
1760  		}
1761  	}
1762  
1763  	spin_unlock_irqrestore(&dbri->lock, flags);
1764  }
1765  
1766  /* transmission_complete_intr()
1767   *
1768   * Called by main interrupt handler when DBRI signals transmission complete
1769   * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1770   *
1771   * Walks through the pipe's list of transmit buffer descriptors and marks
1772   * them as available. Stops when the first descriptor is found without
1773   * TBC (Transmit Buffer Complete) set, or we've run through them all.
1774   *
1775   * The DMA buffers are not released. They form a ring buffer and
1776   * they are filled by ALSA while others are transmitted by DMA.
1777   *
1778   */
1779  
transmission_complete_intr(struct snd_dbri * dbri,int pipe)1780  static void transmission_complete_intr(struct snd_dbri *dbri, int pipe)
1781  {
1782  	struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1783  	int td = dbri->pipes[pipe].desc;
1784  	int status;
1785  
1786  	while (td >= 0) {
1787  		if (td >= DBRI_NO_DESCS) {
1788  			printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1789  			return;
1790  		}
1791  
1792  		status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1793  		if (!(status & DBRI_TD_TBC))
1794  			break;
1795  
1796  		dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1797  
1798  		dbri->dma->desc[td].word4 = 0;	/* Reset it for next time. */
1799  		info->offset += DBRI_RD_CNT(dbri->dma->desc[td].word1);
1800  
1801  		td = dbri->next_desc[td];
1802  		dbri->pipes[pipe].desc = td;
1803  	}
1804  
1805  	/* Notify ALSA */
1806  	spin_unlock(&dbri->lock);
1807  	snd_pcm_period_elapsed(info->substream);
1808  	spin_lock(&dbri->lock);
1809  }
1810  
reception_complete_intr(struct snd_dbri * dbri,int pipe)1811  static void reception_complete_intr(struct snd_dbri *dbri, int pipe)
1812  {
1813  	struct dbri_streaminfo *info;
1814  	int rd = dbri->pipes[pipe].desc;
1815  	s32 status;
1816  
1817  	if (rd < 0 || rd >= DBRI_NO_DESCS) {
1818  		printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1819  		return;
1820  	}
1821  
1822  	dbri->pipes[pipe].desc = dbri->next_desc[rd];
1823  	status = dbri->dma->desc[rd].word1;
1824  	dbri->dma->desc[rd].word1 = 0;	/* Reset it for next time. */
1825  
1826  	info = &dbri->stream_info[DBRI_REC];
1827  	info->offset += DBRI_RD_CNT(status);
1828  
1829  	/* FIXME: Check status */
1830  
1831  	dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1832  		rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1833  
1834  	/* Notify ALSA */
1835  	spin_unlock(&dbri->lock);
1836  	snd_pcm_period_elapsed(info->substream);
1837  	spin_lock(&dbri->lock);
1838  }
1839  
dbri_process_one_interrupt(struct snd_dbri * dbri,int x)1840  static void dbri_process_one_interrupt(struct snd_dbri *dbri, int x)
1841  {
1842  	int val = D_INTR_GETVAL(x);
1843  	int channel = D_INTR_GETCHAN(x);
1844  	int command = D_INTR_GETCMD(x);
1845  	int code = D_INTR_GETCODE(x);
1846  #ifdef DBRI_DEBUG
1847  	int rval = D_INTR_GETRVAL(x);
1848  #endif
1849  
1850  	if (channel == D_INTR_CMD) {
1851  		dprintk(D_CMD, "INTR: Command: %-5s  Value:%d\n",
1852  			cmds[command], val);
1853  	} else {
1854  		dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1855  			channel, code, rval);
1856  	}
1857  
1858  	switch (code) {
1859  	case D_INTR_CMDI:
1860  		if (command != D_WAIT)
1861  			printk(KERN_ERR "DBRI: Command read interrupt\n");
1862  		break;
1863  	case D_INTR_BRDY:
1864  		reception_complete_intr(dbri, channel);
1865  		break;
1866  	case D_INTR_XCMP:
1867  	case D_INTR_MINT:
1868  		transmission_complete_intr(dbri, channel);
1869  		break;
1870  	case D_INTR_UNDR:
1871  		/* UNDR - Transmission underrun
1872  		 * resend SDP command with clear pipe bit (C) set
1873  		 */
1874  		{
1875  	/* FIXME: do something useful in case of underrun */
1876  			printk(KERN_ERR "DBRI: Underrun error\n");
1877  #if 0
1878  			s32 *cmd;
1879  			int pipe = channel;
1880  			int td = dbri->pipes[pipe].desc;
1881  
1882  			dbri->dma->desc[td].word4 = 0;
1883  			cmd = dbri_cmdlock(dbri, NoGetLock);
1884  			*(cmd++) = DBRI_CMD(D_SDP, 0,
1885  					    dbri->pipes[pipe].sdp
1886  					    | D_SDP_P | D_SDP_C | D_SDP_2SAME);
1887  			*(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1888  			dbri_cmdsend(dbri, cmd);
1889  #endif
1890  		}
1891  		break;
1892  	case D_INTR_FXDT:
1893  		/* FXDT - Fixed data change */
1894  		if (dbri->pipes[channel].sdp & D_SDP_MSB)
1895  			val = reverse_bytes(val, dbri->pipes[channel].length);
1896  
1897  		if (dbri->pipes[channel].recv_fixed_ptr)
1898  			*(dbri->pipes[channel].recv_fixed_ptr) = val;
1899  		break;
1900  	default:
1901  		if (channel != D_INTR_CMD)
1902  			printk(KERN_WARNING
1903  			       "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1904  	}
1905  }
1906  
1907  /* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1908   * buffer until it finds a zero word (indicating nothing more to do
1909   * right now).  Non-zero words require processing and are handed off
1910   * to dbri_process_one_interrupt AFTER advancing the pointer.
1911   */
dbri_process_interrupt_buffer(struct snd_dbri * dbri)1912  static void dbri_process_interrupt_buffer(struct snd_dbri *dbri)
1913  {
1914  	s32 x;
1915  
1916  	while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1917  		dbri->dma->intr[dbri->dbri_irqp] = 0;
1918  		dbri->dbri_irqp++;
1919  		if (dbri->dbri_irqp == DBRI_INT_BLK)
1920  			dbri->dbri_irqp = 1;
1921  
1922  		dbri_process_one_interrupt(dbri, x);
1923  	}
1924  }
1925  
snd_dbri_interrupt(int irq,void * dev_id)1926  static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id)
1927  {
1928  	struct snd_dbri *dbri = dev_id;
1929  	static int errcnt = 0;
1930  	int x;
1931  
1932  	if (dbri == NULL)
1933  		return IRQ_NONE;
1934  	spin_lock(&dbri->lock);
1935  
1936  	/*
1937  	 * Read it, so the interrupt goes away.
1938  	 */
1939  	x = sbus_readl(dbri->regs + REG1);
1940  
1941  	if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1942  		u32 tmp;
1943  
1944  		if (x & D_MRR)
1945  			printk(KERN_ERR
1946  			       "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1947  			       x);
1948  		if (x & D_MLE)
1949  			printk(KERN_ERR
1950  			       "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1951  			       x);
1952  		if (x & D_LBG)
1953  			printk(KERN_ERR
1954  			       "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1955  		if (x & D_MBE)
1956  			printk(KERN_ERR
1957  			       "DBRI: Burst Error on SBus reg1=0x%x\n", x);
1958  
1959  		/* Some of these SBus errors cause the chip's SBus circuitry
1960  		 * to be disabled, so just re-enable and try to keep going.
1961  		 *
1962  		 * The only one I've seen is MRR, which will be triggered
1963  		 * if you let a transmit pipe underrun, then try to CDP it.
1964  		 *
1965  		 * If these things persist, we reset the chip.
1966  		 */
1967  		if ((++errcnt) % 10 == 0) {
1968  			dprintk(D_INT, "Interrupt errors exceeded.\n");
1969  			dbri_reset(dbri);
1970  		} else {
1971  			tmp = sbus_readl(dbri->regs + REG0);
1972  			tmp &= ~(D_D);
1973  			sbus_writel(tmp, dbri->regs + REG0);
1974  		}
1975  	}
1976  
1977  	dbri_process_interrupt_buffer(dbri);
1978  
1979  	spin_unlock(&dbri->lock);
1980  
1981  	return IRQ_HANDLED;
1982  }
1983  
1984  /****************************************************************************
1985  		PCM Interface
1986  ****************************************************************************/
1987  static const struct snd_pcm_hardware snd_dbri_pcm_hw = {
1988  	.info		= SNDRV_PCM_INFO_MMAP |
1989  			  SNDRV_PCM_INFO_INTERLEAVED |
1990  			  SNDRV_PCM_INFO_BLOCK_TRANSFER |
1991  			  SNDRV_PCM_INFO_MMAP_VALID |
1992  			  SNDRV_PCM_INFO_BATCH,
1993  	.formats	= SNDRV_PCM_FMTBIT_MU_LAW |
1994  			  SNDRV_PCM_FMTBIT_A_LAW |
1995  			  SNDRV_PCM_FMTBIT_U8 |
1996  			  SNDRV_PCM_FMTBIT_S16_BE,
1997  	.rates		= SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_5512,
1998  	.rate_min		= 5512,
1999  	.rate_max		= 48000,
2000  	.channels_min		= 1,
2001  	.channels_max		= 2,
2002  	.buffer_bytes_max	= 64 * 1024,
2003  	.period_bytes_min	= 1,
2004  	.period_bytes_max	= DBRI_TD_MAXCNT,
2005  	.periods_min		= 1,
2006  	.periods_max		= 1024,
2007  };
2008  
snd_hw_rule_format(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)2009  static int snd_hw_rule_format(struct snd_pcm_hw_params *params,
2010  			      struct snd_pcm_hw_rule *rule)
2011  {
2012  	struct snd_interval *c = hw_param_interval(params,
2013  				SNDRV_PCM_HW_PARAM_CHANNELS);
2014  	struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2015  	struct snd_mask fmt;
2016  
2017  	snd_mask_any(&fmt);
2018  	if (c->min > 1) {
2019  		fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_BE;
2020  		return snd_mask_refine(f, &fmt);
2021  	}
2022  	return 0;
2023  }
2024  
snd_hw_rule_channels(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)2025  static int snd_hw_rule_channels(struct snd_pcm_hw_params *params,
2026  				struct snd_pcm_hw_rule *rule)
2027  {
2028  	struct snd_interval *c = hw_param_interval(params,
2029  				SNDRV_PCM_HW_PARAM_CHANNELS);
2030  	struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2031  	struct snd_interval ch;
2032  
2033  	snd_interval_any(&ch);
2034  	if (!(f->bits[0] & SNDRV_PCM_FMTBIT_S16_BE)) {
2035  		ch.min = 1;
2036  		ch.max = 1;
2037  		ch.integer = 1;
2038  		return snd_interval_refine(c, &ch);
2039  	}
2040  	return 0;
2041  }
2042  
snd_dbri_open(struct snd_pcm_substream * substream)2043  static int snd_dbri_open(struct snd_pcm_substream *substream)
2044  {
2045  	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2046  	struct snd_pcm_runtime *runtime = substream->runtime;
2047  	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2048  	unsigned long flags;
2049  
2050  	dprintk(D_USR, "open audio output.\n");
2051  	runtime->hw = snd_dbri_pcm_hw;
2052  
2053  	spin_lock_irqsave(&dbri->lock, flags);
2054  	info->substream = substream;
2055  	info->offset = 0;
2056  	info->dvma_buffer = 0;
2057  	info->pipe = -1;
2058  	spin_unlock_irqrestore(&dbri->lock, flags);
2059  
2060  	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
2061  			    snd_hw_rule_format, NULL, SNDRV_PCM_HW_PARAM_FORMAT,
2062  			    -1);
2063  	snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
2064  			    snd_hw_rule_channels, NULL,
2065  			    SNDRV_PCM_HW_PARAM_CHANNELS,
2066  			    -1);
2067  
2068  	cs4215_open(dbri);
2069  
2070  	return 0;
2071  }
2072  
snd_dbri_close(struct snd_pcm_substream * substream)2073  static int snd_dbri_close(struct snd_pcm_substream *substream)
2074  {
2075  	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2076  	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2077  
2078  	dprintk(D_USR, "close audio output.\n");
2079  	info->substream = NULL;
2080  	info->offset = 0;
2081  
2082  	return 0;
2083  }
2084  
snd_dbri_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * hw_params)2085  static int snd_dbri_hw_params(struct snd_pcm_substream *substream,
2086  			      struct snd_pcm_hw_params *hw_params)
2087  {
2088  	struct snd_pcm_runtime *runtime = substream->runtime;
2089  	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2090  	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2091  	int direction;
2092  	int ret;
2093  
2094  	/* set sampling rate, audio format and number of channels */
2095  	ret = cs4215_prepare(dbri, params_rate(hw_params),
2096  			     params_format(hw_params),
2097  			     params_channels(hw_params));
2098  	if (ret != 0)
2099  		return ret;
2100  
2101  	/* hw_params can get called multiple times. Only map the DMA once.
2102  	 */
2103  	if (info->dvma_buffer == 0) {
2104  		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2105  			direction = DMA_TO_DEVICE;
2106  		else
2107  			direction = DMA_FROM_DEVICE;
2108  
2109  		info->dvma_buffer =
2110  			dma_map_single(&dbri->op->dev,
2111  				       runtime->dma_area,
2112  				       params_buffer_bytes(hw_params),
2113  				       direction);
2114  	}
2115  
2116  	direction = params_buffer_bytes(hw_params);
2117  	dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2118  		direction, info->dvma_buffer);
2119  	return 0;
2120  }
2121  
snd_dbri_hw_free(struct snd_pcm_substream * substream)2122  static int snd_dbri_hw_free(struct snd_pcm_substream *substream)
2123  {
2124  	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2125  	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2126  	int direction;
2127  
2128  	dprintk(D_USR, "hw_free.\n");
2129  
2130  	/* hw_free can get called multiple times. Only unmap the DMA once.
2131  	 */
2132  	if (info->dvma_buffer) {
2133  		if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2134  			direction = DMA_TO_DEVICE;
2135  		else
2136  			direction = DMA_FROM_DEVICE;
2137  
2138  		dma_unmap_single(&dbri->op->dev, info->dvma_buffer,
2139  				 substream->runtime->buffer_size, direction);
2140  		info->dvma_buffer = 0;
2141  	}
2142  	if (info->pipe != -1) {
2143  		reset_pipe(dbri, info->pipe);
2144  		info->pipe = -1;
2145  	}
2146  
2147  	return 0;
2148  }
2149  
snd_dbri_prepare(struct snd_pcm_substream * substream)2150  static int snd_dbri_prepare(struct snd_pcm_substream *substream)
2151  {
2152  	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2153  	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2154  	int ret;
2155  
2156  	info->size = snd_pcm_lib_buffer_bytes(substream);
2157  	if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2158  		info->pipe = 4;	/* Send pipe */
2159  	else
2160  		info->pipe = 6;	/* Receive pipe */
2161  
2162  	spin_lock_irq(&dbri->lock);
2163  	info->offset = 0;
2164  
2165  	/* Setup the all the transmit/receive descriptors to cover the
2166  	 * whole DMA buffer.
2167  	 */
2168  	ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2169  			  snd_pcm_lib_period_bytes(substream));
2170  
2171  	spin_unlock_irq(&dbri->lock);
2172  
2173  	dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2174  	return ret;
2175  }
2176  
snd_dbri_trigger(struct snd_pcm_substream * substream,int cmd)2177  static int snd_dbri_trigger(struct snd_pcm_substream *substream, int cmd)
2178  {
2179  	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2180  	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2181  	int ret = 0;
2182  
2183  	switch (cmd) {
2184  	case SNDRV_PCM_TRIGGER_START:
2185  		dprintk(D_USR, "start audio, period is %d bytes\n",
2186  			(int)snd_pcm_lib_period_bytes(substream));
2187  		/* Re-submit the TDs. */
2188  		xmit_descs(dbri);
2189  		break;
2190  	case SNDRV_PCM_TRIGGER_STOP:
2191  		dprintk(D_USR, "stop audio.\n");
2192  		reset_pipe(dbri, info->pipe);
2193  		break;
2194  	default:
2195  		ret = -EINVAL;
2196  	}
2197  
2198  	return ret;
2199  }
2200  
snd_dbri_pointer(struct snd_pcm_substream * substream)2201  static snd_pcm_uframes_t snd_dbri_pointer(struct snd_pcm_substream *substream)
2202  {
2203  	struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2204  	struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2205  	snd_pcm_uframes_t ret;
2206  
2207  	ret = bytes_to_frames(substream->runtime, info->offset)
2208  		% substream->runtime->buffer_size;
2209  	dprintk(D_USR, "I/O pointer: %ld frames of %ld.\n",
2210  		ret, substream->runtime->buffer_size);
2211  	return ret;
2212  }
2213  
2214  static const struct snd_pcm_ops snd_dbri_ops = {
2215  	.open = snd_dbri_open,
2216  	.close = snd_dbri_close,
2217  	.hw_params = snd_dbri_hw_params,
2218  	.hw_free = snd_dbri_hw_free,
2219  	.prepare = snd_dbri_prepare,
2220  	.trigger = snd_dbri_trigger,
2221  	.pointer = snd_dbri_pointer,
2222  };
2223  
snd_dbri_pcm(struct snd_card * card)2224  static int snd_dbri_pcm(struct snd_card *card)
2225  {
2226  	struct snd_pcm *pcm;
2227  	int err;
2228  
2229  	err = snd_pcm_new(card,
2230  			  /* ID */	    "sun_dbri",
2231  			  /* device */	    0,
2232  			  /* playback count */ 1,
2233  			  /* capture count */  1, &pcm);
2234  	if (err < 0)
2235  		return err;
2236  
2237  	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2238  	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2239  
2240  	pcm->private_data = card->private_data;
2241  	pcm->info_flags = 0;
2242  	strcpy(pcm->name, card->shortname);
2243  
2244  	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
2245  				       NULL, 64 * 1024, 64 * 1024);
2246  	return 0;
2247  }
2248  
2249  /*****************************************************************************
2250  			Mixer interface
2251  *****************************************************************************/
2252  
snd_cs4215_info_volume(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)2253  static int snd_cs4215_info_volume(struct snd_kcontrol *kcontrol,
2254  				  struct snd_ctl_elem_info *uinfo)
2255  {
2256  	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2257  	uinfo->count = 2;
2258  	uinfo->value.integer.min = 0;
2259  	if (kcontrol->private_value == DBRI_PLAY)
2260  		uinfo->value.integer.max = DBRI_MAX_VOLUME;
2261  	else
2262  		uinfo->value.integer.max = DBRI_MAX_GAIN;
2263  	return 0;
2264  }
2265  
snd_cs4215_get_volume(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2266  static int snd_cs4215_get_volume(struct snd_kcontrol *kcontrol,
2267  				 struct snd_ctl_elem_value *ucontrol)
2268  {
2269  	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2270  	struct dbri_streaminfo *info;
2271  
2272  	if (snd_BUG_ON(!dbri))
2273  		return -EINVAL;
2274  	info = &dbri->stream_info[kcontrol->private_value];
2275  
2276  	ucontrol->value.integer.value[0] = info->left_gain;
2277  	ucontrol->value.integer.value[1] = info->right_gain;
2278  	return 0;
2279  }
2280  
snd_cs4215_put_volume(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2281  static int snd_cs4215_put_volume(struct snd_kcontrol *kcontrol,
2282  				 struct snd_ctl_elem_value *ucontrol)
2283  {
2284  	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2285  	struct dbri_streaminfo *info =
2286  				&dbri->stream_info[kcontrol->private_value];
2287  	unsigned int vol[2];
2288  	int changed = 0;
2289  
2290  	vol[0] = ucontrol->value.integer.value[0];
2291  	vol[1] = ucontrol->value.integer.value[1];
2292  	if (kcontrol->private_value == DBRI_PLAY) {
2293  		if (vol[0] > DBRI_MAX_VOLUME || vol[1] > DBRI_MAX_VOLUME)
2294  			return -EINVAL;
2295  	} else {
2296  		if (vol[0] > DBRI_MAX_GAIN || vol[1] > DBRI_MAX_GAIN)
2297  			return -EINVAL;
2298  	}
2299  
2300  	if (info->left_gain != vol[0]) {
2301  		info->left_gain = vol[0];
2302  		changed = 1;
2303  	}
2304  	if (info->right_gain != vol[1]) {
2305  		info->right_gain = vol[1];
2306  		changed = 1;
2307  	}
2308  	if (changed) {
2309  		/* First mute outputs, and wait 1/8000 sec (125 us)
2310  		 * to make sure this takes.  This avoids clicking noises.
2311  		 */
2312  		cs4215_setdata(dbri, 1);
2313  		udelay(125);
2314  		cs4215_setdata(dbri, 0);
2315  	}
2316  	return changed;
2317  }
2318  
snd_cs4215_info_single(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)2319  static int snd_cs4215_info_single(struct snd_kcontrol *kcontrol,
2320  				  struct snd_ctl_elem_info *uinfo)
2321  {
2322  	int mask = (kcontrol->private_value >> 16) & 0xff;
2323  
2324  	uinfo->type = (mask == 1) ?
2325  	    SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2326  	uinfo->count = 1;
2327  	uinfo->value.integer.min = 0;
2328  	uinfo->value.integer.max = mask;
2329  	return 0;
2330  }
2331  
snd_cs4215_get_single(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2332  static int snd_cs4215_get_single(struct snd_kcontrol *kcontrol,
2333  				 struct snd_ctl_elem_value *ucontrol)
2334  {
2335  	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2336  	int elem = kcontrol->private_value & 0xff;
2337  	int shift = (kcontrol->private_value >> 8) & 0xff;
2338  	int mask = (kcontrol->private_value >> 16) & 0xff;
2339  	int invert = (kcontrol->private_value >> 24) & 1;
2340  
2341  	if (snd_BUG_ON(!dbri))
2342  		return -EINVAL;
2343  
2344  	if (elem < 4)
2345  		ucontrol->value.integer.value[0] =
2346  		    (dbri->mm.data[elem] >> shift) & mask;
2347  	else
2348  		ucontrol->value.integer.value[0] =
2349  		    (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2350  
2351  	if (invert == 1)
2352  		ucontrol->value.integer.value[0] =
2353  		    mask - ucontrol->value.integer.value[0];
2354  	return 0;
2355  }
2356  
snd_cs4215_put_single(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2357  static int snd_cs4215_put_single(struct snd_kcontrol *kcontrol,
2358  				 struct snd_ctl_elem_value *ucontrol)
2359  {
2360  	struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2361  	int elem = kcontrol->private_value & 0xff;
2362  	int shift = (kcontrol->private_value >> 8) & 0xff;
2363  	int mask = (kcontrol->private_value >> 16) & 0xff;
2364  	int invert = (kcontrol->private_value >> 24) & 1;
2365  	int changed = 0;
2366  	unsigned short val;
2367  
2368  	if (snd_BUG_ON(!dbri))
2369  		return -EINVAL;
2370  
2371  	val = (ucontrol->value.integer.value[0] & mask);
2372  	if (invert == 1)
2373  		val = mask - val;
2374  	val <<= shift;
2375  
2376  	if (elem < 4) {
2377  		dbri->mm.data[elem] = (dbri->mm.data[elem] &
2378  				       ~(mask << shift)) | val;
2379  		changed = (val != dbri->mm.data[elem]);
2380  	} else {
2381  		dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2382  					   ~(mask << shift)) | val;
2383  		changed = (val != dbri->mm.ctrl[elem - 4]);
2384  	}
2385  
2386  	dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2387  		"mixer-value=%ld, mm-value=0x%x\n",
2388  		mask, changed, ucontrol->value.integer.value[0],
2389  		dbri->mm.data[elem & 3]);
2390  
2391  	if (changed) {
2392  		/* First mute outputs, and wait 1/8000 sec (125 us)
2393  		 * to make sure this takes.  This avoids clicking noises.
2394  		 */
2395  		cs4215_setdata(dbri, 1);
2396  		udelay(125);
2397  		cs4215_setdata(dbri, 0);
2398  	}
2399  	return changed;
2400  }
2401  
2402  /* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2403     timeslots. Shift is the bit offset in the timeslot, mask defines the
2404     number of bits. invert is a boolean for use with attenuation.
2405   */
2406  #define CS4215_SINGLE(xname, entry, shift, mask, invert)	\
2407  { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),		\
2408    .info = snd_cs4215_info_single,				\
2409    .get = snd_cs4215_get_single, .put = snd_cs4215_put_single,	\
2410    .private_value = (entry) | ((shift) << 8) | ((mask) << 16) |	\
2411  			((invert) << 24) },
2412  
2413  static const struct snd_kcontrol_new dbri_controls[] = {
2414  	{
2415  	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2416  	 .name  = "Playback Volume",
2417  	 .info  = snd_cs4215_info_volume,
2418  	 .get   = snd_cs4215_get_volume,
2419  	 .put   = snd_cs4215_put_volume,
2420  	 .private_value = DBRI_PLAY,
2421  	 },
2422  	CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2423  	CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2424  	CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2425  	{
2426  	 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2427  	 .name  = "Capture Volume",
2428  	 .info  = snd_cs4215_info_volume,
2429  	 .get   = snd_cs4215_get_volume,
2430  	 .put   = snd_cs4215_put_volume,
2431  	 .private_value = DBRI_REC,
2432  	 },
2433  	/* FIXME: mic/line switch */
2434  	CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2435  	CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2436  	CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2437  	CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2438  };
2439  
snd_dbri_mixer(struct snd_card * card)2440  static int snd_dbri_mixer(struct snd_card *card)
2441  {
2442  	int idx, err;
2443  	struct snd_dbri *dbri;
2444  
2445  	if (snd_BUG_ON(!card || !card->private_data))
2446  		return -EINVAL;
2447  	dbri = card->private_data;
2448  
2449  	strcpy(card->mixername, card->shortname);
2450  
2451  	for (idx = 0; idx < ARRAY_SIZE(dbri_controls); idx++) {
2452  		err = snd_ctl_add(card,
2453  				snd_ctl_new1(&dbri_controls[idx], dbri));
2454  		if (err < 0)
2455  			return err;
2456  	}
2457  
2458  	for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2459  		dbri->stream_info[idx].left_gain = 0;
2460  		dbri->stream_info[idx].right_gain = 0;
2461  	}
2462  
2463  	return 0;
2464  }
2465  
2466  /****************************************************************************
2467  			/proc interface
2468  ****************************************************************************/
dbri_regs_read(struct snd_info_entry * entry,struct snd_info_buffer * buffer)2469  static void dbri_regs_read(struct snd_info_entry *entry,
2470  			   struct snd_info_buffer *buffer)
2471  {
2472  	struct snd_dbri *dbri = entry->private_data;
2473  
2474  	snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2475  	snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2476  	snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2477  	snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2478  }
2479  
2480  #ifdef DBRI_DEBUG
dbri_debug_read(struct snd_info_entry * entry,struct snd_info_buffer * buffer)2481  static void dbri_debug_read(struct snd_info_entry *entry,
2482  			    struct snd_info_buffer *buffer)
2483  {
2484  	struct snd_dbri *dbri = entry->private_data;
2485  	int pipe;
2486  	snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2487  
2488  	for (pipe = 0; pipe < 32; pipe++) {
2489  		if (pipe_active(dbri, pipe)) {
2490  			struct dbri_pipe *pptr = &dbri->pipes[pipe];
2491  			snd_iprintf(buffer,
2492  				    "Pipe %d: %s SDP=0x%x desc=%d, "
2493  				    "len=%d next %d\n",
2494  				    pipe,
2495  				   (pptr->sdp & D_SDP_TO_SER) ? "output" :
2496  								 "input",
2497  				    pptr->sdp, pptr->desc,
2498  				    pptr->length, pptr->nextpipe);
2499  		}
2500  	}
2501  }
2502  #endif
2503  
snd_dbri_proc(struct snd_card * card)2504  static void snd_dbri_proc(struct snd_card *card)
2505  {
2506  	struct snd_dbri *dbri = card->private_data;
2507  
2508  	snd_card_ro_proc_new(card, "regs", dbri, dbri_regs_read);
2509  #ifdef DBRI_DEBUG
2510  	snd_card_ro_proc_new(card, "debug", dbri, dbri_debug_read);
2511  #endif
2512  }
2513  
2514  /*
2515  ****************************************************************************
2516  **************************** Initialization ********************************
2517  ****************************************************************************
2518  */
2519  static void snd_dbri_free(struct snd_dbri *dbri);
2520  
snd_dbri_create(struct snd_card * card,struct platform_device * op,int irq,int dev)2521  static int snd_dbri_create(struct snd_card *card,
2522  			   struct platform_device *op,
2523  			   int irq, int dev)
2524  {
2525  	struct snd_dbri *dbri = card->private_data;
2526  	int err;
2527  
2528  	spin_lock_init(&dbri->lock);
2529  	dbri->op = op;
2530  	dbri->irq = irq;
2531  
2532  	dbri->dma = dma_alloc_coherent(&op->dev, sizeof(struct dbri_dma),
2533  				       &dbri->dma_dvma, GFP_KERNEL);
2534  	if (!dbri->dma)
2535  		return -ENOMEM;
2536  
2537  	dprintk(D_GEN, "DMA Cmd Block 0x%p (%pad)\n",
2538  		dbri->dma, dbri->dma_dvma);
2539  
2540  	/* Map the registers into memory. */
2541  	dbri->regs_size = resource_size(&op->resource[0]);
2542  	dbri->regs = of_ioremap(&op->resource[0], 0,
2543  				dbri->regs_size, "DBRI Registers");
2544  	if (!dbri->regs) {
2545  		printk(KERN_ERR "DBRI: could not allocate registers\n");
2546  		dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2547  				  (void *)dbri->dma, dbri->dma_dvma);
2548  		return -EIO;
2549  	}
2550  
2551  	err = request_irq(dbri->irq, snd_dbri_interrupt, IRQF_SHARED,
2552  			  "DBRI audio", dbri);
2553  	if (err) {
2554  		printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2555  		of_iounmap(&op->resource[0], dbri->regs, dbri->regs_size);
2556  		dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2557  				  (void *)dbri->dma, dbri->dma_dvma);
2558  		return err;
2559  	}
2560  
2561  	/* Do low level initialization of the DBRI and CS4215 chips */
2562  	dbri_initialize(dbri);
2563  	err = cs4215_init(dbri);
2564  	if (err) {
2565  		snd_dbri_free(dbri);
2566  		return err;
2567  	}
2568  
2569  	return 0;
2570  }
2571  
snd_dbri_free(struct snd_dbri * dbri)2572  static void snd_dbri_free(struct snd_dbri *dbri)
2573  {
2574  	dprintk(D_GEN, "snd_dbri_free\n");
2575  	dbri_reset(dbri);
2576  
2577  	if (dbri->irq)
2578  		free_irq(dbri->irq, dbri);
2579  
2580  	if (dbri->regs)
2581  		of_iounmap(&dbri->op->resource[0], dbri->regs, dbri->regs_size);
2582  
2583  	if (dbri->dma)
2584  		dma_free_coherent(&dbri->op->dev,
2585  				  sizeof(struct dbri_dma),
2586  				  (void *)dbri->dma, dbri->dma_dvma);
2587  }
2588  
dbri_probe(struct platform_device * op)2589  static int dbri_probe(struct platform_device *op)
2590  {
2591  	struct snd_dbri *dbri;
2592  	struct resource *rp;
2593  	struct snd_card *card;
2594  	static int dev = 0;
2595  	int irq;
2596  	int err;
2597  
2598  	if (dev >= SNDRV_CARDS)
2599  		return -ENODEV;
2600  	if (!enable[dev]) {
2601  		dev++;
2602  		return -ENOENT;
2603  	}
2604  
2605  	irq = op->archdata.irqs[0];
2606  	if (irq <= 0) {
2607  		printk(KERN_ERR "DBRI-%d: No IRQ.\n", dev);
2608  		return -ENODEV;
2609  	}
2610  
2611  	err = snd_card_new(&op->dev, index[dev], id[dev], THIS_MODULE,
2612  			   sizeof(struct snd_dbri), &card);
2613  	if (err < 0)
2614  		return err;
2615  
2616  	strcpy(card->driver, "DBRI");
2617  	strcpy(card->shortname, "Sun DBRI");
2618  	rp = &op->resource[0];
2619  	sprintf(card->longname, "%s at 0x%02lx:0x%016Lx, irq %d",
2620  		card->shortname,
2621  		rp->flags & 0xffL, (unsigned long long)rp->start, irq);
2622  
2623  	err = snd_dbri_create(card, op, irq, dev);
2624  	if (err < 0) {
2625  		snd_card_free(card);
2626  		return err;
2627  	}
2628  
2629  	dbri = card->private_data;
2630  	err = snd_dbri_pcm(card);
2631  	if (err < 0)
2632  		goto _err;
2633  
2634  	err = snd_dbri_mixer(card);
2635  	if (err < 0)
2636  		goto _err;
2637  
2638  	/* /proc file handling */
2639  	snd_dbri_proc(card);
2640  	dev_set_drvdata(&op->dev, card);
2641  
2642  	err = snd_card_register(card);
2643  	if (err < 0)
2644  		goto _err;
2645  
2646  	printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2647  	       dev, dbri->regs,
2648  	       dbri->irq, op->dev.of_node->name[9], dbri->mm.version);
2649  	dev++;
2650  
2651  	return 0;
2652  
2653  _err:
2654  	snd_dbri_free(dbri);
2655  	snd_card_free(card);
2656  	return err;
2657  }
2658  
dbri_remove(struct platform_device * op)2659  static int dbri_remove(struct platform_device *op)
2660  {
2661  	struct snd_card *card = dev_get_drvdata(&op->dev);
2662  
2663  	snd_dbri_free(card->private_data);
2664  	snd_card_free(card);
2665  
2666  	return 0;
2667  }
2668  
2669  static const struct of_device_id dbri_match[] = {
2670  	{
2671  		.name = "SUNW,DBRIe",
2672  	},
2673  	{
2674  		.name = "SUNW,DBRIf",
2675  	},
2676  	{},
2677  };
2678  
2679  MODULE_DEVICE_TABLE(of, dbri_match);
2680  
2681  static struct platform_driver dbri_sbus_driver = {
2682  	.driver = {
2683  		.name = "dbri",
2684  		.of_match_table = dbri_match,
2685  	},
2686  	.probe		= dbri_probe,
2687  	.remove		= dbri_remove,
2688  };
2689  
2690  module_platform_driver(dbri_sbus_driver);
2691