1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43 
44 #include <linux/seq_file.h>
45 #include <linux/memcontrol.h>
46 #include <linux/bpf-cgroup.h>
47 #include <linux/siphash.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 extern struct percpu_counter tcp_orphan_count;
52 void tcp_time_wait(struct sock *sk, int state, int timeo);
53 
54 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
55 #define MAX_TCP_OPTION_SPACE 40
56 #define TCP_MIN_SND_MSS		48
57 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
58 
59 /*
60  * Never offer a window over 32767 without using window scaling. Some
61  * poor stacks do signed 16bit maths!
62  */
63 #define MAX_TCP_WINDOW		32767U
64 
65 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
66 #define TCP_MIN_MSS		88U
67 
68 /* The initial MTU to use for probing */
69 #define TCP_BASE_MSS		1024
70 
71 /* probing interval, default to 10 minutes as per RFC4821 */
72 #define TCP_PROBE_INTERVAL	600
73 
74 /* Specify interval when tcp mtu probing will stop */
75 #define TCP_PROBE_THRESHOLD	8
76 
77 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
78 #define TCP_FASTRETRANS_THRESH 3
79 
80 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
81 #define TCP_MAX_QUICKACKS	16U
82 
83 /* Maximal number of window scale according to RFC1323 */
84 #define TCP_MAX_WSCALE		14U
85 
86 /* urg_data states */
87 #define TCP_URG_VALID	0x0100
88 #define TCP_URG_NOTYET	0x0200
89 #define TCP_URG_READ	0x0400
90 
91 #define TCP_RETR1	3	/*
92 				 * This is how many retries it does before it
93 				 * tries to figure out if the gateway is
94 				 * down. Minimal RFC value is 3; it corresponds
95 				 * to ~3sec-8min depending on RTO.
96 				 */
97 
98 #define TCP_RETR2	15	/*
99 				 * This should take at least
100 				 * 90 minutes to time out.
101 				 * RFC1122 says that the limit is 100 sec.
102 				 * 15 is ~13-30min depending on RTO.
103 				 */
104 
105 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
106 				 * when active opening a connection.
107 				 * RFC1122 says the minimum retry MUST
108 				 * be at least 180secs.  Nevertheless
109 				 * this value is corresponding to
110 				 * 63secs of retransmission with the
111 				 * current initial RTO.
112 				 */
113 
114 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
115 				 * when passive opening a connection.
116 				 * This is corresponding to 31secs of
117 				 * retransmission with the current
118 				 * initial RTO.
119 				 */
120 
121 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
122 				  * state, about 60 seconds	*/
123 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
124                                  /* BSD style FIN_WAIT2 deadlock breaker.
125 				  * It used to be 3min, new value is 60sec,
126 				  * to combine FIN-WAIT-2 timeout with
127 				  * TIME-WAIT timer.
128 				  */
129 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
130 
131 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
132 #if HZ >= 100
133 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
134 #define TCP_ATO_MIN	((unsigned)(HZ/25))
135 #else
136 #define TCP_DELACK_MIN	4U
137 #define TCP_ATO_MIN	4U
138 #endif
139 #define TCP_RTO_MAX	((unsigned)(120*HZ))
140 #define TCP_RTO_MIN	((unsigned)(HZ/5))
141 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
142 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
143 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
144 						 * used as a fallback RTO for the
145 						 * initial data transmission if no
146 						 * valid RTT sample has been acquired,
147 						 * most likely due to retrans in 3WHS.
148 						 */
149 
150 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
151 					                 * for local resources.
152 					                 */
153 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
154 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
155 #define TCP_KEEPALIVE_INTVL	(75*HZ)
156 
157 #define MAX_TCP_KEEPIDLE	32767
158 #define MAX_TCP_KEEPINTVL	32767
159 #define MAX_TCP_KEEPCNT		127
160 #define MAX_TCP_SYNCNT		127
161 
162 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
163 
164 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
165 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
166 					 * after this time. It should be equal
167 					 * (or greater than) TCP_TIMEWAIT_LEN
168 					 * to provide reliability equal to one
169 					 * provided by timewait state.
170 					 */
171 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
172 					 * timestamps. It must be less than
173 					 * minimal timewait lifetime.
174 					 */
175 /*
176  *	TCP option
177  */
178 
179 #define TCPOPT_NOP		1	/* Padding */
180 #define TCPOPT_EOL		0	/* End of options */
181 #define TCPOPT_MSS		2	/* Segment size negotiating */
182 #define TCPOPT_WINDOW		3	/* Window scaling */
183 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
184 #define TCPOPT_SACK             5       /* SACK Block */
185 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
186 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
187 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
188 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
189 #define TCPOPT_EXP		254	/* Experimental */
190 /* Magic number to be after the option value for sharing TCP
191  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
192  */
193 #define TCPOPT_FASTOPEN_MAGIC	0xF989
194 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
195 
196 /*
197  *     TCP option lengths
198  */
199 
200 #define TCPOLEN_MSS            4
201 #define TCPOLEN_WINDOW         3
202 #define TCPOLEN_SACK_PERM      2
203 #define TCPOLEN_TIMESTAMP      10
204 #define TCPOLEN_MD5SIG         18
205 #define TCPOLEN_FASTOPEN_BASE  2
206 #define TCPOLEN_EXP_FASTOPEN_BASE  4
207 #define TCPOLEN_EXP_SMC_BASE   6
208 
209 /* But this is what stacks really send out. */
210 #define TCPOLEN_TSTAMP_ALIGNED		12
211 #define TCPOLEN_WSCALE_ALIGNED		4
212 #define TCPOLEN_SACKPERM_ALIGNED	4
213 #define TCPOLEN_SACK_BASE		2
214 #define TCPOLEN_SACK_BASE_ALIGNED	4
215 #define TCPOLEN_SACK_PERBLOCK		8
216 #define TCPOLEN_MD5SIG_ALIGNED		20
217 #define TCPOLEN_MSS_ALIGNED		4
218 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
219 
220 /* Flags in tp->nonagle */
221 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
222 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
223 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
224 
225 /* TCP thin-stream limits */
226 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
227 
228 /* TCP initial congestion window as per rfc6928 */
229 #define TCP_INIT_CWND		10
230 
231 /* Bit Flags for sysctl_tcp_fastopen */
232 #define	TFO_CLIENT_ENABLE	1
233 #define	TFO_SERVER_ENABLE	2
234 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
235 
236 /* Accept SYN data w/o any cookie option */
237 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
238 
239 /* Force enable TFO on all listeners, i.e., not requiring the
240  * TCP_FASTOPEN socket option.
241  */
242 #define	TFO_SERVER_WO_SOCKOPT1	0x400
243 
244 
245 /* sysctl variables for tcp */
246 extern int sysctl_tcp_max_orphans;
247 extern long sysctl_tcp_mem[3];
248 
249 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
250 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
251 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
252 
253 extern atomic_long_t tcp_memory_allocated;
254 extern struct percpu_counter tcp_sockets_allocated;
255 extern unsigned long tcp_memory_pressure;
256 
257 /* optimized version of sk_under_memory_pressure() for TCP sockets */
tcp_under_memory_pressure(const struct sock * sk)258 static inline bool tcp_under_memory_pressure(const struct sock *sk)
259 {
260 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
261 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
262 		return true;
263 
264 	return READ_ONCE(tcp_memory_pressure);
265 }
266 /*
267  * The next routines deal with comparing 32 bit unsigned ints
268  * and worry about wraparound (automatic with unsigned arithmetic).
269  */
270 
before(__u32 seq1,__u32 seq2)271 static inline bool before(__u32 seq1, __u32 seq2)
272 {
273         return (__s32)(seq1-seq2) < 0;
274 }
275 #define after(seq2, seq1) 	before(seq1, seq2)
276 
277 /* is s2<=s1<=s3 ? */
between(__u32 seq1,__u32 seq2,__u32 seq3)278 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
279 {
280 	return seq3 - seq2 >= seq1 - seq2;
281 }
282 
tcp_out_of_memory(struct sock * sk)283 static inline bool tcp_out_of_memory(struct sock *sk)
284 {
285 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
286 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
287 		return true;
288 	return false;
289 }
290 
291 void sk_forced_mem_schedule(struct sock *sk, int size);
292 
tcp_too_many_orphans(struct sock * sk,int shift)293 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
294 {
295 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
296 	int orphans = percpu_counter_read_positive(ocp);
297 
298 	if (orphans << shift > sysctl_tcp_max_orphans) {
299 		orphans = percpu_counter_sum_positive(ocp);
300 		if (orphans << shift > sysctl_tcp_max_orphans)
301 			return true;
302 	}
303 	return false;
304 }
305 
306 bool tcp_check_oom(struct sock *sk, int shift);
307 
308 
309 extern struct proto tcp_prot;
310 
311 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
312 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
313 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
314 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
315 
316 void tcp_tasklet_init(void);
317 
318 int tcp_v4_err(struct sk_buff *skb, u32);
319 
320 void tcp_shutdown(struct sock *sk, int how);
321 
322 int tcp_v4_early_demux(struct sk_buff *skb);
323 int tcp_v4_rcv(struct sk_buff *skb);
324 
325 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
326 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
327 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
328 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
329 		 int flags);
330 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
331 			size_t size, int flags);
332 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
333 		 size_t size, int flags);
334 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
335 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
336 	      int size_goal);
337 void tcp_release_cb(struct sock *sk);
338 void tcp_wfree(struct sk_buff *skb);
339 void tcp_write_timer_handler(struct sock *sk);
340 void tcp_delack_timer_handler(struct sock *sk);
341 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
342 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
343 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
344 void tcp_rcv_space_adjust(struct sock *sk);
345 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
346 void tcp_twsk_destructor(struct sock *sk);
347 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
348 			struct pipe_inode_info *pipe, size_t len,
349 			unsigned int flags);
350 
351 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
tcp_dec_quickack_mode(struct sock * sk,const unsigned int pkts)352 static inline void tcp_dec_quickack_mode(struct sock *sk,
353 					 const unsigned int pkts)
354 {
355 	struct inet_connection_sock *icsk = inet_csk(sk);
356 
357 	if (icsk->icsk_ack.quick) {
358 		if (pkts >= icsk->icsk_ack.quick) {
359 			icsk->icsk_ack.quick = 0;
360 			/* Leaving quickack mode we deflate ATO. */
361 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
362 		} else
363 			icsk->icsk_ack.quick -= pkts;
364 	}
365 }
366 
367 #define	TCP_ECN_OK		1
368 #define	TCP_ECN_QUEUE_CWR	2
369 #define	TCP_ECN_DEMAND_CWR	4
370 #define	TCP_ECN_SEEN		8
371 
372 enum tcp_tw_status {
373 	TCP_TW_SUCCESS = 0,
374 	TCP_TW_RST = 1,
375 	TCP_TW_ACK = 2,
376 	TCP_TW_SYN = 3
377 };
378 
379 
380 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
381 					      struct sk_buff *skb,
382 					      const struct tcphdr *th);
383 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
384 			   struct request_sock *req, bool fastopen,
385 			   bool *lost_race);
386 int tcp_child_process(struct sock *parent, struct sock *child,
387 		      struct sk_buff *skb);
388 void tcp_enter_loss(struct sock *sk);
389 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
390 void tcp_clear_retrans(struct tcp_sock *tp);
391 void tcp_update_metrics(struct sock *sk);
392 void tcp_init_metrics(struct sock *sk);
393 void tcp_metrics_init(void);
394 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
395 void tcp_close(struct sock *sk, long timeout);
396 void tcp_init_sock(struct sock *sk);
397 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
398 __poll_t tcp_poll(struct file *file, struct socket *sock,
399 		      struct poll_table_struct *wait);
400 int tcp_getsockopt(struct sock *sk, int level, int optname,
401 		   char __user *optval, int __user *optlen);
402 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
403 		   unsigned int optlen);
404 void tcp_set_keepalive(struct sock *sk, int val);
405 void tcp_syn_ack_timeout(const struct request_sock *req);
406 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
407 		int flags, int *addr_len);
408 int tcp_set_rcvlowat(struct sock *sk, int val);
409 void tcp_data_ready(struct sock *sk);
410 #ifdef CONFIG_MMU
411 int tcp_mmap(struct file *file, struct socket *sock,
412 	     struct vm_area_struct *vma);
413 #endif
414 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
415 		       struct tcp_options_received *opt_rx,
416 		       int estab, struct tcp_fastopen_cookie *foc);
417 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
418 
419 /*
420  *	BPF SKB-less helpers
421  */
422 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
423 			 struct tcphdr *th, u32 *cookie);
424 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
425 			 struct tcphdr *th, u32 *cookie);
426 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
427 			  const struct tcp_request_sock_ops *af_ops,
428 			  struct sock *sk, struct tcphdr *th);
429 /*
430  *	TCP v4 functions exported for the inet6 API
431  */
432 
433 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
434 void tcp_v4_mtu_reduced(struct sock *sk);
435 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
436 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
437 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
438 struct sock *tcp_create_openreq_child(const struct sock *sk,
439 				      struct request_sock *req,
440 				      struct sk_buff *skb);
441 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
442 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
443 				  struct request_sock *req,
444 				  struct dst_entry *dst,
445 				  struct request_sock *req_unhash,
446 				  bool *own_req);
447 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
448 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
449 int tcp_connect(struct sock *sk);
450 enum tcp_synack_type {
451 	TCP_SYNACK_NORMAL,
452 	TCP_SYNACK_FASTOPEN,
453 	TCP_SYNACK_COOKIE,
454 };
455 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
456 				struct request_sock *req,
457 				struct tcp_fastopen_cookie *foc,
458 				enum tcp_synack_type synack_type,
459 				struct sk_buff *syn_skb);
460 int tcp_disconnect(struct sock *sk, int flags);
461 
462 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
463 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
464 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
465 
466 /* From syncookies.c */
467 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
468 				 struct request_sock *req,
469 				 struct dst_entry *dst, u32 tsoff);
470 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
471 		      u32 cookie);
472 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
473 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
474 					    struct sock *sk, struct sk_buff *skb);
475 #ifdef CONFIG_SYN_COOKIES
476 
477 /* Syncookies use a monotonic timer which increments every 60 seconds.
478  * This counter is used both as a hash input and partially encoded into
479  * the cookie value.  A cookie is only validated further if the delta
480  * between the current counter value and the encoded one is less than this,
481  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
482  * the counter advances immediately after a cookie is generated).
483  */
484 #define MAX_SYNCOOKIE_AGE	2
485 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
486 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
487 
488 /* syncookies: remember time of last synqueue overflow
489  * But do not dirty this field too often (once per second is enough)
490  * It is racy as we do not hold a lock, but race is very minor.
491  */
tcp_synq_overflow(const struct sock * sk)492 static inline void tcp_synq_overflow(const struct sock *sk)
493 {
494 	unsigned int last_overflow;
495 	unsigned int now = jiffies;
496 
497 	if (sk->sk_reuseport) {
498 		struct sock_reuseport *reuse;
499 
500 		reuse = rcu_dereference(sk->sk_reuseport_cb);
501 		if (likely(reuse)) {
502 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
503 			if (!time_between32(now, last_overflow,
504 					    last_overflow + HZ))
505 				WRITE_ONCE(reuse->synq_overflow_ts, now);
506 			return;
507 		}
508 	}
509 
510 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
511 	if (!time_between32(now, last_overflow, last_overflow + HZ))
512 		WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
513 }
514 
515 /* syncookies: no recent synqueue overflow on this listening socket? */
tcp_synq_no_recent_overflow(const struct sock * sk)516 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
517 {
518 	unsigned int last_overflow;
519 	unsigned int now = jiffies;
520 
521 	if (sk->sk_reuseport) {
522 		struct sock_reuseport *reuse;
523 
524 		reuse = rcu_dereference(sk->sk_reuseport_cb);
525 		if (likely(reuse)) {
526 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
527 			return !time_between32(now, last_overflow - HZ,
528 					       last_overflow +
529 					       TCP_SYNCOOKIE_VALID);
530 		}
531 	}
532 
533 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
534 
535 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
536 	 * then we're under synflood. However, we have to use
537 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
538 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
539 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
540 	 * which could lead to rejecting a valid syncookie.
541 	 */
542 	return !time_between32(now, last_overflow - HZ,
543 			       last_overflow + TCP_SYNCOOKIE_VALID);
544 }
545 
tcp_cookie_time(void)546 static inline u32 tcp_cookie_time(void)
547 {
548 	u64 val = get_jiffies_64();
549 
550 	do_div(val, TCP_SYNCOOKIE_PERIOD);
551 	return val;
552 }
553 
554 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
555 			      u16 *mssp);
556 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
557 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
558 bool cookie_timestamp_decode(const struct net *net,
559 			     struct tcp_options_received *opt);
560 bool cookie_ecn_ok(const struct tcp_options_received *opt,
561 		   const struct net *net, const struct dst_entry *dst);
562 
563 /* From net/ipv6/syncookies.c */
564 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
565 		      u32 cookie);
566 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
567 
568 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
569 			      const struct tcphdr *th, u16 *mssp);
570 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
571 #endif
572 /* tcp_output.c */
573 
574 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
575 			       int nonagle);
576 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
577 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
578 void tcp_retransmit_timer(struct sock *sk);
579 void tcp_xmit_retransmit_queue(struct sock *);
580 void tcp_simple_retransmit(struct sock *);
581 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
582 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
583 enum tcp_queue {
584 	TCP_FRAG_IN_WRITE_QUEUE,
585 	TCP_FRAG_IN_RTX_QUEUE,
586 };
587 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
588 		 struct sk_buff *skb, u32 len,
589 		 unsigned int mss_now, gfp_t gfp);
590 
591 void tcp_send_probe0(struct sock *);
592 void tcp_send_partial(struct sock *);
593 int tcp_write_wakeup(struct sock *, int mib);
594 void tcp_send_fin(struct sock *sk);
595 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
596 int tcp_send_synack(struct sock *);
597 void tcp_push_one(struct sock *, unsigned int mss_now);
598 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
599 void tcp_send_ack(struct sock *sk);
600 void tcp_send_delayed_ack(struct sock *sk);
601 void tcp_send_loss_probe(struct sock *sk);
602 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
603 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
604 			     const struct sk_buff *next_skb);
605 
606 /* tcp_input.c */
607 void tcp_rearm_rto(struct sock *sk);
608 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
609 void tcp_reset(struct sock *sk);
610 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
611 void tcp_fin(struct sock *sk);
612 
613 /* tcp_timer.c */
614 void tcp_init_xmit_timers(struct sock *);
tcp_clear_xmit_timers(struct sock * sk)615 static inline void tcp_clear_xmit_timers(struct sock *sk)
616 {
617 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
618 		__sock_put(sk);
619 
620 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
621 		__sock_put(sk);
622 
623 	inet_csk_clear_xmit_timers(sk);
624 }
625 
626 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
627 unsigned int tcp_current_mss(struct sock *sk);
628 
629 /* Bound MSS / TSO packet size with the half of the window */
tcp_bound_to_half_wnd(struct tcp_sock * tp,int pktsize)630 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
631 {
632 	int cutoff;
633 
634 	/* When peer uses tiny windows, there is no use in packetizing
635 	 * to sub-MSS pieces for the sake of SWS or making sure there
636 	 * are enough packets in the pipe for fast recovery.
637 	 *
638 	 * On the other hand, for extremely large MSS devices, handling
639 	 * smaller than MSS windows in this way does make sense.
640 	 */
641 	if (tp->max_window > TCP_MSS_DEFAULT)
642 		cutoff = (tp->max_window >> 1);
643 	else
644 		cutoff = tp->max_window;
645 
646 	if (cutoff && pktsize > cutoff)
647 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
648 	else
649 		return pktsize;
650 }
651 
652 /* tcp.c */
653 void tcp_get_info(struct sock *, struct tcp_info *);
654 
655 /* Read 'sendfile()'-style from a TCP socket */
656 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
657 		  sk_read_actor_t recv_actor);
658 
659 void tcp_initialize_rcv_mss(struct sock *sk);
660 
661 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
662 int tcp_mss_to_mtu(struct sock *sk, int mss);
663 void tcp_mtup_init(struct sock *sk);
664 
tcp_bound_rto(const struct sock * sk)665 static inline void tcp_bound_rto(const struct sock *sk)
666 {
667 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
668 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
669 }
670 
__tcp_set_rto(const struct tcp_sock * tp)671 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
672 {
673 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
674 }
675 
__tcp_fast_path_on(struct tcp_sock * tp,u32 snd_wnd)676 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
677 {
678 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
679 			       ntohl(TCP_FLAG_ACK) |
680 			       snd_wnd);
681 }
682 
tcp_fast_path_on(struct tcp_sock * tp)683 static inline void tcp_fast_path_on(struct tcp_sock *tp)
684 {
685 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
686 }
687 
tcp_fast_path_check(struct sock * sk)688 static inline void tcp_fast_path_check(struct sock *sk)
689 {
690 	struct tcp_sock *tp = tcp_sk(sk);
691 
692 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
693 	    tp->rcv_wnd &&
694 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
695 	    !tp->urg_data)
696 		tcp_fast_path_on(tp);
697 }
698 
699 /* Compute the actual rto_min value */
tcp_rto_min(struct sock * sk)700 static inline u32 tcp_rto_min(struct sock *sk)
701 {
702 	const struct dst_entry *dst = __sk_dst_get(sk);
703 	u32 rto_min = inet_csk(sk)->icsk_rto_min;
704 
705 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
706 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
707 	return rto_min;
708 }
709 
tcp_rto_min_us(struct sock * sk)710 static inline u32 tcp_rto_min_us(struct sock *sk)
711 {
712 	return jiffies_to_usecs(tcp_rto_min(sk));
713 }
714 
tcp_ca_dst_locked(const struct dst_entry * dst)715 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
716 {
717 	return dst_metric_locked(dst, RTAX_CC_ALGO);
718 }
719 
720 /* Minimum RTT in usec. ~0 means not available. */
tcp_min_rtt(const struct tcp_sock * tp)721 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
722 {
723 	return minmax_get(&tp->rtt_min);
724 }
725 
726 /* Compute the actual receive window we are currently advertising.
727  * Rcv_nxt can be after the window if our peer push more data
728  * than the offered window.
729  */
tcp_receive_window(const struct tcp_sock * tp)730 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
731 {
732 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
733 
734 	if (win < 0)
735 		win = 0;
736 	return (u32) win;
737 }
738 
739 /* Choose a new window, without checks for shrinking, and without
740  * scaling applied to the result.  The caller does these things
741  * if necessary.  This is a "raw" window selection.
742  */
743 u32 __tcp_select_window(struct sock *sk);
744 
745 void tcp_send_window_probe(struct sock *sk);
746 
747 /* TCP uses 32bit jiffies to save some space.
748  * Note that this is different from tcp_time_stamp, which
749  * historically has been the same until linux-4.13.
750  */
751 #define tcp_jiffies32 ((u32)jiffies)
752 
753 /*
754  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
755  * It is no longer tied to jiffies, but to 1 ms clock.
756  * Note: double check if you want to use tcp_jiffies32 instead of this.
757  */
758 #define TCP_TS_HZ	1000
759 
tcp_clock_ns(void)760 static inline u64 tcp_clock_ns(void)
761 {
762 	return ktime_get_ns();
763 }
764 
tcp_clock_us(void)765 static inline u64 tcp_clock_us(void)
766 {
767 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
768 }
769 
770 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
tcp_time_stamp(const struct tcp_sock * tp)771 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
772 {
773 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
774 }
775 
776 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
tcp_ns_to_ts(u64 ns)777 static inline u32 tcp_ns_to_ts(u64 ns)
778 {
779 	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
780 }
781 
782 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
tcp_time_stamp_raw(void)783 static inline u32 tcp_time_stamp_raw(void)
784 {
785 	return tcp_ns_to_ts(tcp_clock_ns());
786 }
787 
788 void tcp_mstamp_refresh(struct tcp_sock *tp);
789 
tcp_stamp_us_delta(u64 t1,u64 t0)790 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
791 {
792 	return max_t(s64, t1 - t0, 0);
793 }
794 
tcp_skb_timestamp(const struct sk_buff * skb)795 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
796 {
797 	return tcp_ns_to_ts(skb->skb_mstamp_ns);
798 }
799 
800 /* provide the departure time in us unit */
tcp_skb_timestamp_us(const struct sk_buff * skb)801 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
802 {
803 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
804 }
805 
806 
807 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
808 
809 #define TCPHDR_FIN 0x01
810 #define TCPHDR_SYN 0x02
811 #define TCPHDR_RST 0x04
812 #define TCPHDR_PSH 0x08
813 #define TCPHDR_ACK 0x10
814 #define TCPHDR_URG 0x20
815 #define TCPHDR_ECE 0x40
816 #define TCPHDR_CWR 0x80
817 
818 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
819 
820 /* This is what the send packet queuing engine uses to pass
821  * TCP per-packet control information to the transmission code.
822  * We also store the host-order sequence numbers in here too.
823  * This is 44 bytes if IPV6 is enabled.
824  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
825  */
826 struct tcp_skb_cb {
827 	__u32		seq;		/* Starting sequence number	*/
828 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
829 	union {
830 		/* Note : tcp_tw_isn is used in input path only
831 		 *	  (isn chosen by tcp_timewait_state_process())
832 		 *
833 		 * 	  tcp_gso_segs/size are used in write queue only,
834 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
835 		 */
836 		__u32		tcp_tw_isn;
837 		struct {
838 			u16	tcp_gso_segs;
839 			u16	tcp_gso_size;
840 		};
841 	};
842 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
843 
844 	__u8		sacked;		/* State flags for SACK.	*/
845 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
846 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
847 #define TCPCB_LOST		0x04	/* SKB is lost			*/
848 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
849 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
850 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
851 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
852 				TCPCB_REPAIRED)
853 
854 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
855 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
856 			eor:1,		/* Is skb MSG_EOR marked? */
857 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
858 			unused:5;
859 	__u32		ack_seq;	/* Sequence number ACK'd	*/
860 	union {
861 		struct {
862 			/* There is space for up to 24 bytes */
863 			__u32 in_flight:30,/* Bytes in flight at transmit */
864 			      is_app_limited:1, /* cwnd not fully used? */
865 			      unused:1;
866 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
867 			__u32 delivered;
868 			/* start of send pipeline phase */
869 			u64 first_tx_mstamp;
870 			/* when we reached the "delivered" count */
871 			u64 delivered_mstamp;
872 		} tx;   /* only used for outgoing skbs */
873 		union {
874 			struct inet_skb_parm	h4;
875 #if IS_ENABLED(CONFIG_IPV6)
876 			struct inet6_skb_parm	h6;
877 #endif
878 		} header;	/* For incoming skbs */
879 		struct {
880 			__u32 flags;
881 			struct sock *sk_redir;
882 			void *data_end;
883 		} bpf;
884 	};
885 };
886 
887 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
888 
bpf_compute_data_end_sk_skb(struct sk_buff * skb)889 static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
890 {
891 	TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
892 }
893 
tcp_skb_bpf_ingress(const struct sk_buff * skb)894 static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb)
895 {
896 	return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS;
897 }
898 
tcp_skb_bpf_redirect_fetch(struct sk_buff * skb)899 static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb)
900 {
901 	return TCP_SKB_CB(skb)->bpf.sk_redir;
902 }
903 
tcp_skb_bpf_redirect_clear(struct sk_buff * skb)904 static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb)
905 {
906 	TCP_SKB_CB(skb)->bpf.sk_redir = NULL;
907 }
908 
909 extern const struct inet_connection_sock_af_ops ipv4_specific;
910 
911 #if IS_ENABLED(CONFIG_IPV6)
912 /* This is the variant of inet6_iif() that must be used by TCP,
913  * as TCP moves IP6CB into a different location in skb->cb[]
914  */
tcp_v6_iif(const struct sk_buff * skb)915 static inline int tcp_v6_iif(const struct sk_buff *skb)
916 {
917 	return TCP_SKB_CB(skb)->header.h6.iif;
918 }
919 
tcp_v6_iif_l3_slave(const struct sk_buff * skb)920 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
921 {
922 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
923 
924 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
925 }
926 
927 /* TCP_SKB_CB reference means this can not be used from early demux */
tcp_v6_sdif(const struct sk_buff * skb)928 static inline int tcp_v6_sdif(const struct sk_buff *skb)
929 {
930 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
931 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
932 		return TCP_SKB_CB(skb)->header.h6.iif;
933 #endif
934 	return 0;
935 }
936 
937 extern const struct inet_connection_sock_af_ops ipv6_specific;
938 
939 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
940 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
941 INDIRECT_CALLABLE_DECLARE(void tcp_v6_early_demux(struct sk_buff *skb));
942 
943 #endif
944 
945 /* TCP_SKB_CB reference means this can not be used from early demux */
tcp_v4_sdif(struct sk_buff * skb)946 static inline int tcp_v4_sdif(struct sk_buff *skb)
947 {
948 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
949 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
950 		return TCP_SKB_CB(skb)->header.h4.iif;
951 #endif
952 	return 0;
953 }
954 
955 /* Due to TSO, an SKB can be composed of multiple actual
956  * packets.  To keep these tracked properly, we use this.
957  */
tcp_skb_pcount(const struct sk_buff * skb)958 static inline int tcp_skb_pcount(const struct sk_buff *skb)
959 {
960 	return TCP_SKB_CB(skb)->tcp_gso_segs;
961 }
962 
tcp_skb_pcount_set(struct sk_buff * skb,int segs)963 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
964 {
965 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
966 }
967 
tcp_skb_pcount_add(struct sk_buff * skb,int segs)968 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
969 {
970 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
971 }
972 
973 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
tcp_skb_mss(const struct sk_buff * skb)974 static inline int tcp_skb_mss(const struct sk_buff *skb)
975 {
976 	return TCP_SKB_CB(skb)->tcp_gso_size;
977 }
978 
tcp_skb_can_collapse_to(const struct sk_buff * skb)979 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
980 {
981 	return likely(!TCP_SKB_CB(skb)->eor);
982 }
983 
tcp_skb_can_collapse(const struct sk_buff * to,const struct sk_buff * from)984 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
985 					const struct sk_buff *from)
986 {
987 	return likely(tcp_skb_can_collapse_to(to) &&
988 		      mptcp_skb_can_collapse(to, from));
989 }
990 
991 /* Events passed to congestion control interface */
992 enum tcp_ca_event {
993 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
994 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
995 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
996 	CA_EVENT_LOSS,		/* loss timeout */
997 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
998 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
999 };
1000 
1001 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1002 enum tcp_ca_ack_event_flags {
1003 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1004 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1005 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1006 };
1007 
1008 /*
1009  * Interface for adding new TCP congestion control handlers
1010  */
1011 #define TCP_CA_NAME_MAX	16
1012 #define TCP_CA_MAX	128
1013 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1014 
1015 #define TCP_CA_UNSPEC	0
1016 
1017 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1018 #define TCP_CONG_NON_RESTRICTED 0x1
1019 /* Requires ECN/ECT set on all packets */
1020 #define TCP_CONG_NEEDS_ECN	0x2
1021 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1022 
1023 union tcp_cc_info;
1024 
1025 struct ack_sample {
1026 	u32 pkts_acked;
1027 	s32 rtt_us;
1028 	u32 in_flight;
1029 };
1030 
1031 /* A rate sample measures the number of (original/retransmitted) data
1032  * packets delivered "delivered" over an interval of time "interval_us".
1033  * The tcp_rate.c code fills in the rate sample, and congestion
1034  * control modules that define a cong_control function to run at the end
1035  * of ACK processing can optionally chose to consult this sample when
1036  * setting cwnd and pacing rate.
1037  * A sample is invalid if "delivered" or "interval_us" is negative.
1038  */
1039 struct rate_sample {
1040 	u64  prior_mstamp; /* starting timestamp for interval */
1041 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1042 	s32  delivered;		/* number of packets delivered over interval */
1043 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1044 	u32 snd_interval_us;	/* snd interval for delivered packets */
1045 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1046 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1047 	int  losses;		/* number of packets marked lost upon ACK */
1048 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1049 	u32  prior_in_flight;	/* in flight before this ACK */
1050 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1051 	bool is_retrans;	/* is sample from retransmission? */
1052 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1053 };
1054 
1055 struct tcp_congestion_ops {
1056 	struct list_head	list;
1057 	u32 key;
1058 	u32 flags;
1059 
1060 	/* initialize private data (optional) */
1061 	void (*init)(struct sock *sk);
1062 	/* cleanup private data  (optional) */
1063 	void (*release)(struct sock *sk);
1064 
1065 	/* return slow start threshold (required) */
1066 	u32 (*ssthresh)(struct sock *sk);
1067 	/* do new cwnd calculation (required) */
1068 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1069 	/* call before changing ca_state (optional) */
1070 	void (*set_state)(struct sock *sk, u8 new_state);
1071 	/* call when cwnd event occurs (optional) */
1072 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1073 	/* call when ack arrives (optional) */
1074 	void (*in_ack_event)(struct sock *sk, u32 flags);
1075 	/* new value of cwnd after loss (required) */
1076 	u32  (*undo_cwnd)(struct sock *sk);
1077 	/* hook for packet ack accounting (optional) */
1078 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1079 	/* override sysctl_tcp_min_tso_segs */
1080 	u32 (*min_tso_segs)(struct sock *sk);
1081 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1082 	u32 (*sndbuf_expand)(struct sock *sk);
1083 	/* call when packets are delivered to update cwnd and pacing rate,
1084 	 * after all the ca_state processing. (optional)
1085 	 */
1086 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1087 	/* get info for inet_diag (optional) */
1088 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1089 			   union tcp_cc_info *info);
1090 
1091 	char 		name[TCP_CA_NAME_MAX];
1092 	struct module 	*owner;
1093 };
1094 
1095 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1096 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1097 
1098 void tcp_assign_congestion_control(struct sock *sk);
1099 void tcp_init_congestion_control(struct sock *sk);
1100 void tcp_cleanup_congestion_control(struct sock *sk);
1101 int tcp_set_default_congestion_control(struct net *net, const char *name);
1102 void tcp_get_default_congestion_control(struct net *net, char *name);
1103 void tcp_get_available_congestion_control(char *buf, size_t len);
1104 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1105 int tcp_set_allowed_congestion_control(char *allowed);
1106 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1107 			       bool cap_net_admin);
1108 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1109 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1110 
1111 u32 tcp_reno_ssthresh(struct sock *sk);
1112 u32 tcp_reno_undo_cwnd(struct sock *sk);
1113 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1114 extern struct tcp_congestion_ops tcp_reno;
1115 
1116 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1117 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1118 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1119 #ifdef CONFIG_INET
1120 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1121 #else
tcp_ca_get_name_by_key(u32 key,char * buffer)1122 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1123 {
1124 	return NULL;
1125 }
1126 #endif
1127 
tcp_ca_needs_ecn(const struct sock * sk)1128 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1129 {
1130 	const struct inet_connection_sock *icsk = inet_csk(sk);
1131 
1132 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1133 }
1134 
tcp_set_ca_state(struct sock * sk,const u8 ca_state)1135 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1136 {
1137 	struct inet_connection_sock *icsk = inet_csk(sk);
1138 
1139 	if (icsk->icsk_ca_ops->set_state)
1140 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1141 	icsk->icsk_ca_state = ca_state;
1142 }
1143 
tcp_ca_event(struct sock * sk,const enum tcp_ca_event event)1144 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1145 {
1146 	const struct inet_connection_sock *icsk = inet_csk(sk);
1147 
1148 	if (icsk->icsk_ca_ops->cwnd_event)
1149 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1150 }
1151 
1152 /* From tcp_rate.c */
1153 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1154 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1155 			    struct rate_sample *rs);
1156 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1157 		  bool is_sack_reneg, struct rate_sample *rs);
1158 void tcp_rate_check_app_limited(struct sock *sk);
1159 
1160 /* These functions determine how the current flow behaves in respect of SACK
1161  * handling. SACK is negotiated with the peer, and therefore it can vary
1162  * between different flows.
1163  *
1164  * tcp_is_sack - SACK enabled
1165  * tcp_is_reno - No SACK
1166  */
tcp_is_sack(const struct tcp_sock * tp)1167 static inline int tcp_is_sack(const struct tcp_sock *tp)
1168 {
1169 	return likely(tp->rx_opt.sack_ok);
1170 }
1171 
tcp_is_reno(const struct tcp_sock * tp)1172 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1173 {
1174 	return !tcp_is_sack(tp);
1175 }
1176 
tcp_left_out(const struct tcp_sock * tp)1177 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1178 {
1179 	return tp->sacked_out + tp->lost_out;
1180 }
1181 
1182 /* This determines how many packets are "in the network" to the best
1183  * of our knowledge.  In many cases it is conservative, but where
1184  * detailed information is available from the receiver (via SACK
1185  * blocks etc.) we can make more aggressive calculations.
1186  *
1187  * Use this for decisions involving congestion control, use just
1188  * tp->packets_out to determine if the send queue is empty or not.
1189  *
1190  * Read this equation as:
1191  *
1192  *	"Packets sent once on transmission queue" MINUS
1193  *	"Packets left network, but not honestly ACKed yet" PLUS
1194  *	"Packets fast retransmitted"
1195  */
tcp_packets_in_flight(const struct tcp_sock * tp)1196 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1197 {
1198 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1199 }
1200 
1201 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1202 
tcp_in_slow_start(const struct tcp_sock * tp)1203 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1204 {
1205 	return tp->snd_cwnd < tp->snd_ssthresh;
1206 }
1207 
tcp_in_initial_slowstart(const struct tcp_sock * tp)1208 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1209 {
1210 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1211 }
1212 
tcp_in_cwnd_reduction(const struct sock * sk)1213 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1214 {
1215 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1216 	       (1 << inet_csk(sk)->icsk_ca_state);
1217 }
1218 
1219 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1220  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1221  * ssthresh.
1222  */
tcp_current_ssthresh(const struct sock * sk)1223 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1224 {
1225 	const struct tcp_sock *tp = tcp_sk(sk);
1226 
1227 	if (tcp_in_cwnd_reduction(sk))
1228 		return tp->snd_ssthresh;
1229 	else
1230 		return max(tp->snd_ssthresh,
1231 			   ((tp->snd_cwnd >> 1) +
1232 			    (tp->snd_cwnd >> 2)));
1233 }
1234 
1235 /* Use define here intentionally to get WARN_ON location shown at the caller */
1236 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1237 
1238 void tcp_enter_cwr(struct sock *sk);
1239 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1240 
1241 /* The maximum number of MSS of available cwnd for which TSO defers
1242  * sending if not using sysctl_tcp_tso_win_divisor.
1243  */
tcp_max_tso_deferred_mss(const struct tcp_sock * tp)1244 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1245 {
1246 	return 3;
1247 }
1248 
1249 /* Returns end sequence number of the receiver's advertised window */
tcp_wnd_end(const struct tcp_sock * tp)1250 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1251 {
1252 	return tp->snd_una + tp->snd_wnd;
1253 }
1254 
1255 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1256  * flexible approach. The RFC suggests cwnd should not be raised unless
1257  * it was fully used previously. And that's exactly what we do in
1258  * congestion avoidance mode. But in slow start we allow cwnd to grow
1259  * as long as the application has used half the cwnd.
1260  * Example :
1261  *    cwnd is 10 (IW10), but application sends 9 frames.
1262  *    We allow cwnd to reach 18 when all frames are ACKed.
1263  * This check is safe because it's as aggressive as slow start which already
1264  * risks 100% overshoot. The advantage is that we discourage application to
1265  * either send more filler packets or data to artificially blow up the cwnd
1266  * usage, and allow application-limited process to probe bw more aggressively.
1267  */
tcp_is_cwnd_limited(const struct sock * sk)1268 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1269 {
1270 	const struct tcp_sock *tp = tcp_sk(sk);
1271 
1272 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1273 	if (tcp_in_slow_start(tp))
1274 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1275 
1276 	return tp->is_cwnd_limited;
1277 }
1278 
1279 /* BBR congestion control needs pacing.
1280  * Same remark for SO_MAX_PACING_RATE.
1281  * sch_fq packet scheduler is efficiently handling pacing,
1282  * but is not always installed/used.
1283  * Return true if TCP stack should pace packets itself.
1284  */
tcp_needs_internal_pacing(const struct sock * sk)1285 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1286 {
1287 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1288 }
1289 
1290 /* Estimates in how many jiffies next packet for this flow can be sent.
1291  * Scheduling a retransmit timer too early would be silly.
1292  */
tcp_pacing_delay(const struct sock * sk)1293 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1294 {
1295 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1296 
1297 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1298 }
1299 
tcp_reset_xmit_timer(struct sock * sk,const int what,unsigned long when,const unsigned long max_when)1300 static inline void tcp_reset_xmit_timer(struct sock *sk,
1301 					const int what,
1302 					unsigned long when,
1303 					const unsigned long max_when)
1304 {
1305 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1306 				  max_when);
1307 }
1308 
1309 /* Something is really bad, we could not queue an additional packet,
1310  * because qdisc is full or receiver sent a 0 window, or we are paced.
1311  * We do not want to add fuel to the fire, or abort too early,
1312  * so make sure the timer we arm now is at least 200ms in the future,
1313  * regardless of current icsk_rto value (as it could be ~2ms)
1314  */
tcp_probe0_base(const struct sock * sk)1315 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1316 {
1317 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1318 }
1319 
1320 /* Variant of inet_csk_rto_backoff() used for zero window probes */
tcp_probe0_when(const struct sock * sk,unsigned long max_when)1321 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1322 					    unsigned long max_when)
1323 {
1324 	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1325 
1326 	return (unsigned long)min_t(u64, when, max_when);
1327 }
1328 
tcp_check_probe_timer(struct sock * sk)1329 static inline void tcp_check_probe_timer(struct sock *sk)
1330 {
1331 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1332 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1333 				     tcp_probe0_base(sk), TCP_RTO_MAX);
1334 }
1335 
tcp_init_wl(struct tcp_sock * tp,u32 seq)1336 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1337 {
1338 	tp->snd_wl1 = seq;
1339 }
1340 
tcp_update_wl(struct tcp_sock * tp,u32 seq)1341 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1342 {
1343 	tp->snd_wl1 = seq;
1344 }
1345 
1346 /*
1347  * Calculate(/check) TCP checksum
1348  */
tcp_v4_check(int len,__be32 saddr,__be32 daddr,__wsum base)1349 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1350 				   __be32 daddr, __wsum base)
1351 {
1352 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1353 }
1354 
tcp_checksum_complete(struct sk_buff * skb)1355 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1356 {
1357 	return !skb_csum_unnecessary(skb) &&
1358 		__skb_checksum_complete(skb);
1359 }
1360 
1361 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1362 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1363 void tcp_set_state(struct sock *sk, int state);
1364 void tcp_done(struct sock *sk);
1365 int tcp_abort(struct sock *sk, int err);
1366 
tcp_sack_reset(struct tcp_options_received * rx_opt)1367 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1368 {
1369 	rx_opt->dsack = 0;
1370 	rx_opt->num_sacks = 0;
1371 }
1372 
1373 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1374 
tcp_slow_start_after_idle_check(struct sock * sk)1375 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1376 {
1377 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1378 	struct tcp_sock *tp = tcp_sk(sk);
1379 	s32 delta;
1380 
1381 	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1382 	    ca_ops->cong_control)
1383 		return;
1384 	delta = tcp_jiffies32 - tp->lsndtime;
1385 	if (delta > inet_csk(sk)->icsk_rto)
1386 		tcp_cwnd_restart(sk, delta);
1387 }
1388 
1389 /* Determine a window scaling and initial window to offer. */
1390 void tcp_select_initial_window(const struct sock *sk, int __space,
1391 			       __u32 mss, __u32 *rcv_wnd,
1392 			       __u32 *window_clamp, int wscale_ok,
1393 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1394 
tcp_win_from_space(const struct sock * sk,int space)1395 static inline int tcp_win_from_space(const struct sock *sk, int space)
1396 {
1397 	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1398 
1399 	return tcp_adv_win_scale <= 0 ?
1400 		(space>>(-tcp_adv_win_scale)) :
1401 		space - (space>>tcp_adv_win_scale);
1402 }
1403 
1404 /* Note: caller must be prepared to deal with negative returns */
tcp_space(const struct sock * sk)1405 static inline int tcp_space(const struct sock *sk)
1406 {
1407 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1408 				  READ_ONCE(sk->sk_backlog.len) -
1409 				  atomic_read(&sk->sk_rmem_alloc));
1410 }
1411 
tcp_full_space(const struct sock * sk)1412 static inline int tcp_full_space(const struct sock *sk)
1413 {
1414 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1415 }
1416 
1417 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1418 
1419 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1420  * If 87.5 % (7/8) of the space has been consumed, we want to override
1421  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1422  * len/truesize ratio.
1423  */
tcp_rmem_pressure(const struct sock * sk)1424 static inline bool tcp_rmem_pressure(const struct sock *sk)
1425 {
1426 	int rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1427 	int threshold = rcvbuf - (rcvbuf >> 3);
1428 
1429 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1430 }
1431 
1432 extern void tcp_openreq_init_rwin(struct request_sock *req,
1433 				  const struct sock *sk_listener,
1434 				  const struct dst_entry *dst);
1435 
1436 void tcp_enter_memory_pressure(struct sock *sk);
1437 void tcp_leave_memory_pressure(struct sock *sk);
1438 
keepalive_intvl_when(const struct tcp_sock * tp)1439 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1440 {
1441 	struct net *net = sock_net((struct sock *)tp);
1442 
1443 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1444 }
1445 
keepalive_time_when(const struct tcp_sock * tp)1446 static inline int keepalive_time_when(const struct tcp_sock *tp)
1447 {
1448 	struct net *net = sock_net((struct sock *)tp);
1449 
1450 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1451 }
1452 
keepalive_probes(const struct tcp_sock * tp)1453 static inline int keepalive_probes(const struct tcp_sock *tp)
1454 {
1455 	struct net *net = sock_net((struct sock *)tp);
1456 
1457 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1458 }
1459 
keepalive_time_elapsed(const struct tcp_sock * tp)1460 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1461 {
1462 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1463 
1464 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1465 			  tcp_jiffies32 - tp->rcv_tstamp);
1466 }
1467 
tcp_fin_time(const struct sock * sk)1468 static inline int tcp_fin_time(const struct sock *sk)
1469 {
1470 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1471 	const int rto = inet_csk(sk)->icsk_rto;
1472 
1473 	if (fin_timeout < (rto << 2) - (rto >> 1))
1474 		fin_timeout = (rto << 2) - (rto >> 1);
1475 
1476 	return fin_timeout;
1477 }
1478 
tcp_paws_check(const struct tcp_options_received * rx_opt,int paws_win)1479 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1480 				  int paws_win)
1481 {
1482 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1483 		return true;
1484 	if (unlikely(!time_before32(ktime_get_seconds(),
1485 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1486 		return true;
1487 	/*
1488 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1489 	 * then following tcp messages have valid values. Ignore 0 value,
1490 	 * or else 'negative' tsval might forbid us to accept their packets.
1491 	 */
1492 	if (!rx_opt->ts_recent)
1493 		return true;
1494 	return false;
1495 }
1496 
tcp_paws_reject(const struct tcp_options_received * rx_opt,int rst)1497 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1498 				   int rst)
1499 {
1500 	if (tcp_paws_check(rx_opt, 0))
1501 		return false;
1502 
1503 	/* RST segments are not recommended to carry timestamp,
1504 	   and, if they do, it is recommended to ignore PAWS because
1505 	   "their cleanup function should take precedence over timestamps."
1506 	   Certainly, it is mistake. It is necessary to understand the reasons
1507 	   of this constraint to relax it: if peer reboots, clock may go
1508 	   out-of-sync and half-open connections will not be reset.
1509 	   Actually, the problem would be not existing if all
1510 	   the implementations followed draft about maintaining clock
1511 	   via reboots. Linux-2.2 DOES NOT!
1512 
1513 	   However, we can relax time bounds for RST segments to MSL.
1514 	 */
1515 	if (rst && !time_before32(ktime_get_seconds(),
1516 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1517 		return false;
1518 	return true;
1519 }
1520 
1521 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1522 			  int mib_idx, u32 *last_oow_ack_time);
1523 
tcp_mib_init(struct net * net)1524 static inline void tcp_mib_init(struct net *net)
1525 {
1526 	/* See RFC 2012 */
1527 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1528 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1529 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1530 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1531 }
1532 
1533 /* from STCP */
tcp_clear_retrans_hints_partial(struct tcp_sock * tp)1534 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1535 {
1536 	tp->lost_skb_hint = NULL;
1537 }
1538 
tcp_clear_all_retrans_hints(struct tcp_sock * tp)1539 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1540 {
1541 	tcp_clear_retrans_hints_partial(tp);
1542 	tp->retransmit_skb_hint = NULL;
1543 }
1544 
1545 union tcp_md5_addr {
1546 	struct in_addr  a4;
1547 #if IS_ENABLED(CONFIG_IPV6)
1548 	struct in6_addr	a6;
1549 #endif
1550 };
1551 
1552 /* - key database */
1553 struct tcp_md5sig_key {
1554 	struct hlist_node	node;
1555 	u8			keylen;
1556 	u8			family; /* AF_INET or AF_INET6 */
1557 	u8			prefixlen;
1558 	union tcp_md5_addr	addr;
1559 	int			l3index; /* set if key added with L3 scope */
1560 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1561 	struct rcu_head		rcu;
1562 };
1563 
1564 /* - sock block */
1565 struct tcp_md5sig_info {
1566 	struct hlist_head	head;
1567 	struct rcu_head		rcu;
1568 };
1569 
1570 /* - pseudo header */
1571 struct tcp4_pseudohdr {
1572 	__be32		saddr;
1573 	__be32		daddr;
1574 	__u8		pad;
1575 	__u8		protocol;
1576 	__be16		len;
1577 };
1578 
1579 struct tcp6_pseudohdr {
1580 	struct in6_addr	saddr;
1581 	struct in6_addr daddr;
1582 	__be32		len;
1583 	__be32		protocol;	/* including padding */
1584 };
1585 
1586 union tcp_md5sum_block {
1587 	struct tcp4_pseudohdr ip4;
1588 #if IS_ENABLED(CONFIG_IPV6)
1589 	struct tcp6_pseudohdr ip6;
1590 #endif
1591 };
1592 
1593 /* - pool: digest algorithm, hash description and scratch buffer */
1594 struct tcp_md5sig_pool {
1595 	struct ahash_request	*md5_req;
1596 	void			*scratch;
1597 };
1598 
1599 /* - functions */
1600 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1601 			const struct sock *sk, const struct sk_buff *skb);
1602 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1603 		   int family, u8 prefixlen, int l3index,
1604 		   const u8 *newkey, u8 newkeylen, gfp_t gfp);
1605 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1606 		   int family, u8 prefixlen, int l3index);
1607 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1608 					 const struct sock *addr_sk);
1609 
1610 #ifdef CONFIG_TCP_MD5SIG
1611 #include <linux/jump_label.h>
1612 extern struct static_key_false tcp_md5_needed;
1613 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1614 					   const union tcp_md5_addr *addr,
1615 					   int family);
1616 static inline struct tcp_md5sig_key *
tcp_md5_do_lookup(const struct sock * sk,int l3index,const union tcp_md5_addr * addr,int family)1617 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1618 		  const union tcp_md5_addr *addr, int family)
1619 {
1620 	if (!static_branch_unlikely(&tcp_md5_needed))
1621 		return NULL;
1622 	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1623 }
1624 
1625 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1626 #else
1627 static inline struct tcp_md5sig_key *
tcp_md5_do_lookup(const struct sock * sk,int l3index,const union tcp_md5_addr * addr,int family)1628 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1629 		  const union tcp_md5_addr *addr, int family)
1630 {
1631 	return NULL;
1632 }
1633 #define tcp_twsk_md5_key(twsk)	NULL
1634 #endif
1635 
1636 bool tcp_alloc_md5sig_pool(void);
1637 
1638 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
tcp_put_md5sig_pool(void)1639 static inline void tcp_put_md5sig_pool(void)
1640 {
1641 	local_bh_enable();
1642 }
1643 
1644 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1645 			  unsigned int header_len);
1646 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1647 		     const struct tcp_md5sig_key *key);
1648 
1649 /* From tcp_fastopen.c */
1650 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1651 			    struct tcp_fastopen_cookie *cookie);
1652 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1653 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1654 			    u16 try_exp);
1655 struct tcp_fastopen_request {
1656 	/* Fast Open cookie. Size 0 means a cookie request */
1657 	struct tcp_fastopen_cookie	cookie;
1658 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1659 	size_t				size;
1660 	int				copied;	/* queued in tcp_connect() */
1661 	struct ubuf_info		*uarg;
1662 };
1663 void tcp_free_fastopen_req(struct tcp_sock *tp);
1664 void tcp_fastopen_destroy_cipher(struct sock *sk);
1665 void tcp_fastopen_ctx_destroy(struct net *net);
1666 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1667 			      void *primary_key, void *backup_key);
1668 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1669 			    u64 *key);
1670 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1671 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1672 			      struct request_sock *req,
1673 			      struct tcp_fastopen_cookie *foc,
1674 			      const struct dst_entry *dst);
1675 void tcp_fastopen_init_key_once(struct net *net);
1676 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1677 			     struct tcp_fastopen_cookie *cookie);
1678 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1679 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1680 #define TCP_FASTOPEN_KEY_MAX 2
1681 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1682 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1683 
1684 /* Fastopen key context */
1685 struct tcp_fastopen_context {
1686 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1687 	int		num;
1688 	struct rcu_head	rcu;
1689 };
1690 
1691 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1692 void tcp_fastopen_active_disable(struct sock *sk);
1693 bool tcp_fastopen_active_should_disable(struct sock *sk);
1694 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1695 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1696 
1697 /* Caller needs to wrap with rcu_read_(un)lock() */
1698 static inline
tcp_fastopen_get_ctx(const struct sock * sk)1699 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1700 {
1701 	struct tcp_fastopen_context *ctx;
1702 
1703 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1704 	if (!ctx)
1705 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1706 	return ctx;
1707 }
1708 
1709 static inline
tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie * foc,const struct tcp_fastopen_cookie * orig)1710 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1711 			       const struct tcp_fastopen_cookie *orig)
1712 {
1713 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1714 	    orig->len == foc->len &&
1715 	    !memcmp(orig->val, foc->val, foc->len))
1716 		return true;
1717 	return false;
1718 }
1719 
1720 static inline
tcp_fastopen_context_len(const struct tcp_fastopen_context * ctx)1721 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1722 {
1723 	return ctx->num;
1724 }
1725 
1726 /* Latencies incurred by various limits for a sender. They are
1727  * chronograph-like stats that are mutually exclusive.
1728  */
1729 enum tcp_chrono {
1730 	TCP_CHRONO_UNSPEC,
1731 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1732 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1733 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1734 	__TCP_CHRONO_MAX,
1735 };
1736 
1737 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1738 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1739 
1740 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1741  * the same memory storage than skb->destructor/_skb_refdst
1742  */
tcp_skb_tsorted_anchor_cleanup(struct sk_buff * skb)1743 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1744 {
1745 	skb->destructor = NULL;
1746 	skb->_skb_refdst = 0UL;
1747 }
1748 
1749 #define tcp_skb_tsorted_save(skb) {		\
1750 	unsigned long _save = skb->_skb_refdst;	\
1751 	skb->_skb_refdst = 0UL;
1752 
1753 #define tcp_skb_tsorted_restore(skb)		\
1754 	skb->_skb_refdst = _save;		\
1755 }
1756 
1757 void tcp_write_queue_purge(struct sock *sk);
1758 
tcp_rtx_queue_head(const struct sock * sk)1759 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1760 {
1761 	return skb_rb_first(&sk->tcp_rtx_queue);
1762 }
1763 
tcp_rtx_queue_tail(const struct sock * sk)1764 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1765 {
1766 	return skb_rb_last(&sk->tcp_rtx_queue);
1767 }
1768 
tcp_write_queue_head(const struct sock * sk)1769 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1770 {
1771 	return skb_peek(&sk->sk_write_queue);
1772 }
1773 
tcp_write_queue_tail(const struct sock * sk)1774 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1775 {
1776 	return skb_peek_tail(&sk->sk_write_queue);
1777 }
1778 
1779 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1780 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1781 
tcp_send_head(const struct sock * sk)1782 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1783 {
1784 	return skb_peek(&sk->sk_write_queue);
1785 }
1786 
tcp_skb_is_last(const struct sock * sk,const struct sk_buff * skb)1787 static inline bool tcp_skb_is_last(const struct sock *sk,
1788 				   const struct sk_buff *skb)
1789 {
1790 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1791 }
1792 
1793 /**
1794  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1795  * @sk: socket
1796  *
1797  * Since the write queue can have a temporary empty skb in it,
1798  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1799  */
tcp_write_queue_empty(const struct sock * sk)1800 static inline bool tcp_write_queue_empty(const struct sock *sk)
1801 {
1802 	const struct tcp_sock *tp = tcp_sk(sk);
1803 
1804 	return tp->write_seq == tp->snd_nxt;
1805 }
1806 
tcp_rtx_queue_empty(const struct sock * sk)1807 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1808 {
1809 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1810 }
1811 
tcp_rtx_and_write_queues_empty(const struct sock * sk)1812 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1813 {
1814 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1815 }
1816 
tcp_add_write_queue_tail(struct sock * sk,struct sk_buff * skb)1817 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1818 {
1819 	__skb_queue_tail(&sk->sk_write_queue, skb);
1820 
1821 	/* Queue it, remembering where we must start sending. */
1822 	if (sk->sk_write_queue.next == skb)
1823 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1824 }
1825 
1826 /* Insert new before skb on the write queue of sk.  */
tcp_insert_write_queue_before(struct sk_buff * new,struct sk_buff * skb,struct sock * sk)1827 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1828 						  struct sk_buff *skb,
1829 						  struct sock *sk)
1830 {
1831 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1832 }
1833 
tcp_unlink_write_queue(struct sk_buff * skb,struct sock * sk)1834 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1835 {
1836 	tcp_skb_tsorted_anchor_cleanup(skb);
1837 	__skb_unlink(skb, &sk->sk_write_queue);
1838 }
1839 
1840 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1841 
tcp_rtx_queue_unlink(struct sk_buff * skb,struct sock * sk)1842 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1843 {
1844 	tcp_skb_tsorted_anchor_cleanup(skb);
1845 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1846 }
1847 
tcp_rtx_queue_unlink_and_free(struct sk_buff * skb,struct sock * sk)1848 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1849 {
1850 	list_del(&skb->tcp_tsorted_anchor);
1851 	tcp_rtx_queue_unlink(skb, sk);
1852 	sk_wmem_free_skb(sk, skb);
1853 }
1854 
tcp_push_pending_frames(struct sock * sk)1855 static inline void tcp_push_pending_frames(struct sock *sk)
1856 {
1857 	if (tcp_send_head(sk)) {
1858 		struct tcp_sock *tp = tcp_sk(sk);
1859 
1860 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1861 	}
1862 }
1863 
1864 /* Start sequence of the skb just after the highest skb with SACKed
1865  * bit, valid only if sacked_out > 0 or when the caller has ensured
1866  * validity by itself.
1867  */
tcp_highest_sack_seq(struct tcp_sock * tp)1868 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1869 {
1870 	if (!tp->sacked_out)
1871 		return tp->snd_una;
1872 
1873 	if (tp->highest_sack == NULL)
1874 		return tp->snd_nxt;
1875 
1876 	return TCP_SKB_CB(tp->highest_sack)->seq;
1877 }
1878 
tcp_advance_highest_sack(struct sock * sk,struct sk_buff * skb)1879 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1880 {
1881 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1882 }
1883 
tcp_highest_sack(struct sock * sk)1884 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1885 {
1886 	return tcp_sk(sk)->highest_sack;
1887 }
1888 
tcp_highest_sack_reset(struct sock * sk)1889 static inline void tcp_highest_sack_reset(struct sock *sk)
1890 {
1891 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1892 }
1893 
1894 /* Called when old skb is about to be deleted and replaced by new skb */
tcp_highest_sack_replace(struct sock * sk,struct sk_buff * old,struct sk_buff * new)1895 static inline void tcp_highest_sack_replace(struct sock *sk,
1896 					    struct sk_buff *old,
1897 					    struct sk_buff *new)
1898 {
1899 	if (old == tcp_highest_sack(sk))
1900 		tcp_sk(sk)->highest_sack = new;
1901 }
1902 
1903 /* This helper checks if socket has IP_TRANSPARENT set */
inet_sk_transparent(const struct sock * sk)1904 static inline bool inet_sk_transparent(const struct sock *sk)
1905 {
1906 	switch (sk->sk_state) {
1907 	case TCP_TIME_WAIT:
1908 		return inet_twsk(sk)->tw_transparent;
1909 	case TCP_NEW_SYN_RECV:
1910 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1911 	}
1912 	return inet_sk(sk)->transparent;
1913 }
1914 
1915 /* Determines whether this is a thin stream (which may suffer from
1916  * increased latency). Used to trigger latency-reducing mechanisms.
1917  */
tcp_stream_is_thin(struct tcp_sock * tp)1918 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1919 {
1920 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1921 }
1922 
1923 /* /proc */
1924 enum tcp_seq_states {
1925 	TCP_SEQ_STATE_LISTENING,
1926 	TCP_SEQ_STATE_ESTABLISHED,
1927 };
1928 
1929 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1930 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1931 void tcp_seq_stop(struct seq_file *seq, void *v);
1932 
1933 struct tcp_seq_afinfo {
1934 	sa_family_t			family;
1935 };
1936 
1937 struct tcp_iter_state {
1938 	struct seq_net_private	p;
1939 	enum tcp_seq_states	state;
1940 	struct sock		*syn_wait_sk;
1941 	struct tcp_seq_afinfo	*bpf_seq_afinfo;
1942 	int			bucket, offset, sbucket, num;
1943 	loff_t			last_pos;
1944 };
1945 
1946 extern struct request_sock_ops tcp_request_sock_ops;
1947 extern struct request_sock_ops tcp6_request_sock_ops;
1948 
1949 void tcp_v4_destroy_sock(struct sock *sk);
1950 
1951 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1952 				netdev_features_t features);
1953 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1954 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
1955 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
1956 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
1957 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
1958 int tcp_gro_complete(struct sk_buff *skb);
1959 
1960 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1961 
tcp_notsent_lowat(const struct tcp_sock * tp)1962 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1963 {
1964 	struct net *net = sock_net((struct sock *)tp);
1965 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1966 }
1967 
1968 /* @wake is one when sk_stream_write_space() calls us.
1969  * This sends EPOLLOUT only if notsent_bytes is half the limit.
1970  * This mimics the strategy used in sock_def_write_space().
1971  */
tcp_stream_memory_free(const struct sock * sk,int wake)1972 static inline bool tcp_stream_memory_free(const struct sock *sk, int wake)
1973 {
1974 	const struct tcp_sock *tp = tcp_sk(sk);
1975 	u32 notsent_bytes = READ_ONCE(tp->write_seq) -
1976 			    READ_ONCE(tp->snd_nxt);
1977 
1978 	return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
1979 }
1980 
1981 #ifdef CONFIG_PROC_FS
1982 int tcp4_proc_init(void);
1983 void tcp4_proc_exit(void);
1984 #endif
1985 
1986 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1987 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1988 		     const struct tcp_request_sock_ops *af_ops,
1989 		     struct sock *sk, struct sk_buff *skb);
1990 
1991 /* TCP af-specific functions */
1992 struct tcp_sock_af_ops {
1993 #ifdef CONFIG_TCP_MD5SIG
1994 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1995 						const struct sock *addr_sk);
1996 	int		(*calc_md5_hash)(char *location,
1997 					 const struct tcp_md5sig_key *md5,
1998 					 const struct sock *sk,
1999 					 const struct sk_buff *skb);
2000 	int		(*md5_parse)(struct sock *sk,
2001 				     int optname,
2002 				     sockptr_t optval,
2003 				     int optlen);
2004 #endif
2005 };
2006 
2007 struct tcp_request_sock_ops {
2008 	u16 mss_clamp;
2009 #ifdef CONFIG_TCP_MD5SIG
2010 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2011 						 const struct sock *addr_sk);
2012 	int		(*calc_md5_hash) (char *location,
2013 					  const struct tcp_md5sig_key *md5,
2014 					  const struct sock *sk,
2015 					  const struct sk_buff *skb);
2016 #endif
2017 	void (*init_req)(struct request_sock *req,
2018 			 const struct sock *sk_listener,
2019 			 struct sk_buff *skb);
2020 #ifdef CONFIG_SYN_COOKIES
2021 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2022 				 __u16 *mss);
2023 #endif
2024 	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
2025 				       const struct request_sock *req);
2026 	u32 (*init_seq)(const struct sk_buff *skb);
2027 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2028 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2029 			   struct flowi *fl, struct request_sock *req,
2030 			   struct tcp_fastopen_cookie *foc,
2031 			   enum tcp_synack_type synack_type,
2032 			   struct sk_buff *syn_skb);
2033 };
2034 
2035 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2036 #if IS_ENABLED(CONFIG_IPV6)
2037 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2038 #endif
2039 
2040 #ifdef CONFIG_SYN_COOKIES
cookie_init_sequence(const struct tcp_request_sock_ops * ops,const struct sock * sk,struct sk_buff * skb,__u16 * mss)2041 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2042 					 const struct sock *sk, struct sk_buff *skb,
2043 					 __u16 *mss)
2044 {
2045 	tcp_synq_overflow(sk);
2046 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2047 	return ops->cookie_init_seq(skb, mss);
2048 }
2049 #else
cookie_init_sequence(const struct tcp_request_sock_ops * ops,const struct sock * sk,struct sk_buff * skb,__u16 * mss)2050 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2051 					 const struct sock *sk, struct sk_buff *skb,
2052 					 __u16 *mss)
2053 {
2054 	return 0;
2055 }
2056 #endif
2057 
2058 int tcpv4_offload_init(void);
2059 
2060 void tcp_v4_init(void);
2061 void tcp_init(void);
2062 
2063 /* tcp_recovery.c */
2064 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2065 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2066 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2067 				u32 reo_wnd);
2068 extern void tcp_rack_mark_lost(struct sock *sk);
2069 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2070 			     u64 xmit_time);
2071 extern void tcp_rack_reo_timeout(struct sock *sk);
2072 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2073 
2074 /* At how many usecs into the future should the RTO fire? */
tcp_rto_delta_us(const struct sock * sk)2075 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2076 {
2077 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2078 	u32 rto = inet_csk(sk)->icsk_rto;
2079 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2080 
2081 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2082 }
2083 
2084 /*
2085  * Save and compile IPv4 options, return a pointer to it
2086  */
tcp_v4_save_options(struct net * net,struct sk_buff * skb)2087 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2088 							 struct sk_buff *skb)
2089 {
2090 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2091 	struct ip_options_rcu *dopt = NULL;
2092 
2093 	if (opt->optlen) {
2094 		int opt_size = sizeof(*dopt) + opt->optlen;
2095 
2096 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2097 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2098 			kfree(dopt);
2099 			dopt = NULL;
2100 		}
2101 	}
2102 	return dopt;
2103 }
2104 
2105 /* locally generated TCP pure ACKs have skb->truesize == 2
2106  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2107  * This is much faster than dissecting the packet to find out.
2108  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2109  */
skb_is_tcp_pure_ack(const struct sk_buff * skb)2110 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2111 {
2112 	return skb->truesize == 2;
2113 }
2114 
skb_set_tcp_pure_ack(struct sk_buff * skb)2115 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2116 {
2117 	skb->truesize = 2;
2118 }
2119 
tcp_inq(struct sock * sk)2120 static inline int tcp_inq(struct sock *sk)
2121 {
2122 	struct tcp_sock *tp = tcp_sk(sk);
2123 	int answ;
2124 
2125 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2126 		answ = 0;
2127 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2128 		   !tp->urg_data ||
2129 		   before(tp->urg_seq, tp->copied_seq) ||
2130 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2131 
2132 		answ = tp->rcv_nxt - tp->copied_seq;
2133 
2134 		/* Subtract 1, if FIN was received */
2135 		if (answ && sock_flag(sk, SOCK_DONE))
2136 			answ--;
2137 	} else {
2138 		answ = tp->urg_seq - tp->copied_seq;
2139 	}
2140 
2141 	return answ;
2142 }
2143 
2144 int tcp_peek_len(struct socket *sock);
2145 
tcp_segs_in(struct tcp_sock * tp,const struct sk_buff * skb)2146 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2147 {
2148 	u16 segs_in;
2149 
2150 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2151 	tp->segs_in += segs_in;
2152 	if (skb->len > tcp_hdrlen(skb))
2153 		tp->data_segs_in += segs_in;
2154 }
2155 
2156 /*
2157  * TCP listen path runs lockless.
2158  * We forced "struct sock" to be const qualified to make sure
2159  * we don't modify one of its field by mistake.
2160  * Here, we increment sk_drops which is an atomic_t, so we can safely
2161  * make sock writable again.
2162  */
tcp_listendrop(const struct sock * sk)2163 static inline void tcp_listendrop(const struct sock *sk)
2164 {
2165 	atomic_inc(&((struct sock *)sk)->sk_drops);
2166 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2167 }
2168 
2169 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2170 
2171 /*
2172  * Interface for adding Upper Level Protocols over TCP
2173  */
2174 
2175 #define TCP_ULP_NAME_MAX	16
2176 #define TCP_ULP_MAX		128
2177 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2178 
2179 struct tcp_ulp_ops {
2180 	struct list_head	list;
2181 
2182 	/* initialize ulp */
2183 	int (*init)(struct sock *sk);
2184 	/* update ulp */
2185 	void (*update)(struct sock *sk, struct proto *p,
2186 		       void (*write_space)(struct sock *sk));
2187 	/* cleanup ulp */
2188 	void (*release)(struct sock *sk);
2189 	/* diagnostic */
2190 	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2191 	size_t (*get_info_size)(const struct sock *sk);
2192 	/* clone ulp */
2193 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2194 		      const gfp_t priority);
2195 
2196 	char		name[TCP_ULP_NAME_MAX];
2197 	struct module	*owner;
2198 };
2199 int tcp_register_ulp(struct tcp_ulp_ops *type);
2200 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2201 int tcp_set_ulp(struct sock *sk, const char *name);
2202 void tcp_get_available_ulp(char *buf, size_t len);
2203 void tcp_cleanup_ulp(struct sock *sk);
2204 void tcp_update_ulp(struct sock *sk, struct proto *p,
2205 		    void (*write_space)(struct sock *sk));
2206 
2207 #define MODULE_ALIAS_TCP_ULP(name)				\
2208 	__MODULE_INFO(alias, alias_userspace, name);		\
2209 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2210 
2211 struct sk_msg;
2212 struct sk_psock;
2213 
2214 #ifdef CONFIG_BPF_STREAM_PARSER
2215 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2216 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2217 #else
tcp_bpf_clone(const struct sock * sk,struct sock * newsk)2218 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2219 {
2220 }
2221 #endif /* CONFIG_BPF_STREAM_PARSER */
2222 
2223 #ifdef CONFIG_NET_SOCK_MSG
2224 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2225 			  int flags);
2226 int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock,
2227 		      struct msghdr *msg, int len, int flags);
2228 #endif /* CONFIG_NET_SOCK_MSG */
2229 
2230 #ifdef CONFIG_CGROUP_BPF
bpf_skops_init_skb(struct bpf_sock_ops_kern * skops,struct sk_buff * skb,unsigned int end_offset)2231 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2232 				      struct sk_buff *skb,
2233 				      unsigned int end_offset)
2234 {
2235 	skops->skb = skb;
2236 	skops->skb_data_end = skb->data + end_offset;
2237 }
2238 #else
bpf_skops_init_skb(struct bpf_sock_ops_kern * skops,struct sk_buff * skb,unsigned int end_offset)2239 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2240 				      struct sk_buff *skb,
2241 				      unsigned int end_offset)
2242 {
2243 }
2244 #endif
2245 
2246 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2247  * is < 0, then the BPF op failed (for example if the loaded BPF
2248  * program does not support the chosen operation or there is no BPF
2249  * program loaded).
2250  */
2251 #ifdef CONFIG_BPF
tcp_call_bpf(struct sock * sk,int op,u32 nargs,u32 * args)2252 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2253 {
2254 	struct bpf_sock_ops_kern sock_ops;
2255 	int ret;
2256 
2257 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2258 	if (sk_fullsock(sk)) {
2259 		sock_ops.is_fullsock = 1;
2260 		sock_owned_by_me(sk);
2261 	}
2262 
2263 	sock_ops.sk = sk;
2264 	sock_ops.op = op;
2265 	if (nargs > 0)
2266 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2267 
2268 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2269 	if (ret == 0)
2270 		ret = sock_ops.reply;
2271 	else
2272 		ret = -1;
2273 	return ret;
2274 }
2275 
tcp_call_bpf_2arg(struct sock * sk,int op,u32 arg1,u32 arg2)2276 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2277 {
2278 	u32 args[2] = {arg1, arg2};
2279 
2280 	return tcp_call_bpf(sk, op, 2, args);
2281 }
2282 
tcp_call_bpf_3arg(struct sock * sk,int op,u32 arg1,u32 arg2,u32 arg3)2283 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2284 				    u32 arg3)
2285 {
2286 	u32 args[3] = {arg1, arg2, arg3};
2287 
2288 	return tcp_call_bpf(sk, op, 3, args);
2289 }
2290 
2291 #else
tcp_call_bpf(struct sock * sk,int op,u32 nargs,u32 * args)2292 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2293 {
2294 	return -EPERM;
2295 }
2296 
tcp_call_bpf_2arg(struct sock * sk,int op,u32 arg1,u32 arg2)2297 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2298 {
2299 	return -EPERM;
2300 }
2301 
tcp_call_bpf_3arg(struct sock * sk,int op,u32 arg1,u32 arg2,u32 arg3)2302 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2303 				    u32 arg3)
2304 {
2305 	return -EPERM;
2306 }
2307 
2308 #endif
2309 
tcp_timeout_init(struct sock * sk)2310 static inline u32 tcp_timeout_init(struct sock *sk)
2311 {
2312 	int timeout;
2313 
2314 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2315 
2316 	if (timeout <= 0)
2317 		timeout = TCP_TIMEOUT_INIT;
2318 	return timeout;
2319 }
2320 
tcp_rwnd_init_bpf(struct sock * sk)2321 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2322 {
2323 	int rwnd;
2324 
2325 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2326 
2327 	if (rwnd < 0)
2328 		rwnd = 0;
2329 	return rwnd;
2330 }
2331 
tcp_bpf_ca_needs_ecn(struct sock * sk)2332 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2333 {
2334 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2335 }
2336 
tcp_bpf_rtt(struct sock * sk)2337 static inline void tcp_bpf_rtt(struct sock *sk)
2338 {
2339 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2340 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2341 }
2342 
2343 #if IS_ENABLED(CONFIG_SMC)
2344 extern struct static_key_false tcp_have_smc;
2345 #endif
2346 
2347 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2348 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2349 			     void (*cad)(struct sock *sk, u32 ack_seq));
2350 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2351 void clean_acked_data_flush(void);
2352 #endif
2353 
2354 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
tcp_add_tx_delay(struct sk_buff * skb,const struct tcp_sock * tp)2355 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2356 				    const struct tcp_sock *tp)
2357 {
2358 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2359 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2360 }
2361 
2362 /* Compute Earliest Departure Time for some control packets
2363  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2364  */
tcp_transmit_time(const struct sock * sk)2365 static inline u64 tcp_transmit_time(const struct sock *sk)
2366 {
2367 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2368 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2369 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2370 
2371 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2372 	}
2373 	return 0;
2374 }
2375 
2376 #endif	/* _TCP_H */
2377