1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Renesas R-Car SATA driver
4 *
5 * Author: Vladimir Barinov <source@cogentembedded.com>
6 * Copyright (C) 2013-2015 Cogent Embedded, Inc.
7 * Copyright (C) 2013-2015 Renesas Solutions Corp.
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/ata.h>
13 #include <linux/libata.h>
14 #include <linux/of_device.h>
15 #include <linux/platform_device.h>
16 #include <linux/pm_runtime.h>
17 #include <linux/err.h>
18
19 #define DRV_NAME "sata_rcar"
20
21 /* SH-Navi2G/ATAPI-ATA compatible task registers */
22 #define DATA_REG 0x100
23 #define SDEVCON_REG 0x138
24
25 /* SH-Navi2G/ATAPI module compatible control registers */
26 #define ATAPI_CONTROL1_REG 0x180
27 #define ATAPI_STATUS_REG 0x184
28 #define ATAPI_INT_ENABLE_REG 0x188
29 #define ATAPI_DTB_ADR_REG 0x198
30 #define ATAPI_DMA_START_ADR_REG 0x19C
31 #define ATAPI_DMA_TRANS_CNT_REG 0x1A0
32 #define ATAPI_CONTROL2_REG 0x1A4
33 #define ATAPI_SIG_ST_REG 0x1B0
34 #define ATAPI_BYTE_SWAP_REG 0x1BC
35
36 /* ATAPI control 1 register (ATAPI_CONTROL1) bits */
37 #define ATAPI_CONTROL1_ISM BIT(16)
38 #define ATAPI_CONTROL1_DTA32M BIT(11)
39 #define ATAPI_CONTROL1_RESET BIT(7)
40 #define ATAPI_CONTROL1_DESE BIT(3)
41 #define ATAPI_CONTROL1_RW BIT(2)
42 #define ATAPI_CONTROL1_STOP BIT(1)
43 #define ATAPI_CONTROL1_START BIT(0)
44
45 /* ATAPI status register (ATAPI_STATUS) bits */
46 #define ATAPI_STATUS_SATAINT BIT(11)
47 #define ATAPI_STATUS_DNEND BIT(6)
48 #define ATAPI_STATUS_DEVTRM BIT(5)
49 #define ATAPI_STATUS_DEVINT BIT(4)
50 #define ATAPI_STATUS_ERR BIT(2)
51 #define ATAPI_STATUS_NEND BIT(1)
52 #define ATAPI_STATUS_ACT BIT(0)
53
54 /* Interrupt enable register (ATAPI_INT_ENABLE) bits */
55 #define ATAPI_INT_ENABLE_SATAINT BIT(11)
56 #define ATAPI_INT_ENABLE_DNEND BIT(6)
57 #define ATAPI_INT_ENABLE_DEVTRM BIT(5)
58 #define ATAPI_INT_ENABLE_DEVINT BIT(4)
59 #define ATAPI_INT_ENABLE_ERR BIT(2)
60 #define ATAPI_INT_ENABLE_NEND BIT(1)
61 #define ATAPI_INT_ENABLE_ACT BIT(0)
62
63 /* Access control registers for physical layer control register */
64 #define SATAPHYADDR_REG 0x200
65 #define SATAPHYWDATA_REG 0x204
66 #define SATAPHYACCEN_REG 0x208
67 #define SATAPHYRESET_REG 0x20C
68 #define SATAPHYRDATA_REG 0x210
69 #define SATAPHYACK_REG 0x214
70
71 /* Physical layer control address command register (SATAPHYADDR) bits */
72 #define SATAPHYADDR_PHYRATEMODE BIT(10)
73 #define SATAPHYADDR_PHYCMD_READ BIT(9)
74 #define SATAPHYADDR_PHYCMD_WRITE BIT(8)
75
76 /* Physical layer control enable register (SATAPHYACCEN) bits */
77 #define SATAPHYACCEN_PHYLANE BIT(0)
78
79 /* Physical layer control reset register (SATAPHYRESET) bits */
80 #define SATAPHYRESET_PHYRST BIT(1)
81 #define SATAPHYRESET_PHYSRES BIT(0)
82
83 /* Physical layer control acknowledge register (SATAPHYACK) bits */
84 #define SATAPHYACK_PHYACK BIT(0)
85
86 /* Serial-ATA HOST control registers */
87 #define BISTCONF_REG 0x102C
88 #define SDATA_REG 0x1100
89 #define SSDEVCON_REG 0x1204
90
91 #define SCRSSTS_REG 0x1400
92 #define SCRSERR_REG 0x1404
93 #define SCRSCON_REG 0x1408
94 #define SCRSACT_REG 0x140C
95
96 #define SATAINTSTAT_REG 0x1508
97 #define SATAINTMASK_REG 0x150C
98
99 /* SATA INT status register (SATAINTSTAT) bits */
100 #define SATAINTSTAT_SERR BIT(3)
101 #define SATAINTSTAT_ATA BIT(0)
102
103 /* SATA INT mask register (SATAINTSTAT) bits */
104 #define SATAINTMASK_SERRMSK BIT(3)
105 #define SATAINTMASK_ERRMSK BIT(2)
106 #define SATAINTMASK_ERRCRTMSK BIT(1)
107 #define SATAINTMASK_ATAMSK BIT(0)
108 #define SATAINTMASK_ALL_GEN1 0x7ff
109 #define SATAINTMASK_ALL_GEN2 0xfff
110
111 #define SATA_RCAR_INT_MASK (SATAINTMASK_SERRMSK | \
112 SATAINTMASK_ATAMSK)
113
114 /* Physical Layer Control Registers */
115 #define SATAPCTLR1_REG 0x43
116 #define SATAPCTLR2_REG 0x52
117 #define SATAPCTLR3_REG 0x5A
118 #define SATAPCTLR4_REG 0x60
119
120 /* Descriptor table word 0 bit (when DTA32M = 1) */
121 #define SATA_RCAR_DTEND BIT(0)
122
123 #define SATA_RCAR_DMA_BOUNDARY 0x1FFFFFFFUL
124
125 /* Gen2 Physical Layer Control Registers */
126 #define RCAR_GEN2_PHY_CTL1_REG 0x1704
127 #define RCAR_GEN2_PHY_CTL1 0x34180002
128 #define RCAR_GEN2_PHY_CTL1_SS 0xC180 /* Spread Spectrum */
129
130 #define RCAR_GEN2_PHY_CTL2_REG 0x170C
131 #define RCAR_GEN2_PHY_CTL2 0x00002303
132
133 #define RCAR_GEN2_PHY_CTL3_REG 0x171C
134 #define RCAR_GEN2_PHY_CTL3 0x000B0194
135
136 #define RCAR_GEN2_PHY_CTL4_REG 0x1724
137 #define RCAR_GEN2_PHY_CTL4 0x00030994
138
139 #define RCAR_GEN2_PHY_CTL5_REG 0x1740
140 #define RCAR_GEN2_PHY_CTL5 0x03004001
141 #define RCAR_GEN2_PHY_CTL5_DC BIT(1) /* DC connection */
142 #define RCAR_GEN2_PHY_CTL5_TR BIT(2) /* Termination Resistor */
143
144 enum sata_rcar_type {
145 RCAR_GEN1_SATA,
146 RCAR_GEN2_SATA,
147 RCAR_GEN3_SATA,
148 RCAR_R8A7790_ES1_SATA,
149 };
150
151 struct sata_rcar_priv {
152 void __iomem *base;
153 u32 sataint_mask;
154 enum sata_rcar_type type;
155 };
156
sata_rcar_gen1_phy_preinit(struct sata_rcar_priv * priv)157 static void sata_rcar_gen1_phy_preinit(struct sata_rcar_priv *priv)
158 {
159 void __iomem *base = priv->base;
160
161 /* idle state */
162 iowrite32(0, base + SATAPHYADDR_REG);
163 /* reset */
164 iowrite32(SATAPHYRESET_PHYRST, base + SATAPHYRESET_REG);
165 udelay(10);
166 /* deassert reset */
167 iowrite32(0, base + SATAPHYRESET_REG);
168 }
169
sata_rcar_gen1_phy_write(struct sata_rcar_priv * priv,u16 reg,u32 val,int group)170 static void sata_rcar_gen1_phy_write(struct sata_rcar_priv *priv, u16 reg,
171 u32 val, int group)
172 {
173 void __iomem *base = priv->base;
174 int timeout;
175
176 /* deassert reset */
177 iowrite32(0, base + SATAPHYRESET_REG);
178 /* lane 1 */
179 iowrite32(SATAPHYACCEN_PHYLANE, base + SATAPHYACCEN_REG);
180 /* write phy register value */
181 iowrite32(val, base + SATAPHYWDATA_REG);
182 /* set register group */
183 if (group)
184 reg |= SATAPHYADDR_PHYRATEMODE;
185 /* write command */
186 iowrite32(SATAPHYADDR_PHYCMD_WRITE | reg, base + SATAPHYADDR_REG);
187 /* wait for ack */
188 for (timeout = 0; timeout < 100; timeout++) {
189 val = ioread32(base + SATAPHYACK_REG);
190 if (val & SATAPHYACK_PHYACK)
191 break;
192 }
193 if (timeout >= 100)
194 pr_err("%s timeout\n", __func__);
195 /* idle state */
196 iowrite32(0, base + SATAPHYADDR_REG);
197 }
198
sata_rcar_gen1_phy_init(struct sata_rcar_priv * priv)199 static void sata_rcar_gen1_phy_init(struct sata_rcar_priv *priv)
200 {
201 sata_rcar_gen1_phy_preinit(priv);
202 sata_rcar_gen1_phy_write(priv, SATAPCTLR1_REG, 0x00200188, 0);
203 sata_rcar_gen1_phy_write(priv, SATAPCTLR1_REG, 0x00200188, 1);
204 sata_rcar_gen1_phy_write(priv, SATAPCTLR3_REG, 0x0000A061, 0);
205 sata_rcar_gen1_phy_write(priv, SATAPCTLR2_REG, 0x20000000, 0);
206 sata_rcar_gen1_phy_write(priv, SATAPCTLR2_REG, 0x20000000, 1);
207 sata_rcar_gen1_phy_write(priv, SATAPCTLR4_REG, 0x28E80000, 0);
208 }
209
sata_rcar_gen2_phy_init(struct sata_rcar_priv * priv)210 static void sata_rcar_gen2_phy_init(struct sata_rcar_priv *priv)
211 {
212 void __iomem *base = priv->base;
213
214 iowrite32(RCAR_GEN2_PHY_CTL1, base + RCAR_GEN2_PHY_CTL1_REG);
215 iowrite32(RCAR_GEN2_PHY_CTL2, base + RCAR_GEN2_PHY_CTL2_REG);
216 iowrite32(RCAR_GEN2_PHY_CTL3, base + RCAR_GEN2_PHY_CTL3_REG);
217 iowrite32(RCAR_GEN2_PHY_CTL4, base + RCAR_GEN2_PHY_CTL4_REG);
218 iowrite32(RCAR_GEN2_PHY_CTL5 | RCAR_GEN2_PHY_CTL5_DC |
219 RCAR_GEN2_PHY_CTL5_TR, base + RCAR_GEN2_PHY_CTL5_REG);
220 }
221
sata_rcar_freeze(struct ata_port * ap)222 static void sata_rcar_freeze(struct ata_port *ap)
223 {
224 struct sata_rcar_priv *priv = ap->host->private_data;
225
226 /* mask */
227 iowrite32(priv->sataint_mask, priv->base + SATAINTMASK_REG);
228
229 ata_sff_freeze(ap);
230 }
231
sata_rcar_thaw(struct ata_port * ap)232 static void sata_rcar_thaw(struct ata_port *ap)
233 {
234 struct sata_rcar_priv *priv = ap->host->private_data;
235 void __iomem *base = priv->base;
236
237 /* ack */
238 iowrite32(~(u32)SATA_RCAR_INT_MASK, base + SATAINTSTAT_REG);
239
240 ata_sff_thaw(ap);
241
242 /* unmask */
243 iowrite32(priv->sataint_mask & ~SATA_RCAR_INT_MASK, base + SATAINTMASK_REG);
244 }
245
sata_rcar_ioread16_rep(void __iomem * reg,void * buffer,int count)246 static void sata_rcar_ioread16_rep(void __iomem *reg, void *buffer, int count)
247 {
248 u16 *ptr = buffer;
249
250 while (count--) {
251 u16 data = ioread32(reg);
252
253 *ptr++ = data;
254 }
255 }
256
sata_rcar_iowrite16_rep(void __iomem * reg,void * buffer,int count)257 static void sata_rcar_iowrite16_rep(void __iomem *reg, void *buffer, int count)
258 {
259 const u16 *ptr = buffer;
260
261 while (count--)
262 iowrite32(*ptr++, reg);
263 }
264
sata_rcar_check_status(struct ata_port * ap)265 static u8 sata_rcar_check_status(struct ata_port *ap)
266 {
267 return ioread32(ap->ioaddr.status_addr);
268 }
269
sata_rcar_check_altstatus(struct ata_port * ap)270 static u8 sata_rcar_check_altstatus(struct ata_port *ap)
271 {
272 return ioread32(ap->ioaddr.altstatus_addr);
273 }
274
sata_rcar_set_devctl(struct ata_port * ap,u8 ctl)275 static void sata_rcar_set_devctl(struct ata_port *ap, u8 ctl)
276 {
277 iowrite32(ctl, ap->ioaddr.ctl_addr);
278 }
279
sata_rcar_dev_select(struct ata_port * ap,unsigned int device)280 static void sata_rcar_dev_select(struct ata_port *ap, unsigned int device)
281 {
282 iowrite32(ATA_DEVICE_OBS, ap->ioaddr.device_addr);
283 ata_sff_pause(ap); /* needed; also flushes, for mmio */
284 }
285
sata_rcar_ata_devchk(struct ata_port * ap,unsigned int device)286 static unsigned int sata_rcar_ata_devchk(struct ata_port *ap,
287 unsigned int device)
288 {
289 struct ata_ioports *ioaddr = &ap->ioaddr;
290 u8 nsect, lbal;
291
292 sata_rcar_dev_select(ap, device);
293
294 iowrite32(0x55, ioaddr->nsect_addr);
295 iowrite32(0xaa, ioaddr->lbal_addr);
296
297 iowrite32(0xaa, ioaddr->nsect_addr);
298 iowrite32(0x55, ioaddr->lbal_addr);
299
300 iowrite32(0x55, ioaddr->nsect_addr);
301 iowrite32(0xaa, ioaddr->lbal_addr);
302
303 nsect = ioread32(ioaddr->nsect_addr);
304 lbal = ioread32(ioaddr->lbal_addr);
305
306 if (nsect == 0x55 && lbal == 0xaa)
307 return 1; /* found a device */
308
309 return 0; /* nothing found */
310 }
311
sata_rcar_wait_after_reset(struct ata_link * link,unsigned long deadline)312 static int sata_rcar_wait_after_reset(struct ata_link *link,
313 unsigned long deadline)
314 {
315 struct ata_port *ap = link->ap;
316
317 ata_msleep(ap, ATA_WAIT_AFTER_RESET);
318
319 return ata_sff_wait_ready(link, deadline);
320 }
321
sata_rcar_bus_softreset(struct ata_port * ap,unsigned long deadline)322 static int sata_rcar_bus_softreset(struct ata_port *ap, unsigned long deadline)
323 {
324 struct ata_ioports *ioaddr = &ap->ioaddr;
325
326 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
327
328 /* software reset. causes dev0 to be selected */
329 iowrite32(ap->ctl, ioaddr->ctl_addr);
330 udelay(20);
331 iowrite32(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
332 udelay(20);
333 iowrite32(ap->ctl, ioaddr->ctl_addr);
334 ap->last_ctl = ap->ctl;
335
336 /* wait the port to become ready */
337 return sata_rcar_wait_after_reset(&ap->link, deadline);
338 }
339
sata_rcar_softreset(struct ata_link * link,unsigned int * classes,unsigned long deadline)340 static int sata_rcar_softreset(struct ata_link *link, unsigned int *classes,
341 unsigned long deadline)
342 {
343 struct ata_port *ap = link->ap;
344 unsigned int devmask = 0;
345 int rc;
346 u8 err;
347
348 /* determine if device 0 is present */
349 if (sata_rcar_ata_devchk(ap, 0))
350 devmask |= 1 << 0;
351
352 /* issue bus reset */
353 DPRINTK("about to softreset, devmask=%x\n", devmask);
354 rc = sata_rcar_bus_softreset(ap, deadline);
355 /* if link is occupied, -ENODEV too is an error */
356 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
357 ata_link_err(link, "SRST failed (errno=%d)\n", rc);
358 return rc;
359 }
360
361 /* determine by signature whether we have ATA or ATAPI devices */
362 classes[0] = ata_sff_dev_classify(&link->device[0], devmask, &err);
363
364 DPRINTK("classes[0]=%u\n", classes[0]);
365 return 0;
366 }
367
sata_rcar_tf_load(struct ata_port * ap,const struct ata_taskfile * tf)368 static void sata_rcar_tf_load(struct ata_port *ap,
369 const struct ata_taskfile *tf)
370 {
371 struct ata_ioports *ioaddr = &ap->ioaddr;
372 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
373
374 if (tf->ctl != ap->last_ctl) {
375 iowrite32(tf->ctl, ioaddr->ctl_addr);
376 ap->last_ctl = tf->ctl;
377 ata_wait_idle(ap);
378 }
379
380 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
381 iowrite32(tf->hob_feature, ioaddr->feature_addr);
382 iowrite32(tf->hob_nsect, ioaddr->nsect_addr);
383 iowrite32(tf->hob_lbal, ioaddr->lbal_addr);
384 iowrite32(tf->hob_lbam, ioaddr->lbam_addr);
385 iowrite32(tf->hob_lbah, ioaddr->lbah_addr);
386 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
387 tf->hob_feature,
388 tf->hob_nsect,
389 tf->hob_lbal,
390 tf->hob_lbam,
391 tf->hob_lbah);
392 }
393
394 if (is_addr) {
395 iowrite32(tf->feature, ioaddr->feature_addr);
396 iowrite32(tf->nsect, ioaddr->nsect_addr);
397 iowrite32(tf->lbal, ioaddr->lbal_addr);
398 iowrite32(tf->lbam, ioaddr->lbam_addr);
399 iowrite32(tf->lbah, ioaddr->lbah_addr);
400 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
401 tf->feature,
402 tf->nsect,
403 tf->lbal,
404 tf->lbam,
405 tf->lbah);
406 }
407
408 if (tf->flags & ATA_TFLAG_DEVICE) {
409 iowrite32(tf->device, ioaddr->device_addr);
410 VPRINTK("device 0x%X\n", tf->device);
411 }
412
413 ata_wait_idle(ap);
414 }
415
sata_rcar_tf_read(struct ata_port * ap,struct ata_taskfile * tf)416 static void sata_rcar_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
417 {
418 struct ata_ioports *ioaddr = &ap->ioaddr;
419
420 tf->command = sata_rcar_check_status(ap);
421 tf->feature = ioread32(ioaddr->error_addr);
422 tf->nsect = ioread32(ioaddr->nsect_addr);
423 tf->lbal = ioread32(ioaddr->lbal_addr);
424 tf->lbam = ioread32(ioaddr->lbam_addr);
425 tf->lbah = ioread32(ioaddr->lbah_addr);
426 tf->device = ioread32(ioaddr->device_addr);
427
428 if (tf->flags & ATA_TFLAG_LBA48) {
429 iowrite32(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
430 tf->hob_feature = ioread32(ioaddr->error_addr);
431 tf->hob_nsect = ioread32(ioaddr->nsect_addr);
432 tf->hob_lbal = ioread32(ioaddr->lbal_addr);
433 tf->hob_lbam = ioread32(ioaddr->lbam_addr);
434 tf->hob_lbah = ioread32(ioaddr->lbah_addr);
435 iowrite32(tf->ctl, ioaddr->ctl_addr);
436 ap->last_ctl = tf->ctl;
437 }
438 }
439
sata_rcar_exec_command(struct ata_port * ap,const struct ata_taskfile * tf)440 static void sata_rcar_exec_command(struct ata_port *ap,
441 const struct ata_taskfile *tf)
442 {
443 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
444
445 iowrite32(tf->command, ap->ioaddr.command_addr);
446 ata_sff_pause(ap);
447 }
448
sata_rcar_data_xfer(struct ata_queued_cmd * qc,unsigned char * buf,unsigned int buflen,int rw)449 static unsigned int sata_rcar_data_xfer(struct ata_queued_cmd *qc,
450 unsigned char *buf,
451 unsigned int buflen, int rw)
452 {
453 struct ata_port *ap = qc->dev->link->ap;
454 void __iomem *data_addr = ap->ioaddr.data_addr;
455 unsigned int words = buflen >> 1;
456
457 /* Transfer multiple of 2 bytes */
458 if (rw == READ)
459 sata_rcar_ioread16_rep(data_addr, buf, words);
460 else
461 sata_rcar_iowrite16_rep(data_addr, buf, words);
462
463 /* Transfer trailing byte, if any. */
464 if (unlikely(buflen & 0x01)) {
465 unsigned char pad[2] = { };
466
467 /* Point buf to the tail of buffer */
468 buf += buflen - 1;
469
470 /*
471 * Use io*16_rep() accessors here as well to avoid pointlessly
472 * swapping bytes to and from on the big endian machines...
473 */
474 if (rw == READ) {
475 sata_rcar_ioread16_rep(data_addr, pad, 1);
476 *buf = pad[0];
477 } else {
478 pad[0] = *buf;
479 sata_rcar_iowrite16_rep(data_addr, pad, 1);
480 }
481 words++;
482 }
483
484 return words << 1;
485 }
486
sata_rcar_drain_fifo(struct ata_queued_cmd * qc)487 static void sata_rcar_drain_fifo(struct ata_queued_cmd *qc)
488 {
489 int count;
490 struct ata_port *ap;
491
492 /* We only need to flush incoming data when a command was running */
493 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
494 return;
495
496 ap = qc->ap;
497 /* Drain up to 64K of data before we give up this recovery method */
498 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ) &&
499 count < 65536; count += 2)
500 ioread32(ap->ioaddr.data_addr);
501
502 /* Can become DEBUG later */
503 if (count)
504 ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
505 }
506
sata_rcar_scr_read(struct ata_link * link,unsigned int sc_reg,u32 * val)507 static int sata_rcar_scr_read(struct ata_link *link, unsigned int sc_reg,
508 u32 *val)
509 {
510 if (sc_reg > SCR_ACTIVE)
511 return -EINVAL;
512
513 *val = ioread32(link->ap->ioaddr.scr_addr + (sc_reg << 2));
514 return 0;
515 }
516
sata_rcar_scr_write(struct ata_link * link,unsigned int sc_reg,u32 val)517 static int sata_rcar_scr_write(struct ata_link *link, unsigned int sc_reg,
518 u32 val)
519 {
520 if (sc_reg > SCR_ACTIVE)
521 return -EINVAL;
522
523 iowrite32(val, link->ap->ioaddr.scr_addr + (sc_reg << 2));
524 return 0;
525 }
526
sata_rcar_bmdma_fill_sg(struct ata_queued_cmd * qc)527 static void sata_rcar_bmdma_fill_sg(struct ata_queued_cmd *qc)
528 {
529 struct ata_port *ap = qc->ap;
530 struct ata_bmdma_prd *prd = ap->bmdma_prd;
531 struct scatterlist *sg;
532 unsigned int si;
533
534 for_each_sg(qc->sg, sg, qc->n_elem, si) {
535 u32 addr, sg_len;
536
537 /*
538 * Note: h/w doesn't support 64-bit, so we unconditionally
539 * truncate dma_addr_t to u32.
540 */
541 addr = (u32)sg_dma_address(sg);
542 sg_len = sg_dma_len(sg);
543
544 prd[si].addr = cpu_to_le32(addr);
545 prd[si].flags_len = cpu_to_le32(sg_len);
546 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", si, addr, sg_len);
547 }
548
549 /* end-of-table flag */
550 prd[si - 1].addr |= cpu_to_le32(SATA_RCAR_DTEND);
551 }
552
sata_rcar_qc_prep(struct ata_queued_cmd * qc)553 static enum ata_completion_errors sata_rcar_qc_prep(struct ata_queued_cmd *qc)
554 {
555 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
556 return AC_ERR_OK;
557
558 sata_rcar_bmdma_fill_sg(qc);
559
560 return AC_ERR_OK;
561 }
562
sata_rcar_bmdma_setup(struct ata_queued_cmd * qc)563 static void sata_rcar_bmdma_setup(struct ata_queued_cmd *qc)
564 {
565 struct ata_port *ap = qc->ap;
566 unsigned int rw = qc->tf.flags & ATA_TFLAG_WRITE;
567 struct sata_rcar_priv *priv = ap->host->private_data;
568 void __iomem *base = priv->base;
569 u32 dmactl;
570
571 /* load PRD table addr. */
572 mb(); /* make sure PRD table writes are visible to controller */
573 iowrite32(ap->bmdma_prd_dma, base + ATAPI_DTB_ADR_REG);
574
575 /* specify data direction, triple-check start bit is clear */
576 dmactl = ioread32(base + ATAPI_CONTROL1_REG);
577 dmactl &= ~(ATAPI_CONTROL1_RW | ATAPI_CONTROL1_STOP);
578 if (dmactl & ATAPI_CONTROL1_START) {
579 dmactl &= ~ATAPI_CONTROL1_START;
580 dmactl |= ATAPI_CONTROL1_STOP;
581 }
582 if (!rw)
583 dmactl |= ATAPI_CONTROL1_RW;
584 iowrite32(dmactl, base + ATAPI_CONTROL1_REG);
585
586 /* issue r/w command */
587 ap->ops->sff_exec_command(ap, &qc->tf);
588 }
589
sata_rcar_bmdma_start(struct ata_queued_cmd * qc)590 static void sata_rcar_bmdma_start(struct ata_queued_cmd *qc)
591 {
592 struct ata_port *ap = qc->ap;
593 struct sata_rcar_priv *priv = ap->host->private_data;
594 void __iomem *base = priv->base;
595 u32 dmactl;
596
597 /* start host DMA transaction */
598 dmactl = ioread32(base + ATAPI_CONTROL1_REG);
599 dmactl &= ~ATAPI_CONTROL1_STOP;
600 dmactl |= ATAPI_CONTROL1_START;
601 iowrite32(dmactl, base + ATAPI_CONTROL1_REG);
602 }
603
sata_rcar_bmdma_stop(struct ata_queued_cmd * qc)604 static void sata_rcar_bmdma_stop(struct ata_queued_cmd *qc)
605 {
606 struct ata_port *ap = qc->ap;
607 struct sata_rcar_priv *priv = ap->host->private_data;
608 void __iomem *base = priv->base;
609 u32 dmactl;
610
611 /* force termination of DMA transfer if active */
612 dmactl = ioread32(base + ATAPI_CONTROL1_REG);
613 if (dmactl & ATAPI_CONTROL1_START) {
614 dmactl &= ~ATAPI_CONTROL1_START;
615 dmactl |= ATAPI_CONTROL1_STOP;
616 iowrite32(dmactl, base + ATAPI_CONTROL1_REG);
617 }
618
619 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
620 ata_sff_dma_pause(ap);
621 }
622
sata_rcar_bmdma_status(struct ata_port * ap)623 static u8 sata_rcar_bmdma_status(struct ata_port *ap)
624 {
625 struct sata_rcar_priv *priv = ap->host->private_data;
626 u8 host_stat = 0;
627 u32 status;
628
629 status = ioread32(priv->base + ATAPI_STATUS_REG);
630 if (status & ATAPI_STATUS_DEVINT)
631 host_stat |= ATA_DMA_INTR;
632 if (status & ATAPI_STATUS_ACT)
633 host_stat |= ATA_DMA_ACTIVE;
634
635 return host_stat;
636 }
637
638 static struct scsi_host_template sata_rcar_sht = {
639 ATA_BASE_SHT(DRV_NAME),
640 /*
641 * This controller allows transfer chunks up to 512MB which cross 64KB
642 * boundaries, therefore the DMA limits are more relaxed than standard
643 * ATA SFF.
644 */
645 .sg_tablesize = ATA_MAX_PRD,
646 .dma_boundary = SATA_RCAR_DMA_BOUNDARY,
647 };
648
649 static struct ata_port_operations sata_rcar_port_ops = {
650 .inherits = &ata_bmdma_port_ops,
651
652 .freeze = sata_rcar_freeze,
653 .thaw = sata_rcar_thaw,
654 .softreset = sata_rcar_softreset,
655
656 .scr_read = sata_rcar_scr_read,
657 .scr_write = sata_rcar_scr_write,
658
659 .sff_dev_select = sata_rcar_dev_select,
660 .sff_set_devctl = sata_rcar_set_devctl,
661 .sff_check_status = sata_rcar_check_status,
662 .sff_check_altstatus = sata_rcar_check_altstatus,
663 .sff_tf_load = sata_rcar_tf_load,
664 .sff_tf_read = sata_rcar_tf_read,
665 .sff_exec_command = sata_rcar_exec_command,
666 .sff_data_xfer = sata_rcar_data_xfer,
667 .sff_drain_fifo = sata_rcar_drain_fifo,
668
669 .qc_prep = sata_rcar_qc_prep,
670
671 .bmdma_setup = sata_rcar_bmdma_setup,
672 .bmdma_start = sata_rcar_bmdma_start,
673 .bmdma_stop = sata_rcar_bmdma_stop,
674 .bmdma_status = sata_rcar_bmdma_status,
675 };
676
sata_rcar_serr_interrupt(struct ata_port * ap)677 static void sata_rcar_serr_interrupt(struct ata_port *ap)
678 {
679 struct sata_rcar_priv *priv = ap->host->private_data;
680 struct ata_eh_info *ehi = &ap->link.eh_info;
681 int freeze = 0;
682 u32 serror;
683
684 serror = ioread32(priv->base + SCRSERR_REG);
685 if (!serror)
686 return;
687
688 DPRINTK("SError @host_intr: 0x%x\n", serror);
689
690 /* first, analyze and record host port events */
691 ata_ehi_clear_desc(ehi);
692
693 if (serror & (SERR_DEV_XCHG | SERR_PHYRDY_CHG)) {
694 /* Setup a soft-reset EH action */
695 ata_ehi_hotplugged(ehi);
696 ata_ehi_push_desc(ehi, "%s", "hotplug");
697
698 freeze = serror & SERR_COMM_WAKE ? 0 : 1;
699 }
700
701 /* freeze or abort */
702 if (freeze)
703 ata_port_freeze(ap);
704 else
705 ata_port_abort(ap);
706 }
707
sata_rcar_ata_interrupt(struct ata_port * ap)708 static void sata_rcar_ata_interrupt(struct ata_port *ap)
709 {
710 struct ata_queued_cmd *qc;
711 int handled = 0;
712
713 qc = ata_qc_from_tag(ap, ap->link.active_tag);
714 if (qc)
715 handled |= ata_bmdma_port_intr(ap, qc);
716
717 /* be sure to clear ATA interrupt */
718 if (!handled)
719 sata_rcar_check_status(ap);
720 }
721
sata_rcar_interrupt(int irq,void * dev_instance)722 static irqreturn_t sata_rcar_interrupt(int irq, void *dev_instance)
723 {
724 struct ata_host *host = dev_instance;
725 struct sata_rcar_priv *priv = host->private_data;
726 void __iomem *base = priv->base;
727 unsigned int handled = 0;
728 struct ata_port *ap;
729 u32 sataintstat;
730 unsigned long flags;
731
732 spin_lock_irqsave(&host->lock, flags);
733
734 sataintstat = ioread32(base + SATAINTSTAT_REG);
735 sataintstat &= SATA_RCAR_INT_MASK;
736 if (!sataintstat)
737 goto done;
738 /* ack */
739 iowrite32(~sataintstat & priv->sataint_mask, base + SATAINTSTAT_REG);
740
741 ap = host->ports[0];
742
743 if (sataintstat & SATAINTSTAT_ATA)
744 sata_rcar_ata_interrupt(ap);
745
746 if (sataintstat & SATAINTSTAT_SERR)
747 sata_rcar_serr_interrupt(ap);
748
749 handled = 1;
750 done:
751 spin_unlock_irqrestore(&host->lock, flags);
752
753 return IRQ_RETVAL(handled);
754 }
755
sata_rcar_setup_port(struct ata_host * host)756 static void sata_rcar_setup_port(struct ata_host *host)
757 {
758 struct ata_port *ap = host->ports[0];
759 struct ata_ioports *ioaddr = &ap->ioaddr;
760 struct sata_rcar_priv *priv = host->private_data;
761 void __iomem *base = priv->base;
762
763 ap->ops = &sata_rcar_port_ops;
764 ap->pio_mask = ATA_PIO4;
765 ap->udma_mask = ATA_UDMA6;
766 ap->flags |= ATA_FLAG_SATA;
767
768 if (priv->type == RCAR_R8A7790_ES1_SATA)
769 ap->flags |= ATA_FLAG_NO_DIPM;
770
771 ioaddr->cmd_addr = base + SDATA_REG;
772 ioaddr->ctl_addr = base + SSDEVCON_REG;
773 ioaddr->scr_addr = base + SCRSSTS_REG;
774 ioaddr->altstatus_addr = ioaddr->ctl_addr;
775
776 ioaddr->data_addr = ioaddr->cmd_addr + (ATA_REG_DATA << 2);
777 ioaddr->error_addr = ioaddr->cmd_addr + (ATA_REG_ERR << 2);
778 ioaddr->feature_addr = ioaddr->cmd_addr + (ATA_REG_FEATURE << 2);
779 ioaddr->nsect_addr = ioaddr->cmd_addr + (ATA_REG_NSECT << 2);
780 ioaddr->lbal_addr = ioaddr->cmd_addr + (ATA_REG_LBAL << 2);
781 ioaddr->lbam_addr = ioaddr->cmd_addr + (ATA_REG_LBAM << 2);
782 ioaddr->lbah_addr = ioaddr->cmd_addr + (ATA_REG_LBAH << 2);
783 ioaddr->device_addr = ioaddr->cmd_addr + (ATA_REG_DEVICE << 2);
784 ioaddr->status_addr = ioaddr->cmd_addr + (ATA_REG_STATUS << 2);
785 ioaddr->command_addr = ioaddr->cmd_addr + (ATA_REG_CMD << 2);
786 }
787
sata_rcar_init_module(struct sata_rcar_priv * priv)788 static void sata_rcar_init_module(struct sata_rcar_priv *priv)
789 {
790 void __iomem *base = priv->base;
791 u32 val;
792
793 /* SATA-IP reset state */
794 val = ioread32(base + ATAPI_CONTROL1_REG);
795 val |= ATAPI_CONTROL1_RESET;
796 iowrite32(val, base + ATAPI_CONTROL1_REG);
797
798 /* ISM mode, PRD mode, DTEND flag at bit 0 */
799 val = ioread32(base + ATAPI_CONTROL1_REG);
800 val |= ATAPI_CONTROL1_ISM;
801 val |= ATAPI_CONTROL1_DESE;
802 val |= ATAPI_CONTROL1_DTA32M;
803 iowrite32(val, base + ATAPI_CONTROL1_REG);
804
805 /* Release the SATA-IP from the reset state */
806 val = ioread32(base + ATAPI_CONTROL1_REG);
807 val &= ~ATAPI_CONTROL1_RESET;
808 iowrite32(val, base + ATAPI_CONTROL1_REG);
809
810 /* ack and mask */
811 iowrite32(0, base + SATAINTSTAT_REG);
812 iowrite32(priv->sataint_mask, base + SATAINTMASK_REG);
813
814 /* enable interrupts */
815 iowrite32(ATAPI_INT_ENABLE_SATAINT, base + ATAPI_INT_ENABLE_REG);
816 }
817
sata_rcar_init_controller(struct ata_host * host)818 static void sata_rcar_init_controller(struct ata_host *host)
819 {
820 struct sata_rcar_priv *priv = host->private_data;
821
822 priv->sataint_mask = SATAINTMASK_ALL_GEN2;
823
824 /* reset and setup phy */
825 switch (priv->type) {
826 case RCAR_GEN1_SATA:
827 priv->sataint_mask = SATAINTMASK_ALL_GEN1;
828 sata_rcar_gen1_phy_init(priv);
829 break;
830 case RCAR_GEN2_SATA:
831 case RCAR_R8A7790_ES1_SATA:
832 sata_rcar_gen2_phy_init(priv);
833 break;
834 case RCAR_GEN3_SATA:
835 break;
836 default:
837 dev_warn(host->dev, "SATA phy is not initialized\n");
838 break;
839 }
840
841 sata_rcar_init_module(priv);
842 }
843
844 static const struct of_device_id sata_rcar_match[] = {
845 {
846 /* Deprecated by "renesas,sata-r8a7779" */
847 .compatible = "renesas,rcar-sata",
848 .data = (void *)RCAR_GEN1_SATA,
849 },
850 {
851 .compatible = "renesas,sata-r8a7779",
852 .data = (void *)RCAR_GEN1_SATA,
853 },
854 {
855 .compatible = "renesas,sata-r8a7790",
856 .data = (void *)RCAR_GEN2_SATA
857 },
858 {
859 .compatible = "renesas,sata-r8a7790-es1",
860 .data = (void *)RCAR_R8A7790_ES1_SATA
861 },
862 {
863 .compatible = "renesas,sata-r8a7791",
864 .data = (void *)RCAR_GEN2_SATA
865 },
866 {
867 .compatible = "renesas,sata-r8a7793",
868 .data = (void *)RCAR_GEN2_SATA
869 },
870 {
871 .compatible = "renesas,sata-r8a7795",
872 .data = (void *)RCAR_GEN3_SATA
873 },
874 {
875 .compatible = "renesas,rcar-gen2-sata",
876 .data = (void *)RCAR_GEN2_SATA
877 },
878 {
879 .compatible = "renesas,rcar-gen3-sata",
880 .data = (void *)RCAR_GEN3_SATA
881 },
882 { },
883 };
884 MODULE_DEVICE_TABLE(of, sata_rcar_match);
885
sata_rcar_probe(struct platform_device * pdev)886 static int sata_rcar_probe(struct platform_device *pdev)
887 {
888 struct device *dev = &pdev->dev;
889 struct ata_host *host;
890 struct sata_rcar_priv *priv;
891 struct resource *mem;
892 int irq;
893 int ret = 0;
894
895 irq = platform_get_irq(pdev, 0);
896 if (irq < 0)
897 return irq;
898 if (!irq)
899 return -EINVAL;
900
901 priv = devm_kzalloc(dev, sizeof(struct sata_rcar_priv), GFP_KERNEL);
902 if (!priv)
903 return -ENOMEM;
904
905 priv->type = (enum sata_rcar_type)of_device_get_match_data(dev);
906
907 pm_runtime_enable(dev);
908 ret = pm_runtime_get_sync(dev);
909 if (ret < 0)
910 goto err_pm_put;
911
912 host = ata_host_alloc(dev, 1);
913 if (!host) {
914 ret = -ENOMEM;
915 goto err_pm_put;
916 }
917
918 host->private_data = priv;
919
920 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
921 priv->base = devm_ioremap_resource(dev, mem);
922 if (IS_ERR(priv->base)) {
923 ret = PTR_ERR(priv->base);
924 goto err_pm_put;
925 }
926
927 /* setup port */
928 sata_rcar_setup_port(host);
929
930 /* initialize host controller */
931 sata_rcar_init_controller(host);
932
933 ret = ata_host_activate(host, irq, sata_rcar_interrupt, 0,
934 &sata_rcar_sht);
935 if (!ret)
936 return 0;
937
938 err_pm_put:
939 pm_runtime_put(dev);
940 pm_runtime_disable(dev);
941 return ret;
942 }
943
sata_rcar_remove(struct platform_device * pdev)944 static int sata_rcar_remove(struct platform_device *pdev)
945 {
946 struct ata_host *host = platform_get_drvdata(pdev);
947 struct sata_rcar_priv *priv = host->private_data;
948 void __iomem *base = priv->base;
949
950 ata_host_detach(host);
951
952 /* disable interrupts */
953 iowrite32(0, base + ATAPI_INT_ENABLE_REG);
954 /* ack and mask */
955 iowrite32(0, base + SATAINTSTAT_REG);
956 iowrite32(priv->sataint_mask, base + SATAINTMASK_REG);
957
958 pm_runtime_put(&pdev->dev);
959 pm_runtime_disable(&pdev->dev);
960
961 return 0;
962 }
963
964 #ifdef CONFIG_PM_SLEEP
sata_rcar_suspend(struct device * dev)965 static int sata_rcar_suspend(struct device *dev)
966 {
967 struct ata_host *host = dev_get_drvdata(dev);
968 struct sata_rcar_priv *priv = host->private_data;
969 void __iomem *base = priv->base;
970 int ret;
971
972 ret = ata_host_suspend(host, PMSG_SUSPEND);
973 if (!ret) {
974 /* disable interrupts */
975 iowrite32(0, base + ATAPI_INT_ENABLE_REG);
976 /* mask */
977 iowrite32(priv->sataint_mask, base + SATAINTMASK_REG);
978
979 pm_runtime_put(dev);
980 }
981
982 return ret;
983 }
984
sata_rcar_resume(struct device * dev)985 static int sata_rcar_resume(struct device *dev)
986 {
987 struct ata_host *host = dev_get_drvdata(dev);
988 struct sata_rcar_priv *priv = host->private_data;
989 void __iomem *base = priv->base;
990 int ret;
991
992 ret = pm_runtime_get_sync(dev);
993 if (ret < 0) {
994 pm_runtime_put(dev);
995 return ret;
996 }
997
998 if (priv->type == RCAR_GEN3_SATA) {
999 sata_rcar_init_module(priv);
1000 } else {
1001 /* ack and mask */
1002 iowrite32(0, base + SATAINTSTAT_REG);
1003 iowrite32(priv->sataint_mask, base + SATAINTMASK_REG);
1004
1005 /* enable interrupts */
1006 iowrite32(ATAPI_INT_ENABLE_SATAINT,
1007 base + ATAPI_INT_ENABLE_REG);
1008 }
1009
1010 ata_host_resume(host);
1011
1012 return 0;
1013 }
1014
sata_rcar_restore(struct device * dev)1015 static int sata_rcar_restore(struct device *dev)
1016 {
1017 struct ata_host *host = dev_get_drvdata(dev);
1018 int ret;
1019
1020 ret = pm_runtime_get_sync(dev);
1021 if (ret < 0) {
1022 pm_runtime_put(dev);
1023 return ret;
1024 }
1025
1026 sata_rcar_setup_port(host);
1027
1028 /* initialize host controller */
1029 sata_rcar_init_controller(host);
1030
1031 ata_host_resume(host);
1032
1033 return 0;
1034 }
1035
1036 static const struct dev_pm_ops sata_rcar_pm_ops = {
1037 .suspend = sata_rcar_suspend,
1038 .resume = sata_rcar_resume,
1039 .freeze = sata_rcar_suspend,
1040 .thaw = sata_rcar_resume,
1041 .poweroff = sata_rcar_suspend,
1042 .restore = sata_rcar_restore,
1043 };
1044 #endif
1045
1046 static struct platform_driver sata_rcar_driver = {
1047 .probe = sata_rcar_probe,
1048 .remove = sata_rcar_remove,
1049 .driver = {
1050 .name = DRV_NAME,
1051 .of_match_table = sata_rcar_match,
1052 #ifdef CONFIG_PM_SLEEP
1053 .pm = &sata_rcar_pm_ops,
1054 #endif
1055 },
1056 };
1057
1058 module_platform_driver(sata_rcar_driver);
1059
1060 MODULE_LICENSE("GPL");
1061 MODULE_AUTHOR("Vladimir Barinov");
1062 MODULE_DESCRIPTION("Renesas R-Car SATA controller low level driver");
1063