1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * V4L2 fwnode binding parsing library
4 *
5 * The origins of the V4L2 fwnode library are in V4L2 OF library that
6 * formerly was located in v4l2-of.c.
7 *
8 * Copyright (c) 2016 Intel Corporation.
9 * Author: Sakari Ailus <sakari.ailus@linux.intel.com>
10 *
11 * Copyright (C) 2012 - 2013 Samsung Electronics Co., Ltd.
12 * Author: Sylwester Nawrocki <s.nawrocki@samsung.com>
13 *
14 * Copyright (C) 2012 Renesas Electronics Corp.
15 * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
16 */
17 #include <linux/acpi.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/property.h>
23 #include <linux/slab.h>
24 #include <linux/string.h>
25 #include <linux/types.h>
26
27 #include <media/v4l2-async.h>
28 #include <media/v4l2-fwnode.h>
29 #include <media/v4l2-subdev.h>
30
31 enum v4l2_fwnode_bus_type {
32 V4L2_FWNODE_BUS_TYPE_GUESS = 0,
33 V4L2_FWNODE_BUS_TYPE_CSI2_CPHY,
34 V4L2_FWNODE_BUS_TYPE_CSI1,
35 V4L2_FWNODE_BUS_TYPE_CCP2,
36 V4L2_FWNODE_BUS_TYPE_CSI2_DPHY,
37 V4L2_FWNODE_BUS_TYPE_PARALLEL,
38 V4L2_FWNODE_BUS_TYPE_BT656,
39 NR_OF_V4L2_FWNODE_BUS_TYPE,
40 };
41
42 static const struct v4l2_fwnode_bus_conv {
43 enum v4l2_fwnode_bus_type fwnode_bus_type;
44 enum v4l2_mbus_type mbus_type;
45 const char *name;
46 } buses[] = {
47 {
48 V4L2_FWNODE_BUS_TYPE_GUESS,
49 V4L2_MBUS_UNKNOWN,
50 "not specified",
51 }, {
52 V4L2_FWNODE_BUS_TYPE_CSI2_CPHY,
53 V4L2_MBUS_CSI2_CPHY,
54 "MIPI CSI-2 C-PHY",
55 }, {
56 V4L2_FWNODE_BUS_TYPE_CSI1,
57 V4L2_MBUS_CSI1,
58 "MIPI CSI-1",
59 }, {
60 V4L2_FWNODE_BUS_TYPE_CCP2,
61 V4L2_MBUS_CCP2,
62 "compact camera port 2",
63 }, {
64 V4L2_FWNODE_BUS_TYPE_CSI2_DPHY,
65 V4L2_MBUS_CSI2_DPHY,
66 "MIPI CSI-2 D-PHY",
67 }, {
68 V4L2_FWNODE_BUS_TYPE_PARALLEL,
69 V4L2_MBUS_PARALLEL,
70 "parallel",
71 }, {
72 V4L2_FWNODE_BUS_TYPE_BT656,
73 V4L2_MBUS_BT656,
74 "Bt.656",
75 }
76 };
77
78 static const struct v4l2_fwnode_bus_conv *
get_v4l2_fwnode_bus_conv_by_fwnode_bus(enum v4l2_fwnode_bus_type type)79 get_v4l2_fwnode_bus_conv_by_fwnode_bus(enum v4l2_fwnode_bus_type type)
80 {
81 unsigned int i;
82
83 for (i = 0; i < ARRAY_SIZE(buses); i++)
84 if (buses[i].fwnode_bus_type == type)
85 return &buses[i];
86
87 return NULL;
88 }
89
90 static enum v4l2_mbus_type
v4l2_fwnode_bus_type_to_mbus(enum v4l2_fwnode_bus_type type)91 v4l2_fwnode_bus_type_to_mbus(enum v4l2_fwnode_bus_type type)
92 {
93 const struct v4l2_fwnode_bus_conv *conv =
94 get_v4l2_fwnode_bus_conv_by_fwnode_bus(type);
95
96 return conv ? conv->mbus_type : V4L2_MBUS_UNKNOWN;
97 }
98
99 static const char *
v4l2_fwnode_bus_type_to_string(enum v4l2_fwnode_bus_type type)100 v4l2_fwnode_bus_type_to_string(enum v4l2_fwnode_bus_type type)
101 {
102 const struct v4l2_fwnode_bus_conv *conv =
103 get_v4l2_fwnode_bus_conv_by_fwnode_bus(type);
104
105 return conv ? conv->name : "not found";
106 }
107
108 static const struct v4l2_fwnode_bus_conv *
get_v4l2_fwnode_bus_conv_by_mbus(enum v4l2_mbus_type type)109 get_v4l2_fwnode_bus_conv_by_mbus(enum v4l2_mbus_type type)
110 {
111 unsigned int i;
112
113 for (i = 0; i < ARRAY_SIZE(buses); i++)
114 if (buses[i].mbus_type == type)
115 return &buses[i];
116
117 return NULL;
118 }
119
120 static const char *
v4l2_fwnode_mbus_type_to_string(enum v4l2_mbus_type type)121 v4l2_fwnode_mbus_type_to_string(enum v4l2_mbus_type type)
122 {
123 const struct v4l2_fwnode_bus_conv *conv =
124 get_v4l2_fwnode_bus_conv_by_mbus(type);
125
126 return conv ? conv->name : "not found";
127 }
128
v4l2_fwnode_endpoint_parse_csi2_bus(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep,enum v4l2_mbus_type bus_type)129 static int v4l2_fwnode_endpoint_parse_csi2_bus(struct fwnode_handle *fwnode,
130 struct v4l2_fwnode_endpoint *vep,
131 enum v4l2_mbus_type bus_type)
132 {
133 struct v4l2_fwnode_bus_mipi_csi2 *bus = &vep->bus.mipi_csi2;
134 bool have_clk_lane = false, have_data_lanes = false,
135 have_lane_polarities = false;
136 unsigned int flags = 0, lanes_used = 0;
137 u32 array[1 + V4L2_FWNODE_CSI2_MAX_DATA_LANES];
138 u32 clock_lane = 0;
139 unsigned int num_data_lanes = 0;
140 bool use_default_lane_mapping = false;
141 unsigned int i;
142 u32 v;
143 int rval;
144
145 if (bus_type == V4L2_MBUS_CSI2_DPHY ||
146 bus_type == V4L2_MBUS_CSI2_CPHY) {
147 use_default_lane_mapping = true;
148
149 num_data_lanes = min_t(u32, bus->num_data_lanes,
150 V4L2_FWNODE_CSI2_MAX_DATA_LANES);
151
152 clock_lane = bus->clock_lane;
153 if (clock_lane)
154 use_default_lane_mapping = false;
155
156 for (i = 0; i < num_data_lanes; i++) {
157 array[i] = bus->data_lanes[i];
158 if (array[i])
159 use_default_lane_mapping = false;
160 }
161
162 if (use_default_lane_mapping)
163 pr_debug("no lane mapping given, using defaults\n");
164 }
165
166 rval = fwnode_property_count_u32(fwnode, "data-lanes");
167 if (rval > 0) {
168 num_data_lanes =
169 min_t(int, V4L2_FWNODE_CSI2_MAX_DATA_LANES, rval);
170
171 fwnode_property_read_u32_array(fwnode, "data-lanes", array,
172 num_data_lanes);
173
174 have_data_lanes = true;
175 if (use_default_lane_mapping) {
176 pr_debug("data-lanes property exists; disabling default mapping\n");
177 use_default_lane_mapping = false;
178 }
179 }
180
181 for (i = 0; i < num_data_lanes; i++) {
182 if (lanes_used & BIT(array[i])) {
183 if (have_data_lanes || !use_default_lane_mapping)
184 pr_warn("duplicated lane %u in data-lanes, using defaults\n",
185 array[i]);
186 use_default_lane_mapping = true;
187 }
188 lanes_used |= BIT(array[i]);
189
190 if (have_data_lanes)
191 pr_debug("lane %u position %u\n", i, array[i]);
192 }
193
194 rval = fwnode_property_count_u32(fwnode, "lane-polarities");
195 if (rval > 0) {
196 if (rval != 1 + num_data_lanes /* clock+data */) {
197 pr_warn("invalid number of lane-polarities entries (need %u, got %u)\n",
198 1 + num_data_lanes, rval);
199 return -EINVAL;
200 }
201
202 have_lane_polarities = true;
203 }
204
205 if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) {
206 clock_lane = v;
207 pr_debug("clock lane position %u\n", v);
208 have_clk_lane = true;
209 }
210
211 if (have_clk_lane && lanes_used & BIT(clock_lane) &&
212 !use_default_lane_mapping) {
213 pr_warn("duplicated lane %u in clock-lanes, using defaults\n",
214 v);
215 use_default_lane_mapping = true;
216 }
217
218 if (fwnode_property_present(fwnode, "clock-noncontinuous")) {
219 flags |= V4L2_MBUS_CSI2_NONCONTINUOUS_CLOCK;
220 pr_debug("non-continuous clock\n");
221 } else {
222 flags |= V4L2_MBUS_CSI2_CONTINUOUS_CLOCK;
223 }
224
225 if (bus_type == V4L2_MBUS_CSI2_DPHY ||
226 bus_type == V4L2_MBUS_CSI2_CPHY || lanes_used ||
227 have_clk_lane || (flags & ~V4L2_MBUS_CSI2_CONTINUOUS_CLOCK)) {
228 /* Only D-PHY has a clock lane. */
229 unsigned int dfl_data_lane_index =
230 bus_type == V4L2_MBUS_CSI2_DPHY;
231
232 bus->flags = flags;
233 if (bus_type == V4L2_MBUS_UNKNOWN)
234 vep->bus_type = V4L2_MBUS_CSI2_DPHY;
235 bus->num_data_lanes = num_data_lanes;
236
237 if (use_default_lane_mapping) {
238 bus->clock_lane = 0;
239 for (i = 0; i < num_data_lanes; i++)
240 bus->data_lanes[i] = dfl_data_lane_index + i;
241 } else {
242 bus->clock_lane = clock_lane;
243 for (i = 0; i < num_data_lanes; i++)
244 bus->data_lanes[i] = array[i];
245 }
246
247 if (have_lane_polarities) {
248 fwnode_property_read_u32_array(fwnode,
249 "lane-polarities", array,
250 1 + num_data_lanes);
251
252 for (i = 0; i < 1 + num_data_lanes; i++) {
253 bus->lane_polarities[i] = array[i];
254 pr_debug("lane %u polarity %sinverted",
255 i, array[i] ? "" : "not ");
256 }
257 } else {
258 pr_debug("no lane polarities defined, assuming not inverted\n");
259 }
260 }
261
262 return 0;
263 }
264
265 #define PARALLEL_MBUS_FLAGS (V4L2_MBUS_HSYNC_ACTIVE_HIGH | \
266 V4L2_MBUS_HSYNC_ACTIVE_LOW | \
267 V4L2_MBUS_VSYNC_ACTIVE_HIGH | \
268 V4L2_MBUS_VSYNC_ACTIVE_LOW | \
269 V4L2_MBUS_FIELD_EVEN_HIGH | \
270 V4L2_MBUS_FIELD_EVEN_LOW)
271
272 static void
v4l2_fwnode_endpoint_parse_parallel_bus(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep,enum v4l2_mbus_type bus_type)273 v4l2_fwnode_endpoint_parse_parallel_bus(struct fwnode_handle *fwnode,
274 struct v4l2_fwnode_endpoint *vep,
275 enum v4l2_mbus_type bus_type)
276 {
277 struct v4l2_fwnode_bus_parallel *bus = &vep->bus.parallel;
278 unsigned int flags = 0;
279 u32 v;
280
281 if (bus_type == V4L2_MBUS_PARALLEL || bus_type == V4L2_MBUS_BT656)
282 flags = bus->flags;
283
284 if (!fwnode_property_read_u32(fwnode, "hsync-active", &v)) {
285 flags &= ~(V4L2_MBUS_HSYNC_ACTIVE_HIGH |
286 V4L2_MBUS_HSYNC_ACTIVE_LOW);
287 flags |= v ? V4L2_MBUS_HSYNC_ACTIVE_HIGH :
288 V4L2_MBUS_HSYNC_ACTIVE_LOW;
289 pr_debug("hsync-active %s\n", v ? "high" : "low");
290 }
291
292 if (!fwnode_property_read_u32(fwnode, "vsync-active", &v)) {
293 flags &= ~(V4L2_MBUS_VSYNC_ACTIVE_HIGH |
294 V4L2_MBUS_VSYNC_ACTIVE_LOW);
295 flags |= v ? V4L2_MBUS_VSYNC_ACTIVE_HIGH :
296 V4L2_MBUS_VSYNC_ACTIVE_LOW;
297 pr_debug("vsync-active %s\n", v ? "high" : "low");
298 }
299
300 if (!fwnode_property_read_u32(fwnode, "field-even-active", &v)) {
301 flags &= ~(V4L2_MBUS_FIELD_EVEN_HIGH |
302 V4L2_MBUS_FIELD_EVEN_LOW);
303 flags |= v ? V4L2_MBUS_FIELD_EVEN_HIGH :
304 V4L2_MBUS_FIELD_EVEN_LOW;
305 pr_debug("field-even-active %s\n", v ? "high" : "low");
306 }
307
308 if (!fwnode_property_read_u32(fwnode, "pclk-sample", &v)) {
309 flags &= ~(V4L2_MBUS_PCLK_SAMPLE_RISING |
310 V4L2_MBUS_PCLK_SAMPLE_FALLING);
311 flags |= v ? V4L2_MBUS_PCLK_SAMPLE_RISING :
312 V4L2_MBUS_PCLK_SAMPLE_FALLING;
313 pr_debug("pclk-sample %s\n", v ? "high" : "low");
314 }
315
316 if (!fwnode_property_read_u32(fwnode, "data-active", &v)) {
317 flags &= ~(V4L2_MBUS_DATA_ACTIVE_HIGH |
318 V4L2_MBUS_DATA_ACTIVE_LOW);
319 flags |= v ? V4L2_MBUS_DATA_ACTIVE_HIGH :
320 V4L2_MBUS_DATA_ACTIVE_LOW;
321 pr_debug("data-active %s\n", v ? "high" : "low");
322 }
323
324 if (fwnode_property_present(fwnode, "slave-mode")) {
325 pr_debug("slave mode\n");
326 flags &= ~V4L2_MBUS_MASTER;
327 flags |= V4L2_MBUS_SLAVE;
328 } else {
329 flags &= ~V4L2_MBUS_SLAVE;
330 flags |= V4L2_MBUS_MASTER;
331 }
332
333 if (!fwnode_property_read_u32(fwnode, "bus-width", &v)) {
334 bus->bus_width = v;
335 pr_debug("bus-width %u\n", v);
336 }
337
338 if (!fwnode_property_read_u32(fwnode, "data-shift", &v)) {
339 bus->data_shift = v;
340 pr_debug("data-shift %u\n", v);
341 }
342
343 if (!fwnode_property_read_u32(fwnode, "sync-on-green-active", &v)) {
344 flags &= ~(V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH |
345 V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW);
346 flags |= v ? V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH :
347 V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW;
348 pr_debug("sync-on-green-active %s\n", v ? "high" : "low");
349 }
350
351 if (!fwnode_property_read_u32(fwnode, "data-enable-active", &v)) {
352 flags &= ~(V4L2_MBUS_DATA_ENABLE_HIGH |
353 V4L2_MBUS_DATA_ENABLE_LOW);
354 flags |= v ? V4L2_MBUS_DATA_ENABLE_HIGH :
355 V4L2_MBUS_DATA_ENABLE_LOW;
356 pr_debug("data-enable-active %s\n", v ? "high" : "low");
357 }
358
359 switch (bus_type) {
360 default:
361 bus->flags = flags;
362 if (flags & PARALLEL_MBUS_FLAGS)
363 vep->bus_type = V4L2_MBUS_PARALLEL;
364 else
365 vep->bus_type = V4L2_MBUS_BT656;
366 break;
367 case V4L2_MBUS_PARALLEL:
368 vep->bus_type = V4L2_MBUS_PARALLEL;
369 bus->flags = flags;
370 break;
371 case V4L2_MBUS_BT656:
372 vep->bus_type = V4L2_MBUS_BT656;
373 bus->flags = flags & ~PARALLEL_MBUS_FLAGS;
374 break;
375 }
376 }
377
378 static void
v4l2_fwnode_endpoint_parse_csi1_bus(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep,enum v4l2_mbus_type bus_type)379 v4l2_fwnode_endpoint_parse_csi1_bus(struct fwnode_handle *fwnode,
380 struct v4l2_fwnode_endpoint *vep,
381 enum v4l2_mbus_type bus_type)
382 {
383 struct v4l2_fwnode_bus_mipi_csi1 *bus = &vep->bus.mipi_csi1;
384 u32 v;
385
386 if (!fwnode_property_read_u32(fwnode, "clock-inv", &v)) {
387 bus->clock_inv = v;
388 pr_debug("clock-inv %u\n", v);
389 }
390
391 if (!fwnode_property_read_u32(fwnode, "strobe", &v)) {
392 bus->strobe = v;
393 pr_debug("strobe %u\n", v);
394 }
395
396 if (!fwnode_property_read_u32(fwnode, "data-lanes", &v)) {
397 bus->data_lane = v;
398 pr_debug("data-lanes %u\n", v);
399 }
400
401 if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) {
402 bus->clock_lane = v;
403 pr_debug("clock-lanes %u\n", v);
404 }
405
406 if (bus_type == V4L2_MBUS_CCP2)
407 vep->bus_type = V4L2_MBUS_CCP2;
408 else
409 vep->bus_type = V4L2_MBUS_CSI1;
410 }
411
__v4l2_fwnode_endpoint_parse(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep)412 static int __v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode,
413 struct v4l2_fwnode_endpoint *vep)
414 {
415 u32 bus_type = V4L2_FWNODE_BUS_TYPE_GUESS;
416 enum v4l2_mbus_type mbus_type;
417 int rval;
418
419 if (vep->bus_type == V4L2_MBUS_UNKNOWN) {
420 /* Zero fields from bus union to until the end */
421 memset(&vep->bus, 0,
422 sizeof(*vep) - offsetof(typeof(*vep), bus));
423 }
424
425 pr_debug("===== begin parsing endpoint %pfw\n", fwnode);
426
427 /*
428 * Zero the fwnode graph endpoint memory in case we don't end up parsing
429 * the endpoint.
430 */
431 memset(&vep->base, 0, sizeof(vep->base));
432
433 fwnode_property_read_u32(fwnode, "bus-type", &bus_type);
434 pr_debug("fwnode video bus type %s (%u), mbus type %s (%u)\n",
435 v4l2_fwnode_bus_type_to_string(bus_type), bus_type,
436 v4l2_fwnode_mbus_type_to_string(vep->bus_type),
437 vep->bus_type);
438 mbus_type = v4l2_fwnode_bus_type_to_mbus(bus_type);
439
440 if (vep->bus_type != V4L2_MBUS_UNKNOWN) {
441 if (mbus_type != V4L2_MBUS_UNKNOWN &&
442 vep->bus_type != mbus_type) {
443 pr_debug("expecting bus type %s\n",
444 v4l2_fwnode_mbus_type_to_string(vep->bus_type));
445 return -ENXIO;
446 }
447 } else {
448 vep->bus_type = mbus_type;
449 }
450
451 switch (vep->bus_type) {
452 case V4L2_MBUS_UNKNOWN:
453 rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep,
454 V4L2_MBUS_UNKNOWN);
455 if (rval)
456 return rval;
457
458 if (vep->bus_type == V4L2_MBUS_UNKNOWN)
459 v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep,
460 V4L2_MBUS_UNKNOWN);
461
462 pr_debug("assuming media bus type %s (%u)\n",
463 v4l2_fwnode_mbus_type_to_string(vep->bus_type),
464 vep->bus_type);
465
466 break;
467 case V4L2_MBUS_CCP2:
468 case V4L2_MBUS_CSI1:
469 v4l2_fwnode_endpoint_parse_csi1_bus(fwnode, vep, vep->bus_type);
470
471 break;
472 case V4L2_MBUS_CSI2_DPHY:
473 case V4L2_MBUS_CSI2_CPHY:
474 rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep,
475 vep->bus_type);
476 if (rval)
477 return rval;
478
479 break;
480 case V4L2_MBUS_PARALLEL:
481 case V4L2_MBUS_BT656:
482 v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep,
483 vep->bus_type);
484
485 break;
486 default:
487 pr_warn("unsupported bus type %u\n", mbus_type);
488 return -EINVAL;
489 }
490
491 fwnode_graph_parse_endpoint(fwnode, &vep->base);
492
493 return 0;
494 }
495
v4l2_fwnode_endpoint_parse(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep)496 int v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode,
497 struct v4l2_fwnode_endpoint *vep)
498 {
499 int ret;
500
501 ret = __v4l2_fwnode_endpoint_parse(fwnode, vep);
502
503 pr_debug("===== end parsing endpoint %pfw\n", fwnode);
504
505 return ret;
506 }
507 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_parse);
508
v4l2_fwnode_endpoint_free(struct v4l2_fwnode_endpoint * vep)509 void v4l2_fwnode_endpoint_free(struct v4l2_fwnode_endpoint *vep)
510 {
511 if (IS_ERR_OR_NULL(vep))
512 return;
513
514 kfree(vep->link_frequencies);
515 vep->link_frequencies = NULL;
516 }
517 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_free);
518
v4l2_fwnode_endpoint_alloc_parse(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep)519 int v4l2_fwnode_endpoint_alloc_parse(struct fwnode_handle *fwnode,
520 struct v4l2_fwnode_endpoint *vep)
521 {
522 int rval;
523
524 rval = __v4l2_fwnode_endpoint_parse(fwnode, vep);
525 if (rval < 0)
526 return rval;
527
528 rval = fwnode_property_count_u64(fwnode, "link-frequencies");
529 if (rval > 0) {
530 unsigned int i;
531
532 vep->link_frequencies =
533 kmalloc_array(rval, sizeof(*vep->link_frequencies),
534 GFP_KERNEL);
535 if (!vep->link_frequencies)
536 return -ENOMEM;
537
538 vep->nr_of_link_frequencies = rval;
539
540 rval = fwnode_property_read_u64_array(fwnode,
541 "link-frequencies",
542 vep->link_frequencies,
543 vep->nr_of_link_frequencies);
544 if (rval < 0) {
545 v4l2_fwnode_endpoint_free(vep);
546 return rval;
547 }
548
549 for (i = 0; i < vep->nr_of_link_frequencies; i++)
550 pr_debug("link-frequencies %u value %llu\n", i,
551 vep->link_frequencies[i]);
552 }
553
554 pr_debug("===== end parsing endpoint %pfw\n", fwnode);
555
556 return 0;
557 }
558 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_alloc_parse);
559
v4l2_fwnode_parse_link(struct fwnode_handle * fwnode,struct v4l2_fwnode_link * link)560 int v4l2_fwnode_parse_link(struct fwnode_handle *fwnode,
561 struct v4l2_fwnode_link *link)
562 {
563 struct fwnode_endpoint fwep;
564
565 memset(link, 0, sizeof(*link));
566
567 fwnode_graph_parse_endpoint(fwnode, &fwep);
568 link->local_id = fwep.id;
569 link->local_port = fwep.port;
570 link->local_node = fwnode_graph_get_port_parent(fwnode);
571
572 fwnode = fwnode_graph_get_remote_endpoint(fwnode);
573 if (!fwnode) {
574 fwnode_handle_put(fwnode);
575 return -ENOLINK;
576 }
577
578 fwnode_graph_parse_endpoint(fwnode, &fwep);
579 link->remote_id = fwep.id;
580 link->remote_port = fwep.port;
581 link->remote_node = fwnode_graph_get_port_parent(fwnode);
582
583 return 0;
584 }
585 EXPORT_SYMBOL_GPL(v4l2_fwnode_parse_link);
586
v4l2_fwnode_put_link(struct v4l2_fwnode_link * link)587 void v4l2_fwnode_put_link(struct v4l2_fwnode_link *link)
588 {
589 fwnode_handle_put(link->local_node);
590 fwnode_handle_put(link->remote_node);
591 }
592 EXPORT_SYMBOL_GPL(v4l2_fwnode_put_link);
593
594 static const struct v4l2_fwnode_connector_conv {
595 enum v4l2_connector_type type;
596 const char *compatible;
597 } connectors[] = {
598 {
599 .type = V4L2_CONN_COMPOSITE,
600 .compatible = "composite-video-connector",
601 }, {
602 .type = V4L2_CONN_SVIDEO,
603 .compatible = "svideo-connector",
604 },
605 };
606
607 static enum v4l2_connector_type
v4l2_fwnode_string_to_connector_type(const char * con_str)608 v4l2_fwnode_string_to_connector_type(const char *con_str)
609 {
610 unsigned int i;
611
612 for (i = 0; i < ARRAY_SIZE(connectors); i++)
613 if (!strcmp(con_str, connectors[i].compatible))
614 return connectors[i].type;
615
616 return V4L2_CONN_UNKNOWN;
617 }
618
619 static void
v4l2_fwnode_connector_parse_analog(struct fwnode_handle * fwnode,struct v4l2_fwnode_connector * vc)620 v4l2_fwnode_connector_parse_analog(struct fwnode_handle *fwnode,
621 struct v4l2_fwnode_connector *vc)
622 {
623 u32 stds;
624 int ret;
625
626 ret = fwnode_property_read_u32(fwnode, "sdtv-standards", &stds);
627
628 /* The property is optional. */
629 vc->connector.analog.sdtv_stds = ret ? V4L2_STD_ALL : stds;
630 }
631
v4l2_fwnode_connector_free(struct v4l2_fwnode_connector * connector)632 void v4l2_fwnode_connector_free(struct v4l2_fwnode_connector *connector)
633 {
634 struct v4l2_connector_link *link, *tmp;
635
636 if (IS_ERR_OR_NULL(connector) || connector->type == V4L2_CONN_UNKNOWN)
637 return;
638
639 list_for_each_entry_safe(link, tmp, &connector->links, head) {
640 v4l2_fwnode_put_link(&link->fwnode_link);
641 list_del(&link->head);
642 kfree(link);
643 }
644
645 kfree(connector->label);
646 connector->label = NULL;
647 connector->type = V4L2_CONN_UNKNOWN;
648 }
649 EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_free);
650
651 static enum v4l2_connector_type
v4l2_fwnode_get_connector_type(struct fwnode_handle * fwnode)652 v4l2_fwnode_get_connector_type(struct fwnode_handle *fwnode)
653 {
654 const char *type_name;
655 int err;
656
657 if (!fwnode)
658 return V4L2_CONN_UNKNOWN;
659
660 /* The connector-type is stored within the compatible string. */
661 err = fwnode_property_read_string(fwnode, "compatible", &type_name);
662 if (err)
663 return V4L2_CONN_UNKNOWN;
664
665 return v4l2_fwnode_string_to_connector_type(type_name);
666 }
667
v4l2_fwnode_connector_parse(struct fwnode_handle * fwnode,struct v4l2_fwnode_connector * connector)668 int v4l2_fwnode_connector_parse(struct fwnode_handle *fwnode,
669 struct v4l2_fwnode_connector *connector)
670 {
671 struct fwnode_handle *connector_node;
672 enum v4l2_connector_type connector_type;
673 const char *label;
674 int err;
675
676 if (!fwnode)
677 return -EINVAL;
678
679 memset(connector, 0, sizeof(*connector));
680
681 INIT_LIST_HEAD(&connector->links);
682
683 connector_node = fwnode_graph_get_port_parent(fwnode);
684 connector_type = v4l2_fwnode_get_connector_type(connector_node);
685 if (connector_type == V4L2_CONN_UNKNOWN) {
686 fwnode_handle_put(connector_node);
687 connector_node = fwnode_graph_get_remote_port_parent(fwnode);
688 connector_type = v4l2_fwnode_get_connector_type(connector_node);
689 }
690
691 if (connector_type == V4L2_CONN_UNKNOWN) {
692 pr_err("Unknown connector type\n");
693 err = -ENOTCONN;
694 goto out;
695 }
696
697 connector->type = connector_type;
698 connector->name = fwnode_get_name(connector_node);
699 err = fwnode_property_read_string(connector_node, "label", &label);
700 connector->label = err ? NULL : kstrdup_const(label, GFP_KERNEL);
701
702 /* Parse the connector specific properties. */
703 switch (connector->type) {
704 case V4L2_CONN_COMPOSITE:
705 case V4L2_CONN_SVIDEO:
706 v4l2_fwnode_connector_parse_analog(connector_node, connector);
707 break;
708 /* Avoid compiler warnings */
709 case V4L2_CONN_UNKNOWN:
710 break;
711 }
712
713 out:
714 fwnode_handle_put(connector_node);
715
716 return err;
717 }
718 EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_parse);
719
v4l2_fwnode_connector_add_link(struct fwnode_handle * fwnode,struct v4l2_fwnode_connector * connector)720 int v4l2_fwnode_connector_add_link(struct fwnode_handle *fwnode,
721 struct v4l2_fwnode_connector *connector)
722 {
723 struct fwnode_handle *connector_ep;
724 struct v4l2_connector_link *link;
725 int err;
726
727 if (!fwnode || !connector || connector->type == V4L2_CONN_UNKNOWN)
728 return -EINVAL;
729
730 connector_ep = fwnode_graph_get_remote_endpoint(fwnode);
731 if (!connector_ep)
732 return -ENOTCONN;
733
734 link = kzalloc(sizeof(*link), GFP_KERNEL);
735 if (!link) {
736 err = -ENOMEM;
737 goto err;
738 }
739
740 err = v4l2_fwnode_parse_link(connector_ep, &link->fwnode_link);
741 if (err)
742 goto err;
743
744 fwnode_handle_put(connector_ep);
745
746 list_add(&link->head, &connector->links);
747 connector->nr_of_links++;
748
749 return 0;
750
751 err:
752 kfree(link);
753 fwnode_handle_put(connector_ep);
754
755 return err;
756 }
757 EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_add_link);
758
v4l2_fwnode_device_parse(struct device * dev,struct v4l2_fwnode_device_properties * props)759 int v4l2_fwnode_device_parse(struct device *dev,
760 struct v4l2_fwnode_device_properties *props)
761 {
762 struct fwnode_handle *fwnode = dev_fwnode(dev);
763 u32 val;
764 int ret;
765
766 memset(props, 0, sizeof(*props));
767
768 props->orientation = V4L2_FWNODE_PROPERTY_UNSET;
769 ret = fwnode_property_read_u32(fwnode, "orientation", &val);
770 if (!ret) {
771 switch (val) {
772 case V4L2_FWNODE_ORIENTATION_FRONT:
773 case V4L2_FWNODE_ORIENTATION_BACK:
774 case V4L2_FWNODE_ORIENTATION_EXTERNAL:
775 break;
776 default:
777 dev_warn(dev, "Unsupported device orientation: %u\n", val);
778 return -EINVAL;
779 }
780
781 props->orientation = val;
782 dev_dbg(dev, "device orientation: %u\n", val);
783 }
784
785 props->rotation = V4L2_FWNODE_PROPERTY_UNSET;
786 ret = fwnode_property_read_u32(fwnode, "rotation", &val);
787 if (!ret) {
788 if (val >= 360) {
789 dev_warn(dev, "Unsupported device rotation: %u\n", val);
790 return -EINVAL;
791 }
792
793 props->rotation = val;
794 dev_dbg(dev, "device rotation: %u\n", val);
795 }
796
797 return 0;
798 }
799 EXPORT_SYMBOL_GPL(v4l2_fwnode_device_parse);
800
801 static int
v4l2_async_notifier_fwnode_parse_endpoint(struct device * dev,struct v4l2_async_notifier * notifier,struct fwnode_handle * endpoint,unsigned int asd_struct_size,parse_endpoint_func parse_endpoint)802 v4l2_async_notifier_fwnode_parse_endpoint(struct device *dev,
803 struct v4l2_async_notifier *notifier,
804 struct fwnode_handle *endpoint,
805 unsigned int asd_struct_size,
806 parse_endpoint_func parse_endpoint)
807 {
808 struct v4l2_fwnode_endpoint vep = { .bus_type = 0 };
809 struct v4l2_async_subdev *asd;
810 int ret;
811
812 asd = kzalloc(asd_struct_size, GFP_KERNEL);
813 if (!asd)
814 return -ENOMEM;
815
816 asd->match_type = V4L2_ASYNC_MATCH_FWNODE;
817 asd->match.fwnode =
818 fwnode_graph_get_remote_port_parent(endpoint);
819 if (!asd->match.fwnode) {
820 dev_dbg(dev, "no remote endpoint found\n");
821 ret = -ENOTCONN;
822 goto out_err;
823 }
824
825 ret = v4l2_fwnode_endpoint_alloc_parse(endpoint, &vep);
826 if (ret) {
827 dev_warn(dev, "unable to parse V4L2 fwnode endpoint (%d)\n",
828 ret);
829 goto out_err;
830 }
831
832 ret = parse_endpoint ? parse_endpoint(dev, &vep, asd) : 0;
833 if (ret == -ENOTCONN)
834 dev_dbg(dev, "ignoring port@%u/endpoint@%u\n", vep.base.port,
835 vep.base.id);
836 else if (ret < 0)
837 dev_warn(dev,
838 "driver could not parse port@%u/endpoint@%u (%d)\n",
839 vep.base.port, vep.base.id, ret);
840 v4l2_fwnode_endpoint_free(&vep);
841 if (ret < 0)
842 goto out_err;
843
844 ret = v4l2_async_notifier_add_subdev(notifier, asd);
845 if (ret < 0) {
846 /* not an error if asd already exists */
847 if (ret == -EEXIST)
848 ret = 0;
849 goto out_err;
850 }
851
852 return 0;
853
854 out_err:
855 fwnode_handle_put(asd->match.fwnode);
856 kfree(asd);
857
858 return ret == -ENOTCONN ? 0 : ret;
859 }
860
861 static int
__v4l2_async_notifier_parse_fwnode_ep(struct device * dev,struct v4l2_async_notifier * notifier,size_t asd_struct_size,unsigned int port,bool has_port,parse_endpoint_func parse_endpoint)862 __v4l2_async_notifier_parse_fwnode_ep(struct device *dev,
863 struct v4l2_async_notifier *notifier,
864 size_t asd_struct_size,
865 unsigned int port,
866 bool has_port,
867 parse_endpoint_func parse_endpoint)
868 {
869 struct fwnode_handle *fwnode;
870 int ret = 0;
871
872 if (WARN_ON(asd_struct_size < sizeof(struct v4l2_async_subdev)))
873 return -EINVAL;
874
875 fwnode_graph_for_each_endpoint(dev_fwnode(dev), fwnode) {
876 struct fwnode_handle *dev_fwnode;
877 bool is_available;
878
879 dev_fwnode = fwnode_graph_get_port_parent(fwnode);
880 is_available = fwnode_device_is_available(dev_fwnode);
881 fwnode_handle_put(dev_fwnode);
882 if (!is_available)
883 continue;
884
885 if (has_port) {
886 struct fwnode_endpoint ep;
887
888 ret = fwnode_graph_parse_endpoint(fwnode, &ep);
889 if (ret)
890 break;
891
892 if (ep.port != port)
893 continue;
894 }
895
896 ret = v4l2_async_notifier_fwnode_parse_endpoint(dev,
897 notifier,
898 fwnode,
899 asd_struct_size,
900 parse_endpoint);
901 if (ret < 0)
902 break;
903 }
904
905 fwnode_handle_put(fwnode);
906
907 return ret;
908 }
909
910 int
v4l2_async_notifier_parse_fwnode_endpoints(struct device * dev,struct v4l2_async_notifier * notifier,size_t asd_struct_size,parse_endpoint_func parse_endpoint)911 v4l2_async_notifier_parse_fwnode_endpoints(struct device *dev,
912 struct v4l2_async_notifier *notifier,
913 size_t asd_struct_size,
914 parse_endpoint_func parse_endpoint)
915 {
916 return __v4l2_async_notifier_parse_fwnode_ep(dev, notifier,
917 asd_struct_size, 0,
918 false, parse_endpoint);
919 }
920 EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_endpoints);
921
922 int
v4l2_async_notifier_parse_fwnode_endpoints_by_port(struct device * dev,struct v4l2_async_notifier * notifier,size_t asd_struct_size,unsigned int port,parse_endpoint_func parse_endpoint)923 v4l2_async_notifier_parse_fwnode_endpoints_by_port(struct device *dev,
924 struct v4l2_async_notifier *notifier,
925 size_t asd_struct_size,
926 unsigned int port,
927 parse_endpoint_func parse_endpoint)
928 {
929 return __v4l2_async_notifier_parse_fwnode_ep(dev, notifier,
930 asd_struct_size,
931 port, true,
932 parse_endpoint);
933 }
934 EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_endpoints_by_port);
935
936 /*
937 * v4l2_fwnode_reference_parse - parse references for async sub-devices
938 * @dev: the device node the properties of which are parsed for references
939 * @notifier: the async notifier where the async subdevs will be added
940 * @prop: the name of the property
941 *
942 * Return: 0 on success
943 * -ENOENT if no entries were found
944 * -ENOMEM if memory allocation failed
945 * -EINVAL if property parsing failed
946 */
v4l2_fwnode_reference_parse(struct device * dev,struct v4l2_async_notifier * notifier,const char * prop)947 static int v4l2_fwnode_reference_parse(struct device *dev,
948 struct v4l2_async_notifier *notifier,
949 const char *prop)
950 {
951 struct fwnode_reference_args args;
952 unsigned int index;
953 int ret;
954
955 for (index = 0;
956 !(ret = fwnode_property_get_reference_args(dev_fwnode(dev),
957 prop, NULL, 0,
958 index, &args));
959 index++)
960 fwnode_handle_put(args.fwnode);
961
962 if (!index)
963 return -ENOENT;
964
965 /*
966 * Note that right now both -ENODATA and -ENOENT may signal
967 * out-of-bounds access. Return the error in cases other than that.
968 */
969 if (ret != -ENOENT && ret != -ENODATA)
970 return ret;
971
972 for (index = 0;
973 !fwnode_property_get_reference_args(dev_fwnode(dev), prop, NULL,
974 0, index, &args);
975 index++) {
976 struct v4l2_async_subdev *asd;
977
978 asd = v4l2_async_notifier_add_fwnode_subdev(notifier,
979 args.fwnode,
980 sizeof(*asd));
981 fwnode_handle_put(args.fwnode);
982 if (IS_ERR(asd)) {
983 /* not an error if asd already exists */
984 if (PTR_ERR(asd) == -EEXIST)
985 continue;
986
987 return PTR_ERR(asd);
988 }
989 }
990
991 return 0;
992 }
993
994 /*
995 * v4l2_fwnode_reference_get_int_prop - parse a reference with integer
996 * arguments
997 * @fwnode: fwnode to read @prop from
998 * @notifier: notifier for @dev
999 * @prop: the name of the property
1000 * @index: the index of the reference to get
1001 * @props: the array of integer property names
1002 * @nprops: the number of integer property names in @nprops
1003 *
1004 * First find an fwnode referred to by the reference at @index in @prop.
1005 *
1006 * Then under that fwnode, @nprops times, for each property in @props,
1007 * iteratively follow child nodes starting from fwnode such that they have the
1008 * property in @props array at the index of the child node distance from the
1009 * root node and the value of that property matching with the integer argument
1010 * of the reference, at the same index.
1011 *
1012 * The child fwnode reached at the end of the iteration is then returned to the
1013 * caller.
1014 *
1015 * The core reason for this is that you cannot refer to just any node in ACPI.
1016 * So to refer to an endpoint (easy in DT) you need to refer to a device, then
1017 * provide a list of (property name, property value) tuples where each tuple
1018 * uniquely identifies a child node. The first tuple identifies a child directly
1019 * underneath the device fwnode, the next tuple identifies a child node
1020 * underneath the fwnode identified by the previous tuple, etc. until you
1021 * reached the fwnode you need.
1022 *
1023 * THIS EXAMPLE EXISTS MERELY TO DOCUMENT THIS FUNCTION. DO NOT USE IT AS A
1024 * REFERENCE IN HOW ACPI TABLES SHOULD BE WRITTEN!! See documentation under
1025 * Documentation/firmware-guide/acpi/dsd/ instead and especially graph.txt,
1026 * data-node-references.txt and leds.txt .
1027 *
1028 * Scope (\_SB.PCI0.I2C2)
1029 * {
1030 * Device (CAM0)
1031 * {
1032 * Name (_DSD, Package () {
1033 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1034 * Package () {
1035 * Package () {
1036 * "compatible",
1037 * Package () { "nokia,smia" }
1038 * },
1039 * },
1040 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
1041 * Package () {
1042 * Package () { "port0", "PRT0" },
1043 * }
1044 * })
1045 * Name (PRT0, Package() {
1046 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1047 * Package () {
1048 * Package () { "port", 0 },
1049 * },
1050 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
1051 * Package () {
1052 * Package () { "endpoint0", "EP00" },
1053 * }
1054 * })
1055 * Name (EP00, Package() {
1056 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1057 * Package () {
1058 * Package () { "endpoint", 0 },
1059 * Package () {
1060 * "remote-endpoint",
1061 * Package() {
1062 * \_SB.PCI0.ISP, 4, 0
1063 * }
1064 * },
1065 * }
1066 * })
1067 * }
1068 * }
1069 *
1070 * Scope (\_SB.PCI0)
1071 * {
1072 * Device (ISP)
1073 * {
1074 * Name (_DSD, Package () {
1075 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
1076 * Package () {
1077 * Package () { "port4", "PRT4" },
1078 * }
1079 * })
1080 *
1081 * Name (PRT4, Package() {
1082 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1083 * Package () {
1084 * Package () { "port", 4 },
1085 * },
1086 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
1087 * Package () {
1088 * Package () { "endpoint0", "EP40" },
1089 * }
1090 * })
1091 *
1092 * Name (EP40, Package() {
1093 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1094 * Package () {
1095 * Package () { "endpoint", 0 },
1096 * Package () {
1097 * "remote-endpoint",
1098 * Package () {
1099 * \_SB.PCI0.I2C2.CAM0,
1100 * 0, 0
1101 * }
1102 * },
1103 * }
1104 * })
1105 * }
1106 * }
1107 *
1108 * From the EP40 node under ISP device, you could parse the graph remote
1109 * endpoint using v4l2_fwnode_reference_get_int_prop with these arguments:
1110 *
1111 * @fwnode: fwnode referring to EP40 under ISP.
1112 * @prop: "remote-endpoint"
1113 * @index: 0
1114 * @props: "port", "endpoint"
1115 * @nprops: 2
1116 *
1117 * And you'd get back fwnode referring to EP00 under CAM0.
1118 *
1119 * The same works the other way around: if you use EP00 under CAM0 as the
1120 * fwnode, you'll get fwnode referring to EP40 under ISP.
1121 *
1122 * The same example in DT syntax would look like this:
1123 *
1124 * cam: cam0 {
1125 * compatible = "nokia,smia";
1126 *
1127 * port {
1128 * port = <0>;
1129 * endpoint {
1130 * endpoint = <0>;
1131 * remote-endpoint = <&isp 4 0>;
1132 * };
1133 * };
1134 * };
1135 *
1136 * isp: isp {
1137 * ports {
1138 * port@4 {
1139 * port = <4>;
1140 * endpoint {
1141 * endpoint = <0>;
1142 * remote-endpoint = <&cam 0 0>;
1143 * };
1144 * };
1145 * };
1146 * };
1147 *
1148 * Return: 0 on success
1149 * -ENOENT if no entries (or the property itself) were found
1150 * -EINVAL if property parsing otherwise failed
1151 * -ENOMEM if memory allocation failed
1152 */
1153 static struct fwnode_handle *
v4l2_fwnode_reference_get_int_prop(struct fwnode_handle * fwnode,const char * prop,unsigned int index,const char * const * props,unsigned int nprops)1154 v4l2_fwnode_reference_get_int_prop(struct fwnode_handle *fwnode,
1155 const char *prop,
1156 unsigned int index,
1157 const char * const *props,
1158 unsigned int nprops)
1159 {
1160 struct fwnode_reference_args fwnode_args;
1161 u64 *args = fwnode_args.args;
1162 struct fwnode_handle *child;
1163 int ret;
1164
1165 /*
1166 * Obtain remote fwnode as well as the integer arguments.
1167 *
1168 * Note that right now both -ENODATA and -ENOENT may signal
1169 * out-of-bounds access. Return -ENOENT in that case.
1170 */
1171 ret = fwnode_property_get_reference_args(fwnode, prop, NULL, nprops,
1172 index, &fwnode_args);
1173 if (ret)
1174 return ERR_PTR(ret == -ENODATA ? -ENOENT : ret);
1175
1176 /*
1177 * Find a node in the tree under the referred fwnode corresponding to
1178 * the integer arguments.
1179 */
1180 fwnode = fwnode_args.fwnode;
1181 while (nprops--) {
1182 u32 val;
1183
1184 /* Loop over all child nodes under fwnode. */
1185 fwnode_for_each_child_node(fwnode, child) {
1186 if (fwnode_property_read_u32(child, *props, &val))
1187 continue;
1188
1189 /* Found property, see if its value matches. */
1190 if (val == *args)
1191 break;
1192 }
1193
1194 fwnode_handle_put(fwnode);
1195
1196 /* No property found; return an error here. */
1197 if (!child) {
1198 fwnode = ERR_PTR(-ENOENT);
1199 break;
1200 }
1201
1202 props++;
1203 args++;
1204 fwnode = child;
1205 }
1206
1207 return fwnode;
1208 }
1209
1210 struct v4l2_fwnode_int_props {
1211 const char *name;
1212 const char * const *props;
1213 unsigned int nprops;
1214 };
1215
1216 /*
1217 * v4l2_fwnode_reference_parse_int_props - parse references for async
1218 * sub-devices
1219 * @dev: struct device pointer
1220 * @notifier: notifier for @dev
1221 * @prop: the name of the property
1222 * @props: the array of integer property names
1223 * @nprops: the number of integer properties
1224 *
1225 * Use v4l2_fwnode_reference_get_int_prop to find fwnodes through reference in
1226 * property @prop with integer arguments with child nodes matching in properties
1227 * @props. Then, set up V4L2 async sub-devices for those fwnodes in the notifier
1228 * accordingly.
1229 *
1230 * While it is technically possible to use this function on DT, it is only
1231 * meaningful on ACPI. On Device tree you can refer to any node in the tree but
1232 * on ACPI the references are limited to devices.
1233 *
1234 * Return: 0 on success
1235 * -ENOENT if no entries (or the property itself) were found
1236 * -EINVAL if property parsing otherwisefailed
1237 * -ENOMEM if memory allocation failed
1238 */
1239 static int
v4l2_fwnode_reference_parse_int_props(struct device * dev,struct v4l2_async_notifier * notifier,const struct v4l2_fwnode_int_props * p)1240 v4l2_fwnode_reference_parse_int_props(struct device *dev,
1241 struct v4l2_async_notifier *notifier,
1242 const struct v4l2_fwnode_int_props *p)
1243 {
1244 struct fwnode_handle *fwnode;
1245 unsigned int index;
1246 int ret;
1247 const char *prop = p->name;
1248 const char * const *props = p->props;
1249 unsigned int nprops = p->nprops;
1250
1251 index = 0;
1252 do {
1253 fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev),
1254 prop, index,
1255 props, nprops);
1256 if (IS_ERR(fwnode)) {
1257 /*
1258 * Note that right now both -ENODATA and -ENOENT may
1259 * signal out-of-bounds access. Return the error in
1260 * cases other than that.
1261 */
1262 if (PTR_ERR(fwnode) != -ENOENT &&
1263 PTR_ERR(fwnode) != -ENODATA)
1264 return PTR_ERR(fwnode);
1265 break;
1266 }
1267 fwnode_handle_put(fwnode);
1268 index++;
1269 } while (1);
1270
1271 for (index = 0;
1272 !IS_ERR((fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev),
1273 prop, index,
1274 props,
1275 nprops)));
1276 index++) {
1277 struct v4l2_async_subdev *asd;
1278
1279 asd = v4l2_async_notifier_add_fwnode_subdev(notifier, fwnode,
1280 sizeof(*asd));
1281 fwnode_handle_put(fwnode);
1282 if (IS_ERR(asd)) {
1283 ret = PTR_ERR(asd);
1284 /* not an error if asd already exists */
1285 if (ret == -EEXIST)
1286 continue;
1287
1288 return PTR_ERR(asd);
1289 }
1290 }
1291
1292 return !fwnode || PTR_ERR(fwnode) == -ENOENT ? 0 : PTR_ERR(fwnode);
1293 }
1294
v4l2_async_notifier_parse_fwnode_sensor_common(struct device * dev,struct v4l2_async_notifier * notifier)1295 int v4l2_async_notifier_parse_fwnode_sensor_common(struct device *dev,
1296 struct v4l2_async_notifier *notifier)
1297 {
1298 static const char * const led_props[] = { "led" };
1299 static const struct v4l2_fwnode_int_props props[] = {
1300 { "flash-leds", led_props, ARRAY_SIZE(led_props) },
1301 { "lens-focus", NULL, 0 },
1302 };
1303 unsigned int i;
1304
1305 for (i = 0; i < ARRAY_SIZE(props); i++) {
1306 int ret;
1307
1308 if (props[i].props && is_acpi_node(dev_fwnode(dev)))
1309 ret = v4l2_fwnode_reference_parse_int_props(dev,
1310 notifier,
1311 &props[i]);
1312 else
1313 ret = v4l2_fwnode_reference_parse(dev, notifier,
1314 props[i].name);
1315 if (ret && ret != -ENOENT) {
1316 dev_warn(dev, "parsing property \"%s\" failed (%d)\n",
1317 props[i].name, ret);
1318 return ret;
1319 }
1320 }
1321
1322 return 0;
1323 }
1324 EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_sensor_common);
1325
v4l2_async_register_subdev_sensor_common(struct v4l2_subdev * sd)1326 int v4l2_async_register_subdev_sensor_common(struct v4l2_subdev *sd)
1327 {
1328 struct v4l2_async_notifier *notifier;
1329 int ret;
1330
1331 if (WARN_ON(!sd->dev))
1332 return -ENODEV;
1333
1334 notifier = kzalloc(sizeof(*notifier), GFP_KERNEL);
1335 if (!notifier)
1336 return -ENOMEM;
1337
1338 v4l2_async_notifier_init(notifier);
1339
1340 ret = v4l2_async_notifier_parse_fwnode_sensor_common(sd->dev,
1341 notifier);
1342 if (ret < 0)
1343 goto out_cleanup;
1344
1345 ret = v4l2_async_subdev_notifier_register(sd, notifier);
1346 if (ret < 0)
1347 goto out_cleanup;
1348
1349 ret = v4l2_async_register_subdev(sd);
1350 if (ret < 0)
1351 goto out_unregister;
1352
1353 sd->subdev_notifier = notifier;
1354
1355 return 0;
1356
1357 out_unregister:
1358 v4l2_async_notifier_unregister(notifier);
1359
1360 out_cleanup:
1361 v4l2_async_notifier_cleanup(notifier);
1362 kfree(notifier);
1363
1364 return ret;
1365 }
1366 EXPORT_SYMBOL_GPL(v4l2_async_register_subdev_sensor_common);
1367
1368 MODULE_LICENSE("GPL");
1369 MODULE_AUTHOR("Sakari Ailus <sakari.ailus@linux.intel.com>");
1370 MODULE_AUTHOR("Sylwester Nawrocki <s.nawrocki@samsung.com>");
1371 MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
1372