Searched refs:sgn (Results 1 – 11 of 11) sorted by relevance
/Linux-v5.10/arch/m68k/fpsp040/ |
D | stanh.S | 26 | sgn := sign(X), y := 2|X|, z := expm1(Y), and 27 | tanh(X) = sgn*( z/(2+z) ). 36 | sgn := sign(X), y := 2|X|, z := exp(Y), 37 | tanh(X) = sgn - [ sgn*2/(1+z) ]. 42 | sgn := sign(X), Tiny := 2**(-126), 43 | tanh(X) := sgn - sgn*Tiny.
|
D | satanh.S | 27 | sgn := sign(X) 30 | atanh(X) := sgn * (1/2) * logp1(z) 37 | sgn := sign(X) 38 | atan(X) := sgn / (+0).
|
D | ssinh.S | 26 | y = |X|, sgn = sign(X), and z = expm1(Y), 27 | sinh(X) = sgn*(1/2)*( z + z/(1+z) ). 37 | sgn := sign(X) 38 | sgnFact := sgn * 2**(16380)
|
D | sasin.S | 32 | 4. (|X| = 1) sgn := sign(X), return asin(X) := sgn * Pi/2. Exit.
|
D | satan.S | 25 | Step 2. Let X = sgn * 2**k * 1.xxxxxxxx...x. Note that k = -4, -3,..., or 3. 26 | Define F = sgn * 2**k * 1.xxxx1, i.e. the first 5 significant bits
|
D | ssin.S | 40 | 5. (k is odd) Set j := (k-1)/2, sgn := (-1)**j. Return sgn*cos(r) 45 | 6. (k is even) Set j := k/2, sgn := (-1)**j. Return sgn*sin(r)
|
/Linux-v5.10/drivers/media/tuners/ |
D | tda18271-fe.c | 434 int sgn, bcal, count, wait, ret; in tda18271_powerscan() local 471 sgn = 1; in tda18271_powerscan() 479 freq = *freq_in + (sgn * count) + 1000000; in tda18271_powerscan() 503 if (sgn <= 0) in tda18271_powerscan() 506 sgn = -1 * sgn; in tda18271_powerscan()
|
/Linux-v5.10/drivers/media/dvb-frontends/ |
D | lg2160.c | 560 static int lg216x_get_sgn(struct lg216x_state *state, u8 *sgn) in lg216x_get_sgn() argument 565 *sgn = 0xff; /* invalid value */ in lg216x_get_sgn() 571 *sgn = val & 0x0f; in lg216x_get_sgn()
|
/Linux-v5.10/arch/m68k/ifpsp060/src/ |
D | ilsp.S | 201 neg.l %d5 # sgn(rem) = sgn(dividend) 641 ori.b &0x1,%d5 # save multiplier sgn
|
D | fplsp.S | 4931 # 5. (k is odd) Set j := (k-1)/2, sgn := (-1)**j. # 4932 # Return sgn*cos(r) where cos(r) is approximated by an # 4937 # 6. (k is even) Set j := k/2, sgn := (-1)**j. Return sgn*sin(r) # 6515 # 4. (|X| = 1) sgn := sign(X), return asin(X) := sgn * Pi/2. Exit.# 7701 # y = |X|, sgn = sign(X), and z = expm1(Y), # 7702 # sinh(X) = sgn*(1/2)*( z + z/(1+z) ). # 7712 # sgn := sign(X) # 7713 # sgnFact := sgn * 2**(16380) # 7819 # sgn := sign(X), y := 2|X|, z := expm1(Y), and # 7820 # tanh(X) = sgn*( z/(2+z) ). # [all …]
|
D | fpsp.S | 6162 # Step 2. Let X = sgn * 2**k * 1.xxxxxxxx...x. # 6164 # Define F = sgn * 2**k * 1.xxxx1, i.e. the first 5 # 11638 mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp} 12280 mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} 13060 mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} 13564 mov.w FP_SCR0_EX(%a6),%d1 # load sgn,exp 14009 mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp} 14056 mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} 14356 mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp} 14409 mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp} [all …]
|