1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
4   *
5   * Copyright (c) 1995-2000 Advanced System Products, Inc.
6   * Copyright (c) 2000-2001 ConnectCom Solutions, Inc.
7   * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx>
8   * Copyright (c) 2014 Hannes Reinecke <hare@suse.de>
9   * All Rights Reserved.
10   */
11  
12  /*
13   * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys)
14   * changed its name to ConnectCom Solutions, Inc.
15   * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets
16   */
17  
18  #include <linux/module.h>
19  #include <linux/string.h>
20  #include <linux/kernel.h>
21  #include <linux/types.h>
22  #include <linux/ioport.h>
23  #include <linux/interrupt.h>
24  #include <linux/delay.h>
25  #include <linux/slab.h>
26  #include <linux/mm.h>
27  #include <linux/proc_fs.h>
28  #include <linux/init.h>
29  #include <linux/blkdev.h>
30  #include <linux/isa.h>
31  #include <linux/eisa.h>
32  #include <linux/pci.h>
33  #include <linux/spinlock.h>
34  #include <linux/dma-mapping.h>
35  #include <linux/firmware.h>
36  #include <linux/dmapool.h>
37  
38  #include <asm/io.h>
39  #include <asm/dma.h>
40  
41  #include <scsi/scsi_cmnd.h>
42  #include <scsi/scsi_device.h>
43  #include <scsi/scsi_tcq.h>
44  #include <scsi/scsi.h>
45  #include <scsi/scsi_host.h>
46  
47  #define DRV_NAME "advansys"
48  #define ASC_VERSION "3.5"	/* AdvanSys Driver Version */
49  
50  /* FIXME:
51   *
52   *  1. Use scsi_transport_spi
53   *  2. advansys_info is not safe against multiple simultaneous callers
54   *  3. Add module_param to override ISA/VLB ioport array
55   */
56  
57  /* Enable driver /proc statistics. */
58  #define ADVANSYS_STATS
59  
60  /* Enable driver tracing. */
61  #undef ADVANSYS_DEBUG
62  
63  typedef unsigned char uchar;
64  
65  #define isodd_word(val)   ((((uint)val) & (uint)0x0001) != 0)
66  
67  #define PCI_VENDOR_ID_ASP		0x10cd
68  #define PCI_DEVICE_ID_ASP_1200A		0x1100
69  #define PCI_DEVICE_ID_ASP_ABP940	0x1200
70  #define PCI_DEVICE_ID_ASP_ABP940U	0x1300
71  #define PCI_DEVICE_ID_ASP_ABP940UW	0x2300
72  #define PCI_DEVICE_ID_38C0800_REV1	0x2500
73  #define PCI_DEVICE_ID_38C1600_REV1	0x2700
74  
75  #define PortAddr                 unsigned int	/* port address size  */
76  #define inp(port)                inb(port)
77  #define outp(port, byte)         outb((byte), (port))
78  
79  #define inpw(port)               inw(port)
80  #define outpw(port, word)        outw((word), (port))
81  
82  #define ASC_MAX_SG_QUEUE    7
83  #define ASC_MAX_SG_LIST     255
84  
85  #define ASC_CS_TYPE  unsigned short
86  
87  #define ASC_IS_EISA         (0x0002)
88  #define ASC_IS_PCI          (0x0004)
89  #define ASC_IS_PCI_ULTRA    (0x0104)
90  #define ASC_IS_PCMCIA       (0x0008)
91  #define ASC_IS_MCA          (0x0020)
92  #define ASC_IS_VL           (0x0040)
93  #define ASC_IS_WIDESCSI_16  (0x0100)
94  #define ASC_IS_WIDESCSI_32  (0x0200)
95  #define ASC_IS_BIG_ENDIAN   (0x8000)
96  
97  #define ASC_CHIP_MIN_VER_VL      (0x01)
98  #define ASC_CHIP_MAX_VER_VL      (0x07)
99  #define ASC_CHIP_MIN_VER_PCI     (0x09)
100  #define ASC_CHIP_MAX_VER_PCI     (0x0F)
101  #define ASC_CHIP_VER_PCI_BIT     (0x08)
102  #define ASC_CHIP_VER_ASYN_BUG    (0x21)
103  #define ASC_CHIP_VER_PCI             0x08
104  #define ASC_CHIP_VER_PCI_ULTRA_3150  (ASC_CHIP_VER_PCI | 0x02)
105  #define ASC_CHIP_VER_PCI_ULTRA_3050  (ASC_CHIP_VER_PCI | 0x03)
106  #define ASC_CHIP_MIN_VER_EISA (0x41)
107  #define ASC_CHIP_MAX_VER_EISA (0x47)
108  #define ASC_CHIP_VER_EISA_BIT (0x40)
109  #define ASC_CHIP_LATEST_VER_EISA   ((ASC_CHIP_MIN_VER_EISA - 1) + 3)
110  #define ASC_MAX_VL_DMA_COUNT    (0x07FFFFFFL)
111  #define ASC_MAX_PCI_DMA_COUNT   (0xFFFFFFFFL)
112  
113  #define ASC_SCSI_ID_BITS  3
114  #define ASC_SCSI_TIX_TYPE     uchar
115  #define ASC_ALL_DEVICE_BIT_SET  0xFF
116  #define ASC_SCSI_BIT_ID_TYPE  uchar
117  #define ASC_MAX_TID       7
118  #define ASC_MAX_LUN       7
119  #define ASC_SCSI_WIDTH_BIT_SET  0xFF
120  #define ASC_MAX_SENSE_LEN   32
121  #define ASC_MIN_SENSE_LEN   14
122  #define ASC_SCSI_RESET_HOLD_TIME_US  60
123  
124  /*
125   * Narrow boards only support 12-byte commands, while wide boards
126   * extend to 16-byte commands.
127   */
128  #define ASC_MAX_CDB_LEN     12
129  #define ADV_MAX_CDB_LEN     16
130  
131  #define MS_SDTR_LEN    0x03
132  #define MS_WDTR_LEN    0x02
133  
134  #define ASC_SG_LIST_PER_Q   7
135  #define QS_FREE        0x00
136  #define QS_READY       0x01
137  #define QS_DISC1       0x02
138  #define QS_DISC2       0x04
139  #define QS_BUSY        0x08
140  #define QS_ABORTED     0x40
141  #define QS_DONE        0x80
142  #define QC_NO_CALLBACK   0x01
143  #define QC_SG_SWAP_QUEUE 0x02
144  #define QC_SG_HEAD       0x04
145  #define QC_DATA_IN       0x08
146  #define QC_DATA_OUT      0x10
147  #define QC_URGENT        0x20
148  #define QC_MSG_OUT       0x40
149  #define QC_REQ_SENSE     0x80
150  #define QCSG_SG_XFER_LIST  0x02
151  #define QCSG_SG_XFER_MORE  0x04
152  #define QCSG_SG_XFER_END   0x08
153  #define QD_IN_PROGRESS       0x00
154  #define QD_NO_ERROR          0x01
155  #define QD_ABORTED_BY_HOST   0x02
156  #define QD_WITH_ERROR        0x04
157  #define QD_INVALID_REQUEST   0x80
158  #define QD_INVALID_HOST_NUM  0x81
159  #define QD_INVALID_DEVICE    0x82
160  #define QD_ERR_INTERNAL      0xFF
161  #define QHSTA_NO_ERROR               0x00
162  #define QHSTA_M_SEL_TIMEOUT          0x11
163  #define QHSTA_M_DATA_OVER_RUN        0x12
164  #define QHSTA_M_DATA_UNDER_RUN       0x12
165  #define QHSTA_M_UNEXPECTED_BUS_FREE  0x13
166  #define QHSTA_M_BAD_BUS_PHASE_SEQ    0x14
167  #define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21
168  #define QHSTA_D_ASC_DVC_ERROR_CODE_SET  0x22
169  #define QHSTA_D_HOST_ABORT_FAILED       0x23
170  #define QHSTA_D_EXE_SCSI_Q_FAILED       0x24
171  #define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25
172  #define QHSTA_D_ASPI_NO_BUF_POOL        0x26
173  #define QHSTA_M_WTM_TIMEOUT         0x41
174  #define QHSTA_M_BAD_CMPL_STATUS_IN  0x42
175  #define QHSTA_M_NO_AUTO_REQ_SENSE   0x43
176  #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
177  #define QHSTA_M_TARGET_STATUS_BUSY  0x45
178  #define QHSTA_M_BAD_TAG_CODE        0x46
179  #define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY  0x47
180  #define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48
181  #define QHSTA_D_LRAM_CMP_ERROR        0x81
182  #define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1
183  #define ASC_FLAG_SCSIQ_REQ        0x01
184  #define ASC_FLAG_BIOS_SCSIQ_REQ   0x02
185  #define ASC_FLAG_BIOS_ASYNC_IO    0x04
186  #define ASC_FLAG_SRB_LINEAR_ADDR  0x08
187  #define ASC_FLAG_WIN16            0x10
188  #define ASC_FLAG_WIN32            0x20
189  #define ASC_FLAG_DOS_VM_CALLBACK  0x80
190  #define ASC_TAG_FLAG_EXTRA_BYTES               0x10
191  #define ASC_TAG_FLAG_DISABLE_DISCONNECT        0x04
192  #define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX  0x08
193  #define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40
194  #define ASC_SCSIQ_CPY_BEG              4
195  #define ASC_SCSIQ_SGHD_CPY_BEG         2
196  #define ASC_SCSIQ_B_FWD                0
197  #define ASC_SCSIQ_B_BWD                1
198  #define ASC_SCSIQ_B_STATUS             2
199  #define ASC_SCSIQ_B_QNO                3
200  #define ASC_SCSIQ_B_CNTL               4
201  #define ASC_SCSIQ_B_SG_QUEUE_CNT       5
202  #define ASC_SCSIQ_D_DATA_ADDR          8
203  #define ASC_SCSIQ_D_DATA_CNT          12
204  #define ASC_SCSIQ_B_SENSE_LEN         20
205  #define ASC_SCSIQ_DONE_INFO_BEG       22
206  #define ASC_SCSIQ_D_SRBPTR            22
207  #define ASC_SCSIQ_B_TARGET_IX         26
208  #define ASC_SCSIQ_B_CDB_LEN           28
209  #define ASC_SCSIQ_B_TAG_CODE          29
210  #define ASC_SCSIQ_W_VM_ID             30
211  #define ASC_SCSIQ_DONE_STATUS         32
212  #define ASC_SCSIQ_HOST_STATUS         33
213  #define ASC_SCSIQ_SCSI_STATUS         34
214  #define ASC_SCSIQ_CDB_BEG             36
215  #define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56
216  #define ASC_SCSIQ_DW_REMAIN_XFER_CNT  60
217  #define ASC_SCSIQ_B_FIRST_SG_WK_QP    48
218  #define ASC_SCSIQ_B_SG_WK_QP          49
219  #define ASC_SCSIQ_B_SG_WK_IX          50
220  #define ASC_SCSIQ_W_ALT_DC1           52
221  #define ASC_SCSIQ_B_LIST_CNT          6
222  #define ASC_SCSIQ_B_CUR_LIST_CNT      7
223  #define ASC_SGQ_B_SG_CNTL             4
224  #define ASC_SGQ_B_SG_HEAD_QP          5
225  #define ASC_SGQ_B_SG_LIST_CNT         6
226  #define ASC_SGQ_B_SG_CUR_LIST_CNT     7
227  #define ASC_SGQ_LIST_BEG              8
228  #define ASC_DEF_SCSI1_QNG    4
229  #define ASC_MAX_SCSI1_QNG    4
230  #define ASC_DEF_SCSI2_QNG    16
231  #define ASC_MAX_SCSI2_QNG    32
232  #define ASC_TAG_CODE_MASK    0x23
233  #define ASC_STOP_REQ_RISC_STOP      0x01
234  #define ASC_STOP_ACK_RISC_STOP      0x03
235  #define ASC_STOP_CLEAN_UP_BUSY_Q    0x10
236  #define ASC_STOP_CLEAN_UP_DISC_Q    0x20
237  #define ASC_STOP_HOST_REQ_RISC_HALT 0x40
238  #define ASC_TIDLUN_TO_IX(tid, lun)  (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS))
239  #define ASC_TID_TO_TARGET_ID(tid)   (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid))
240  #define ASC_TIX_TO_TARGET_ID(tix)   (0x01 << ((tix) & ASC_MAX_TID))
241  #define ASC_TIX_TO_TID(tix)         ((tix) & ASC_MAX_TID)
242  #define ASC_TID_TO_TIX(tid)         ((tid) & ASC_MAX_TID)
243  #define ASC_TIX_TO_LUN(tix)         (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN)
244  #define ASC_QNO_TO_QADDR(q_no)      ((ASC_QADR_BEG)+((int)(q_no) << 6))
245  
246  typedef struct asc_scsiq_1 {
247  	uchar status;
248  	uchar q_no;
249  	uchar cntl;
250  	uchar sg_queue_cnt;
251  	uchar target_id;
252  	uchar target_lun;
253  	__le32 data_addr;
254  	__le32 data_cnt;
255  	__le32 sense_addr;
256  	uchar sense_len;
257  	uchar extra_bytes;
258  } ASC_SCSIQ_1;
259  
260  typedef struct asc_scsiq_2 {
261  	u32 srb_tag;
262  	uchar target_ix;
263  	uchar flag;
264  	uchar cdb_len;
265  	uchar tag_code;
266  	ushort vm_id;
267  } ASC_SCSIQ_2;
268  
269  typedef struct asc_scsiq_3 {
270  	uchar done_stat;
271  	uchar host_stat;
272  	uchar scsi_stat;
273  	uchar scsi_msg;
274  } ASC_SCSIQ_3;
275  
276  typedef struct asc_scsiq_4 {
277  	uchar cdb[ASC_MAX_CDB_LEN];
278  	uchar y_first_sg_list_qp;
279  	uchar y_working_sg_qp;
280  	uchar y_working_sg_ix;
281  	uchar y_res;
282  	ushort x_req_count;
283  	ushort x_reconnect_rtn;
284  	__le32 x_saved_data_addr;
285  	__le32 x_saved_data_cnt;
286  } ASC_SCSIQ_4;
287  
288  typedef struct asc_q_done_info {
289  	ASC_SCSIQ_2 d2;
290  	ASC_SCSIQ_3 d3;
291  	uchar q_status;
292  	uchar q_no;
293  	uchar cntl;
294  	uchar sense_len;
295  	uchar extra_bytes;
296  	uchar res;
297  	u32 remain_bytes;
298  } ASC_QDONE_INFO;
299  
300  typedef struct asc_sg_list {
301  	__le32 addr;
302  	__le32 bytes;
303  } ASC_SG_LIST;
304  
305  typedef struct asc_sg_head {
306  	ushort entry_cnt;
307  	ushort queue_cnt;
308  	ushort entry_to_copy;
309  	ushort res;
310  	ASC_SG_LIST sg_list[];
311  } ASC_SG_HEAD;
312  
313  typedef struct asc_scsi_q {
314  	ASC_SCSIQ_1 q1;
315  	ASC_SCSIQ_2 q2;
316  	uchar *cdbptr;
317  	ASC_SG_HEAD *sg_head;
318  	ushort remain_sg_entry_cnt;
319  	ushort next_sg_index;
320  } ASC_SCSI_Q;
321  
322  typedef struct asc_scsi_bios_req_q {
323  	ASC_SCSIQ_1 r1;
324  	ASC_SCSIQ_2 r2;
325  	uchar *cdbptr;
326  	ASC_SG_HEAD *sg_head;
327  	uchar *sense_ptr;
328  	ASC_SCSIQ_3 r3;
329  	uchar cdb[ASC_MAX_CDB_LEN];
330  	uchar sense[ASC_MIN_SENSE_LEN];
331  } ASC_SCSI_BIOS_REQ_Q;
332  
333  typedef struct asc_risc_q {
334  	uchar fwd;
335  	uchar bwd;
336  	ASC_SCSIQ_1 i1;
337  	ASC_SCSIQ_2 i2;
338  	ASC_SCSIQ_3 i3;
339  	ASC_SCSIQ_4 i4;
340  } ASC_RISC_Q;
341  
342  typedef struct asc_sg_list_q {
343  	uchar seq_no;
344  	uchar q_no;
345  	uchar cntl;
346  	uchar sg_head_qp;
347  	uchar sg_list_cnt;
348  	uchar sg_cur_list_cnt;
349  } ASC_SG_LIST_Q;
350  
351  typedef struct asc_risc_sg_list_q {
352  	uchar fwd;
353  	uchar bwd;
354  	ASC_SG_LIST_Q sg;
355  	ASC_SG_LIST sg_list[7];
356  } ASC_RISC_SG_LIST_Q;
357  
358  #define ASCQ_ERR_Q_STATUS             0x0D
359  #define ASCQ_ERR_CUR_QNG              0x17
360  #define ASCQ_ERR_SG_Q_LINKS           0x18
361  #define ASCQ_ERR_ISR_RE_ENTRY         0x1A
362  #define ASCQ_ERR_CRITICAL_RE_ENTRY    0x1B
363  #define ASCQ_ERR_ISR_ON_CRITICAL      0x1C
364  
365  /*
366   * Warning code values are set in ASC_DVC_VAR  'warn_code'.
367   */
368  #define ASC_WARN_NO_ERROR             0x0000
369  #define ASC_WARN_IO_PORT_ROTATE       0x0001
370  #define ASC_WARN_EEPROM_CHKSUM        0x0002
371  #define ASC_WARN_IRQ_MODIFIED         0x0004
372  #define ASC_WARN_AUTO_CONFIG          0x0008
373  #define ASC_WARN_CMD_QNG_CONFLICT     0x0010
374  #define ASC_WARN_EEPROM_RECOVER       0x0020
375  #define ASC_WARN_CFG_MSW_RECOVER      0x0040
376  
377  /*
378   * Error code values are set in {ASC/ADV}_DVC_VAR  'err_code'.
379   */
380  #define ASC_IERR_NO_CARRIER		0x0001	/* No more carrier memory */
381  #define ASC_IERR_MCODE_CHKSUM		0x0002	/* micro code check sum error */
382  #define ASC_IERR_SET_PC_ADDR		0x0004
383  #define ASC_IERR_START_STOP_CHIP	0x0008	/* start/stop chip failed */
384  #define ASC_IERR_ILLEGAL_CONNECTION	0x0010	/* Illegal cable connection */
385  #define ASC_IERR_SINGLE_END_DEVICE	0x0020	/* SE device on DIFF bus */
386  #define ASC_IERR_REVERSED_CABLE		0x0040	/* Narrow flat cable reversed */
387  #define ASC_IERR_SET_SCSI_ID		0x0080	/* set SCSI ID failed */
388  #define ASC_IERR_HVD_DEVICE		0x0100	/* HVD device on LVD port */
389  #define ASC_IERR_BAD_SIGNATURE		0x0200	/* signature not found */
390  #define ASC_IERR_NO_BUS_TYPE		0x0400
391  #define ASC_IERR_BIST_PRE_TEST		0x0800	/* BIST pre-test error */
392  #define ASC_IERR_BIST_RAM_TEST		0x1000	/* BIST RAM test error */
393  #define ASC_IERR_BAD_CHIPTYPE		0x2000	/* Invalid chip_type setting */
394  
395  #define ASC_DEF_MAX_TOTAL_QNG   (0xF0)
396  #define ASC_MIN_TAG_Q_PER_DVC   (0x04)
397  #define ASC_MIN_FREE_Q        (0x02)
398  #define ASC_MIN_TOTAL_QNG     ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q))
399  #define ASC_MAX_TOTAL_QNG 240
400  #define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16
401  #define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG   8
402  #define ASC_MAX_PCI_INRAM_TOTAL_QNG  20
403  #define ASC_MAX_INRAM_TAG_QNG   16
404  #define ASC_IOADR_GAP   0x10
405  #define ASC_SYN_MAX_OFFSET         0x0F
406  #define ASC_DEF_SDTR_OFFSET        0x0F
407  #define ASC_SDTR_ULTRA_PCI_10MB_INDEX  0x02
408  #define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41
409  
410  /* The narrow chip only supports a limited selection of transfer rates.
411   * These are encoded in the range 0..7 or 0..15 depending whether the chip
412   * is Ultra-capable or not.  These tables let us convert from one to the other.
413   */
414  static const unsigned char asc_syn_xfer_period[8] = {
415  	25, 30, 35, 40, 50, 60, 70, 85
416  };
417  
418  static const unsigned char asc_syn_ultra_xfer_period[16] = {
419  	12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107
420  };
421  
422  typedef struct ext_msg {
423  	uchar msg_type;
424  	uchar msg_len;
425  	uchar msg_req;
426  	union {
427  		struct {
428  			uchar sdtr_xfer_period;
429  			uchar sdtr_req_ack_offset;
430  		} sdtr;
431  		struct {
432  			uchar wdtr_width;
433  		} wdtr;
434  		struct {
435  			uchar mdp_b3;
436  			uchar mdp_b2;
437  			uchar mdp_b1;
438  			uchar mdp_b0;
439  		} mdp;
440  	} u_ext_msg;
441  	uchar res;
442  } EXT_MSG;
443  
444  #define xfer_period     u_ext_msg.sdtr.sdtr_xfer_period
445  #define req_ack_offset  u_ext_msg.sdtr.sdtr_req_ack_offset
446  #define wdtr_width      u_ext_msg.wdtr.wdtr_width
447  #define mdp_b3          u_ext_msg.mdp_b3
448  #define mdp_b2          u_ext_msg.mdp_b2
449  #define mdp_b1          u_ext_msg.mdp_b1
450  #define mdp_b0          u_ext_msg.mdp_b0
451  
452  typedef struct asc_dvc_cfg {
453  	ASC_SCSI_BIT_ID_TYPE can_tagged_qng;
454  	ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled;
455  	ASC_SCSI_BIT_ID_TYPE disc_enable;
456  	ASC_SCSI_BIT_ID_TYPE sdtr_enable;
457  	uchar chip_scsi_id;
458  	uchar chip_version;
459  	ushort mcode_date;
460  	ushort mcode_version;
461  	uchar max_tag_qng[ASC_MAX_TID + 1];
462  	uchar sdtr_period_offset[ASC_MAX_TID + 1];
463  	uchar adapter_info[6];
464  } ASC_DVC_CFG;
465  
466  #define ASC_DEF_DVC_CNTL       0xFFFF
467  #define ASC_DEF_CHIP_SCSI_ID   7
468  #define ASC_DEF_ISA_DMA_SPEED  4
469  #define ASC_INIT_STATE_BEG_GET_CFG   0x0001
470  #define ASC_INIT_STATE_END_GET_CFG   0x0002
471  #define ASC_INIT_STATE_BEG_SET_CFG   0x0004
472  #define ASC_INIT_STATE_END_SET_CFG   0x0008
473  #define ASC_INIT_STATE_BEG_LOAD_MC   0x0010
474  #define ASC_INIT_STATE_END_LOAD_MC   0x0020
475  #define ASC_INIT_STATE_BEG_INQUIRY   0x0040
476  #define ASC_INIT_STATE_END_INQUIRY   0x0080
477  #define ASC_INIT_RESET_SCSI_DONE     0x0100
478  #define ASC_INIT_STATE_WITHOUT_EEP   0x8000
479  #define ASC_BUG_FIX_IF_NOT_DWB       0x0001
480  #define ASC_BUG_FIX_ASYN_USE_SYN     0x0002
481  #define ASC_MIN_TAGGED_CMD  7
482  #define ASC_MAX_SCSI_RESET_WAIT      30
483  #define ASC_OVERRUN_BSIZE		64
484  
485  struct asc_dvc_var;		/* Forward Declaration. */
486  
487  typedef struct asc_dvc_var {
488  	PortAddr iop_base;
489  	ushort err_code;
490  	ushort dvc_cntl;
491  	ushort bug_fix_cntl;
492  	ushort bus_type;
493  	ASC_SCSI_BIT_ID_TYPE init_sdtr;
494  	ASC_SCSI_BIT_ID_TYPE sdtr_done;
495  	ASC_SCSI_BIT_ID_TYPE use_tagged_qng;
496  	ASC_SCSI_BIT_ID_TYPE unit_not_ready;
497  	ASC_SCSI_BIT_ID_TYPE queue_full_or_busy;
498  	ASC_SCSI_BIT_ID_TYPE start_motor;
499  	uchar *overrun_buf;
500  	dma_addr_t overrun_dma;
501  	uchar scsi_reset_wait;
502  	uchar chip_no;
503  	bool is_in_int;
504  	uchar max_total_qng;
505  	uchar cur_total_qng;
506  	uchar in_critical_cnt;
507  	uchar last_q_shortage;
508  	ushort init_state;
509  	uchar cur_dvc_qng[ASC_MAX_TID + 1];
510  	uchar max_dvc_qng[ASC_MAX_TID + 1];
511  	ASC_SCSI_Q *scsiq_busy_head[ASC_MAX_TID + 1];
512  	ASC_SCSI_Q *scsiq_busy_tail[ASC_MAX_TID + 1];
513  	const uchar *sdtr_period_tbl;
514  	ASC_DVC_CFG *cfg;
515  	ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always;
516  	char redo_scam;
517  	ushort res2;
518  	uchar dos_int13_table[ASC_MAX_TID + 1];
519  	unsigned int max_dma_count;
520  	ASC_SCSI_BIT_ID_TYPE no_scam;
521  	ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer;
522  	uchar min_sdtr_index;
523  	uchar max_sdtr_index;
524  	struct asc_board *drv_ptr;
525  	unsigned int uc_break;
526  } ASC_DVC_VAR;
527  
528  typedef struct asc_dvc_inq_info {
529  	uchar type[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
530  } ASC_DVC_INQ_INFO;
531  
532  typedef struct asc_cap_info {
533  	u32 lba;
534  	u32 blk_size;
535  } ASC_CAP_INFO;
536  
537  typedef struct asc_cap_info_array {
538  	ASC_CAP_INFO cap_info[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
539  } ASC_CAP_INFO_ARRAY;
540  
541  #define ASC_MCNTL_NO_SEL_TIMEOUT  (ushort)0x0001
542  #define ASC_MCNTL_NULL_TARGET     (ushort)0x0002
543  #define ASC_CNTL_INITIATOR         (ushort)0x0001
544  #define ASC_CNTL_BIOS_GT_1GB       (ushort)0x0002
545  #define ASC_CNTL_BIOS_GT_2_DISK    (ushort)0x0004
546  #define ASC_CNTL_BIOS_REMOVABLE    (ushort)0x0008
547  #define ASC_CNTL_NO_SCAM           (ushort)0x0010
548  #define ASC_CNTL_INT_MULTI_Q       (ushort)0x0080
549  #define ASC_CNTL_NO_LUN_SUPPORT    (ushort)0x0040
550  #define ASC_CNTL_NO_VERIFY_COPY    (ushort)0x0100
551  #define ASC_CNTL_RESET_SCSI        (ushort)0x0200
552  #define ASC_CNTL_INIT_INQUIRY      (ushort)0x0400
553  #define ASC_CNTL_INIT_VERBOSE      (ushort)0x0800
554  #define ASC_CNTL_SCSI_PARITY       (ushort)0x1000
555  #define ASC_CNTL_BURST_MODE        (ushort)0x2000
556  #define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000
557  #define ASC_EEP_DVC_CFG_BEG_VL    2
558  #define ASC_EEP_MAX_DVC_ADDR_VL   15
559  #define ASC_EEP_DVC_CFG_BEG      32
560  #define ASC_EEP_MAX_DVC_ADDR     45
561  #define ASC_EEP_MAX_RETRY        20
562  
563  /*
564   * These macros keep the chip SCSI id  bitfields in board order. C bitfields
565   * aren't portable between big and little-endian platforms so they are not used.
566   */
567  
568  #define ASC_EEP_GET_CHIP_ID(cfg)    ((cfg)->id_speed & 0x0f)
569  #define ASC_EEP_GET_DMA_SPD(cfg)    (((cfg)->id_speed & 0xf0) >> 4)
570  #define ASC_EEP_SET_CHIP_ID(cfg, sid) \
571     ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID))
572  #define ASC_EEP_SET_DMA_SPD(cfg, spd) \
573     ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4)
574  
575  typedef struct asceep_config {
576  	ushort cfg_lsw;
577  	ushort cfg_msw;
578  	uchar init_sdtr;
579  	uchar disc_enable;
580  	uchar use_cmd_qng;
581  	uchar start_motor;
582  	uchar max_total_qng;
583  	uchar max_tag_qng;
584  	uchar bios_scan;
585  	uchar power_up_wait;
586  	uchar no_scam;
587  	uchar id_speed;		/* low order 4 bits is chip scsi id */
588  	/* high order 4 bits is isa dma speed */
589  	uchar dos_int13_table[ASC_MAX_TID + 1];
590  	uchar adapter_info[6];
591  	ushort cntl;
592  	ushort chksum;
593  } ASCEEP_CONFIG;
594  
595  #define ASC_EEP_CMD_READ          0x80
596  #define ASC_EEP_CMD_WRITE         0x40
597  #define ASC_EEP_CMD_WRITE_ABLE    0x30
598  #define ASC_EEP_CMD_WRITE_DISABLE 0x00
599  #define ASCV_MSGOUT_BEG         0x0000
600  #define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3)
601  #define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4)
602  #define ASCV_BREAK_SAVED_CODE   (ushort)0x0006
603  #define ASCV_MSGIN_BEG          (ASCV_MSGOUT_BEG+8)
604  #define ASCV_MSGIN_SDTR_PERIOD  (ASCV_MSGIN_BEG+3)
605  #define ASCV_MSGIN_SDTR_OFFSET  (ASCV_MSGIN_BEG+4)
606  #define ASCV_SDTR_DATA_BEG      (ASCV_MSGIN_BEG+8)
607  #define ASCV_SDTR_DONE_BEG      (ASCV_SDTR_DATA_BEG+8)
608  #define ASCV_MAX_DVC_QNG_BEG    (ushort)0x0020
609  #define ASCV_BREAK_ADDR           (ushort)0x0028
610  #define ASCV_BREAK_NOTIFY_COUNT   (ushort)0x002A
611  #define ASCV_BREAK_CONTROL        (ushort)0x002C
612  #define ASCV_BREAK_HIT_COUNT      (ushort)0x002E
613  
614  #define ASCV_ASCDVC_ERR_CODE_W  (ushort)0x0030
615  #define ASCV_MCODE_CHKSUM_W   (ushort)0x0032
616  #define ASCV_MCODE_SIZE_W     (ushort)0x0034
617  #define ASCV_STOP_CODE_B      (ushort)0x0036
618  #define ASCV_DVC_ERR_CODE_B   (ushort)0x0037
619  #define ASCV_OVERRUN_PADDR_D  (ushort)0x0038
620  #define ASCV_OVERRUN_BSIZE_D  (ushort)0x003C
621  #define ASCV_HALTCODE_W       (ushort)0x0040
622  #define ASCV_CHKSUM_W         (ushort)0x0042
623  #define ASCV_MC_DATE_W        (ushort)0x0044
624  #define ASCV_MC_VER_W         (ushort)0x0046
625  #define ASCV_NEXTRDY_B        (ushort)0x0048
626  #define ASCV_DONENEXT_B       (ushort)0x0049
627  #define ASCV_USE_TAGGED_QNG_B (ushort)0x004A
628  #define ASCV_SCSIBUSY_B       (ushort)0x004B
629  #define ASCV_Q_DONE_IN_PROGRESS_B  (ushort)0x004C
630  #define ASCV_CURCDB_B         (ushort)0x004D
631  #define ASCV_RCLUN_B          (ushort)0x004E
632  #define ASCV_BUSY_QHEAD_B     (ushort)0x004F
633  #define ASCV_DISC1_QHEAD_B    (ushort)0x0050
634  #define ASCV_DISC_ENABLE_B    (ushort)0x0052
635  #define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053
636  #define ASCV_HOSTSCSI_ID_B    (ushort)0x0055
637  #define ASCV_MCODE_CNTL_B     (ushort)0x0056
638  #define ASCV_NULL_TARGET_B    (ushort)0x0057
639  #define ASCV_FREE_Q_HEAD_W    (ushort)0x0058
640  #define ASCV_DONE_Q_TAIL_W    (ushort)0x005A
641  #define ASCV_FREE_Q_HEAD_B    (ushort)(ASCV_FREE_Q_HEAD_W+1)
642  #define ASCV_DONE_Q_TAIL_B    (ushort)(ASCV_DONE_Q_TAIL_W+1)
643  #define ASCV_HOST_FLAG_B      (ushort)0x005D
644  #define ASCV_TOTAL_READY_Q_B  (ushort)0x0064
645  #define ASCV_VER_SERIAL_B     (ushort)0x0065
646  #define ASCV_HALTCODE_SAVED_W (ushort)0x0066
647  #define ASCV_WTM_FLAG_B       (ushort)0x0068
648  #define ASCV_RISC_FLAG_B      (ushort)0x006A
649  #define ASCV_REQ_SG_LIST_QP   (ushort)0x006B
650  #define ASC_HOST_FLAG_IN_ISR        0x01
651  #define ASC_HOST_FLAG_ACK_INT       0x02
652  #define ASC_RISC_FLAG_GEN_INT      0x01
653  #define ASC_RISC_FLAG_REQ_SG_LIST  0x02
654  #define IOP_CTRL         (0x0F)
655  #define IOP_STATUS       (0x0E)
656  #define IOP_INT_ACK      IOP_STATUS
657  #define IOP_REG_IFC      (0x0D)
658  #define IOP_SYN_OFFSET    (0x0B)
659  #define IOP_EXTRA_CONTROL (0x0D)
660  #define IOP_REG_PC        (0x0C)
661  #define IOP_RAM_ADDR      (0x0A)
662  #define IOP_RAM_DATA      (0x08)
663  #define IOP_EEP_DATA      (0x06)
664  #define IOP_EEP_CMD       (0x07)
665  #define IOP_VERSION       (0x03)
666  #define IOP_CONFIG_HIGH   (0x04)
667  #define IOP_CONFIG_LOW    (0x02)
668  #define IOP_SIG_BYTE      (0x01)
669  #define IOP_SIG_WORD      (0x00)
670  #define IOP_REG_DC1      (0x0E)
671  #define IOP_REG_DC0      (0x0C)
672  #define IOP_REG_SB       (0x0B)
673  #define IOP_REG_DA1      (0x0A)
674  #define IOP_REG_DA0      (0x08)
675  #define IOP_REG_SC       (0x09)
676  #define IOP_DMA_SPEED    (0x07)
677  #define IOP_REG_FLAG     (0x07)
678  #define IOP_FIFO_H       (0x06)
679  #define IOP_FIFO_L       (0x04)
680  #define IOP_REG_ID       (0x05)
681  #define IOP_REG_QP       (0x03)
682  #define IOP_REG_IH       (0x02)
683  #define IOP_REG_IX       (0x01)
684  #define IOP_REG_AX       (0x00)
685  #define IFC_REG_LOCK      (0x00)
686  #define IFC_REG_UNLOCK    (0x09)
687  #define IFC_WR_EN_FILTER  (0x10)
688  #define IFC_RD_NO_EEPROM  (0x10)
689  #define IFC_SLEW_RATE     (0x20)
690  #define IFC_ACT_NEG       (0x40)
691  #define IFC_INP_FILTER    (0x80)
692  #define IFC_INIT_DEFAULT  (IFC_ACT_NEG | IFC_REG_UNLOCK)
693  #define SC_SEL   (uchar)(0x80)
694  #define SC_BSY   (uchar)(0x40)
695  #define SC_ACK   (uchar)(0x20)
696  #define SC_REQ   (uchar)(0x10)
697  #define SC_ATN   (uchar)(0x08)
698  #define SC_IO    (uchar)(0x04)
699  #define SC_CD    (uchar)(0x02)
700  #define SC_MSG   (uchar)(0x01)
701  #define SEC_SCSI_CTL         (uchar)(0x80)
702  #define SEC_ACTIVE_NEGATE    (uchar)(0x40)
703  #define SEC_SLEW_RATE        (uchar)(0x20)
704  #define SEC_ENABLE_FILTER    (uchar)(0x10)
705  #define ASC_HALT_EXTMSG_IN     (ushort)0x8000
706  #define ASC_HALT_CHK_CONDITION (ushort)0x8100
707  #define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200
708  #define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX  (ushort)0x8300
709  #define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX   (ushort)0x8400
710  #define ASC_HALT_SDTR_REJECTED (ushort)0x4000
711  #define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000
712  #define ASC_MAX_QNO        0xF8
713  #define ASC_DATA_SEC_BEG   (ushort)0x0080
714  #define ASC_DATA_SEC_END   (ushort)0x0080
715  #define ASC_CODE_SEC_BEG   (ushort)0x0080
716  #define ASC_CODE_SEC_END   (ushort)0x0080
717  #define ASC_QADR_BEG       (0x4000)
718  #define ASC_QADR_USED      (ushort)(ASC_MAX_QNO * 64)
719  #define ASC_QADR_END       (ushort)0x7FFF
720  #define ASC_QLAST_ADR      (ushort)0x7FC0
721  #define ASC_QBLK_SIZE      0x40
722  #define ASC_BIOS_DATA_QBEG 0xF8
723  #define ASC_MIN_ACTIVE_QNO 0x01
724  #define ASC_QLINK_END      0xFF
725  #define ASC_EEPROM_WORDS   0x10
726  #define ASC_MAX_MGS_LEN    0x10
727  #define ASC_BIOS_ADDR_DEF  0xDC00
728  #define ASC_BIOS_SIZE      0x3800
729  #define ASC_BIOS_RAM_OFF   0x3800
730  #define ASC_BIOS_RAM_SIZE  0x800
731  #define ASC_BIOS_MIN_ADDR  0xC000
732  #define ASC_BIOS_MAX_ADDR  0xEC00
733  #define ASC_BIOS_BANK_SIZE 0x0400
734  #define ASC_MCODE_START_ADDR  0x0080
735  #define ASC_CFG0_HOST_INT_ON    0x0020
736  #define ASC_CFG0_BIOS_ON        0x0040
737  #define ASC_CFG0_VERA_BURST_ON  0x0080
738  #define ASC_CFG0_SCSI_PARITY_ON 0x0800
739  #define ASC_CFG1_SCSI_TARGET_ON 0x0080
740  #define ASC_CFG1_LRAM_8BITS_ON  0x0800
741  #define ASC_CFG_MSW_CLR_MASK    0x3080
742  #define CSW_TEST1             (ASC_CS_TYPE)0x8000
743  #define CSW_AUTO_CONFIG       (ASC_CS_TYPE)0x4000
744  #define CSW_RESERVED1         (ASC_CS_TYPE)0x2000
745  #define CSW_IRQ_WRITTEN       (ASC_CS_TYPE)0x1000
746  #define CSW_33MHZ_SELECTED    (ASC_CS_TYPE)0x0800
747  #define CSW_TEST2             (ASC_CS_TYPE)0x0400
748  #define CSW_TEST3             (ASC_CS_TYPE)0x0200
749  #define CSW_RESERVED2         (ASC_CS_TYPE)0x0100
750  #define CSW_DMA_DONE          (ASC_CS_TYPE)0x0080
751  #define CSW_FIFO_RDY          (ASC_CS_TYPE)0x0040
752  #define CSW_EEP_READ_DONE     (ASC_CS_TYPE)0x0020
753  #define CSW_HALTED            (ASC_CS_TYPE)0x0010
754  #define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008
755  #define CSW_PARITY_ERR        (ASC_CS_TYPE)0x0004
756  #define CSW_SCSI_RESET_LATCH  (ASC_CS_TYPE)0x0002
757  #define CSW_INT_PENDING       (ASC_CS_TYPE)0x0001
758  #define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000
759  #define CIW_INT_ACK      (ASC_CS_TYPE)0x0100
760  #define CIW_TEST1        (ASC_CS_TYPE)0x0200
761  #define CIW_TEST2        (ASC_CS_TYPE)0x0400
762  #define CIW_SEL_33MHZ    (ASC_CS_TYPE)0x0800
763  #define CIW_IRQ_ACT      (ASC_CS_TYPE)0x1000
764  #define CC_CHIP_RESET   (uchar)0x80
765  #define CC_SCSI_RESET   (uchar)0x40
766  #define CC_HALT         (uchar)0x20
767  #define CC_SINGLE_STEP  (uchar)0x10
768  #define CC_DMA_ABLE     (uchar)0x08
769  #define CC_TEST         (uchar)0x04
770  #define CC_BANK_ONE     (uchar)0x02
771  #define CC_DIAG         (uchar)0x01
772  #define ASC_1000_ID0W      0x04C1
773  #define ASC_1000_ID0W_FIX  0x00C1
774  #define ASC_1000_ID1B      0x25
775  #define ASC_EISA_REV_IOP_MASK  (0x0C83)
776  #define ASC_EISA_CFG_IOP_MASK  (0x0C86)
777  #define ASC_GET_EISA_SLOT(iop)  (PortAddr)((iop) & 0xF000)
778  #define INS_HALTINT        (ushort)0x6281
779  #define INS_HALT           (ushort)0x6280
780  #define INS_SINT           (ushort)0x6200
781  #define INS_RFLAG_WTM      (ushort)0x7380
782  #define ASC_MC_SAVE_CODE_WSIZE  0x500
783  #define ASC_MC_SAVE_DATA_WSIZE  0x40
784  
785  typedef struct asc_mc_saved {
786  	ushort data[ASC_MC_SAVE_DATA_WSIZE];
787  	ushort code[ASC_MC_SAVE_CODE_WSIZE];
788  } ASC_MC_SAVED;
789  
790  #define AscGetQDoneInProgress(port)         AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B)
791  #define AscPutQDoneInProgress(port, val)    AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val)
792  #define AscGetVarFreeQHead(port)            AscReadLramWord((port), ASCV_FREE_Q_HEAD_W)
793  #define AscGetVarDoneQTail(port)            AscReadLramWord((port), ASCV_DONE_Q_TAIL_W)
794  #define AscPutVarFreeQHead(port, val)       AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val)
795  #define AscPutVarDoneQTail(port, val)       AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val)
796  #define AscGetRiscVarFreeQHead(port)        AscReadLramByte((port), ASCV_NEXTRDY_B)
797  #define AscGetRiscVarDoneQTail(port)        AscReadLramByte((port), ASCV_DONENEXT_B)
798  #define AscPutRiscVarFreeQHead(port, val)   AscWriteLramByte((port), ASCV_NEXTRDY_B, val)
799  #define AscPutRiscVarDoneQTail(port, val)   AscWriteLramByte((port), ASCV_DONENEXT_B, val)
800  #define AscPutMCodeSDTRDoneAtID(port, id, data)  AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data))
801  #define AscGetMCodeSDTRDoneAtID(port, id)        AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id))
802  #define AscPutMCodeInitSDTRAtID(port, id, data)  AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data)
803  #define AscGetMCodeInitSDTRAtID(port, id)        AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id))
804  #define AscGetChipSignatureByte(port)     (uchar)inp((port)+IOP_SIG_BYTE)
805  #define AscGetChipSignatureWord(port)     (ushort)inpw((port)+IOP_SIG_WORD)
806  #define AscGetChipVerNo(port)             (uchar)inp((port)+IOP_VERSION)
807  #define AscGetChipCfgLsw(port)            (ushort)inpw((port)+IOP_CONFIG_LOW)
808  #define AscGetChipCfgMsw(port)            (ushort)inpw((port)+IOP_CONFIG_HIGH)
809  #define AscSetChipCfgLsw(port, data)      outpw((port)+IOP_CONFIG_LOW, data)
810  #define AscSetChipCfgMsw(port, data)      outpw((port)+IOP_CONFIG_HIGH, data)
811  #define AscGetChipEEPCmd(port)            (uchar)inp((port)+IOP_EEP_CMD)
812  #define AscSetChipEEPCmd(port, data)      outp((port)+IOP_EEP_CMD, data)
813  #define AscGetChipEEPData(port)           (ushort)inpw((port)+IOP_EEP_DATA)
814  #define AscSetChipEEPData(port, data)     outpw((port)+IOP_EEP_DATA, data)
815  #define AscGetChipLramAddr(port)          (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR))
816  #define AscSetChipLramAddr(port, addr)    outpw((PortAddr)((port)+IOP_RAM_ADDR), addr)
817  #define AscGetChipLramData(port)          (ushort)inpw((port)+IOP_RAM_DATA)
818  #define AscSetChipLramData(port, data)    outpw((port)+IOP_RAM_DATA, data)
819  #define AscGetChipIFC(port)               (uchar)inp((port)+IOP_REG_IFC)
820  #define AscSetChipIFC(port, data)          outp((port)+IOP_REG_IFC, data)
821  #define AscGetChipStatus(port)            (ASC_CS_TYPE)inpw((port)+IOP_STATUS)
822  #define AscSetChipStatus(port, cs_val)    outpw((port)+IOP_STATUS, cs_val)
823  #define AscGetChipControl(port)           (uchar)inp((port)+IOP_CTRL)
824  #define AscSetChipControl(port, cc_val)   outp((port)+IOP_CTRL, cc_val)
825  #define AscGetChipSyn(port)               (uchar)inp((port)+IOP_SYN_OFFSET)
826  #define AscSetChipSyn(port, data)         outp((port)+IOP_SYN_OFFSET, data)
827  #define AscSetPCAddr(port, data)          outpw((port)+IOP_REG_PC, data)
828  #define AscGetPCAddr(port)                (ushort)inpw((port)+IOP_REG_PC)
829  #define AscIsIntPending(port)             (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH))
830  #define AscGetChipScsiID(port)            ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID)
831  #define AscGetExtraControl(port)          (uchar)inp((port)+IOP_EXTRA_CONTROL)
832  #define AscSetExtraControl(port, data)    outp((port)+IOP_EXTRA_CONTROL, data)
833  #define AscReadChipAX(port)               (ushort)inpw((port)+IOP_REG_AX)
834  #define AscWriteChipAX(port, data)        outpw((port)+IOP_REG_AX, data)
835  #define AscReadChipIX(port)               (uchar)inp((port)+IOP_REG_IX)
836  #define AscWriteChipIX(port, data)        outp((port)+IOP_REG_IX, data)
837  #define AscReadChipIH(port)               (ushort)inpw((port)+IOP_REG_IH)
838  #define AscWriteChipIH(port, data)        outpw((port)+IOP_REG_IH, data)
839  #define AscReadChipQP(port)               (uchar)inp((port)+IOP_REG_QP)
840  #define AscWriteChipQP(port, data)        outp((port)+IOP_REG_QP, data)
841  #define AscReadChipFIFO_L(port)           (ushort)inpw((port)+IOP_REG_FIFO_L)
842  #define AscWriteChipFIFO_L(port, data)    outpw((port)+IOP_REG_FIFO_L, data)
843  #define AscReadChipFIFO_H(port)           (ushort)inpw((port)+IOP_REG_FIFO_H)
844  #define AscWriteChipFIFO_H(port, data)    outpw((port)+IOP_REG_FIFO_H, data)
845  #define AscReadChipDmaSpeed(port)         (uchar)inp((port)+IOP_DMA_SPEED)
846  #define AscWriteChipDmaSpeed(port, data)  outp((port)+IOP_DMA_SPEED, data)
847  #define AscReadChipDA0(port)              (ushort)inpw((port)+IOP_REG_DA0)
848  #define AscWriteChipDA0(port)             outpw((port)+IOP_REG_DA0, data)
849  #define AscReadChipDA1(port)              (ushort)inpw((port)+IOP_REG_DA1)
850  #define AscWriteChipDA1(port)             outpw((port)+IOP_REG_DA1, data)
851  #define AscReadChipDC0(port)              (ushort)inpw((port)+IOP_REG_DC0)
852  #define AscWriteChipDC0(port)             outpw((port)+IOP_REG_DC0, data)
853  #define AscReadChipDC1(port)              (ushort)inpw((port)+IOP_REG_DC1)
854  #define AscWriteChipDC1(port)             outpw((port)+IOP_REG_DC1, data)
855  #define AscReadChipDvcID(port)            (uchar)inp((port)+IOP_REG_ID)
856  #define AscWriteChipDvcID(port, data)     outp((port)+IOP_REG_ID, data)
857  
858  #define AdvPortAddr  void __iomem *	/* Virtual memory address size */
859  
860  /*
861   * Define Adv Library required memory access macros.
862   */
863  #define ADV_MEM_READB(addr) readb(addr)
864  #define ADV_MEM_READW(addr) readw(addr)
865  #define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr)
866  #define ADV_MEM_WRITEW(addr, word) writew(word, addr)
867  #define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr)
868  
869  /*
870   * Define total number of simultaneous maximum element scatter-gather
871   * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the
872   * maximum number of outstanding commands per wide host adapter. Each
873   * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather
874   * elements. Allow each command to have at least one ADV_SG_BLOCK structure.
875   * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK
876   * structures or 255 scatter-gather elements.
877   */
878  #define ADV_TOT_SG_BLOCK        ASC_DEF_MAX_HOST_QNG
879  
880  /*
881   * Define maximum number of scatter-gather elements per request.
882   */
883  #define ADV_MAX_SG_LIST         255
884  #define NO_OF_SG_PER_BLOCK              15
885  
886  #define ADV_EEP_DVC_CFG_BEGIN           (0x00)
887  #define ADV_EEP_DVC_CFG_END             (0x15)
888  #define ADV_EEP_DVC_CTL_BEGIN           (0x16)	/* location of OEM name */
889  #define ADV_EEP_MAX_WORD_ADDR           (0x1E)
890  
891  #define ADV_EEP_DELAY_MS                100
892  
893  #define ADV_EEPROM_BIG_ENDIAN          0x8000	/* EEPROM Bit 15 */
894  #define ADV_EEPROM_BIOS_ENABLE         0x4000	/* EEPROM Bit 14 */
895  /*
896   * For the ASC3550 Bit 13 is Termination Polarity control bit.
897   * For later ICs Bit 13 controls whether the CIS (Card Information
898   * Service Section) is loaded from EEPROM.
899   */
900  #define ADV_EEPROM_TERM_POL            0x2000	/* EEPROM Bit 13 */
901  #define ADV_EEPROM_CIS_LD              0x2000	/* EEPROM Bit 13 */
902  /*
903   * ASC38C1600 Bit 11
904   *
905   * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify
906   * INT A in the PCI Configuration Space Int Pin field. If it is 1, then
907   * Function 0 will specify INT B.
908   *
909   * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify
910   * INT B in the PCI Configuration Space Int Pin field. If it is 1, then
911   * Function 1 will specify INT A.
912   */
913  #define ADV_EEPROM_INTAB               0x0800	/* EEPROM Bit 11 */
914  
915  typedef struct adveep_3550_config {
916  	/* Word Offset, Description */
917  
918  	ushort cfg_lsw;		/* 00 power up initialization */
919  	/*  bit 13 set - Term Polarity Control */
920  	/*  bit 14 set - BIOS Enable */
921  	/*  bit 15 set - Big Endian Mode */
922  	ushort cfg_msw;		/* 01 unused      */
923  	ushort disc_enable;	/* 02 disconnect enable */
924  	ushort wdtr_able;	/* 03 Wide DTR able */
925  	ushort sdtr_able;	/* 04 Synchronous DTR able */
926  	ushort start_motor;	/* 05 send start up motor */
927  	ushort tagqng_able;	/* 06 tag queuing able */
928  	ushort bios_scan;	/* 07 BIOS device control */
929  	ushort scam_tolerant;	/* 08 no scam */
930  
931  	uchar adapter_scsi_id;	/* 09 Host Adapter ID */
932  	uchar bios_boot_delay;	/*    power up wait */
933  
934  	uchar scsi_reset_delay;	/* 10 reset delay */
935  	uchar bios_id_lun;	/*    first boot device scsi id & lun */
936  	/*    high nibble is lun */
937  	/*    low nibble is scsi id */
938  
939  	uchar termination;	/* 11 0 - automatic */
940  	/*    1 - low off / high off */
941  	/*    2 - low off / high on */
942  	/*    3 - low on  / high on */
943  	/*    There is no low on  / high off */
944  
945  	uchar reserved1;	/*    reserved byte (not used) */
946  
947  	ushort bios_ctrl;	/* 12 BIOS control bits */
948  	/*  bit 0  BIOS don't act as initiator. */
949  	/*  bit 1  BIOS > 1 GB support */
950  	/*  bit 2  BIOS > 2 Disk Support */
951  	/*  bit 3  BIOS don't support removables */
952  	/*  bit 4  BIOS support bootable CD */
953  	/*  bit 5  BIOS scan enabled */
954  	/*  bit 6  BIOS support multiple LUNs */
955  	/*  bit 7  BIOS display of message */
956  	/*  bit 8  SCAM disabled */
957  	/*  bit 9  Reset SCSI bus during init. */
958  	/*  bit 10 */
959  	/*  bit 11 No verbose initialization. */
960  	/*  bit 12 SCSI parity enabled */
961  	/*  bit 13 */
962  	/*  bit 14 */
963  	/*  bit 15 */
964  	ushort ultra_able;	/* 13 ULTRA speed able */
965  	ushort reserved2;	/* 14 reserved */
966  	uchar max_host_qng;	/* 15 maximum host queuing */
967  	uchar max_dvc_qng;	/*    maximum per device queuing */
968  	ushort dvc_cntl;	/* 16 control bit for driver */
969  	ushort bug_fix;		/* 17 control bit for bug fix */
970  	ushort serial_number_word1;	/* 18 Board serial number word 1 */
971  	ushort serial_number_word2;	/* 19 Board serial number word 2 */
972  	ushort serial_number_word3;	/* 20 Board serial number word 3 */
973  	ushort check_sum;	/* 21 EEP check sum */
974  	uchar oem_name[16];	/* 22 OEM name */
975  	ushort dvc_err_code;	/* 30 last device driver error code */
976  	ushort adv_err_code;	/* 31 last uc and Adv Lib error code */
977  	ushort adv_err_addr;	/* 32 last uc error address */
978  	ushort saved_dvc_err_code;	/* 33 saved last dev. driver error code   */
979  	ushort saved_adv_err_code;	/* 34 saved last uc and Adv Lib error code */
980  	ushort saved_adv_err_addr;	/* 35 saved last uc error address         */
981  	ushort num_of_err;	/* 36 number of error */
982  } ADVEEP_3550_CONFIG;
983  
984  typedef struct adveep_38C0800_config {
985  	/* Word Offset, Description */
986  
987  	ushort cfg_lsw;		/* 00 power up initialization */
988  	/*  bit 13 set - Load CIS */
989  	/*  bit 14 set - BIOS Enable */
990  	/*  bit 15 set - Big Endian Mode */
991  	ushort cfg_msw;		/* 01 unused      */
992  	ushort disc_enable;	/* 02 disconnect enable */
993  	ushort wdtr_able;	/* 03 Wide DTR able */
994  	ushort sdtr_speed1;	/* 04 SDTR Speed TID 0-3 */
995  	ushort start_motor;	/* 05 send start up motor */
996  	ushort tagqng_able;	/* 06 tag queuing able */
997  	ushort bios_scan;	/* 07 BIOS device control */
998  	ushort scam_tolerant;	/* 08 no scam */
999  
1000  	uchar adapter_scsi_id;	/* 09 Host Adapter ID */
1001  	uchar bios_boot_delay;	/*    power up wait */
1002  
1003  	uchar scsi_reset_delay;	/* 10 reset delay */
1004  	uchar bios_id_lun;	/*    first boot device scsi id & lun */
1005  	/*    high nibble is lun */
1006  	/*    low nibble is scsi id */
1007  
1008  	uchar termination_se;	/* 11 0 - automatic */
1009  	/*    1 - low off / high off */
1010  	/*    2 - low off / high on */
1011  	/*    3 - low on  / high on */
1012  	/*    There is no low on  / high off */
1013  
1014  	uchar termination_lvd;	/* 11 0 - automatic */
1015  	/*    1 - low off / high off */
1016  	/*    2 - low off / high on */
1017  	/*    3 - low on  / high on */
1018  	/*    There is no low on  / high off */
1019  
1020  	ushort bios_ctrl;	/* 12 BIOS control bits */
1021  	/*  bit 0  BIOS don't act as initiator. */
1022  	/*  bit 1  BIOS > 1 GB support */
1023  	/*  bit 2  BIOS > 2 Disk Support */
1024  	/*  bit 3  BIOS don't support removables */
1025  	/*  bit 4  BIOS support bootable CD */
1026  	/*  bit 5  BIOS scan enabled */
1027  	/*  bit 6  BIOS support multiple LUNs */
1028  	/*  bit 7  BIOS display of message */
1029  	/*  bit 8  SCAM disabled */
1030  	/*  bit 9  Reset SCSI bus during init. */
1031  	/*  bit 10 */
1032  	/*  bit 11 No verbose initialization. */
1033  	/*  bit 12 SCSI parity enabled */
1034  	/*  bit 13 */
1035  	/*  bit 14 */
1036  	/*  bit 15 */
1037  	ushort sdtr_speed2;	/* 13 SDTR speed TID 4-7 */
1038  	ushort sdtr_speed3;	/* 14 SDTR speed TID 8-11 */
1039  	uchar max_host_qng;	/* 15 maximum host queueing */
1040  	uchar max_dvc_qng;	/*    maximum per device queuing */
1041  	ushort dvc_cntl;	/* 16 control bit for driver */
1042  	ushort sdtr_speed4;	/* 17 SDTR speed 4 TID 12-15 */
1043  	ushort serial_number_word1;	/* 18 Board serial number word 1 */
1044  	ushort serial_number_word2;	/* 19 Board serial number word 2 */
1045  	ushort serial_number_word3;	/* 20 Board serial number word 3 */
1046  	ushort check_sum;	/* 21 EEP check sum */
1047  	uchar oem_name[16];	/* 22 OEM name */
1048  	ushort dvc_err_code;	/* 30 last device driver error code */
1049  	ushort adv_err_code;	/* 31 last uc and Adv Lib error code */
1050  	ushort adv_err_addr;	/* 32 last uc error address */
1051  	ushort saved_dvc_err_code;	/* 33 saved last dev. driver error code   */
1052  	ushort saved_adv_err_code;	/* 34 saved last uc and Adv Lib error code */
1053  	ushort saved_adv_err_addr;	/* 35 saved last uc error address         */
1054  	ushort reserved36;	/* 36 reserved */
1055  	ushort reserved37;	/* 37 reserved */
1056  	ushort reserved38;	/* 38 reserved */
1057  	ushort reserved39;	/* 39 reserved */
1058  	ushort reserved40;	/* 40 reserved */
1059  	ushort reserved41;	/* 41 reserved */
1060  	ushort reserved42;	/* 42 reserved */
1061  	ushort reserved43;	/* 43 reserved */
1062  	ushort reserved44;	/* 44 reserved */
1063  	ushort reserved45;	/* 45 reserved */
1064  	ushort reserved46;	/* 46 reserved */
1065  	ushort reserved47;	/* 47 reserved */
1066  	ushort reserved48;	/* 48 reserved */
1067  	ushort reserved49;	/* 49 reserved */
1068  	ushort reserved50;	/* 50 reserved */
1069  	ushort reserved51;	/* 51 reserved */
1070  	ushort reserved52;	/* 52 reserved */
1071  	ushort reserved53;	/* 53 reserved */
1072  	ushort reserved54;	/* 54 reserved */
1073  	ushort reserved55;	/* 55 reserved */
1074  	ushort cisptr_lsw;	/* 56 CIS PTR LSW */
1075  	ushort cisprt_msw;	/* 57 CIS PTR MSW */
1076  	ushort subsysvid;	/* 58 SubSystem Vendor ID */
1077  	ushort subsysid;	/* 59 SubSystem ID */
1078  	ushort reserved60;	/* 60 reserved */
1079  	ushort reserved61;	/* 61 reserved */
1080  	ushort reserved62;	/* 62 reserved */
1081  	ushort reserved63;	/* 63 reserved */
1082  } ADVEEP_38C0800_CONFIG;
1083  
1084  typedef struct adveep_38C1600_config {
1085  	/* Word Offset, Description */
1086  
1087  	ushort cfg_lsw;		/* 00 power up initialization */
1088  	/*  bit 11 set - Func. 0 INTB, Func. 1 INTA */
1089  	/*       clear - Func. 0 INTA, Func. 1 INTB */
1090  	/*  bit 13 set - Load CIS */
1091  	/*  bit 14 set - BIOS Enable */
1092  	/*  bit 15 set - Big Endian Mode */
1093  	ushort cfg_msw;		/* 01 unused */
1094  	ushort disc_enable;	/* 02 disconnect enable */
1095  	ushort wdtr_able;	/* 03 Wide DTR able */
1096  	ushort sdtr_speed1;	/* 04 SDTR Speed TID 0-3 */
1097  	ushort start_motor;	/* 05 send start up motor */
1098  	ushort tagqng_able;	/* 06 tag queuing able */
1099  	ushort bios_scan;	/* 07 BIOS device control */
1100  	ushort scam_tolerant;	/* 08 no scam */
1101  
1102  	uchar adapter_scsi_id;	/* 09 Host Adapter ID */
1103  	uchar bios_boot_delay;	/*    power up wait */
1104  
1105  	uchar scsi_reset_delay;	/* 10 reset delay */
1106  	uchar bios_id_lun;	/*    first boot device scsi id & lun */
1107  	/*    high nibble is lun */
1108  	/*    low nibble is scsi id */
1109  
1110  	uchar termination_se;	/* 11 0 - automatic */
1111  	/*    1 - low off / high off */
1112  	/*    2 - low off / high on */
1113  	/*    3 - low on  / high on */
1114  	/*    There is no low on  / high off */
1115  
1116  	uchar termination_lvd;	/* 11 0 - automatic */
1117  	/*    1 - low off / high off */
1118  	/*    2 - low off / high on */
1119  	/*    3 - low on  / high on */
1120  	/*    There is no low on  / high off */
1121  
1122  	ushort bios_ctrl;	/* 12 BIOS control bits */
1123  	/*  bit 0  BIOS don't act as initiator. */
1124  	/*  bit 1  BIOS > 1 GB support */
1125  	/*  bit 2  BIOS > 2 Disk Support */
1126  	/*  bit 3  BIOS don't support removables */
1127  	/*  bit 4  BIOS support bootable CD */
1128  	/*  bit 5  BIOS scan enabled */
1129  	/*  bit 6  BIOS support multiple LUNs */
1130  	/*  bit 7  BIOS display of message */
1131  	/*  bit 8  SCAM disabled */
1132  	/*  bit 9  Reset SCSI bus during init. */
1133  	/*  bit 10 Basic Integrity Checking disabled */
1134  	/*  bit 11 No verbose initialization. */
1135  	/*  bit 12 SCSI parity enabled */
1136  	/*  bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */
1137  	/*  bit 14 */
1138  	/*  bit 15 */
1139  	ushort sdtr_speed2;	/* 13 SDTR speed TID 4-7 */
1140  	ushort sdtr_speed3;	/* 14 SDTR speed TID 8-11 */
1141  	uchar max_host_qng;	/* 15 maximum host queueing */
1142  	uchar max_dvc_qng;	/*    maximum per device queuing */
1143  	ushort dvc_cntl;	/* 16 control bit for driver */
1144  	ushort sdtr_speed4;	/* 17 SDTR speed 4 TID 12-15 */
1145  	ushort serial_number_word1;	/* 18 Board serial number word 1 */
1146  	ushort serial_number_word2;	/* 19 Board serial number word 2 */
1147  	ushort serial_number_word3;	/* 20 Board serial number word 3 */
1148  	ushort check_sum;	/* 21 EEP check sum */
1149  	uchar oem_name[16];	/* 22 OEM name */
1150  	ushort dvc_err_code;	/* 30 last device driver error code */
1151  	ushort adv_err_code;	/* 31 last uc and Adv Lib error code */
1152  	ushort adv_err_addr;	/* 32 last uc error address */
1153  	ushort saved_dvc_err_code;	/* 33 saved last dev. driver error code   */
1154  	ushort saved_adv_err_code;	/* 34 saved last uc and Adv Lib error code */
1155  	ushort saved_adv_err_addr;	/* 35 saved last uc error address         */
1156  	ushort reserved36;	/* 36 reserved */
1157  	ushort reserved37;	/* 37 reserved */
1158  	ushort reserved38;	/* 38 reserved */
1159  	ushort reserved39;	/* 39 reserved */
1160  	ushort reserved40;	/* 40 reserved */
1161  	ushort reserved41;	/* 41 reserved */
1162  	ushort reserved42;	/* 42 reserved */
1163  	ushort reserved43;	/* 43 reserved */
1164  	ushort reserved44;	/* 44 reserved */
1165  	ushort reserved45;	/* 45 reserved */
1166  	ushort reserved46;	/* 46 reserved */
1167  	ushort reserved47;	/* 47 reserved */
1168  	ushort reserved48;	/* 48 reserved */
1169  	ushort reserved49;	/* 49 reserved */
1170  	ushort reserved50;	/* 50 reserved */
1171  	ushort reserved51;	/* 51 reserved */
1172  	ushort reserved52;	/* 52 reserved */
1173  	ushort reserved53;	/* 53 reserved */
1174  	ushort reserved54;	/* 54 reserved */
1175  	ushort reserved55;	/* 55 reserved */
1176  	ushort cisptr_lsw;	/* 56 CIS PTR LSW */
1177  	ushort cisprt_msw;	/* 57 CIS PTR MSW */
1178  	ushort subsysvid;	/* 58 SubSystem Vendor ID */
1179  	ushort subsysid;	/* 59 SubSystem ID */
1180  	ushort reserved60;	/* 60 reserved */
1181  	ushort reserved61;	/* 61 reserved */
1182  	ushort reserved62;	/* 62 reserved */
1183  	ushort reserved63;	/* 63 reserved */
1184  } ADVEEP_38C1600_CONFIG;
1185  
1186  /*
1187   * EEPROM Commands
1188   */
1189  #define ASC_EEP_CMD_DONE             0x0200
1190  
1191  /* bios_ctrl */
1192  #define BIOS_CTRL_BIOS               0x0001
1193  #define BIOS_CTRL_EXTENDED_XLAT      0x0002
1194  #define BIOS_CTRL_GT_2_DISK          0x0004
1195  #define BIOS_CTRL_BIOS_REMOVABLE     0x0008
1196  #define BIOS_CTRL_BOOTABLE_CD        0x0010
1197  #define BIOS_CTRL_MULTIPLE_LUN       0x0040
1198  #define BIOS_CTRL_DISPLAY_MSG        0x0080
1199  #define BIOS_CTRL_NO_SCAM            0x0100
1200  #define BIOS_CTRL_RESET_SCSI_BUS     0x0200
1201  #define BIOS_CTRL_INIT_VERBOSE       0x0800
1202  #define BIOS_CTRL_SCSI_PARITY        0x1000
1203  #define BIOS_CTRL_AIPP_DIS           0x2000
1204  
1205  #define ADV_3550_MEMSIZE   0x2000	/* 8 KB Internal Memory */
1206  
1207  #define ADV_38C0800_MEMSIZE  0x4000	/* 16 KB Internal Memory */
1208  
1209  /*
1210   * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is
1211   * a special 16K Adv Library and Microcode version. After the issue is
1212   * resolved, should restore 32K support.
1213   *
1214   * #define ADV_38C1600_MEMSIZE  0x8000L   * 32 KB Internal Memory *
1215   */
1216  #define ADV_38C1600_MEMSIZE  0x4000	/* 16 KB Internal Memory */
1217  
1218  /*
1219   * Byte I/O register address from base of 'iop_base'.
1220   */
1221  #define IOPB_INTR_STATUS_REG    0x00
1222  #define IOPB_CHIP_ID_1          0x01
1223  #define IOPB_INTR_ENABLES       0x02
1224  #define IOPB_CHIP_TYPE_REV      0x03
1225  #define IOPB_RES_ADDR_4         0x04
1226  #define IOPB_RES_ADDR_5         0x05
1227  #define IOPB_RAM_DATA           0x06
1228  #define IOPB_RES_ADDR_7         0x07
1229  #define IOPB_FLAG_REG           0x08
1230  #define IOPB_RES_ADDR_9         0x09
1231  #define IOPB_RISC_CSR           0x0A
1232  #define IOPB_RES_ADDR_B         0x0B
1233  #define IOPB_RES_ADDR_C         0x0C
1234  #define IOPB_RES_ADDR_D         0x0D
1235  #define IOPB_SOFT_OVER_WR       0x0E
1236  #define IOPB_RES_ADDR_F         0x0F
1237  #define IOPB_MEM_CFG            0x10
1238  #define IOPB_RES_ADDR_11        0x11
1239  #define IOPB_GPIO_DATA          0x12
1240  #define IOPB_RES_ADDR_13        0x13
1241  #define IOPB_FLASH_PAGE         0x14
1242  #define IOPB_RES_ADDR_15        0x15
1243  #define IOPB_GPIO_CNTL          0x16
1244  #define IOPB_RES_ADDR_17        0x17
1245  #define IOPB_FLASH_DATA         0x18
1246  #define IOPB_RES_ADDR_19        0x19
1247  #define IOPB_RES_ADDR_1A        0x1A
1248  #define IOPB_RES_ADDR_1B        0x1B
1249  #define IOPB_RES_ADDR_1C        0x1C
1250  #define IOPB_RES_ADDR_1D        0x1D
1251  #define IOPB_RES_ADDR_1E        0x1E
1252  #define IOPB_RES_ADDR_1F        0x1F
1253  #define IOPB_DMA_CFG0           0x20
1254  #define IOPB_DMA_CFG1           0x21
1255  #define IOPB_TICKLE             0x22
1256  #define IOPB_DMA_REG_WR         0x23
1257  #define IOPB_SDMA_STATUS        0x24
1258  #define IOPB_SCSI_BYTE_CNT      0x25
1259  #define IOPB_HOST_BYTE_CNT      0x26
1260  #define IOPB_BYTE_LEFT_TO_XFER  0x27
1261  #define IOPB_BYTE_TO_XFER_0     0x28
1262  #define IOPB_BYTE_TO_XFER_1     0x29
1263  #define IOPB_BYTE_TO_XFER_2     0x2A
1264  #define IOPB_BYTE_TO_XFER_3     0x2B
1265  #define IOPB_ACC_GRP            0x2C
1266  #define IOPB_RES_ADDR_2D        0x2D
1267  #define IOPB_DEV_ID             0x2E
1268  #define IOPB_RES_ADDR_2F        0x2F
1269  #define IOPB_SCSI_DATA          0x30
1270  #define IOPB_RES_ADDR_31        0x31
1271  #define IOPB_RES_ADDR_32        0x32
1272  #define IOPB_SCSI_DATA_HSHK     0x33
1273  #define IOPB_SCSI_CTRL          0x34
1274  #define IOPB_RES_ADDR_35        0x35
1275  #define IOPB_RES_ADDR_36        0x36
1276  #define IOPB_RES_ADDR_37        0x37
1277  #define IOPB_RAM_BIST           0x38
1278  #define IOPB_PLL_TEST           0x39
1279  #define IOPB_PCI_INT_CFG        0x3A
1280  #define IOPB_RES_ADDR_3B        0x3B
1281  #define IOPB_RFIFO_CNT          0x3C
1282  #define IOPB_RES_ADDR_3D        0x3D
1283  #define IOPB_RES_ADDR_3E        0x3E
1284  #define IOPB_RES_ADDR_3F        0x3F
1285  
1286  /*
1287   * Word I/O register address from base of 'iop_base'.
1288   */
1289  #define IOPW_CHIP_ID_0          0x00	/* CID0  */
1290  #define IOPW_CTRL_REG           0x02	/* CC    */
1291  #define IOPW_RAM_ADDR           0x04	/* LA    */
1292  #define IOPW_RAM_DATA           0x06	/* LD    */
1293  #define IOPW_RES_ADDR_08        0x08
1294  #define IOPW_RISC_CSR           0x0A	/* CSR   */
1295  #define IOPW_SCSI_CFG0          0x0C	/* CFG0  */
1296  #define IOPW_SCSI_CFG1          0x0E	/* CFG1  */
1297  #define IOPW_RES_ADDR_10        0x10
1298  #define IOPW_SEL_MASK           0x12	/* SM    */
1299  #define IOPW_RES_ADDR_14        0x14
1300  #define IOPW_FLASH_ADDR         0x16	/* FA    */
1301  #define IOPW_RES_ADDR_18        0x18
1302  #define IOPW_EE_CMD             0x1A	/* EC    */
1303  #define IOPW_EE_DATA            0x1C	/* ED    */
1304  #define IOPW_SFIFO_CNT          0x1E	/* SFC   */
1305  #define IOPW_RES_ADDR_20        0x20
1306  #define IOPW_Q_BASE             0x22	/* QB    */
1307  #define IOPW_QP                 0x24	/* QP    */
1308  #define IOPW_IX                 0x26	/* IX    */
1309  #define IOPW_SP                 0x28	/* SP    */
1310  #define IOPW_PC                 0x2A	/* PC    */
1311  #define IOPW_RES_ADDR_2C        0x2C
1312  #define IOPW_RES_ADDR_2E        0x2E
1313  #define IOPW_SCSI_DATA          0x30	/* SD    */
1314  #define IOPW_SCSI_DATA_HSHK     0x32	/* SDH   */
1315  #define IOPW_SCSI_CTRL          0x34	/* SC    */
1316  #define IOPW_HSHK_CFG           0x36	/* HCFG  */
1317  #define IOPW_SXFR_STATUS        0x36	/* SXS   */
1318  #define IOPW_SXFR_CNTL          0x38	/* SXL   */
1319  #define IOPW_SXFR_CNTH          0x3A	/* SXH   */
1320  #define IOPW_RES_ADDR_3C        0x3C
1321  #define IOPW_RFIFO_DATA         0x3E	/* RFD   */
1322  
1323  /*
1324   * Doubleword I/O register address from base of 'iop_base'.
1325   */
1326  #define IOPDW_RES_ADDR_0         0x00
1327  #define IOPDW_RAM_DATA           0x04
1328  #define IOPDW_RES_ADDR_8         0x08
1329  #define IOPDW_RES_ADDR_C         0x0C
1330  #define IOPDW_RES_ADDR_10        0x10
1331  #define IOPDW_COMMA              0x14
1332  #define IOPDW_COMMB              0x18
1333  #define IOPDW_RES_ADDR_1C        0x1C
1334  #define IOPDW_SDMA_ADDR0         0x20
1335  #define IOPDW_SDMA_ADDR1         0x24
1336  #define IOPDW_SDMA_COUNT         0x28
1337  #define IOPDW_SDMA_ERROR         0x2C
1338  #define IOPDW_RDMA_ADDR0         0x30
1339  #define IOPDW_RDMA_ADDR1         0x34
1340  #define IOPDW_RDMA_COUNT         0x38
1341  #define IOPDW_RDMA_ERROR         0x3C
1342  
1343  #define ADV_CHIP_ID_BYTE         0x25
1344  #define ADV_CHIP_ID_WORD         0x04C1
1345  
1346  #define ADV_INTR_ENABLE_HOST_INTR                   0x01
1347  #define ADV_INTR_ENABLE_SEL_INTR                    0x02
1348  #define ADV_INTR_ENABLE_DPR_INTR                    0x04
1349  #define ADV_INTR_ENABLE_RTA_INTR                    0x08
1350  #define ADV_INTR_ENABLE_RMA_INTR                    0x10
1351  #define ADV_INTR_ENABLE_RST_INTR                    0x20
1352  #define ADV_INTR_ENABLE_DPE_INTR                    0x40
1353  #define ADV_INTR_ENABLE_GLOBAL_INTR                 0x80
1354  
1355  #define ADV_INTR_STATUS_INTRA            0x01
1356  #define ADV_INTR_STATUS_INTRB            0x02
1357  #define ADV_INTR_STATUS_INTRC            0x04
1358  
1359  #define ADV_RISC_CSR_STOP           (0x0000)
1360  #define ADV_RISC_TEST_COND          (0x2000)
1361  #define ADV_RISC_CSR_RUN            (0x4000)
1362  #define ADV_RISC_CSR_SINGLE_STEP    (0x8000)
1363  
1364  #define ADV_CTRL_REG_HOST_INTR      0x0100
1365  #define ADV_CTRL_REG_SEL_INTR       0x0200
1366  #define ADV_CTRL_REG_DPR_INTR       0x0400
1367  #define ADV_CTRL_REG_RTA_INTR       0x0800
1368  #define ADV_CTRL_REG_RMA_INTR       0x1000
1369  #define ADV_CTRL_REG_RES_BIT14      0x2000
1370  #define ADV_CTRL_REG_DPE_INTR       0x4000
1371  #define ADV_CTRL_REG_POWER_DONE     0x8000
1372  #define ADV_CTRL_REG_ANY_INTR       0xFF00
1373  
1374  #define ADV_CTRL_REG_CMD_RESET             0x00C6
1375  #define ADV_CTRL_REG_CMD_WR_IO_REG         0x00C5
1376  #define ADV_CTRL_REG_CMD_RD_IO_REG         0x00C4
1377  #define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE  0x00C3
1378  #define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE  0x00C2
1379  
1380  #define ADV_TICKLE_NOP                      0x00
1381  #define ADV_TICKLE_A                        0x01
1382  #define ADV_TICKLE_B                        0x02
1383  #define ADV_TICKLE_C                        0x03
1384  
1385  #define AdvIsIntPending(port) \
1386      (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR)
1387  
1388  /*
1389   * SCSI_CFG0 Register bit definitions
1390   */
1391  #define TIMER_MODEAB    0xC000	/* Watchdog, Second, and Select. Timer Ctrl. */
1392  #define PARITY_EN       0x2000	/* Enable SCSI Parity Error detection */
1393  #define EVEN_PARITY     0x1000	/* Select Even Parity */
1394  #define WD_LONG         0x0800	/* Watchdog Interval, 1: 57 min, 0: 13 sec */
1395  #define QUEUE_128       0x0400	/* Queue Size, 1: 128 byte, 0: 64 byte */
1396  #define PRIM_MODE       0x0100	/* Primitive SCSI mode */
1397  #define SCAM_EN         0x0080	/* Enable SCAM selection */
1398  #define SEL_TMO_LONG    0x0040	/* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */
1399  #define CFRM_ID         0x0020	/* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */
1400  #define OUR_ID_EN       0x0010	/* Enable OUR_ID bits */
1401  #define OUR_ID          0x000F	/* SCSI ID */
1402  
1403  /*
1404   * SCSI_CFG1 Register bit definitions
1405   */
1406  #define BIG_ENDIAN      0x8000	/* Enable Big Endian Mode MIO:15, EEP:15 */
1407  #define TERM_POL        0x2000	/* Terminator Polarity Ctrl. MIO:13, EEP:13 */
1408  #define SLEW_RATE       0x1000	/* SCSI output buffer slew rate */
1409  #define FILTER_SEL      0x0C00	/* Filter Period Selection */
1410  #define  FLTR_DISABLE    0x0000	/* Input Filtering Disabled */
1411  #define  FLTR_11_TO_20NS 0x0800	/* Input Filtering 11ns to 20ns */
1412  #define  FLTR_21_TO_39NS 0x0C00	/* Input Filtering 21ns to 39ns */
1413  #define ACTIVE_DBL      0x0200	/* Disable Active Negation */
1414  #define DIFF_MODE       0x0100	/* SCSI differential Mode (Read-Only) */
1415  #define DIFF_SENSE      0x0080	/* 1: No SE cables, 0: SE cable (Read-Only) */
1416  #define TERM_CTL_SEL    0x0040	/* Enable TERM_CTL_H and TERM_CTL_L */
1417  #define TERM_CTL        0x0030	/* External SCSI Termination Bits */
1418  #define  TERM_CTL_H      0x0020	/* Enable External SCSI Upper Termination */
1419  #define  TERM_CTL_L      0x0010	/* Enable External SCSI Lower Termination */
1420  #define CABLE_DETECT    0x000F	/* External SCSI Cable Connection Status */
1421  
1422  /*
1423   * Addendum for ASC-38C0800 Chip
1424   *
1425   * The ASC-38C1600 Chip uses the same definitions except that the
1426   * bus mode override bits [12:10] have been moved to byte register
1427   * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in
1428   * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV)
1429   * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only.
1430   * Also each ASC-38C1600 function or channel uses only cable bits [5:4]
1431   * and [1:0]. Bits [14], [7:6], [3:2] are unused.
1432   */
1433  #define DIS_TERM_DRV    0x4000	/* 1: Read c_det[3:0], 0: cannot read */
1434  #define HVD_LVD_SE      0x1C00	/* Device Detect Bits */
1435  #define  HVD             0x1000	/* HVD Device Detect */
1436  #define  LVD             0x0800	/* LVD Device Detect */
1437  #define  SE              0x0400	/* SE Device Detect */
1438  #define TERM_LVD        0x00C0	/* LVD Termination Bits */
1439  #define  TERM_LVD_HI     0x0080	/* Enable LVD Upper Termination */
1440  #define  TERM_LVD_LO     0x0040	/* Enable LVD Lower Termination */
1441  #define TERM_SE         0x0030	/* SE Termination Bits */
1442  #define  TERM_SE_HI      0x0020	/* Enable SE Upper Termination */
1443  #define  TERM_SE_LO      0x0010	/* Enable SE Lower Termination */
1444  #define C_DET_LVD       0x000C	/* LVD Cable Detect Bits */
1445  #define  C_DET3          0x0008	/* Cable Detect for LVD External Wide */
1446  #define  C_DET2          0x0004	/* Cable Detect for LVD Internal Wide */
1447  #define C_DET_SE        0x0003	/* SE Cable Detect Bits */
1448  #define  C_DET1          0x0002	/* Cable Detect for SE Internal Wide */
1449  #define  C_DET0          0x0001	/* Cable Detect for SE Internal Narrow */
1450  
1451  #define CABLE_ILLEGAL_A 0x7
1452      /* x 0 0 0  | on  on | Illegal (all 3 connectors are used) */
1453  
1454  #define CABLE_ILLEGAL_B 0xB
1455      /* 0 x 0 0  | on  on | Illegal (all 3 connectors are used) */
1456  
1457  /*
1458   * MEM_CFG Register bit definitions
1459   */
1460  #define BIOS_EN         0x40	/* BIOS Enable MIO:14,EEP:14 */
1461  #define FAST_EE_CLK     0x20	/* Diagnostic Bit */
1462  #define RAM_SZ          0x1C	/* Specify size of RAM to RISC */
1463  #define  RAM_SZ_2KB      0x00	/* 2 KB */
1464  #define  RAM_SZ_4KB      0x04	/* 4 KB */
1465  #define  RAM_SZ_8KB      0x08	/* 8 KB */
1466  #define  RAM_SZ_16KB     0x0C	/* 16 KB */
1467  #define  RAM_SZ_32KB     0x10	/* 32 KB */
1468  #define  RAM_SZ_64KB     0x14	/* 64 KB */
1469  
1470  /*
1471   * DMA_CFG0 Register bit definitions
1472   *
1473   * This register is only accessible to the host.
1474   */
1475  #define BC_THRESH_ENB   0x80	/* PCI DMA Start Conditions */
1476  #define FIFO_THRESH     0x70	/* PCI DMA FIFO Threshold */
1477  #define  FIFO_THRESH_16B  0x00	/* 16 bytes */
1478  #define  FIFO_THRESH_32B  0x20	/* 32 bytes */
1479  #define  FIFO_THRESH_48B  0x30	/* 48 bytes */
1480  #define  FIFO_THRESH_64B  0x40	/* 64 bytes */
1481  #define  FIFO_THRESH_80B  0x50	/* 80 bytes (default) */
1482  #define  FIFO_THRESH_96B  0x60	/* 96 bytes */
1483  #define  FIFO_THRESH_112B 0x70	/* 112 bytes */
1484  #define START_CTL       0x0C	/* DMA start conditions */
1485  #define  START_CTL_TH    0x00	/* Wait threshold level (default) */
1486  #define  START_CTL_ID    0x04	/* Wait SDMA/SBUS idle */
1487  #define  START_CTL_THID  0x08	/* Wait threshold and SDMA/SBUS idle */
1488  #define  START_CTL_EMFU  0x0C	/* Wait SDMA FIFO empty/full */
1489  #define READ_CMD        0x03	/* Memory Read Method */
1490  #define  READ_CMD_MR     0x00	/* Memory Read */
1491  #define  READ_CMD_MRL    0x02	/* Memory Read Long */
1492  #define  READ_CMD_MRM    0x03	/* Memory Read Multiple (default) */
1493  
1494  /*
1495   * ASC-38C0800 RAM BIST Register bit definitions
1496   */
1497  #define RAM_TEST_MODE         0x80
1498  #define PRE_TEST_MODE         0x40
1499  #define NORMAL_MODE           0x00
1500  #define RAM_TEST_DONE         0x10
1501  #define RAM_TEST_STATUS       0x0F
1502  #define  RAM_TEST_HOST_ERROR   0x08
1503  #define  RAM_TEST_INTRAM_ERROR 0x04
1504  #define  RAM_TEST_RISC_ERROR   0x02
1505  #define  RAM_TEST_SCSI_ERROR   0x01
1506  #define  RAM_TEST_SUCCESS      0x00
1507  #define PRE_TEST_VALUE        0x05
1508  #define NORMAL_VALUE          0x00
1509  
1510  /*
1511   * ASC38C1600 Definitions
1512   *
1513   * IOPB_PCI_INT_CFG Bit Field Definitions
1514   */
1515  
1516  #define INTAB_LD        0x80	/* Value loaded from EEPROM Bit 11. */
1517  
1518  /*
1519   * Bit 1 can be set to change the interrupt for the Function to operate in
1520   * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in
1521   * Open Drain mode. Both functions of the ASC38C1600 must be set to the same
1522   * mode, otherwise the operating mode is undefined.
1523   */
1524  #define TOTEMPOLE       0x02
1525  
1526  /*
1527   * Bit 0 can be used to change the Int Pin for the Function. The value is
1528   * 0 by default for both Functions with Function 0 using INT A and Function
1529   * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set,
1530   * INT A is used.
1531   *
1532   * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin
1533   * value specified in the PCI Configuration Space.
1534   */
1535  #define INTAB           0x01
1536  
1537  /*
1538   * Adv Library Status Definitions
1539   */
1540  #define ADV_TRUE        1
1541  #define ADV_FALSE       0
1542  #define ADV_SUCCESS     1
1543  #define ADV_BUSY        0
1544  #define ADV_ERROR       (-1)
1545  
1546  /*
1547   * ADV_DVC_VAR 'warn_code' values
1548   */
1549  #define ASC_WARN_BUSRESET_ERROR         0x0001	/* SCSI Bus Reset error */
1550  #define ASC_WARN_EEPROM_CHKSUM          0x0002	/* EEP check sum error */
1551  #define ASC_WARN_EEPROM_TERMINATION     0x0004	/* EEP termination bad field */
1552  #define ASC_WARN_ERROR                  0xFFFF	/* ADV_ERROR return */
1553  
1554  #define ADV_MAX_TID                     15	/* max. target identifier */
1555  #define ADV_MAX_LUN                     7	/* max. logical unit number */
1556  
1557  /*
1558   * Fixed locations of microcode operating variables.
1559   */
1560  #define ASC_MC_CODE_BEGIN_ADDR          0x0028	/* microcode start address */
1561  #define ASC_MC_CODE_END_ADDR            0x002A	/* microcode end address */
1562  #define ASC_MC_CODE_CHK_SUM             0x002C	/* microcode code checksum */
1563  #define ASC_MC_VERSION_DATE             0x0038	/* microcode version */
1564  #define ASC_MC_VERSION_NUM              0x003A	/* microcode number */
1565  #define ASC_MC_BIOSMEM                  0x0040	/* BIOS RISC Memory Start */
1566  #define ASC_MC_BIOSLEN                  0x0050	/* BIOS RISC Memory Length */
1567  #define ASC_MC_BIOS_SIGNATURE           0x0058	/* BIOS Signature 0x55AA */
1568  #define ASC_MC_BIOS_VERSION             0x005A	/* BIOS Version (2 bytes) */
1569  #define ASC_MC_SDTR_SPEED1              0x0090	/* SDTR Speed for TID 0-3 */
1570  #define ASC_MC_SDTR_SPEED2              0x0092	/* SDTR Speed for TID 4-7 */
1571  #define ASC_MC_SDTR_SPEED3              0x0094	/* SDTR Speed for TID 8-11 */
1572  #define ASC_MC_SDTR_SPEED4              0x0096	/* SDTR Speed for TID 12-15 */
1573  #define ASC_MC_CHIP_TYPE                0x009A
1574  #define ASC_MC_INTRB_CODE               0x009B
1575  #define ASC_MC_WDTR_ABLE                0x009C
1576  #define ASC_MC_SDTR_ABLE                0x009E
1577  #define ASC_MC_TAGQNG_ABLE              0x00A0
1578  #define ASC_MC_DISC_ENABLE              0x00A2
1579  #define ASC_MC_IDLE_CMD_STATUS          0x00A4
1580  #define ASC_MC_IDLE_CMD                 0x00A6
1581  #define ASC_MC_IDLE_CMD_PARAMETER       0x00A8
1582  #define ASC_MC_DEFAULT_SCSI_CFG0        0x00AC
1583  #define ASC_MC_DEFAULT_SCSI_CFG1        0x00AE
1584  #define ASC_MC_DEFAULT_MEM_CFG          0x00B0
1585  #define ASC_MC_DEFAULT_SEL_MASK         0x00B2
1586  #define ASC_MC_SDTR_DONE                0x00B6
1587  #define ASC_MC_NUMBER_OF_QUEUED_CMD     0x00C0
1588  #define ASC_MC_NUMBER_OF_MAX_CMD        0x00D0
1589  #define ASC_MC_DEVICE_HSHK_CFG_TABLE    0x0100
1590  #define ASC_MC_CONTROL_FLAG             0x0122	/* Microcode control flag. */
1591  #define ASC_MC_WDTR_DONE                0x0124
1592  #define ASC_MC_CAM_MODE_MASK            0x015E	/* CAM mode TID bitmask. */
1593  #define ASC_MC_ICQ                      0x0160
1594  #define ASC_MC_IRQ                      0x0164
1595  #define ASC_MC_PPR_ABLE                 0x017A
1596  
1597  /*
1598   * BIOS LRAM variable absolute offsets.
1599   */
1600  #define BIOS_CODESEG    0x54
1601  #define BIOS_CODELEN    0x56
1602  #define BIOS_SIGNATURE  0x58
1603  #define BIOS_VERSION    0x5A
1604  
1605  /*
1606   * Microcode Control Flags
1607   *
1608   * Flags set by the Adv Library in RISC variable 'control_flag' (0x122)
1609   * and handled by the microcode.
1610   */
1611  #define CONTROL_FLAG_IGNORE_PERR        0x0001	/* Ignore DMA Parity Errors */
1612  #define CONTROL_FLAG_ENABLE_AIPP        0x0002	/* Enabled AIPP checking. */
1613  
1614  /*
1615   * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format
1616   */
1617  #define HSHK_CFG_WIDE_XFR       0x8000
1618  #define HSHK_CFG_RATE           0x0F00
1619  #define HSHK_CFG_OFFSET         0x001F
1620  
1621  #define ASC_DEF_MAX_HOST_QNG    0xFD	/* Max. number of host commands (253) */
1622  #define ASC_DEF_MIN_HOST_QNG    0x10	/* Min. number of host commands (16) */
1623  #define ASC_DEF_MAX_DVC_QNG     0x3F	/* Max. number commands per device (63) */
1624  #define ASC_DEF_MIN_DVC_QNG     0x04	/* Min. number commands per device (4) */
1625  
1626  #define ASC_QC_DATA_CHECK  0x01	/* Require ASC_QC_DATA_OUT set or clear. */
1627  #define ASC_QC_DATA_OUT    0x02	/* Data out DMA transfer. */
1628  #define ASC_QC_START_MOTOR 0x04	/* Send auto-start motor before request. */
1629  #define ASC_QC_NO_OVERRUN  0x08	/* Don't report overrun. */
1630  #define ASC_QC_FREEZE_TIDQ 0x10	/* Freeze TID queue after request. XXX TBD */
1631  
1632  #define ASC_QSC_NO_DISC     0x01	/* Don't allow disconnect for request. */
1633  #define ASC_QSC_NO_TAGMSG   0x02	/* Don't allow tag queuing for request. */
1634  #define ASC_QSC_NO_SYNC     0x04	/* Don't use Synch. transfer on request. */
1635  #define ASC_QSC_NO_WIDE     0x08	/* Don't use Wide transfer on request. */
1636  #define ASC_QSC_REDO_DTR    0x10	/* Renegotiate WDTR/SDTR before request. */
1637  /*
1638   * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or
1639   * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used.
1640   */
1641  #define ASC_QSC_HEAD_TAG    0x40	/* Use Head Tag Message (0x21). */
1642  #define ASC_QSC_ORDERED_TAG 0x80	/* Use Ordered Tag Message (0x22). */
1643  
1644  /*
1645   * All fields here are accessed by the board microcode and need to be
1646   * little-endian.
1647   */
1648  typedef struct adv_carr_t {
1649  	__le32 carr_va;	/* Carrier Virtual Address */
1650  	__le32 carr_pa;	/* Carrier Physical Address */
1651  	__le32 areq_vpa;	/* ADV_SCSI_REQ_Q Virtual or Physical Address */
1652  	/*
1653  	 * next_vpa [31:4]            Carrier Virtual or Physical Next Pointer
1654  	 *
1655  	 * next_vpa [3:1]             Reserved Bits
1656  	 * next_vpa [0]               Done Flag set in Response Queue.
1657  	 */
1658  	__le32 next_vpa;
1659  } ADV_CARR_T;
1660  
1661  /*
1662   * Mask used to eliminate low 4 bits of carrier 'next_vpa' field.
1663   */
1664  #define ADV_NEXT_VPA_MASK       0xFFFFFFF0
1665  
1666  #define ADV_RQ_DONE             0x00000001
1667  #define ADV_RQ_GOOD             0x00000002
1668  #define ADV_CQ_STOPPER          0x00000000
1669  
1670  #define ADV_GET_CARRP(carrp) ((carrp) & ADV_NEXT_VPA_MASK)
1671  
1672  /*
1673   * Each carrier is 64 bytes, and we need three additional
1674   * carrier for icq, irq, and the termination carrier.
1675   */
1676  #define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 3)
1677  
1678  #define ADV_CARRIER_BUFSIZE \
1679  	(ADV_CARRIER_COUNT * sizeof(ADV_CARR_T))
1680  
1681  #define ADV_CHIP_ASC3550          0x01	/* Ultra-Wide IC */
1682  #define ADV_CHIP_ASC38C0800       0x02	/* Ultra2-Wide/LVD IC */
1683  #define ADV_CHIP_ASC38C1600       0x03	/* Ultra3-Wide/LVD2 IC */
1684  
1685  /*
1686   * Adapter temporary configuration structure
1687   *
1688   * This structure can be discarded after initialization. Don't add
1689   * fields here needed after initialization.
1690   *
1691   * Field naming convention:
1692   *
1693   *  *_enable indicates the field enables or disables a feature. The
1694   *  value of the field is never reset.
1695   */
1696  typedef struct adv_dvc_cfg {
1697  	ushort disc_enable;	/* enable disconnection */
1698  	uchar chip_version;	/* chip version */
1699  	uchar termination;	/* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */
1700  	ushort control_flag;	/* Microcode Control Flag */
1701  	ushort mcode_date;	/* Microcode date */
1702  	ushort mcode_version;	/* Microcode version */
1703  	ushort serial1;		/* EEPROM serial number word 1 */
1704  	ushort serial2;		/* EEPROM serial number word 2 */
1705  	ushort serial3;		/* EEPROM serial number word 3 */
1706  } ADV_DVC_CFG;
1707  
1708  struct adv_dvc_var;
1709  struct adv_scsi_req_q;
1710  
1711  typedef struct adv_sg_block {
1712  	uchar reserved1;
1713  	uchar reserved2;
1714  	uchar reserved3;
1715  	uchar sg_cnt;		/* Valid entries in block. */
1716  	__le32 sg_ptr;	/* Pointer to next sg block. */
1717  	struct {
1718  		__le32 sg_addr;	/* SG element address. */
1719  		__le32 sg_count;	/* SG element count. */
1720  	} sg_list[NO_OF_SG_PER_BLOCK];
1721  } ADV_SG_BLOCK;
1722  
1723  /*
1724   * ADV_SCSI_REQ_Q - microcode request structure
1725   *
1726   * All fields in this structure up to byte 60 are used by the microcode.
1727   * The microcode makes assumptions about the size and ordering of fields
1728   * in this structure. Do not change the structure definition here without
1729   * coordinating the change with the microcode.
1730   *
1731   * All fields accessed by microcode must be maintained in little_endian
1732   * order.
1733   */
1734  typedef struct adv_scsi_req_q {
1735  	uchar cntl;		/* Ucode flags and state (ASC_MC_QC_*). */
1736  	uchar target_cmd;
1737  	uchar target_id;	/* Device target identifier. */
1738  	uchar target_lun;	/* Device target logical unit number. */
1739  	__le32 data_addr;	/* Data buffer physical address. */
1740  	__le32 data_cnt;	/* Data count. Ucode sets to residual. */
1741  	__le32 sense_addr;
1742  	__le32 carr_pa;
1743  	uchar mflag;
1744  	uchar sense_len;
1745  	uchar cdb_len;		/* SCSI CDB length. Must <= 16 bytes. */
1746  	uchar scsi_cntl;
1747  	uchar done_status;	/* Completion status. */
1748  	uchar scsi_status;	/* SCSI status byte. */
1749  	uchar host_status;	/* Ucode host status. */
1750  	uchar sg_working_ix;
1751  	uchar cdb[12];		/* SCSI CDB bytes 0-11. */
1752  	__le32 sg_real_addr;	/* SG list physical address. */
1753  	__le32 scsiq_rptr;
1754  	uchar cdb16[4];		/* SCSI CDB bytes 12-15. */
1755  	__le32 scsiq_ptr;
1756  	__le32 carr_va;
1757  	/*
1758  	 * End of microcode structure - 60 bytes. The rest of the structure
1759  	 * is used by the Adv Library and ignored by the microcode.
1760  	 */
1761  	u32 srb_tag;
1762  	ADV_SG_BLOCK *sg_list_ptr;	/* SG list virtual address. */
1763  } ADV_SCSI_REQ_Q;
1764  
1765  /*
1766   * The following two structures are used to process Wide Board requests.
1767   *
1768   * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library
1769   * and microcode with the ADV_SCSI_REQ_Q field 'srb_tag' set to the
1770   * SCSI request tag. The adv_req_t structure 'cmndp' field in turn points
1771   * to the Mid-Level SCSI request structure.
1772   *
1773   * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each
1774   * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux
1775   * up to 255 scatter-gather elements may be used per request or
1776   * ADV_SCSI_REQ_Q.
1777   *
1778   * Both structures must be 32 byte aligned.
1779   */
1780  typedef struct adv_sgblk {
1781  	ADV_SG_BLOCK sg_block;	/* Sgblock structure. */
1782  	dma_addr_t sg_addr;	/* Physical address */
1783  	struct adv_sgblk *next_sgblkp;	/* Next scatter-gather structure. */
1784  } adv_sgblk_t;
1785  
1786  typedef struct adv_req {
1787  	ADV_SCSI_REQ_Q scsi_req_q;	/* Adv Library request structure. */
1788  	uchar align[24];	/* Request structure padding. */
1789  	struct scsi_cmnd *cmndp;	/* Mid-Level SCSI command pointer. */
1790  	dma_addr_t req_addr;
1791  	adv_sgblk_t *sgblkp;	/* Adv Library scatter-gather pointer. */
1792  } adv_req_t __aligned(32);
1793  
1794  /*
1795   * Adapter operation variable structure.
1796   *
1797   * One structure is required per host adapter.
1798   *
1799   * Field naming convention:
1800   *
1801   *  *_able indicates both whether a feature should be enabled or disabled
1802   *  and whether a device is capable of the feature. At initialization
1803   *  this field may be set, but later if a device is found to be incapable
1804   *  of the feature, the field is cleared.
1805   */
1806  typedef struct adv_dvc_var {
1807  	AdvPortAddr iop_base;	/* I/O port address */
1808  	ushort err_code;	/* fatal error code */
1809  	ushort bios_ctrl;	/* BIOS control word, EEPROM word 12 */
1810  	ushort wdtr_able;	/* try WDTR for a device */
1811  	ushort sdtr_able;	/* try SDTR for a device */
1812  	ushort ultra_able;	/* try SDTR Ultra speed for a device */
1813  	ushort sdtr_speed1;	/* EEPROM SDTR Speed for TID 0-3   */
1814  	ushort sdtr_speed2;	/* EEPROM SDTR Speed for TID 4-7   */
1815  	ushort sdtr_speed3;	/* EEPROM SDTR Speed for TID 8-11  */
1816  	ushort sdtr_speed4;	/* EEPROM SDTR Speed for TID 12-15 */
1817  	ushort tagqng_able;	/* try tagged queuing with a device */
1818  	ushort ppr_able;	/* PPR message capable per TID bitmask. */
1819  	uchar max_dvc_qng;	/* maximum number of tagged commands per device */
1820  	ushort start_motor;	/* start motor command allowed */
1821  	uchar scsi_reset_wait;	/* delay in seconds after scsi bus reset */
1822  	uchar chip_no;		/* should be assigned by caller */
1823  	uchar max_host_qng;	/* maximum number of Q'ed command allowed */
1824  	ushort no_scam;		/* scam_tolerant of EEPROM */
1825  	struct asc_board *drv_ptr;	/* driver pointer to private structure */
1826  	uchar chip_scsi_id;	/* chip SCSI target ID */
1827  	uchar chip_type;
1828  	uchar bist_err_code;
1829  	ADV_CARR_T *carrier;
1830  	ADV_CARR_T *carr_freelist;	/* Carrier free list. */
1831  	dma_addr_t carrier_addr;
1832  	ADV_CARR_T *icq_sp;	/* Initiator command queue stopper pointer. */
1833  	ADV_CARR_T *irq_sp;	/* Initiator response queue stopper pointer. */
1834  	ushort carr_pending_cnt;	/* Count of pending carriers. */
1835  	/*
1836  	 * Note: The following fields will not be used after initialization. The
1837  	 * driver may discard the buffer after initialization is done.
1838  	 */
1839  	ADV_DVC_CFG *cfg;	/* temporary configuration structure  */
1840  } ADV_DVC_VAR;
1841  
1842  /*
1843   * Microcode idle loop commands
1844   */
1845  #define IDLE_CMD_COMPLETED           0
1846  #define IDLE_CMD_STOP_CHIP           0x0001
1847  #define IDLE_CMD_STOP_CHIP_SEND_INT  0x0002
1848  #define IDLE_CMD_SEND_INT            0x0004
1849  #define IDLE_CMD_ABORT               0x0008
1850  #define IDLE_CMD_DEVICE_RESET        0x0010
1851  #define IDLE_CMD_SCSI_RESET_START    0x0020	/* Assert SCSI Bus Reset */
1852  #define IDLE_CMD_SCSI_RESET_END      0x0040	/* Deassert SCSI Bus Reset */
1853  #define IDLE_CMD_SCSIREQ             0x0080
1854  
1855  #define IDLE_CMD_STATUS_SUCCESS      0x0001
1856  #define IDLE_CMD_STATUS_FAILURE      0x0002
1857  
1858  /*
1859   * AdvSendIdleCmd() flag definitions.
1860   */
1861  #define ADV_NOWAIT     0x01
1862  
1863  /*
1864   * Wait loop time out values.
1865   */
1866  #define SCSI_WAIT_100_MSEC           100UL	/* 100 milliseconds */
1867  #define SCSI_US_PER_MSEC             1000	/* microseconds per millisecond */
1868  #define SCSI_MAX_RETRY               10	/* retry count */
1869  
1870  #define ADV_ASYNC_RDMA_FAILURE          0x01	/* Fatal RDMA failure. */
1871  #define ADV_ASYNC_SCSI_BUS_RESET_DET    0x02	/* Detected SCSI Bus Reset. */
1872  #define ADV_ASYNC_CARRIER_READY_FAILURE 0x03	/* Carrier Ready failure. */
1873  #define ADV_RDMA_IN_CARR_AND_Q_INVALID  0x04	/* RDMAed-in data invalid. */
1874  
1875  #define ADV_HOST_SCSI_BUS_RESET      0x80	/* Host Initiated SCSI Bus Reset. */
1876  
1877  /* Read byte from a register. */
1878  #define AdvReadByteRegister(iop_base, reg_off) \
1879       (ADV_MEM_READB((iop_base) + (reg_off)))
1880  
1881  /* Write byte to a register. */
1882  #define AdvWriteByteRegister(iop_base, reg_off, byte) \
1883       (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte)))
1884  
1885  /* Read word (2 bytes) from a register. */
1886  #define AdvReadWordRegister(iop_base, reg_off) \
1887       (ADV_MEM_READW((iop_base) + (reg_off)))
1888  
1889  /* Write word (2 bytes) to a register. */
1890  #define AdvWriteWordRegister(iop_base, reg_off, word) \
1891       (ADV_MEM_WRITEW((iop_base) + (reg_off), (word)))
1892  
1893  /* Write dword (4 bytes) to a register. */
1894  #define AdvWriteDWordRegister(iop_base, reg_off, dword) \
1895       (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword)))
1896  
1897  /* Read byte from LRAM. */
1898  #define AdvReadByteLram(iop_base, addr, byte) \
1899  do { \
1900      ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
1901      (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \
1902  } while (0)
1903  
1904  /* Write byte to LRAM. */
1905  #define AdvWriteByteLram(iop_base, addr, byte) \
1906      (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1907       ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte)))
1908  
1909  /* Read word (2 bytes) from LRAM. */
1910  #define AdvReadWordLram(iop_base, addr, word) \
1911  do { \
1912      ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
1913      (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \
1914  } while (0)
1915  
1916  /* Write word (2 bytes) to LRAM. */
1917  #define AdvWriteWordLram(iop_base, addr, word) \
1918      (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1919       ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
1920  
1921  /* Write little-endian double word (4 bytes) to LRAM */
1922  /* Because of unspecified C language ordering don't use auto-increment. */
1923  #define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \
1924      ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1925        ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
1926                       cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \
1927       (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \
1928        ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
1929                       cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF)))))
1930  
1931  /* Read word (2 bytes) from LRAM assuming that the address is already set. */
1932  #define AdvReadWordAutoIncLram(iop_base) \
1933       (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA))
1934  
1935  /* Write word (2 bytes) to LRAM assuming that the address is already set. */
1936  #define AdvWriteWordAutoIncLram(iop_base, word) \
1937       (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
1938  
1939  /*
1940   * Define macro to check for Condor signature.
1941   *
1942   * Evaluate to ADV_TRUE if a Condor chip is found the specified port
1943   * address 'iop_base'. Otherwise evalue to ADV_FALSE.
1944   */
1945  #define AdvFindSignature(iop_base) \
1946      (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \
1947      ADV_CHIP_ID_BYTE) && \
1948       (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \
1949      ADV_CHIP_ID_WORD)) ?  ADV_TRUE : ADV_FALSE)
1950  
1951  /*
1952   * Define macro to Return the version number of the chip at 'iop_base'.
1953   *
1954   * The second parameter 'bus_type' is currently unused.
1955   */
1956  #define AdvGetChipVersion(iop_base, bus_type) \
1957      AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV)
1958  
1959  /*
1960   * Abort an SRB in the chip's RISC Memory. The 'srb_tag' argument must
1961   * match the ADV_SCSI_REQ_Q 'srb_tag' field.
1962   *
1963   * If the request has not yet been sent to the device it will simply be
1964   * aborted from RISC memory. If the request is disconnected it will be
1965   * aborted on reselection by sending an Abort Message to the target ID.
1966   *
1967   * Return value:
1968   *      ADV_TRUE(1) - Queue was successfully aborted.
1969   *      ADV_FALSE(0) - Queue was not found on the active queue list.
1970   */
1971  #define AdvAbortQueue(asc_dvc, srb_tag) \
1972       AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \
1973  		    (ADV_DCNT) (srb_tag))
1974  
1975  /*
1976   * Send a Bus Device Reset Message to the specified target ID.
1977   *
1978   * All outstanding commands will be purged if sending the
1979   * Bus Device Reset Message is successful.
1980   *
1981   * Return Value:
1982   *      ADV_TRUE(1) - All requests on the target are purged.
1983   *      ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests
1984   *                     are not purged.
1985   */
1986  #define AdvResetDevice(asc_dvc, target_id) \
1987       AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET,	\
1988  		    (ADV_DCNT) (target_id))
1989  
1990  /*
1991   * SCSI Wide Type definition.
1992   */
1993  #define ADV_SCSI_BIT_ID_TYPE   ushort
1994  
1995  /*
1996   * AdvInitScsiTarget() 'cntl_flag' options.
1997   */
1998  #define ADV_SCAN_LUN           0x01
1999  #define ADV_CAPINFO_NOLUN      0x02
2000  
2001  /*
2002   * Convert target id to target id bit mask.
2003   */
2004  #define ADV_TID_TO_TIDMASK(tid)   (0x01 << ((tid) & ADV_MAX_TID))
2005  
2006  /*
2007   * ADV_SCSI_REQ_Q 'done_status' and 'host_status' return values.
2008   */
2009  
2010  #define QD_NO_STATUS         0x00	/* Request not completed yet. */
2011  #define QD_NO_ERROR          0x01
2012  #define QD_ABORTED_BY_HOST   0x02
2013  #define QD_WITH_ERROR        0x04
2014  
2015  #define QHSTA_NO_ERROR              0x00
2016  #define QHSTA_M_SEL_TIMEOUT         0x11
2017  #define QHSTA_M_DATA_OVER_RUN       0x12
2018  #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
2019  #define QHSTA_M_QUEUE_ABORTED       0x15
2020  #define QHSTA_M_SXFR_SDMA_ERR       0x16	/* SXFR_STATUS SCSI DMA Error */
2021  #define QHSTA_M_SXFR_SXFR_PERR      0x17	/* SXFR_STATUS SCSI Bus Parity Error */
2022  #define QHSTA_M_RDMA_PERR           0x18	/* RISC PCI DMA parity error */
2023  #define QHSTA_M_SXFR_OFF_UFLW       0x19	/* SXFR_STATUS Offset Underflow */
2024  #define QHSTA_M_SXFR_OFF_OFLW       0x20	/* SXFR_STATUS Offset Overflow */
2025  #define QHSTA_M_SXFR_WD_TMO         0x21	/* SXFR_STATUS Watchdog Timeout */
2026  #define QHSTA_M_SXFR_DESELECTED     0x22	/* SXFR_STATUS Deselected */
2027  /* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */
2028  #define QHSTA_M_SXFR_XFR_OFLW       0x12	/* SXFR_STATUS Transfer Overflow */
2029  #define QHSTA_M_SXFR_XFR_PH_ERR     0x24	/* SXFR_STATUS Transfer Phase Error */
2030  #define QHSTA_M_SXFR_UNKNOWN_ERROR  0x25	/* SXFR_STATUS Unknown Error */
2031  #define QHSTA_M_SCSI_BUS_RESET      0x30	/* Request aborted from SBR */
2032  #define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31	/* Request aborted from unsol. SBR */
2033  #define QHSTA_M_BUS_DEVICE_RESET    0x32	/* Request aborted from BDR */
2034  #define QHSTA_M_DIRECTION_ERR       0x35	/* Data Phase mismatch */
2035  #define QHSTA_M_DIRECTION_ERR_HUNG  0x36	/* Data Phase mismatch and bus hang */
2036  #define QHSTA_M_WTM_TIMEOUT         0x41
2037  #define QHSTA_M_BAD_CMPL_STATUS_IN  0x42
2038  #define QHSTA_M_NO_AUTO_REQ_SENSE   0x43
2039  #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
2040  #define QHSTA_M_INVALID_DEVICE      0x45	/* Bad target ID */
2041  #define QHSTA_M_FROZEN_TIDQ         0x46	/* TID Queue frozen. */
2042  #define QHSTA_M_SGBACKUP_ERROR      0x47	/* Scatter-Gather backup error */
2043  
2044  /* Return the address that is aligned at the next doubleword >= to 'addr'. */
2045  #define ADV_32BALIGN(addr)     (((ulong) (addr) + 0x1F) & ~0x1F)
2046  
2047  /*
2048   * Total contiguous memory needed for driver SG blocks.
2049   *
2050   * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum
2051   * number of scatter-gather elements the driver supports in a
2052   * single request.
2053   */
2054  
2055  #define ADV_SG_LIST_MAX_BYTE_SIZE \
2056           (sizeof(ADV_SG_BLOCK) * \
2057            ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK))
2058  
2059  /* struct asc_board flags */
2060  #define ASC_IS_WIDE_BOARD       0x04	/* AdvanSys Wide Board */
2061  
2062  #define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0)
2063  
2064  #define NO_ISA_DMA              0xff	/* No ISA DMA Channel Used */
2065  
2066  #define ASC_INFO_SIZE           128	/* advansys_info() line size */
2067  
2068  /* Asc Library return codes */
2069  #define ASC_TRUE        1
2070  #define ASC_FALSE       0
2071  #define ASC_NOERROR     1
2072  #define ASC_BUSY        0
2073  #define ASC_ERROR       (-1)
2074  
2075  #define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1)
2076  #ifndef ADVANSYS_STATS
2077  #define ASC_STATS_ADD(shost, counter, count)
2078  #else /* ADVANSYS_STATS */
2079  #define ASC_STATS_ADD(shost, counter, count) \
2080  	(((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count))
2081  #endif /* ADVANSYS_STATS */
2082  
2083  /* If the result wraps when calculating tenths, return 0. */
2084  #define ASC_TENTHS(num, den) \
2085      (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \
2086      0 : ((((num) * 10)/(den)) - (10 * ((num)/(den)))))
2087  
2088  /*
2089   * Display a message to the console.
2090   */
2091  #define ASC_PRINT(s) \
2092      { \
2093          printk("advansys: "); \
2094          printk(s); \
2095      }
2096  
2097  #define ASC_PRINT1(s, a1) \
2098      { \
2099          printk("advansys: "); \
2100          printk((s), (a1)); \
2101      }
2102  
2103  #define ASC_PRINT2(s, a1, a2) \
2104      { \
2105          printk("advansys: "); \
2106          printk((s), (a1), (a2)); \
2107      }
2108  
2109  #define ASC_PRINT3(s, a1, a2, a3) \
2110      { \
2111          printk("advansys: "); \
2112          printk((s), (a1), (a2), (a3)); \
2113      }
2114  
2115  #define ASC_PRINT4(s, a1, a2, a3, a4) \
2116      { \
2117          printk("advansys: "); \
2118          printk((s), (a1), (a2), (a3), (a4)); \
2119      }
2120  
2121  #ifndef ADVANSYS_DEBUG
2122  
2123  #define ASC_DBG(lvl, s...)
2124  #define ASC_DBG_PRT_SCSI_HOST(lvl, s)
2125  #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp)
2126  #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2127  #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone)
2128  #define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2129  #define ASC_DBG_PRT_HEX(lvl, name, start, length)
2130  #define ASC_DBG_PRT_CDB(lvl, cdb, len)
2131  #define ASC_DBG_PRT_SENSE(lvl, sense, len)
2132  #define ASC_DBG_PRT_INQUIRY(lvl, inq, len)
2133  
2134  #else /* ADVANSYS_DEBUG */
2135  
2136  /*
2137   * Debugging Message Levels:
2138   * 0: Errors Only
2139   * 1: High-Level Tracing
2140   * 2-N: Verbose Tracing
2141   */
2142  
2143  #define ASC_DBG(lvl, format, arg...) {					\
2144  	if (asc_dbglvl >= (lvl))					\
2145  		printk(KERN_DEBUG "%s: %s: " format, DRV_NAME,		\
2146  			__func__ , ## arg);				\
2147  }
2148  
2149  #define ASC_DBG_PRT_SCSI_HOST(lvl, s) \
2150      { \
2151          if (asc_dbglvl >= (lvl)) { \
2152              asc_prt_scsi_host(s); \
2153          } \
2154      }
2155  
2156  #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \
2157      { \
2158          if (asc_dbglvl >= (lvl)) { \
2159              asc_prt_asc_scsi_q(scsiqp); \
2160          } \
2161      }
2162  
2163  #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \
2164      { \
2165          if (asc_dbglvl >= (lvl)) { \
2166              asc_prt_asc_qdone_info(qdone); \
2167          } \
2168      }
2169  
2170  #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \
2171      { \
2172          if (asc_dbglvl >= (lvl)) { \
2173              asc_prt_adv_scsi_req_q(scsiqp); \
2174          } \
2175      }
2176  
2177  #define ASC_DBG_PRT_HEX(lvl, name, start, length) \
2178      { \
2179          if (asc_dbglvl >= (lvl)) { \
2180              asc_prt_hex((name), (start), (length)); \
2181          } \
2182      }
2183  
2184  #define ASC_DBG_PRT_CDB(lvl, cdb, len) \
2185          ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len));
2186  
2187  #define ASC_DBG_PRT_SENSE(lvl, sense, len) \
2188          ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len));
2189  
2190  #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \
2191          ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len));
2192  #endif /* ADVANSYS_DEBUG */
2193  
2194  #ifdef ADVANSYS_STATS
2195  
2196  /* Per board statistics structure */
2197  struct asc_stats {
2198  	/* Driver Entrypoint Statistics */
2199  	unsigned int queuecommand;	/* # calls to advansys_queuecommand() */
2200  	unsigned int reset;		/* # calls to advansys_eh_bus_reset() */
2201  	unsigned int biosparam;	/* # calls to advansys_biosparam() */
2202  	unsigned int interrupt;	/* # advansys_interrupt() calls */
2203  	unsigned int callback;	/* # calls to asc/adv_isr_callback() */
2204  	unsigned int done;		/* # calls to request's scsi_done function */
2205  	unsigned int build_error;	/* # asc/adv_build_req() ASC_ERROR returns. */
2206  	unsigned int adv_build_noreq;	/* # adv_build_req() adv_req_t alloc. fail. */
2207  	unsigned int adv_build_nosg;	/* # adv_build_req() adv_sgblk_t alloc. fail. */
2208  	/* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */
2209  	unsigned int exe_noerror;	/* # ASC_NOERROR returns. */
2210  	unsigned int exe_busy;	/* # ASC_BUSY returns. */
2211  	unsigned int exe_error;	/* # ASC_ERROR returns. */
2212  	unsigned int exe_unknown;	/* # unknown returns. */
2213  	/* Data Transfer Statistics */
2214  	unsigned int xfer_cnt;	/* # I/O requests received */
2215  	unsigned int xfer_elem;	/* # scatter-gather elements */
2216  	unsigned int xfer_sect;	/* # 512-byte blocks */
2217  };
2218  #endif /* ADVANSYS_STATS */
2219  
2220  /*
2221   * Structure allocated for each board.
2222   *
2223   * This structure is allocated by scsi_host_alloc() at the end
2224   * of the 'Scsi_Host' structure starting at the 'hostdata'
2225   * field. It is guaranteed to be allocated from DMA-able memory.
2226   */
2227  struct asc_board {
2228  	struct device *dev;
2229  	struct Scsi_Host *shost;
2230  	uint flags;		/* Board flags */
2231  	unsigned int irq;
2232  	union {
2233  		ASC_DVC_VAR asc_dvc_var;	/* Narrow board */
2234  		ADV_DVC_VAR adv_dvc_var;	/* Wide board */
2235  	} dvc_var;
2236  	union {
2237  		ASC_DVC_CFG asc_dvc_cfg;	/* Narrow board */
2238  		ADV_DVC_CFG adv_dvc_cfg;	/* Wide board */
2239  	} dvc_cfg;
2240  	ushort asc_n_io_port;	/* Number I/O ports. */
2241  	ADV_SCSI_BIT_ID_TYPE init_tidmask;	/* Target init./valid mask */
2242  	ushort reqcnt[ADV_MAX_TID + 1];	/* Starvation request count */
2243  	ADV_SCSI_BIT_ID_TYPE queue_full;	/* Queue full mask */
2244  	ushort queue_full_cnt[ADV_MAX_TID + 1];	/* Queue full count */
2245  	union {
2246  		ASCEEP_CONFIG asc_eep;	/* Narrow EEPROM config. */
2247  		ADVEEP_3550_CONFIG adv_3550_eep;	/* 3550 EEPROM config. */
2248  		ADVEEP_38C0800_CONFIG adv_38C0800_eep;	/* 38C0800 EEPROM config. */
2249  		ADVEEP_38C1600_CONFIG adv_38C1600_eep;	/* 38C1600 EEPROM config. */
2250  	} eep_config;
2251  	/* /proc/scsi/advansys/[0...] */
2252  #ifdef ADVANSYS_STATS
2253  	struct asc_stats asc_stats;	/* Board statistics */
2254  #endif				/* ADVANSYS_STATS */
2255  	/*
2256  	 * The following fields are used only for Narrow Boards.
2257  	 */
2258  	uchar sdtr_data[ASC_MAX_TID + 1];	/* SDTR information */
2259  	/*
2260  	 * The following fields are used only for Wide Boards.
2261  	 */
2262  	void __iomem *ioremap_addr;	/* I/O Memory remap address. */
2263  	ushort ioport;		/* I/O Port address. */
2264  	adv_req_t *adv_reqp;	/* Request structures. */
2265  	dma_addr_t adv_reqp_addr;
2266  	size_t adv_reqp_size;
2267  	struct dma_pool *adv_sgblk_pool;	/* Scatter-gather structures. */
2268  	ushort bios_signature;	/* BIOS Signature. */
2269  	ushort bios_version;	/* BIOS Version. */
2270  	ushort bios_codeseg;	/* BIOS Code Segment. */
2271  	ushort bios_codelen;	/* BIOS Code Segment Length. */
2272  };
2273  
2274  #define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \
2275  							dvc_var.asc_dvc_var)
2276  #define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \
2277  							dvc_var.adv_dvc_var)
2278  #define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev)
2279  
2280  #ifdef ADVANSYS_DEBUG
2281  static int asc_dbglvl = 3;
2282  
2283  /*
2284   * asc_prt_asc_dvc_var()
2285   */
asc_prt_asc_dvc_var(ASC_DVC_VAR * h)2286  static void asc_prt_asc_dvc_var(ASC_DVC_VAR *h)
2287  {
2288  	printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong)h);
2289  
2290  	printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl "
2291  	       "%d,\n", h->iop_base, h->err_code, h->dvc_cntl, h->bug_fix_cntl);
2292  
2293  	printk(" bus_type %d, init_sdtr 0x%x,\n", h->bus_type,
2294  		(unsigned)h->init_sdtr);
2295  
2296  	printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, "
2297  	       "chip_no 0x%x,\n", (unsigned)h->sdtr_done,
2298  	       (unsigned)h->use_tagged_qng, (unsigned)h->unit_not_ready,
2299  	       (unsigned)h->chip_no);
2300  
2301  	printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait "
2302  	       "%u,\n", (unsigned)h->queue_full_or_busy,
2303  	       (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2304  
2305  	printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, "
2306  	       "in_critical_cnt %u,\n", (unsigned)h->is_in_int,
2307  	       (unsigned)h->max_total_qng, (unsigned)h->cur_total_qng,
2308  	       (unsigned)h->in_critical_cnt);
2309  
2310  	printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, "
2311  	       "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h->last_q_shortage,
2312  	       (unsigned)h->init_state, (unsigned)h->no_scam,
2313  	       (unsigned)h->pci_fix_asyn_xfer);
2314  
2315  	printk(" cfg 0x%lx\n", (ulong)h->cfg);
2316  }
2317  
2318  /*
2319   * asc_prt_asc_dvc_cfg()
2320   */
asc_prt_asc_dvc_cfg(ASC_DVC_CFG * h)2321  static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG *h)
2322  {
2323  	printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong)h);
2324  
2325  	printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n",
2326  	       h->can_tagged_qng, h->cmd_qng_enabled);
2327  	printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n",
2328  	       h->disc_enable, h->sdtr_enable);
2329  
2330  	printk(" chip_scsi_id %d, chip_version %d,\n",
2331  	       h->chip_scsi_id, h->chip_version);
2332  
2333  	printk(" mcode_date 0x%x, mcode_version %d\n",
2334  		h->mcode_date, h->mcode_version);
2335  }
2336  
2337  /*
2338   * asc_prt_adv_dvc_var()
2339   *
2340   * Display an ADV_DVC_VAR structure.
2341   */
asc_prt_adv_dvc_var(ADV_DVC_VAR * h)2342  static void asc_prt_adv_dvc_var(ADV_DVC_VAR *h)
2343  {
2344  	printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong)h);
2345  
2346  	printk("  iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n",
2347  	       (ulong)h->iop_base, h->err_code, (unsigned)h->ultra_able);
2348  
2349  	printk("  sdtr_able 0x%x, wdtr_able 0x%x\n",
2350  	       (unsigned)h->sdtr_able, (unsigned)h->wdtr_able);
2351  
2352  	printk("  start_motor 0x%x, scsi_reset_wait 0x%x\n",
2353  	       (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2354  
2355  	printk("  max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%p\n",
2356  	       (unsigned)h->max_host_qng, (unsigned)h->max_dvc_qng,
2357  	       h->carr_freelist);
2358  
2359  	printk("  icq_sp 0x%p, irq_sp 0x%p\n", h->icq_sp, h->irq_sp);
2360  
2361  	printk("  no_scam 0x%x, tagqng_able 0x%x\n",
2362  	       (unsigned)h->no_scam, (unsigned)h->tagqng_able);
2363  
2364  	printk("  chip_scsi_id 0x%x, cfg 0x%lx\n",
2365  	       (unsigned)h->chip_scsi_id, (ulong)h->cfg);
2366  }
2367  
2368  /*
2369   * asc_prt_adv_dvc_cfg()
2370   *
2371   * Display an ADV_DVC_CFG structure.
2372   */
asc_prt_adv_dvc_cfg(ADV_DVC_CFG * h)2373  static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG *h)
2374  {
2375  	printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong)h);
2376  
2377  	printk("  disc_enable 0x%x, termination 0x%x\n",
2378  	       h->disc_enable, h->termination);
2379  
2380  	printk("  chip_version 0x%x, mcode_date 0x%x\n",
2381  	       h->chip_version, h->mcode_date);
2382  
2383  	printk("  mcode_version 0x%x, control_flag 0x%x\n",
2384  	       h->mcode_version, h->control_flag);
2385  }
2386  
2387  /*
2388   * asc_prt_scsi_host()
2389   */
asc_prt_scsi_host(struct Scsi_Host * s)2390  static void asc_prt_scsi_host(struct Scsi_Host *s)
2391  {
2392  	struct asc_board *boardp = shost_priv(s);
2393  
2394  	printk("Scsi_Host at addr 0x%p, device %s\n", s, dev_name(boardp->dev));
2395  	printk(" host_busy %d, host_no %d,\n",
2396  	       scsi_host_busy(s), s->host_no);
2397  
2398  	printk(" base 0x%lx, io_port 0x%lx, irq %d,\n",
2399  	       (ulong)s->base, (ulong)s->io_port, boardp->irq);
2400  
2401  	printk(" dma_channel %d, this_id %d, can_queue %d,\n",
2402  	       s->dma_channel, s->this_id, s->can_queue);
2403  
2404  	printk(" cmd_per_lun %d, sg_tablesize %d\n",
2405  	       s->cmd_per_lun, s->sg_tablesize);
2406  
2407  	if (ASC_NARROW_BOARD(boardp)) {
2408  		asc_prt_asc_dvc_var(&boardp->dvc_var.asc_dvc_var);
2409  		asc_prt_asc_dvc_cfg(&boardp->dvc_cfg.asc_dvc_cfg);
2410  	} else {
2411  		asc_prt_adv_dvc_var(&boardp->dvc_var.adv_dvc_var);
2412  		asc_prt_adv_dvc_cfg(&boardp->dvc_cfg.adv_dvc_cfg);
2413  	}
2414  }
2415  
2416  /*
2417   * asc_prt_hex()
2418   *
2419   * Print hexadecimal output in 4 byte groupings 32 bytes
2420   * or 8 double-words per line.
2421   */
asc_prt_hex(char * f,uchar * s,int l)2422  static void asc_prt_hex(char *f, uchar *s, int l)
2423  {
2424  	int i;
2425  	int j;
2426  	int k;
2427  	int m;
2428  
2429  	printk("%s: (%d bytes)\n", f, l);
2430  
2431  	for (i = 0; i < l; i += 32) {
2432  
2433  		/* Display a maximum of 8 double-words per line. */
2434  		if ((k = (l - i) / 4) >= 8) {
2435  			k = 8;
2436  			m = 0;
2437  		} else {
2438  			m = (l - i) % 4;
2439  		}
2440  
2441  		for (j = 0; j < k; j++) {
2442  			printk(" %2.2X%2.2X%2.2X%2.2X",
2443  			       (unsigned)s[i + (j * 4)],
2444  			       (unsigned)s[i + (j * 4) + 1],
2445  			       (unsigned)s[i + (j * 4) + 2],
2446  			       (unsigned)s[i + (j * 4) + 3]);
2447  		}
2448  
2449  		switch (m) {
2450  		case 0:
2451  		default:
2452  			break;
2453  		case 1:
2454  			printk(" %2.2X", (unsigned)s[i + (j * 4)]);
2455  			break;
2456  		case 2:
2457  			printk(" %2.2X%2.2X",
2458  			       (unsigned)s[i + (j * 4)],
2459  			       (unsigned)s[i + (j * 4) + 1]);
2460  			break;
2461  		case 3:
2462  			printk(" %2.2X%2.2X%2.2X",
2463  			       (unsigned)s[i + (j * 4) + 1],
2464  			       (unsigned)s[i + (j * 4) + 2],
2465  			       (unsigned)s[i + (j * 4) + 3]);
2466  			break;
2467  		}
2468  
2469  		printk("\n");
2470  	}
2471  }
2472  
2473  /*
2474   * asc_prt_asc_scsi_q()
2475   */
asc_prt_asc_scsi_q(ASC_SCSI_Q * q)2476  static void asc_prt_asc_scsi_q(ASC_SCSI_Q *q)
2477  {
2478  	ASC_SG_HEAD *sgp;
2479  	int i;
2480  
2481  	printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong)q);
2482  
2483  	printk
2484  	    (" target_ix 0x%x, target_lun %u, srb_tag 0x%x, tag_code 0x%x,\n",
2485  	     q->q2.target_ix, q->q1.target_lun, q->q2.srb_tag,
2486  	     q->q2.tag_code);
2487  
2488  	printk
2489  	    (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2490  	     (ulong)le32_to_cpu(q->q1.data_addr),
2491  	     (ulong)le32_to_cpu(q->q1.data_cnt),
2492  	     (ulong)le32_to_cpu(q->q1.sense_addr), q->q1.sense_len);
2493  
2494  	printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n",
2495  	       (ulong)q->cdbptr, q->q2.cdb_len,
2496  	       (ulong)q->sg_head, q->q1.sg_queue_cnt);
2497  
2498  	if (q->sg_head) {
2499  		sgp = q->sg_head;
2500  		printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong)sgp);
2501  		printk(" entry_cnt %u, queue_cnt %u\n", sgp->entry_cnt,
2502  		       sgp->queue_cnt);
2503  		for (i = 0; i < sgp->entry_cnt; i++) {
2504  			printk(" [%u]: addr 0x%lx, bytes %lu\n",
2505  			       i, (ulong)le32_to_cpu(sgp->sg_list[i].addr),
2506  			       (ulong)le32_to_cpu(sgp->sg_list[i].bytes));
2507  		}
2508  
2509  	}
2510  }
2511  
2512  /*
2513   * asc_prt_asc_qdone_info()
2514   */
asc_prt_asc_qdone_info(ASC_QDONE_INFO * q)2515  static void asc_prt_asc_qdone_info(ASC_QDONE_INFO *q)
2516  {
2517  	printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong)q);
2518  	printk(" srb_tag 0x%x, target_ix %u, cdb_len %u, tag_code %u,\n",
2519  	       q->d2.srb_tag, q->d2.target_ix, q->d2.cdb_len,
2520  	       q->d2.tag_code);
2521  	printk
2522  	    (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n",
2523  	     q->d3.done_stat, q->d3.host_stat, q->d3.scsi_stat, q->d3.scsi_msg);
2524  }
2525  
2526  /*
2527   * asc_prt_adv_sgblock()
2528   *
2529   * Display an ADV_SG_BLOCK structure.
2530   */
asc_prt_adv_sgblock(int sgblockno,ADV_SG_BLOCK * b)2531  static void asc_prt_adv_sgblock(int sgblockno, ADV_SG_BLOCK *b)
2532  {
2533  	int i;
2534  
2535  	printk(" ADV_SG_BLOCK at addr 0x%lx (sgblockno %d)\n",
2536  	       (ulong)b, sgblockno);
2537  	printk("  sg_cnt %u, sg_ptr 0x%x\n",
2538  	       b->sg_cnt, (u32)le32_to_cpu(b->sg_ptr));
2539  	BUG_ON(b->sg_cnt > NO_OF_SG_PER_BLOCK);
2540  	if (b->sg_ptr != 0)
2541  		BUG_ON(b->sg_cnt != NO_OF_SG_PER_BLOCK);
2542  	for (i = 0; i < b->sg_cnt; i++) {
2543  		printk("  [%u]: sg_addr 0x%x, sg_count 0x%x\n",
2544  		       i, (u32)le32_to_cpu(b->sg_list[i].sg_addr),
2545  		       (u32)le32_to_cpu(b->sg_list[i].sg_count));
2546  	}
2547  }
2548  
2549  /*
2550   * asc_prt_adv_scsi_req_q()
2551   *
2552   * Display an ADV_SCSI_REQ_Q structure.
2553   */
asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q * q)2554  static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q *q)
2555  {
2556  	int sg_blk_cnt;
2557  	struct adv_sg_block *sg_ptr;
2558  	adv_sgblk_t *sgblkp;
2559  
2560  	printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong)q);
2561  
2562  	printk("  target_id %u, target_lun %u, srb_tag 0x%x\n",
2563  	       q->target_id, q->target_lun, q->srb_tag);
2564  
2565  	printk("  cntl 0x%x, data_addr 0x%lx\n",
2566  	       q->cntl, (ulong)le32_to_cpu(q->data_addr));
2567  
2568  	printk("  data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2569  	       (ulong)le32_to_cpu(q->data_cnt),
2570  	       (ulong)le32_to_cpu(q->sense_addr), q->sense_len);
2571  
2572  	printk
2573  	    ("  cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n",
2574  	     q->cdb_len, q->done_status, q->host_status, q->scsi_status);
2575  
2576  	printk("  sg_working_ix 0x%x, target_cmd %u\n",
2577  	       q->sg_working_ix, q->target_cmd);
2578  
2579  	printk("  scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n",
2580  	       (ulong)le32_to_cpu(q->scsiq_rptr),
2581  	       (ulong)le32_to_cpu(q->sg_real_addr), (ulong)q->sg_list_ptr);
2582  
2583  	/* Display the request's ADV_SG_BLOCK structures. */
2584  	if (q->sg_list_ptr != NULL) {
2585  		sgblkp = container_of(q->sg_list_ptr, adv_sgblk_t, sg_block);
2586  		sg_blk_cnt = 0;
2587  		while (sgblkp) {
2588  			sg_ptr = &sgblkp->sg_block;
2589  			asc_prt_adv_sgblock(sg_blk_cnt, sg_ptr);
2590  			if (sg_ptr->sg_ptr == 0) {
2591  				break;
2592  			}
2593  			sgblkp = sgblkp->next_sgblkp;
2594  			sg_blk_cnt++;
2595  		}
2596  	}
2597  }
2598  #endif /* ADVANSYS_DEBUG */
2599  
2600  /*
2601   * advansys_info()
2602   *
2603   * Return suitable for printing on the console with the argument
2604   * adapter's configuration information.
2605   *
2606   * Note: The information line should not exceed ASC_INFO_SIZE bytes,
2607   * otherwise the static 'info' array will be overrun.
2608   */
advansys_info(struct Scsi_Host * shost)2609  static const char *advansys_info(struct Scsi_Host *shost)
2610  {
2611  	static char info[ASC_INFO_SIZE];
2612  	struct asc_board *boardp = shost_priv(shost);
2613  	ASC_DVC_VAR *asc_dvc_varp;
2614  	ADV_DVC_VAR *adv_dvc_varp;
2615  	char *busname;
2616  	char *widename = NULL;
2617  
2618  	if (ASC_NARROW_BOARD(boardp)) {
2619  		asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
2620  		ASC_DBG(1, "begin\n");
2621  
2622  		if (asc_dvc_varp->bus_type & ASC_IS_VL) {
2623  			busname = "VL";
2624  		} else if (asc_dvc_varp->bus_type & ASC_IS_EISA) {
2625  			busname = "EISA";
2626  		} else if (asc_dvc_varp->bus_type & ASC_IS_PCI) {
2627  			if ((asc_dvc_varp->bus_type & ASC_IS_PCI_ULTRA)
2628  			    == ASC_IS_PCI_ULTRA) {
2629  				busname = "PCI Ultra";
2630  			} else {
2631  				busname = "PCI";
2632  			}
2633  		} else {
2634  			busname = "?";
2635  			shost_printk(KERN_ERR, shost, "unknown bus "
2636  				"type %d\n", asc_dvc_varp->bus_type);
2637  		}
2638  		sprintf(info,
2639  			"AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X",
2640  			ASC_VERSION, busname, (ulong)shost->io_port,
2641  			(ulong)shost->io_port + ASC_IOADR_GAP - 1,
2642  			boardp->irq);
2643  	} else {
2644  		/*
2645  		 * Wide Adapter Information
2646  		 *
2647  		 * Memory-mapped I/O is used instead of I/O space to access
2648  		 * the adapter, but display the I/O Port range. The Memory
2649  		 * I/O address is displayed through the driver /proc file.
2650  		 */
2651  		adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
2652  		if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2653  			widename = "Ultra-Wide";
2654  		} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2655  			widename = "Ultra2-Wide";
2656  		} else {
2657  			widename = "Ultra3-Wide";
2658  		}
2659  		sprintf(info,
2660  			"AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X",
2661  			ASC_VERSION, widename, (ulong)adv_dvc_varp->iop_base,
2662  			(ulong)adv_dvc_varp->iop_base + boardp->asc_n_io_port - 1, boardp->irq);
2663  	}
2664  	BUG_ON(strlen(info) >= ASC_INFO_SIZE);
2665  	ASC_DBG(1, "end\n");
2666  	return info;
2667  }
2668  
2669  #ifdef CONFIG_PROC_FS
2670  
2671  /*
2672   * asc_prt_board_devices()
2673   *
2674   * Print driver information for devices attached to the board.
2675   */
asc_prt_board_devices(struct seq_file * m,struct Scsi_Host * shost)2676  static void asc_prt_board_devices(struct seq_file *m, struct Scsi_Host *shost)
2677  {
2678  	struct asc_board *boardp = shost_priv(shost);
2679  	int chip_scsi_id;
2680  	int i;
2681  
2682  	seq_printf(m,
2683  		   "\nDevice Information for AdvanSys SCSI Host %d:\n",
2684  		   shost->host_no);
2685  
2686  	if (ASC_NARROW_BOARD(boardp)) {
2687  		chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
2688  	} else {
2689  		chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
2690  	}
2691  
2692  	seq_puts(m, "Target IDs Detected:");
2693  	for (i = 0; i <= ADV_MAX_TID; i++) {
2694  		if (boardp->init_tidmask & ADV_TID_TO_TIDMASK(i))
2695  			seq_printf(m, " %X,", i);
2696  	}
2697  	seq_printf(m, " (%X=Host Adapter)\n", chip_scsi_id);
2698  }
2699  
2700  /*
2701   * Display Wide Board BIOS Information.
2702   */
asc_prt_adv_bios(struct seq_file * m,struct Scsi_Host * shost)2703  static void asc_prt_adv_bios(struct seq_file *m, struct Scsi_Host *shost)
2704  {
2705  	struct asc_board *boardp = shost_priv(shost);
2706  	ushort major, minor, letter;
2707  
2708  	seq_puts(m, "\nROM BIOS Version: ");
2709  
2710  	/*
2711  	 * If the BIOS saved a valid signature, then fill in
2712  	 * the BIOS code segment base address.
2713  	 */
2714  	if (boardp->bios_signature != 0x55AA) {
2715  		seq_puts(m, "Disabled or Pre-3.1\n"
2716  			"BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n"
2717  			"can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n");
2718  	} else {
2719  		major = (boardp->bios_version >> 12) & 0xF;
2720  		minor = (boardp->bios_version >> 8) & 0xF;
2721  		letter = (boardp->bios_version & 0xFF);
2722  
2723  		seq_printf(m, "%d.%d%c\n",
2724  				   major, minor,
2725  				   letter >= 26 ? '?' : letter + 'A');
2726  		/*
2727  		 * Current available ROM BIOS release is 3.1I for UW
2728  		 * and 3.2I for U2W. This code doesn't differentiate
2729  		 * UW and U2W boards.
2730  		 */
2731  		if (major < 3 || (major <= 3 && minor < 1) ||
2732  		    (major <= 3 && minor <= 1 && letter < ('I' - 'A'))) {
2733  			seq_puts(m, "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n"
2734  				"ftp://ftp.connectcom.net/pub\n");
2735  		}
2736  	}
2737  }
2738  
2739  /*
2740   * Add serial number to information bar if signature AAh
2741   * is found in at bit 15-9 (7 bits) of word 1.
2742   *
2743   * Serial Number consists fo 12 alpha-numeric digits.
2744   *
2745   *       1 - Product type (A,B,C,D..)  Word0: 15-13 (3 bits)
2746   *       2 - MFG Location (A,B,C,D..)  Word0: 12-10 (3 bits)
2747   *     3-4 - Product ID (0-99)         Word0: 9-0 (10 bits)
2748   *       5 - Product revision (A-J)    Word0:  "         "
2749   *
2750   *           Signature                 Word1: 15-9 (7 bits)
2751   *       6 - Year (0-9)                Word1: 8-6 (3 bits) & Word2: 15 (1 bit)
2752   *     7-8 - Week of the year (1-52)   Word1: 5-0 (6 bits)
2753   *
2754   *    9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits)
2755   *
2756   * Note 1: Only production cards will have a serial number.
2757   *
2758   * Note 2: Signature is most significant 7 bits (0xFE).
2759   *
2760   * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE.
2761   */
asc_get_eeprom_string(ushort * serialnum,uchar * cp)2762  static int asc_get_eeprom_string(ushort *serialnum, uchar *cp)
2763  {
2764  	ushort w, num;
2765  
2766  	if ((serialnum[1] & 0xFE00) != ((ushort)0xAA << 8)) {
2767  		return ASC_FALSE;
2768  	} else {
2769  		/*
2770  		 * First word - 6 digits.
2771  		 */
2772  		w = serialnum[0];
2773  
2774  		/* Product type - 1st digit. */
2775  		if ((*cp = 'A' + ((w & 0xE000) >> 13)) == 'H') {
2776  			/* Product type is P=Prototype */
2777  			*cp += 0x8;
2778  		}
2779  		cp++;
2780  
2781  		/* Manufacturing location - 2nd digit. */
2782  		*cp++ = 'A' + ((w & 0x1C00) >> 10);
2783  
2784  		/* Product ID - 3rd, 4th digits. */
2785  		num = w & 0x3FF;
2786  		*cp++ = '0' + (num / 100);
2787  		num %= 100;
2788  		*cp++ = '0' + (num / 10);
2789  
2790  		/* Product revision - 5th digit. */
2791  		*cp++ = 'A' + (num % 10);
2792  
2793  		/*
2794  		 * Second word
2795  		 */
2796  		w = serialnum[1];
2797  
2798  		/*
2799  		 * Year - 6th digit.
2800  		 *
2801  		 * If bit 15 of third word is set, then the
2802  		 * last digit of the year is greater than 7.
2803  		 */
2804  		if (serialnum[2] & 0x8000) {
2805  			*cp++ = '8' + ((w & 0x1C0) >> 6);
2806  		} else {
2807  			*cp++ = '0' + ((w & 0x1C0) >> 6);
2808  		}
2809  
2810  		/* Week of year - 7th, 8th digits. */
2811  		num = w & 0x003F;
2812  		*cp++ = '0' + num / 10;
2813  		num %= 10;
2814  		*cp++ = '0' + num;
2815  
2816  		/*
2817  		 * Third word
2818  		 */
2819  		w = serialnum[2] & 0x7FFF;
2820  
2821  		/* Serial number - 9th digit. */
2822  		*cp++ = 'A' + (w / 1000);
2823  
2824  		/* 10th, 11th, 12th digits. */
2825  		num = w % 1000;
2826  		*cp++ = '0' + num / 100;
2827  		num %= 100;
2828  		*cp++ = '0' + num / 10;
2829  		num %= 10;
2830  		*cp++ = '0' + num;
2831  
2832  		*cp = '\0';	/* Null Terminate the string. */
2833  		return ASC_TRUE;
2834  	}
2835  }
2836  
2837  /*
2838   * asc_prt_asc_board_eeprom()
2839   *
2840   * Print board EEPROM configuration.
2841   */
asc_prt_asc_board_eeprom(struct seq_file * m,struct Scsi_Host * shost)2842  static void asc_prt_asc_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
2843  {
2844  	struct asc_board *boardp = shost_priv(shost);
2845  	ASCEEP_CONFIG *ep;
2846  	int i;
2847  	uchar serialstr[13];
2848  
2849  	ep = &boardp->eep_config.asc_eep;
2850  
2851  	seq_printf(m,
2852  		   "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
2853  		   shost->host_no);
2854  
2855  	if (asc_get_eeprom_string((ushort *)&ep->adapter_info[0], serialstr)
2856  	    == ASC_TRUE)
2857  		seq_printf(m, " Serial Number: %s\n", serialstr);
2858  	else if (ep->adapter_info[5] == 0xBB)
2859  		seq_puts(m,
2860  			 " Default Settings Used for EEPROM-less Adapter.\n");
2861  	else
2862  		seq_puts(m, " Serial Number Signature Not Present.\n");
2863  
2864  	seq_printf(m,
2865  		   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2866  		   ASC_EEP_GET_CHIP_ID(ep), ep->max_total_qng,
2867  		   ep->max_tag_qng);
2868  
2869  	seq_printf(m,
2870  		   " cntl 0x%x, no_scam 0x%x\n", ep->cntl, ep->no_scam);
2871  
2872  	seq_puts(m, " Target ID:           ");
2873  	for (i = 0; i <= ASC_MAX_TID; i++)
2874  		seq_printf(m, " %d", i);
2875  
2876  	seq_puts(m, "\n Disconnects:         ");
2877  	for (i = 0; i <= ASC_MAX_TID; i++)
2878  		seq_printf(m, " %c",
2879  			   (ep->disc_enable & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2880  
2881  	seq_puts(m, "\n Command Queuing:     ");
2882  	for (i = 0; i <= ASC_MAX_TID; i++)
2883  		seq_printf(m, " %c",
2884  			   (ep->use_cmd_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2885  
2886  	seq_puts(m, "\n Start Motor:         ");
2887  	for (i = 0; i <= ASC_MAX_TID; i++)
2888  		seq_printf(m, " %c",
2889  			   (ep->start_motor & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2890  
2891  	seq_puts(m, "\n Synchronous Transfer:");
2892  	for (i = 0; i <= ASC_MAX_TID; i++)
2893  		seq_printf(m, " %c",
2894  			   (ep->init_sdtr & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2895  	seq_putc(m, '\n');
2896  }
2897  
2898  /*
2899   * asc_prt_adv_board_eeprom()
2900   *
2901   * Print board EEPROM configuration.
2902   */
asc_prt_adv_board_eeprom(struct seq_file * m,struct Scsi_Host * shost)2903  static void asc_prt_adv_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
2904  {
2905  	struct asc_board *boardp = shost_priv(shost);
2906  	ADV_DVC_VAR *adv_dvc_varp;
2907  	int i;
2908  	char *termstr;
2909  	uchar serialstr[13];
2910  	ADVEEP_3550_CONFIG *ep_3550 = NULL;
2911  	ADVEEP_38C0800_CONFIG *ep_38C0800 = NULL;
2912  	ADVEEP_38C1600_CONFIG *ep_38C1600 = NULL;
2913  	ushort word;
2914  	ushort *wordp;
2915  	ushort sdtr_speed = 0;
2916  
2917  	adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
2918  	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2919  		ep_3550 = &boardp->eep_config.adv_3550_eep;
2920  	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2921  		ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
2922  	} else {
2923  		ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
2924  	}
2925  
2926  	seq_printf(m,
2927  		   "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
2928  		   shost->host_no);
2929  
2930  	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2931  		wordp = &ep_3550->serial_number_word1;
2932  	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2933  		wordp = &ep_38C0800->serial_number_word1;
2934  	} else {
2935  		wordp = &ep_38C1600->serial_number_word1;
2936  	}
2937  
2938  	if (asc_get_eeprom_string(wordp, serialstr) == ASC_TRUE)
2939  		seq_printf(m, " Serial Number: %s\n", serialstr);
2940  	else
2941  		seq_puts(m, " Serial Number Signature Not Present.\n");
2942  
2943  	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
2944  		seq_printf(m,
2945  			   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2946  			   ep_3550->adapter_scsi_id,
2947  			   ep_3550->max_host_qng, ep_3550->max_dvc_qng);
2948  	else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
2949  		seq_printf(m,
2950  			   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2951  			   ep_38C0800->adapter_scsi_id,
2952  			   ep_38C0800->max_host_qng,
2953  			   ep_38C0800->max_dvc_qng);
2954  	else
2955  		seq_printf(m,
2956  			   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2957  			   ep_38C1600->adapter_scsi_id,
2958  			   ep_38C1600->max_host_qng,
2959  			   ep_38C1600->max_dvc_qng);
2960  	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2961  		word = ep_3550->termination;
2962  	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2963  		word = ep_38C0800->termination_lvd;
2964  	} else {
2965  		word = ep_38C1600->termination_lvd;
2966  	}
2967  	switch (word) {
2968  	case 1:
2969  		termstr = "Low Off/High Off";
2970  		break;
2971  	case 2:
2972  		termstr = "Low Off/High On";
2973  		break;
2974  	case 3:
2975  		termstr = "Low On/High On";
2976  		break;
2977  	default:
2978  	case 0:
2979  		termstr = "Automatic";
2980  		break;
2981  	}
2982  
2983  	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
2984  		seq_printf(m,
2985  			   " termination: %u (%s), bios_ctrl: 0x%x\n",
2986  			   ep_3550->termination, termstr,
2987  			   ep_3550->bios_ctrl);
2988  	else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
2989  		seq_printf(m,
2990  			   " termination: %u (%s), bios_ctrl: 0x%x\n",
2991  			   ep_38C0800->termination_lvd, termstr,
2992  			   ep_38C0800->bios_ctrl);
2993  	else
2994  		seq_printf(m,
2995  			   " termination: %u (%s), bios_ctrl: 0x%x\n",
2996  			   ep_38C1600->termination_lvd, termstr,
2997  			   ep_38C1600->bios_ctrl);
2998  
2999  	seq_puts(m, " Target ID:           ");
3000  	for (i = 0; i <= ADV_MAX_TID; i++)
3001  		seq_printf(m, " %X", i);
3002  	seq_putc(m, '\n');
3003  
3004  	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3005  		word = ep_3550->disc_enable;
3006  	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3007  		word = ep_38C0800->disc_enable;
3008  	} else {
3009  		word = ep_38C1600->disc_enable;
3010  	}
3011  	seq_puts(m, " Disconnects:         ");
3012  	for (i = 0; i <= ADV_MAX_TID; i++)
3013  		seq_printf(m, " %c",
3014  			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3015  	seq_putc(m, '\n');
3016  
3017  	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3018  		word = ep_3550->tagqng_able;
3019  	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3020  		word = ep_38C0800->tagqng_able;
3021  	} else {
3022  		word = ep_38C1600->tagqng_able;
3023  	}
3024  	seq_puts(m, " Command Queuing:     ");
3025  	for (i = 0; i <= ADV_MAX_TID; i++)
3026  		seq_printf(m, " %c",
3027  			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3028  	seq_putc(m, '\n');
3029  
3030  	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3031  		word = ep_3550->start_motor;
3032  	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3033  		word = ep_38C0800->start_motor;
3034  	} else {
3035  		word = ep_38C1600->start_motor;
3036  	}
3037  	seq_puts(m, " Start Motor:         ");
3038  	for (i = 0; i <= ADV_MAX_TID; i++)
3039  		seq_printf(m, " %c",
3040  			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3041  	seq_putc(m, '\n');
3042  
3043  	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3044  		seq_puts(m, " Synchronous Transfer:");
3045  		for (i = 0; i <= ADV_MAX_TID; i++)
3046  			seq_printf(m, " %c",
3047  				   (ep_3550->sdtr_able & ADV_TID_TO_TIDMASK(i)) ?
3048  				   'Y' : 'N');
3049  		seq_putc(m, '\n');
3050  	}
3051  
3052  	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3053  		seq_puts(m, " Ultra Transfer:      ");
3054  		for (i = 0; i <= ADV_MAX_TID; i++)
3055  			seq_printf(m, " %c",
3056  				   (ep_3550->ultra_able & ADV_TID_TO_TIDMASK(i))
3057  				   ? 'Y' : 'N');
3058  		seq_putc(m, '\n');
3059  	}
3060  
3061  	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3062  		word = ep_3550->wdtr_able;
3063  	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3064  		word = ep_38C0800->wdtr_able;
3065  	} else {
3066  		word = ep_38C1600->wdtr_able;
3067  	}
3068  	seq_puts(m, " Wide Transfer:       ");
3069  	for (i = 0; i <= ADV_MAX_TID; i++)
3070  		seq_printf(m, " %c",
3071  			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3072  	seq_putc(m, '\n');
3073  
3074  	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800 ||
3075  	    adv_dvc_varp->chip_type == ADV_CHIP_ASC38C1600) {
3076  		seq_puts(m, " Synchronous Transfer Speed (Mhz):\n  ");
3077  		for (i = 0; i <= ADV_MAX_TID; i++) {
3078  			char *speed_str;
3079  
3080  			if (i == 0) {
3081  				sdtr_speed = adv_dvc_varp->sdtr_speed1;
3082  			} else if (i == 4) {
3083  				sdtr_speed = adv_dvc_varp->sdtr_speed2;
3084  			} else if (i == 8) {
3085  				sdtr_speed = adv_dvc_varp->sdtr_speed3;
3086  			} else if (i == 12) {
3087  				sdtr_speed = adv_dvc_varp->sdtr_speed4;
3088  			}
3089  			switch (sdtr_speed & ADV_MAX_TID) {
3090  			case 0:
3091  				speed_str = "Off";
3092  				break;
3093  			case 1:
3094  				speed_str = "  5";
3095  				break;
3096  			case 2:
3097  				speed_str = " 10";
3098  				break;
3099  			case 3:
3100  				speed_str = " 20";
3101  				break;
3102  			case 4:
3103  				speed_str = " 40";
3104  				break;
3105  			case 5:
3106  				speed_str = " 80";
3107  				break;
3108  			default:
3109  				speed_str = "Unk";
3110  				break;
3111  			}
3112  			seq_printf(m, "%X:%s ", i, speed_str);
3113  			if (i == 7)
3114  				seq_puts(m, "\n  ");
3115  			sdtr_speed >>= 4;
3116  		}
3117  		seq_putc(m, '\n');
3118  	}
3119  }
3120  
3121  /*
3122   * asc_prt_driver_conf()
3123   */
asc_prt_driver_conf(struct seq_file * m,struct Scsi_Host * shost)3124  static void asc_prt_driver_conf(struct seq_file *m, struct Scsi_Host *shost)
3125  {
3126  	struct asc_board *boardp = shost_priv(shost);
3127  
3128  	seq_printf(m,
3129  		"\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n",
3130  		shost->host_no);
3131  
3132  	seq_printf(m,
3133  		   " host_busy %d, max_id %u, max_lun %llu, max_channel %u\n",
3134  		   scsi_host_busy(shost), shost->max_id,
3135  		   shost->max_lun, shost->max_channel);
3136  
3137  	seq_printf(m,
3138  		   " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n",
3139  		   shost->unique_id, shost->can_queue, shost->this_id,
3140  		   shost->sg_tablesize, shost->cmd_per_lun);
3141  
3142  	seq_printf(m,
3143  		   " flags 0x%x, last_reset 0x%lx, jiffies 0x%lx, asc_n_io_port 0x%x\n",
3144  		   boardp->flags, shost->last_reset, jiffies,
3145  		   boardp->asc_n_io_port);
3146  
3147  	seq_printf(m, " io_port 0x%lx\n", shost->io_port);
3148  }
3149  
3150  /*
3151   * asc_prt_asc_board_info()
3152   *
3153   * Print dynamic board configuration information.
3154   */
asc_prt_asc_board_info(struct seq_file * m,struct Scsi_Host * shost)3155  static void asc_prt_asc_board_info(struct seq_file *m, struct Scsi_Host *shost)
3156  {
3157  	struct asc_board *boardp = shost_priv(shost);
3158  	int chip_scsi_id;
3159  	ASC_DVC_VAR *v;
3160  	ASC_DVC_CFG *c;
3161  	int i;
3162  	int renegotiate = 0;
3163  
3164  	v = &boardp->dvc_var.asc_dvc_var;
3165  	c = &boardp->dvc_cfg.asc_dvc_cfg;
3166  	chip_scsi_id = c->chip_scsi_id;
3167  
3168  	seq_printf(m,
3169  		   "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3170  		   shost->host_no);
3171  
3172  	seq_printf(m, " chip_version %u, mcode_date 0x%x, "
3173  		   "mcode_version 0x%x, err_code %u\n",
3174  		   c->chip_version, c->mcode_date, c->mcode_version,
3175  		   v->err_code);
3176  
3177  	/* Current number of commands waiting for the host. */
3178  	seq_printf(m,
3179  		   " Total Command Pending: %d\n", v->cur_total_qng);
3180  
3181  	seq_puts(m, " Command Queuing:");
3182  	for (i = 0; i <= ASC_MAX_TID; i++) {
3183  		if ((chip_scsi_id == i) ||
3184  		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3185  			continue;
3186  		}
3187  		seq_printf(m, " %X:%c",
3188  			   i,
3189  			   (v->use_tagged_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3190  	}
3191  
3192  	/* Current number of commands waiting for a device. */
3193  	seq_puts(m, "\n Command Queue Pending:");
3194  	for (i = 0; i <= ASC_MAX_TID; i++) {
3195  		if ((chip_scsi_id == i) ||
3196  		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3197  			continue;
3198  		}
3199  		seq_printf(m, " %X:%u", i, v->cur_dvc_qng[i]);
3200  	}
3201  
3202  	/* Current limit on number of commands that can be sent to a device. */
3203  	seq_puts(m, "\n Command Queue Limit:");
3204  	for (i = 0; i <= ASC_MAX_TID; i++) {
3205  		if ((chip_scsi_id == i) ||
3206  		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3207  			continue;
3208  		}
3209  		seq_printf(m, " %X:%u", i, v->max_dvc_qng[i]);
3210  	}
3211  
3212  	/* Indicate whether the device has returned queue full status. */
3213  	seq_puts(m, "\n Command Queue Full:");
3214  	for (i = 0; i <= ASC_MAX_TID; i++) {
3215  		if ((chip_scsi_id == i) ||
3216  		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3217  			continue;
3218  		}
3219  		if (boardp->queue_full & ADV_TID_TO_TIDMASK(i))
3220  			seq_printf(m, " %X:Y-%d",
3221  				   i, boardp->queue_full_cnt[i]);
3222  		else
3223  			seq_printf(m, " %X:N", i);
3224  	}
3225  
3226  	seq_puts(m, "\n Synchronous Transfer:");
3227  	for (i = 0; i <= ASC_MAX_TID; i++) {
3228  		if ((chip_scsi_id == i) ||
3229  		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3230  			continue;
3231  		}
3232  		seq_printf(m, " %X:%c",
3233  			   i,
3234  			   (v->sdtr_done & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3235  	}
3236  	seq_putc(m, '\n');
3237  
3238  	for (i = 0; i <= ASC_MAX_TID; i++) {
3239  		uchar syn_period_ix;
3240  
3241  		if ((chip_scsi_id == i) ||
3242  		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3243  		    ((v->init_sdtr & ADV_TID_TO_TIDMASK(i)) == 0)) {
3244  			continue;
3245  		}
3246  
3247  		seq_printf(m, "  %X:", i);
3248  
3249  		if ((boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET) == 0) {
3250  			seq_puts(m, " Asynchronous");
3251  		} else {
3252  			syn_period_ix =
3253  			    (boardp->sdtr_data[i] >> 4) & (v->max_sdtr_index -
3254  							   1);
3255  
3256  			seq_printf(m,
3257  				   " Transfer Period Factor: %d (%d.%d Mhz),",
3258  				   v->sdtr_period_tbl[syn_period_ix],
3259  				   250 / v->sdtr_period_tbl[syn_period_ix],
3260  				   ASC_TENTHS(250,
3261  					      v->sdtr_period_tbl[syn_period_ix]));
3262  
3263  			seq_printf(m, " REQ/ACK Offset: %d",
3264  				   boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET);
3265  		}
3266  
3267  		if ((v->sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3268  			seq_puts(m, "*\n");
3269  			renegotiate = 1;
3270  		} else {
3271  			seq_putc(m, '\n');
3272  		}
3273  	}
3274  
3275  	if (renegotiate) {
3276  		seq_puts(m, " * = Re-negotiation pending before next command.\n");
3277  	}
3278  }
3279  
3280  /*
3281   * asc_prt_adv_board_info()
3282   *
3283   * Print dynamic board configuration information.
3284   */
asc_prt_adv_board_info(struct seq_file * m,struct Scsi_Host * shost)3285  static void asc_prt_adv_board_info(struct seq_file *m, struct Scsi_Host *shost)
3286  {
3287  	struct asc_board *boardp = shost_priv(shost);
3288  	int i;
3289  	ADV_DVC_VAR *v;
3290  	ADV_DVC_CFG *c;
3291  	AdvPortAddr iop_base;
3292  	ushort chip_scsi_id;
3293  	ushort lramword;
3294  	uchar lrambyte;
3295  	ushort tagqng_able;
3296  	ushort sdtr_able, wdtr_able;
3297  	ushort wdtr_done, sdtr_done;
3298  	ushort period = 0;
3299  	int renegotiate = 0;
3300  
3301  	v = &boardp->dvc_var.adv_dvc_var;
3302  	c = &boardp->dvc_cfg.adv_dvc_cfg;
3303  	iop_base = v->iop_base;
3304  	chip_scsi_id = v->chip_scsi_id;
3305  
3306  	seq_printf(m,
3307  		   "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3308  		   shost->host_no);
3309  
3310  	seq_printf(m,
3311  		   " iop_base 0x%lx, cable_detect: %X, err_code %u\n",
3312  		   (unsigned long)v->iop_base,
3313  		   AdvReadWordRegister(iop_base,IOPW_SCSI_CFG1) & CABLE_DETECT,
3314  		   v->err_code);
3315  
3316  	seq_printf(m, " chip_version %u, mcode_date 0x%x, "
3317  		   "mcode_version 0x%x\n", c->chip_version,
3318  		   c->mcode_date, c->mcode_version);
3319  
3320  	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
3321  	seq_puts(m, " Queuing Enabled:");
3322  	for (i = 0; i <= ADV_MAX_TID; i++) {
3323  		if ((chip_scsi_id == i) ||
3324  		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3325  			continue;
3326  		}
3327  
3328  		seq_printf(m, " %X:%c",
3329  			   i,
3330  			   (tagqng_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3331  	}
3332  
3333  	seq_puts(m, "\n Queue Limit:");
3334  	for (i = 0; i <= ADV_MAX_TID; i++) {
3335  		if ((chip_scsi_id == i) ||
3336  		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3337  			continue;
3338  		}
3339  
3340  		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + i,
3341  				lrambyte);
3342  
3343  		seq_printf(m, " %X:%d", i, lrambyte);
3344  	}
3345  
3346  	seq_puts(m, "\n Command Pending:");
3347  	for (i = 0; i <= ADV_MAX_TID; i++) {
3348  		if ((chip_scsi_id == i) ||
3349  		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3350  			continue;
3351  		}
3352  
3353  		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_QUEUED_CMD + i,
3354  				lrambyte);
3355  
3356  		seq_printf(m, " %X:%d", i, lrambyte);
3357  	}
3358  	seq_putc(m, '\n');
3359  
3360  	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
3361  	seq_puts(m, " Wide Enabled:");
3362  	for (i = 0; i <= ADV_MAX_TID; i++) {
3363  		if ((chip_scsi_id == i) ||
3364  		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3365  			continue;
3366  		}
3367  
3368  		seq_printf(m, " %X:%c",
3369  			   i,
3370  			   (wdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3371  	}
3372  	seq_putc(m, '\n');
3373  
3374  	AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, wdtr_done);
3375  	seq_puts(m, " Transfer Bit Width:");
3376  	for (i = 0; i <= ADV_MAX_TID; i++) {
3377  		if ((chip_scsi_id == i) ||
3378  		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3379  			continue;
3380  		}
3381  
3382  		AdvReadWordLram(iop_base,
3383  				ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3384  				lramword);
3385  
3386  		seq_printf(m, " %X:%d",
3387  			   i, (lramword & 0x8000) ? 16 : 8);
3388  
3389  		if ((wdtr_able & ADV_TID_TO_TIDMASK(i)) &&
3390  		    (wdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3391  			seq_putc(m, '*');
3392  			renegotiate = 1;
3393  		}
3394  	}
3395  	seq_putc(m, '\n');
3396  
3397  	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
3398  	seq_puts(m, " Synchronous Enabled:");
3399  	for (i = 0; i <= ADV_MAX_TID; i++) {
3400  		if ((chip_scsi_id == i) ||
3401  		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3402  			continue;
3403  		}
3404  
3405  		seq_printf(m, " %X:%c",
3406  			   i,
3407  			   (sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3408  	}
3409  	seq_putc(m, '\n');
3410  
3411  	AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, sdtr_done);
3412  	for (i = 0; i <= ADV_MAX_TID; i++) {
3413  
3414  		AdvReadWordLram(iop_base,
3415  				ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3416  				lramword);
3417  		lramword &= ~0x8000;
3418  
3419  		if ((chip_scsi_id == i) ||
3420  		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3421  		    ((sdtr_able & ADV_TID_TO_TIDMASK(i)) == 0)) {
3422  			continue;
3423  		}
3424  
3425  		seq_printf(m, "  %X:", i);
3426  
3427  		if ((lramword & 0x1F) == 0) {	/* Check for REQ/ACK Offset 0. */
3428  			seq_puts(m, " Asynchronous");
3429  		} else {
3430  			seq_puts(m, " Transfer Period Factor: ");
3431  
3432  			if ((lramword & 0x1F00) == 0x1100) {	/* 80 Mhz */
3433  				seq_puts(m, "9 (80.0 Mhz),");
3434  			} else if ((lramword & 0x1F00) == 0x1000) {	/* 40 Mhz */
3435  				seq_puts(m, "10 (40.0 Mhz),");
3436  			} else {	/* 20 Mhz or below. */
3437  
3438  				period = (((lramword >> 8) * 25) + 50) / 4;
3439  
3440  				if (period == 0) {	/* Should never happen. */
3441  					seq_printf(m, "%d (? Mhz), ", period);
3442  				} else {
3443  					seq_printf(m,
3444  						   "%d (%d.%d Mhz),",
3445  						   period, 250 / period,
3446  						   ASC_TENTHS(250, period));
3447  				}
3448  			}
3449  
3450  			seq_printf(m, " REQ/ACK Offset: %d",
3451  				   lramword & 0x1F);
3452  		}
3453  
3454  		if ((sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3455  			seq_puts(m, "*\n");
3456  			renegotiate = 1;
3457  		} else {
3458  			seq_putc(m, '\n');
3459  		}
3460  	}
3461  
3462  	if (renegotiate) {
3463  		seq_puts(m, " * = Re-negotiation pending before next command.\n");
3464  	}
3465  }
3466  
3467  #ifdef ADVANSYS_STATS
3468  /*
3469   * asc_prt_board_stats()
3470   */
asc_prt_board_stats(struct seq_file * m,struct Scsi_Host * shost)3471  static void asc_prt_board_stats(struct seq_file *m, struct Scsi_Host *shost)
3472  {
3473  	struct asc_board *boardp = shost_priv(shost);
3474  	struct asc_stats *s = &boardp->asc_stats;
3475  
3476  	seq_printf(m,
3477  		   "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n",
3478  		   shost->host_no);
3479  
3480  	seq_printf(m,
3481  		   " queuecommand %u, reset %u, biosparam %u, interrupt %u\n",
3482  		   s->queuecommand, s->reset, s->biosparam,
3483  		   s->interrupt);
3484  
3485  	seq_printf(m,
3486  		   " callback %u, done %u, build_error %u, build_noreq %u, build_nosg %u\n",
3487  		   s->callback, s->done, s->build_error,
3488  		   s->adv_build_noreq, s->adv_build_nosg);
3489  
3490  	seq_printf(m,
3491  		   " exe_noerror %u, exe_busy %u, exe_error %u, exe_unknown %u\n",
3492  		   s->exe_noerror, s->exe_busy, s->exe_error,
3493  		   s->exe_unknown);
3494  
3495  	/*
3496  	 * Display data transfer statistics.
3497  	 */
3498  	if (s->xfer_cnt > 0) {
3499  		seq_printf(m, " xfer_cnt %u, xfer_elem %u, ",
3500  			   s->xfer_cnt, s->xfer_elem);
3501  
3502  		seq_printf(m, "xfer_bytes %u.%01u kb\n",
3503  			   s->xfer_sect / 2, ASC_TENTHS(s->xfer_sect, 2));
3504  
3505  		/* Scatter gather transfer statistics */
3506  		seq_printf(m, " avg_num_elem %u.%01u, ",
3507  			   s->xfer_elem / s->xfer_cnt,
3508  			   ASC_TENTHS(s->xfer_elem, s->xfer_cnt));
3509  
3510  		seq_printf(m, "avg_elem_size %u.%01u kb, ",
3511  			   (s->xfer_sect / 2) / s->xfer_elem,
3512  			   ASC_TENTHS((s->xfer_sect / 2), s->xfer_elem));
3513  
3514  		seq_printf(m, "avg_xfer_size %u.%01u kb\n",
3515  			   (s->xfer_sect / 2) / s->xfer_cnt,
3516  			   ASC_TENTHS((s->xfer_sect / 2), s->xfer_cnt));
3517  	}
3518  }
3519  #endif /* ADVANSYS_STATS */
3520  
3521  /*
3522   * advansys_show_info() - /proc/scsi/advansys/{0,1,2,3,...}
3523   *
3524   * m: seq_file to print into
3525   * shost: Scsi_Host
3526   *
3527   * Return the number of bytes read from or written to a
3528   * /proc/scsi/advansys/[0...] file.
3529   */
3530  static int
advansys_show_info(struct seq_file * m,struct Scsi_Host * shost)3531  advansys_show_info(struct seq_file *m, struct Scsi_Host *shost)
3532  {
3533  	struct asc_board *boardp = shost_priv(shost);
3534  
3535  	ASC_DBG(1, "begin\n");
3536  
3537  	/*
3538  	 * User read of /proc/scsi/advansys/[0...] file.
3539  	 */
3540  
3541  	/*
3542  	 * Get board configuration information.
3543  	 *
3544  	 * advansys_info() returns the board string from its own static buffer.
3545  	 */
3546  	/* Copy board information. */
3547  	seq_printf(m, "%s\n", (char *)advansys_info(shost));
3548  	/*
3549  	 * Display Wide Board BIOS Information.
3550  	 */
3551  	if (!ASC_NARROW_BOARD(boardp))
3552  		asc_prt_adv_bios(m, shost);
3553  
3554  	/*
3555  	 * Display driver information for each device attached to the board.
3556  	 */
3557  	asc_prt_board_devices(m, shost);
3558  
3559  	/*
3560  	 * Display EEPROM configuration for the board.
3561  	 */
3562  	if (ASC_NARROW_BOARD(boardp))
3563  		asc_prt_asc_board_eeprom(m, shost);
3564  	else
3565  		asc_prt_adv_board_eeprom(m, shost);
3566  
3567  	/*
3568  	 * Display driver configuration and information for the board.
3569  	 */
3570  	asc_prt_driver_conf(m, shost);
3571  
3572  #ifdef ADVANSYS_STATS
3573  	/*
3574  	 * Display driver statistics for the board.
3575  	 */
3576  	asc_prt_board_stats(m, shost);
3577  #endif /* ADVANSYS_STATS */
3578  
3579  	/*
3580  	 * Display Asc Library dynamic configuration information
3581  	 * for the board.
3582  	 */
3583  	if (ASC_NARROW_BOARD(boardp))
3584  		asc_prt_asc_board_info(m, shost);
3585  	else
3586  		asc_prt_adv_board_info(m, shost);
3587  	return 0;
3588  }
3589  #endif /* CONFIG_PROC_FS */
3590  
asc_scsi_done(struct scsi_cmnd * scp)3591  static void asc_scsi_done(struct scsi_cmnd *scp)
3592  {
3593  	scsi_dma_unmap(scp);
3594  	ASC_STATS(scp->device->host, done);
3595  	scp->scsi_done(scp);
3596  }
3597  
AscSetBank(PortAddr iop_base,uchar bank)3598  static void AscSetBank(PortAddr iop_base, uchar bank)
3599  {
3600  	uchar val;
3601  
3602  	val = AscGetChipControl(iop_base) &
3603  	    (~
3604  	     (CC_SINGLE_STEP | CC_TEST | CC_DIAG | CC_SCSI_RESET |
3605  	      CC_CHIP_RESET));
3606  	if (bank == 1) {
3607  		val |= CC_BANK_ONE;
3608  	} else if (bank == 2) {
3609  		val |= CC_DIAG | CC_BANK_ONE;
3610  	} else {
3611  		val &= ~CC_BANK_ONE;
3612  	}
3613  	AscSetChipControl(iop_base, val);
3614  }
3615  
AscSetChipIH(PortAddr iop_base,ushort ins_code)3616  static void AscSetChipIH(PortAddr iop_base, ushort ins_code)
3617  {
3618  	AscSetBank(iop_base, 1);
3619  	AscWriteChipIH(iop_base, ins_code);
3620  	AscSetBank(iop_base, 0);
3621  }
3622  
AscStartChip(PortAddr iop_base)3623  static int AscStartChip(PortAddr iop_base)
3624  {
3625  	AscSetChipControl(iop_base, 0);
3626  	if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
3627  		return (0);
3628  	}
3629  	return (1);
3630  }
3631  
AscStopChip(PortAddr iop_base)3632  static bool AscStopChip(PortAddr iop_base)
3633  {
3634  	uchar cc_val;
3635  
3636  	cc_val =
3637  	    AscGetChipControl(iop_base) &
3638  	    (~(CC_SINGLE_STEP | CC_TEST | CC_DIAG));
3639  	AscSetChipControl(iop_base, (uchar)(cc_val | CC_HALT));
3640  	AscSetChipIH(iop_base, INS_HALT);
3641  	AscSetChipIH(iop_base, INS_RFLAG_WTM);
3642  	if ((AscGetChipStatus(iop_base) & CSW_HALTED) == 0) {
3643  		return false;
3644  	}
3645  	return true;
3646  }
3647  
AscIsChipHalted(PortAddr iop_base)3648  static bool AscIsChipHalted(PortAddr iop_base)
3649  {
3650  	if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
3651  		if ((AscGetChipControl(iop_base) & CC_HALT) != 0) {
3652  			return true;
3653  		}
3654  	}
3655  	return false;
3656  }
3657  
AscResetChipAndScsiBus(ASC_DVC_VAR * asc_dvc)3658  static bool AscResetChipAndScsiBus(ASC_DVC_VAR *asc_dvc)
3659  {
3660  	PortAddr iop_base;
3661  	int i = 10;
3662  
3663  	iop_base = asc_dvc->iop_base;
3664  	while ((AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE)
3665  	       && (i-- > 0)) {
3666  		mdelay(100);
3667  	}
3668  	AscStopChip(iop_base);
3669  	AscSetChipControl(iop_base, CC_CHIP_RESET | CC_SCSI_RESET | CC_HALT);
3670  	udelay(60);
3671  	AscSetChipIH(iop_base, INS_RFLAG_WTM);
3672  	AscSetChipIH(iop_base, INS_HALT);
3673  	AscSetChipControl(iop_base, CC_CHIP_RESET | CC_HALT);
3674  	AscSetChipControl(iop_base, CC_HALT);
3675  	mdelay(200);
3676  	AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
3677  	AscSetChipStatus(iop_base, 0);
3678  	return (AscIsChipHalted(iop_base));
3679  }
3680  
AscFindSignature(PortAddr iop_base)3681  static int AscFindSignature(PortAddr iop_base)
3682  {
3683  	ushort sig_word;
3684  
3685  	ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n",
3686  		 iop_base, AscGetChipSignatureByte(iop_base));
3687  	if (AscGetChipSignatureByte(iop_base) == (uchar)ASC_1000_ID1B) {
3688  		ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n",
3689  			 iop_base, AscGetChipSignatureWord(iop_base));
3690  		sig_word = AscGetChipSignatureWord(iop_base);
3691  		if ((sig_word == (ushort)ASC_1000_ID0W) ||
3692  		    (sig_word == (ushort)ASC_1000_ID0W_FIX)) {
3693  			return (1);
3694  		}
3695  	}
3696  	return (0);
3697  }
3698  
AscEnableInterrupt(PortAddr iop_base)3699  static void AscEnableInterrupt(PortAddr iop_base)
3700  {
3701  	ushort cfg;
3702  
3703  	cfg = AscGetChipCfgLsw(iop_base);
3704  	AscSetChipCfgLsw(iop_base, cfg | ASC_CFG0_HOST_INT_ON);
3705  }
3706  
AscDisableInterrupt(PortAddr iop_base)3707  static void AscDisableInterrupt(PortAddr iop_base)
3708  {
3709  	ushort cfg;
3710  
3711  	cfg = AscGetChipCfgLsw(iop_base);
3712  	AscSetChipCfgLsw(iop_base, cfg & (~ASC_CFG0_HOST_INT_ON));
3713  }
3714  
AscReadLramByte(PortAddr iop_base,ushort addr)3715  static uchar AscReadLramByte(PortAddr iop_base, ushort addr)
3716  {
3717  	unsigned char byte_data;
3718  	unsigned short word_data;
3719  
3720  	if (isodd_word(addr)) {
3721  		AscSetChipLramAddr(iop_base, addr - 1);
3722  		word_data = AscGetChipLramData(iop_base);
3723  		byte_data = (word_data >> 8) & 0xFF;
3724  	} else {
3725  		AscSetChipLramAddr(iop_base, addr);
3726  		word_data = AscGetChipLramData(iop_base);
3727  		byte_data = word_data & 0xFF;
3728  	}
3729  	return byte_data;
3730  }
3731  
AscReadLramWord(PortAddr iop_base,ushort addr)3732  static ushort AscReadLramWord(PortAddr iop_base, ushort addr)
3733  {
3734  	ushort word_data;
3735  
3736  	AscSetChipLramAddr(iop_base, addr);
3737  	word_data = AscGetChipLramData(iop_base);
3738  	return (word_data);
3739  }
3740  
3741  static void
AscMemWordSetLram(PortAddr iop_base,ushort s_addr,ushort set_wval,int words)3742  AscMemWordSetLram(PortAddr iop_base, ushort s_addr, ushort set_wval, int words)
3743  {
3744  	int i;
3745  
3746  	AscSetChipLramAddr(iop_base, s_addr);
3747  	for (i = 0; i < words; i++) {
3748  		AscSetChipLramData(iop_base, set_wval);
3749  	}
3750  }
3751  
AscWriteLramWord(PortAddr iop_base,ushort addr,ushort word_val)3752  static void AscWriteLramWord(PortAddr iop_base, ushort addr, ushort word_val)
3753  {
3754  	AscSetChipLramAddr(iop_base, addr);
3755  	AscSetChipLramData(iop_base, word_val);
3756  }
3757  
AscWriteLramByte(PortAddr iop_base,ushort addr,uchar byte_val)3758  static void AscWriteLramByte(PortAddr iop_base, ushort addr, uchar byte_val)
3759  {
3760  	ushort word_data;
3761  
3762  	if (isodd_word(addr)) {
3763  		addr--;
3764  		word_data = AscReadLramWord(iop_base, addr);
3765  		word_data &= 0x00FF;
3766  		word_data |= (((ushort)byte_val << 8) & 0xFF00);
3767  	} else {
3768  		word_data = AscReadLramWord(iop_base, addr);
3769  		word_data &= 0xFF00;
3770  		word_data |= ((ushort)byte_val & 0x00FF);
3771  	}
3772  	AscWriteLramWord(iop_base, addr, word_data);
3773  }
3774  
3775  /*
3776   * Copy 2 bytes to LRAM.
3777   *
3778   * The source data is assumed to be in little-endian order in memory
3779   * and is maintained in little-endian order when written to LRAM.
3780   */
3781  static void
AscMemWordCopyPtrToLram(PortAddr iop_base,ushort s_addr,const uchar * s_buffer,int words)3782  AscMemWordCopyPtrToLram(PortAddr iop_base, ushort s_addr,
3783  			const uchar *s_buffer, int words)
3784  {
3785  	int i;
3786  
3787  	AscSetChipLramAddr(iop_base, s_addr);
3788  	for (i = 0; i < 2 * words; i += 2) {
3789  		/*
3790  		 * On a little-endian system the second argument below
3791  		 * produces a little-endian ushort which is written to
3792  		 * LRAM in little-endian order. On a big-endian system
3793  		 * the second argument produces a big-endian ushort which
3794  		 * is "transparently" byte-swapped by outpw() and written
3795  		 * in little-endian order to LRAM.
3796  		 */
3797  		outpw(iop_base + IOP_RAM_DATA,
3798  		      ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);
3799  	}
3800  }
3801  
3802  /*
3803   * Copy 4 bytes to LRAM.
3804   *
3805   * The source data is assumed to be in little-endian order in memory
3806   * and is maintained in little-endian order when written to LRAM.
3807   */
3808  static void
AscMemDWordCopyPtrToLram(PortAddr iop_base,ushort s_addr,uchar * s_buffer,int dwords)3809  AscMemDWordCopyPtrToLram(PortAddr iop_base,
3810  			 ushort s_addr, uchar *s_buffer, int dwords)
3811  {
3812  	int i;
3813  
3814  	AscSetChipLramAddr(iop_base, s_addr);
3815  	for (i = 0; i < 4 * dwords; i += 4) {
3816  		outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);	/* LSW */
3817  		outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 3] << 8) | s_buffer[i + 2]);	/* MSW */
3818  	}
3819  }
3820  
3821  /*
3822   * Copy 2 bytes from LRAM.
3823   *
3824   * The source data is assumed to be in little-endian order in LRAM
3825   * and is maintained in little-endian order when written to memory.
3826   */
3827  static void
AscMemWordCopyPtrFromLram(PortAddr iop_base,ushort s_addr,uchar * d_buffer,int words)3828  AscMemWordCopyPtrFromLram(PortAddr iop_base,
3829  			  ushort s_addr, uchar *d_buffer, int words)
3830  {
3831  	int i;
3832  	ushort word;
3833  
3834  	AscSetChipLramAddr(iop_base, s_addr);
3835  	for (i = 0; i < 2 * words; i += 2) {
3836  		word = inpw(iop_base + IOP_RAM_DATA);
3837  		d_buffer[i] = word & 0xff;
3838  		d_buffer[i + 1] = (word >> 8) & 0xff;
3839  	}
3840  }
3841  
AscMemSumLramWord(PortAddr iop_base,ushort s_addr,int words)3842  static u32 AscMemSumLramWord(PortAddr iop_base, ushort s_addr, int words)
3843  {
3844  	u32 sum = 0;
3845  	int i;
3846  
3847  	for (i = 0; i < words; i++, s_addr += 2) {
3848  		sum += AscReadLramWord(iop_base, s_addr);
3849  	}
3850  	return (sum);
3851  }
3852  
AscInitLram(ASC_DVC_VAR * asc_dvc)3853  static void AscInitLram(ASC_DVC_VAR *asc_dvc)
3854  {
3855  	uchar i;
3856  	ushort s_addr;
3857  	PortAddr iop_base;
3858  
3859  	iop_base = asc_dvc->iop_base;
3860  	AscMemWordSetLram(iop_base, ASC_QADR_BEG, 0,
3861  			  (ushort)(((int)(asc_dvc->max_total_qng + 2 + 1) *
3862  				    64) >> 1));
3863  	i = ASC_MIN_ACTIVE_QNO;
3864  	s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE;
3865  	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
3866  			 (uchar)(i + 1));
3867  	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
3868  			 (uchar)(asc_dvc->max_total_qng));
3869  	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
3870  			 (uchar)i);
3871  	i++;
3872  	s_addr += ASC_QBLK_SIZE;
3873  	for (; i < asc_dvc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) {
3874  		AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
3875  				 (uchar)(i + 1));
3876  		AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
3877  				 (uchar)(i - 1));
3878  		AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
3879  				 (uchar)i);
3880  	}
3881  	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
3882  			 (uchar)ASC_QLINK_END);
3883  	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
3884  			 (uchar)(asc_dvc->max_total_qng - 1));
3885  	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
3886  			 (uchar)asc_dvc->max_total_qng);
3887  	i++;
3888  	s_addr += ASC_QBLK_SIZE;
3889  	for (; i <= (uchar)(asc_dvc->max_total_qng + 3);
3890  	     i++, s_addr += ASC_QBLK_SIZE) {
3891  		AscWriteLramByte(iop_base,
3892  				 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_FWD), i);
3893  		AscWriteLramByte(iop_base,
3894  				 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_BWD), i);
3895  		AscWriteLramByte(iop_base,
3896  				 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_QNO), i);
3897  	}
3898  }
3899  
3900  static u32
AscLoadMicroCode(PortAddr iop_base,ushort s_addr,const uchar * mcode_buf,ushort mcode_size)3901  AscLoadMicroCode(PortAddr iop_base, ushort s_addr,
3902  		 const uchar *mcode_buf, ushort mcode_size)
3903  {
3904  	u32 chksum;
3905  	ushort mcode_word_size;
3906  	ushort mcode_chksum;
3907  
3908  	/* Write the microcode buffer starting at LRAM address 0. */
3909  	mcode_word_size = (ushort)(mcode_size >> 1);
3910  	AscMemWordSetLram(iop_base, s_addr, 0, mcode_word_size);
3911  	AscMemWordCopyPtrToLram(iop_base, s_addr, mcode_buf, mcode_word_size);
3912  
3913  	chksum = AscMemSumLramWord(iop_base, s_addr, mcode_word_size);
3914  	ASC_DBG(1, "chksum 0x%lx\n", (ulong)chksum);
3915  	mcode_chksum = (ushort)AscMemSumLramWord(iop_base,
3916  						 (ushort)ASC_CODE_SEC_BEG,
3917  						 (ushort)((mcode_size -
3918  							   s_addr - (ushort)
3919  							   ASC_CODE_SEC_BEG) /
3920  							  2));
3921  	ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong)mcode_chksum);
3922  	AscWriteLramWord(iop_base, ASCV_MCODE_CHKSUM_W, mcode_chksum);
3923  	AscWriteLramWord(iop_base, ASCV_MCODE_SIZE_W, mcode_size);
3924  	return chksum;
3925  }
3926  
AscInitQLinkVar(ASC_DVC_VAR * asc_dvc)3927  static void AscInitQLinkVar(ASC_DVC_VAR *asc_dvc)
3928  {
3929  	PortAddr iop_base;
3930  	int i;
3931  	ushort lram_addr;
3932  
3933  	iop_base = asc_dvc->iop_base;
3934  	AscPutRiscVarFreeQHead(iop_base, 1);
3935  	AscPutRiscVarDoneQTail(iop_base, asc_dvc->max_total_qng);
3936  	AscPutVarFreeQHead(iop_base, 1);
3937  	AscPutVarDoneQTail(iop_base, asc_dvc->max_total_qng);
3938  	AscWriteLramByte(iop_base, ASCV_BUSY_QHEAD_B,
3939  			 (uchar)((int)asc_dvc->max_total_qng + 1));
3940  	AscWriteLramByte(iop_base, ASCV_DISC1_QHEAD_B,
3941  			 (uchar)((int)asc_dvc->max_total_qng + 2));
3942  	AscWriteLramByte(iop_base, (ushort)ASCV_TOTAL_READY_Q_B,
3943  			 asc_dvc->max_total_qng);
3944  	AscWriteLramWord(iop_base, ASCV_ASCDVC_ERR_CODE_W, 0);
3945  	AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
3946  	AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 0);
3947  	AscWriteLramByte(iop_base, ASCV_SCSIBUSY_B, 0);
3948  	AscWriteLramByte(iop_base, ASCV_WTM_FLAG_B, 0);
3949  	AscPutQDoneInProgress(iop_base, 0);
3950  	lram_addr = ASC_QADR_BEG;
3951  	for (i = 0; i < 32; i++, lram_addr += 2) {
3952  		AscWriteLramWord(iop_base, lram_addr, 0);
3953  	}
3954  }
3955  
AscInitMicroCodeVar(ASC_DVC_VAR * asc_dvc)3956  static int AscInitMicroCodeVar(ASC_DVC_VAR *asc_dvc)
3957  {
3958  	int i;
3959  	int warn_code;
3960  	PortAddr iop_base;
3961  	__le32 phy_addr;
3962  	__le32 phy_size;
3963  	struct asc_board *board = asc_dvc_to_board(asc_dvc);
3964  
3965  	iop_base = asc_dvc->iop_base;
3966  	warn_code = 0;
3967  	for (i = 0; i <= ASC_MAX_TID; i++) {
3968  		AscPutMCodeInitSDTRAtID(iop_base, i,
3969  					asc_dvc->cfg->sdtr_period_offset[i]);
3970  	}
3971  
3972  	AscInitQLinkVar(asc_dvc);
3973  	AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B,
3974  			 asc_dvc->cfg->disc_enable);
3975  	AscWriteLramByte(iop_base, ASCV_HOSTSCSI_ID_B,
3976  			 ASC_TID_TO_TARGET_ID(asc_dvc->cfg->chip_scsi_id));
3977  
3978  	/* Ensure overrun buffer is aligned on an 8 byte boundary. */
3979  	BUG_ON((unsigned long)asc_dvc->overrun_buf & 7);
3980  	asc_dvc->overrun_dma = dma_map_single(board->dev, asc_dvc->overrun_buf,
3981  					ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
3982  	if (dma_mapping_error(board->dev, asc_dvc->overrun_dma)) {
3983  		warn_code = -ENOMEM;
3984  		goto err_dma_map;
3985  	}
3986  	phy_addr = cpu_to_le32(asc_dvc->overrun_dma);
3987  	AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_PADDR_D,
3988  				 (uchar *)&phy_addr, 1);
3989  	phy_size = cpu_to_le32(ASC_OVERRUN_BSIZE);
3990  	AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_BSIZE_D,
3991  				 (uchar *)&phy_size, 1);
3992  
3993  	asc_dvc->cfg->mcode_date =
3994  	    AscReadLramWord(iop_base, (ushort)ASCV_MC_DATE_W);
3995  	asc_dvc->cfg->mcode_version =
3996  	    AscReadLramWord(iop_base, (ushort)ASCV_MC_VER_W);
3997  
3998  	AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
3999  	if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
4000  		asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
4001  		warn_code = -EINVAL;
4002  		goto err_mcode_start;
4003  	}
4004  	if (AscStartChip(iop_base) != 1) {
4005  		asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
4006  		warn_code = -EIO;
4007  		goto err_mcode_start;
4008  	}
4009  
4010  	return warn_code;
4011  
4012  err_mcode_start:
4013  	dma_unmap_single(board->dev, asc_dvc->overrun_dma,
4014  			 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4015  err_dma_map:
4016  	asc_dvc->overrun_dma = 0;
4017  	return warn_code;
4018  }
4019  
AscInitAsc1000Driver(ASC_DVC_VAR * asc_dvc)4020  static int AscInitAsc1000Driver(ASC_DVC_VAR *asc_dvc)
4021  {
4022  	const struct firmware *fw;
4023  	const char fwname[] = "advansys/mcode.bin";
4024  	int err;
4025  	unsigned long chksum;
4026  	int warn_code;
4027  	PortAddr iop_base;
4028  
4029  	iop_base = asc_dvc->iop_base;
4030  	warn_code = 0;
4031  	if ((asc_dvc->dvc_cntl & ASC_CNTL_RESET_SCSI) &&
4032  	    !(asc_dvc->init_state & ASC_INIT_RESET_SCSI_DONE)) {
4033  		AscResetChipAndScsiBus(asc_dvc);
4034  		mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
4035  	}
4036  	asc_dvc->init_state |= ASC_INIT_STATE_BEG_LOAD_MC;
4037  	if (asc_dvc->err_code != 0)
4038  		return ASC_ERROR;
4039  	if (!AscFindSignature(asc_dvc->iop_base)) {
4040  		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
4041  		return warn_code;
4042  	}
4043  	AscDisableInterrupt(iop_base);
4044  	AscInitLram(asc_dvc);
4045  
4046  	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4047  	if (err) {
4048  		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4049  		       fwname, err);
4050  		asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4051  		return err;
4052  	}
4053  	if (fw->size < 4) {
4054  		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4055  		       fw->size, fwname);
4056  		release_firmware(fw);
4057  		asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4058  		return -EINVAL;
4059  	}
4060  	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4061  		 (fw->data[1] << 8) | fw->data[0];
4062  	ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong)chksum);
4063  	if (AscLoadMicroCode(iop_base, 0, &fw->data[4],
4064  			     fw->size - 4) != chksum) {
4065  		asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4066  		release_firmware(fw);
4067  		return warn_code;
4068  	}
4069  	release_firmware(fw);
4070  	warn_code |= AscInitMicroCodeVar(asc_dvc);
4071  	if (!asc_dvc->overrun_dma)
4072  		return warn_code;
4073  	asc_dvc->init_state |= ASC_INIT_STATE_END_LOAD_MC;
4074  	AscEnableInterrupt(iop_base);
4075  	return warn_code;
4076  }
4077  
4078  /*
4079   * Load the Microcode
4080   *
4081   * Write the microcode image to RISC memory starting at address 0.
4082   *
4083   * The microcode is stored compressed in the following format:
4084   *
4085   *  254 word (508 byte) table indexed by byte code followed
4086   *  by the following byte codes:
4087   *
4088   *    1-Byte Code:
4089   *      00: Emit word 0 in table.
4090   *      01: Emit word 1 in table.
4091   *      .
4092   *      FD: Emit word 253 in table.
4093   *
4094   *    Multi-Byte Code:
4095   *      FE WW WW: (3 byte code) Word to emit is the next word WW WW.
4096   *      FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
4097   *
4098   * Returns 0 or an error if the checksum doesn't match
4099   */
AdvLoadMicrocode(AdvPortAddr iop_base,const unsigned char * buf,int size,int memsize,int chksum)4100  static int AdvLoadMicrocode(AdvPortAddr iop_base, const unsigned char *buf,
4101  			    int size, int memsize, int chksum)
4102  {
4103  	int i, j, end, len = 0;
4104  	u32 sum;
4105  
4106  	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4107  
4108  	for (i = 253 * 2; i < size; i++) {
4109  		if (buf[i] == 0xff) {
4110  			unsigned short word = (buf[i + 3] << 8) | buf[i + 2];
4111  			for (j = 0; j < buf[i + 1]; j++) {
4112  				AdvWriteWordAutoIncLram(iop_base, word);
4113  				len += 2;
4114  			}
4115  			i += 3;
4116  		} else if (buf[i] == 0xfe) {
4117  			unsigned short word = (buf[i + 2] << 8) | buf[i + 1];
4118  			AdvWriteWordAutoIncLram(iop_base, word);
4119  			i += 2;
4120  			len += 2;
4121  		} else {
4122  			unsigned int off = buf[i] * 2;
4123  			unsigned short word = (buf[off + 1] << 8) | buf[off];
4124  			AdvWriteWordAutoIncLram(iop_base, word);
4125  			len += 2;
4126  		}
4127  	}
4128  
4129  	end = len;
4130  
4131  	while (len < memsize) {
4132  		AdvWriteWordAutoIncLram(iop_base, 0);
4133  		len += 2;
4134  	}
4135  
4136  	/* Verify the microcode checksum. */
4137  	sum = 0;
4138  	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4139  
4140  	for (len = 0; len < end; len += 2) {
4141  		sum += AdvReadWordAutoIncLram(iop_base);
4142  	}
4143  
4144  	if (sum != chksum)
4145  		return ASC_IERR_MCODE_CHKSUM;
4146  
4147  	return 0;
4148  }
4149  
AdvBuildCarrierFreelist(struct adv_dvc_var * adv_dvc)4150  static void AdvBuildCarrierFreelist(struct adv_dvc_var *adv_dvc)
4151  {
4152  	off_t carr_offset = 0, next_offset;
4153  	dma_addr_t carr_paddr;
4154  	int carr_num = ADV_CARRIER_BUFSIZE / sizeof(ADV_CARR_T), i;
4155  
4156  	for (i = 0; i < carr_num; i++) {
4157  		carr_offset = i * sizeof(ADV_CARR_T);
4158  		/* Get physical address of the carrier 'carrp'. */
4159  		carr_paddr = adv_dvc->carrier_addr + carr_offset;
4160  
4161  		adv_dvc->carrier[i].carr_pa = cpu_to_le32(carr_paddr);
4162  		adv_dvc->carrier[i].carr_va = cpu_to_le32(carr_offset);
4163  		adv_dvc->carrier[i].areq_vpa = 0;
4164  		next_offset = carr_offset + sizeof(ADV_CARR_T);
4165  		if (i == carr_num)
4166  			next_offset = ~0;
4167  		adv_dvc->carrier[i].next_vpa = cpu_to_le32(next_offset);
4168  	}
4169  	/*
4170  	 * We cannot have a carrier with 'carr_va' of '0', as
4171  	 * a reference to this carrier would be interpreted as
4172  	 * list termination.
4173  	 * So start at carrier 1 with the freelist.
4174  	 */
4175  	adv_dvc->carr_freelist = &adv_dvc->carrier[1];
4176  }
4177  
adv_get_carrier(struct adv_dvc_var * adv_dvc,u32 offset)4178  static ADV_CARR_T *adv_get_carrier(struct adv_dvc_var *adv_dvc, u32 offset)
4179  {
4180  	int index;
4181  
4182  	BUG_ON(offset > ADV_CARRIER_BUFSIZE);
4183  
4184  	index = offset / sizeof(ADV_CARR_T);
4185  	return &adv_dvc->carrier[index];
4186  }
4187  
adv_get_next_carrier(struct adv_dvc_var * adv_dvc)4188  static ADV_CARR_T *adv_get_next_carrier(struct adv_dvc_var *adv_dvc)
4189  {
4190  	ADV_CARR_T *carrp = adv_dvc->carr_freelist;
4191  	u32 next_vpa = le32_to_cpu(carrp->next_vpa);
4192  
4193  	if (next_vpa == 0 || next_vpa == ~0) {
4194  		ASC_DBG(1, "invalid vpa offset 0x%x\n", next_vpa);
4195  		return NULL;
4196  	}
4197  
4198  	adv_dvc->carr_freelist = adv_get_carrier(adv_dvc, next_vpa);
4199  	/*
4200  	 * insert stopper carrier to terminate list
4201  	 */
4202  	carrp->next_vpa = cpu_to_le32(ADV_CQ_STOPPER);
4203  
4204  	return carrp;
4205  }
4206  
4207  /*
4208   * 'offset' is the index in the request pointer array
4209   */
adv_get_reqp(struct adv_dvc_var * adv_dvc,u32 offset)4210  static adv_req_t * adv_get_reqp(struct adv_dvc_var *adv_dvc, u32 offset)
4211  {
4212  	struct asc_board *boardp = adv_dvc->drv_ptr;
4213  
4214  	BUG_ON(offset > adv_dvc->max_host_qng);
4215  	return &boardp->adv_reqp[offset];
4216  }
4217  
4218  /*
4219   * Send an idle command to the chip and wait for completion.
4220   *
4221   * Command completion is polled for once per microsecond.
4222   *
4223   * The function can be called from anywhere including an interrupt handler.
4224   * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical()
4225   * functions to prevent reentrancy.
4226   *
4227   * Return Values:
4228   *   ADV_TRUE - command completed successfully
4229   *   ADV_FALSE - command failed
4230   *   ADV_ERROR - command timed out
4231   */
4232  static int
AdvSendIdleCmd(ADV_DVC_VAR * asc_dvc,ushort idle_cmd,u32 idle_cmd_parameter)4233  AdvSendIdleCmd(ADV_DVC_VAR *asc_dvc,
4234  	       ushort idle_cmd, u32 idle_cmd_parameter)
4235  {
4236  	int result, i, j;
4237  	AdvPortAddr iop_base;
4238  
4239  	iop_base = asc_dvc->iop_base;
4240  
4241  	/*
4242  	 * Clear the idle command status which is set by the microcode
4243  	 * to a non-zero value to indicate when the command is completed.
4244  	 * The non-zero result is one of the IDLE_CMD_STATUS_* values
4245  	 */
4246  	AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, (ushort)0);
4247  
4248  	/*
4249  	 * Write the idle command value after the idle command parameter
4250  	 * has been written to avoid a race condition. If the order is not
4251  	 * followed, the microcode may process the idle command before the
4252  	 * parameters have been written to LRAM.
4253  	 */
4254  	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IDLE_CMD_PARAMETER,
4255  				cpu_to_le32(idle_cmd_parameter));
4256  	AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD, idle_cmd);
4257  
4258  	/*
4259  	 * Tickle the RISC to tell it to process the idle command.
4260  	 */
4261  	AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_B);
4262  	if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
4263  		/*
4264  		 * Clear the tickle value. In the ASC-3550 the RISC flag
4265  		 * command 'clr_tickle_b' does not work unless the host
4266  		 * value is cleared.
4267  		 */
4268  		AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_NOP);
4269  	}
4270  
4271  	/* Wait for up to 100 millisecond for the idle command to timeout. */
4272  	for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
4273  		/* Poll once each microsecond for command completion. */
4274  		for (j = 0; j < SCSI_US_PER_MSEC; j++) {
4275  			AdvReadWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS,
4276  					result);
4277  			if (result != 0)
4278  				return result;
4279  			udelay(1);
4280  		}
4281  	}
4282  
4283  	BUG();		/* The idle command should never timeout. */
4284  	return ADV_ERROR;
4285  }
4286  
4287  /*
4288   * Reset SCSI Bus and purge all outstanding requests.
4289   *
4290   * Return Value:
4291   *      ADV_TRUE(1) -   All requests are purged and SCSI Bus is reset.
4292   *      ADV_FALSE(0) -  Microcode command failed.
4293   *      ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC
4294   *                      may be hung which requires driver recovery.
4295   */
AdvResetSB(ADV_DVC_VAR * asc_dvc)4296  static int AdvResetSB(ADV_DVC_VAR *asc_dvc)
4297  {
4298  	int status;
4299  
4300  	/*
4301  	 * Send the SCSI Bus Reset idle start idle command which asserts
4302  	 * the SCSI Bus Reset signal.
4303  	 */
4304  	status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_START, 0L);
4305  	if (status != ADV_TRUE) {
4306  		return status;
4307  	}
4308  
4309  	/*
4310  	 * Delay for the specified SCSI Bus Reset hold time.
4311  	 *
4312  	 * The hold time delay is done on the host because the RISC has no
4313  	 * microsecond accurate timer.
4314  	 */
4315  	udelay(ASC_SCSI_RESET_HOLD_TIME_US);
4316  
4317  	/*
4318  	 * Send the SCSI Bus Reset end idle command which de-asserts
4319  	 * the SCSI Bus Reset signal and purges any pending requests.
4320  	 */
4321  	status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_END, 0L);
4322  	if (status != ADV_TRUE) {
4323  		return status;
4324  	}
4325  
4326  	mdelay(asc_dvc->scsi_reset_wait * 1000);	/* XXX: msleep? */
4327  
4328  	return status;
4329  }
4330  
4331  /*
4332   * Initialize the ASC-3550.
4333   *
4334   * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4335   *
4336   * For a non-fatal error return a warning code. If there are no warnings
4337   * then 0 is returned.
4338   *
4339   * Needed after initialization for error recovery.
4340   */
AdvInitAsc3550Driver(ADV_DVC_VAR * asc_dvc)4341  static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc)
4342  {
4343  	const struct firmware *fw;
4344  	const char fwname[] = "advansys/3550.bin";
4345  	AdvPortAddr iop_base;
4346  	ushort warn_code;
4347  	int begin_addr;
4348  	int end_addr;
4349  	ushort code_sum;
4350  	int word;
4351  	int i;
4352  	int err;
4353  	unsigned long chksum;
4354  	ushort scsi_cfg1;
4355  	uchar tid;
4356  	ushort bios_mem[ASC_MC_BIOSLEN / 2];	/* BIOS RISC Memory 0x40-0x8F. */
4357  	ushort wdtr_able = 0, sdtr_able, tagqng_able;
4358  	uchar max_cmd[ADV_MAX_TID + 1];
4359  
4360  	/* If there is already an error, don't continue. */
4361  	if (asc_dvc->err_code != 0)
4362  		return ADV_ERROR;
4363  
4364  	/*
4365  	 * The caller must set 'chip_type' to ADV_CHIP_ASC3550.
4366  	 */
4367  	if (asc_dvc->chip_type != ADV_CHIP_ASC3550) {
4368  		asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
4369  		return ADV_ERROR;
4370  	}
4371  
4372  	warn_code = 0;
4373  	iop_base = asc_dvc->iop_base;
4374  
4375  	/*
4376  	 * Save the RISC memory BIOS region before writing the microcode.
4377  	 * The BIOS may already be loaded and using its RISC LRAM region
4378  	 * so its region must be saved and restored.
4379  	 *
4380  	 * Note: This code makes the assumption, which is currently true,
4381  	 * that a chip reset does not clear RISC LRAM.
4382  	 */
4383  	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4384  		AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4385  				bios_mem[i]);
4386  	}
4387  
4388  	/*
4389  	 * Save current per TID negotiated values.
4390  	 */
4391  	if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) {
4392  		ushort bios_version, major, minor;
4393  
4394  		bios_version =
4395  		    bios_mem[(ASC_MC_BIOS_VERSION - ASC_MC_BIOSMEM) / 2];
4396  		major = (bios_version >> 12) & 0xF;
4397  		minor = (bios_version >> 8) & 0xF;
4398  		if (major < 3 || (major == 3 && minor == 1)) {
4399  			/* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
4400  			AdvReadWordLram(iop_base, 0x120, wdtr_able);
4401  		} else {
4402  			AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4403  		}
4404  	}
4405  	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4406  	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
4407  	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4408  		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
4409  				max_cmd[tid]);
4410  	}
4411  
4412  	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4413  	if (err) {
4414  		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4415  		       fwname, err);
4416  		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4417  		return err;
4418  	}
4419  	if (fw->size < 4) {
4420  		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4421  		       fw->size, fwname);
4422  		release_firmware(fw);
4423  		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4424  		return -EINVAL;
4425  	}
4426  	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4427  		 (fw->data[1] << 8) | fw->data[0];
4428  	asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
4429  					     fw->size - 4, ADV_3550_MEMSIZE,
4430  					     chksum);
4431  	release_firmware(fw);
4432  	if (asc_dvc->err_code)
4433  		return ADV_ERROR;
4434  
4435  	/*
4436  	 * Restore the RISC memory BIOS region.
4437  	 */
4438  	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4439  		AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4440  				 bios_mem[i]);
4441  	}
4442  
4443  	/*
4444  	 * Calculate and write the microcode code checksum to the microcode
4445  	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
4446  	 */
4447  	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
4448  	AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
4449  	code_sum = 0;
4450  	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
4451  	for (word = begin_addr; word < end_addr; word += 2) {
4452  		code_sum += AdvReadWordAutoIncLram(iop_base);
4453  	}
4454  	AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
4455  
4456  	/*
4457  	 * Read and save microcode version and date.
4458  	 */
4459  	AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
4460  			asc_dvc->cfg->mcode_date);
4461  	AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
4462  			asc_dvc->cfg->mcode_version);
4463  
4464  	/*
4465  	 * Set the chip type to indicate the ASC3550.
4466  	 */
4467  	AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550);
4468  
4469  	/*
4470  	 * If the PCI Configuration Command Register "Parity Error Response
4471  	 * Control" Bit was clear (0), then set the microcode variable
4472  	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
4473  	 * to ignore DMA parity errors.
4474  	 */
4475  	if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
4476  		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4477  		word |= CONTROL_FLAG_IGNORE_PERR;
4478  		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4479  	}
4480  
4481  	/*
4482  	 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
4483  	 * threshold of 128 bytes. This register is only accessible to the host.
4484  	 */
4485  	AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
4486  			     START_CTL_EMFU | READ_CMD_MRM);
4487  
4488  	/*
4489  	 * Microcode operating variables for WDTR, SDTR, and command tag
4490  	 * queuing will be set in slave_configure() based on what a
4491  	 * device reports it is capable of in Inquiry byte 7.
4492  	 *
4493  	 * If SCSI Bus Resets have been disabled, then directly set
4494  	 * SDTR and WDTR from the EEPROM configuration. This will allow
4495  	 * the BIOS and warm boot to work without a SCSI bus hang on
4496  	 * the Inquiry caused by host and target mismatched DTR values.
4497  	 * Without the SCSI Bus Reset, before an Inquiry a device can't
4498  	 * be assumed to be in Asynchronous, Narrow mode.
4499  	 */
4500  	if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
4501  		AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
4502  				 asc_dvc->wdtr_able);
4503  		AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
4504  				 asc_dvc->sdtr_able);
4505  	}
4506  
4507  	/*
4508  	 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
4509  	 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
4510  	 * bitmask. These values determine the maximum SDTR speed negotiated
4511  	 * with a device.
4512  	 *
4513  	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
4514  	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
4515  	 * without determining here whether the device supports SDTR.
4516  	 *
4517  	 * 4-bit speed  SDTR speed name
4518  	 * ===========  ===============
4519  	 * 0000b (0x0)  SDTR disabled
4520  	 * 0001b (0x1)  5 Mhz
4521  	 * 0010b (0x2)  10 Mhz
4522  	 * 0011b (0x3)  20 Mhz (Ultra)
4523  	 * 0100b (0x4)  40 Mhz (LVD/Ultra2)
4524  	 * 0101b (0x5)  80 Mhz (LVD2/Ultra3)
4525  	 * 0110b (0x6)  Undefined
4526  	 * .
4527  	 * 1111b (0xF)  Undefined
4528  	 */
4529  	word = 0;
4530  	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4531  		if (ADV_TID_TO_TIDMASK(tid) & asc_dvc->ultra_able) {
4532  			/* Set Ultra speed for TID 'tid'. */
4533  			word |= (0x3 << (4 * (tid % 4)));
4534  		} else {
4535  			/* Set Fast speed for TID 'tid'. */
4536  			word |= (0x2 << (4 * (tid % 4)));
4537  		}
4538  		if (tid == 3) {	/* Check if done with sdtr_speed1. */
4539  			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, word);
4540  			word = 0;
4541  		} else if (tid == 7) {	/* Check if done with sdtr_speed2. */
4542  			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, word);
4543  			word = 0;
4544  		} else if (tid == 11) {	/* Check if done with sdtr_speed3. */
4545  			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, word);
4546  			word = 0;
4547  		} else if (tid == 15) {	/* Check if done with sdtr_speed4. */
4548  			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, word);
4549  			/* End of loop. */
4550  		}
4551  	}
4552  
4553  	/*
4554  	 * Set microcode operating variable for the disconnect per TID bitmask.
4555  	 */
4556  	AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
4557  			 asc_dvc->cfg->disc_enable);
4558  
4559  	/*
4560  	 * Set SCSI_CFG0 Microcode Default Value.
4561  	 *
4562  	 * The microcode will set the SCSI_CFG0 register using this value
4563  	 * after it is started below.
4564  	 */
4565  	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
4566  			 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
4567  			 asc_dvc->chip_scsi_id);
4568  
4569  	/*
4570  	 * Determine SCSI_CFG1 Microcode Default Value.
4571  	 *
4572  	 * The microcode will set the SCSI_CFG1 register using this value
4573  	 * after it is started below.
4574  	 */
4575  
4576  	/* Read current SCSI_CFG1 Register value. */
4577  	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
4578  
4579  	/*
4580  	 * If all three connectors are in use, return an error.
4581  	 */
4582  	if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
4583  	    (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
4584  		asc_dvc->err_code |= ASC_IERR_ILLEGAL_CONNECTION;
4585  		return ADV_ERROR;
4586  	}
4587  
4588  	/*
4589  	 * If the internal narrow cable is reversed all of the SCSI_CTRL
4590  	 * register signals will be set. Check for and return an error if
4591  	 * this condition is found.
4592  	 */
4593  	if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
4594  		asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
4595  		return ADV_ERROR;
4596  	}
4597  
4598  	/*
4599  	 * If this is a differential board and a single-ended device
4600  	 * is attached to one of the connectors, return an error.
4601  	 */
4602  	if ((scsi_cfg1 & DIFF_MODE) && (scsi_cfg1 & DIFF_SENSE) == 0) {
4603  		asc_dvc->err_code |= ASC_IERR_SINGLE_END_DEVICE;
4604  		return ADV_ERROR;
4605  	}
4606  
4607  	/*
4608  	 * If automatic termination control is enabled, then set the
4609  	 * termination value based on a table listed in a_condor.h.
4610  	 *
4611  	 * If manual termination was specified with an EEPROM setting
4612  	 * then 'termination' was set-up in AdvInitFrom3550EEPROM() and
4613  	 * is ready to be 'ored' into SCSI_CFG1.
4614  	 */
4615  	if (asc_dvc->cfg->termination == 0) {
4616  		/*
4617  		 * The software always controls termination by setting TERM_CTL_SEL.
4618  		 * If TERM_CTL_SEL were set to 0, the hardware would set termination.
4619  		 */
4620  		asc_dvc->cfg->termination |= TERM_CTL_SEL;
4621  
4622  		switch (scsi_cfg1 & CABLE_DETECT) {
4623  			/* TERM_CTL_H: on, TERM_CTL_L: on */
4624  		case 0x3:
4625  		case 0x7:
4626  		case 0xB:
4627  		case 0xD:
4628  		case 0xE:
4629  		case 0xF:
4630  			asc_dvc->cfg->termination |= (TERM_CTL_H | TERM_CTL_L);
4631  			break;
4632  
4633  			/* TERM_CTL_H: on, TERM_CTL_L: off */
4634  		case 0x1:
4635  		case 0x5:
4636  		case 0x9:
4637  		case 0xA:
4638  		case 0xC:
4639  			asc_dvc->cfg->termination |= TERM_CTL_H;
4640  			break;
4641  
4642  			/* TERM_CTL_H: off, TERM_CTL_L: off */
4643  		case 0x2:
4644  		case 0x6:
4645  			break;
4646  		}
4647  	}
4648  
4649  	/*
4650  	 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
4651  	 */
4652  	scsi_cfg1 &= ~TERM_CTL;
4653  
4654  	/*
4655  	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
4656  	 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
4657  	 * referenced, because the hardware internally inverts
4658  	 * the Termination High and Low bits if TERM_POL is set.
4659  	 */
4660  	scsi_cfg1 |= (TERM_CTL_SEL | (~asc_dvc->cfg->termination & TERM_CTL));
4661  
4662  	/*
4663  	 * Set SCSI_CFG1 Microcode Default Value
4664  	 *
4665  	 * Set filter value and possibly modified termination control
4666  	 * bits in the Microcode SCSI_CFG1 Register Value.
4667  	 *
4668  	 * The microcode will set the SCSI_CFG1 register using this value
4669  	 * after it is started below.
4670  	 */
4671  	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1,
4672  			 FLTR_DISABLE | scsi_cfg1);
4673  
4674  	/*
4675  	 * Set MEM_CFG Microcode Default Value
4676  	 *
4677  	 * The microcode will set the MEM_CFG register using this value
4678  	 * after it is started below.
4679  	 *
4680  	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
4681  	 * are defined.
4682  	 *
4683  	 * ASC-3550 has 8KB internal memory.
4684  	 */
4685  	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
4686  			 BIOS_EN | RAM_SZ_8KB);
4687  
4688  	/*
4689  	 * Set SEL_MASK Microcode Default Value
4690  	 *
4691  	 * The microcode will set the SEL_MASK register using this value
4692  	 * after it is started below.
4693  	 */
4694  	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
4695  			 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
4696  
4697  	AdvBuildCarrierFreelist(asc_dvc);
4698  
4699  	/*
4700  	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
4701  	 */
4702  
4703  	asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
4704  	if (!asc_dvc->icq_sp) {
4705  		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
4706  		return ADV_ERROR;
4707  	}
4708  
4709  	/*
4710  	 * Set RISC ICQ physical address start value.
4711  	 */
4712  	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
4713  
4714  	/*
4715  	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
4716  	 */
4717  	asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
4718  	if (!asc_dvc->irq_sp) {
4719  		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
4720  		return ADV_ERROR;
4721  	}
4722  
4723  	/*
4724  	 * Set RISC IRQ physical address start value.
4725  	 */
4726  	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
4727  	asc_dvc->carr_pending_cnt = 0;
4728  
4729  	AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
4730  			     (ADV_INTR_ENABLE_HOST_INTR |
4731  			      ADV_INTR_ENABLE_GLOBAL_INTR));
4732  
4733  	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
4734  	AdvWriteWordRegister(iop_base, IOPW_PC, word);
4735  
4736  	/* finally, finally, gentlemen, start your engine */
4737  	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
4738  
4739  	/*
4740  	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
4741  	 * Resets should be performed. The RISC has to be running
4742  	 * to issue a SCSI Bus Reset.
4743  	 */
4744  	if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
4745  		/*
4746  		 * If the BIOS Signature is present in memory, restore the
4747  		 * BIOS Handshake Configuration Table and do not perform
4748  		 * a SCSI Bus Reset.
4749  		 */
4750  		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
4751  		    0x55AA) {
4752  			/*
4753  			 * Restore per TID negotiated values.
4754  			 */
4755  			AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4756  			AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4757  			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
4758  					 tagqng_able);
4759  			for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4760  				AdvWriteByteLram(iop_base,
4761  						 ASC_MC_NUMBER_OF_MAX_CMD + tid,
4762  						 max_cmd[tid]);
4763  			}
4764  		} else {
4765  			if (AdvResetSB(asc_dvc) != ADV_TRUE) {
4766  				warn_code = ASC_WARN_BUSRESET_ERROR;
4767  			}
4768  		}
4769  	}
4770  
4771  	return warn_code;
4772  }
4773  
4774  /*
4775   * Initialize the ASC-38C0800.
4776   *
4777   * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4778   *
4779   * For a non-fatal error return a warning code. If there are no warnings
4780   * then 0 is returned.
4781   *
4782   * Needed after initialization for error recovery.
4783   */
AdvInitAsc38C0800Driver(ADV_DVC_VAR * asc_dvc)4784  static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc)
4785  {
4786  	const struct firmware *fw;
4787  	const char fwname[] = "advansys/38C0800.bin";
4788  	AdvPortAddr iop_base;
4789  	ushort warn_code;
4790  	int begin_addr;
4791  	int end_addr;
4792  	ushort code_sum;
4793  	int word;
4794  	int i;
4795  	int err;
4796  	unsigned long chksum;
4797  	ushort scsi_cfg1;
4798  	uchar byte;
4799  	uchar tid;
4800  	ushort bios_mem[ASC_MC_BIOSLEN / 2];	/* BIOS RISC Memory 0x40-0x8F. */
4801  	ushort wdtr_able, sdtr_able, tagqng_able;
4802  	uchar max_cmd[ADV_MAX_TID + 1];
4803  
4804  	/* If there is already an error, don't continue. */
4805  	if (asc_dvc->err_code != 0)
4806  		return ADV_ERROR;
4807  
4808  	/*
4809  	 * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800.
4810  	 */
4811  	if (asc_dvc->chip_type != ADV_CHIP_ASC38C0800) {
4812  		asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
4813  		return ADV_ERROR;
4814  	}
4815  
4816  	warn_code = 0;
4817  	iop_base = asc_dvc->iop_base;
4818  
4819  	/*
4820  	 * Save the RISC memory BIOS region before writing the microcode.
4821  	 * The BIOS may already be loaded and using its RISC LRAM region
4822  	 * so its region must be saved and restored.
4823  	 *
4824  	 * Note: This code makes the assumption, which is currently true,
4825  	 * that a chip reset does not clear RISC LRAM.
4826  	 */
4827  	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4828  		AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4829  				bios_mem[i]);
4830  	}
4831  
4832  	/*
4833  	 * Save current per TID negotiated values.
4834  	 */
4835  	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4836  	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4837  	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
4838  	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4839  		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
4840  				max_cmd[tid]);
4841  	}
4842  
4843  	/*
4844  	 * RAM BIST (RAM Built-In Self Test)
4845  	 *
4846  	 * Address : I/O base + offset 0x38h register (byte).
4847  	 * Function: Bit 7-6(RW) : RAM mode
4848  	 *                          Normal Mode   : 0x00
4849  	 *                          Pre-test Mode : 0x40
4850  	 *                          RAM Test Mode : 0x80
4851  	 *           Bit 5       : unused
4852  	 *           Bit 4(RO)   : Done bit
4853  	 *           Bit 3-0(RO) : Status
4854  	 *                          Host Error    : 0x08
4855  	 *                          Int_RAM Error : 0x04
4856  	 *                          RISC Error    : 0x02
4857  	 *                          SCSI Error    : 0x01
4858  	 *                          No Error      : 0x00
4859  	 *
4860  	 * Note: RAM BIST code should be put right here, before loading the
4861  	 * microcode and after saving the RISC memory BIOS region.
4862  	 */
4863  
4864  	/*
4865  	 * LRAM Pre-test
4866  	 *
4867  	 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
4868  	 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
4869  	 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
4870  	 * to NORMAL_MODE, return an error too.
4871  	 */
4872  	for (i = 0; i < 2; i++) {
4873  		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
4874  		mdelay(10);	/* Wait for 10ms before reading back. */
4875  		byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
4876  		if ((byte & RAM_TEST_DONE) == 0
4877  		    || (byte & 0x0F) != PRE_TEST_VALUE) {
4878  			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
4879  			return ADV_ERROR;
4880  		}
4881  
4882  		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
4883  		mdelay(10);	/* Wait for 10ms before reading back. */
4884  		if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
4885  		    != NORMAL_VALUE) {
4886  			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
4887  			return ADV_ERROR;
4888  		}
4889  	}
4890  
4891  	/*
4892  	 * LRAM Test - It takes about 1.5 ms to run through the test.
4893  	 *
4894  	 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
4895  	 * If Done bit not set or Status not 0, save register byte, set the
4896  	 * err_code, and return an error.
4897  	 */
4898  	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
4899  	mdelay(10);	/* Wait for 10ms before checking status. */
4900  
4901  	byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
4902  	if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
4903  		/* Get here if Done bit not set or Status not 0. */
4904  		asc_dvc->bist_err_code = byte;	/* for BIOS display message */
4905  		asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
4906  		return ADV_ERROR;
4907  	}
4908  
4909  	/* We need to reset back to normal mode after LRAM test passes. */
4910  	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
4911  
4912  	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4913  	if (err) {
4914  		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4915  		       fwname, err);
4916  		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4917  		return err;
4918  	}
4919  	if (fw->size < 4) {
4920  		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4921  		       fw->size, fwname);
4922  		release_firmware(fw);
4923  		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4924  		return -EINVAL;
4925  	}
4926  	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4927  		 (fw->data[1] << 8) | fw->data[0];
4928  	asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
4929  					     fw->size - 4, ADV_38C0800_MEMSIZE,
4930  					     chksum);
4931  	release_firmware(fw);
4932  	if (asc_dvc->err_code)
4933  		return ADV_ERROR;
4934  
4935  	/*
4936  	 * Restore the RISC memory BIOS region.
4937  	 */
4938  	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4939  		AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4940  				 bios_mem[i]);
4941  	}
4942  
4943  	/*
4944  	 * Calculate and write the microcode code checksum to the microcode
4945  	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
4946  	 */
4947  	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
4948  	AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
4949  	code_sum = 0;
4950  	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
4951  	for (word = begin_addr; word < end_addr; word += 2) {
4952  		code_sum += AdvReadWordAutoIncLram(iop_base);
4953  	}
4954  	AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
4955  
4956  	/*
4957  	 * Read microcode version and date.
4958  	 */
4959  	AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
4960  			asc_dvc->cfg->mcode_date);
4961  	AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
4962  			asc_dvc->cfg->mcode_version);
4963  
4964  	/*
4965  	 * Set the chip type to indicate the ASC38C0800.
4966  	 */
4967  	AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800);
4968  
4969  	/*
4970  	 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
4971  	 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
4972  	 * cable detection and then we are able to read C_DET[3:0].
4973  	 *
4974  	 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
4975  	 * Microcode Default Value' section below.
4976  	 */
4977  	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
4978  	AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
4979  			     scsi_cfg1 | DIS_TERM_DRV);
4980  
4981  	/*
4982  	 * If the PCI Configuration Command Register "Parity Error Response
4983  	 * Control" Bit was clear (0), then set the microcode variable
4984  	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
4985  	 * to ignore DMA parity errors.
4986  	 */
4987  	if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
4988  		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4989  		word |= CONTROL_FLAG_IGNORE_PERR;
4990  		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4991  	}
4992  
4993  	/*
4994  	 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2]
4995  	 * bits for the default FIFO threshold.
4996  	 *
4997  	 * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
4998  	 *
4999  	 * For DMA Errata #4 set the BC_THRESH_ENB bit.
5000  	 */
5001  	AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5002  			     BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH |
5003  			     READ_CMD_MRM);
5004  
5005  	/*
5006  	 * Microcode operating variables for WDTR, SDTR, and command tag
5007  	 * queuing will be set in slave_configure() based on what a
5008  	 * device reports it is capable of in Inquiry byte 7.
5009  	 *
5010  	 * If SCSI Bus Resets have been disabled, then directly set
5011  	 * SDTR and WDTR from the EEPROM configuration. This will allow
5012  	 * the BIOS and warm boot to work without a SCSI bus hang on
5013  	 * the Inquiry caused by host and target mismatched DTR values.
5014  	 * Without the SCSI Bus Reset, before an Inquiry a device can't
5015  	 * be assumed to be in Asynchronous, Narrow mode.
5016  	 */
5017  	if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5018  		AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5019  				 asc_dvc->wdtr_able);
5020  		AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5021  				 asc_dvc->sdtr_able);
5022  	}
5023  
5024  	/*
5025  	 * Set microcode operating variables for DISC and SDTR_SPEED1,
5026  	 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5027  	 * configuration values.
5028  	 *
5029  	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5030  	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5031  	 * without determining here whether the device supports SDTR.
5032  	 */
5033  	AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5034  			 asc_dvc->cfg->disc_enable);
5035  	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5036  	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5037  	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5038  	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5039  
5040  	/*
5041  	 * Set SCSI_CFG0 Microcode Default Value.
5042  	 *
5043  	 * The microcode will set the SCSI_CFG0 register using this value
5044  	 * after it is started below.
5045  	 */
5046  	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5047  			 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5048  			 asc_dvc->chip_scsi_id);
5049  
5050  	/*
5051  	 * Determine SCSI_CFG1 Microcode Default Value.
5052  	 *
5053  	 * The microcode will set the SCSI_CFG1 register using this value
5054  	 * after it is started below.
5055  	 */
5056  
5057  	/* Read current SCSI_CFG1 Register value. */
5058  	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5059  
5060  	/*
5061  	 * If the internal narrow cable is reversed all of the SCSI_CTRL
5062  	 * register signals will be set. Check for and return an error if
5063  	 * this condition is found.
5064  	 */
5065  	if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5066  		asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5067  		return ADV_ERROR;
5068  	}
5069  
5070  	/*
5071  	 * All kind of combinations of devices attached to one of four
5072  	 * connectors are acceptable except HVD device attached. For example,
5073  	 * LVD device can be attached to SE connector while SE device attached
5074  	 * to LVD connector.  If LVD device attached to SE connector, it only
5075  	 * runs up to Ultra speed.
5076  	 *
5077  	 * If an HVD device is attached to one of LVD connectors, return an
5078  	 * error.  However, there is no way to detect HVD device attached to
5079  	 * SE connectors.
5080  	 */
5081  	if (scsi_cfg1 & HVD) {
5082  		asc_dvc->err_code = ASC_IERR_HVD_DEVICE;
5083  		return ADV_ERROR;
5084  	}
5085  
5086  	/*
5087  	 * If either SE or LVD automatic termination control is enabled, then
5088  	 * set the termination value based on a table listed in a_condor.h.
5089  	 *
5090  	 * If manual termination was specified with an EEPROM setting then
5091  	 * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready
5092  	 * to be 'ored' into SCSI_CFG1.
5093  	 */
5094  	if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5095  		/* SE automatic termination control is enabled. */
5096  		switch (scsi_cfg1 & C_DET_SE) {
5097  			/* TERM_SE_HI: on, TERM_SE_LO: on */
5098  		case 0x1:
5099  		case 0x2:
5100  		case 0x3:
5101  			asc_dvc->cfg->termination |= TERM_SE;
5102  			break;
5103  
5104  			/* TERM_SE_HI: on, TERM_SE_LO: off */
5105  		case 0x0:
5106  			asc_dvc->cfg->termination |= TERM_SE_HI;
5107  			break;
5108  		}
5109  	}
5110  
5111  	if ((asc_dvc->cfg->termination & TERM_LVD) == 0) {
5112  		/* LVD automatic termination control is enabled. */
5113  		switch (scsi_cfg1 & C_DET_LVD) {
5114  			/* TERM_LVD_HI: on, TERM_LVD_LO: on */
5115  		case 0x4:
5116  		case 0x8:
5117  		case 0xC:
5118  			asc_dvc->cfg->termination |= TERM_LVD;
5119  			break;
5120  
5121  			/* TERM_LVD_HI: off, TERM_LVD_LO: off */
5122  		case 0x0:
5123  			break;
5124  		}
5125  	}
5126  
5127  	/*
5128  	 * Clear any set TERM_SE and TERM_LVD bits.
5129  	 */
5130  	scsi_cfg1 &= (~TERM_SE & ~TERM_LVD);
5131  
5132  	/*
5133  	 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
5134  	 */
5135  	scsi_cfg1 |= (~asc_dvc->cfg->termination & 0xF0);
5136  
5137  	/*
5138  	 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE
5139  	 * bits and set possibly modified termination control bits in the
5140  	 * Microcode SCSI_CFG1 Register Value.
5141  	 */
5142  	scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL & ~HVD_LVD_SE);
5143  
5144  	/*
5145  	 * Set SCSI_CFG1 Microcode Default Value
5146  	 *
5147  	 * Set possibly modified termination control and reset DIS_TERM_DRV
5148  	 * bits in the Microcode SCSI_CFG1 Register Value.
5149  	 *
5150  	 * The microcode will set the SCSI_CFG1 register using this value
5151  	 * after it is started below.
5152  	 */
5153  	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5154  
5155  	/*
5156  	 * Set MEM_CFG Microcode Default Value
5157  	 *
5158  	 * The microcode will set the MEM_CFG register using this value
5159  	 * after it is started below.
5160  	 *
5161  	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5162  	 * are defined.
5163  	 *
5164  	 * ASC-38C0800 has 16KB internal memory.
5165  	 */
5166  	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5167  			 BIOS_EN | RAM_SZ_16KB);
5168  
5169  	/*
5170  	 * Set SEL_MASK Microcode Default Value
5171  	 *
5172  	 * The microcode will set the SEL_MASK register using this value
5173  	 * after it is started below.
5174  	 */
5175  	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5176  			 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5177  
5178  	AdvBuildCarrierFreelist(asc_dvc);
5179  
5180  	/*
5181  	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5182  	 */
5183  
5184  	asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
5185  	if (!asc_dvc->icq_sp) {
5186  		ASC_DBG(0, "Failed to get ICQ carrier\n");
5187  		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5188  		return ADV_ERROR;
5189  	}
5190  
5191  	/*
5192  	 * Set RISC ICQ physical address start value.
5193  	 * carr_pa is LE, must be native before write
5194  	 */
5195  	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5196  
5197  	/*
5198  	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5199  	 */
5200  	asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
5201  	if (!asc_dvc->irq_sp) {
5202  		ASC_DBG(0, "Failed to get IRQ carrier\n");
5203  		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5204  		return ADV_ERROR;
5205  	}
5206  
5207  	/*
5208  	 * Set RISC IRQ physical address start value.
5209  	 *
5210  	 * carr_pa is LE, must be native before write *
5211  	 */
5212  	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5213  	asc_dvc->carr_pending_cnt = 0;
5214  
5215  	AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5216  			     (ADV_INTR_ENABLE_HOST_INTR |
5217  			      ADV_INTR_ENABLE_GLOBAL_INTR));
5218  
5219  	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5220  	AdvWriteWordRegister(iop_base, IOPW_PC, word);
5221  
5222  	/* finally, finally, gentlemen, start your engine */
5223  	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5224  
5225  	/*
5226  	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5227  	 * Resets should be performed. The RISC has to be running
5228  	 * to issue a SCSI Bus Reset.
5229  	 */
5230  	if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5231  		/*
5232  		 * If the BIOS Signature is present in memory, restore the
5233  		 * BIOS Handshake Configuration Table and do not perform
5234  		 * a SCSI Bus Reset.
5235  		 */
5236  		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5237  		    0x55AA) {
5238  			/*
5239  			 * Restore per TID negotiated values.
5240  			 */
5241  			AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5242  			AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5243  			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5244  					 tagqng_able);
5245  			for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5246  				AdvWriteByteLram(iop_base,
5247  						 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5248  						 max_cmd[tid]);
5249  			}
5250  		} else {
5251  			if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5252  				warn_code = ASC_WARN_BUSRESET_ERROR;
5253  			}
5254  		}
5255  	}
5256  
5257  	return warn_code;
5258  }
5259  
5260  /*
5261   * Initialize the ASC-38C1600.
5262   *
5263   * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
5264   *
5265   * For a non-fatal error return a warning code. If there are no warnings
5266   * then 0 is returned.
5267   *
5268   * Needed after initialization for error recovery.
5269   */
AdvInitAsc38C1600Driver(ADV_DVC_VAR * asc_dvc)5270  static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc)
5271  {
5272  	const struct firmware *fw;
5273  	const char fwname[] = "advansys/38C1600.bin";
5274  	AdvPortAddr iop_base;
5275  	ushort warn_code;
5276  	int begin_addr;
5277  	int end_addr;
5278  	ushort code_sum;
5279  	long word;
5280  	int i;
5281  	int err;
5282  	unsigned long chksum;
5283  	ushort scsi_cfg1;
5284  	uchar byte;
5285  	uchar tid;
5286  	ushort bios_mem[ASC_MC_BIOSLEN / 2];	/* BIOS RISC Memory 0x40-0x8F. */
5287  	ushort wdtr_able, sdtr_able, ppr_able, tagqng_able;
5288  	uchar max_cmd[ASC_MAX_TID + 1];
5289  
5290  	/* If there is already an error, don't continue. */
5291  	if (asc_dvc->err_code != 0) {
5292  		return ADV_ERROR;
5293  	}
5294  
5295  	/*
5296  	 * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600.
5297  	 */
5298  	if (asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
5299  		asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
5300  		return ADV_ERROR;
5301  	}
5302  
5303  	warn_code = 0;
5304  	iop_base = asc_dvc->iop_base;
5305  
5306  	/*
5307  	 * Save the RISC memory BIOS region before writing the microcode.
5308  	 * The BIOS may already be loaded and using its RISC LRAM region
5309  	 * so its region must be saved and restored.
5310  	 *
5311  	 * Note: This code makes the assumption, which is currently true,
5312  	 * that a chip reset does not clear RISC LRAM.
5313  	 */
5314  	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5315  		AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5316  				bios_mem[i]);
5317  	}
5318  
5319  	/*
5320  	 * Save current per TID negotiated values.
5321  	 */
5322  	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5323  	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5324  	AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5325  	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5326  	for (tid = 0; tid <= ASC_MAX_TID; tid++) {
5327  		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5328  				max_cmd[tid]);
5329  	}
5330  
5331  	/*
5332  	 * RAM BIST (Built-In Self Test)
5333  	 *
5334  	 * Address : I/O base + offset 0x38h register (byte).
5335  	 * Function: Bit 7-6(RW) : RAM mode
5336  	 *                          Normal Mode   : 0x00
5337  	 *                          Pre-test Mode : 0x40
5338  	 *                          RAM Test Mode : 0x80
5339  	 *           Bit 5       : unused
5340  	 *           Bit 4(RO)   : Done bit
5341  	 *           Bit 3-0(RO) : Status
5342  	 *                          Host Error    : 0x08
5343  	 *                          Int_RAM Error : 0x04
5344  	 *                          RISC Error    : 0x02
5345  	 *                          SCSI Error    : 0x01
5346  	 *                          No Error      : 0x00
5347  	 *
5348  	 * Note: RAM BIST code should be put right here, before loading the
5349  	 * microcode and after saving the RISC memory BIOS region.
5350  	 */
5351  
5352  	/*
5353  	 * LRAM Pre-test
5354  	 *
5355  	 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
5356  	 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
5357  	 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
5358  	 * to NORMAL_MODE, return an error too.
5359  	 */
5360  	for (i = 0; i < 2; i++) {
5361  		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
5362  		mdelay(10);	/* Wait for 10ms before reading back. */
5363  		byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5364  		if ((byte & RAM_TEST_DONE) == 0
5365  		    || (byte & 0x0F) != PRE_TEST_VALUE) {
5366  			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5367  			return ADV_ERROR;
5368  		}
5369  
5370  		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5371  		mdelay(10);	/* Wait for 10ms before reading back. */
5372  		if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
5373  		    != NORMAL_VALUE) {
5374  			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5375  			return ADV_ERROR;
5376  		}
5377  	}
5378  
5379  	/*
5380  	 * LRAM Test - It takes about 1.5 ms to run through the test.
5381  	 *
5382  	 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
5383  	 * If Done bit not set or Status not 0, save register byte, set the
5384  	 * err_code, and return an error.
5385  	 */
5386  	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
5387  	mdelay(10);	/* Wait for 10ms before checking status. */
5388  
5389  	byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5390  	if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
5391  		/* Get here if Done bit not set or Status not 0. */
5392  		asc_dvc->bist_err_code = byte;	/* for BIOS display message */
5393  		asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
5394  		return ADV_ERROR;
5395  	}
5396  
5397  	/* We need to reset back to normal mode after LRAM test passes. */
5398  	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5399  
5400  	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
5401  	if (err) {
5402  		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
5403  		       fwname, err);
5404  		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5405  		return err;
5406  	}
5407  	if (fw->size < 4) {
5408  		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
5409  		       fw->size, fwname);
5410  		release_firmware(fw);
5411  		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5412  		return -EINVAL;
5413  	}
5414  	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
5415  		 (fw->data[1] << 8) | fw->data[0];
5416  	asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
5417  					     fw->size - 4, ADV_38C1600_MEMSIZE,
5418  					     chksum);
5419  	release_firmware(fw);
5420  	if (asc_dvc->err_code)
5421  		return ADV_ERROR;
5422  
5423  	/*
5424  	 * Restore the RISC memory BIOS region.
5425  	 */
5426  	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5427  		AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5428  				 bios_mem[i]);
5429  	}
5430  
5431  	/*
5432  	 * Calculate and write the microcode code checksum to the microcode
5433  	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5434  	 */
5435  	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5436  	AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5437  	code_sum = 0;
5438  	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5439  	for (word = begin_addr; word < end_addr; word += 2) {
5440  		code_sum += AdvReadWordAutoIncLram(iop_base);
5441  	}
5442  	AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5443  
5444  	/*
5445  	 * Read microcode version and date.
5446  	 */
5447  	AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5448  			asc_dvc->cfg->mcode_date);
5449  	AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5450  			asc_dvc->cfg->mcode_version);
5451  
5452  	/*
5453  	 * Set the chip type to indicate the ASC38C1600.
5454  	 */
5455  	AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C1600);
5456  
5457  	/*
5458  	 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5459  	 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5460  	 * cable detection and then we are able to read C_DET[3:0].
5461  	 *
5462  	 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5463  	 * Microcode Default Value' section below.
5464  	 */
5465  	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5466  	AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
5467  			     scsi_cfg1 | DIS_TERM_DRV);
5468  
5469  	/*
5470  	 * If the PCI Configuration Command Register "Parity Error Response
5471  	 * Control" Bit was clear (0), then set the microcode variable
5472  	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5473  	 * to ignore DMA parity errors.
5474  	 */
5475  	if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5476  		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5477  		word |= CONTROL_FLAG_IGNORE_PERR;
5478  		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5479  	}
5480  
5481  	/*
5482  	 * If the BIOS control flag AIPP (Asynchronous Information
5483  	 * Phase Protection) disable bit is not set, then set the firmware
5484  	 * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable
5485  	 * AIPP checking and encoding.
5486  	 */
5487  	if ((asc_dvc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
5488  		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5489  		word |= CONTROL_FLAG_ENABLE_AIPP;
5490  		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5491  	}
5492  
5493  	/*
5494  	 * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4],
5495  	 * and START_CTL_TH [3:2].
5496  	 */
5497  	AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5498  			     FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
5499  
5500  	/*
5501  	 * Microcode operating variables for WDTR, SDTR, and command tag
5502  	 * queuing will be set in slave_configure() based on what a
5503  	 * device reports it is capable of in Inquiry byte 7.
5504  	 *
5505  	 * If SCSI Bus Resets have been disabled, then directly set
5506  	 * SDTR and WDTR from the EEPROM configuration. This will allow
5507  	 * the BIOS and warm boot to work without a SCSI bus hang on
5508  	 * the Inquiry caused by host and target mismatched DTR values.
5509  	 * Without the SCSI Bus Reset, before an Inquiry a device can't
5510  	 * be assumed to be in Asynchronous, Narrow mode.
5511  	 */
5512  	if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5513  		AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5514  				 asc_dvc->wdtr_able);
5515  		AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5516  				 asc_dvc->sdtr_able);
5517  	}
5518  
5519  	/*
5520  	 * Set microcode operating variables for DISC and SDTR_SPEED1,
5521  	 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5522  	 * configuration values.
5523  	 *
5524  	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5525  	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5526  	 * without determining here whether the device supports SDTR.
5527  	 */
5528  	AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5529  			 asc_dvc->cfg->disc_enable);
5530  	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5531  	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5532  	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5533  	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5534  
5535  	/*
5536  	 * Set SCSI_CFG0 Microcode Default Value.
5537  	 *
5538  	 * The microcode will set the SCSI_CFG0 register using this value
5539  	 * after it is started below.
5540  	 */
5541  	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5542  			 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5543  			 asc_dvc->chip_scsi_id);
5544  
5545  	/*
5546  	 * Calculate SCSI_CFG1 Microcode Default Value.
5547  	 *
5548  	 * The microcode will set the SCSI_CFG1 register using this value
5549  	 * after it is started below.
5550  	 *
5551  	 * Each ASC-38C1600 function has only two cable detect bits.
5552  	 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
5553  	 */
5554  	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5555  
5556  	/*
5557  	 * If the cable is reversed all of the SCSI_CTRL register signals
5558  	 * will be set. Check for and return an error if this condition is
5559  	 * found.
5560  	 */
5561  	if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5562  		asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5563  		return ADV_ERROR;
5564  	}
5565  
5566  	/*
5567  	 * Each ASC-38C1600 function has two connectors. Only an HVD device
5568  	 * can not be connected to either connector. An LVD device or SE device
5569  	 * may be connected to either connecor. If an SE device is connected,
5570  	 * then at most Ultra speed (20 Mhz) can be used on both connectors.
5571  	 *
5572  	 * If an HVD device is attached, return an error.
5573  	 */
5574  	if (scsi_cfg1 & HVD) {
5575  		asc_dvc->err_code |= ASC_IERR_HVD_DEVICE;
5576  		return ADV_ERROR;
5577  	}
5578  
5579  	/*
5580  	 * Each function in the ASC-38C1600 uses only the SE cable detect and
5581  	 * termination because there are two connectors for each function. Each
5582  	 * function may use either LVD or SE mode. Corresponding the SE automatic
5583  	 * termination control EEPROM bits are used for each function. Each
5584  	 * function has its own EEPROM. If SE automatic control is enabled for
5585  	 * the function, then set the termination value based on a table listed
5586  	 * in a_condor.h.
5587  	 *
5588  	 * If manual termination is specified in the EEPROM for the function,
5589  	 * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is
5590  	 * ready to be 'ored' into SCSI_CFG1.
5591  	 */
5592  	if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5593  		struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
5594  		/* SE automatic termination control is enabled. */
5595  		switch (scsi_cfg1 & C_DET_SE) {
5596  			/* TERM_SE_HI: on, TERM_SE_LO: on */
5597  		case 0x1:
5598  		case 0x2:
5599  		case 0x3:
5600  			asc_dvc->cfg->termination |= TERM_SE;
5601  			break;
5602  
5603  		case 0x0:
5604  			if (PCI_FUNC(pdev->devfn) == 0) {
5605  				/* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
5606  			} else {
5607  				/* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
5608  				asc_dvc->cfg->termination |= TERM_SE_HI;
5609  			}
5610  			break;
5611  		}
5612  	}
5613  
5614  	/*
5615  	 * Clear any set TERM_SE bits.
5616  	 */
5617  	scsi_cfg1 &= ~TERM_SE;
5618  
5619  	/*
5620  	 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
5621  	 */
5622  	scsi_cfg1 |= (~asc_dvc->cfg->termination & TERM_SE);
5623  
5624  	/*
5625  	 * Clear Big Endian and Terminator Polarity bits and set possibly
5626  	 * modified termination control bits in the Microcode SCSI_CFG1
5627  	 * Register Value.
5628  	 *
5629  	 * Big Endian bit is not used even on big endian machines.
5630  	 */
5631  	scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL);
5632  
5633  	/*
5634  	 * Set SCSI_CFG1 Microcode Default Value
5635  	 *
5636  	 * Set possibly modified termination control bits in the Microcode
5637  	 * SCSI_CFG1 Register Value.
5638  	 *
5639  	 * The microcode will set the SCSI_CFG1 register using this value
5640  	 * after it is started below.
5641  	 */
5642  	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5643  
5644  	/*
5645  	 * Set MEM_CFG Microcode Default Value
5646  	 *
5647  	 * The microcode will set the MEM_CFG register using this value
5648  	 * after it is started below.
5649  	 *
5650  	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5651  	 * are defined.
5652  	 *
5653  	 * ASC-38C1600 has 32KB internal memory.
5654  	 *
5655  	 * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come
5656  	 * out a special 16K Adv Library and Microcode version. After the issue
5657  	 * resolved, we should turn back to the 32K support. Both a_condor.h and
5658  	 * mcode.sas files also need to be updated.
5659  	 *
5660  	 * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5661  	 *  BIOS_EN | RAM_SZ_32KB);
5662  	 */
5663  	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5664  			 BIOS_EN | RAM_SZ_16KB);
5665  
5666  	/*
5667  	 * Set SEL_MASK Microcode Default Value
5668  	 *
5669  	 * The microcode will set the SEL_MASK register using this value
5670  	 * after it is started below.
5671  	 */
5672  	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5673  			 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5674  
5675  	AdvBuildCarrierFreelist(asc_dvc);
5676  
5677  	/*
5678  	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5679  	 */
5680  	asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
5681  	if (!asc_dvc->icq_sp) {
5682  		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5683  		return ADV_ERROR;
5684  	}
5685  
5686  	/*
5687  	 * Set RISC ICQ physical address start value. Initialize the
5688  	 * COMMA register to the same value otherwise the RISC will
5689  	 * prematurely detect a command is available.
5690  	 */
5691  	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5692  	AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
5693  			      le32_to_cpu(asc_dvc->icq_sp->carr_pa));
5694  
5695  	/*
5696  	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5697  	 */
5698  	asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
5699  	if (!asc_dvc->irq_sp) {
5700  		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5701  		return ADV_ERROR;
5702  	}
5703  
5704  	/*
5705  	 * Set RISC IRQ physical address start value.
5706  	 */
5707  	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5708  	asc_dvc->carr_pending_cnt = 0;
5709  
5710  	AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5711  			     (ADV_INTR_ENABLE_HOST_INTR |
5712  			      ADV_INTR_ENABLE_GLOBAL_INTR));
5713  	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5714  	AdvWriteWordRegister(iop_base, IOPW_PC, word);
5715  
5716  	/* finally, finally, gentlemen, start your engine */
5717  	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5718  
5719  	/*
5720  	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5721  	 * Resets should be performed. The RISC has to be running
5722  	 * to issue a SCSI Bus Reset.
5723  	 */
5724  	if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5725  		/*
5726  		 * If the BIOS Signature is present in memory, restore the
5727  		 * per TID microcode operating variables.
5728  		 */
5729  		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5730  		    0x55AA) {
5731  			/*
5732  			 * Restore per TID negotiated values.
5733  			 */
5734  			AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5735  			AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5736  			AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5737  			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5738  					 tagqng_able);
5739  			for (tid = 0; tid <= ASC_MAX_TID; tid++) {
5740  				AdvWriteByteLram(iop_base,
5741  						 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5742  						 max_cmd[tid]);
5743  			}
5744  		} else {
5745  			if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5746  				warn_code = ASC_WARN_BUSRESET_ERROR;
5747  			}
5748  		}
5749  	}
5750  
5751  	return warn_code;
5752  }
5753  
5754  /*
5755   * Reset chip and SCSI Bus.
5756   *
5757   * Return Value:
5758   *      ADV_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
5759   *      ADV_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
5760   */
AdvResetChipAndSB(ADV_DVC_VAR * asc_dvc)5761  static int AdvResetChipAndSB(ADV_DVC_VAR *asc_dvc)
5762  {
5763  	int status;
5764  	ushort wdtr_able, sdtr_able, tagqng_able;
5765  	ushort ppr_able = 0;
5766  	uchar tid, max_cmd[ADV_MAX_TID + 1];
5767  	AdvPortAddr iop_base;
5768  	ushort bios_sig;
5769  
5770  	iop_base = asc_dvc->iop_base;
5771  
5772  	/*
5773  	 * Save current per TID negotiated values.
5774  	 */
5775  	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5776  	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5777  	if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
5778  		AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5779  	}
5780  	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5781  	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5782  		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5783  				max_cmd[tid]);
5784  	}
5785  
5786  	/*
5787  	 * Force the AdvInitAsc3550/38C0800Driver() function to
5788  	 * perform a SCSI Bus Reset by clearing the BIOS signature word.
5789  	 * The initialization functions assumes a SCSI Bus Reset is not
5790  	 * needed if the BIOS signature word is present.
5791  	 */
5792  	AdvReadWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
5793  	AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, 0);
5794  
5795  	/*
5796  	 * Stop chip and reset it.
5797  	 */
5798  	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_STOP);
5799  	AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_RESET);
5800  	mdelay(100);
5801  	AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
5802  			     ADV_CTRL_REG_CMD_WR_IO_REG);
5803  
5804  	/*
5805  	 * Reset Adv Library error code, if any, and try
5806  	 * re-initializing the chip.
5807  	 */
5808  	asc_dvc->err_code = 0;
5809  	if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
5810  		status = AdvInitAsc38C1600Driver(asc_dvc);
5811  	} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
5812  		status = AdvInitAsc38C0800Driver(asc_dvc);
5813  	} else {
5814  		status = AdvInitAsc3550Driver(asc_dvc);
5815  	}
5816  
5817  	/* Translate initialization return value to status value. */
5818  	if (status == 0) {
5819  		status = ADV_TRUE;
5820  	} else {
5821  		status = ADV_FALSE;
5822  	}
5823  
5824  	/*
5825  	 * Restore the BIOS signature word.
5826  	 */
5827  	AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
5828  
5829  	/*
5830  	 * Restore per TID negotiated values.
5831  	 */
5832  	AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5833  	AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5834  	if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
5835  		AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5836  	}
5837  	AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5838  	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5839  		AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5840  				 max_cmd[tid]);
5841  	}
5842  
5843  	return status;
5844  }
5845  
5846  /*
5847   * adv_async_callback() - Adv Library asynchronous event callback function.
5848   */
adv_async_callback(ADV_DVC_VAR * adv_dvc_varp,uchar code)5849  static void adv_async_callback(ADV_DVC_VAR *adv_dvc_varp, uchar code)
5850  {
5851  	switch (code) {
5852  	case ADV_ASYNC_SCSI_BUS_RESET_DET:
5853  		/*
5854  		 * The firmware detected a SCSI Bus reset.
5855  		 */
5856  		ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n");
5857  		break;
5858  
5859  	case ADV_ASYNC_RDMA_FAILURE:
5860  		/*
5861  		 * Handle RDMA failure by resetting the SCSI Bus and
5862  		 * possibly the chip if it is unresponsive. Log the error
5863  		 * with a unique code.
5864  		 */
5865  		ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n");
5866  		AdvResetChipAndSB(adv_dvc_varp);
5867  		break;
5868  
5869  	case ADV_HOST_SCSI_BUS_RESET:
5870  		/*
5871  		 * Host generated SCSI bus reset occurred.
5872  		 */
5873  		ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n");
5874  		break;
5875  
5876  	default:
5877  		ASC_DBG(0, "unknown code 0x%x\n", code);
5878  		break;
5879  	}
5880  }
5881  
5882  /*
5883   * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR().
5884   *
5885   * Callback function for the Wide SCSI Adv Library.
5886   */
adv_isr_callback(ADV_DVC_VAR * adv_dvc_varp,ADV_SCSI_REQ_Q * scsiqp)5887  static void adv_isr_callback(ADV_DVC_VAR *adv_dvc_varp, ADV_SCSI_REQ_Q *scsiqp)
5888  {
5889  	struct asc_board *boardp = adv_dvc_varp->drv_ptr;
5890  	adv_req_t *reqp;
5891  	adv_sgblk_t *sgblkp;
5892  	struct scsi_cmnd *scp;
5893  	u32 resid_cnt;
5894  	dma_addr_t sense_addr;
5895  
5896  	ASC_DBG(1, "adv_dvc_varp 0x%p, scsiqp 0x%p\n",
5897  		adv_dvc_varp, scsiqp);
5898  	ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
5899  
5900  	/*
5901  	 * Get the adv_req_t structure for the command that has been
5902  	 * completed. The adv_req_t structure actually contains the
5903  	 * completed ADV_SCSI_REQ_Q structure.
5904  	 */
5905  	scp = scsi_host_find_tag(boardp->shost, scsiqp->srb_tag);
5906  
5907  	ASC_DBG(1, "scp 0x%p\n", scp);
5908  	if (scp == NULL) {
5909  		ASC_PRINT
5910  		    ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n");
5911  		return;
5912  	}
5913  	ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
5914  
5915  	reqp = (adv_req_t *)scp->host_scribble;
5916  	ASC_DBG(1, "reqp 0x%lx\n", (ulong)reqp);
5917  	if (reqp == NULL) {
5918  		ASC_PRINT("adv_isr_callback: reqp is NULL\n");
5919  		return;
5920  	}
5921  	/*
5922  	 * Remove backreferences to avoid duplicate
5923  	 * command completions.
5924  	 */
5925  	scp->host_scribble = NULL;
5926  	reqp->cmndp = NULL;
5927  
5928  	ASC_STATS(boardp->shost, callback);
5929  	ASC_DBG(1, "shost 0x%p\n", boardp->shost);
5930  
5931  	sense_addr = le32_to_cpu(scsiqp->sense_addr);
5932  	dma_unmap_single(boardp->dev, sense_addr,
5933  			 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
5934  
5935  	/*
5936  	 * 'done_status' contains the command's ending status.
5937  	 */
5938  	scp->result = 0;
5939  	switch (scsiqp->done_status) {
5940  	case QD_NO_ERROR:
5941  		ASC_DBG(2, "QD_NO_ERROR\n");
5942  
5943  		/*
5944  		 * Check for an underrun condition.
5945  		 *
5946  		 * If there was no error and an underrun condition, then
5947  		 * then return the number of underrun bytes.
5948  		 */
5949  		resid_cnt = le32_to_cpu(scsiqp->data_cnt);
5950  		if (scsi_bufflen(scp) != 0 && resid_cnt != 0 &&
5951  		    resid_cnt <= scsi_bufflen(scp)) {
5952  			ASC_DBG(1, "underrun condition %lu bytes\n",
5953  				 (ulong)resid_cnt);
5954  			scsi_set_resid(scp, resid_cnt);
5955  		}
5956  		break;
5957  
5958  	case QD_WITH_ERROR:
5959  		ASC_DBG(2, "QD_WITH_ERROR\n");
5960  		switch (scsiqp->host_status) {
5961  		case QHSTA_NO_ERROR:
5962  			set_status_byte(scp, scsiqp->scsi_status);
5963  			if (scsiqp->scsi_status == SAM_STAT_CHECK_CONDITION) {
5964  				ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
5965  				ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
5966  						  SCSI_SENSE_BUFFERSIZE);
5967  			}
5968  			break;
5969  
5970  		default:
5971  			/* Some other QHSTA error occurred. */
5972  			ASC_DBG(1, "host_status 0x%x\n", scsiqp->host_status);
5973  			set_host_byte(scp, DID_BAD_TARGET);
5974  			break;
5975  		}
5976  		break;
5977  
5978  	case QD_ABORTED_BY_HOST:
5979  		ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
5980  		set_status_byte(scp, scsiqp->scsi_status);
5981  		set_host_byte(scp, DID_ABORT);
5982  		break;
5983  
5984  	default:
5985  		ASC_DBG(1, "done_status 0x%x\n", scsiqp->done_status);
5986  		set_status_byte(scp, scsiqp->scsi_status);
5987  		set_host_byte(scp, DID_ERROR);
5988  		break;
5989  	}
5990  
5991  	/*
5992  	 * If the 'init_tidmask' bit isn't already set for the target and the
5993  	 * current request finished normally, then set the bit for the target
5994  	 * to indicate that a device is present.
5995  	 */
5996  	if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
5997  	    scsiqp->done_status == QD_NO_ERROR &&
5998  	    scsiqp->host_status == QHSTA_NO_ERROR) {
5999  		boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
6000  	}
6001  
6002  	asc_scsi_done(scp);
6003  
6004  	/*
6005  	 * Free all 'adv_sgblk_t' structures allocated for the request.
6006  	 */
6007  	while ((sgblkp = reqp->sgblkp) != NULL) {
6008  		/* Remove 'sgblkp' from the request list. */
6009  		reqp->sgblkp = sgblkp->next_sgblkp;
6010  
6011  		dma_pool_free(boardp->adv_sgblk_pool, sgblkp,
6012  			      sgblkp->sg_addr);
6013  	}
6014  
6015  	ASC_DBG(1, "done\n");
6016  }
6017  
6018  /*
6019   * Adv Library Interrupt Service Routine
6020   *
6021   *  This function is called by a driver's interrupt service routine.
6022   *  The function disables and re-enables interrupts.
6023   *
6024   *  When a microcode idle command is completed, the ADV_DVC_VAR
6025   *  'idle_cmd_done' field is set to ADV_TRUE.
6026   *
6027   *  Note: AdvISR() can be called when interrupts are disabled or even
6028   *  when there is no hardware interrupt condition present. It will
6029   *  always check for completed idle commands and microcode requests.
6030   *  This is an important feature that shouldn't be changed because it
6031   *  allows commands to be completed from polling mode loops.
6032   *
6033   * Return:
6034   *   ADV_TRUE(1) - interrupt was pending
6035   *   ADV_FALSE(0) - no interrupt was pending
6036   */
AdvISR(ADV_DVC_VAR * asc_dvc)6037  static int AdvISR(ADV_DVC_VAR *asc_dvc)
6038  {
6039  	AdvPortAddr iop_base;
6040  	uchar int_stat;
6041  	ADV_CARR_T *free_carrp;
6042  	__le32 irq_next_vpa;
6043  	ADV_SCSI_REQ_Q *scsiq;
6044  	adv_req_t *reqp;
6045  
6046  	iop_base = asc_dvc->iop_base;
6047  
6048  	/* Reading the register clears the interrupt. */
6049  	int_stat = AdvReadByteRegister(iop_base, IOPB_INTR_STATUS_REG);
6050  
6051  	if ((int_stat & (ADV_INTR_STATUS_INTRA | ADV_INTR_STATUS_INTRB |
6052  			 ADV_INTR_STATUS_INTRC)) == 0) {
6053  		return ADV_FALSE;
6054  	}
6055  
6056  	/*
6057  	 * Notify the driver of an asynchronous microcode condition by
6058  	 * calling the adv_async_callback function. The function
6059  	 * is passed the microcode ASC_MC_INTRB_CODE byte value.
6060  	 */
6061  	if (int_stat & ADV_INTR_STATUS_INTRB) {
6062  		uchar intrb_code;
6063  
6064  		AdvReadByteLram(iop_base, ASC_MC_INTRB_CODE, intrb_code);
6065  
6066  		if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
6067  		    asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
6068  			if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
6069  			    asc_dvc->carr_pending_cnt != 0) {
6070  				AdvWriteByteRegister(iop_base, IOPB_TICKLE,
6071  						     ADV_TICKLE_A);
6072  				if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
6073  					AdvWriteByteRegister(iop_base,
6074  							     IOPB_TICKLE,
6075  							     ADV_TICKLE_NOP);
6076  				}
6077  			}
6078  		}
6079  
6080  		adv_async_callback(asc_dvc, intrb_code);
6081  	}
6082  
6083  	/*
6084  	 * Check if the IRQ stopper carrier contains a completed request.
6085  	 */
6086  	while (((irq_next_vpa =
6087  		 le32_to_cpu(asc_dvc->irq_sp->next_vpa)) & ADV_RQ_DONE) != 0) {
6088  		/*
6089  		 * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure.
6090  		 * The RISC will have set 'areq_vpa' to a virtual address.
6091  		 *
6092  		 * The firmware will have copied the ADV_SCSI_REQ_Q.scsiq_ptr
6093  		 * field to the carrier ADV_CARR_T.areq_vpa field. The conversion
6094  		 * below complements the conversion of ADV_SCSI_REQ_Q.scsiq_ptr'
6095  		 * in AdvExeScsiQueue().
6096  		 */
6097  		u32 pa_offset = le32_to_cpu(asc_dvc->irq_sp->areq_vpa);
6098  		ASC_DBG(1, "irq_sp %p areq_vpa %u\n",
6099  			asc_dvc->irq_sp, pa_offset);
6100  		reqp = adv_get_reqp(asc_dvc, pa_offset);
6101  		scsiq = &reqp->scsi_req_q;
6102  
6103  		/*
6104  		 * Request finished with good status and the queue was not
6105  		 * DMAed to host memory by the firmware. Set all status fields
6106  		 * to indicate good status.
6107  		 */
6108  		if ((irq_next_vpa & ADV_RQ_GOOD) != 0) {
6109  			scsiq->done_status = QD_NO_ERROR;
6110  			scsiq->host_status = scsiq->scsi_status = 0;
6111  			scsiq->data_cnt = 0L;
6112  		}
6113  
6114  		/*
6115  		 * Advance the stopper pointer to the next carrier
6116  		 * ignoring the lower four bits. Free the previous
6117  		 * stopper carrier.
6118  		 */
6119  		free_carrp = asc_dvc->irq_sp;
6120  		asc_dvc->irq_sp = adv_get_carrier(asc_dvc,
6121  						  ADV_GET_CARRP(irq_next_vpa));
6122  
6123  		free_carrp->next_vpa = asc_dvc->carr_freelist->carr_va;
6124  		asc_dvc->carr_freelist = free_carrp;
6125  		asc_dvc->carr_pending_cnt--;
6126  
6127  		/*
6128  		 * Clear request microcode control flag.
6129  		 */
6130  		scsiq->cntl = 0;
6131  
6132  		/*
6133  		 * Notify the driver of the completed request by passing
6134  		 * the ADV_SCSI_REQ_Q pointer to its callback function.
6135  		 */
6136  		adv_isr_callback(asc_dvc, scsiq);
6137  		/*
6138  		 * Note: After the driver callback function is called, 'scsiq'
6139  		 * can no longer be referenced.
6140  		 *
6141  		 * Fall through and continue processing other completed
6142  		 * requests...
6143  		 */
6144  	}
6145  	return ADV_TRUE;
6146  }
6147  
AscSetLibErrorCode(ASC_DVC_VAR * asc_dvc,ushort err_code)6148  static int AscSetLibErrorCode(ASC_DVC_VAR *asc_dvc, ushort err_code)
6149  {
6150  	if (asc_dvc->err_code == 0) {
6151  		asc_dvc->err_code = err_code;
6152  		AscWriteLramWord(asc_dvc->iop_base, ASCV_ASCDVC_ERR_CODE_W,
6153  				 err_code);
6154  	}
6155  	return err_code;
6156  }
6157  
AscAckInterrupt(PortAddr iop_base)6158  static void AscAckInterrupt(PortAddr iop_base)
6159  {
6160  	uchar host_flag;
6161  	uchar risc_flag;
6162  	ushort loop;
6163  
6164  	loop = 0;
6165  	do {
6166  		risc_flag = AscReadLramByte(iop_base, ASCV_RISC_FLAG_B);
6167  		if (loop++ > 0x7FFF) {
6168  			break;
6169  		}
6170  	} while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0);
6171  	host_flag =
6172  	    AscReadLramByte(iop_base,
6173  			    ASCV_HOST_FLAG_B) & (~ASC_HOST_FLAG_ACK_INT);
6174  	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
6175  			 (uchar)(host_flag | ASC_HOST_FLAG_ACK_INT));
6176  	AscSetChipStatus(iop_base, CIW_INT_ACK);
6177  	loop = 0;
6178  	while (AscGetChipStatus(iop_base) & CSW_INT_PENDING) {
6179  		AscSetChipStatus(iop_base, CIW_INT_ACK);
6180  		if (loop++ > 3) {
6181  			break;
6182  		}
6183  	}
6184  	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
6185  }
6186  
AscGetSynPeriodIndex(ASC_DVC_VAR * asc_dvc,uchar syn_time)6187  static uchar AscGetSynPeriodIndex(ASC_DVC_VAR *asc_dvc, uchar syn_time)
6188  {
6189  	const uchar *period_table;
6190  	int max_index;
6191  	int min_index;
6192  	int i;
6193  
6194  	period_table = asc_dvc->sdtr_period_tbl;
6195  	max_index = (int)asc_dvc->max_sdtr_index;
6196  	min_index = (int)asc_dvc->min_sdtr_index;
6197  	if ((syn_time <= period_table[max_index])) {
6198  		for (i = min_index; i < (max_index - 1); i++) {
6199  			if (syn_time <= period_table[i]) {
6200  				return (uchar)i;
6201  			}
6202  		}
6203  		return (uchar)max_index;
6204  	} else {
6205  		return (uchar)(max_index + 1);
6206  	}
6207  }
6208  
6209  static uchar
AscMsgOutSDTR(ASC_DVC_VAR * asc_dvc,uchar sdtr_period,uchar sdtr_offset)6210  AscMsgOutSDTR(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar sdtr_offset)
6211  {
6212  	PortAddr iop_base = asc_dvc->iop_base;
6213  	uchar sdtr_period_index = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
6214  	EXT_MSG sdtr_buf = {
6215  		.msg_type = EXTENDED_MESSAGE,
6216  		.msg_len = MS_SDTR_LEN,
6217  		.msg_req = EXTENDED_SDTR,
6218  		.xfer_period = sdtr_period,
6219  		.req_ack_offset = sdtr_offset,
6220  	};
6221  	sdtr_offset &= ASC_SYN_MAX_OFFSET;
6222  
6223  	if (sdtr_period_index <= asc_dvc->max_sdtr_index) {
6224  		AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6225  					(uchar *)&sdtr_buf,
6226  					sizeof(EXT_MSG) >> 1);
6227  		return ((sdtr_period_index << 4) | sdtr_offset);
6228  	} else {
6229  		sdtr_buf.req_ack_offset = 0;
6230  		AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6231  					(uchar *)&sdtr_buf,
6232  					sizeof(EXT_MSG) >> 1);
6233  		return 0;
6234  	}
6235  }
6236  
6237  static uchar
AscCalSDTRData(ASC_DVC_VAR * asc_dvc,uchar sdtr_period,uchar syn_offset)6238  AscCalSDTRData(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar syn_offset)
6239  {
6240  	uchar byte;
6241  	uchar sdtr_period_ix;
6242  
6243  	sdtr_period_ix = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
6244  	if (sdtr_period_ix > asc_dvc->max_sdtr_index)
6245  		return 0xFF;
6246  	byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET);
6247  	return byte;
6248  }
6249  
AscSetChipSynRegAtID(PortAddr iop_base,uchar id,uchar sdtr_data)6250  static bool AscSetChipSynRegAtID(PortAddr iop_base, uchar id, uchar sdtr_data)
6251  {
6252  	ASC_SCSI_BIT_ID_TYPE org_id;
6253  	int i;
6254  	bool sta = true;
6255  
6256  	AscSetBank(iop_base, 1);
6257  	org_id = AscReadChipDvcID(iop_base);
6258  	for (i = 0; i <= ASC_MAX_TID; i++) {
6259  		if (org_id == (0x01 << i))
6260  			break;
6261  	}
6262  	org_id = (ASC_SCSI_BIT_ID_TYPE) i;
6263  	AscWriteChipDvcID(iop_base, id);
6264  	if (AscReadChipDvcID(iop_base) == (0x01 << id)) {
6265  		AscSetBank(iop_base, 0);
6266  		AscSetChipSyn(iop_base, sdtr_data);
6267  		if (AscGetChipSyn(iop_base) != sdtr_data) {
6268  			sta = false;
6269  		}
6270  	} else {
6271  		sta = false;
6272  	}
6273  	AscSetBank(iop_base, 1);
6274  	AscWriteChipDvcID(iop_base, org_id);
6275  	AscSetBank(iop_base, 0);
6276  	return (sta);
6277  }
6278  
AscSetChipSDTR(PortAddr iop_base,uchar sdtr_data,uchar tid_no)6279  static void AscSetChipSDTR(PortAddr iop_base, uchar sdtr_data, uchar tid_no)
6280  {
6281  	AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
6282  	AscPutMCodeSDTRDoneAtID(iop_base, tid_no, sdtr_data);
6283  }
6284  
AscIsrChipHalted(ASC_DVC_VAR * asc_dvc)6285  static void AscIsrChipHalted(ASC_DVC_VAR *asc_dvc)
6286  {
6287  	EXT_MSG ext_msg;
6288  	EXT_MSG out_msg;
6289  	ushort halt_q_addr;
6290  	bool sdtr_accept;
6291  	ushort int_halt_code;
6292  	ASC_SCSI_BIT_ID_TYPE scsi_busy;
6293  	ASC_SCSI_BIT_ID_TYPE target_id;
6294  	PortAddr iop_base;
6295  	uchar tag_code;
6296  	uchar q_status;
6297  	uchar halt_qp;
6298  	uchar sdtr_data;
6299  	uchar target_ix;
6300  	uchar q_cntl, tid_no;
6301  	uchar cur_dvc_qng;
6302  	uchar asyn_sdtr;
6303  	uchar scsi_status;
6304  	struct asc_board *boardp;
6305  
6306  	BUG_ON(!asc_dvc->drv_ptr);
6307  	boardp = asc_dvc->drv_ptr;
6308  
6309  	iop_base = asc_dvc->iop_base;
6310  	int_halt_code = AscReadLramWord(iop_base, ASCV_HALTCODE_W);
6311  
6312  	halt_qp = AscReadLramByte(iop_base, ASCV_CURCDB_B);
6313  	halt_q_addr = ASC_QNO_TO_QADDR(halt_qp);
6314  	target_ix = AscReadLramByte(iop_base,
6315  				    (ushort)(halt_q_addr +
6316  					     (ushort)ASC_SCSIQ_B_TARGET_IX));
6317  	q_cntl = AscReadLramByte(iop_base,
6318  			    (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL));
6319  	tid_no = ASC_TIX_TO_TID(target_ix);
6320  	target_id = (uchar)ASC_TID_TO_TARGET_ID(tid_no);
6321  	if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6322  		asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB;
6323  	} else {
6324  		asyn_sdtr = 0;
6325  	}
6326  	if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) {
6327  		if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6328  			AscSetChipSDTR(iop_base, 0, tid_no);
6329  			boardp->sdtr_data[tid_no] = 0;
6330  		}
6331  		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6332  		return;
6333  	} else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) {
6334  		if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6335  			AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6336  			boardp->sdtr_data[tid_no] = asyn_sdtr;
6337  		}
6338  		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6339  		return;
6340  	} else if (int_halt_code == ASC_HALT_EXTMSG_IN) {
6341  		AscMemWordCopyPtrFromLram(iop_base,
6342  					  ASCV_MSGIN_BEG,
6343  					  (uchar *)&ext_msg,
6344  					  sizeof(EXT_MSG) >> 1);
6345  
6346  		if (ext_msg.msg_type == EXTENDED_MESSAGE &&
6347  		    ext_msg.msg_req == EXTENDED_SDTR &&
6348  		    ext_msg.msg_len == MS_SDTR_LEN) {
6349  			sdtr_accept = true;
6350  			if ((ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET)) {
6351  
6352  				sdtr_accept = false;
6353  				ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET;
6354  			}
6355  			if ((ext_msg.xfer_period <
6356  			     asc_dvc->sdtr_period_tbl[asc_dvc->min_sdtr_index])
6357  			    || (ext_msg.xfer_period >
6358  				asc_dvc->sdtr_period_tbl[asc_dvc->
6359  							 max_sdtr_index])) {
6360  				sdtr_accept = false;
6361  				ext_msg.xfer_period =
6362  				    asc_dvc->sdtr_period_tbl[asc_dvc->
6363  							     min_sdtr_index];
6364  			}
6365  			if (sdtr_accept) {
6366  				sdtr_data =
6367  				    AscCalSDTRData(asc_dvc, ext_msg.xfer_period,
6368  						   ext_msg.req_ack_offset);
6369  				if (sdtr_data == 0xFF) {
6370  
6371  					q_cntl |= QC_MSG_OUT;
6372  					asc_dvc->init_sdtr &= ~target_id;
6373  					asc_dvc->sdtr_done &= ~target_id;
6374  					AscSetChipSDTR(iop_base, asyn_sdtr,
6375  						       tid_no);
6376  					boardp->sdtr_data[tid_no] = asyn_sdtr;
6377  				}
6378  			}
6379  			if (ext_msg.req_ack_offset == 0) {
6380  
6381  				q_cntl &= ~QC_MSG_OUT;
6382  				asc_dvc->init_sdtr &= ~target_id;
6383  				asc_dvc->sdtr_done &= ~target_id;
6384  				AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6385  			} else {
6386  				if (sdtr_accept && (q_cntl & QC_MSG_OUT)) {
6387  					q_cntl &= ~QC_MSG_OUT;
6388  					asc_dvc->sdtr_done |= target_id;
6389  					asc_dvc->init_sdtr |= target_id;
6390  					asc_dvc->pci_fix_asyn_xfer &=
6391  					    ~target_id;
6392  					sdtr_data =
6393  					    AscCalSDTRData(asc_dvc,
6394  							   ext_msg.xfer_period,
6395  							   ext_msg.
6396  							   req_ack_offset);
6397  					AscSetChipSDTR(iop_base, sdtr_data,
6398  						       tid_no);
6399  					boardp->sdtr_data[tid_no] = sdtr_data;
6400  				} else {
6401  					q_cntl |= QC_MSG_OUT;
6402  					AscMsgOutSDTR(asc_dvc,
6403  						      ext_msg.xfer_period,
6404  						      ext_msg.req_ack_offset);
6405  					asc_dvc->pci_fix_asyn_xfer &=
6406  					    ~target_id;
6407  					sdtr_data =
6408  					    AscCalSDTRData(asc_dvc,
6409  							   ext_msg.xfer_period,
6410  							   ext_msg.
6411  							   req_ack_offset);
6412  					AscSetChipSDTR(iop_base, sdtr_data,
6413  						       tid_no);
6414  					boardp->sdtr_data[tid_no] = sdtr_data;
6415  					asc_dvc->sdtr_done |= target_id;
6416  					asc_dvc->init_sdtr |= target_id;
6417  				}
6418  			}
6419  
6420  			AscWriteLramByte(iop_base,
6421  					 (ushort)(halt_q_addr +
6422  						  (ushort)ASC_SCSIQ_B_CNTL),
6423  					 q_cntl);
6424  			AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6425  			return;
6426  		} else if (ext_msg.msg_type == EXTENDED_MESSAGE &&
6427  			   ext_msg.msg_req == EXTENDED_WDTR &&
6428  			   ext_msg.msg_len == MS_WDTR_LEN) {
6429  
6430  			ext_msg.wdtr_width = 0;
6431  			AscMemWordCopyPtrToLram(iop_base,
6432  						ASCV_MSGOUT_BEG,
6433  						(uchar *)&ext_msg,
6434  						sizeof(EXT_MSG) >> 1);
6435  			q_cntl |= QC_MSG_OUT;
6436  			AscWriteLramByte(iop_base,
6437  					 (ushort)(halt_q_addr +
6438  						  (ushort)ASC_SCSIQ_B_CNTL),
6439  					 q_cntl);
6440  			AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6441  			return;
6442  		} else {
6443  
6444  			ext_msg.msg_type = MESSAGE_REJECT;
6445  			AscMemWordCopyPtrToLram(iop_base,
6446  						ASCV_MSGOUT_BEG,
6447  						(uchar *)&ext_msg,
6448  						sizeof(EXT_MSG) >> 1);
6449  			q_cntl |= QC_MSG_OUT;
6450  			AscWriteLramByte(iop_base,
6451  					 (ushort)(halt_q_addr +
6452  						  (ushort)ASC_SCSIQ_B_CNTL),
6453  					 q_cntl);
6454  			AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6455  			return;
6456  		}
6457  	} else if (int_halt_code == ASC_HALT_CHK_CONDITION) {
6458  
6459  		q_cntl |= QC_REQ_SENSE;
6460  
6461  		if ((asc_dvc->init_sdtr & target_id) != 0) {
6462  
6463  			asc_dvc->sdtr_done &= ~target_id;
6464  
6465  			sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
6466  			q_cntl |= QC_MSG_OUT;
6467  			AscMsgOutSDTR(asc_dvc,
6468  				      asc_dvc->
6469  				      sdtr_period_tbl[(sdtr_data >> 4) &
6470  						      (uchar)(asc_dvc->
6471  							      max_sdtr_index -
6472  							      1)],
6473  				      (uchar)(sdtr_data & (uchar)
6474  					      ASC_SYN_MAX_OFFSET));
6475  		}
6476  
6477  		AscWriteLramByte(iop_base,
6478  				 (ushort)(halt_q_addr +
6479  					  (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
6480  
6481  		tag_code = AscReadLramByte(iop_base,
6482  					   (ushort)(halt_q_addr + (ushort)
6483  						    ASC_SCSIQ_B_TAG_CODE));
6484  		tag_code &= 0xDC;
6485  		if ((asc_dvc->pci_fix_asyn_xfer & target_id)
6486  		    && !(asc_dvc->pci_fix_asyn_xfer_always & target_id)
6487  		    ) {
6488  
6489  			tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT
6490  				     | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX);
6491  
6492  		}
6493  		AscWriteLramByte(iop_base,
6494  				 (ushort)(halt_q_addr +
6495  					  (ushort)ASC_SCSIQ_B_TAG_CODE),
6496  				 tag_code);
6497  
6498  		q_status = AscReadLramByte(iop_base,
6499  					   (ushort)(halt_q_addr + (ushort)
6500  						    ASC_SCSIQ_B_STATUS));
6501  		q_status |= (QS_READY | QS_BUSY);
6502  		AscWriteLramByte(iop_base,
6503  				 (ushort)(halt_q_addr +
6504  					  (ushort)ASC_SCSIQ_B_STATUS),
6505  				 q_status);
6506  
6507  		scsi_busy = AscReadLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B);
6508  		scsi_busy &= ~target_id;
6509  		AscWriteLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B, scsi_busy);
6510  
6511  		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6512  		return;
6513  	} else if (int_halt_code == ASC_HALT_SDTR_REJECTED) {
6514  
6515  		AscMemWordCopyPtrFromLram(iop_base,
6516  					  ASCV_MSGOUT_BEG,
6517  					  (uchar *)&out_msg,
6518  					  sizeof(EXT_MSG) >> 1);
6519  
6520  		if ((out_msg.msg_type == EXTENDED_MESSAGE) &&
6521  		    (out_msg.msg_len == MS_SDTR_LEN) &&
6522  		    (out_msg.msg_req == EXTENDED_SDTR)) {
6523  
6524  			asc_dvc->init_sdtr &= ~target_id;
6525  			asc_dvc->sdtr_done &= ~target_id;
6526  			AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6527  			boardp->sdtr_data[tid_no] = asyn_sdtr;
6528  		}
6529  		q_cntl &= ~QC_MSG_OUT;
6530  		AscWriteLramByte(iop_base,
6531  				 (ushort)(halt_q_addr +
6532  					  (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
6533  		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6534  		return;
6535  	} else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) {
6536  
6537  		scsi_status = AscReadLramByte(iop_base,
6538  					      (ushort)((ushort)halt_q_addr +
6539  						       (ushort)
6540  						       ASC_SCSIQ_SCSI_STATUS));
6541  		cur_dvc_qng =
6542  		    AscReadLramByte(iop_base,
6543  				    (ushort)((ushort)ASC_QADR_BEG +
6544  					     (ushort)target_ix));
6545  		if ((cur_dvc_qng > 0) && (asc_dvc->cur_dvc_qng[tid_no] > 0)) {
6546  
6547  			scsi_busy = AscReadLramByte(iop_base,
6548  						    (ushort)ASCV_SCSIBUSY_B);
6549  			scsi_busy |= target_id;
6550  			AscWriteLramByte(iop_base,
6551  					 (ushort)ASCV_SCSIBUSY_B, scsi_busy);
6552  			asc_dvc->queue_full_or_busy |= target_id;
6553  
6554  			if (scsi_status == SAM_STAT_TASK_SET_FULL) {
6555  				if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) {
6556  					cur_dvc_qng -= 1;
6557  					asc_dvc->max_dvc_qng[tid_no] =
6558  					    cur_dvc_qng;
6559  
6560  					AscWriteLramByte(iop_base,
6561  							 (ushort)((ushort)
6562  								  ASCV_MAX_DVC_QNG_BEG
6563  								  + (ushort)
6564  								  tid_no),
6565  							 cur_dvc_qng);
6566  
6567  					/*
6568  					 * Set the device queue depth to the
6569  					 * number of active requests when the
6570  					 * QUEUE FULL condition was encountered.
6571  					 */
6572  					boardp->queue_full |= target_id;
6573  					boardp->queue_full_cnt[tid_no] =
6574  					    cur_dvc_qng;
6575  				}
6576  			}
6577  		}
6578  		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6579  		return;
6580  	}
6581  	return;
6582  }
6583  
6584  /*
6585   * void
6586   * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
6587   *
6588   * Calling/Exit State:
6589   *    none
6590   *
6591   * Description:
6592   *     Input an ASC_QDONE_INFO structure from the chip
6593   */
6594  static void
DvcGetQinfo(PortAddr iop_base,ushort s_addr,uchar * inbuf,int words)6595  DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
6596  {
6597  	int i;
6598  	ushort word;
6599  
6600  	AscSetChipLramAddr(iop_base, s_addr);
6601  	for (i = 0; i < 2 * words; i += 2) {
6602  		if (i == 10) {
6603  			continue;
6604  		}
6605  		word = inpw(iop_base + IOP_RAM_DATA);
6606  		inbuf[i] = word & 0xff;
6607  		inbuf[i + 1] = (word >> 8) & 0xff;
6608  	}
6609  	ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf, 2 * words);
6610  }
6611  
6612  static uchar
_AscCopyLramScsiDoneQ(PortAddr iop_base,ushort q_addr,ASC_QDONE_INFO * scsiq,unsigned int max_dma_count)6613  _AscCopyLramScsiDoneQ(PortAddr iop_base,
6614  		      ushort q_addr,
6615  		      ASC_QDONE_INFO *scsiq, unsigned int max_dma_count)
6616  {
6617  	ushort _val;
6618  	uchar sg_queue_cnt;
6619  
6620  	DvcGetQinfo(iop_base,
6621  		    q_addr + ASC_SCSIQ_DONE_INFO_BEG,
6622  		    (uchar *)scsiq,
6623  		    (sizeof(ASC_SCSIQ_2) + sizeof(ASC_SCSIQ_3)) / 2);
6624  
6625  	_val = AscReadLramWord(iop_base,
6626  			       (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS));
6627  	scsiq->q_status = (uchar)_val;
6628  	scsiq->q_no = (uchar)(_val >> 8);
6629  	_val = AscReadLramWord(iop_base,
6630  			       (ushort)(q_addr + (ushort)ASC_SCSIQ_B_CNTL));
6631  	scsiq->cntl = (uchar)_val;
6632  	sg_queue_cnt = (uchar)(_val >> 8);
6633  	_val = AscReadLramWord(iop_base,
6634  			       (ushort)(q_addr +
6635  					(ushort)ASC_SCSIQ_B_SENSE_LEN));
6636  	scsiq->sense_len = (uchar)_val;
6637  	scsiq->extra_bytes = (uchar)(_val >> 8);
6638  
6639  	/*
6640  	 * Read high word of remain bytes from alternate location.
6641  	 */
6642  	scsiq->remain_bytes = (((u32)AscReadLramWord(iop_base,
6643  						     (ushort)(q_addr +
6644  							      (ushort)
6645  							      ASC_SCSIQ_W_ALT_DC1)))
6646  			       << 16);
6647  	/*
6648  	 * Read low word of remain bytes from original location.
6649  	 */
6650  	scsiq->remain_bytes += AscReadLramWord(iop_base,
6651  					       (ushort)(q_addr + (ushort)
6652  							ASC_SCSIQ_DW_REMAIN_XFER_CNT));
6653  
6654  	scsiq->remain_bytes &= max_dma_count;
6655  	return sg_queue_cnt;
6656  }
6657  
6658  /*
6659   * asc_isr_callback() - Second Level Interrupt Handler called by AscISR().
6660   *
6661   * Interrupt callback function for the Narrow SCSI Asc Library.
6662   */
asc_isr_callback(ASC_DVC_VAR * asc_dvc_varp,ASC_QDONE_INFO * qdonep)6663  static void asc_isr_callback(ASC_DVC_VAR *asc_dvc_varp, ASC_QDONE_INFO *qdonep)
6664  {
6665  	struct asc_board *boardp = asc_dvc_varp->drv_ptr;
6666  	u32 srb_tag;
6667  	struct scsi_cmnd *scp;
6668  
6669  	ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp, qdonep);
6670  	ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep);
6671  
6672  	/*
6673  	 * Decrease the srb_tag by 1 to find the SCSI command
6674  	 */
6675  	srb_tag = qdonep->d2.srb_tag - 1;
6676  	scp = scsi_host_find_tag(boardp->shost, srb_tag);
6677  	if (!scp)
6678  		return;
6679  
6680  	ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
6681  
6682  	ASC_STATS(boardp->shost, callback);
6683  
6684  	dma_unmap_single(boardp->dev, scp->SCp.dma_handle,
6685  			 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
6686  	/*
6687  	 * 'qdonep' contains the command's ending status.
6688  	 */
6689  	scp->result = 0;
6690  	switch (qdonep->d3.done_stat) {
6691  	case QD_NO_ERROR:
6692  		ASC_DBG(2, "QD_NO_ERROR\n");
6693  
6694  		/*
6695  		 * Check for an underrun condition.
6696  		 *
6697  		 * If there was no error and an underrun condition, then
6698  		 * return the number of underrun bytes.
6699  		 */
6700  		if (scsi_bufflen(scp) != 0 && qdonep->remain_bytes != 0 &&
6701  		    qdonep->remain_bytes <= scsi_bufflen(scp)) {
6702  			ASC_DBG(1, "underrun condition %u bytes\n",
6703  				 (unsigned)qdonep->remain_bytes);
6704  			scsi_set_resid(scp, qdonep->remain_bytes);
6705  		}
6706  		break;
6707  
6708  	case QD_WITH_ERROR:
6709  		ASC_DBG(2, "QD_WITH_ERROR\n");
6710  		switch (qdonep->d3.host_stat) {
6711  		case QHSTA_NO_ERROR:
6712  			set_status_byte(scp, qdonep->d3.scsi_stat);
6713  			if (qdonep->d3.scsi_stat == SAM_STAT_CHECK_CONDITION) {
6714  				ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6715  				ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
6716  						  SCSI_SENSE_BUFFERSIZE);
6717  			}
6718  			break;
6719  
6720  		default:
6721  			/* QHSTA error occurred */
6722  			ASC_DBG(1, "host_stat 0x%x\n", qdonep->d3.host_stat);
6723  			set_host_byte(scp, DID_BAD_TARGET);
6724  			break;
6725  		}
6726  		break;
6727  
6728  	case QD_ABORTED_BY_HOST:
6729  		ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6730  		set_status_byte(scp, qdonep->d3.scsi_stat);
6731  		set_host_byte(scp, DID_ABORT);
6732  		break;
6733  
6734  	default:
6735  		ASC_DBG(1, "done_stat 0x%x\n", qdonep->d3.done_stat);
6736  		set_status_byte(scp, qdonep->d3.scsi_stat);
6737  		set_host_byte(scp, DID_ERROR);
6738  		break;
6739  	}
6740  
6741  	/*
6742  	 * If the 'init_tidmask' bit isn't already set for the target and the
6743  	 * current request finished normally, then set the bit for the target
6744  	 * to indicate that a device is present.
6745  	 */
6746  	if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
6747  	    qdonep->d3.done_stat == QD_NO_ERROR &&
6748  	    qdonep->d3.host_stat == QHSTA_NO_ERROR) {
6749  		boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
6750  	}
6751  
6752  	asc_scsi_done(scp);
6753  }
6754  
AscIsrQDone(ASC_DVC_VAR * asc_dvc)6755  static int AscIsrQDone(ASC_DVC_VAR *asc_dvc)
6756  {
6757  	uchar next_qp;
6758  	uchar n_q_used;
6759  	uchar sg_list_qp;
6760  	uchar sg_queue_cnt;
6761  	uchar q_cnt;
6762  	uchar done_q_tail;
6763  	uchar tid_no;
6764  	ASC_SCSI_BIT_ID_TYPE scsi_busy;
6765  	ASC_SCSI_BIT_ID_TYPE target_id;
6766  	PortAddr iop_base;
6767  	ushort q_addr;
6768  	ushort sg_q_addr;
6769  	uchar cur_target_qng;
6770  	ASC_QDONE_INFO scsiq_buf;
6771  	ASC_QDONE_INFO *scsiq;
6772  	bool false_overrun;
6773  
6774  	iop_base = asc_dvc->iop_base;
6775  	n_q_used = 1;
6776  	scsiq = (ASC_QDONE_INFO *)&scsiq_buf;
6777  	done_q_tail = (uchar)AscGetVarDoneQTail(iop_base);
6778  	q_addr = ASC_QNO_TO_QADDR(done_q_tail);
6779  	next_qp = AscReadLramByte(iop_base,
6780  				  (ushort)(q_addr + (ushort)ASC_SCSIQ_B_FWD));
6781  	if (next_qp != ASC_QLINK_END) {
6782  		AscPutVarDoneQTail(iop_base, next_qp);
6783  		q_addr = ASC_QNO_TO_QADDR(next_qp);
6784  		sg_queue_cnt = _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq,
6785  						     asc_dvc->max_dma_count);
6786  		AscWriteLramByte(iop_base,
6787  				 (ushort)(q_addr +
6788  					  (ushort)ASC_SCSIQ_B_STATUS),
6789  				 (uchar)(scsiq->
6790  					 q_status & (uchar)~(QS_READY |
6791  							     QS_ABORTED)));
6792  		tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix);
6793  		target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix);
6794  		if ((scsiq->cntl & QC_SG_HEAD) != 0) {
6795  			sg_q_addr = q_addr;
6796  			sg_list_qp = next_qp;
6797  			for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) {
6798  				sg_list_qp = AscReadLramByte(iop_base,
6799  							     (ushort)(sg_q_addr
6800  								      + (ushort)
6801  								      ASC_SCSIQ_B_FWD));
6802  				sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp);
6803  				if (sg_list_qp == ASC_QLINK_END) {
6804  					AscSetLibErrorCode(asc_dvc,
6805  							   ASCQ_ERR_SG_Q_LINKS);
6806  					scsiq->d3.done_stat = QD_WITH_ERROR;
6807  					scsiq->d3.host_stat =
6808  					    QHSTA_D_QDONE_SG_LIST_CORRUPTED;
6809  					goto FATAL_ERR_QDONE;
6810  				}
6811  				AscWriteLramByte(iop_base,
6812  						 (ushort)(sg_q_addr + (ushort)
6813  							  ASC_SCSIQ_B_STATUS),
6814  						 QS_FREE);
6815  			}
6816  			n_q_used = sg_queue_cnt + 1;
6817  			AscPutVarDoneQTail(iop_base, sg_list_qp);
6818  		}
6819  		if (asc_dvc->queue_full_or_busy & target_id) {
6820  			cur_target_qng = AscReadLramByte(iop_base,
6821  							 (ushort)((ushort)
6822  								  ASC_QADR_BEG
6823  								  + (ushort)
6824  								  scsiq->d2.
6825  								  target_ix));
6826  			if (cur_target_qng < asc_dvc->max_dvc_qng[tid_no]) {
6827  				scsi_busy = AscReadLramByte(iop_base, (ushort)
6828  							    ASCV_SCSIBUSY_B);
6829  				scsi_busy &= ~target_id;
6830  				AscWriteLramByte(iop_base,
6831  						 (ushort)ASCV_SCSIBUSY_B,
6832  						 scsi_busy);
6833  				asc_dvc->queue_full_or_busy &= ~target_id;
6834  			}
6835  		}
6836  		if (asc_dvc->cur_total_qng >= n_q_used) {
6837  			asc_dvc->cur_total_qng -= n_q_used;
6838  			if (asc_dvc->cur_dvc_qng[tid_no] != 0) {
6839  				asc_dvc->cur_dvc_qng[tid_no]--;
6840  			}
6841  		} else {
6842  			AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CUR_QNG);
6843  			scsiq->d3.done_stat = QD_WITH_ERROR;
6844  			goto FATAL_ERR_QDONE;
6845  		}
6846  		if ((scsiq->d2.srb_tag == 0UL) ||
6847  		    ((scsiq->q_status & QS_ABORTED) != 0)) {
6848  			return (0x11);
6849  		} else if (scsiq->q_status == QS_DONE) {
6850  			/*
6851  			 * This is also curious.
6852  			 * false_overrun will _always_ be set to 'false'
6853  			 */
6854  			false_overrun = false;
6855  			if (scsiq->extra_bytes != 0) {
6856  				scsiq->remain_bytes += scsiq->extra_bytes;
6857  			}
6858  			if (scsiq->d3.done_stat == QD_WITH_ERROR) {
6859  				if (scsiq->d3.host_stat ==
6860  				    QHSTA_M_DATA_OVER_RUN) {
6861  					if ((scsiq->
6862  					     cntl & (QC_DATA_IN | QC_DATA_OUT))
6863  					    == 0) {
6864  						scsiq->d3.done_stat =
6865  						    QD_NO_ERROR;
6866  						scsiq->d3.host_stat =
6867  						    QHSTA_NO_ERROR;
6868  					} else if (false_overrun) {
6869  						scsiq->d3.done_stat =
6870  						    QD_NO_ERROR;
6871  						scsiq->d3.host_stat =
6872  						    QHSTA_NO_ERROR;
6873  					}
6874  				} else if (scsiq->d3.host_stat ==
6875  					   QHSTA_M_HUNG_REQ_SCSI_BUS_RESET) {
6876  					AscStopChip(iop_base);
6877  					AscSetChipControl(iop_base,
6878  							  (uchar)(CC_SCSI_RESET
6879  								  | CC_HALT));
6880  					udelay(60);
6881  					AscSetChipControl(iop_base, CC_HALT);
6882  					AscSetChipStatus(iop_base,
6883  							 CIW_CLR_SCSI_RESET_INT);
6884  					AscSetChipStatus(iop_base, 0);
6885  					AscSetChipControl(iop_base, 0);
6886  				}
6887  			}
6888  			if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
6889  				asc_isr_callback(asc_dvc, scsiq);
6890  			} else {
6891  				if ((AscReadLramByte(iop_base,
6892  						     (ushort)(q_addr + (ushort)
6893  							      ASC_SCSIQ_CDB_BEG))
6894  				     == START_STOP)) {
6895  					asc_dvc->unit_not_ready &= ~target_id;
6896  					if (scsiq->d3.done_stat != QD_NO_ERROR) {
6897  						asc_dvc->start_motor &=
6898  						    ~target_id;
6899  					}
6900  				}
6901  			}
6902  			return (1);
6903  		} else {
6904  			AscSetLibErrorCode(asc_dvc, ASCQ_ERR_Q_STATUS);
6905   FATAL_ERR_QDONE:
6906  			if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
6907  				asc_isr_callback(asc_dvc, scsiq);
6908  			}
6909  			return (0x80);
6910  		}
6911  	}
6912  	return (0);
6913  }
6914  
AscISR(ASC_DVC_VAR * asc_dvc)6915  static int AscISR(ASC_DVC_VAR *asc_dvc)
6916  {
6917  	ASC_CS_TYPE chipstat;
6918  	PortAddr iop_base;
6919  	ushort saved_ram_addr;
6920  	uchar ctrl_reg;
6921  	uchar saved_ctrl_reg;
6922  	int int_pending;
6923  	int status;
6924  	uchar host_flag;
6925  
6926  	iop_base = asc_dvc->iop_base;
6927  	int_pending = ASC_FALSE;
6928  
6929  	if (AscIsIntPending(iop_base) == 0)
6930  		return int_pending;
6931  
6932  	if ((asc_dvc->init_state & ASC_INIT_STATE_END_LOAD_MC) == 0) {
6933  		return ASC_ERROR;
6934  	}
6935  	if (asc_dvc->in_critical_cnt != 0) {
6936  		AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_ON_CRITICAL);
6937  		return ASC_ERROR;
6938  	}
6939  	if (asc_dvc->is_in_int) {
6940  		AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_RE_ENTRY);
6941  		return ASC_ERROR;
6942  	}
6943  	asc_dvc->is_in_int = true;
6944  	ctrl_reg = AscGetChipControl(iop_base);
6945  	saved_ctrl_reg = ctrl_reg & (~(CC_SCSI_RESET | CC_CHIP_RESET |
6946  				       CC_SINGLE_STEP | CC_DIAG | CC_TEST));
6947  	chipstat = AscGetChipStatus(iop_base);
6948  	if (chipstat & CSW_SCSI_RESET_LATCH) {
6949  		if (!(asc_dvc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) {
6950  			int i = 10;
6951  			int_pending = ASC_TRUE;
6952  			asc_dvc->sdtr_done = 0;
6953  			saved_ctrl_reg &= (uchar)(~CC_HALT);
6954  			while ((AscGetChipStatus(iop_base) &
6955  				CSW_SCSI_RESET_ACTIVE) && (i-- > 0)) {
6956  				mdelay(100);
6957  			}
6958  			AscSetChipControl(iop_base, (CC_CHIP_RESET | CC_HALT));
6959  			AscSetChipControl(iop_base, CC_HALT);
6960  			AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
6961  			AscSetChipStatus(iop_base, 0);
6962  			chipstat = AscGetChipStatus(iop_base);
6963  		}
6964  	}
6965  	saved_ram_addr = AscGetChipLramAddr(iop_base);
6966  	host_flag = AscReadLramByte(iop_base,
6967  				    ASCV_HOST_FLAG_B) &
6968  	    (uchar)(~ASC_HOST_FLAG_IN_ISR);
6969  	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
6970  			 (uchar)(host_flag | (uchar)ASC_HOST_FLAG_IN_ISR));
6971  	if ((chipstat & CSW_INT_PENDING) || (int_pending)) {
6972  		AscAckInterrupt(iop_base);
6973  		int_pending = ASC_TRUE;
6974  		if ((chipstat & CSW_HALTED) && (ctrl_reg & CC_SINGLE_STEP)) {
6975  			AscIsrChipHalted(asc_dvc);
6976  			saved_ctrl_reg &= (uchar)(~CC_HALT);
6977  		} else {
6978  			if ((asc_dvc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) != 0) {
6979  				while (((status =
6980  					 AscIsrQDone(asc_dvc)) & 0x01) != 0) {
6981  				}
6982  			} else {
6983  				do {
6984  					if ((status =
6985  					     AscIsrQDone(asc_dvc)) == 1) {
6986  						break;
6987  					}
6988  				} while (status == 0x11);
6989  			}
6990  			if ((status & 0x80) != 0)
6991  				int_pending = ASC_ERROR;
6992  		}
6993  	}
6994  	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
6995  	AscSetChipLramAddr(iop_base, saved_ram_addr);
6996  	AscSetChipControl(iop_base, saved_ctrl_reg);
6997  	asc_dvc->is_in_int = false;
6998  	return int_pending;
6999  }
7000  
7001  /*
7002   * advansys_reset()
7003   *
7004   * Reset the host associated with the command 'scp'.
7005   *
7006   * This function runs its own thread. Interrupts must be blocked but
7007   * sleeping is allowed and no locking other than for host structures is
7008   * required. Returns SUCCESS or FAILED.
7009   */
advansys_reset(struct scsi_cmnd * scp)7010  static int advansys_reset(struct scsi_cmnd *scp)
7011  {
7012  	struct Scsi_Host *shost = scp->device->host;
7013  	struct asc_board *boardp = shost_priv(shost);
7014  	unsigned long flags;
7015  	int status;
7016  	int ret = SUCCESS;
7017  
7018  	ASC_DBG(1, "0x%p\n", scp);
7019  
7020  	ASC_STATS(shost, reset);
7021  
7022  	scmd_printk(KERN_INFO, scp, "SCSI host reset started...\n");
7023  
7024  	if (ASC_NARROW_BOARD(boardp)) {
7025  		ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7026  
7027  		/* Reset the chip and SCSI bus. */
7028  		ASC_DBG(1, "before AscInitAsc1000Driver()\n");
7029  		status = AscInitAsc1000Driver(asc_dvc);
7030  
7031  		/* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */
7032  		if (asc_dvc->err_code || !asc_dvc->overrun_dma) {
7033  			scmd_printk(KERN_INFO, scp, "SCSI host reset error: "
7034  				    "0x%x, status: 0x%x\n", asc_dvc->err_code,
7035  				    status);
7036  			ret = FAILED;
7037  		} else if (status) {
7038  			scmd_printk(KERN_INFO, scp, "SCSI host reset warning: "
7039  				    "0x%x\n", status);
7040  		} else {
7041  			scmd_printk(KERN_INFO, scp, "SCSI host reset "
7042  				    "successful\n");
7043  		}
7044  
7045  		ASC_DBG(1, "after AscInitAsc1000Driver()\n");
7046  	} else {
7047  		/*
7048  		 * If the suggest reset bus flags are set, then reset the bus.
7049  		 * Otherwise only reset the device.
7050  		 */
7051  		ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
7052  
7053  		/*
7054  		 * Reset the chip and SCSI bus.
7055  		 */
7056  		ASC_DBG(1, "before AdvResetChipAndSB()\n");
7057  		switch (AdvResetChipAndSB(adv_dvc)) {
7058  		case ASC_TRUE:
7059  			scmd_printk(KERN_INFO, scp, "SCSI host reset "
7060  				    "successful\n");
7061  			break;
7062  		case ASC_FALSE:
7063  		default:
7064  			scmd_printk(KERN_INFO, scp, "SCSI host reset error\n");
7065  			ret = FAILED;
7066  			break;
7067  		}
7068  		spin_lock_irqsave(shost->host_lock, flags);
7069  		AdvISR(adv_dvc);
7070  		spin_unlock_irqrestore(shost->host_lock, flags);
7071  	}
7072  
7073  	ASC_DBG(1, "ret %d\n", ret);
7074  
7075  	return ret;
7076  }
7077  
7078  /*
7079   * advansys_biosparam()
7080   *
7081   * Translate disk drive geometry if the "BIOS greater than 1 GB"
7082   * support is enabled for a drive.
7083   *
7084   * ip (information pointer) is an int array with the following definition:
7085   * ip[0]: heads
7086   * ip[1]: sectors
7087   * ip[2]: cylinders
7088   */
7089  static int
advansys_biosparam(struct scsi_device * sdev,struct block_device * bdev,sector_t capacity,int ip[])7090  advansys_biosparam(struct scsi_device *sdev, struct block_device *bdev,
7091  		   sector_t capacity, int ip[])
7092  {
7093  	struct asc_board *boardp = shost_priv(sdev->host);
7094  
7095  	ASC_DBG(1, "begin\n");
7096  	ASC_STATS(sdev->host, biosparam);
7097  	if (ASC_NARROW_BOARD(boardp)) {
7098  		if ((boardp->dvc_var.asc_dvc_var.dvc_cntl &
7099  		     ASC_CNTL_BIOS_GT_1GB) && capacity > 0x200000) {
7100  			ip[0] = 255;
7101  			ip[1] = 63;
7102  		} else {
7103  			ip[0] = 64;
7104  			ip[1] = 32;
7105  		}
7106  	} else {
7107  		if ((boardp->dvc_var.adv_dvc_var.bios_ctrl &
7108  		     BIOS_CTRL_EXTENDED_XLAT) && capacity > 0x200000) {
7109  			ip[0] = 255;
7110  			ip[1] = 63;
7111  		} else {
7112  			ip[0] = 64;
7113  			ip[1] = 32;
7114  		}
7115  	}
7116  	ip[2] = (unsigned long)capacity / (ip[0] * ip[1]);
7117  	ASC_DBG(1, "end\n");
7118  	return 0;
7119  }
7120  
7121  /*
7122   * First-level interrupt handler.
7123   *
7124   * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host.
7125   */
advansys_interrupt(int irq,void * dev_id)7126  static irqreturn_t advansys_interrupt(int irq, void *dev_id)
7127  {
7128  	struct Scsi_Host *shost = dev_id;
7129  	struct asc_board *boardp = shost_priv(shost);
7130  	irqreturn_t result = IRQ_NONE;
7131  	unsigned long flags;
7132  
7133  	ASC_DBG(2, "boardp 0x%p\n", boardp);
7134  	spin_lock_irqsave(shost->host_lock, flags);
7135  	if (ASC_NARROW_BOARD(boardp)) {
7136  		if (AscIsIntPending(shost->io_port)) {
7137  			result = IRQ_HANDLED;
7138  			ASC_STATS(shost, interrupt);
7139  			ASC_DBG(1, "before AscISR()\n");
7140  			AscISR(&boardp->dvc_var.asc_dvc_var);
7141  		}
7142  	} else {
7143  		ASC_DBG(1, "before AdvISR()\n");
7144  		if (AdvISR(&boardp->dvc_var.adv_dvc_var)) {
7145  			result = IRQ_HANDLED;
7146  			ASC_STATS(shost, interrupt);
7147  		}
7148  	}
7149  	spin_unlock_irqrestore(shost->host_lock, flags);
7150  
7151  	ASC_DBG(1, "end\n");
7152  	return result;
7153  }
7154  
AscHostReqRiscHalt(PortAddr iop_base)7155  static bool AscHostReqRiscHalt(PortAddr iop_base)
7156  {
7157  	int count = 0;
7158  	bool sta = false;
7159  	uchar saved_stop_code;
7160  
7161  	if (AscIsChipHalted(iop_base))
7162  		return true;
7163  	saved_stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B);
7164  	AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
7165  			 ASC_STOP_HOST_REQ_RISC_HALT | ASC_STOP_REQ_RISC_STOP);
7166  	do {
7167  		if (AscIsChipHalted(iop_base)) {
7168  			sta = true;
7169  			break;
7170  		}
7171  		mdelay(100);
7172  	} while (count++ < 20);
7173  	AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, saved_stop_code);
7174  	return sta;
7175  }
7176  
7177  static bool
AscSetRunChipSynRegAtID(PortAddr iop_base,uchar tid_no,uchar sdtr_data)7178  AscSetRunChipSynRegAtID(PortAddr iop_base, uchar tid_no, uchar sdtr_data)
7179  {
7180  	bool sta = false;
7181  
7182  	if (AscHostReqRiscHalt(iop_base)) {
7183  		sta = AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
7184  		AscStartChip(iop_base);
7185  	}
7186  	return sta;
7187  }
7188  
AscAsyncFix(ASC_DVC_VAR * asc_dvc,struct scsi_device * sdev)7189  static void AscAsyncFix(ASC_DVC_VAR *asc_dvc, struct scsi_device *sdev)
7190  {
7191  	char type = sdev->type;
7192  	ASC_SCSI_BIT_ID_TYPE tid_bits = 1 << sdev->id;
7193  
7194  	if (!(asc_dvc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN))
7195  		return;
7196  	if (asc_dvc->init_sdtr & tid_bits)
7197  		return;
7198  
7199  	if ((type == TYPE_ROM) && (strncmp(sdev->vendor, "HP ", 3) == 0))
7200  		asc_dvc->pci_fix_asyn_xfer_always |= tid_bits;
7201  
7202  	asc_dvc->pci_fix_asyn_xfer |= tid_bits;
7203  	if ((type == TYPE_PROCESSOR) || (type == TYPE_SCANNER) ||
7204  	    (type == TYPE_ROM) || (type == TYPE_TAPE))
7205  		asc_dvc->pci_fix_asyn_xfer &= ~tid_bits;
7206  
7207  	if (asc_dvc->pci_fix_asyn_xfer & tid_bits)
7208  		AscSetRunChipSynRegAtID(asc_dvc->iop_base, sdev->id,
7209  					ASYN_SDTR_DATA_FIX_PCI_REV_AB);
7210  }
7211  
7212  static void
advansys_narrow_slave_configure(struct scsi_device * sdev,ASC_DVC_VAR * asc_dvc)7213  advansys_narrow_slave_configure(struct scsi_device *sdev, ASC_DVC_VAR *asc_dvc)
7214  {
7215  	ASC_SCSI_BIT_ID_TYPE tid_bit = 1 << sdev->id;
7216  	ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng = asc_dvc->use_tagged_qng;
7217  
7218  	if (sdev->lun == 0) {
7219  		ASC_SCSI_BIT_ID_TYPE orig_init_sdtr = asc_dvc->init_sdtr;
7220  		if ((asc_dvc->cfg->sdtr_enable & tid_bit) && sdev->sdtr) {
7221  			asc_dvc->init_sdtr |= tid_bit;
7222  		} else {
7223  			asc_dvc->init_sdtr &= ~tid_bit;
7224  		}
7225  
7226  		if (orig_init_sdtr != asc_dvc->init_sdtr)
7227  			AscAsyncFix(asc_dvc, sdev);
7228  	}
7229  
7230  	if (sdev->tagged_supported) {
7231  		if (asc_dvc->cfg->cmd_qng_enabled & tid_bit) {
7232  			if (sdev->lun == 0) {
7233  				asc_dvc->cfg->can_tagged_qng |= tid_bit;
7234  				asc_dvc->use_tagged_qng |= tid_bit;
7235  			}
7236  			scsi_change_queue_depth(sdev,
7237  						asc_dvc->max_dvc_qng[sdev->id]);
7238  		}
7239  	} else {
7240  		if (sdev->lun == 0) {
7241  			asc_dvc->cfg->can_tagged_qng &= ~tid_bit;
7242  			asc_dvc->use_tagged_qng &= ~tid_bit;
7243  		}
7244  	}
7245  
7246  	if ((sdev->lun == 0) &&
7247  	    (orig_use_tagged_qng != asc_dvc->use_tagged_qng)) {
7248  		AscWriteLramByte(asc_dvc->iop_base, ASCV_DISC_ENABLE_B,
7249  				 asc_dvc->cfg->disc_enable);
7250  		AscWriteLramByte(asc_dvc->iop_base, ASCV_USE_TAGGED_QNG_B,
7251  				 asc_dvc->use_tagged_qng);
7252  		AscWriteLramByte(asc_dvc->iop_base, ASCV_CAN_TAGGED_QNG_B,
7253  				 asc_dvc->cfg->can_tagged_qng);
7254  
7255  		asc_dvc->max_dvc_qng[sdev->id] =
7256  					asc_dvc->cfg->max_tag_qng[sdev->id];
7257  		AscWriteLramByte(asc_dvc->iop_base,
7258  				 (ushort)(ASCV_MAX_DVC_QNG_BEG + sdev->id),
7259  				 asc_dvc->max_dvc_qng[sdev->id]);
7260  	}
7261  }
7262  
7263  /*
7264   * Wide Transfers
7265   *
7266   * If the EEPROM enabled WDTR for the device and the device supports wide
7267   * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and
7268   * write the new value to the microcode.
7269   */
7270  static void
advansys_wide_enable_wdtr(AdvPortAddr iop_base,unsigned short tidmask)7271  advansys_wide_enable_wdtr(AdvPortAddr iop_base, unsigned short tidmask)
7272  {
7273  	unsigned short cfg_word;
7274  	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
7275  	if ((cfg_word & tidmask) != 0)
7276  		return;
7277  
7278  	cfg_word |= tidmask;
7279  	AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
7280  
7281  	/*
7282  	 * Clear the microcode SDTR and WDTR negotiation done indicators for
7283  	 * the target to cause it to negotiate with the new setting set above.
7284  	 * WDTR when accepted causes the target to enter asynchronous mode, so
7285  	 * SDTR must be negotiated.
7286  	 */
7287  	AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7288  	cfg_word &= ~tidmask;
7289  	AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7290  	AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
7291  	cfg_word &= ~tidmask;
7292  	AdvWriteWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
7293  }
7294  
7295  /*
7296   * Synchronous Transfers
7297   *
7298   * If the EEPROM enabled SDTR for the device and the device
7299   * supports synchronous transfers, then turn on the device's
7300   * 'sdtr_able' bit. Write the new value to the microcode.
7301   */
7302  static void
advansys_wide_enable_sdtr(AdvPortAddr iop_base,unsigned short tidmask)7303  advansys_wide_enable_sdtr(AdvPortAddr iop_base, unsigned short tidmask)
7304  {
7305  	unsigned short cfg_word;
7306  	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
7307  	if ((cfg_word & tidmask) != 0)
7308  		return;
7309  
7310  	cfg_word |= tidmask;
7311  	AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
7312  
7313  	/*
7314  	 * Clear the microcode "SDTR negotiation" done indicator for the
7315  	 * target to cause it to negotiate with the new setting set above.
7316  	 */
7317  	AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7318  	cfg_word &= ~tidmask;
7319  	AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7320  }
7321  
7322  /*
7323   * PPR (Parallel Protocol Request) Capable
7324   *
7325   * If the device supports DT mode, then it must be PPR capable.
7326   * The PPR message will be used in place of the SDTR and WDTR
7327   * messages to negotiate synchronous speed and offset, transfer
7328   * width, and protocol options.
7329   */
advansys_wide_enable_ppr(ADV_DVC_VAR * adv_dvc,AdvPortAddr iop_base,unsigned short tidmask)7330  static void advansys_wide_enable_ppr(ADV_DVC_VAR *adv_dvc,
7331  				AdvPortAddr iop_base, unsigned short tidmask)
7332  {
7333  	AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
7334  	adv_dvc->ppr_able |= tidmask;
7335  	AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
7336  }
7337  
7338  static void
advansys_wide_slave_configure(struct scsi_device * sdev,ADV_DVC_VAR * adv_dvc)7339  advansys_wide_slave_configure(struct scsi_device *sdev, ADV_DVC_VAR *adv_dvc)
7340  {
7341  	AdvPortAddr iop_base = adv_dvc->iop_base;
7342  	unsigned short tidmask = 1 << sdev->id;
7343  
7344  	if (sdev->lun == 0) {
7345  		/*
7346  		 * Handle WDTR, SDTR, and Tag Queuing. If the feature
7347  		 * is enabled in the EEPROM and the device supports the
7348  		 * feature, then enable it in the microcode.
7349  		 */
7350  
7351  		if ((adv_dvc->wdtr_able & tidmask) && sdev->wdtr)
7352  			advansys_wide_enable_wdtr(iop_base, tidmask);
7353  		if ((adv_dvc->sdtr_able & tidmask) && sdev->sdtr)
7354  			advansys_wide_enable_sdtr(iop_base, tidmask);
7355  		if (adv_dvc->chip_type == ADV_CHIP_ASC38C1600 && sdev->ppr)
7356  			advansys_wide_enable_ppr(adv_dvc, iop_base, tidmask);
7357  
7358  		/*
7359  		 * Tag Queuing is disabled for the BIOS which runs in polled
7360  		 * mode and would see no benefit from Tag Queuing. Also by
7361  		 * disabling Tag Queuing in the BIOS devices with Tag Queuing
7362  		 * bugs will at least work with the BIOS.
7363  		 */
7364  		if ((adv_dvc->tagqng_able & tidmask) &&
7365  		    sdev->tagged_supported) {
7366  			unsigned short cfg_word;
7367  			AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word);
7368  			cfg_word |= tidmask;
7369  			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
7370  					 cfg_word);
7371  			AdvWriteByteLram(iop_base,
7372  					 ASC_MC_NUMBER_OF_MAX_CMD + sdev->id,
7373  					 adv_dvc->max_dvc_qng);
7374  		}
7375  	}
7376  
7377  	if ((adv_dvc->tagqng_able & tidmask) && sdev->tagged_supported)
7378  		scsi_change_queue_depth(sdev, adv_dvc->max_dvc_qng);
7379  }
7380  
7381  /*
7382   * Set the number of commands to queue per device for the
7383   * specified host adapter.
7384   */
advansys_slave_configure(struct scsi_device * sdev)7385  static int advansys_slave_configure(struct scsi_device *sdev)
7386  {
7387  	struct asc_board *boardp = shost_priv(sdev->host);
7388  
7389  	if (ASC_NARROW_BOARD(boardp))
7390  		advansys_narrow_slave_configure(sdev,
7391  						&boardp->dvc_var.asc_dvc_var);
7392  	else
7393  		advansys_wide_slave_configure(sdev,
7394  						&boardp->dvc_var.adv_dvc_var);
7395  
7396  	return 0;
7397  }
7398  
asc_get_sense_buffer_dma(struct scsi_cmnd * scp)7399  static __le32 asc_get_sense_buffer_dma(struct scsi_cmnd *scp)
7400  {
7401  	struct asc_board *board = shost_priv(scp->device->host);
7402  
7403  	scp->SCp.dma_handle = dma_map_single(board->dev, scp->sense_buffer,
7404  					     SCSI_SENSE_BUFFERSIZE,
7405  					     DMA_FROM_DEVICE);
7406  	if (dma_mapping_error(board->dev, scp->SCp.dma_handle)) {
7407  		ASC_DBG(1, "failed to map sense buffer\n");
7408  		return 0;
7409  	}
7410  	return cpu_to_le32(scp->SCp.dma_handle);
7411  }
7412  
asc_build_req(struct asc_board * boardp,struct scsi_cmnd * scp,struct asc_scsi_q * asc_scsi_q)7413  static int asc_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
7414  			struct asc_scsi_q *asc_scsi_q)
7415  {
7416  	struct asc_dvc_var *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7417  	int use_sg;
7418  	u32 srb_tag;
7419  
7420  	memset(asc_scsi_q, 0, sizeof(*asc_scsi_q));
7421  
7422  	/*
7423  	 * Set the srb_tag to the command tag + 1, as
7424  	 * srb_tag '0' is used internally by the chip.
7425  	 */
7426  	srb_tag = scsi_cmd_to_rq(scp)->tag + 1;
7427  	asc_scsi_q->q2.srb_tag = srb_tag;
7428  
7429  	/*
7430  	 * Build the ASC_SCSI_Q request.
7431  	 */
7432  	asc_scsi_q->cdbptr = &scp->cmnd[0];
7433  	asc_scsi_q->q2.cdb_len = scp->cmd_len;
7434  	asc_scsi_q->q1.target_id = ASC_TID_TO_TARGET_ID(scp->device->id);
7435  	asc_scsi_q->q1.target_lun = scp->device->lun;
7436  	asc_scsi_q->q2.target_ix =
7437  	    ASC_TIDLUN_TO_IX(scp->device->id, scp->device->lun);
7438  	asc_scsi_q->q1.sense_addr = asc_get_sense_buffer_dma(scp);
7439  	asc_scsi_q->q1.sense_len = SCSI_SENSE_BUFFERSIZE;
7440  	if (!asc_scsi_q->q1.sense_addr)
7441  		return ASC_BUSY;
7442  
7443  	/*
7444  	 * If there are any outstanding requests for the current target,
7445  	 * then every 255th request send an ORDERED request. This heuristic
7446  	 * tries to retain the benefit of request sorting while preventing
7447  	 * request starvation. 255 is the max number of tags or pending commands
7448  	 * a device may have outstanding.
7449  	 *
7450  	 * The request count is incremented below for every successfully
7451  	 * started request.
7452  	 *
7453  	 */
7454  	if ((asc_dvc->cur_dvc_qng[scp->device->id] > 0) &&
7455  	    (boardp->reqcnt[scp->device->id] % 255) == 0) {
7456  		asc_scsi_q->q2.tag_code = ORDERED_QUEUE_TAG;
7457  	} else {
7458  		asc_scsi_q->q2.tag_code = SIMPLE_QUEUE_TAG;
7459  	}
7460  
7461  	/* Build ASC_SCSI_Q */
7462  	use_sg = scsi_dma_map(scp);
7463  	if (use_sg < 0) {
7464  		ASC_DBG(1, "failed to map sglist\n");
7465  		return ASC_BUSY;
7466  	} else if (use_sg > 0) {
7467  		int sgcnt;
7468  		struct scatterlist *slp;
7469  		struct asc_sg_head *asc_sg_head;
7470  
7471  		if (use_sg > scp->device->host->sg_tablesize) {
7472  			scmd_printk(KERN_ERR, scp, "use_sg %d > "
7473  				"sg_tablesize %d\n", use_sg,
7474  				scp->device->host->sg_tablesize);
7475  			scsi_dma_unmap(scp);
7476  			set_host_byte(scp, DID_ERROR);
7477  			return ASC_ERROR;
7478  		}
7479  
7480  		asc_sg_head = kzalloc(sizeof(asc_scsi_q->sg_head) +
7481  			use_sg * sizeof(struct asc_sg_list), GFP_ATOMIC);
7482  		if (!asc_sg_head) {
7483  			scsi_dma_unmap(scp);
7484  			set_host_byte(scp, DID_SOFT_ERROR);
7485  			return ASC_ERROR;
7486  		}
7487  
7488  		asc_scsi_q->q1.cntl |= QC_SG_HEAD;
7489  		asc_scsi_q->sg_head = asc_sg_head;
7490  		asc_scsi_q->q1.data_cnt = 0;
7491  		asc_scsi_q->q1.data_addr = 0;
7492  		/* This is a byte value, otherwise it would need to be swapped. */
7493  		asc_sg_head->entry_cnt = asc_scsi_q->q1.sg_queue_cnt = use_sg;
7494  		ASC_STATS_ADD(scp->device->host, xfer_elem,
7495  			      asc_sg_head->entry_cnt);
7496  
7497  		/*
7498  		 * Convert scatter-gather list into ASC_SG_HEAD list.
7499  		 */
7500  		scsi_for_each_sg(scp, slp, use_sg, sgcnt) {
7501  			asc_sg_head->sg_list[sgcnt].addr =
7502  			    cpu_to_le32(sg_dma_address(slp));
7503  			asc_sg_head->sg_list[sgcnt].bytes =
7504  			    cpu_to_le32(sg_dma_len(slp));
7505  			ASC_STATS_ADD(scp->device->host, xfer_sect,
7506  				      DIV_ROUND_UP(sg_dma_len(slp), 512));
7507  		}
7508  	}
7509  
7510  	ASC_STATS(scp->device->host, xfer_cnt);
7511  
7512  	ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q);
7513  	ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
7514  
7515  	return ASC_NOERROR;
7516  }
7517  
7518  /*
7519   * Build scatter-gather list for Adv Library (Wide Board).
7520   *
7521   * Additional ADV_SG_BLOCK structures will need to be allocated
7522   * if the total number of scatter-gather elements exceeds
7523   * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are
7524   * assumed to be physically contiguous.
7525   *
7526   * Return:
7527   *      ADV_SUCCESS(1) - SG List successfully created
7528   *      ADV_ERROR(-1) - SG List creation failed
7529   */
7530  static int
adv_get_sglist(struct asc_board * boardp,adv_req_t * reqp,ADV_SCSI_REQ_Q * scsiqp,struct scsi_cmnd * scp,int use_sg)7531  adv_get_sglist(struct asc_board *boardp, adv_req_t *reqp,
7532  	       ADV_SCSI_REQ_Q *scsiqp, struct scsi_cmnd *scp, int use_sg)
7533  {
7534  	adv_sgblk_t *sgblkp, *prev_sgblkp;
7535  	struct scatterlist *slp;
7536  	int sg_elem_cnt;
7537  	ADV_SG_BLOCK *sg_block, *prev_sg_block;
7538  	dma_addr_t sgblk_paddr;
7539  	int i;
7540  
7541  	slp = scsi_sglist(scp);
7542  	sg_elem_cnt = use_sg;
7543  	prev_sgblkp = NULL;
7544  	prev_sg_block = NULL;
7545  	reqp->sgblkp = NULL;
7546  
7547  	for (;;) {
7548  		/*
7549  		 * Allocate a 'adv_sgblk_t' structure from the board free
7550  		 * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK
7551  		 * (15) scatter-gather elements.
7552  		 */
7553  		sgblkp = dma_pool_alloc(boardp->adv_sgblk_pool, GFP_ATOMIC,
7554  					&sgblk_paddr);
7555  		if (!sgblkp) {
7556  			ASC_DBG(1, "no free adv_sgblk_t\n");
7557  			ASC_STATS(scp->device->host, adv_build_nosg);
7558  
7559  			/*
7560  			 * Allocation failed. Free 'adv_sgblk_t' structures
7561  			 * already allocated for the request.
7562  			 */
7563  			while ((sgblkp = reqp->sgblkp) != NULL) {
7564  				/* Remove 'sgblkp' from the request list. */
7565  				reqp->sgblkp = sgblkp->next_sgblkp;
7566  				sgblkp->next_sgblkp = NULL;
7567  				dma_pool_free(boardp->adv_sgblk_pool, sgblkp,
7568  					      sgblkp->sg_addr);
7569  			}
7570  			return ASC_BUSY;
7571  		}
7572  		/* Complete 'adv_sgblk_t' board allocation. */
7573  		sgblkp->sg_addr = sgblk_paddr;
7574  		sgblkp->next_sgblkp = NULL;
7575  		sg_block = &sgblkp->sg_block;
7576  
7577  		/*
7578  		 * Check if this is the first 'adv_sgblk_t' for the
7579  		 * request.
7580  		 */
7581  		if (reqp->sgblkp == NULL) {
7582  			/* Request's first scatter-gather block. */
7583  			reqp->sgblkp = sgblkp;
7584  
7585  			/*
7586  			 * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical
7587  			 * address pointers.
7588  			 */
7589  			scsiqp->sg_list_ptr = sg_block;
7590  			scsiqp->sg_real_addr = cpu_to_le32(sgblk_paddr);
7591  		} else {
7592  			/* Request's second or later scatter-gather block. */
7593  			prev_sgblkp->next_sgblkp = sgblkp;
7594  
7595  			/*
7596  			 * Point the previous ADV_SG_BLOCK structure to
7597  			 * the newly allocated ADV_SG_BLOCK structure.
7598  			 */
7599  			prev_sg_block->sg_ptr = cpu_to_le32(sgblk_paddr);
7600  		}
7601  
7602  		for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) {
7603  			sg_block->sg_list[i].sg_addr =
7604  					cpu_to_le32(sg_dma_address(slp));
7605  			sg_block->sg_list[i].sg_count =
7606  					cpu_to_le32(sg_dma_len(slp));
7607  			ASC_STATS_ADD(scp->device->host, xfer_sect,
7608  				      DIV_ROUND_UP(sg_dma_len(slp), 512));
7609  
7610  			if (--sg_elem_cnt == 0) {
7611  				/*
7612  				 * Last ADV_SG_BLOCK and scatter-gather entry.
7613  				 */
7614  				sg_block->sg_cnt = i + 1;
7615  				sg_block->sg_ptr = 0L; /* Last ADV_SG_BLOCK in list. */
7616  				return ADV_SUCCESS;
7617  			}
7618  			slp = sg_next(slp);
7619  		}
7620  		sg_block->sg_cnt = NO_OF_SG_PER_BLOCK;
7621  		prev_sg_block = sg_block;
7622  		prev_sgblkp = sgblkp;
7623  	}
7624  }
7625  
7626  /*
7627   * Build a request structure for the Adv Library (Wide Board).
7628   *
7629   * If an adv_req_t can not be allocated to issue the request,
7630   * then return ASC_BUSY. If an error occurs, then return ASC_ERROR.
7631   *
7632   * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the
7633   * microcode for DMA addresses or math operations are byte swapped
7634   * to little-endian order.
7635   */
7636  static int
adv_build_req(struct asc_board * boardp,struct scsi_cmnd * scp,adv_req_t ** adv_reqpp)7637  adv_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
7638  	      adv_req_t **adv_reqpp)
7639  {
7640  	u32 srb_tag = scsi_cmd_to_rq(scp)->tag;
7641  	adv_req_t *reqp;
7642  	ADV_SCSI_REQ_Q *scsiqp;
7643  	int ret;
7644  	int use_sg;
7645  	dma_addr_t sense_addr;
7646  
7647  	/*
7648  	 * Allocate an adv_req_t structure from the board to execute
7649  	 * the command.
7650  	 */
7651  	reqp = &boardp->adv_reqp[srb_tag];
7652  	if (reqp->cmndp && reqp->cmndp != scp ) {
7653  		ASC_DBG(1, "no free adv_req_t\n");
7654  		ASC_STATS(scp->device->host, adv_build_noreq);
7655  		return ASC_BUSY;
7656  	}
7657  
7658  	reqp->req_addr = boardp->adv_reqp_addr + (srb_tag * sizeof(adv_req_t));
7659  
7660  	scsiqp = &reqp->scsi_req_q;
7661  
7662  	/*
7663  	 * Initialize the structure.
7664  	 */
7665  	scsiqp->cntl = scsiqp->scsi_cntl = scsiqp->done_status = 0;
7666  
7667  	/*
7668  	 * Set the srb_tag to the command tag.
7669  	 */
7670  	scsiqp->srb_tag = srb_tag;
7671  
7672  	/*
7673  	 * Set 'host_scribble' to point to the adv_req_t structure.
7674  	 */
7675  	reqp->cmndp = scp;
7676  	scp->host_scribble = (void *)reqp;
7677  
7678  	/*
7679  	 * Build the ADV_SCSI_REQ_Q request.
7680  	 */
7681  
7682  	/* Set CDB length and copy it to the request structure.  */
7683  	scsiqp->cdb_len = scp->cmd_len;
7684  	/* Copy first 12 CDB bytes to cdb[]. */
7685  	memcpy(scsiqp->cdb, scp->cmnd, scp->cmd_len < 12 ? scp->cmd_len : 12);
7686  	/* Copy last 4 CDB bytes, if present, to cdb16[]. */
7687  	if (scp->cmd_len > 12) {
7688  		int cdb16_len = scp->cmd_len - 12;
7689  
7690  		memcpy(scsiqp->cdb16, &scp->cmnd[12], cdb16_len);
7691  	}
7692  
7693  	scsiqp->target_id = scp->device->id;
7694  	scsiqp->target_lun = scp->device->lun;
7695  
7696  	sense_addr = dma_map_single(boardp->dev, scp->sense_buffer,
7697  				    SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
7698  	if (dma_mapping_error(boardp->dev, sense_addr)) {
7699  		ASC_DBG(1, "failed to map sense buffer\n");
7700  		ASC_STATS(scp->device->host, adv_build_noreq);
7701  		return ASC_BUSY;
7702  	}
7703  	scsiqp->sense_addr = cpu_to_le32(sense_addr);
7704  	scsiqp->sense_len = SCSI_SENSE_BUFFERSIZE;
7705  
7706  	/* Build ADV_SCSI_REQ_Q */
7707  
7708  	use_sg = scsi_dma_map(scp);
7709  	if (use_sg < 0) {
7710  		ASC_DBG(1, "failed to map SG list\n");
7711  		ASC_STATS(scp->device->host, adv_build_noreq);
7712  		return ASC_BUSY;
7713  	} else if (use_sg == 0) {
7714  		/* Zero-length transfer */
7715  		reqp->sgblkp = NULL;
7716  		scsiqp->data_cnt = 0;
7717  
7718  		scsiqp->data_addr = 0;
7719  		scsiqp->sg_list_ptr = NULL;
7720  		scsiqp->sg_real_addr = 0;
7721  	} else {
7722  		if (use_sg > ADV_MAX_SG_LIST) {
7723  			scmd_printk(KERN_ERR, scp, "use_sg %d > "
7724  				   "ADV_MAX_SG_LIST %d\n", use_sg,
7725  				   scp->device->host->sg_tablesize);
7726  			scsi_dma_unmap(scp);
7727  			set_host_byte(scp, DID_ERROR);
7728  			reqp->cmndp = NULL;
7729  			scp->host_scribble = NULL;
7730  
7731  			return ASC_ERROR;
7732  		}
7733  
7734  		scsiqp->data_cnt = cpu_to_le32(scsi_bufflen(scp));
7735  
7736  		ret = adv_get_sglist(boardp, reqp, scsiqp, scp, use_sg);
7737  		if (ret != ADV_SUCCESS) {
7738  			scsi_dma_unmap(scp);
7739  			set_host_byte(scp, DID_ERROR);
7740  			reqp->cmndp = NULL;
7741  			scp->host_scribble = NULL;
7742  
7743  			return ret;
7744  		}
7745  
7746  		ASC_STATS_ADD(scp->device->host, xfer_elem, use_sg);
7747  	}
7748  
7749  	ASC_STATS(scp->device->host, xfer_cnt);
7750  
7751  	ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
7752  	ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
7753  
7754  	*adv_reqpp = reqp;
7755  
7756  	return ASC_NOERROR;
7757  }
7758  
AscSgListToQueue(int sg_list)7759  static int AscSgListToQueue(int sg_list)
7760  {
7761  	int n_sg_list_qs;
7762  
7763  	n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q);
7764  	if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0)
7765  		n_sg_list_qs++;
7766  	return n_sg_list_qs + 1;
7767  }
7768  
7769  static uint
AscGetNumOfFreeQueue(ASC_DVC_VAR * asc_dvc,uchar target_ix,uchar n_qs)7770  AscGetNumOfFreeQueue(ASC_DVC_VAR *asc_dvc, uchar target_ix, uchar n_qs)
7771  {
7772  	uint cur_used_qs;
7773  	uint cur_free_qs;
7774  	ASC_SCSI_BIT_ID_TYPE target_id;
7775  	uchar tid_no;
7776  
7777  	target_id = ASC_TIX_TO_TARGET_ID(target_ix);
7778  	tid_no = ASC_TIX_TO_TID(target_ix);
7779  	if ((asc_dvc->unit_not_ready & target_id) ||
7780  	    (asc_dvc->queue_full_or_busy & target_id)) {
7781  		return 0;
7782  	}
7783  	if (n_qs == 1) {
7784  		cur_used_qs = (uint) asc_dvc->cur_total_qng +
7785  		    (uint) asc_dvc->last_q_shortage + (uint) ASC_MIN_FREE_Q;
7786  	} else {
7787  		cur_used_qs = (uint) asc_dvc->cur_total_qng +
7788  		    (uint) ASC_MIN_FREE_Q;
7789  	}
7790  	if ((uint) (cur_used_qs + n_qs) <= (uint) asc_dvc->max_total_qng) {
7791  		cur_free_qs = (uint) asc_dvc->max_total_qng - cur_used_qs;
7792  		if (asc_dvc->cur_dvc_qng[tid_no] >=
7793  		    asc_dvc->max_dvc_qng[tid_no]) {
7794  			return 0;
7795  		}
7796  		return cur_free_qs;
7797  	}
7798  	if (n_qs > 1) {
7799  		if ((n_qs > asc_dvc->last_q_shortage)
7800  		    && (n_qs <= (asc_dvc->max_total_qng - ASC_MIN_FREE_Q))) {
7801  			asc_dvc->last_q_shortage = n_qs;
7802  		}
7803  	}
7804  	return 0;
7805  }
7806  
AscAllocFreeQueue(PortAddr iop_base,uchar free_q_head)7807  static uchar AscAllocFreeQueue(PortAddr iop_base, uchar free_q_head)
7808  {
7809  	ushort q_addr;
7810  	uchar next_qp;
7811  	uchar q_status;
7812  
7813  	q_addr = ASC_QNO_TO_QADDR(free_q_head);
7814  	q_status = (uchar)AscReadLramByte(iop_base,
7815  					  (ushort)(q_addr +
7816  						   ASC_SCSIQ_B_STATUS));
7817  	next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FWD));
7818  	if (((q_status & QS_READY) == 0) && (next_qp != ASC_QLINK_END))
7819  		return next_qp;
7820  	return ASC_QLINK_END;
7821  }
7822  
7823  static uchar
AscAllocMultipleFreeQueue(PortAddr iop_base,uchar free_q_head,uchar n_free_q)7824  AscAllocMultipleFreeQueue(PortAddr iop_base, uchar free_q_head, uchar n_free_q)
7825  {
7826  	uchar i;
7827  
7828  	for (i = 0; i < n_free_q; i++) {
7829  		free_q_head = AscAllocFreeQueue(iop_base, free_q_head);
7830  		if (free_q_head == ASC_QLINK_END)
7831  			break;
7832  	}
7833  	return free_q_head;
7834  }
7835  
7836  /*
7837   * void
7838   * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
7839   *
7840   * Calling/Exit State:
7841   *    none
7842   *
7843   * Description:
7844   *     Output an ASC_SCSI_Q structure to the chip
7845   */
7846  static void
DvcPutScsiQ(PortAddr iop_base,ushort s_addr,uchar * outbuf,int words)7847  DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
7848  {
7849  	int i;
7850  
7851  	ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf, 2 * words);
7852  	AscSetChipLramAddr(iop_base, s_addr);
7853  	for (i = 0; i < 2 * words; i += 2) {
7854  		if (i == 4 || i == 20) {
7855  			continue;
7856  		}
7857  		outpw(iop_base + IOP_RAM_DATA,
7858  		      ((ushort)outbuf[i + 1] << 8) | outbuf[i]);
7859  	}
7860  }
7861  
AscPutReadyQueue(ASC_DVC_VAR * asc_dvc,ASC_SCSI_Q * scsiq,uchar q_no)7862  static int AscPutReadyQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
7863  {
7864  	ushort q_addr;
7865  	uchar tid_no;
7866  	uchar sdtr_data;
7867  	uchar syn_period_ix;
7868  	uchar syn_offset;
7869  	PortAddr iop_base;
7870  
7871  	iop_base = asc_dvc->iop_base;
7872  	if (((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) &&
7873  	    ((asc_dvc->sdtr_done & scsiq->q1.target_id) == 0)) {
7874  		tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix);
7875  		sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
7876  		syn_period_ix =
7877  		    (sdtr_data >> 4) & (asc_dvc->max_sdtr_index - 1);
7878  		syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET;
7879  		AscMsgOutSDTR(asc_dvc,
7880  			      asc_dvc->sdtr_period_tbl[syn_period_ix],
7881  			      syn_offset);
7882  		scsiq->q1.cntl |= QC_MSG_OUT;
7883  	}
7884  	q_addr = ASC_QNO_TO_QADDR(q_no);
7885  	if ((scsiq->q1.target_id & asc_dvc->use_tagged_qng) == 0) {
7886  		scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG;
7887  	}
7888  	scsiq->q1.status = QS_FREE;
7889  	AscMemWordCopyPtrToLram(iop_base,
7890  				q_addr + ASC_SCSIQ_CDB_BEG,
7891  				(uchar *)scsiq->cdbptr, scsiq->q2.cdb_len >> 1);
7892  
7893  	DvcPutScsiQ(iop_base,
7894  		    q_addr + ASC_SCSIQ_CPY_BEG,
7895  		    (uchar *)&scsiq->q1.cntl,
7896  		    ((sizeof(ASC_SCSIQ_1) + sizeof(ASC_SCSIQ_2)) / 2) - 1);
7897  	AscWriteLramWord(iop_base,
7898  			 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS),
7899  			 (ushort)(((ushort)scsiq->q1.
7900  				   q_no << 8) | (ushort)QS_READY));
7901  	return 1;
7902  }
7903  
7904  static int
AscPutReadySgListQueue(ASC_DVC_VAR * asc_dvc,ASC_SCSI_Q * scsiq,uchar q_no)7905  AscPutReadySgListQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
7906  {
7907  	int sta;
7908  	int i;
7909  	ASC_SG_HEAD *sg_head;
7910  	ASC_SG_LIST_Q scsi_sg_q;
7911  	__le32 saved_data_addr;
7912  	__le32 saved_data_cnt;
7913  	PortAddr iop_base;
7914  	ushort sg_list_dwords;
7915  	ushort sg_index;
7916  	ushort sg_entry_cnt;
7917  	ushort q_addr;
7918  	uchar next_qp;
7919  
7920  	iop_base = asc_dvc->iop_base;
7921  	sg_head = scsiq->sg_head;
7922  	saved_data_addr = scsiq->q1.data_addr;
7923  	saved_data_cnt = scsiq->q1.data_cnt;
7924  	scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr);
7925  	scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes);
7926  	/*
7927  	 * Set sg_entry_cnt to be the number of SG elements that
7928  	 * will fit in the allocated SG queues. It is minus 1, because
7929  	 * the first SG element is handled above.
7930  	 */
7931  	sg_entry_cnt = sg_head->entry_cnt - 1;
7932  
7933  	if (sg_entry_cnt != 0) {
7934  		scsiq->q1.cntl |= QC_SG_HEAD;
7935  		q_addr = ASC_QNO_TO_QADDR(q_no);
7936  		sg_index = 1;
7937  		scsiq->q1.sg_queue_cnt = sg_head->queue_cnt;
7938  		scsi_sg_q.sg_head_qp = q_no;
7939  		scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
7940  		for (i = 0; i < sg_head->queue_cnt; i++) {
7941  			scsi_sg_q.seq_no = i + 1;
7942  			if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
7943  				sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
7944  				sg_entry_cnt -= ASC_SG_LIST_PER_Q;
7945  				if (i == 0) {
7946  					scsi_sg_q.sg_list_cnt =
7947  					    ASC_SG_LIST_PER_Q;
7948  					scsi_sg_q.sg_cur_list_cnt =
7949  					    ASC_SG_LIST_PER_Q;
7950  				} else {
7951  					scsi_sg_q.sg_list_cnt =
7952  					    ASC_SG_LIST_PER_Q - 1;
7953  					scsi_sg_q.sg_cur_list_cnt =
7954  					    ASC_SG_LIST_PER_Q - 1;
7955  				}
7956  			} else {
7957  				scsi_sg_q.cntl |= QCSG_SG_XFER_END;
7958  				sg_list_dwords = sg_entry_cnt << 1;
7959  				if (i == 0) {
7960  					scsi_sg_q.sg_list_cnt = sg_entry_cnt;
7961  					scsi_sg_q.sg_cur_list_cnt =
7962  					    sg_entry_cnt;
7963  				} else {
7964  					scsi_sg_q.sg_list_cnt =
7965  					    sg_entry_cnt - 1;
7966  					scsi_sg_q.sg_cur_list_cnt =
7967  					    sg_entry_cnt - 1;
7968  				}
7969  				sg_entry_cnt = 0;
7970  			}
7971  			next_qp = AscReadLramByte(iop_base,
7972  						  (ushort)(q_addr +
7973  							   ASC_SCSIQ_B_FWD));
7974  			scsi_sg_q.q_no = next_qp;
7975  			q_addr = ASC_QNO_TO_QADDR(next_qp);
7976  			AscMemWordCopyPtrToLram(iop_base,
7977  						q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
7978  						(uchar *)&scsi_sg_q,
7979  						sizeof(ASC_SG_LIST_Q) >> 1);
7980  			AscMemDWordCopyPtrToLram(iop_base,
7981  						 q_addr + ASC_SGQ_LIST_BEG,
7982  						 (uchar *)&sg_head->
7983  						 sg_list[sg_index],
7984  						 sg_list_dwords);
7985  			sg_index += ASC_SG_LIST_PER_Q;
7986  			scsiq->next_sg_index = sg_index;
7987  		}
7988  	} else {
7989  		scsiq->q1.cntl &= ~QC_SG_HEAD;
7990  	}
7991  	sta = AscPutReadyQueue(asc_dvc, scsiq, q_no);
7992  	scsiq->q1.data_addr = saved_data_addr;
7993  	scsiq->q1.data_cnt = saved_data_cnt;
7994  	return (sta);
7995  }
7996  
7997  static int
AscSendScsiQueue(ASC_DVC_VAR * asc_dvc,ASC_SCSI_Q * scsiq,uchar n_q_required)7998  AscSendScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar n_q_required)
7999  {
8000  	PortAddr iop_base;
8001  	uchar free_q_head;
8002  	uchar next_qp;
8003  	uchar tid_no;
8004  	uchar target_ix;
8005  	int sta;
8006  
8007  	iop_base = asc_dvc->iop_base;
8008  	target_ix = scsiq->q2.target_ix;
8009  	tid_no = ASC_TIX_TO_TID(target_ix);
8010  	sta = 0;
8011  	free_q_head = (uchar)AscGetVarFreeQHead(iop_base);
8012  	if (n_q_required > 1) {
8013  		next_qp = AscAllocMultipleFreeQueue(iop_base, free_q_head,
8014  						    (uchar)n_q_required);
8015  		if (next_qp != ASC_QLINK_END) {
8016  			asc_dvc->last_q_shortage = 0;
8017  			scsiq->sg_head->queue_cnt = n_q_required - 1;
8018  			scsiq->q1.q_no = free_q_head;
8019  			sta = AscPutReadySgListQueue(asc_dvc, scsiq,
8020  						     free_q_head);
8021  		}
8022  	} else if (n_q_required == 1) {
8023  		next_qp = AscAllocFreeQueue(iop_base, free_q_head);
8024  		if (next_qp != ASC_QLINK_END) {
8025  			scsiq->q1.q_no = free_q_head;
8026  			sta = AscPutReadyQueue(asc_dvc, scsiq, free_q_head);
8027  		}
8028  	}
8029  	if (sta == 1) {
8030  		AscPutVarFreeQHead(iop_base, next_qp);
8031  		asc_dvc->cur_total_qng += n_q_required;
8032  		asc_dvc->cur_dvc_qng[tid_no]++;
8033  	}
8034  	return sta;
8035  }
8036  
8037  #define ASC_SYN_OFFSET_ONE_DISABLE_LIST  16
8038  static uchar _syn_offset_one_disable_cmd[ASC_SYN_OFFSET_ONE_DISABLE_LIST] = {
8039  	INQUIRY,
8040  	REQUEST_SENSE,
8041  	READ_CAPACITY,
8042  	READ_TOC,
8043  	MODE_SELECT,
8044  	MODE_SENSE,
8045  	MODE_SELECT_10,
8046  	MODE_SENSE_10,
8047  	0xFF,
8048  	0xFF,
8049  	0xFF,
8050  	0xFF,
8051  	0xFF,
8052  	0xFF,
8053  	0xFF,
8054  	0xFF
8055  };
8056  
AscExeScsiQueue(ASC_DVC_VAR * asc_dvc,ASC_SCSI_Q * scsiq)8057  static int AscExeScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq)
8058  {
8059  	PortAddr iop_base;
8060  	int sta;
8061  	int n_q_required;
8062  	bool disable_syn_offset_one_fix;
8063  	int i;
8064  	u32 addr;
8065  	ushort sg_entry_cnt = 0;
8066  	ushort sg_entry_cnt_minus_one = 0;
8067  	uchar target_ix;
8068  	uchar tid_no;
8069  	uchar sdtr_data;
8070  	uchar extra_bytes;
8071  	uchar scsi_cmd;
8072  	uchar disable_cmd;
8073  	ASC_SG_HEAD *sg_head;
8074  	unsigned long data_cnt;
8075  
8076  	iop_base = asc_dvc->iop_base;
8077  	sg_head = scsiq->sg_head;
8078  	if (asc_dvc->err_code != 0)
8079  		return ASC_ERROR;
8080  	scsiq->q1.q_no = 0;
8081  	if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0) {
8082  		scsiq->q1.extra_bytes = 0;
8083  	}
8084  	sta = 0;
8085  	target_ix = scsiq->q2.target_ix;
8086  	tid_no = ASC_TIX_TO_TID(target_ix);
8087  	n_q_required = 1;
8088  	if (scsiq->cdbptr[0] == REQUEST_SENSE) {
8089  		if ((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) {
8090  			asc_dvc->sdtr_done &= ~scsiq->q1.target_id;
8091  			sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
8092  			AscMsgOutSDTR(asc_dvc,
8093  				      asc_dvc->
8094  				      sdtr_period_tbl[(sdtr_data >> 4) &
8095  						      (uchar)(asc_dvc->
8096  							      max_sdtr_index -
8097  							      1)],
8098  				      (uchar)(sdtr_data & (uchar)
8099  					      ASC_SYN_MAX_OFFSET));
8100  			scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT);
8101  		}
8102  	}
8103  	if (asc_dvc->in_critical_cnt != 0) {
8104  		AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CRITICAL_RE_ENTRY);
8105  		return ASC_ERROR;
8106  	}
8107  	asc_dvc->in_critical_cnt++;
8108  	if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
8109  		if ((sg_entry_cnt = sg_head->entry_cnt) == 0) {
8110  			asc_dvc->in_critical_cnt--;
8111  			return ASC_ERROR;
8112  		}
8113  		if (sg_entry_cnt > ASC_MAX_SG_LIST) {
8114  			asc_dvc->in_critical_cnt--;
8115  			return ASC_ERROR;
8116  		}
8117  		if (sg_entry_cnt == 1) {
8118  			scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr);
8119  			scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes);
8120  			scsiq->q1.cntl &= ~(QC_SG_HEAD | QC_SG_SWAP_QUEUE);
8121  		}
8122  		sg_entry_cnt_minus_one = sg_entry_cnt - 1;
8123  	}
8124  	scsi_cmd = scsiq->cdbptr[0];
8125  	disable_syn_offset_one_fix = false;
8126  	if ((asc_dvc->pci_fix_asyn_xfer & scsiq->q1.target_id) &&
8127  	    !(asc_dvc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) {
8128  		if (scsiq->q1.cntl & QC_SG_HEAD) {
8129  			data_cnt = 0;
8130  			for (i = 0; i < sg_entry_cnt; i++) {
8131  				data_cnt += le32_to_cpu(sg_head->sg_list[i].
8132  							bytes);
8133  			}
8134  		} else {
8135  			data_cnt = le32_to_cpu(scsiq->q1.data_cnt);
8136  		}
8137  		if (data_cnt != 0UL) {
8138  			if (data_cnt < 512UL) {
8139  				disable_syn_offset_one_fix = true;
8140  			} else {
8141  				for (i = 0; i < ASC_SYN_OFFSET_ONE_DISABLE_LIST;
8142  				     i++) {
8143  					disable_cmd =
8144  					    _syn_offset_one_disable_cmd[i];
8145  					if (disable_cmd == 0xFF) {
8146  						break;
8147  					}
8148  					if (scsi_cmd == disable_cmd) {
8149  						disable_syn_offset_one_fix =
8150  						    true;
8151  						break;
8152  					}
8153  				}
8154  			}
8155  		}
8156  	}
8157  	if (disable_syn_offset_one_fix) {
8158  		scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG;
8159  		scsiq->q2.tag_code |= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX |
8160  				       ASC_TAG_FLAG_DISABLE_DISCONNECT);
8161  	} else {
8162  		scsiq->q2.tag_code &= 0x27;
8163  	}
8164  	if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
8165  		if (asc_dvc->bug_fix_cntl) {
8166  			if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
8167  				if ((scsi_cmd == READ_6) ||
8168  				    (scsi_cmd == READ_10)) {
8169  					addr = le32_to_cpu(sg_head->
8170  								   sg_list
8171  								   [sg_entry_cnt_minus_one].
8172  								   addr) +
8173  						le32_to_cpu(sg_head->
8174  								  sg_list
8175  								  [sg_entry_cnt_minus_one].
8176  								  bytes);
8177  					extra_bytes =
8178  					    (uchar)((ushort)addr & 0x0003);
8179  					if ((extra_bytes != 0)
8180  					    &&
8181  					    ((scsiq->q2.
8182  					      tag_code &
8183  					      ASC_TAG_FLAG_EXTRA_BYTES)
8184  					     == 0)) {
8185  						scsiq->q2.tag_code |=
8186  						    ASC_TAG_FLAG_EXTRA_BYTES;
8187  						scsiq->q1.extra_bytes =
8188  						    extra_bytes;
8189  						data_cnt =
8190  						    le32_to_cpu(sg_head->
8191  								sg_list
8192  								[sg_entry_cnt_minus_one].
8193  								bytes);
8194  						data_cnt -= extra_bytes;
8195  						sg_head->
8196  						    sg_list
8197  						    [sg_entry_cnt_minus_one].
8198  						    bytes =
8199  						    cpu_to_le32(data_cnt);
8200  					}
8201  				}
8202  			}
8203  		}
8204  		sg_head->entry_to_copy = sg_head->entry_cnt;
8205  		n_q_required = AscSgListToQueue(sg_entry_cnt);
8206  		if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, n_q_required) >=
8207  		     (uint) n_q_required)
8208  		    || ((scsiq->q1.cntl & QC_URGENT) != 0)) {
8209  			if ((sta =
8210  			     AscSendScsiQueue(asc_dvc, scsiq,
8211  					      n_q_required)) == 1) {
8212  				asc_dvc->in_critical_cnt--;
8213  				return (sta);
8214  			}
8215  		}
8216  	} else {
8217  		if (asc_dvc->bug_fix_cntl) {
8218  			if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
8219  				if ((scsi_cmd == READ_6) ||
8220  				    (scsi_cmd == READ_10)) {
8221  					addr =
8222  					    le32_to_cpu(scsiq->q1.data_addr) +
8223  					    le32_to_cpu(scsiq->q1.data_cnt);
8224  					extra_bytes =
8225  					    (uchar)((ushort)addr & 0x0003);
8226  					if ((extra_bytes != 0)
8227  					    &&
8228  					    ((scsiq->q2.
8229  					      tag_code &
8230  					      ASC_TAG_FLAG_EXTRA_BYTES)
8231  					     == 0)) {
8232  						data_cnt =
8233  						    le32_to_cpu(scsiq->q1.
8234  								data_cnt);
8235  						if (((ushort)data_cnt & 0x01FF)
8236  						    == 0) {
8237  							scsiq->q2.tag_code |=
8238  							    ASC_TAG_FLAG_EXTRA_BYTES;
8239  							data_cnt -= extra_bytes;
8240  							scsiq->q1.data_cnt =
8241  							    cpu_to_le32
8242  							    (data_cnt);
8243  							scsiq->q1.extra_bytes =
8244  							    extra_bytes;
8245  						}
8246  					}
8247  				}
8248  			}
8249  		}
8250  		n_q_required = 1;
8251  		if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, 1) >= 1) ||
8252  		    ((scsiq->q1.cntl & QC_URGENT) != 0)) {
8253  			if ((sta = AscSendScsiQueue(asc_dvc, scsiq,
8254  						    n_q_required)) == 1) {
8255  				asc_dvc->in_critical_cnt--;
8256  				return (sta);
8257  			}
8258  		}
8259  	}
8260  	asc_dvc->in_critical_cnt--;
8261  	return (sta);
8262  }
8263  
8264  /*
8265   * AdvExeScsiQueue() - Send a request to the RISC microcode program.
8266   *
8267   *   Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q,
8268   *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
8269   *   RISC to notify it a new command is ready to be executed.
8270   *
8271   * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
8272   * set to SCSI_MAX_RETRY.
8273   *
8274   * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the microcode
8275   * for DMA addresses or math operations are byte swapped to little-endian
8276   * order.
8277   *
8278   * Return:
8279   *      ADV_SUCCESS(1) - The request was successfully queued.
8280   *      ADV_BUSY(0) -    Resource unavailable; Retry again after pending
8281   *                       request completes.
8282   *      ADV_ERROR(-1) -  Invalid ADV_SCSI_REQ_Q request structure
8283   *                       host IC error.
8284   */
AdvExeScsiQueue(ADV_DVC_VAR * asc_dvc,adv_req_t * reqp)8285  static int AdvExeScsiQueue(ADV_DVC_VAR *asc_dvc, adv_req_t *reqp)
8286  {
8287  	AdvPortAddr iop_base;
8288  	ADV_CARR_T *new_carrp;
8289  	ADV_SCSI_REQ_Q *scsiq = &reqp->scsi_req_q;
8290  
8291  	/*
8292  	 * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID.
8293  	 */
8294  	if (scsiq->target_id > ADV_MAX_TID) {
8295  		scsiq->host_status = QHSTA_M_INVALID_DEVICE;
8296  		scsiq->done_status = QD_WITH_ERROR;
8297  		return ADV_ERROR;
8298  	}
8299  
8300  	iop_base = asc_dvc->iop_base;
8301  
8302  	/*
8303  	 * Allocate a carrier ensuring at least one carrier always
8304  	 * remains on the freelist and initialize fields.
8305  	 */
8306  	new_carrp = adv_get_next_carrier(asc_dvc);
8307  	if (!new_carrp) {
8308  		ASC_DBG(1, "No free carriers\n");
8309  		return ADV_BUSY;
8310  	}
8311  
8312  	asc_dvc->carr_pending_cnt++;
8313  
8314  	/* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */
8315  	scsiq->scsiq_ptr = cpu_to_le32(scsiq->srb_tag);
8316  	scsiq->scsiq_rptr = cpu_to_le32(reqp->req_addr);
8317  
8318  	scsiq->carr_va = asc_dvc->icq_sp->carr_va;
8319  	scsiq->carr_pa = asc_dvc->icq_sp->carr_pa;
8320  
8321  	/*
8322  	 * Use the current stopper to send the ADV_SCSI_REQ_Q command to
8323  	 * the microcode. The newly allocated stopper will become the new
8324  	 * stopper.
8325  	 */
8326  	asc_dvc->icq_sp->areq_vpa = scsiq->scsiq_rptr;
8327  
8328  	/*
8329  	 * Set the 'next_vpa' pointer for the old stopper to be the
8330  	 * physical address of the new stopper. The RISC can only
8331  	 * follow physical addresses.
8332  	 */
8333  	asc_dvc->icq_sp->next_vpa = new_carrp->carr_pa;
8334  
8335  	/*
8336  	 * Set the host adapter stopper pointer to point to the new carrier.
8337  	 */
8338  	asc_dvc->icq_sp = new_carrp;
8339  
8340  	if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
8341  	    asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
8342  		/*
8343  		 * Tickle the RISC to tell it to read its Command Queue Head pointer.
8344  		 */
8345  		AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_A);
8346  		if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
8347  			/*
8348  			 * Clear the tickle value. In the ASC-3550 the RISC flag
8349  			 * command 'clr_tickle_a' does not work unless the host
8350  			 * value is cleared.
8351  			 */
8352  			AdvWriteByteRegister(iop_base, IOPB_TICKLE,
8353  					     ADV_TICKLE_NOP);
8354  		}
8355  	} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
8356  		/*
8357  		 * Notify the RISC a carrier is ready by writing the physical
8358  		 * address of the new carrier stopper to the COMMA register.
8359  		 */
8360  		AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
8361  				      le32_to_cpu(new_carrp->carr_pa));
8362  	}
8363  
8364  	return ADV_SUCCESS;
8365  }
8366  
8367  /*
8368   * Execute a single 'struct scsi_cmnd'.
8369   */
asc_execute_scsi_cmnd(struct scsi_cmnd * scp)8370  static int asc_execute_scsi_cmnd(struct scsi_cmnd *scp)
8371  {
8372  	int ret, err_code;
8373  	struct asc_board *boardp = shost_priv(scp->device->host);
8374  
8375  	ASC_DBG(1, "scp 0x%p\n", scp);
8376  
8377  	if (ASC_NARROW_BOARD(boardp)) {
8378  		ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
8379  		struct asc_scsi_q asc_scsi_q;
8380  
8381  		ret = asc_build_req(boardp, scp, &asc_scsi_q);
8382  		if (ret != ASC_NOERROR) {
8383  			ASC_STATS(scp->device->host, build_error);
8384  			return ret;
8385  		}
8386  
8387  		ret = AscExeScsiQueue(asc_dvc, &asc_scsi_q);
8388  		kfree(asc_scsi_q.sg_head);
8389  		err_code = asc_dvc->err_code;
8390  	} else {
8391  		ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
8392  		adv_req_t *adv_reqp;
8393  
8394  		switch (adv_build_req(boardp, scp, &adv_reqp)) {
8395  		case ASC_NOERROR:
8396  			ASC_DBG(3, "adv_build_req ASC_NOERROR\n");
8397  			break;
8398  		case ASC_BUSY:
8399  			ASC_DBG(1, "adv_build_req ASC_BUSY\n");
8400  			/*
8401  			 * The asc_stats fields 'adv_build_noreq' and
8402  			 * 'adv_build_nosg' count wide board busy conditions.
8403  			 * They are updated in adv_build_req and
8404  			 * adv_get_sglist, respectively.
8405  			 */
8406  			return ASC_BUSY;
8407  		case ASC_ERROR:
8408  		default:
8409  			ASC_DBG(1, "adv_build_req ASC_ERROR\n");
8410  			ASC_STATS(scp->device->host, build_error);
8411  			return ASC_ERROR;
8412  		}
8413  
8414  		ret = AdvExeScsiQueue(adv_dvc, adv_reqp);
8415  		err_code = adv_dvc->err_code;
8416  	}
8417  
8418  	switch (ret) {
8419  	case ASC_NOERROR:
8420  		ASC_STATS(scp->device->host, exe_noerror);
8421  		/*
8422  		 * Increment monotonically increasing per device
8423  		 * successful request counter. Wrapping doesn't matter.
8424  		 */
8425  		boardp->reqcnt[scp->device->id]++;
8426  		ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n");
8427  		break;
8428  	case ASC_BUSY:
8429  		ASC_DBG(1, "ExeScsiQueue() ASC_BUSY\n");
8430  		ASC_STATS(scp->device->host, exe_busy);
8431  		break;
8432  	case ASC_ERROR:
8433  		scmd_printk(KERN_ERR, scp, "ExeScsiQueue() ASC_ERROR, "
8434  			"err_code 0x%x\n", err_code);
8435  		ASC_STATS(scp->device->host, exe_error);
8436  		set_host_byte(scp, DID_ERROR);
8437  		break;
8438  	default:
8439  		scmd_printk(KERN_ERR, scp, "ExeScsiQueue() unknown, "
8440  			"err_code 0x%x\n", err_code);
8441  		ASC_STATS(scp->device->host, exe_unknown);
8442  		set_host_byte(scp, DID_ERROR);
8443  		break;
8444  	}
8445  
8446  	ASC_DBG(1, "end\n");
8447  	return ret;
8448  }
8449  
8450  /*
8451   * advansys_queuecommand() - interrupt-driven I/O entrypoint.
8452   *
8453   * This function always returns 0. Command return status is saved
8454   * in the 'scp' result field.
8455   */
8456  static int
advansys_queuecommand_lck(struct scsi_cmnd * scp,void (* done)(struct scsi_cmnd *))8457  advansys_queuecommand_lck(struct scsi_cmnd *scp, void (*done)(struct scsi_cmnd *))
8458  {
8459  	struct Scsi_Host *shost = scp->device->host;
8460  	int asc_res, result = 0;
8461  
8462  	ASC_STATS(shost, queuecommand);
8463  	scp->scsi_done = done;
8464  
8465  	asc_res = asc_execute_scsi_cmnd(scp);
8466  
8467  	switch (asc_res) {
8468  	case ASC_NOERROR:
8469  		break;
8470  	case ASC_BUSY:
8471  		result = SCSI_MLQUEUE_HOST_BUSY;
8472  		break;
8473  	case ASC_ERROR:
8474  	default:
8475  		asc_scsi_done(scp);
8476  		break;
8477  	}
8478  
8479  	return result;
8480  }
8481  
DEF_SCSI_QCMD(advansys_queuecommand)8482  static DEF_SCSI_QCMD(advansys_queuecommand)
8483  
8484  static ushort AscGetEisaChipCfg(PortAddr iop_base)
8485  {
8486  	PortAddr eisa_cfg_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
8487  	    (PortAddr) (ASC_EISA_CFG_IOP_MASK);
8488  	return inpw(eisa_cfg_iop);
8489  }
8490  
8491  /*
8492   * Return the BIOS address of the adapter at the specified
8493   * I/O port and with the specified bus type.
8494   */
AscGetChipBiosAddress(PortAddr iop_base,unsigned short bus_type)8495  static unsigned short AscGetChipBiosAddress(PortAddr iop_base,
8496  					    unsigned short bus_type)
8497  {
8498  	unsigned short cfg_lsw;
8499  	unsigned short bios_addr;
8500  
8501  	/*
8502  	 * The PCI BIOS is re-located by the motherboard BIOS. Because
8503  	 * of this the driver can not determine where a PCI BIOS is
8504  	 * loaded and executes.
8505  	 */
8506  	if (bus_type & ASC_IS_PCI)
8507  		return 0;
8508  
8509  	if ((bus_type & ASC_IS_EISA) != 0) {
8510  		cfg_lsw = AscGetEisaChipCfg(iop_base);
8511  		cfg_lsw &= 0x000F;
8512  		bios_addr = ASC_BIOS_MIN_ADDR + cfg_lsw * ASC_BIOS_BANK_SIZE;
8513  		return bios_addr;
8514  	}
8515  
8516  	cfg_lsw = AscGetChipCfgLsw(iop_base);
8517  	bios_addr = ASC_BIOS_MIN_ADDR + (cfg_lsw >> 12) * ASC_BIOS_BANK_SIZE;
8518  	return bios_addr;
8519  }
8520  
AscSetChipScsiID(PortAddr iop_base,uchar new_host_id)8521  static uchar AscSetChipScsiID(PortAddr iop_base, uchar new_host_id)
8522  {
8523  	ushort cfg_lsw;
8524  
8525  	if (AscGetChipScsiID(iop_base) == new_host_id) {
8526  		return (new_host_id);
8527  	}
8528  	cfg_lsw = AscGetChipCfgLsw(iop_base);
8529  	cfg_lsw &= 0xF8FF;
8530  	cfg_lsw |= (ushort)((new_host_id & ASC_MAX_TID) << 8);
8531  	AscSetChipCfgLsw(iop_base, cfg_lsw);
8532  	return (AscGetChipScsiID(iop_base));
8533  }
8534  
AscGetChipScsiCtrl(PortAddr iop_base)8535  static unsigned char AscGetChipScsiCtrl(PortAddr iop_base)
8536  {
8537  	unsigned char sc;
8538  
8539  	AscSetBank(iop_base, 1);
8540  	sc = inp(iop_base + IOP_REG_SC);
8541  	AscSetBank(iop_base, 0);
8542  	return sc;
8543  }
8544  
AscGetChipVersion(PortAddr iop_base,unsigned short bus_type)8545  static unsigned char AscGetChipVersion(PortAddr iop_base,
8546  				       unsigned short bus_type)
8547  {
8548  	if (bus_type & ASC_IS_EISA) {
8549  		PortAddr eisa_iop;
8550  		unsigned char revision;
8551  		eisa_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
8552  		    (PortAddr) ASC_EISA_REV_IOP_MASK;
8553  		revision = inp(eisa_iop);
8554  		return ASC_CHIP_MIN_VER_EISA - 1 + revision;
8555  	}
8556  	return AscGetChipVerNo(iop_base);
8557  }
8558  
AscStopQueueExe(PortAddr iop_base)8559  static int AscStopQueueExe(PortAddr iop_base)
8560  {
8561  	int count = 0;
8562  
8563  	if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) == 0) {
8564  		AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
8565  				 ASC_STOP_REQ_RISC_STOP);
8566  		do {
8567  			if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) &
8568  			    ASC_STOP_ACK_RISC_STOP) {
8569  				return (1);
8570  			}
8571  			mdelay(100);
8572  		} while (count++ < 20);
8573  	}
8574  	return (0);
8575  }
8576  
AscGetMaxDmaCount(ushort bus_type)8577  static unsigned int AscGetMaxDmaCount(ushort bus_type)
8578  {
8579  	if (bus_type & (ASC_IS_EISA | ASC_IS_VL))
8580  		return ASC_MAX_VL_DMA_COUNT;
8581  	return ASC_MAX_PCI_DMA_COUNT;
8582  }
8583  
AscInitAscDvcVar(ASC_DVC_VAR * asc_dvc)8584  static void AscInitAscDvcVar(ASC_DVC_VAR *asc_dvc)
8585  {
8586  	int i;
8587  	PortAddr iop_base;
8588  	uchar chip_version;
8589  
8590  	iop_base = asc_dvc->iop_base;
8591  	asc_dvc->err_code = 0;
8592  	if ((asc_dvc->bus_type &
8593  	     (ASC_IS_PCI | ASC_IS_EISA | ASC_IS_VL)) == 0) {
8594  		asc_dvc->err_code |= ASC_IERR_NO_BUS_TYPE;
8595  	}
8596  	AscSetChipControl(iop_base, CC_HALT);
8597  	AscSetChipStatus(iop_base, 0);
8598  	asc_dvc->bug_fix_cntl = 0;
8599  	asc_dvc->pci_fix_asyn_xfer = 0;
8600  	asc_dvc->pci_fix_asyn_xfer_always = 0;
8601  	/* asc_dvc->init_state initialized in AscInitGetConfig(). */
8602  	asc_dvc->sdtr_done = 0;
8603  	asc_dvc->cur_total_qng = 0;
8604  	asc_dvc->is_in_int = false;
8605  	asc_dvc->in_critical_cnt = 0;
8606  	asc_dvc->last_q_shortage = 0;
8607  	asc_dvc->use_tagged_qng = 0;
8608  	asc_dvc->no_scam = 0;
8609  	asc_dvc->unit_not_ready = 0;
8610  	asc_dvc->queue_full_or_busy = 0;
8611  	asc_dvc->redo_scam = 0;
8612  	asc_dvc->res2 = 0;
8613  	asc_dvc->min_sdtr_index = 0;
8614  	asc_dvc->cfg->can_tagged_qng = 0;
8615  	asc_dvc->cfg->cmd_qng_enabled = 0;
8616  	asc_dvc->dvc_cntl = ASC_DEF_DVC_CNTL;
8617  	asc_dvc->init_sdtr = 0;
8618  	asc_dvc->max_total_qng = ASC_DEF_MAX_TOTAL_QNG;
8619  	asc_dvc->scsi_reset_wait = 3;
8620  	asc_dvc->start_motor = ASC_SCSI_WIDTH_BIT_SET;
8621  	asc_dvc->max_dma_count = AscGetMaxDmaCount(asc_dvc->bus_type);
8622  	asc_dvc->cfg->sdtr_enable = ASC_SCSI_WIDTH_BIT_SET;
8623  	asc_dvc->cfg->disc_enable = ASC_SCSI_WIDTH_BIT_SET;
8624  	asc_dvc->cfg->chip_scsi_id = ASC_DEF_CHIP_SCSI_ID;
8625  	chip_version = AscGetChipVersion(iop_base, asc_dvc->bus_type);
8626  	asc_dvc->cfg->chip_version = chip_version;
8627  	asc_dvc->sdtr_period_tbl = asc_syn_xfer_period;
8628  	asc_dvc->max_sdtr_index = 7;
8629  	if ((asc_dvc->bus_type & ASC_IS_PCI) &&
8630  	    (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) {
8631  		asc_dvc->bus_type = ASC_IS_PCI_ULTRA;
8632  		asc_dvc->sdtr_period_tbl = asc_syn_ultra_xfer_period;
8633  		asc_dvc->max_sdtr_index = 15;
8634  		if (chip_version == ASC_CHIP_VER_PCI_ULTRA_3150) {
8635  			AscSetExtraControl(iop_base,
8636  					   (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
8637  		} else if (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050) {
8638  			AscSetExtraControl(iop_base,
8639  					   (SEC_ACTIVE_NEGATE |
8640  					    SEC_ENABLE_FILTER));
8641  		}
8642  	}
8643  	if (asc_dvc->bus_type == ASC_IS_PCI) {
8644  		AscSetExtraControl(iop_base,
8645  				   (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
8646  	}
8647  
8648  	for (i = 0; i <= ASC_MAX_TID; i++) {
8649  		asc_dvc->cur_dvc_qng[i] = 0;
8650  		asc_dvc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG;
8651  		asc_dvc->scsiq_busy_head[i] = (ASC_SCSI_Q *)0L;
8652  		asc_dvc->scsiq_busy_tail[i] = (ASC_SCSI_Q *)0L;
8653  		asc_dvc->cfg->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG;
8654  	}
8655  }
8656  
AscWriteEEPCmdReg(PortAddr iop_base,uchar cmd_reg)8657  static int AscWriteEEPCmdReg(PortAddr iop_base, uchar cmd_reg)
8658  {
8659  	int retry;
8660  
8661  	for (retry = 0; retry < ASC_EEP_MAX_RETRY; retry++) {
8662  		unsigned char read_back;
8663  		AscSetChipEEPCmd(iop_base, cmd_reg);
8664  		mdelay(1);
8665  		read_back = AscGetChipEEPCmd(iop_base);
8666  		if (read_back == cmd_reg)
8667  			return 1;
8668  	}
8669  	return 0;
8670  }
8671  
AscWaitEEPRead(void)8672  static void AscWaitEEPRead(void)
8673  {
8674  	mdelay(1);
8675  }
8676  
AscReadEEPWord(PortAddr iop_base,uchar addr)8677  static ushort AscReadEEPWord(PortAddr iop_base, uchar addr)
8678  {
8679  	ushort read_wval;
8680  	uchar cmd_reg;
8681  
8682  	AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
8683  	AscWaitEEPRead();
8684  	cmd_reg = addr | ASC_EEP_CMD_READ;
8685  	AscWriteEEPCmdReg(iop_base, cmd_reg);
8686  	AscWaitEEPRead();
8687  	read_wval = AscGetChipEEPData(iop_base);
8688  	AscWaitEEPRead();
8689  	return read_wval;
8690  }
8691  
AscGetEEPConfig(PortAddr iop_base,ASCEEP_CONFIG * cfg_buf,ushort bus_type)8692  static ushort AscGetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
8693  			      ushort bus_type)
8694  {
8695  	ushort wval;
8696  	ushort sum;
8697  	ushort *wbuf;
8698  	int cfg_beg;
8699  	int cfg_end;
8700  	int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
8701  	int s_addr;
8702  
8703  	wbuf = (ushort *)cfg_buf;
8704  	sum = 0;
8705  	/* Read two config words; Byte-swapping done by AscReadEEPWord(). */
8706  	for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
8707  		*wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
8708  		sum += *wbuf;
8709  	}
8710  	if (bus_type & ASC_IS_VL) {
8711  		cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
8712  		cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
8713  	} else {
8714  		cfg_beg = ASC_EEP_DVC_CFG_BEG;
8715  		cfg_end = ASC_EEP_MAX_DVC_ADDR;
8716  	}
8717  	for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
8718  		wval = AscReadEEPWord(iop_base, (uchar)s_addr);
8719  		if (s_addr <= uchar_end_in_config) {
8720  			/*
8721  			 * Swap all char fields - must unswap bytes already swapped
8722  			 * by AscReadEEPWord().
8723  			 */
8724  			*wbuf = le16_to_cpu(wval);
8725  		} else {
8726  			/* Don't swap word field at the end - cntl field. */
8727  			*wbuf = wval;
8728  		}
8729  		sum += wval;	/* Checksum treats all EEPROM data as words. */
8730  	}
8731  	/*
8732  	 * Read the checksum word which will be compared against 'sum'
8733  	 * by the caller. Word field already swapped.
8734  	 */
8735  	*wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
8736  	return sum;
8737  }
8738  
AscTestExternalLram(ASC_DVC_VAR * asc_dvc)8739  static int AscTestExternalLram(ASC_DVC_VAR *asc_dvc)
8740  {
8741  	PortAddr iop_base;
8742  	ushort q_addr;
8743  	ushort saved_word;
8744  	int sta;
8745  
8746  	iop_base = asc_dvc->iop_base;
8747  	sta = 0;
8748  	q_addr = ASC_QNO_TO_QADDR(241);
8749  	saved_word = AscReadLramWord(iop_base, q_addr);
8750  	AscSetChipLramAddr(iop_base, q_addr);
8751  	AscSetChipLramData(iop_base, 0x55AA);
8752  	mdelay(10);
8753  	AscSetChipLramAddr(iop_base, q_addr);
8754  	if (AscGetChipLramData(iop_base) == 0x55AA) {
8755  		sta = 1;
8756  		AscWriteLramWord(iop_base, q_addr, saved_word);
8757  	}
8758  	return (sta);
8759  }
8760  
AscWaitEEPWrite(void)8761  static void AscWaitEEPWrite(void)
8762  {
8763  	mdelay(20);
8764  }
8765  
AscWriteEEPDataReg(PortAddr iop_base,ushort data_reg)8766  static int AscWriteEEPDataReg(PortAddr iop_base, ushort data_reg)
8767  {
8768  	ushort read_back;
8769  	int retry;
8770  
8771  	retry = 0;
8772  	while (true) {
8773  		AscSetChipEEPData(iop_base, data_reg);
8774  		mdelay(1);
8775  		read_back = AscGetChipEEPData(iop_base);
8776  		if (read_back == data_reg) {
8777  			return (1);
8778  		}
8779  		if (retry++ > ASC_EEP_MAX_RETRY) {
8780  			return (0);
8781  		}
8782  	}
8783  }
8784  
AscWriteEEPWord(PortAddr iop_base,uchar addr,ushort word_val)8785  static ushort AscWriteEEPWord(PortAddr iop_base, uchar addr, ushort word_val)
8786  {
8787  	ushort read_wval;
8788  
8789  	read_wval = AscReadEEPWord(iop_base, addr);
8790  	if (read_wval != word_val) {
8791  		AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_ABLE);
8792  		AscWaitEEPRead();
8793  		AscWriteEEPDataReg(iop_base, word_val);
8794  		AscWaitEEPRead();
8795  		AscWriteEEPCmdReg(iop_base,
8796  				  (uchar)((uchar)ASC_EEP_CMD_WRITE | addr));
8797  		AscWaitEEPWrite();
8798  		AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
8799  		AscWaitEEPRead();
8800  		return (AscReadEEPWord(iop_base, addr));
8801  	}
8802  	return (read_wval);
8803  }
8804  
AscSetEEPConfigOnce(PortAddr iop_base,ASCEEP_CONFIG * cfg_buf,ushort bus_type)8805  static int AscSetEEPConfigOnce(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
8806  			       ushort bus_type)
8807  {
8808  	int n_error;
8809  	ushort *wbuf;
8810  	ushort word;
8811  	ushort sum;
8812  	int s_addr;
8813  	int cfg_beg;
8814  	int cfg_end;
8815  	int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
8816  
8817  	wbuf = (ushort *)cfg_buf;
8818  	n_error = 0;
8819  	sum = 0;
8820  	/* Write two config words; AscWriteEEPWord() will swap bytes. */
8821  	for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
8822  		sum += *wbuf;
8823  		if (*wbuf != AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
8824  			n_error++;
8825  		}
8826  	}
8827  	if (bus_type & ASC_IS_VL) {
8828  		cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
8829  		cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
8830  	} else {
8831  		cfg_beg = ASC_EEP_DVC_CFG_BEG;
8832  		cfg_end = ASC_EEP_MAX_DVC_ADDR;
8833  	}
8834  	for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
8835  		if (s_addr <= uchar_end_in_config) {
8836  			/*
8837  			 * This is a char field. Swap char fields before they are
8838  			 * swapped again by AscWriteEEPWord().
8839  			 */
8840  			word = cpu_to_le16(*wbuf);
8841  			if (word !=
8842  			    AscWriteEEPWord(iop_base, (uchar)s_addr, word)) {
8843  				n_error++;
8844  			}
8845  		} else {
8846  			/* Don't swap word field at the end - cntl field. */
8847  			if (*wbuf !=
8848  			    AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
8849  				n_error++;
8850  			}
8851  		}
8852  		sum += *wbuf;	/* Checksum calculated from word values. */
8853  	}
8854  	/* Write checksum word. It will be swapped by AscWriteEEPWord(). */
8855  	*wbuf = sum;
8856  	if (sum != AscWriteEEPWord(iop_base, (uchar)s_addr, sum)) {
8857  		n_error++;
8858  	}
8859  
8860  	/* Read EEPROM back again. */
8861  	wbuf = (ushort *)cfg_buf;
8862  	/*
8863  	 * Read two config words; Byte-swapping done by AscReadEEPWord().
8864  	 */
8865  	for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
8866  		if (*wbuf != AscReadEEPWord(iop_base, (uchar)s_addr)) {
8867  			n_error++;
8868  		}
8869  	}
8870  	if (bus_type & ASC_IS_VL) {
8871  		cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
8872  		cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
8873  	} else {
8874  		cfg_beg = ASC_EEP_DVC_CFG_BEG;
8875  		cfg_end = ASC_EEP_MAX_DVC_ADDR;
8876  	}
8877  	for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
8878  		if (s_addr <= uchar_end_in_config) {
8879  			/*
8880  			 * Swap all char fields. Must unswap bytes already swapped
8881  			 * by AscReadEEPWord().
8882  			 */
8883  			word =
8884  			    le16_to_cpu(AscReadEEPWord
8885  					(iop_base, (uchar)s_addr));
8886  		} else {
8887  			/* Don't swap word field at the end - cntl field. */
8888  			word = AscReadEEPWord(iop_base, (uchar)s_addr);
8889  		}
8890  		if (*wbuf != word) {
8891  			n_error++;
8892  		}
8893  	}
8894  	/* Read checksum; Byte swapping not needed. */
8895  	if (AscReadEEPWord(iop_base, (uchar)s_addr) != sum) {
8896  		n_error++;
8897  	}
8898  	return n_error;
8899  }
8900  
AscSetEEPConfig(PortAddr iop_base,ASCEEP_CONFIG * cfg_buf,ushort bus_type)8901  static int AscSetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
8902  			   ushort bus_type)
8903  {
8904  	int retry;
8905  	int n_error;
8906  
8907  	retry = 0;
8908  	while (true) {
8909  		if ((n_error = AscSetEEPConfigOnce(iop_base, cfg_buf,
8910  						   bus_type)) == 0) {
8911  			break;
8912  		}
8913  		if (++retry > ASC_EEP_MAX_RETRY) {
8914  			break;
8915  		}
8916  	}
8917  	return n_error;
8918  }
8919  
AscInitFromEEP(ASC_DVC_VAR * asc_dvc)8920  static int AscInitFromEEP(ASC_DVC_VAR *asc_dvc)
8921  {
8922  	ASCEEP_CONFIG eep_config_buf;
8923  	ASCEEP_CONFIG *eep_config;
8924  	PortAddr iop_base;
8925  	ushort chksum;
8926  	ushort warn_code;
8927  	ushort cfg_msw, cfg_lsw;
8928  	int i;
8929  	int write_eep = 0;
8930  
8931  	iop_base = asc_dvc->iop_base;
8932  	warn_code = 0;
8933  	AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0x00FE);
8934  	AscStopQueueExe(iop_base);
8935  	if ((AscStopChip(iop_base)) ||
8936  	    (AscGetChipScsiCtrl(iop_base) != 0)) {
8937  		asc_dvc->init_state |= ASC_INIT_RESET_SCSI_DONE;
8938  		AscResetChipAndScsiBus(asc_dvc);
8939  		mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
8940  	}
8941  	if (!AscIsChipHalted(iop_base)) {
8942  		asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
8943  		return (warn_code);
8944  	}
8945  	AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
8946  	if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
8947  		asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
8948  		return (warn_code);
8949  	}
8950  	eep_config = (ASCEEP_CONFIG *)&eep_config_buf;
8951  	cfg_msw = AscGetChipCfgMsw(iop_base);
8952  	cfg_lsw = AscGetChipCfgLsw(iop_base);
8953  	if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
8954  		cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
8955  		warn_code |= ASC_WARN_CFG_MSW_RECOVER;
8956  		AscSetChipCfgMsw(iop_base, cfg_msw);
8957  	}
8958  	chksum = AscGetEEPConfig(iop_base, eep_config, asc_dvc->bus_type);
8959  	ASC_DBG(1, "chksum 0x%x\n", chksum);
8960  	if (chksum == 0) {
8961  		chksum = 0xaa55;
8962  	}
8963  	if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
8964  		warn_code |= ASC_WARN_AUTO_CONFIG;
8965  		if (asc_dvc->cfg->chip_version == 3) {
8966  			if (eep_config->cfg_lsw != cfg_lsw) {
8967  				warn_code |= ASC_WARN_EEPROM_RECOVER;
8968  				eep_config->cfg_lsw =
8969  				    AscGetChipCfgLsw(iop_base);
8970  			}
8971  			if (eep_config->cfg_msw != cfg_msw) {
8972  				warn_code |= ASC_WARN_EEPROM_RECOVER;
8973  				eep_config->cfg_msw =
8974  				    AscGetChipCfgMsw(iop_base);
8975  			}
8976  		}
8977  	}
8978  	eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
8979  	eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON;
8980  	ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config->chksum);
8981  	if (chksum != eep_config->chksum) {
8982  		if (AscGetChipVersion(iop_base, asc_dvc->bus_type) ==
8983  		    ASC_CHIP_VER_PCI_ULTRA_3050) {
8984  			ASC_DBG(1, "chksum error ignored; EEPROM-less board\n");
8985  			eep_config->init_sdtr = 0xFF;
8986  			eep_config->disc_enable = 0xFF;
8987  			eep_config->start_motor = 0xFF;
8988  			eep_config->use_cmd_qng = 0;
8989  			eep_config->max_total_qng = 0xF0;
8990  			eep_config->max_tag_qng = 0x20;
8991  			eep_config->cntl = 0xBFFF;
8992  			ASC_EEP_SET_CHIP_ID(eep_config, 7);
8993  			eep_config->no_scam = 0;
8994  			eep_config->adapter_info[0] = 0;
8995  			eep_config->adapter_info[1] = 0;
8996  			eep_config->adapter_info[2] = 0;
8997  			eep_config->adapter_info[3] = 0;
8998  			eep_config->adapter_info[4] = 0;
8999  			/* Indicate EEPROM-less board. */
9000  			eep_config->adapter_info[5] = 0xBB;
9001  		} else {
9002  			ASC_PRINT
9003  			    ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n");
9004  			write_eep = 1;
9005  			warn_code |= ASC_WARN_EEPROM_CHKSUM;
9006  		}
9007  	}
9008  	asc_dvc->cfg->sdtr_enable = eep_config->init_sdtr;
9009  	asc_dvc->cfg->disc_enable = eep_config->disc_enable;
9010  	asc_dvc->cfg->cmd_qng_enabled = eep_config->use_cmd_qng;
9011  	asc_dvc->start_motor = eep_config->start_motor;
9012  	asc_dvc->dvc_cntl = eep_config->cntl;
9013  	asc_dvc->no_scam = eep_config->no_scam;
9014  	asc_dvc->cfg->adapter_info[0] = eep_config->adapter_info[0];
9015  	asc_dvc->cfg->adapter_info[1] = eep_config->adapter_info[1];
9016  	asc_dvc->cfg->adapter_info[2] = eep_config->adapter_info[2];
9017  	asc_dvc->cfg->adapter_info[3] = eep_config->adapter_info[3];
9018  	asc_dvc->cfg->adapter_info[4] = eep_config->adapter_info[4];
9019  	asc_dvc->cfg->adapter_info[5] = eep_config->adapter_info[5];
9020  	if (!AscTestExternalLram(asc_dvc)) {
9021  		if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) ==
9022  		     ASC_IS_PCI_ULTRA)) {
9023  			eep_config->max_total_qng =
9024  			    ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG;
9025  			eep_config->max_tag_qng =
9026  			    ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG;
9027  		} else {
9028  			eep_config->cfg_msw |= 0x0800;
9029  			cfg_msw |= 0x0800;
9030  			AscSetChipCfgMsw(iop_base, cfg_msw);
9031  			eep_config->max_total_qng = ASC_MAX_PCI_INRAM_TOTAL_QNG;
9032  			eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG;
9033  		}
9034  	} else {
9035  	}
9036  	if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG) {
9037  		eep_config->max_total_qng = ASC_MIN_TOTAL_QNG;
9038  	}
9039  	if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG) {
9040  		eep_config->max_total_qng = ASC_MAX_TOTAL_QNG;
9041  	}
9042  	if (eep_config->max_tag_qng > eep_config->max_total_qng) {
9043  		eep_config->max_tag_qng = eep_config->max_total_qng;
9044  	}
9045  	if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC) {
9046  		eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC;
9047  	}
9048  	asc_dvc->max_total_qng = eep_config->max_total_qng;
9049  	if ((eep_config->use_cmd_qng & eep_config->disc_enable) !=
9050  	    eep_config->use_cmd_qng) {
9051  		eep_config->disc_enable = eep_config->use_cmd_qng;
9052  		warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
9053  	}
9054  	ASC_EEP_SET_CHIP_ID(eep_config,
9055  			    ASC_EEP_GET_CHIP_ID(eep_config) & ASC_MAX_TID);
9056  	asc_dvc->cfg->chip_scsi_id = ASC_EEP_GET_CHIP_ID(eep_config);
9057  	if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) &&
9058  	    !(asc_dvc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) {
9059  		asc_dvc->min_sdtr_index = ASC_SDTR_ULTRA_PCI_10MB_INDEX;
9060  	}
9061  
9062  	for (i = 0; i <= ASC_MAX_TID; i++) {
9063  		asc_dvc->dos_int13_table[i] = eep_config->dos_int13_table[i];
9064  		asc_dvc->cfg->max_tag_qng[i] = eep_config->max_tag_qng;
9065  		asc_dvc->cfg->sdtr_period_offset[i] =
9066  		    (uchar)(ASC_DEF_SDTR_OFFSET |
9067  			    (asc_dvc->min_sdtr_index << 4));
9068  	}
9069  	eep_config->cfg_msw = AscGetChipCfgMsw(iop_base);
9070  	if (write_eep) {
9071  		if ((i = AscSetEEPConfig(iop_base, eep_config,
9072  				     asc_dvc->bus_type)) != 0) {
9073  			ASC_PRINT1
9074  			    ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n",
9075  			     i);
9076  		} else {
9077  			ASC_PRINT
9078  			    ("AscInitFromEEP: Successfully re-wrote EEPROM.\n");
9079  		}
9080  	}
9081  	return (warn_code);
9082  }
9083  
AscInitGetConfig(struct Scsi_Host * shost)9084  static int AscInitGetConfig(struct Scsi_Host *shost)
9085  {
9086  	struct asc_board *board = shost_priv(shost);
9087  	ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
9088  	unsigned short warn_code = 0;
9089  
9090  	asc_dvc->init_state = ASC_INIT_STATE_BEG_GET_CFG;
9091  	if (asc_dvc->err_code != 0)
9092  		return asc_dvc->err_code;
9093  
9094  	if (AscFindSignature(asc_dvc->iop_base)) {
9095  		AscInitAscDvcVar(asc_dvc);
9096  		warn_code = AscInitFromEEP(asc_dvc);
9097  		asc_dvc->init_state |= ASC_INIT_STATE_END_GET_CFG;
9098  		if (asc_dvc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT)
9099  			asc_dvc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT;
9100  	} else {
9101  		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
9102  	}
9103  
9104  	switch (warn_code) {
9105  	case 0:	/* No error */
9106  		break;
9107  	case ASC_WARN_IO_PORT_ROTATE:
9108  		shost_printk(KERN_WARNING, shost, "I/O port address "
9109  				"modified\n");
9110  		break;
9111  	case ASC_WARN_AUTO_CONFIG:
9112  		shost_printk(KERN_WARNING, shost, "I/O port increment switch "
9113  				"enabled\n");
9114  		break;
9115  	case ASC_WARN_EEPROM_CHKSUM:
9116  		shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
9117  		break;
9118  	case ASC_WARN_IRQ_MODIFIED:
9119  		shost_printk(KERN_WARNING, shost, "IRQ modified\n");
9120  		break;
9121  	case ASC_WARN_CMD_QNG_CONFLICT:
9122  		shost_printk(KERN_WARNING, shost, "tag queuing enabled w/o "
9123  				"disconnects\n");
9124  		break;
9125  	default:
9126  		shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
9127  				warn_code);
9128  		break;
9129  	}
9130  
9131  	if (asc_dvc->err_code != 0)
9132  		shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
9133  			"0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
9134  
9135  	return asc_dvc->err_code;
9136  }
9137  
AscInitSetConfig(struct pci_dev * pdev,struct Scsi_Host * shost)9138  static int AscInitSetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
9139  {
9140  	struct asc_board *board = shost_priv(shost);
9141  	ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
9142  	PortAddr iop_base = asc_dvc->iop_base;
9143  	unsigned short cfg_msw;
9144  	unsigned short warn_code = 0;
9145  
9146  	asc_dvc->init_state |= ASC_INIT_STATE_BEG_SET_CFG;
9147  	if (asc_dvc->err_code != 0)
9148  		return asc_dvc->err_code;
9149  	if (!AscFindSignature(asc_dvc->iop_base)) {
9150  		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
9151  		return asc_dvc->err_code;
9152  	}
9153  
9154  	cfg_msw = AscGetChipCfgMsw(iop_base);
9155  	if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
9156  		cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9157  		warn_code |= ASC_WARN_CFG_MSW_RECOVER;
9158  		AscSetChipCfgMsw(iop_base, cfg_msw);
9159  	}
9160  	if ((asc_dvc->cfg->cmd_qng_enabled & asc_dvc->cfg->disc_enable) !=
9161  	    asc_dvc->cfg->cmd_qng_enabled) {
9162  		asc_dvc->cfg->disc_enable = asc_dvc->cfg->cmd_qng_enabled;
9163  		warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
9164  	}
9165  	if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
9166  		warn_code |= ASC_WARN_AUTO_CONFIG;
9167  	}
9168  #ifdef CONFIG_PCI
9169  	if (asc_dvc->bus_type & ASC_IS_PCI) {
9170  		cfg_msw &= 0xFFC0;
9171  		AscSetChipCfgMsw(iop_base, cfg_msw);
9172  		if ((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) {
9173  		} else {
9174  			if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
9175  			    (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
9176  				asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_IF_NOT_DWB;
9177  				asc_dvc->bug_fix_cntl |=
9178  				    ASC_BUG_FIX_ASYN_USE_SYN;
9179  			}
9180  		}
9181  	} else
9182  #endif /* CONFIG_PCI */
9183  	if (AscSetChipScsiID(iop_base, asc_dvc->cfg->chip_scsi_id) !=
9184  	    asc_dvc->cfg->chip_scsi_id) {
9185  		asc_dvc->err_code |= ASC_IERR_SET_SCSI_ID;
9186  	}
9187  
9188  	asc_dvc->init_state |= ASC_INIT_STATE_END_SET_CFG;
9189  
9190  	switch (warn_code) {
9191  	case 0:	/* No error. */
9192  		break;
9193  	case ASC_WARN_IO_PORT_ROTATE:
9194  		shost_printk(KERN_WARNING, shost, "I/O port address "
9195  				"modified\n");
9196  		break;
9197  	case ASC_WARN_AUTO_CONFIG:
9198  		shost_printk(KERN_WARNING, shost, "I/O port increment switch "
9199  				"enabled\n");
9200  		break;
9201  	case ASC_WARN_EEPROM_CHKSUM:
9202  		shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
9203  		break;
9204  	case ASC_WARN_IRQ_MODIFIED:
9205  		shost_printk(KERN_WARNING, shost, "IRQ modified\n");
9206  		break;
9207  	case ASC_WARN_CMD_QNG_CONFLICT:
9208  		shost_printk(KERN_WARNING, shost, "tag queuing w/o "
9209  				"disconnects\n");
9210  		break;
9211  	default:
9212  		shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
9213  				warn_code);
9214  		break;
9215  	}
9216  
9217  	if (asc_dvc->err_code != 0)
9218  		shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
9219  			"0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
9220  
9221  	return asc_dvc->err_code;
9222  }
9223  
9224  /*
9225   * EEPROM Configuration.
9226   *
9227   * All drivers should use this structure to set the default EEPROM
9228   * configuration. The BIOS now uses this structure when it is built.
9229   * Additional structure information can be found in a_condor.h where
9230   * the structure is defined.
9231   *
9232   * The *_Field_IsChar structs are needed to correct for endianness.
9233   * These values are read from the board 16 bits at a time directly
9234   * into the structs. Because some fields are char, the values will be
9235   * in the wrong order. The *_Field_IsChar tells when to flip the
9236   * bytes. Data read and written to PCI memory is automatically swapped
9237   * on big-endian platforms so char fields read as words are actually being
9238   * unswapped on big-endian platforms.
9239   */
9240  #ifdef CONFIG_PCI
9241  static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config = {
9242  	ADV_EEPROM_BIOS_ENABLE,	/* cfg_lsw */
9243  	0x0000,			/* cfg_msw */
9244  	0xFFFF,			/* disc_enable */
9245  	0xFFFF,			/* wdtr_able */
9246  	0xFFFF,			/* sdtr_able */
9247  	0xFFFF,			/* start_motor */
9248  	0xFFFF,			/* tagqng_able */
9249  	0xFFFF,			/* bios_scan */
9250  	0,			/* scam_tolerant */
9251  	7,			/* adapter_scsi_id */
9252  	0,			/* bios_boot_delay */
9253  	3,			/* scsi_reset_delay */
9254  	0,			/* bios_id_lun */
9255  	0,			/* termination */
9256  	0,			/* reserved1 */
9257  	0xFFE7,			/* bios_ctrl */
9258  	0xFFFF,			/* ultra_able */
9259  	0,			/* reserved2 */
9260  	ASC_DEF_MAX_HOST_QNG,	/* max_host_qng */
9261  	ASC_DEF_MAX_DVC_QNG,	/* max_dvc_qng */
9262  	0,			/* dvc_cntl */
9263  	0,			/* bug_fix */
9264  	0,			/* serial_number_word1 */
9265  	0,			/* serial_number_word2 */
9266  	0,			/* serial_number_word3 */
9267  	0,			/* check_sum */
9268  	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9269  	,			/* oem_name[16] */
9270  	0,			/* dvc_err_code */
9271  	0,			/* adv_err_code */
9272  	0,			/* adv_err_addr */
9273  	0,			/* saved_dvc_err_code */
9274  	0,			/* saved_adv_err_code */
9275  	0,			/* saved_adv_err_addr */
9276  	0			/* num_of_err */
9277  };
9278  
9279  static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar = {
9280  	0,			/* cfg_lsw */
9281  	0,			/* cfg_msw */
9282  	0,			/* -disc_enable */
9283  	0,			/* wdtr_able */
9284  	0,			/* sdtr_able */
9285  	0,			/* start_motor */
9286  	0,			/* tagqng_able */
9287  	0,			/* bios_scan */
9288  	0,			/* scam_tolerant */
9289  	1,			/* adapter_scsi_id */
9290  	1,			/* bios_boot_delay */
9291  	1,			/* scsi_reset_delay */
9292  	1,			/* bios_id_lun */
9293  	1,			/* termination */
9294  	1,			/* reserved1 */
9295  	0,			/* bios_ctrl */
9296  	0,			/* ultra_able */
9297  	0,			/* reserved2 */
9298  	1,			/* max_host_qng */
9299  	1,			/* max_dvc_qng */
9300  	0,			/* dvc_cntl */
9301  	0,			/* bug_fix */
9302  	0,			/* serial_number_word1 */
9303  	0,			/* serial_number_word2 */
9304  	0,			/* serial_number_word3 */
9305  	0,			/* check_sum */
9306  	{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9307  	,			/* oem_name[16] */
9308  	0,			/* dvc_err_code */
9309  	0,			/* adv_err_code */
9310  	0,			/* adv_err_addr */
9311  	0,			/* saved_dvc_err_code */
9312  	0,			/* saved_adv_err_code */
9313  	0,			/* saved_adv_err_addr */
9314  	0			/* num_of_err */
9315  };
9316  
9317  static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config = {
9318  	ADV_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
9319  	0x0000,			/* 01 cfg_msw */
9320  	0xFFFF,			/* 02 disc_enable */
9321  	0xFFFF,			/* 03 wdtr_able */
9322  	0x4444,			/* 04 sdtr_speed1 */
9323  	0xFFFF,			/* 05 start_motor */
9324  	0xFFFF,			/* 06 tagqng_able */
9325  	0xFFFF,			/* 07 bios_scan */
9326  	0,			/* 08 scam_tolerant */
9327  	7,			/* 09 adapter_scsi_id */
9328  	0,			/*    bios_boot_delay */
9329  	3,			/* 10 scsi_reset_delay */
9330  	0,			/*    bios_id_lun */
9331  	0,			/* 11 termination_se */
9332  	0,			/*    termination_lvd */
9333  	0xFFE7,			/* 12 bios_ctrl */
9334  	0x4444,			/* 13 sdtr_speed2 */
9335  	0x4444,			/* 14 sdtr_speed3 */
9336  	ASC_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
9337  	ASC_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
9338  	0,			/* 16 dvc_cntl */
9339  	0x4444,			/* 17 sdtr_speed4 */
9340  	0,			/* 18 serial_number_word1 */
9341  	0,			/* 19 serial_number_word2 */
9342  	0,			/* 20 serial_number_word3 */
9343  	0,			/* 21 check_sum */
9344  	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9345  	,			/* 22-29 oem_name[16] */
9346  	0,			/* 30 dvc_err_code */
9347  	0,			/* 31 adv_err_code */
9348  	0,			/* 32 adv_err_addr */
9349  	0,			/* 33 saved_dvc_err_code */
9350  	0,			/* 34 saved_adv_err_code */
9351  	0,			/* 35 saved_adv_err_addr */
9352  	0,			/* 36 reserved */
9353  	0,			/* 37 reserved */
9354  	0,			/* 38 reserved */
9355  	0,			/* 39 reserved */
9356  	0,			/* 40 reserved */
9357  	0,			/* 41 reserved */
9358  	0,			/* 42 reserved */
9359  	0,			/* 43 reserved */
9360  	0,			/* 44 reserved */
9361  	0,			/* 45 reserved */
9362  	0,			/* 46 reserved */
9363  	0,			/* 47 reserved */
9364  	0,			/* 48 reserved */
9365  	0,			/* 49 reserved */
9366  	0,			/* 50 reserved */
9367  	0,			/* 51 reserved */
9368  	0,			/* 52 reserved */
9369  	0,			/* 53 reserved */
9370  	0,			/* 54 reserved */
9371  	0,			/* 55 reserved */
9372  	0,			/* 56 cisptr_lsw */
9373  	0,			/* 57 cisprt_msw */
9374  	PCI_VENDOR_ID_ASP,	/* 58 subsysvid */
9375  	PCI_DEVICE_ID_38C0800_REV1,	/* 59 subsysid */
9376  	0,			/* 60 reserved */
9377  	0,			/* 61 reserved */
9378  	0,			/* 62 reserved */
9379  	0			/* 63 reserved */
9380  };
9381  
9382  static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar = {
9383  	0,			/* 00 cfg_lsw */
9384  	0,			/* 01 cfg_msw */
9385  	0,			/* 02 disc_enable */
9386  	0,			/* 03 wdtr_able */
9387  	0,			/* 04 sdtr_speed1 */
9388  	0,			/* 05 start_motor */
9389  	0,			/* 06 tagqng_able */
9390  	0,			/* 07 bios_scan */
9391  	0,			/* 08 scam_tolerant */
9392  	1,			/* 09 adapter_scsi_id */
9393  	1,			/*    bios_boot_delay */
9394  	1,			/* 10 scsi_reset_delay */
9395  	1,			/*    bios_id_lun */
9396  	1,			/* 11 termination_se */
9397  	1,			/*    termination_lvd */
9398  	0,			/* 12 bios_ctrl */
9399  	0,			/* 13 sdtr_speed2 */
9400  	0,			/* 14 sdtr_speed3 */
9401  	1,			/* 15 max_host_qng */
9402  	1,			/*    max_dvc_qng */
9403  	0,			/* 16 dvc_cntl */
9404  	0,			/* 17 sdtr_speed4 */
9405  	0,			/* 18 serial_number_word1 */
9406  	0,			/* 19 serial_number_word2 */
9407  	0,			/* 20 serial_number_word3 */
9408  	0,			/* 21 check_sum */
9409  	{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9410  	,			/* 22-29 oem_name[16] */
9411  	0,			/* 30 dvc_err_code */
9412  	0,			/* 31 adv_err_code */
9413  	0,			/* 32 adv_err_addr */
9414  	0,			/* 33 saved_dvc_err_code */
9415  	0,			/* 34 saved_adv_err_code */
9416  	0,			/* 35 saved_adv_err_addr */
9417  	0,			/* 36 reserved */
9418  	0,			/* 37 reserved */
9419  	0,			/* 38 reserved */
9420  	0,			/* 39 reserved */
9421  	0,			/* 40 reserved */
9422  	0,			/* 41 reserved */
9423  	0,			/* 42 reserved */
9424  	0,			/* 43 reserved */
9425  	0,			/* 44 reserved */
9426  	0,			/* 45 reserved */
9427  	0,			/* 46 reserved */
9428  	0,			/* 47 reserved */
9429  	0,			/* 48 reserved */
9430  	0,			/* 49 reserved */
9431  	0,			/* 50 reserved */
9432  	0,			/* 51 reserved */
9433  	0,			/* 52 reserved */
9434  	0,			/* 53 reserved */
9435  	0,			/* 54 reserved */
9436  	0,			/* 55 reserved */
9437  	0,			/* 56 cisptr_lsw */
9438  	0,			/* 57 cisprt_msw */
9439  	0,			/* 58 subsysvid */
9440  	0,			/* 59 subsysid */
9441  	0,			/* 60 reserved */
9442  	0,			/* 61 reserved */
9443  	0,			/* 62 reserved */
9444  	0			/* 63 reserved */
9445  };
9446  
9447  static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config = {
9448  	ADV_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
9449  	0x0000,			/* 01 cfg_msw */
9450  	0xFFFF,			/* 02 disc_enable */
9451  	0xFFFF,			/* 03 wdtr_able */
9452  	0x5555,			/* 04 sdtr_speed1 */
9453  	0xFFFF,			/* 05 start_motor */
9454  	0xFFFF,			/* 06 tagqng_able */
9455  	0xFFFF,			/* 07 bios_scan */
9456  	0,			/* 08 scam_tolerant */
9457  	7,			/* 09 adapter_scsi_id */
9458  	0,			/*    bios_boot_delay */
9459  	3,			/* 10 scsi_reset_delay */
9460  	0,			/*    bios_id_lun */
9461  	0,			/* 11 termination_se */
9462  	0,			/*    termination_lvd */
9463  	0xFFE7,			/* 12 bios_ctrl */
9464  	0x5555,			/* 13 sdtr_speed2 */
9465  	0x5555,			/* 14 sdtr_speed3 */
9466  	ASC_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
9467  	ASC_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
9468  	0,			/* 16 dvc_cntl */
9469  	0x5555,			/* 17 sdtr_speed4 */
9470  	0,			/* 18 serial_number_word1 */
9471  	0,			/* 19 serial_number_word2 */
9472  	0,			/* 20 serial_number_word3 */
9473  	0,			/* 21 check_sum */
9474  	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9475  	,			/* 22-29 oem_name[16] */
9476  	0,			/* 30 dvc_err_code */
9477  	0,			/* 31 adv_err_code */
9478  	0,			/* 32 adv_err_addr */
9479  	0,			/* 33 saved_dvc_err_code */
9480  	0,			/* 34 saved_adv_err_code */
9481  	0,			/* 35 saved_adv_err_addr */
9482  	0,			/* 36 reserved */
9483  	0,			/* 37 reserved */
9484  	0,			/* 38 reserved */
9485  	0,			/* 39 reserved */
9486  	0,			/* 40 reserved */
9487  	0,			/* 41 reserved */
9488  	0,			/* 42 reserved */
9489  	0,			/* 43 reserved */
9490  	0,			/* 44 reserved */
9491  	0,			/* 45 reserved */
9492  	0,			/* 46 reserved */
9493  	0,			/* 47 reserved */
9494  	0,			/* 48 reserved */
9495  	0,			/* 49 reserved */
9496  	0,			/* 50 reserved */
9497  	0,			/* 51 reserved */
9498  	0,			/* 52 reserved */
9499  	0,			/* 53 reserved */
9500  	0,			/* 54 reserved */
9501  	0,			/* 55 reserved */
9502  	0,			/* 56 cisptr_lsw */
9503  	0,			/* 57 cisprt_msw */
9504  	PCI_VENDOR_ID_ASP,	/* 58 subsysvid */
9505  	PCI_DEVICE_ID_38C1600_REV1,	/* 59 subsysid */
9506  	0,			/* 60 reserved */
9507  	0,			/* 61 reserved */
9508  	0,			/* 62 reserved */
9509  	0			/* 63 reserved */
9510  };
9511  
9512  static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar = {
9513  	0,			/* 00 cfg_lsw */
9514  	0,			/* 01 cfg_msw */
9515  	0,			/* 02 disc_enable */
9516  	0,			/* 03 wdtr_able */
9517  	0,			/* 04 sdtr_speed1 */
9518  	0,			/* 05 start_motor */
9519  	0,			/* 06 tagqng_able */
9520  	0,			/* 07 bios_scan */
9521  	0,			/* 08 scam_tolerant */
9522  	1,			/* 09 adapter_scsi_id */
9523  	1,			/*    bios_boot_delay */
9524  	1,			/* 10 scsi_reset_delay */
9525  	1,			/*    bios_id_lun */
9526  	1,			/* 11 termination_se */
9527  	1,			/*    termination_lvd */
9528  	0,			/* 12 bios_ctrl */
9529  	0,			/* 13 sdtr_speed2 */
9530  	0,			/* 14 sdtr_speed3 */
9531  	1,			/* 15 max_host_qng */
9532  	1,			/*    max_dvc_qng */
9533  	0,			/* 16 dvc_cntl */
9534  	0,			/* 17 sdtr_speed4 */
9535  	0,			/* 18 serial_number_word1 */
9536  	0,			/* 19 serial_number_word2 */
9537  	0,			/* 20 serial_number_word3 */
9538  	0,			/* 21 check_sum */
9539  	{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9540  	,			/* 22-29 oem_name[16] */
9541  	0,			/* 30 dvc_err_code */
9542  	0,			/* 31 adv_err_code */
9543  	0,			/* 32 adv_err_addr */
9544  	0,			/* 33 saved_dvc_err_code */
9545  	0,			/* 34 saved_adv_err_code */
9546  	0,			/* 35 saved_adv_err_addr */
9547  	0,			/* 36 reserved */
9548  	0,			/* 37 reserved */
9549  	0,			/* 38 reserved */
9550  	0,			/* 39 reserved */
9551  	0,			/* 40 reserved */
9552  	0,			/* 41 reserved */
9553  	0,			/* 42 reserved */
9554  	0,			/* 43 reserved */
9555  	0,			/* 44 reserved */
9556  	0,			/* 45 reserved */
9557  	0,			/* 46 reserved */
9558  	0,			/* 47 reserved */
9559  	0,			/* 48 reserved */
9560  	0,			/* 49 reserved */
9561  	0,			/* 50 reserved */
9562  	0,			/* 51 reserved */
9563  	0,			/* 52 reserved */
9564  	0,			/* 53 reserved */
9565  	0,			/* 54 reserved */
9566  	0,			/* 55 reserved */
9567  	0,			/* 56 cisptr_lsw */
9568  	0,			/* 57 cisprt_msw */
9569  	0,			/* 58 subsysvid */
9570  	0,			/* 59 subsysid */
9571  	0,			/* 60 reserved */
9572  	0,			/* 61 reserved */
9573  	0,			/* 62 reserved */
9574  	0			/* 63 reserved */
9575  };
9576  
9577  /*
9578   * Wait for EEPROM command to complete
9579   */
AdvWaitEEPCmd(AdvPortAddr iop_base)9580  static void AdvWaitEEPCmd(AdvPortAddr iop_base)
9581  {
9582  	int eep_delay_ms;
9583  
9584  	for (eep_delay_ms = 0; eep_delay_ms < ADV_EEP_DELAY_MS; eep_delay_ms++) {
9585  		if (AdvReadWordRegister(iop_base, IOPW_EE_CMD) &
9586  		    ASC_EEP_CMD_DONE) {
9587  			break;
9588  		}
9589  		mdelay(1);
9590  	}
9591  	if ((AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) ==
9592  	    0)
9593  		BUG();
9594  }
9595  
9596  /*
9597   * Read the EEPROM from specified location
9598   */
AdvReadEEPWord(AdvPortAddr iop_base,int eep_word_addr)9599  static ushort AdvReadEEPWord(AdvPortAddr iop_base, int eep_word_addr)
9600  {
9601  	AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9602  			     ASC_EEP_CMD_READ | eep_word_addr);
9603  	AdvWaitEEPCmd(iop_base);
9604  	return AdvReadWordRegister(iop_base, IOPW_EE_DATA);
9605  }
9606  
9607  /*
9608   * Write the EEPROM from 'cfg_buf'.
9609   */
AdvSet3550EEPConfig(AdvPortAddr iop_base,ADVEEP_3550_CONFIG * cfg_buf)9610  static void AdvSet3550EEPConfig(AdvPortAddr iop_base,
9611  				ADVEEP_3550_CONFIG *cfg_buf)
9612  {
9613  	ushort *wbuf;
9614  	ushort addr, chksum;
9615  	ushort *charfields;
9616  
9617  	wbuf = (ushort *)cfg_buf;
9618  	charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
9619  	chksum = 0;
9620  
9621  	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
9622  	AdvWaitEEPCmd(iop_base);
9623  
9624  	/*
9625  	 * Write EEPROM from word 0 to word 20.
9626  	 */
9627  	for (addr = ADV_EEP_DVC_CFG_BEGIN;
9628  	     addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
9629  		ushort word;
9630  
9631  		if (*charfields++) {
9632  			word = cpu_to_le16(*wbuf);
9633  		} else {
9634  			word = *wbuf;
9635  		}
9636  		chksum += *wbuf;	/* Checksum is calculated from word values. */
9637  		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9638  		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9639  				     ASC_EEP_CMD_WRITE | addr);
9640  		AdvWaitEEPCmd(iop_base);
9641  		mdelay(ADV_EEP_DELAY_MS);
9642  	}
9643  
9644  	/*
9645  	 * Write EEPROM checksum at word 21.
9646  	 */
9647  	AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
9648  	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
9649  	AdvWaitEEPCmd(iop_base);
9650  	wbuf++;
9651  	charfields++;
9652  
9653  	/*
9654  	 * Write EEPROM OEM name at words 22 to 29.
9655  	 */
9656  	for (addr = ADV_EEP_DVC_CTL_BEGIN;
9657  	     addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
9658  		ushort word;
9659  
9660  		if (*charfields++) {
9661  			word = cpu_to_le16(*wbuf);
9662  		} else {
9663  			word = *wbuf;
9664  		}
9665  		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9666  		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9667  				     ASC_EEP_CMD_WRITE | addr);
9668  		AdvWaitEEPCmd(iop_base);
9669  	}
9670  	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
9671  	AdvWaitEEPCmd(iop_base);
9672  }
9673  
9674  /*
9675   * Write the EEPROM from 'cfg_buf'.
9676   */
AdvSet38C0800EEPConfig(AdvPortAddr iop_base,ADVEEP_38C0800_CONFIG * cfg_buf)9677  static void AdvSet38C0800EEPConfig(AdvPortAddr iop_base,
9678  				   ADVEEP_38C0800_CONFIG *cfg_buf)
9679  {
9680  	ushort *wbuf;
9681  	ushort *charfields;
9682  	ushort addr, chksum;
9683  
9684  	wbuf = (ushort *)cfg_buf;
9685  	charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
9686  	chksum = 0;
9687  
9688  	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
9689  	AdvWaitEEPCmd(iop_base);
9690  
9691  	/*
9692  	 * Write EEPROM from word 0 to word 20.
9693  	 */
9694  	for (addr = ADV_EEP_DVC_CFG_BEGIN;
9695  	     addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
9696  		ushort word;
9697  
9698  		if (*charfields++) {
9699  			word = cpu_to_le16(*wbuf);
9700  		} else {
9701  			word = *wbuf;
9702  		}
9703  		chksum += *wbuf;	/* Checksum is calculated from word values. */
9704  		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9705  		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9706  				     ASC_EEP_CMD_WRITE | addr);
9707  		AdvWaitEEPCmd(iop_base);
9708  		mdelay(ADV_EEP_DELAY_MS);
9709  	}
9710  
9711  	/*
9712  	 * Write EEPROM checksum at word 21.
9713  	 */
9714  	AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
9715  	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
9716  	AdvWaitEEPCmd(iop_base);
9717  	wbuf++;
9718  	charfields++;
9719  
9720  	/*
9721  	 * Write EEPROM OEM name at words 22 to 29.
9722  	 */
9723  	for (addr = ADV_EEP_DVC_CTL_BEGIN;
9724  	     addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
9725  		ushort word;
9726  
9727  		if (*charfields++) {
9728  			word = cpu_to_le16(*wbuf);
9729  		} else {
9730  			word = *wbuf;
9731  		}
9732  		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9733  		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9734  				     ASC_EEP_CMD_WRITE | addr);
9735  		AdvWaitEEPCmd(iop_base);
9736  	}
9737  	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
9738  	AdvWaitEEPCmd(iop_base);
9739  }
9740  
9741  /*
9742   * Write the EEPROM from 'cfg_buf'.
9743   */
AdvSet38C1600EEPConfig(AdvPortAddr iop_base,ADVEEP_38C1600_CONFIG * cfg_buf)9744  static void AdvSet38C1600EEPConfig(AdvPortAddr iop_base,
9745  				   ADVEEP_38C1600_CONFIG *cfg_buf)
9746  {
9747  	ushort *wbuf;
9748  	ushort *charfields;
9749  	ushort addr, chksum;
9750  
9751  	wbuf = (ushort *)cfg_buf;
9752  	charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
9753  	chksum = 0;
9754  
9755  	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
9756  	AdvWaitEEPCmd(iop_base);
9757  
9758  	/*
9759  	 * Write EEPROM from word 0 to word 20.
9760  	 */
9761  	for (addr = ADV_EEP_DVC_CFG_BEGIN;
9762  	     addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
9763  		ushort word;
9764  
9765  		if (*charfields++) {
9766  			word = cpu_to_le16(*wbuf);
9767  		} else {
9768  			word = *wbuf;
9769  		}
9770  		chksum += *wbuf;	/* Checksum is calculated from word values. */
9771  		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9772  		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9773  				     ASC_EEP_CMD_WRITE | addr);
9774  		AdvWaitEEPCmd(iop_base);
9775  		mdelay(ADV_EEP_DELAY_MS);
9776  	}
9777  
9778  	/*
9779  	 * Write EEPROM checksum at word 21.
9780  	 */
9781  	AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
9782  	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
9783  	AdvWaitEEPCmd(iop_base);
9784  	wbuf++;
9785  	charfields++;
9786  
9787  	/*
9788  	 * Write EEPROM OEM name at words 22 to 29.
9789  	 */
9790  	for (addr = ADV_EEP_DVC_CTL_BEGIN;
9791  	     addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
9792  		ushort word;
9793  
9794  		if (*charfields++) {
9795  			word = cpu_to_le16(*wbuf);
9796  		} else {
9797  			word = *wbuf;
9798  		}
9799  		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9800  		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9801  				     ASC_EEP_CMD_WRITE | addr);
9802  		AdvWaitEEPCmd(iop_base);
9803  	}
9804  	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
9805  	AdvWaitEEPCmd(iop_base);
9806  }
9807  
9808  /*
9809   * Read EEPROM configuration into the specified buffer.
9810   *
9811   * Return a checksum based on the EEPROM configuration read.
9812   */
AdvGet3550EEPConfig(AdvPortAddr iop_base,ADVEEP_3550_CONFIG * cfg_buf)9813  static ushort AdvGet3550EEPConfig(AdvPortAddr iop_base,
9814  				  ADVEEP_3550_CONFIG *cfg_buf)
9815  {
9816  	ushort wval, chksum;
9817  	ushort *wbuf;
9818  	int eep_addr;
9819  	ushort *charfields;
9820  
9821  	charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
9822  	wbuf = (ushort *)cfg_buf;
9823  	chksum = 0;
9824  
9825  	for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
9826  	     eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
9827  		wval = AdvReadEEPWord(iop_base, eep_addr);
9828  		chksum += wval;	/* Checksum is calculated from word values. */
9829  		if (*charfields++) {
9830  			*wbuf = le16_to_cpu(wval);
9831  		} else {
9832  			*wbuf = wval;
9833  		}
9834  	}
9835  	/* Read checksum word. */
9836  	*wbuf = AdvReadEEPWord(iop_base, eep_addr);
9837  	wbuf++;
9838  	charfields++;
9839  
9840  	/* Read rest of EEPROM not covered by the checksum. */
9841  	for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
9842  	     eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
9843  		*wbuf = AdvReadEEPWord(iop_base, eep_addr);
9844  		if (*charfields++) {
9845  			*wbuf = le16_to_cpu(*wbuf);
9846  		}
9847  	}
9848  	return chksum;
9849  }
9850  
9851  /*
9852   * Read EEPROM configuration into the specified buffer.
9853   *
9854   * Return a checksum based on the EEPROM configuration read.
9855   */
AdvGet38C0800EEPConfig(AdvPortAddr iop_base,ADVEEP_38C0800_CONFIG * cfg_buf)9856  static ushort AdvGet38C0800EEPConfig(AdvPortAddr iop_base,
9857  				     ADVEEP_38C0800_CONFIG *cfg_buf)
9858  {
9859  	ushort wval, chksum;
9860  	ushort *wbuf;
9861  	int eep_addr;
9862  	ushort *charfields;
9863  
9864  	charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
9865  	wbuf = (ushort *)cfg_buf;
9866  	chksum = 0;
9867  
9868  	for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
9869  	     eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
9870  		wval = AdvReadEEPWord(iop_base, eep_addr);
9871  		chksum += wval;	/* Checksum is calculated from word values. */
9872  		if (*charfields++) {
9873  			*wbuf = le16_to_cpu(wval);
9874  		} else {
9875  			*wbuf = wval;
9876  		}
9877  	}
9878  	/* Read checksum word. */
9879  	*wbuf = AdvReadEEPWord(iop_base, eep_addr);
9880  	wbuf++;
9881  	charfields++;
9882  
9883  	/* Read rest of EEPROM not covered by the checksum. */
9884  	for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
9885  	     eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
9886  		*wbuf = AdvReadEEPWord(iop_base, eep_addr);
9887  		if (*charfields++) {
9888  			*wbuf = le16_to_cpu(*wbuf);
9889  		}
9890  	}
9891  	return chksum;
9892  }
9893  
9894  /*
9895   * Read EEPROM configuration into the specified buffer.
9896   *
9897   * Return a checksum based on the EEPROM configuration read.
9898   */
AdvGet38C1600EEPConfig(AdvPortAddr iop_base,ADVEEP_38C1600_CONFIG * cfg_buf)9899  static ushort AdvGet38C1600EEPConfig(AdvPortAddr iop_base,
9900  				     ADVEEP_38C1600_CONFIG *cfg_buf)
9901  {
9902  	ushort wval, chksum;
9903  	ushort *wbuf;
9904  	int eep_addr;
9905  	ushort *charfields;
9906  
9907  	charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
9908  	wbuf = (ushort *)cfg_buf;
9909  	chksum = 0;
9910  
9911  	for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
9912  	     eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
9913  		wval = AdvReadEEPWord(iop_base, eep_addr);
9914  		chksum += wval;	/* Checksum is calculated from word values. */
9915  		if (*charfields++) {
9916  			*wbuf = le16_to_cpu(wval);
9917  		} else {
9918  			*wbuf = wval;
9919  		}
9920  	}
9921  	/* Read checksum word. */
9922  	*wbuf = AdvReadEEPWord(iop_base, eep_addr);
9923  	wbuf++;
9924  	charfields++;
9925  
9926  	/* Read rest of EEPROM not covered by the checksum. */
9927  	for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
9928  	     eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
9929  		*wbuf = AdvReadEEPWord(iop_base, eep_addr);
9930  		if (*charfields++) {
9931  			*wbuf = le16_to_cpu(*wbuf);
9932  		}
9933  	}
9934  	return chksum;
9935  }
9936  
9937  /*
9938   * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
9939   * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
9940   * all of this is done.
9941   *
9942   * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
9943   *
9944   * For a non-fatal error return a warning code. If there are no warnings
9945   * then 0 is returned.
9946   *
9947   * Note: Chip is stopped on entry.
9948   */
AdvInitFrom3550EEP(ADV_DVC_VAR * asc_dvc)9949  static int AdvInitFrom3550EEP(ADV_DVC_VAR *asc_dvc)
9950  {
9951  	AdvPortAddr iop_base;
9952  	ushort warn_code;
9953  	ADVEEP_3550_CONFIG eep_config;
9954  
9955  	iop_base = asc_dvc->iop_base;
9956  
9957  	warn_code = 0;
9958  
9959  	/*
9960  	 * Read the board's EEPROM configuration.
9961  	 *
9962  	 * Set default values if a bad checksum is found.
9963  	 */
9964  	if (AdvGet3550EEPConfig(iop_base, &eep_config) != eep_config.check_sum) {
9965  		warn_code |= ASC_WARN_EEPROM_CHKSUM;
9966  
9967  		/*
9968  		 * Set EEPROM default values.
9969  		 */
9970  		memcpy(&eep_config, &Default_3550_EEPROM_Config,
9971  			sizeof(ADVEEP_3550_CONFIG));
9972  
9973  		/*
9974  		 * Assume the 6 byte board serial number that was read from
9975  		 * EEPROM is correct even if the EEPROM checksum failed.
9976  		 */
9977  		eep_config.serial_number_word3 =
9978  		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
9979  
9980  		eep_config.serial_number_word2 =
9981  		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
9982  
9983  		eep_config.serial_number_word1 =
9984  		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
9985  
9986  		AdvSet3550EEPConfig(iop_base, &eep_config);
9987  	}
9988  	/*
9989  	 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
9990  	 * EEPROM configuration that was read.
9991  	 *
9992  	 * This is the mapping of EEPROM fields to Adv Library fields.
9993  	 */
9994  	asc_dvc->wdtr_able = eep_config.wdtr_able;
9995  	asc_dvc->sdtr_able = eep_config.sdtr_able;
9996  	asc_dvc->ultra_able = eep_config.ultra_able;
9997  	asc_dvc->tagqng_able = eep_config.tagqng_able;
9998  	asc_dvc->cfg->disc_enable = eep_config.disc_enable;
9999  	asc_dvc->max_host_qng = eep_config.max_host_qng;
10000  	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10001  	asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
10002  	asc_dvc->start_motor = eep_config.start_motor;
10003  	asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10004  	asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10005  	asc_dvc->no_scam = eep_config.scam_tolerant;
10006  	asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
10007  	asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
10008  	asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
10009  
10010  	/*
10011  	 * Set the host maximum queuing (max. 253, min. 16) and the per device
10012  	 * maximum queuing (max. 63, min. 4).
10013  	 */
10014  	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10015  		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10016  	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10017  		/* If the value is zero, assume it is uninitialized. */
10018  		if (eep_config.max_host_qng == 0) {
10019  			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10020  		} else {
10021  			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10022  		}
10023  	}
10024  
10025  	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10026  		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10027  	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10028  		/* If the value is zero, assume it is uninitialized. */
10029  		if (eep_config.max_dvc_qng == 0) {
10030  			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10031  		} else {
10032  			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10033  		}
10034  	}
10035  
10036  	/*
10037  	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10038  	 * set 'max_dvc_qng' to 'max_host_qng'.
10039  	 */
10040  	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10041  		eep_config.max_dvc_qng = eep_config.max_host_qng;
10042  	}
10043  
10044  	/*
10045  	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10046  	 * values based on possibly adjusted EEPROM values.
10047  	 */
10048  	asc_dvc->max_host_qng = eep_config.max_host_qng;
10049  	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10050  
10051  	/*
10052  	 * If the EEPROM 'termination' field is set to automatic (0), then set
10053  	 * the ADV_DVC_CFG 'termination' field to automatic also.
10054  	 *
10055  	 * If the termination is specified with a non-zero 'termination'
10056  	 * value check that a legal value is set and set the ADV_DVC_CFG
10057  	 * 'termination' field appropriately.
10058  	 */
10059  	if (eep_config.termination == 0) {
10060  		asc_dvc->cfg->termination = 0;	/* auto termination */
10061  	} else {
10062  		/* Enable manual control with low off / high off. */
10063  		if (eep_config.termination == 1) {
10064  			asc_dvc->cfg->termination = TERM_CTL_SEL;
10065  
10066  			/* Enable manual control with low off / high on. */
10067  		} else if (eep_config.termination == 2) {
10068  			asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H;
10069  
10070  			/* Enable manual control with low on / high on. */
10071  		} else if (eep_config.termination == 3) {
10072  			asc_dvc->cfg->termination =
10073  			    TERM_CTL_SEL | TERM_CTL_H | TERM_CTL_L;
10074  		} else {
10075  			/*
10076  			 * The EEPROM 'termination' field contains a bad value. Use
10077  			 * automatic termination instead.
10078  			 */
10079  			asc_dvc->cfg->termination = 0;
10080  			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10081  		}
10082  	}
10083  
10084  	return warn_code;
10085  }
10086  
10087  /*
10088   * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
10089   * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
10090   * all of this is done.
10091   *
10092   * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10093   *
10094   * For a non-fatal error return a warning code. If there are no warnings
10095   * then 0 is returned.
10096   *
10097   * Note: Chip is stopped on entry.
10098   */
AdvInitFrom38C0800EEP(ADV_DVC_VAR * asc_dvc)10099  static int AdvInitFrom38C0800EEP(ADV_DVC_VAR *asc_dvc)
10100  {
10101  	AdvPortAddr iop_base;
10102  	ushort warn_code;
10103  	ADVEEP_38C0800_CONFIG eep_config;
10104  	uchar tid, termination;
10105  	ushort sdtr_speed = 0;
10106  
10107  	iop_base = asc_dvc->iop_base;
10108  
10109  	warn_code = 0;
10110  
10111  	/*
10112  	 * Read the board's EEPROM configuration.
10113  	 *
10114  	 * Set default values if a bad checksum is found.
10115  	 */
10116  	if (AdvGet38C0800EEPConfig(iop_base, &eep_config) !=
10117  	    eep_config.check_sum) {
10118  		warn_code |= ASC_WARN_EEPROM_CHKSUM;
10119  
10120  		/*
10121  		 * Set EEPROM default values.
10122  		 */
10123  		memcpy(&eep_config, &Default_38C0800_EEPROM_Config,
10124  			sizeof(ADVEEP_38C0800_CONFIG));
10125  
10126  		/*
10127  		 * Assume the 6 byte board serial number that was read from
10128  		 * EEPROM is correct even if the EEPROM checksum failed.
10129  		 */
10130  		eep_config.serial_number_word3 =
10131  		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10132  
10133  		eep_config.serial_number_word2 =
10134  		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10135  
10136  		eep_config.serial_number_word1 =
10137  		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10138  
10139  		AdvSet38C0800EEPConfig(iop_base, &eep_config);
10140  	}
10141  	/*
10142  	 * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
10143  	 * EEPROM configuration that was read.
10144  	 *
10145  	 * This is the mapping of EEPROM fields to Adv Library fields.
10146  	 */
10147  	asc_dvc->wdtr_able = eep_config.wdtr_able;
10148  	asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
10149  	asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
10150  	asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
10151  	asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
10152  	asc_dvc->tagqng_able = eep_config.tagqng_able;
10153  	asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10154  	asc_dvc->max_host_qng = eep_config.max_host_qng;
10155  	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10156  	asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
10157  	asc_dvc->start_motor = eep_config.start_motor;
10158  	asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10159  	asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10160  	asc_dvc->no_scam = eep_config.scam_tolerant;
10161  	asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
10162  	asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
10163  	asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
10164  
10165  	/*
10166  	 * For every Target ID if any of its 'sdtr_speed[1234]' bits
10167  	 * are set, then set an 'sdtr_able' bit for it.
10168  	 */
10169  	asc_dvc->sdtr_able = 0;
10170  	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
10171  		if (tid == 0) {
10172  			sdtr_speed = asc_dvc->sdtr_speed1;
10173  		} else if (tid == 4) {
10174  			sdtr_speed = asc_dvc->sdtr_speed2;
10175  		} else if (tid == 8) {
10176  			sdtr_speed = asc_dvc->sdtr_speed3;
10177  		} else if (tid == 12) {
10178  			sdtr_speed = asc_dvc->sdtr_speed4;
10179  		}
10180  		if (sdtr_speed & ADV_MAX_TID) {
10181  			asc_dvc->sdtr_able |= (1 << tid);
10182  		}
10183  		sdtr_speed >>= 4;
10184  	}
10185  
10186  	/*
10187  	 * Set the host maximum queuing (max. 253, min. 16) and the per device
10188  	 * maximum queuing (max. 63, min. 4).
10189  	 */
10190  	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10191  		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10192  	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10193  		/* If the value is zero, assume it is uninitialized. */
10194  		if (eep_config.max_host_qng == 0) {
10195  			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10196  		} else {
10197  			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10198  		}
10199  	}
10200  
10201  	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10202  		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10203  	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10204  		/* If the value is zero, assume it is uninitialized. */
10205  		if (eep_config.max_dvc_qng == 0) {
10206  			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10207  		} else {
10208  			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10209  		}
10210  	}
10211  
10212  	/*
10213  	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10214  	 * set 'max_dvc_qng' to 'max_host_qng'.
10215  	 */
10216  	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10217  		eep_config.max_dvc_qng = eep_config.max_host_qng;
10218  	}
10219  
10220  	/*
10221  	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10222  	 * values based on possibly adjusted EEPROM values.
10223  	 */
10224  	asc_dvc->max_host_qng = eep_config.max_host_qng;
10225  	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10226  
10227  	/*
10228  	 * If the EEPROM 'termination' field is set to automatic (0), then set
10229  	 * the ADV_DVC_CFG 'termination' field to automatic also.
10230  	 *
10231  	 * If the termination is specified with a non-zero 'termination'
10232  	 * value check that a legal value is set and set the ADV_DVC_CFG
10233  	 * 'termination' field appropriately.
10234  	 */
10235  	if (eep_config.termination_se == 0) {
10236  		termination = 0;	/* auto termination for SE */
10237  	} else {
10238  		/* Enable manual control with low off / high off. */
10239  		if (eep_config.termination_se == 1) {
10240  			termination = 0;
10241  
10242  			/* Enable manual control with low off / high on. */
10243  		} else if (eep_config.termination_se == 2) {
10244  			termination = TERM_SE_HI;
10245  
10246  			/* Enable manual control with low on / high on. */
10247  		} else if (eep_config.termination_se == 3) {
10248  			termination = TERM_SE;
10249  		} else {
10250  			/*
10251  			 * The EEPROM 'termination_se' field contains a bad value.
10252  			 * Use automatic termination instead.
10253  			 */
10254  			termination = 0;
10255  			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10256  		}
10257  	}
10258  
10259  	if (eep_config.termination_lvd == 0) {
10260  		asc_dvc->cfg->termination = termination;	/* auto termination for LVD */
10261  	} else {
10262  		/* Enable manual control with low off / high off. */
10263  		if (eep_config.termination_lvd == 1) {
10264  			asc_dvc->cfg->termination = termination;
10265  
10266  			/* Enable manual control with low off / high on. */
10267  		} else if (eep_config.termination_lvd == 2) {
10268  			asc_dvc->cfg->termination = termination | TERM_LVD_HI;
10269  
10270  			/* Enable manual control with low on / high on. */
10271  		} else if (eep_config.termination_lvd == 3) {
10272  			asc_dvc->cfg->termination = termination | TERM_LVD;
10273  		} else {
10274  			/*
10275  			 * The EEPROM 'termination_lvd' field contains a bad value.
10276  			 * Use automatic termination instead.
10277  			 */
10278  			asc_dvc->cfg->termination = termination;
10279  			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10280  		}
10281  	}
10282  
10283  	return warn_code;
10284  }
10285  
10286  /*
10287   * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and
10288   * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while
10289   * all of this is done.
10290   *
10291   * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
10292   *
10293   * For a non-fatal error return a warning code. If there are no warnings
10294   * then 0 is returned.
10295   *
10296   * Note: Chip is stopped on entry.
10297   */
AdvInitFrom38C1600EEP(ADV_DVC_VAR * asc_dvc)10298  static int AdvInitFrom38C1600EEP(ADV_DVC_VAR *asc_dvc)
10299  {
10300  	AdvPortAddr iop_base;
10301  	ushort warn_code;
10302  	ADVEEP_38C1600_CONFIG eep_config;
10303  	uchar tid, termination;
10304  	ushort sdtr_speed = 0;
10305  
10306  	iop_base = asc_dvc->iop_base;
10307  
10308  	warn_code = 0;
10309  
10310  	/*
10311  	 * Read the board's EEPROM configuration.
10312  	 *
10313  	 * Set default values if a bad checksum is found.
10314  	 */
10315  	if (AdvGet38C1600EEPConfig(iop_base, &eep_config) !=
10316  	    eep_config.check_sum) {
10317  		struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
10318  		warn_code |= ASC_WARN_EEPROM_CHKSUM;
10319  
10320  		/*
10321  		 * Set EEPROM default values.
10322  		 */
10323  		memcpy(&eep_config, &Default_38C1600_EEPROM_Config,
10324  			sizeof(ADVEEP_38C1600_CONFIG));
10325  
10326  		if (PCI_FUNC(pdev->devfn) != 0) {
10327  			u8 ints;
10328  			/*
10329  			 * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60
10330  			 * and old Mac system booting problem. The Expansion
10331  			 * ROM must be disabled in Function 1 for these systems
10332  			 */
10333  			eep_config.cfg_lsw &= ~ADV_EEPROM_BIOS_ENABLE;
10334  			/*
10335  			 * Clear the INTAB (bit 11) if the GPIO 0 input
10336  			 * indicates the Function 1 interrupt line is wired
10337  			 * to INTB.
10338  			 *
10339  			 * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input:
10340  			 *   1 - Function 1 interrupt line wired to INT A.
10341  			 *   0 - Function 1 interrupt line wired to INT B.
10342  			 *
10343  			 * Note: Function 0 is always wired to INTA.
10344  			 * Put all 5 GPIO bits in input mode and then read
10345  			 * their input values.
10346  			 */
10347  			AdvWriteByteRegister(iop_base, IOPB_GPIO_CNTL, 0);
10348  			ints = AdvReadByteRegister(iop_base, IOPB_GPIO_DATA);
10349  			if ((ints & 0x01) == 0)
10350  				eep_config.cfg_lsw &= ~ADV_EEPROM_INTAB;
10351  		}
10352  
10353  		/*
10354  		 * Assume the 6 byte board serial number that was read from
10355  		 * EEPROM is correct even if the EEPROM checksum failed.
10356  		 */
10357  		eep_config.serial_number_word3 =
10358  			AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10359  		eep_config.serial_number_word2 =
10360  			AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10361  		eep_config.serial_number_word1 =
10362  			AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10363  
10364  		AdvSet38C1600EEPConfig(iop_base, &eep_config);
10365  	}
10366  
10367  	/*
10368  	 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
10369  	 * EEPROM configuration that was read.
10370  	 *
10371  	 * This is the mapping of EEPROM fields to Adv Library fields.
10372  	 */
10373  	asc_dvc->wdtr_able = eep_config.wdtr_able;
10374  	asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
10375  	asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
10376  	asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
10377  	asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
10378  	asc_dvc->ppr_able = 0;
10379  	asc_dvc->tagqng_able = eep_config.tagqng_able;
10380  	asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10381  	asc_dvc->max_host_qng = eep_config.max_host_qng;
10382  	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10383  	asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ASC_MAX_TID);
10384  	asc_dvc->start_motor = eep_config.start_motor;
10385  	asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10386  	asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10387  	asc_dvc->no_scam = eep_config.scam_tolerant;
10388  
10389  	/*
10390  	 * For every Target ID if any of its 'sdtr_speed[1234]' bits
10391  	 * are set, then set an 'sdtr_able' bit for it.
10392  	 */
10393  	asc_dvc->sdtr_able = 0;
10394  	for (tid = 0; tid <= ASC_MAX_TID; tid++) {
10395  		if (tid == 0) {
10396  			sdtr_speed = asc_dvc->sdtr_speed1;
10397  		} else if (tid == 4) {
10398  			sdtr_speed = asc_dvc->sdtr_speed2;
10399  		} else if (tid == 8) {
10400  			sdtr_speed = asc_dvc->sdtr_speed3;
10401  		} else if (tid == 12) {
10402  			sdtr_speed = asc_dvc->sdtr_speed4;
10403  		}
10404  		if (sdtr_speed & ASC_MAX_TID) {
10405  			asc_dvc->sdtr_able |= (1 << tid);
10406  		}
10407  		sdtr_speed >>= 4;
10408  	}
10409  
10410  	/*
10411  	 * Set the host maximum queuing (max. 253, min. 16) and the per device
10412  	 * maximum queuing (max. 63, min. 4).
10413  	 */
10414  	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10415  		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10416  	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10417  		/* If the value is zero, assume it is uninitialized. */
10418  		if (eep_config.max_host_qng == 0) {
10419  			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10420  		} else {
10421  			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10422  		}
10423  	}
10424  
10425  	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10426  		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10427  	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10428  		/* If the value is zero, assume it is uninitialized. */
10429  		if (eep_config.max_dvc_qng == 0) {
10430  			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10431  		} else {
10432  			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10433  		}
10434  	}
10435  
10436  	/*
10437  	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10438  	 * set 'max_dvc_qng' to 'max_host_qng'.
10439  	 */
10440  	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10441  		eep_config.max_dvc_qng = eep_config.max_host_qng;
10442  	}
10443  
10444  	/*
10445  	 * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng'
10446  	 * values based on possibly adjusted EEPROM values.
10447  	 */
10448  	asc_dvc->max_host_qng = eep_config.max_host_qng;
10449  	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10450  
10451  	/*
10452  	 * If the EEPROM 'termination' field is set to automatic (0), then set
10453  	 * the ASC_DVC_CFG 'termination' field to automatic also.
10454  	 *
10455  	 * If the termination is specified with a non-zero 'termination'
10456  	 * value check that a legal value is set and set the ASC_DVC_CFG
10457  	 * 'termination' field appropriately.
10458  	 */
10459  	if (eep_config.termination_se == 0) {
10460  		termination = 0;	/* auto termination for SE */
10461  	} else {
10462  		/* Enable manual control with low off / high off. */
10463  		if (eep_config.termination_se == 1) {
10464  			termination = 0;
10465  
10466  			/* Enable manual control with low off / high on. */
10467  		} else if (eep_config.termination_se == 2) {
10468  			termination = TERM_SE_HI;
10469  
10470  			/* Enable manual control with low on / high on. */
10471  		} else if (eep_config.termination_se == 3) {
10472  			termination = TERM_SE;
10473  		} else {
10474  			/*
10475  			 * The EEPROM 'termination_se' field contains a bad value.
10476  			 * Use automatic termination instead.
10477  			 */
10478  			termination = 0;
10479  			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10480  		}
10481  	}
10482  
10483  	if (eep_config.termination_lvd == 0) {
10484  		asc_dvc->cfg->termination = termination;	/* auto termination for LVD */
10485  	} else {
10486  		/* Enable manual control with low off / high off. */
10487  		if (eep_config.termination_lvd == 1) {
10488  			asc_dvc->cfg->termination = termination;
10489  
10490  			/* Enable manual control with low off / high on. */
10491  		} else if (eep_config.termination_lvd == 2) {
10492  			asc_dvc->cfg->termination = termination | TERM_LVD_HI;
10493  
10494  			/* Enable manual control with low on / high on. */
10495  		} else if (eep_config.termination_lvd == 3) {
10496  			asc_dvc->cfg->termination = termination | TERM_LVD;
10497  		} else {
10498  			/*
10499  			 * The EEPROM 'termination_lvd' field contains a bad value.
10500  			 * Use automatic termination instead.
10501  			 */
10502  			asc_dvc->cfg->termination = termination;
10503  			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10504  		}
10505  	}
10506  
10507  	return warn_code;
10508  }
10509  
10510  /*
10511   * Initialize the ADV_DVC_VAR structure.
10512   *
10513   * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10514   *
10515   * For a non-fatal error return a warning code. If there are no warnings
10516   * then 0 is returned.
10517   */
AdvInitGetConfig(struct pci_dev * pdev,struct Scsi_Host * shost)10518  static int AdvInitGetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
10519  {
10520  	struct asc_board *board = shost_priv(shost);
10521  	ADV_DVC_VAR *asc_dvc = &board->dvc_var.adv_dvc_var;
10522  	unsigned short warn_code = 0;
10523  	AdvPortAddr iop_base = asc_dvc->iop_base;
10524  	u16 cmd;
10525  	int status;
10526  
10527  	asc_dvc->err_code = 0;
10528  
10529  	/*
10530  	 * Save the state of the PCI Configuration Command Register
10531  	 * "Parity Error Response Control" Bit. If the bit is clear (0),
10532  	 * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore
10533  	 * DMA parity errors.
10534  	 */
10535  	asc_dvc->cfg->control_flag = 0;
10536  	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
10537  	if ((cmd & PCI_COMMAND_PARITY) == 0)
10538  		asc_dvc->cfg->control_flag |= CONTROL_FLAG_IGNORE_PERR;
10539  
10540  	asc_dvc->cfg->chip_version =
10541  	    AdvGetChipVersion(iop_base, asc_dvc->bus_type);
10542  
10543  	ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n",
10544  		 (ushort)AdvReadByteRegister(iop_base, IOPB_CHIP_ID_1),
10545  		 (ushort)ADV_CHIP_ID_BYTE);
10546  
10547  	ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n",
10548  		 (ushort)AdvReadWordRegister(iop_base, IOPW_CHIP_ID_0),
10549  		 (ushort)ADV_CHIP_ID_WORD);
10550  
10551  	/*
10552  	 * Reset the chip to start and allow register writes.
10553  	 */
10554  	if (AdvFindSignature(iop_base) == 0) {
10555  		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
10556  		return ADV_ERROR;
10557  	} else {
10558  		/*
10559  		 * The caller must set 'chip_type' to a valid setting.
10560  		 */
10561  		if (asc_dvc->chip_type != ADV_CHIP_ASC3550 &&
10562  		    asc_dvc->chip_type != ADV_CHIP_ASC38C0800 &&
10563  		    asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
10564  			asc_dvc->err_code |= ASC_IERR_BAD_CHIPTYPE;
10565  			return ADV_ERROR;
10566  		}
10567  
10568  		/*
10569  		 * Reset Chip.
10570  		 */
10571  		AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
10572  				     ADV_CTRL_REG_CMD_RESET);
10573  		mdelay(100);
10574  		AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
10575  				     ADV_CTRL_REG_CMD_WR_IO_REG);
10576  
10577  		if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
10578  			status = AdvInitFrom38C1600EEP(asc_dvc);
10579  		} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
10580  			status = AdvInitFrom38C0800EEP(asc_dvc);
10581  		} else {
10582  			status = AdvInitFrom3550EEP(asc_dvc);
10583  		}
10584  		warn_code |= status;
10585  	}
10586  
10587  	if (warn_code != 0)
10588  		shost_printk(KERN_WARNING, shost, "warning: 0x%x\n", warn_code);
10589  
10590  	if (asc_dvc->err_code)
10591  		shost_printk(KERN_ERR, shost, "error code 0x%x\n",
10592  				asc_dvc->err_code);
10593  
10594  	return asc_dvc->err_code;
10595  }
10596  #endif
10597  
10598  static struct scsi_host_template advansys_template = {
10599  	.proc_name = DRV_NAME,
10600  #ifdef CONFIG_PROC_FS
10601  	.show_info = advansys_show_info,
10602  #endif
10603  	.name = DRV_NAME,
10604  	.info = advansys_info,
10605  	.queuecommand = advansys_queuecommand,
10606  	.eh_host_reset_handler = advansys_reset,
10607  	.bios_param = advansys_biosparam,
10608  	.slave_configure = advansys_slave_configure,
10609  };
10610  
advansys_wide_init_chip(struct Scsi_Host * shost)10611  static int advansys_wide_init_chip(struct Scsi_Host *shost)
10612  {
10613  	struct asc_board *board = shost_priv(shost);
10614  	struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
10615  	size_t sgblk_pool_size;
10616  	int warn_code, err_code;
10617  
10618  	/*
10619  	 * Allocate buffer carrier structures. The total size
10620  	 * is about 8 KB, so allocate all at once.
10621  	 */
10622  	adv_dvc->carrier = dma_alloc_coherent(board->dev,
10623  		ADV_CARRIER_BUFSIZE, &adv_dvc->carrier_addr, GFP_KERNEL);
10624  	ASC_DBG(1, "carrier 0x%p\n", adv_dvc->carrier);
10625  
10626  	if (!adv_dvc->carrier)
10627  		goto kmalloc_failed;
10628  
10629  	/*
10630  	 * Allocate up to 'max_host_qng' request structures for the Wide
10631  	 * board. The total size is about 16 KB, so allocate all at once.
10632  	 * If the allocation fails decrement and try again.
10633  	 */
10634  	board->adv_reqp_size = adv_dvc->max_host_qng * sizeof(adv_req_t);
10635  	if (board->adv_reqp_size & 0x1f) {
10636  		ASC_DBG(1, "unaligned reqp %lu bytes\n", sizeof(adv_req_t));
10637  		board->adv_reqp_size = ADV_32BALIGN(board->adv_reqp_size);
10638  	}
10639  	board->adv_reqp = dma_alloc_coherent(board->dev, board->adv_reqp_size,
10640  		&board->adv_reqp_addr, GFP_KERNEL);
10641  
10642  	if (!board->adv_reqp)
10643  		goto kmalloc_failed;
10644  
10645  	ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", board->adv_reqp,
10646  		adv_dvc->max_host_qng, board->adv_reqp_size);
10647  
10648  	/*
10649  	 * Allocate up to ADV_TOT_SG_BLOCK request structures for
10650  	 * the Wide board. Each structure is about 136 bytes.
10651  	 */
10652  	sgblk_pool_size = sizeof(adv_sgblk_t) * ADV_TOT_SG_BLOCK;
10653  	board->adv_sgblk_pool = dma_pool_create("adv_sgblk", board->dev,
10654  						sgblk_pool_size, 32, 0);
10655  
10656  	ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", ADV_TOT_SG_BLOCK,
10657  		sizeof(adv_sgblk_t), sgblk_pool_size);
10658  
10659  	if (!board->adv_sgblk_pool)
10660  		goto kmalloc_failed;
10661  
10662  	if (adv_dvc->chip_type == ADV_CHIP_ASC3550) {
10663  		ASC_DBG(2, "AdvInitAsc3550Driver()\n");
10664  		warn_code = AdvInitAsc3550Driver(adv_dvc);
10665  	} else if (adv_dvc->chip_type == ADV_CHIP_ASC38C0800) {
10666  		ASC_DBG(2, "AdvInitAsc38C0800Driver()\n");
10667  		warn_code = AdvInitAsc38C0800Driver(adv_dvc);
10668  	} else {
10669  		ASC_DBG(2, "AdvInitAsc38C1600Driver()\n");
10670  		warn_code = AdvInitAsc38C1600Driver(adv_dvc);
10671  	}
10672  	err_code = adv_dvc->err_code;
10673  
10674  	if (warn_code || err_code) {
10675  		shost_printk(KERN_WARNING, shost, "error: warn 0x%x, error "
10676  			"0x%x\n", warn_code, err_code);
10677  	}
10678  
10679  	goto exit;
10680  
10681   kmalloc_failed:
10682  	shost_printk(KERN_ERR, shost, "error: kmalloc() failed\n");
10683  	err_code = ADV_ERROR;
10684   exit:
10685  	return err_code;
10686  }
10687  
advansys_wide_free_mem(struct asc_board * board)10688  static void advansys_wide_free_mem(struct asc_board *board)
10689  {
10690  	struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
10691  
10692  	if (adv_dvc->carrier) {
10693  		dma_free_coherent(board->dev, ADV_CARRIER_BUFSIZE,
10694  				  adv_dvc->carrier, adv_dvc->carrier_addr);
10695  		adv_dvc->carrier = NULL;
10696  	}
10697  	if (board->adv_reqp) {
10698  		dma_free_coherent(board->dev, board->adv_reqp_size,
10699  				  board->adv_reqp, board->adv_reqp_addr);
10700  		board->adv_reqp = NULL;
10701  	}
10702  	if (board->adv_sgblk_pool) {
10703  		dma_pool_destroy(board->adv_sgblk_pool);
10704  		board->adv_sgblk_pool = NULL;
10705  	}
10706  }
10707  
advansys_board_found(struct Scsi_Host * shost,unsigned int iop,int bus_type)10708  static int advansys_board_found(struct Scsi_Host *shost, unsigned int iop,
10709  				int bus_type)
10710  {
10711  	struct pci_dev *pdev;
10712  	struct asc_board *boardp = shost_priv(shost);
10713  	ASC_DVC_VAR *asc_dvc_varp = NULL;
10714  	ADV_DVC_VAR *adv_dvc_varp = NULL;
10715  	int share_irq, warn_code, ret;
10716  
10717  	pdev = (bus_type == ASC_IS_PCI) ? to_pci_dev(boardp->dev) : NULL;
10718  
10719  	if (ASC_NARROW_BOARD(boardp)) {
10720  		ASC_DBG(1, "narrow board\n");
10721  		asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
10722  		asc_dvc_varp->bus_type = bus_type;
10723  		asc_dvc_varp->drv_ptr = boardp;
10724  		asc_dvc_varp->cfg = &boardp->dvc_cfg.asc_dvc_cfg;
10725  		asc_dvc_varp->iop_base = iop;
10726  	} else {
10727  #ifdef CONFIG_PCI
10728  		adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
10729  		adv_dvc_varp->drv_ptr = boardp;
10730  		adv_dvc_varp->cfg = &boardp->dvc_cfg.adv_dvc_cfg;
10731  		if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW) {
10732  			ASC_DBG(1, "wide board ASC-3550\n");
10733  			adv_dvc_varp->chip_type = ADV_CHIP_ASC3550;
10734  		} else if (pdev->device == PCI_DEVICE_ID_38C0800_REV1) {
10735  			ASC_DBG(1, "wide board ASC-38C0800\n");
10736  			adv_dvc_varp->chip_type = ADV_CHIP_ASC38C0800;
10737  		} else {
10738  			ASC_DBG(1, "wide board ASC-38C1600\n");
10739  			adv_dvc_varp->chip_type = ADV_CHIP_ASC38C1600;
10740  		}
10741  
10742  		boardp->asc_n_io_port = pci_resource_len(pdev, 1);
10743  		boardp->ioremap_addr = pci_ioremap_bar(pdev, 1);
10744  		if (!boardp->ioremap_addr) {
10745  			shost_printk(KERN_ERR, shost, "ioremap(%lx, %d) "
10746  					"returned NULL\n",
10747  					(long)pci_resource_start(pdev, 1),
10748  					boardp->asc_n_io_port);
10749  			ret = -ENODEV;
10750  			goto err_shost;
10751  		}
10752  		adv_dvc_varp->iop_base = (AdvPortAddr)boardp->ioremap_addr;
10753  		ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp->iop_base);
10754  
10755  		/*
10756  		 * Even though it isn't used to access wide boards, other
10757  		 * than for the debug line below, save I/O Port address so
10758  		 * that it can be reported.
10759  		 */
10760  		boardp->ioport = iop;
10761  
10762  		ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n",
10763  				(ushort)inp(iop + 1), (ushort)inpw(iop));
10764  #endif /* CONFIG_PCI */
10765  	}
10766  
10767  	if (ASC_NARROW_BOARD(boardp)) {
10768  		/*
10769  		 * Set the board bus type and PCI IRQ before
10770  		 * calling AscInitGetConfig().
10771  		 */
10772  		switch (asc_dvc_varp->bus_type) {
10773  #ifdef CONFIG_ISA
10774  		case ASC_IS_VL:
10775  			share_irq = 0;
10776  			break;
10777  		case ASC_IS_EISA:
10778  			share_irq = IRQF_SHARED;
10779  			break;
10780  #endif /* CONFIG_ISA */
10781  #ifdef CONFIG_PCI
10782  		case ASC_IS_PCI:
10783  			share_irq = IRQF_SHARED;
10784  			break;
10785  #endif /* CONFIG_PCI */
10786  		default:
10787  			shost_printk(KERN_ERR, shost, "unknown adapter type: "
10788  					"%d\n", asc_dvc_varp->bus_type);
10789  			share_irq = 0;
10790  			break;
10791  		}
10792  
10793  		/*
10794  		 * NOTE: AscInitGetConfig() may change the board's
10795  		 * bus_type value. The bus_type value should no
10796  		 * longer be used. If the bus_type field must be
10797  		 * referenced only use the bit-wise AND operator "&".
10798  		 */
10799  		ASC_DBG(2, "AscInitGetConfig()\n");
10800  		ret = AscInitGetConfig(shost) ? -ENODEV : 0;
10801  	} else {
10802  #ifdef CONFIG_PCI
10803  		/*
10804  		 * For Wide boards set PCI information before calling
10805  		 * AdvInitGetConfig().
10806  		 */
10807  		share_irq = IRQF_SHARED;
10808  		ASC_DBG(2, "AdvInitGetConfig()\n");
10809  
10810  		ret = AdvInitGetConfig(pdev, shost) ? -ENODEV : 0;
10811  #else
10812  		share_irq = 0;
10813  		ret = -ENODEV;
10814  #endif /* CONFIG_PCI */
10815  	}
10816  
10817  	if (ret)
10818  		goto err_unmap;
10819  
10820  	/*
10821  	 * Save the EEPROM configuration so that it can be displayed
10822  	 * from /proc/scsi/advansys/[0...].
10823  	 */
10824  	if (ASC_NARROW_BOARD(boardp)) {
10825  
10826  		ASCEEP_CONFIG *ep;
10827  
10828  		/*
10829  		 * Set the adapter's target id bit in the 'init_tidmask' field.
10830  		 */
10831  		boardp->init_tidmask |=
10832  		    ADV_TID_TO_TIDMASK(asc_dvc_varp->cfg->chip_scsi_id);
10833  
10834  		/*
10835  		 * Save EEPROM settings for the board.
10836  		 */
10837  		ep = &boardp->eep_config.asc_eep;
10838  
10839  		ep->init_sdtr = asc_dvc_varp->cfg->sdtr_enable;
10840  		ep->disc_enable = asc_dvc_varp->cfg->disc_enable;
10841  		ep->use_cmd_qng = asc_dvc_varp->cfg->cmd_qng_enabled;
10842  		ASC_EEP_SET_DMA_SPD(ep, ASC_DEF_ISA_DMA_SPEED);
10843  		ep->start_motor = asc_dvc_varp->start_motor;
10844  		ep->cntl = asc_dvc_varp->dvc_cntl;
10845  		ep->no_scam = asc_dvc_varp->no_scam;
10846  		ep->max_total_qng = asc_dvc_varp->max_total_qng;
10847  		ASC_EEP_SET_CHIP_ID(ep, asc_dvc_varp->cfg->chip_scsi_id);
10848  		/* 'max_tag_qng' is set to the same value for every device. */
10849  		ep->max_tag_qng = asc_dvc_varp->cfg->max_tag_qng[0];
10850  		ep->adapter_info[0] = asc_dvc_varp->cfg->adapter_info[0];
10851  		ep->adapter_info[1] = asc_dvc_varp->cfg->adapter_info[1];
10852  		ep->adapter_info[2] = asc_dvc_varp->cfg->adapter_info[2];
10853  		ep->adapter_info[3] = asc_dvc_varp->cfg->adapter_info[3];
10854  		ep->adapter_info[4] = asc_dvc_varp->cfg->adapter_info[4];
10855  		ep->adapter_info[5] = asc_dvc_varp->cfg->adapter_info[5];
10856  
10857  		/*
10858  		 * Modify board configuration.
10859  		 */
10860  		ASC_DBG(2, "AscInitSetConfig()\n");
10861  		ret = AscInitSetConfig(pdev, shost) ? -ENODEV : 0;
10862  		if (ret)
10863  			goto err_unmap;
10864  	} else {
10865  		ADVEEP_3550_CONFIG *ep_3550;
10866  		ADVEEP_38C0800_CONFIG *ep_38C0800;
10867  		ADVEEP_38C1600_CONFIG *ep_38C1600;
10868  
10869  		/*
10870  		 * Save Wide EEP Configuration Information.
10871  		 */
10872  		if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
10873  			ep_3550 = &boardp->eep_config.adv_3550_eep;
10874  
10875  			ep_3550->adapter_scsi_id = adv_dvc_varp->chip_scsi_id;
10876  			ep_3550->max_host_qng = adv_dvc_varp->max_host_qng;
10877  			ep_3550->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
10878  			ep_3550->termination = adv_dvc_varp->cfg->termination;
10879  			ep_3550->disc_enable = adv_dvc_varp->cfg->disc_enable;
10880  			ep_3550->bios_ctrl = adv_dvc_varp->bios_ctrl;
10881  			ep_3550->wdtr_able = adv_dvc_varp->wdtr_able;
10882  			ep_3550->sdtr_able = adv_dvc_varp->sdtr_able;
10883  			ep_3550->ultra_able = adv_dvc_varp->ultra_able;
10884  			ep_3550->tagqng_able = adv_dvc_varp->tagqng_able;
10885  			ep_3550->start_motor = adv_dvc_varp->start_motor;
10886  			ep_3550->scsi_reset_delay =
10887  			    adv_dvc_varp->scsi_reset_wait;
10888  			ep_3550->serial_number_word1 =
10889  			    adv_dvc_varp->cfg->serial1;
10890  			ep_3550->serial_number_word2 =
10891  			    adv_dvc_varp->cfg->serial2;
10892  			ep_3550->serial_number_word3 =
10893  			    adv_dvc_varp->cfg->serial3;
10894  		} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
10895  			ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
10896  
10897  			ep_38C0800->adapter_scsi_id =
10898  			    adv_dvc_varp->chip_scsi_id;
10899  			ep_38C0800->max_host_qng = adv_dvc_varp->max_host_qng;
10900  			ep_38C0800->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
10901  			ep_38C0800->termination_lvd =
10902  			    adv_dvc_varp->cfg->termination;
10903  			ep_38C0800->disc_enable =
10904  			    adv_dvc_varp->cfg->disc_enable;
10905  			ep_38C0800->bios_ctrl = adv_dvc_varp->bios_ctrl;
10906  			ep_38C0800->wdtr_able = adv_dvc_varp->wdtr_able;
10907  			ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
10908  			ep_38C0800->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
10909  			ep_38C0800->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
10910  			ep_38C0800->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
10911  			ep_38C0800->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
10912  			ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
10913  			ep_38C0800->start_motor = adv_dvc_varp->start_motor;
10914  			ep_38C0800->scsi_reset_delay =
10915  			    adv_dvc_varp->scsi_reset_wait;
10916  			ep_38C0800->serial_number_word1 =
10917  			    adv_dvc_varp->cfg->serial1;
10918  			ep_38C0800->serial_number_word2 =
10919  			    adv_dvc_varp->cfg->serial2;
10920  			ep_38C0800->serial_number_word3 =
10921  			    adv_dvc_varp->cfg->serial3;
10922  		} else {
10923  			ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
10924  
10925  			ep_38C1600->adapter_scsi_id =
10926  			    adv_dvc_varp->chip_scsi_id;
10927  			ep_38C1600->max_host_qng = adv_dvc_varp->max_host_qng;
10928  			ep_38C1600->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
10929  			ep_38C1600->termination_lvd =
10930  			    adv_dvc_varp->cfg->termination;
10931  			ep_38C1600->disc_enable =
10932  			    adv_dvc_varp->cfg->disc_enable;
10933  			ep_38C1600->bios_ctrl = adv_dvc_varp->bios_ctrl;
10934  			ep_38C1600->wdtr_able = adv_dvc_varp->wdtr_able;
10935  			ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
10936  			ep_38C1600->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
10937  			ep_38C1600->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
10938  			ep_38C1600->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
10939  			ep_38C1600->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
10940  			ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
10941  			ep_38C1600->start_motor = adv_dvc_varp->start_motor;
10942  			ep_38C1600->scsi_reset_delay =
10943  			    adv_dvc_varp->scsi_reset_wait;
10944  			ep_38C1600->serial_number_word1 =
10945  			    adv_dvc_varp->cfg->serial1;
10946  			ep_38C1600->serial_number_word2 =
10947  			    adv_dvc_varp->cfg->serial2;
10948  			ep_38C1600->serial_number_word3 =
10949  			    adv_dvc_varp->cfg->serial3;
10950  		}
10951  
10952  		/*
10953  		 * Set the adapter's target id bit in the 'init_tidmask' field.
10954  		 */
10955  		boardp->init_tidmask |=
10956  		    ADV_TID_TO_TIDMASK(adv_dvc_varp->chip_scsi_id);
10957  	}
10958  
10959  	/*
10960  	 * Channels are numbered beginning with 0. For AdvanSys one host
10961  	 * structure supports one channel. Multi-channel boards have a
10962  	 * separate host structure for each channel.
10963  	 */
10964  	shost->max_channel = 0;
10965  	if (ASC_NARROW_BOARD(boardp)) {
10966  		shost->max_id = ASC_MAX_TID + 1;
10967  		shost->max_lun = ASC_MAX_LUN + 1;
10968  		shost->max_cmd_len = ASC_MAX_CDB_LEN;
10969  
10970  		shost->io_port = asc_dvc_varp->iop_base;
10971  		boardp->asc_n_io_port = ASC_IOADR_GAP;
10972  		shost->this_id = asc_dvc_varp->cfg->chip_scsi_id;
10973  
10974  		/* Set maximum number of queues the adapter can handle. */
10975  		shost->can_queue = asc_dvc_varp->max_total_qng;
10976  	} else {
10977  		shost->max_id = ADV_MAX_TID + 1;
10978  		shost->max_lun = ADV_MAX_LUN + 1;
10979  		shost->max_cmd_len = ADV_MAX_CDB_LEN;
10980  
10981  		/*
10982  		 * Save the I/O Port address and length even though
10983  		 * I/O ports are not used to access Wide boards.
10984  		 * Instead the Wide boards are accessed with
10985  		 * PCI Memory Mapped I/O.
10986  		 */
10987  		shost->io_port = iop;
10988  
10989  		shost->this_id = adv_dvc_varp->chip_scsi_id;
10990  
10991  		/* Set maximum number of queues the adapter can handle. */
10992  		shost->can_queue = adv_dvc_varp->max_host_qng;
10993  	}
10994  
10995  	/*
10996  	 * Set the maximum number of scatter-gather elements the
10997  	 * adapter can handle.
10998  	 */
10999  	if (ASC_NARROW_BOARD(boardp)) {
11000  		/*
11001  		 * Allow two commands with 'sg_tablesize' scatter-gather
11002  		 * elements to be executed simultaneously. This value is
11003  		 * the theoretical hardware limit. It may be decreased
11004  		 * below.
11005  		 */
11006  		shost->sg_tablesize =
11007  		    (((asc_dvc_varp->max_total_qng - 2) / 2) *
11008  		     ASC_SG_LIST_PER_Q) + 1;
11009  	} else {
11010  		shost->sg_tablesize = ADV_MAX_SG_LIST;
11011  	}
11012  
11013  	/*
11014  	 * The value of 'sg_tablesize' can not exceed the SCSI
11015  	 * mid-level driver definition of SG_ALL. SG_ALL also
11016  	 * must not be exceeded, because it is used to define the
11017  	 * size of the scatter-gather table in 'struct asc_sg_head'.
11018  	 */
11019  	if (shost->sg_tablesize > SG_ALL) {
11020  		shost->sg_tablesize = SG_ALL;
11021  	}
11022  
11023  	ASC_DBG(1, "sg_tablesize: %d\n", shost->sg_tablesize);
11024  
11025  	/* BIOS start address. */
11026  	if (ASC_NARROW_BOARD(boardp)) {
11027  		shost->base = AscGetChipBiosAddress(asc_dvc_varp->iop_base,
11028  						    asc_dvc_varp->bus_type);
11029  	} else {
11030  		/*
11031  		 * Fill-in BIOS board variables. The Wide BIOS saves
11032  		 * information in LRAM that is used by the driver.
11033  		 */
11034  		AdvReadWordLram(adv_dvc_varp->iop_base,
11035  				BIOS_SIGNATURE, boardp->bios_signature);
11036  		AdvReadWordLram(adv_dvc_varp->iop_base,
11037  				BIOS_VERSION, boardp->bios_version);
11038  		AdvReadWordLram(adv_dvc_varp->iop_base,
11039  				BIOS_CODESEG, boardp->bios_codeseg);
11040  		AdvReadWordLram(adv_dvc_varp->iop_base,
11041  				BIOS_CODELEN, boardp->bios_codelen);
11042  
11043  		ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n",
11044  			 boardp->bios_signature, boardp->bios_version);
11045  
11046  		ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n",
11047  			 boardp->bios_codeseg, boardp->bios_codelen);
11048  
11049  		/*
11050  		 * If the BIOS saved a valid signature, then fill in
11051  		 * the BIOS code segment base address.
11052  		 */
11053  		if (boardp->bios_signature == 0x55AA) {
11054  			/*
11055  			 * Convert x86 realmode code segment to a linear
11056  			 * address by shifting left 4.
11057  			 */
11058  			shost->base = ((ulong)boardp->bios_codeseg << 4);
11059  		} else {
11060  			shost->base = 0;
11061  		}
11062  	}
11063  
11064  	/*
11065  	 * Register Board Resources - I/O Port, DMA, IRQ
11066  	 */
11067  
11068  	/* Register DMA Channel for Narrow boards. */
11069  	shost->dma_channel = NO_ISA_DMA;	/* Default to no ISA DMA. */
11070  
11071  	/* Register IRQ Number. */
11072  	ASC_DBG(2, "request_irq(%d, %p)\n", boardp->irq, shost);
11073  
11074  	ret = request_irq(boardp->irq, advansys_interrupt, share_irq,
11075  			  DRV_NAME, shost);
11076  
11077  	if (ret) {
11078  		if (ret == -EBUSY) {
11079  			shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11080  					"already in use\n", boardp->irq);
11081  		} else if (ret == -EINVAL) {
11082  			shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11083  					"not valid\n", boardp->irq);
11084  		} else {
11085  			shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11086  					"failed with %d\n", boardp->irq, ret);
11087  		}
11088  		goto err_unmap;
11089  	}
11090  
11091  	/*
11092  	 * Initialize board RISC chip and enable interrupts.
11093  	 */
11094  	if (ASC_NARROW_BOARD(boardp)) {
11095  		ASC_DBG(2, "AscInitAsc1000Driver()\n");
11096  
11097  		asc_dvc_varp->overrun_buf = kzalloc(ASC_OVERRUN_BSIZE, GFP_KERNEL);
11098  		if (!asc_dvc_varp->overrun_buf) {
11099  			ret = -ENOMEM;
11100  			goto err_free_irq;
11101  		}
11102  		warn_code = AscInitAsc1000Driver(asc_dvc_varp);
11103  
11104  		if (warn_code || asc_dvc_varp->err_code) {
11105  			shost_printk(KERN_ERR, shost, "error: init_state 0x%x, "
11106  					"warn 0x%x, error 0x%x\n",
11107  					asc_dvc_varp->init_state, warn_code,
11108  					asc_dvc_varp->err_code);
11109  			if (!asc_dvc_varp->overrun_dma) {
11110  				ret = -ENODEV;
11111  				goto err_free_mem;
11112  			}
11113  		}
11114  	} else {
11115  		if (advansys_wide_init_chip(shost)) {
11116  			ret = -ENODEV;
11117  			goto err_free_mem;
11118  		}
11119  	}
11120  
11121  	ASC_DBG_PRT_SCSI_HOST(2, shost);
11122  
11123  	ret = scsi_add_host(shost, boardp->dev);
11124  	if (ret)
11125  		goto err_free_mem;
11126  
11127  	scsi_scan_host(shost);
11128  	return 0;
11129  
11130   err_free_mem:
11131  	if (ASC_NARROW_BOARD(boardp)) {
11132  		if (asc_dvc_varp->overrun_dma)
11133  			dma_unmap_single(boardp->dev, asc_dvc_varp->overrun_dma,
11134  					 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
11135  		kfree(asc_dvc_varp->overrun_buf);
11136  	} else
11137  		advansys_wide_free_mem(boardp);
11138   err_free_irq:
11139  	free_irq(boardp->irq, shost);
11140   err_unmap:
11141  	if (boardp->ioremap_addr)
11142  		iounmap(boardp->ioremap_addr);
11143  #ifdef CONFIG_PCI
11144   err_shost:
11145  #endif
11146  	return ret;
11147  }
11148  
11149  /*
11150   * advansys_release()
11151   *
11152   * Release resources allocated for a single AdvanSys adapter.
11153   */
advansys_release(struct Scsi_Host * shost)11154  static int advansys_release(struct Scsi_Host *shost)
11155  {
11156  	struct asc_board *board = shost_priv(shost);
11157  	ASC_DBG(1, "begin\n");
11158  	scsi_remove_host(shost);
11159  	free_irq(board->irq, shost);
11160  
11161  	if (ASC_NARROW_BOARD(board)) {
11162  		dma_unmap_single(board->dev,
11163  					board->dvc_var.asc_dvc_var.overrun_dma,
11164  					ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
11165  		kfree(board->dvc_var.asc_dvc_var.overrun_buf);
11166  	} else {
11167  		iounmap(board->ioremap_addr);
11168  		advansys_wide_free_mem(board);
11169  	}
11170  	scsi_host_put(shost);
11171  	ASC_DBG(1, "end\n");
11172  	return 0;
11173  }
11174  
11175  #define ASC_IOADR_TABLE_MAX_IX  11
11176  
11177  static PortAddr _asc_def_iop_base[ASC_IOADR_TABLE_MAX_IX] = {
11178  	0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190,
11179  	0x0210, 0x0230, 0x0250, 0x0330
11180  };
11181  
advansys_vlb_remove(struct device * dev,unsigned int id)11182  static void advansys_vlb_remove(struct device *dev, unsigned int id)
11183  {
11184  	int ioport = _asc_def_iop_base[id];
11185  	advansys_release(dev_get_drvdata(dev));
11186  	release_region(ioport, ASC_IOADR_GAP);
11187  }
11188  
11189  /*
11190   * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw.  It decodes as:
11191   * 000: invalid
11192   * 001: 10
11193   * 010: 11
11194   * 011: 12
11195   * 100: invalid
11196   * 101: 14
11197   * 110: 15
11198   * 111: invalid
11199   */
advansys_vlb_irq_no(PortAddr iop_base)11200  static unsigned int advansys_vlb_irq_no(PortAddr iop_base)
11201  {
11202  	unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
11203  	unsigned int chip_irq = ((cfg_lsw >> 2) & 0x07) + 9;
11204  	if ((chip_irq < 10) || (chip_irq == 13) || (chip_irq > 15))
11205  		return 0;
11206  	return chip_irq;
11207  }
11208  
advansys_vlb_probe(struct device * dev,unsigned int id)11209  static int advansys_vlb_probe(struct device *dev, unsigned int id)
11210  {
11211  	int err = -ENODEV;
11212  	PortAddr iop_base = _asc_def_iop_base[id];
11213  	struct Scsi_Host *shost;
11214  	struct asc_board *board;
11215  
11216  	if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
11217  		ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
11218  		return -ENODEV;
11219  	}
11220  	ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
11221  	if (!AscFindSignature(iop_base))
11222  		goto release_region;
11223  	/*
11224  	 * I don't think this condition can actually happen, but the old
11225  	 * driver did it, and the chances of finding a VLB setup in 2007
11226  	 * to do testing with is slight to none.
11227  	 */
11228  	if (AscGetChipVersion(iop_base, ASC_IS_VL) > ASC_CHIP_MAX_VER_VL)
11229  		goto release_region;
11230  
11231  	err = -ENOMEM;
11232  	shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11233  	if (!shost)
11234  		goto release_region;
11235  
11236  	board = shost_priv(shost);
11237  	board->irq = advansys_vlb_irq_no(iop_base);
11238  	board->dev = dev;
11239  	board->shost = shost;
11240  
11241  	err = advansys_board_found(shost, iop_base, ASC_IS_VL);
11242  	if (err)
11243  		goto free_host;
11244  
11245  	dev_set_drvdata(dev, shost);
11246  	return 0;
11247  
11248   free_host:
11249  	scsi_host_put(shost);
11250   release_region:
11251  	release_region(iop_base, ASC_IOADR_GAP);
11252  	return -ENODEV;
11253  }
11254  
11255  static struct isa_driver advansys_vlb_driver = {
11256  	.probe		= advansys_vlb_probe,
11257  	.remove		= advansys_vlb_remove,
11258  	.driver = {
11259  		.owner	= THIS_MODULE,
11260  		.name	= "advansys_vlb",
11261  	},
11262  };
11263  
11264  static struct eisa_device_id advansys_eisa_table[] = {
11265  	{ "ABP7401" },
11266  	{ "ABP7501" },
11267  	{ "" }
11268  };
11269  
11270  MODULE_DEVICE_TABLE(eisa, advansys_eisa_table);
11271  
11272  /*
11273   * EISA is a little more tricky than PCI; each EISA device may have two
11274   * channels, and this driver is written to make each channel its own Scsi_Host
11275   */
11276  struct eisa_scsi_data {
11277  	struct Scsi_Host *host[2];
11278  };
11279  
11280  /*
11281   * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw.  It decodes as:
11282   * 000: 10
11283   * 001: 11
11284   * 010: 12
11285   * 011: invalid
11286   * 100: 14
11287   * 101: 15
11288   * 110: invalid
11289   * 111: invalid
11290   */
advansys_eisa_irq_no(struct eisa_device * edev)11291  static unsigned int advansys_eisa_irq_no(struct eisa_device *edev)
11292  {
11293  	unsigned short cfg_lsw = inw(edev->base_addr + 0xc86);
11294  	unsigned int chip_irq = ((cfg_lsw >> 8) & 0x07) + 10;
11295  	if ((chip_irq == 13) || (chip_irq > 15))
11296  		return 0;
11297  	return chip_irq;
11298  }
11299  
advansys_eisa_probe(struct device * dev)11300  static int advansys_eisa_probe(struct device *dev)
11301  {
11302  	int i, ioport, irq = 0;
11303  	int err;
11304  	struct eisa_device *edev = to_eisa_device(dev);
11305  	struct eisa_scsi_data *data;
11306  
11307  	err = -ENOMEM;
11308  	data = kzalloc(sizeof(*data), GFP_KERNEL);
11309  	if (!data)
11310  		goto fail;
11311  	ioport = edev->base_addr + 0xc30;
11312  
11313  	err = -ENODEV;
11314  	for (i = 0; i < 2; i++, ioport += 0x20) {
11315  		struct asc_board *board;
11316  		struct Scsi_Host *shost;
11317  		if (!request_region(ioport, ASC_IOADR_GAP, DRV_NAME)) {
11318  			printk(KERN_WARNING "Region %x-%x busy\n", ioport,
11319  			       ioport + ASC_IOADR_GAP - 1);
11320  			continue;
11321  		}
11322  		if (!AscFindSignature(ioport)) {
11323  			release_region(ioport, ASC_IOADR_GAP);
11324  			continue;
11325  		}
11326  
11327  		/*
11328  		 * I don't know why we need to do this for EISA chips, but
11329  		 * not for any others.  It looks to be equivalent to
11330  		 * AscGetChipCfgMsw, but I may have overlooked something,
11331  		 * so I'm not converting it until I get an EISA board to
11332  		 * test with.
11333  		 */
11334  		inw(ioport + 4);
11335  
11336  		if (!irq)
11337  			irq = advansys_eisa_irq_no(edev);
11338  
11339  		err = -ENOMEM;
11340  		shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11341  		if (!shost)
11342  			goto release_region;
11343  
11344  		board = shost_priv(shost);
11345  		board->irq = irq;
11346  		board->dev = dev;
11347  		board->shost = shost;
11348  
11349  		err = advansys_board_found(shost, ioport, ASC_IS_EISA);
11350  		if (!err) {
11351  			data->host[i] = shost;
11352  			continue;
11353  		}
11354  
11355  		scsi_host_put(shost);
11356   release_region:
11357  		release_region(ioport, ASC_IOADR_GAP);
11358  		break;
11359  	}
11360  
11361  	if (err)
11362  		goto free_data;
11363  	dev_set_drvdata(dev, data);
11364  	return 0;
11365  
11366   free_data:
11367  	kfree(data->host[0]);
11368  	kfree(data->host[1]);
11369  	kfree(data);
11370   fail:
11371  	return err;
11372  }
11373  
advansys_eisa_remove(struct device * dev)11374  static int advansys_eisa_remove(struct device *dev)
11375  {
11376  	int i;
11377  	struct eisa_scsi_data *data = dev_get_drvdata(dev);
11378  
11379  	for (i = 0; i < 2; i++) {
11380  		int ioport;
11381  		struct Scsi_Host *shost = data->host[i];
11382  		if (!shost)
11383  			continue;
11384  		ioport = shost->io_port;
11385  		advansys_release(shost);
11386  		release_region(ioport, ASC_IOADR_GAP);
11387  	}
11388  
11389  	kfree(data);
11390  	return 0;
11391  }
11392  
11393  static struct eisa_driver advansys_eisa_driver = {
11394  	.id_table =		advansys_eisa_table,
11395  	.driver = {
11396  		.name =		DRV_NAME,
11397  		.probe =	advansys_eisa_probe,
11398  		.remove =	advansys_eisa_remove,
11399  	}
11400  };
11401  
11402  /* PCI Devices supported by this driver */
11403  static struct pci_device_id advansys_pci_tbl[] = {
11404  	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_1200A,
11405  	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11406  	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940,
11407  	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11408  	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940U,
11409  	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11410  	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940UW,
11411  	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11412  	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C0800_REV1,
11413  	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11414  	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C1600_REV1,
11415  	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11416  	{}
11417  };
11418  
11419  MODULE_DEVICE_TABLE(pci, advansys_pci_tbl);
11420  
advansys_set_latency(struct pci_dev * pdev)11421  static void advansys_set_latency(struct pci_dev *pdev)
11422  {
11423  	if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
11424  	    (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
11425  		pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0);
11426  	} else {
11427  		u8 latency;
11428  		pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency);
11429  		if (latency < 0x20)
11430  			pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x20);
11431  	}
11432  }
11433  
advansys_pci_probe(struct pci_dev * pdev,const struct pci_device_id * ent)11434  static int advansys_pci_probe(struct pci_dev *pdev,
11435  			      const struct pci_device_id *ent)
11436  {
11437  	int err, ioport;
11438  	struct Scsi_Host *shost;
11439  	struct asc_board *board;
11440  
11441  	err = pci_enable_device(pdev);
11442  	if (err)
11443  		goto fail;
11444  	err = pci_request_regions(pdev, DRV_NAME);
11445  	if (err)
11446  		goto disable_device;
11447  	pci_set_master(pdev);
11448  	advansys_set_latency(pdev);
11449  
11450  	err = -ENODEV;
11451  	if (pci_resource_len(pdev, 0) == 0)
11452  		goto release_region;
11453  
11454  	ioport = pci_resource_start(pdev, 0);
11455  
11456  	err = -ENOMEM;
11457  	shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11458  	if (!shost)
11459  		goto release_region;
11460  
11461  	board = shost_priv(shost);
11462  	board->irq = pdev->irq;
11463  	board->dev = &pdev->dev;
11464  	board->shost = shost;
11465  
11466  	if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW ||
11467  	    pdev->device == PCI_DEVICE_ID_38C0800_REV1 ||
11468  	    pdev->device == PCI_DEVICE_ID_38C1600_REV1) {
11469  		board->flags |= ASC_IS_WIDE_BOARD;
11470  	}
11471  
11472  	err = advansys_board_found(shost, ioport, ASC_IS_PCI);
11473  	if (err)
11474  		goto free_host;
11475  
11476  	pci_set_drvdata(pdev, shost);
11477  	return 0;
11478  
11479   free_host:
11480  	scsi_host_put(shost);
11481   release_region:
11482  	pci_release_regions(pdev);
11483   disable_device:
11484  	pci_disable_device(pdev);
11485   fail:
11486  	return err;
11487  }
11488  
advansys_pci_remove(struct pci_dev * pdev)11489  static void advansys_pci_remove(struct pci_dev *pdev)
11490  {
11491  	advansys_release(pci_get_drvdata(pdev));
11492  	pci_release_regions(pdev);
11493  	pci_disable_device(pdev);
11494  }
11495  
11496  static struct pci_driver advansys_pci_driver = {
11497  	.name =		DRV_NAME,
11498  	.id_table =	advansys_pci_tbl,
11499  	.probe =	advansys_pci_probe,
11500  	.remove =	advansys_pci_remove,
11501  };
11502  
advansys_init(void)11503  static int __init advansys_init(void)
11504  {
11505  	int error;
11506  
11507  	error = isa_register_driver(&advansys_vlb_driver,
11508  				    ASC_IOADR_TABLE_MAX_IX);
11509  	if (error)
11510  		goto fail;
11511  
11512  	error = eisa_driver_register(&advansys_eisa_driver);
11513  	if (error)
11514  		goto unregister_vlb;
11515  
11516  	error = pci_register_driver(&advansys_pci_driver);
11517  	if (error)
11518  		goto unregister_eisa;
11519  
11520  	return 0;
11521  
11522   unregister_eisa:
11523  	eisa_driver_unregister(&advansys_eisa_driver);
11524   unregister_vlb:
11525  	isa_unregister_driver(&advansys_vlb_driver);
11526   fail:
11527  	return error;
11528  }
11529  
advansys_exit(void)11530  static void __exit advansys_exit(void)
11531  {
11532  	pci_unregister_driver(&advansys_pci_driver);
11533  	eisa_driver_unregister(&advansys_eisa_driver);
11534  	isa_unregister_driver(&advansys_vlb_driver);
11535  }
11536  
11537  module_init(advansys_init);
11538  module_exit(advansys_exit);
11539  
11540  MODULE_LICENSE("GPL");
11541  MODULE_FIRMWARE("advansys/mcode.bin");
11542  MODULE_FIRMWARE("advansys/3550.bin");
11543  MODULE_FIRMWARE("advansys/38C0800.bin");
11544  MODULE_FIRMWARE("advansys/38C1600.bin");
11545