1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
4 */
5 #include <linux/list_sort.h>
6 #include <linux/libnvdimm.h>
7 #include <linux/module.h>
8 #include <linux/mutex.h>
9 #include <linux/ndctl.h>
10 #include <linux/sysfs.h>
11 #include <linux/delay.h>
12 #include <linux/list.h>
13 #include <linux/acpi.h>
14 #include <linux/sort.h>
15 #include <linux/io.h>
16 #include <linux/nd.h>
17 #include <asm/cacheflush.h>
18 #include <acpi/nfit.h>
19 #include "intel.h"
20 #include "nfit.h"
21
22 /*
23 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
24 * irrelevant.
25 */
26 #include <linux/io-64-nonatomic-hi-lo.h>
27
28 static bool force_enable_dimms;
29 module_param(force_enable_dimms, bool, S_IRUGO|S_IWUSR);
30 MODULE_PARM_DESC(force_enable_dimms, "Ignore _STA (ACPI DIMM device) status");
31
32 static bool disable_vendor_specific;
33 module_param(disable_vendor_specific, bool, S_IRUGO);
34 MODULE_PARM_DESC(disable_vendor_specific,
35 "Limit commands to the publicly specified set");
36
37 static unsigned long override_dsm_mask;
38 module_param(override_dsm_mask, ulong, S_IRUGO);
39 MODULE_PARM_DESC(override_dsm_mask, "Bitmask of allowed NVDIMM DSM functions");
40
41 static int default_dsm_family = -1;
42 module_param(default_dsm_family, int, S_IRUGO);
43 MODULE_PARM_DESC(default_dsm_family,
44 "Try this DSM type first when identifying NVDIMM family");
45
46 static bool no_init_ars;
47 module_param(no_init_ars, bool, 0644);
48 MODULE_PARM_DESC(no_init_ars, "Skip ARS run at nfit init time");
49
50 static bool force_labels;
51 module_param(force_labels, bool, 0444);
52 MODULE_PARM_DESC(force_labels, "Opt-in to labels despite missing methods");
53
54 LIST_HEAD(acpi_descs);
55 DEFINE_MUTEX(acpi_desc_lock);
56
57 static struct workqueue_struct *nfit_wq;
58
59 struct nfit_table_prev {
60 struct list_head spas;
61 struct list_head memdevs;
62 struct list_head dcrs;
63 struct list_head bdws;
64 struct list_head idts;
65 struct list_head flushes;
66 };
67
68 static guid_t nfit_uuid[NFIT_UUID_MAX];
69
to_nfit_uuid(enum nfit_uuids id)70 const guid_t *to_nfit_uuid(enum nfit_uuids id)
71 {
72 return &nfit_uuid[id];
73 }
74 EXPORT_SYMBOL(to_nfit_uuid);
75
to_nfit_bus_uuid(int family)76 static const guid_t *to_nfit_bus_uuid(int family)
77 {
78 if (WARN_ONCE(family == NVDIMM_BUS_FAMILY_NFIT,
79 "only secondary bus families can be translated\n"))
80 return NULL;
81 /*
82 * The index of bus UUIDs starts immediately following the last
83 * NVDIMM/leaf family.
84 */
85 return to_nfit_uuid(family + NVDIMM_FAMILY_MAX);
86 }
87
to_acpi_dev(struct acpi_nfit_desc * acpi_desc)88 static struct acpi_device *to_acpi_dev(struct acpi_nfit_desc *acpi_desc)
89 {
90 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
91
92 /*
93 * If provider == 'ACPI.NFIT' we can assume 'dev' is a struct
94 * acpi_device.
95 */
96 if (!nd_desc->provider_name
97 || strcmp(nd_desc->provider_name, "ACPI.NFIT") != 0)
98 return NULL;
99
100 return to_acpi_device(acpi_desc->dev);
101 }
102
xlat_bus_status(void * buf,unsigned int cmd,u32 status)103 static int xlat_bus_status(void *buf, unsigned int cmd, u32 status)
104 {
105 struct nd_cmd_clear_error *clear_err;
106 struct nd_cmd_ars_status *ars_status;
107 u16 flags;
108
109 switch (cmd) {
110 case ND_CMD_ARS_CAP:
111 if ((status & 0xffff) == NFIT_ARS_CAP_NONE)
112 return -ENOTTY;
113
114 /* Command failed */
115 if (status & 0xffff)
116 return -EIO;
117
118 /* No supported scan types for this range */
119 flags = ND_ARS_PERSISTENT | ND_ARS_VOLATILE;
120 if ((status >> 16 & flags) == 0)
121 return -ENOTTY;
122 return 0;
123 case ND_CMD_ARS_START:
124 /* ARS is in progress */
125 if ((status & 0xffff) == NFIT_ARS_START_BUSY)
126 return -EBUSY;
127
128 /* Command failed */
129 if (status & 0xffff)
130 return -EIO;
131 return 0;
132 case ND_CMD_ARS_STATUS:
133 ars_status = buf;
134 /* Command failed */
135 if (status & 0xffff)
136 return -EIO;
137 /* Check extended status (Upper two bytes) */
138 if (status == NFIT_ARS_STATUS_DONE)
139 return 0;
140
141 /* ARS is in progress */
142 if (status == NFIT_ARS_STATUS_BUSY)
143 return -EBUSY;
144
145 /* No ARS performed for the current boot */
146 if (status == NFIT_ARS_STATUS_NONE)
147 return -EAGAIN;
148
149 /*
150 * ARS interrupted, either we overflowed or some other
151 * agent wants the scan to stop. If we didn't overflow
152 * then just continue with the returned results.
153 */
154 if (status == NFIT_ARS_STATUS_INTR) {
155 if (ars_status->out_length >= 40 && (ars_status->flags
156 & NFIT_ARS_F_OVERFLOW))
157 return -ENOSPC;
158 return 0;
159 }
160
161 /* Unknown status */
162 if (status >> 16)
163 return -EIO;
164 return 0;
165 case ND_CMD_CLEAR_ERROR:
166 clear_err = buf;
167 if (status & 0xffff)
168 return -EIO;
169 if (!clear_err->cleared)
170 return -EIO;
171 if (clear_err->length > clear_err->cleared)
172 return clear_err->cleared;
173 return 0;
174 default:
175 break;
176 }
177
178 /* all other non-zero status results in an error */
179 if (status)
180 return -EIO;
181 return 0;
182 }
183
184 #define ACPI_LABELS_LOCKED 3
185
xlat_nvdimm_status(struct nvdimm * nvdimm,void * buf,unsigned int cmd,u32 status)186 static int xlat_nvdimm_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
187 u32 status)
188 {
189 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
190
191 switch (cmd) {
192 case ND_CMD_GET_CONFIG_SIZE:
193 /*
194 * In the _LSI, _LSR, _LSW case the locked status is
195 * communicated via the read/write commands
196 */
197 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags))
198 break;
199
200 if (status >> 16 & ND_CONFIG_LOCKED)
201 return -EACCES;
202 break;
203 case ND_CMD_GET_CONFIG_DATA:
204 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)
205 && status == ACPI_LABELS_LOCKED)
206 return -EACCES;
207 break;
208 case ND_CMD_SET_CONFIG_DATA:
209 if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags)
210 && status == ACPI_LABELS_LOCKED)
211 return -EACCES;
212 break;
213 default:
214 break;
215 }
216
217 /* all other non-zero status results in an error */
218 if (status)
219 return -EIO;
220 return 0;
221 }
222
xlat_status(struct nvdimm * nvdimm,void * buf,unsigned int cmd,u32 status)223 static int xlat_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
224 u32 status)
225 {
226 if (!nvdimm)
227 return xlat_bus_status(buf, cmd, status);
228 return xlat_nvdimm_status(nvdimm, buf, cmd, status);
229 }
230
231 /* convert _LS{I,R} packages to the buffer object acpi_nfit_ctl expects */
pkg_to_buf(union acpi_object * pkg)232 static union acpi_object *pkg_to_buf(union acpi_object *pkg)
233 {
234 int i;
235 void *dst;
236 size_t size = 0;
237 union acpi_object *buf = NULL;
238
239 if (pkg->type != ACPI_TYPE_PACKAGE) {
240 WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
241 pkg->type);
242 goto err;
243 }
244
245 for (i = 0; i < pkg->package.count; i++) {
246 union acpi_object *obj = &pkg->package.elements[i];
247
248 if (obj->type == ACPI_TYPE_INTEGER)
249 size += 4;
250 else if (obj->type == ACPI_TYPE_BUFFER)
251 size += obj->buffer.length;
252 else {
253 WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
254 obj->type);
255 goto err;
256 }
257 }
258
259 buf = ACPI_ALLOCATE(sizeof(*buf) + size);
260 if (!buf)
261 goto err;
262
263 dst = buf + 1;
264 buf->type = ACPI_TYPE_BUFFER;
265 buf->buffer.length = size;
266 buf->buffer.pointer = dst;
267 for (i = 0; i < pkg->package.count; i++) {
268 union acpi_object *obj = &pkg->package.elements[i];
269
270 if (obj->type == ACPI_TYPE_INTEGER) {
271 memcpy(dst, &obj->integer.value, 4);
272 dst += 4;
273 } else if (obj->type == ACPI_TYPE_BUFFER) {
274 memcpy(dst, obj->buffer.pointer, obj->buffer.length);
275 dst += obj->buffer.length;
276 }
277 }
278 err:
279 ACPI_FREE(pkg);
280 return buf;
281 }
282
int_to_buf(union acpi_object * integer)283 static union acpi_object *int_to_buf(union acpi_object *integer)
284 {
285 union acpi_object *buf = ACPI_ALLOCATE(sizeof(*buf) + 4);
286 void *dst = NULL;
287
288 if (!buf)
289 goto err;
290
291 if (integer->type != ACPI_TYPE_INTEGER) {
292 WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
293 integer->type);
294 goto err;
295 }
296
297 dst = buf + 1;
298 buf->type = ACPI_TYPE_BUFFER;
299 buf->buffer.length = 4;
300 buf->buffer.pointer = dst;
301 memcpy(dst, &integer->integer.value, 4);
302 err:
303 ACPI_FREE(integer);
304 return buf;
305 }
306
acpi_label_write(acpi_handle handle,u32 offset,u32 len,void * data)307 static union acpi_object *acpi_label_write(acpi_handle handle, u32 offset,
308 u32 len, void *data)
309 {
310 acpi_status rc;
311 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
312 struct acpi_object_list input = {
313 .count = 3,
314 .pointer = (union acpi_object []) {
315 [0] = {
316 .integer.type = ACPI_TYPE_INTEGER,
317 .integer.value = offset,
318 },
319 [1] = {
320 .integer.type = ACPI_TYPE_INTEGER,
321 .integer.value = len,
322 },
323 [2] = {
324 .buffer.type = ACPI_TYPE_BUFFER,
325 .buffer.pointer = data,
326 .buffer.length = len,
327 },
328 },
329 };
330
331 rc = acpi_evaluate_object(handle, "_LSW", &input, &buf);
332 if (ACPI_FAILURE(rc))
333 return NULL;
334 return int_to_buf(buf.pointer);
335 }
336
acpi_label_read(acpi_handle handle,u32 offset,u32 len)337 static union acpi_object *acpi_label_read(acpi_handle handle, u32 offset,
338 u32 len)
339 {
340 acpi_status rc;
341 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
342 struct acpi_object_list input = {
343 .count = 2,
344 .pointer = (union acpi_object []) {
345 [0] = {
346 .integer.type = ACPI_TYPE_INTEGER,
347 .integer.value = offset,
348 },
349 [1] = {
350 .integer.type = ACPI_TYPE_INTEGER,
351 .integer.value = len,
352 },
353 },
354 };
355
356 rc = acpi_evaluate_object(handle, "_LSR", &input, &buf);
357 if (ACPI_FAILURE(rc))
358 return NULL;
359 return pkg_to_buf(buf.pointer);
360 }
361
acpi_label_info(acpi_handle handle)362 static union acpi_object *acpi_label_info(acpi_handle handle)
363 {
364 acpi_status rc;
365 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
366
367 rc = acpi_evaluate_object(handle, "_LSI", NULL, &buf);
368 if (ACPI_FAILURE(rc))
369 return NULL;
370 return pkg_to_buf(buf.pointer);
371 }
372
nfit_dsm_revid(unsigned family,unsigned func)373 static u8 nfit_dsm_revid(unsigned family, unsigned func)
374 {
375 static const u8 revid_table[NVDIMM_FAMILY_MAX+1][NVDIMM_CMD_MAX+1] = {
376 [NVDIMM_FAMILY_INTEL] = {
377 [NVDIMM_INTEL_GET_MODES ...
378 NVDIMM_INTEL_FW_ACTIVATE_ARM] = 2,
379 },
380 };
381 u8 id;
382
383 if (family > NVDIMM_FAMILY_MAX)
384 return 0;
385 if (func > NVDIMM_CMD_MAX)
386 return 0;
387 id = revid_table[family][func];
388 if (id == 0)
389 return 1; /* default */
390 return id;
391 }
392
payload_dumpable(struct nvdimm * nvdimm,unsigned int func)393 static bool payload_dumpable(struct nvdimm *nvdimm, unsigned int func)
394 {
395 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
396
397 if (nfit_mem && nfit_mem->family == NVDIMM_FAMILY_INTEL
398 && func >= NVDIMM_INTEL_GET_SECURITY_STATE
399 && func <= NVDIMM_INTEL_MASTER_SECURE_ERASE)
400 return IS_ENABLED(CONFIG_NFIT_SECURITY_DEBUG);
401 return true;
402 }
403
cmd_to_func(struct nfit_mem * nfit_mem,unsigned int cmd,struct nd_cmd_pkg * call_pkg,int * family)404 static int cmd_to_func(struct nfit_mem *nfit_mem, unsigned int cmd,
405 struct nd_cmd_pkg *call_pkg, int *family)
406 {
407 if (call_pkg) {
408 int i;
409
410 if (nfit_mem && nfit_mem->family != call_pkg->nd_family)
411 return -ENOTTY;
412
413 for (i = 0; i < ARRAY_SIZE(call_pkg->nd_reserved2); i++)
414 if (call_pkg->nd_reserved2[i])
415 return -EINVAL;
416 *family = call_pkg->nd_family;
417 return call_pkg->nd_command;
418 }
419
420 /* In the !call_pkg case, bus commands == bus functions */
421 if (!nfit_mem)
422 return cmd;
423
424 /* Linux ND commands == NVDIMM_FAMILY_INTEL function numbers */
425 if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
426 return cmd;
427
428 /*
429 * Force function number validation to fail since 0 is never
430 * published as a valid function in dsm_mask.
431 */
432 return 0;
433 }
434
acpi_nfit_ctl(struct nvdimm_bus_descriptor * nd_desc,struct nvdimm * nvdimm,unsigned int cmd,void * buf,unsigned int buf_len,int * cmd_rc)435 int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm,
436 unsigned int cmd, void *buf, unsigned int buf_len, int *cmd_rc)
437 {
438 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
439 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
440 union acpi_object in_obj, in_buf, *out_obj;
441 const struct nd_cmd_desc *desc = NULL;
442 struct device *dev = acpi_desc->dev;
443 struct nd_cmd_pkg *call_pkg = NULL;
444 const char *cmd_name, *dimm_name;
445 unsigned long cmd_mask, dsm_mask;
446 u32 offset, fw_status = 0;
447 acpi_handle handle;
448 const guid_t *guid;
449 int func, rc, i;
450 int family = 0;
451
452 if (cmd_rc)
453 *cmd_rc = -EINVAL;
454
455 if (cmd == ND_CMD_CALL)
456 call_pkg = buf;
457 func = cmd_to_func(nfit_mem, cmd, call_pkg, &family);
458 if (func < 0)
459 return func;
460
461 if (nvdimm) {
462 struct acpi_device *adev = nfit_mem->adev;
463
464 if (!adev)
465 return -ENOTTY;
466
467 dimm_name = nvdimm_name(nvdimm);
468 cmd_name = nvdimm_cmd_name(cmd);
469 cmd_mask = nvdimm_cmd_mask(nvdimm);
470 dsm_mask = nfit_mem->dsm_mask;
471 desc = nd_cmd_dimm_desc(cmd);
472 guid = to_nfit_uuid(nfit_mem->family);
473 handle = adev->handle;
474 } else {
475 struct acpi_device *adev = to_acpi_dev(acpi_desc);
476
477 cmd_name = nvdimm_bus_cmd_name(cmd);
478 cmd_mask = nd_desc->cmd_mask;
479 if (cmd == ND_CMD_CALL && call_pkg->nd_family) {
480 family = call_pkg->nd_family;
481 if (!test_bit(family, &nd_desc->bus_family_mask))
482 return -EINVAL;
483 dsm_mask = acpi_desc->family_dsm_mask[family];
484 guid = to_nfit_bus_uuid(family);
485 } else {
486 dsm_mask = acpi_desc->bus_dsm_mask;
487 guid = to_nfit_uuid(NFIT_DEV_BUS);
488 }
489 desc = nd_cmd_bus_desc(cmd);
490 handle = adev->handle;
491 dimm_name = "bus";
492 }
493
494 if (!desc || (cmd && (desc->out_num + desc->in_num == 0)))
495 return -ENOTTY;
496
497 /*
498 * Check for a valid command. For ND_CMD_CALL, we also have to
499 * make sure that the DSM function is supported.
500 */
501 if (cmd == ND_CMD_CALL &&
502 (func > NVDIMM_CMD_MAX || !test_bit(func, &dsm_mask)))
503 return -ENOTTY;
504 else if (!test_bit(cmd, &cmd_mask))
505 return -ENOTTY;
506
507 in_obj.type = ACPI_TYPE_PACKAGE;
508 in_obj.package.count = 1;
509 in_obj.package.elements = &in_buf;
510 in_buf.type = ACPI_TYPE_BUFFER;
511 in_buf.buffer.pointer = buf;
512 in_buf.buffer.length = 0;
513
514 /* libnvdimm has already validated the input envelope */
515 for (i = 0; i < desc->in_num; i++)
516 in_buf.buffer.length += nd_cmd_in_size(nvdimm, cmd, desc,
517 i, buf);
518
519 if (call_pkg) {
520 /* skip over package wrapper */
521 in_buf.buffer.pointer = (void *) &call_pkg->nd_payload;
522 in_buf.buffer.length = call_pkg->nd_size_in;
523 }
524
525 dev_dbg(dev, "%s cmd: %d: family: %d func: %d input length: %d\n",
526 dimm_name, cmd, family, func, in_buf.buffer.length);
527 if (payload_dumpable(nvdimm, func))
528 print_hex_dump_debug("nvdimm in ", DUMP_PREFIX_OFFSET, 4, 4,
529 in_buf.buffer.pointer,
530 min_t(u32, 256, in_buf.buffer.length), true);
531
532 /* call the BIOS, prefer the named methods over _DSM if available */
533 if (nvdimm && cmd == ND_CMD_GET_CONFIG_SIZE
534 && test_bit(NFIT_MEM_LSR, &nfit_mem->flags))
535 out_obj = acpi_label_info(handle);
536 else if (nvdimm && cmd == ND_CMD_GET_CONFIG_DATA
537 && test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) {
538 struct nd_cmd_get_config_data_hdr *p = buf;
539
540 out_obj = acpi_label_read(handle, p->in_offset, p->in_length);
541 } else if (nvdimm && cmd == ND_CMD_SET_CONFIG_DATA
542 && test_bit(NFIT_MEM_LSW, &nfit_mem->flags)) {
543 struct nd_cmd_set_config_hdr *p = buf;
544
545 out_obj = acpi_label_write(handle, p->in_offset, p->in_length,
546 p->in_buf);
547 } else {
548 u8 revid;
549
550 if (nvdimm)
551 revid = nfit_dsm_revid(nfit_mem->family, func);
552 else
553 revid = 1;
554 out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj);
555 }
556
557 if (!out_obj) {
558 dev_dbg(dev, "%s _DSM failed cmd: %s\n", dimm_name, cmd_name);
559 return -EINVAL;
560 }
561
562 if (out_obj->type != ACPI_TYPE_BUFFER) {
563 dev_dbg(dev, "%s unexpected output object type cmd: %s type: %d\n",
564 dimm_name, cmd_name, out_obj->type);
565 rc = -EINVAL;
566 goto out;
567 }
568
569 dev_dbg(dev, "%s cmd: %s output length: %d\n", dimm_name,
570 cmd_name, out_obj->buffer.length);
571 print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4, 4,
572 out_obj->buffer.pointer,
573 min_t(u32, 128, out_obj->buffer.length), true);
574
575 if (call_pkg) {
576 call_pkg->nd_fw_size = out_obj->buffer.length;
577 memcpy(call_pkg->nd_payload + call_pkg->nd_size_in,
578 out_obj->buffer.pointer,
579 min(call_pkg->nd_fw_size, call_pkg->nd_size_out));
580
581 ACPI_FREE(out_obj);
582 /*
583 * Need to support FW function w/o known size in advance.
584 * Caller can determine required size based upon nd_fw_size.
585 * If we return an error (like elsewhere) then caller wouldn't
586 * be able to rely upon data returned to make calculation.
587 */
588 if (cmd_rc)
589 *cmd_rc = 0;
590 return 0;
591 }
592
593 for (i = 0, offset = 0; i < desc->out_num; i++) {
594 u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, buf,
595 (u32 *) out_obj->buffer.pointer,
596 out_obj->buffer.length - offset);
597
598 if (offset + out_size > out_obj->buffer.length) {
599 dev_dbg(dev, "%s output object underflow cmd: %s field: %d\n",
600 dimm_name, cmd_name, i);
601 break;
602 }
603
604 if (in_buf.buffer.length + offset + out_size > buf_len) {
605 dev_dbg(dev, "%s output overrun cmd: %s field: %d\n",
606 dimm_name, cmd_name, i);
607 rc = -ENXIO;
608 goto out;
609 }
610 memcpy(buf + in_buf.buffer.length + offset,
611 out_obj->buffer.pointer + offset, out_size);
612 offset += out_size;
613 }
614
615 /*
616 * Set fw_status for all the commands with a known format to be
617 * later interpreted by xlat_status().
618 */
619 if (i >= 1 && ((!nvdimm && cmd >= ND_CMD_ARS_CAP
620 && cmd <= ND_CMD_CLEAR_ERROR)
621 || (nvdimm && cmd >= ND_CMD_SMART
622 && cmd <= ND_CMD_VENDOR)))
623 fw_status = *(u32 *) out_obj->buffer.pointer;
624
625 if (offset + in_buf.buffer.length < buf_len) {
626 if (i >= 1) {
627 /*
628 * status valid, return the number of bytes left
629 * unfilled in the output buffer
630 */
631 rc = buf_len - offset - in_buf.buffer.length;
632 if (cmd_rc)
633 *cmd_rc = xlat_status(nvdimm, buf, cmd,
634 fw_status);
635 } else {
636 dev_err(dev, "%s:%s underrun cmd: %s buf_len: %d out_len: %d\n",
637 __func__, dimm_name, cmd_name, buf_len,
638 offset);
639 rc = -ENXIO;
640 }
641 } else {
642 rc = 0;
643 if (cmd_rc)
644 *cmd_rc = xlat_status(nvdimm, buf, cmd, fw_status);
645 }
646
647 out:
648 ACPI_FREE(out_obj);
649
650 return rc;
651 }
652 EXPORT_SYMBOL_GPL(acpi_nfit_ctl);
653
spa_type_name(u16 type)654 static const char *spa_type_name(u16 type)
655 {
656 static const char *to_name[] = {
657 [NFIT_SPA_VOLATILE] = "volatile",
658 [NFIT_SPA_PM] = "pmem",
659 [NFIT_SPA_DCR] = "dimm-control-region",
660 [NFIT_SPA_BDW] = "block-data-window",
661 [NFIT_SPA_VDISK] = "volatile-disk",
662 [NFIT_SPA_VCD] = "volatile-cd",
663 [NFIT_SPA_PDISK] = "persistent-disk",
664 [NFIT_SPA_PCD] = "persistent-cd",
665
666 };
667
668 if (type > NFIT_SPA_PCD)
669 return "unknown";
670
671 return to_name[type];
672 }
673
nfit_spa_type(struct acpi_nfit_system_address * spa)674 int nfit_spa_type(struct acpi_nfit_system_address *spa)
675 {
676 int i;
677
678 for (i = 0; i < NFIT_UUID_MAX; i++)
679 if (guid_equal(to_nfit_uuid(i), (guid_t *)&spa->range_guid))
680 return i;
681 return -1;
682 }
683
add_spa(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_system_address * spa)684 static bool add_spa(struct acpi_nfit_desc *acpi_desc,
685 struct nfit_table_prev *prev,
686 struct acpi_nfit_system_address *spa)
687 {
688 struct device *dev = acpi_desc->dev;
689 struct nfit_spa *nfit_spa;
690
691 if (spa->header.length != sizeof(*spa))
692 return false;
693
694 list_for_each_entry(nfit_spa, &prev->spas, list) {
695 if (memcmp(nfit_spa->spa, spa, sizeof(*spa)) == 0) {
696 list_move_tail(&nfit_spa->list, &acpi_desc->spas);
697 return true;
698 }
699 }
700
701 nfit_spa = devm_kzalloc(dev, sizeof(*nfit_spa) + sizeof(*spa),
702 GFP_KERNEL);
703 if (!nfit_spa)
704 return false;
705 INIT_LIST_HEAD(&nfit_spa->list);
706 memcpy(nfit_spa->spa, spa, sizeof(*spa));
707 list_add_tail(&nfit_spa->list, &acpi_desc->spas);
708 dev_dbg(dev, "spa index: %d type: %s\n",
709 spa->range_index,
710 spa_type_name(nfit_spa_type(spa)));
711 return true;
712 }
713
add_memdev(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_memory_map * memdev)714 static bool add_memdev(struct acpi_nfit_desc *acpi_desc,
715 struct nfit_table_prev *prev,
716 struct acpi_nfit_memory_map *memdev)
717 {
718 struct device *dev = acpi_desc->dev;
719 struct nfit_memdev *nfit_memdev;
720
721 if (memdev->header.length != sizeof(*memdev))
722 return false;
723
724 list_for_each_entry(nfit_memdev, &prev->memdevs, list)
725 if (memcmp(nfit_memdev->memdev, memdev, sizeof(*memdev)) == 0) {
726 list_move_tail(&nfit_memdev->list, &acpi_desc->memdevs);
727 return true;
728 }
729
730 nfit_memdev = devm_kzalloc(dev, sizeof(*nfit_memdev) + sizeof(*memdev),
731 GFP_KERNEL);
732 if (!nfit_memdev)
733 return false;
734 INIT_LIST_HEAD(&nfit_memdev->list);
735 memcpy(nfit_memdev->memdev, memdev, sizeof(*memdev));
736 list_add_tail(&nfit_memdev->list, &acpi_desc->memdevs);
737 dev_dbg(dev, "memdev handle: %#x spa: %d dcr: %d flags: %#x\n",
738 memdev->device_handle, memdev->range_index,
739 memdev->region_index, memdev->flags);
740 return true;
741 }
742
nfit_get_smbios_id(u32 device_handle,u16 * flags)743 int nfit_get_smbios_id(u32 device_handle, u16 *flags)
744 {
745 struct acpi_nfit_memory_map *memdev;
746 struct acpi_nfit_desc *acpi_desc;
747 struct nfit_mem *nfit_mem;
748 u16 physical_id;
749
750 mutex_lock(&acpi_desc_lock);
751 list_for_each_entry(acpi_desc, &acpi_descs, list) {
752 mutex_lock(&acpi_desc->init_mutex);
753 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
754 memdev = __to_nfit_memdev(nfit_mem);
755 if (memdev->device_handle == device_handle) {
756 *flags = memdev->flags;
757 physical_id = memdev->physical_id;
758 mutex_unlock(&acpi_desc->init_mutex);
759 mutex_unlock(&acpi_desc_lock);
760 return physical_id;
761 }
762 }
763 mutex_unlock(&acpi_desc->init_mutex);
764 }
765 mutex_unlock(&acpi_desc_lock);
766
767 return -ENODEV;
768 }
769 EXPORT_SYMBOL_GPL(nfit_get_smbios_id);
770
771 /*
772 * An implementation may provide a truncated control region if no block windows
773 * are defined.
774 */
sizeof_dcr(struct acpi_nfit_control_region * dcr)775 static size_t sizeof_dcr(struct acpi_nfit_control_region *dcr)
776 {
777 if (dcr->header.length < offsetof(struct acpi_nfit_control_region,
778 window_size))
779 return 0;
780 if (dcr->windows)
781 return sizeof(*dcr);
782 return offsetof(struct acpi_nfit_control_region, window_size);
783 }
784
add_dcr(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_control_region * dcr)785 static bool add_dcr(struct acpi_nfit_desc *acpi_desc,
786 struct nfit_table_prev *prev,
787 struct acpi_nfit_control_region *dcr)
788 {
789 struct device *dev = acpi_desc->dev;
790 struct nfit_dcr *nfit_dcr;
791
792 if (!sizeof_dcr(dcr))
793 return false;
794
795 list_for_each_entry(nfit_dcr, &prev->dcrs, list)
796 if (memcmp(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)) == 0) {
797 list_move_tail(&nfit_dcr->list, &acpi_desc->dcrs);
798 return true;
799 }
800
801 nfit_dcr = devm_kzalloc(dev, sizeof(*nfit_dcr) + sizeof(*dcr),
802 GFP_KERNEL);
803 if (!nfit_dcr)
804 return false;
805 INIT_LIST_HEAD(&nfit_dcr->list);
806 memcpy(nfit_dcr->dcr, dcr, sizeof_dcr(dcr));
807 list_add_tail(&nfit_dcr->list, &acpi_desc->dcrs);
808 dev_dbg(dev, "dcr index: %d windows: %d\n",
809 dcr->region_index, dcr->windows);
810 return true;
811 }
812
add_bdw(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_data_region * bdw)813 static bool add_bdw(struct acpi_nfit_desc *acpi_desc,
814 struct nfit_table_prev *prev,
815 struct acpi_nfit_data_region *bdw)
816 {
817 struct device *dev = acpi_desc->dev;
818 struct nfit_bdw *nfit_bdw;
819
820 if (bdw->header.length != sizeof(*bdw))
821 return false;
822 list_for_each_entry(nfit_bdw, &prev->bdws, list)
823 if (memcmp(nfit_bdw->bdw, bdw, sizeof(*bdw)) == 0) {
824 list_move_tail(&nfit_bdw->list, &acpi_desc->bdws);
825 return true;
826 }
827
828 nfit_bdw = devm_kzalloc(dev, sizeof(*nfit_bdw) + sizeof(*bdw),
829 GFP_KERNEL);
830 if (!nfit_bdw)
831 return false;
832 INIT_LIST_HEAD(&nfit_bdw->list);
833 memcpy(nfit_bdw->bdw, bdw, sizeof(*bdw));
834 list_add_tail(&nfit_bdw->list, &acpi_desc->bdws);
835 dev_dbg(dev, "bdw dcr: %d windows: %d\n",
836 bdw->region_index, bdw->windows);
837 return true;
838 }
839
sizeof_idt(struct acpi_nfit_interleave * idt)840 static size_t sizeof_idt(struct acpi_nfit_interleave *idt)
841 {
842 if (idt->header.length < sizeof(*idt))
843 return 0;
844 return sizeof(*idt) + sizeof(u32) * (idt->line_count - 1);
845 }
846
add_idt(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_interleave * idt)847 static bool add_idt(struct acpi_nfit_desc *acpi_desc,
848 struct nfit_table_prev *prev,
849 struct acpi_nfit_interleave *idt)
850 {
851 struct device *dev = acpi_desc->dev;
852 struct nfit_idt *nfit_idt;
853
854 if (!sizeof_idt(idt))
855 return false;
856
857 list_for_each_entry(nfit_idt, &prev->idts, list) {
858 if (sizeof_idt(nfit_idt->idt) != sizeof_idt(idt))
859 continue;
860
861 if (memcmp(nfit_idt->idt, idt, sizeof_idt(idt)) == 0) {
862 list_move_tail(&nfit_idt->list, &acpi_desc->idts);
863 return true;
864 }
865 }
866
867 nfit_idt = devm_kzalloc(dev, sizeof(*nfit_idt) + sizeof_idt(idt),
868 GFP_KERNEL);
869 if (!nfit_idt)
870 return false;
871 INIT_LIST_HEAD(&nfit_idt->list);
872 memcpy(nfit_idt->idt, idt, sizeof_idt(idt));
873 list_add_tail(&nfit_idt->list, &acpi_desc->idts);
874 dev_dbg(dev, "idt index: %d num_lines: %d\n",
875 idt->interleave_index, idt->line_count);
876 return true;
877 }
878
sizeof_flush(struct acpi_nfit_flush_address * flush)879 static size_t sizeof_flush(struct acpi_nfit_flush_address *flush)
880 {
881 if (flush->header.length < sizeof(*flush))
882 return 0;
883 return sizeof(*flush) + sizeof(u64) * (flush->hint_count - 1);
884 }
885
add_flush(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_flush_address * flush)886 static bool add_flush(struct acpi_nfit_desc *acpi_desc,
887 struct nfit_table_prev *prev,
888 struct acpi_nfit_flush_address *flush)
889 {
890 struct device *dev = acpi_desc->dev;
891 struct nfit_flush *nfit_flush;
892
893 if (!sizeof_flush(flush))
894 return false;
895
896 list_for_each_entry(nfit_flush, &prev->flushes, list) {
897 if (sizeof_flush(nfit_flush->flush) != sizeof_flush(flush))
898 continue;
899
900 if (memcmp(nfit_flush->flush, flush,
901 sizeof_flush(flush)) == 0) {
902 list_move_tail(&nfit_flush->list, &acpi_desc->flushes);
903 return true;
904 }
905 }
906
907 nfit_flush = devm_kzalloc(dev, sizeof(*nfit_flush)
908 + sizeof_flush(flush), GFP_KERNEL);
909 if (!nfit_flush)
910 return false;
911 INIT_LIST_HEAD(&nfit_flush->list);
912 memcpy(nfit_flush->flush, flush, sizeof_flush(flush));
913 list_add_tail(&nfit_flush->list, &acpi_desc->flushes);
914 dev_dbg(dev, "nfit_flush handle: %d hint_count: %d\n",
915 flush->device_handle, flush->hint_count);
916 return true;
917 }
918
add_platform_cap(struct acpi_nfit_desc * acpi_desc,struct acpi_nfit_capabilities * pcap)919 static bool add_platform_cap(struct acpi_nfit_desc *acpi_desc,
920 struct acpi_nfit_capabilities *pcap)
921 {
922 struct device *dev = acpi_desc->dev;
923 u32 mask;
924
925 mask = (1 << (pcap->highest_capability + 1)) - 1;
926 acpi_desc->platform_cap = pcap->capabilities & mask;
927 dev_dbg(dev, "cap: %#x\n", acpi_desc->platform_cap);
928 return true;
929 }
930
add_table(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,void * table,const void * end)931 static void *add_table(struct acpi_nfit_desc *acpi_desc,
932 struct nfit_table_prev *prev, void *table, const void *end)
933 {
934 struct device *dev = acpi_desc->dev;
935 struct acpi_nfit_header *hdr;
936 void *err = ERR_PTR(-ENOMEM);
937
938 if (table >= end)
939 return NULL;
940
941 hdr = table;
942 if (!hdr->length) {
943 dev_warn(dev, "found a zero length table '%d' parsing nfit\n",
944 hdr->type);
945 return NULL;
946 }
947
948 switch (hdr->type) {
949 case ACPI_NFIT_TYPE_SYSTEM_ADDRESS:
950 if (!add_spa(acpi_desc, prev, table))
951 return err;
952 break;
953 case ACPI_NFIT_TYPE_MEMORY_MAP:
954 if (!add_memdev(acpi_desc, prev, table))
955 return err;
956 break;
957 case ACPI_NFIT_TYPE_CONTROL_REGION:
958 if (!add_dcr(acpi_desc, prev, table))
959 return err;
960 break;
961 case ACPI_NFIT_TYPE_DATA_REGION:
962 if (!add_bdw(acpi_desc, prev, table))
963 return err;
964 break;
965 case ACPI_NFIT_TYPE_INTERLEAVE:
966 if (!add_idt(acpi_desc, prev, table))
967 return err;
968 break;
969 case ACPI_NFIT_TYPE_FLUSH_ADDRESS:
970 if (!add_flush(acpi_desc, prev, table))
971 return err;
972 break;
973 case ACPI_NFIT_TYPE_SMBIOS:
974 dev_dbg(dev, "smbios\n");
975 break;
976 case ACPI_NFIT_TYPE_CAPABILITIES:
977 if (!add_platform_cap(acpi_desc, table))
978 return err;
979 break;
980 default:
981 dev_err(dev, "unknown table '%d' parsing nfit\n", hdr->type);
982 break;
983 }
984
985 return table + hdr->length;
986 }
987
nfit_mem_find_spa_bdw(struct acpi_nfit_desc * acpi_desc,struct nfit_mem * nfit_mem)988 static void nfit_mem_find_spa_bdw(struct acpi_nfit_desc *acpi_desc,
989 struct nfit_mem *nfit_mem)
990 {
991 u32 device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
992 u16 dcr = nfit_mem->dcr->region_index;
993 struct nfit_spa *nfit_spa;
994
995 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
996 u16 range_index = nfit_spa->spa->range_index;
997 int type = nfit_spa_type(nfit_spa->spa);
998 struct nfit_memdev *nfit_memdev;
999
1000 if (type != NFIT_SPA_BDW)
1001 continue;
1002
1003 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1004 if (nfit_memdev->memdev->range_index != range_index)
1005 continue;
1006 if (nfit_memdev->memdev->device_handle != device_handle)
1007 continue;
1008 if (nfit_memdev->memdev->region_index != dcr)
1009 continue;
1010
1011 nfit_mem->spa_bdw = nfit_spa->spa;
1012 return;
1013 }
1014 }
1015
1016 dev_dbg(acpi_desc->dev, "SPA-BDW not found for SPA-DCR %d\n",
1017 nfit_mem->spa_dcr->range_index);
1018 nfit_mem->bdw = NULL;
1019 }
1020
nfit_mem_init_bdw(struct acpi_nfit_desc * acpi_desc,struct nfit_mem * nfit_mem,struct acpi_nfit_system_address * spa)1021 static void nfit_mem_init_bdw(struct acpi_nfit_desc *acpi_desc,
1022 struct nfit_mem *nfit_mem, struct acpi_nfit_system_address *spa)
1023 {
1024 u16 dcr = __to_nfit_memdev(nfit_mem)->region_index;
1025 struct nfit_memdev *nfit_memdev;
1026 struct nfit_bdw *nfit_bdw;
1027 struct nfit_idt *nfit_idt;
1028 u16 idt_idx, range_index;
1029
1030 list_for_each_entry(nfit_bdw, &acpi_desc->bdws, list) {
1031 if (nfit_bdw->bdw->region_index != dcr)
1032 continue;
1033 nfit_mem->bdw = nfit_bdw->bdw;
1034 break;
1035 }
1036
1037 if (!nfit_mem->bdw)
1038 return;
1039
1040 nfit_mem_find_spa_bdw(acpi_desc, nfit_mem);
1041
1042 if (!nfit_mem->spa_bdw)
1043 return;
1044
1045 range_index = nfit_mem->spa_bdw->range_index;
1046 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1047 if (nfit_memdev->memdev->range_index != range_index ||
1048 nfit_memdev->memdev->region_index != dcr)
1049 continue;
1050 nfit_mem->memdev_bdw = nfit_memdev->memdev;
1051 idt_idx = nfit_memdev->memdev->interleave_index;
1052 list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
1053 if (nfit_idt->idt->interleave_index != idt_idx)
1054 continue;
1055 nfit_mem->idt_bdw = nfit_idt->idt;
1056 break;
1057 }
1058 break;
1059 }
1060 }
1061
__nfit_mem_init(struct acpi_nfit_desc * acpi_desc,struct acpi_nfit_system_address * spa)1062 static int __nfit_mem_init(struct acpi_nfit_desc *acpi_desc,
1063 struct acpi_nfit_system_address *spa)
1064 {
1065 struct nfit_mem *nfit_mem, *found;
1066 struct nfit_memdev *nfit_memdev;
1067 int type = spa ? nfit_spa_type(spa) : 0;
1068
1069 switch (type) {
1070 case NFIT_SPA_DCR:
1071 case NFIT_SPA_PM:
1072 break;
1073 default:
1074 if (spa)
1075 return 0;
1076 }
1077
1078 /*
1079 * This loop runs in two modes, when a dimm is mapped the loop
1080 * adds memdev associations to an existing dimm, or creates a
1081 * dimm. In the unmapped dimm case this loop sweeps for memdev
1082 * instances with an invalid / zero range_index and adds those
1083 * dimms without spa associations.
1084 */
1085 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1086 struct nfit_flush *nfit_flush;
1087 struct nfit_dcr *nfit_dcr;
1088 u32 device_handle;
1089 u16 dcr;
1090
1091 if (spa && nfit_memdev->memdev->range_index != spa->range_index)
1092 continue;
1093 if (!spa && nfit_memdev->memdev->range_index)
1094 continue;
1095 found = NULL;
1096 dcr = nfit_memdev->memdev->region_index;
1097 device_handle = nfit_memdev->memdev->device_handle;
1098 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1099 if (__to_nfit_memdev(nfit_mem)->device_handle
1100 == device_handle) {
1101 found = nfit_mem;
1102 break;
1103 }
1104
1105 if (found)
1106 nfit_mem = found;
1107 else {
1108 nfit_mem = devm_kzalloc(acpi_desc->dev,
1109 sizeof(*nfit_mem), GFP_KERNEL);
1110 if (!nfit_mem)
1111 return -ENOMEM;
1112 INIT_LIST_HEAD(&nfit_mem->list);
1113 nfit_mem->acpi_desc = acpi_desc;
1114 list_add(&nfit_mem->list, &acpi_desc->dimms);
1115 }
1116
1117 list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1118 if (nfit_dcr->dcr->region_index != dcr)
1119 continue;
1120 /*
1121 * Record the control region for the dimm. For
1122 * the ACPI 6.1 case, where there are separate
1123 * control regions for the pmem vs blk
1124 * interfaces, be sure to record the extended
1125 * blk details.
1126 */
1127 if (!nfit_mem->dcr)
1128 nfit_mem->dcr = nfit_dcr->dcr;
1129 else if (nfit_mem->dcr->windows == 0
1130 && nfit_dcr->dcr->windows)
1131 nfit_mem->dcr = nfit_dcr->dcr;
1132 break;
1133 }
1134
1135 list_for_each_entry(nfit_flush, &acpi_desc->flushes, list) {
1136 struct acpi_nfit_flush_address *flush;
1137 u16 i;
1138
1139 if (nfit_flush->flush->device_handle != device_handle)
1140 continue;
1141 nfit_mem->nfit_flush = nfit_flush;
1142 flush = nfit_flush->flush;
1143 nfit_mem->flush_wpq = devm_kcalloc(acpi_desc->dev,
1144 flush->hint_count,
1145 sizeof(struct resource),
1146 GFP_KERNEL);
1147 if (!nfit_mem->flush_wpq)
1148 return -ENOMEM;
1149 for (i = 0; i < flush->hint_count; i++) {
1150 struct resource *res = &nfit_mem->flush_wpq[i];
1151
1152 res->start = flush->hint_address[i];
1153 res->end = res->start + 8 - 1;
1154 }
1155 break;
1156 }
1157
1158 if (dcr && !nfit_mem->dcr) {
1159 dev_err(acpi_desc->dev, "SPA %d missing DCR %d\n",
1160 spa->range_index, dcr);
1161 return -ENODEV;
1162 }
1163
1164 if (type == NFIT_SPA_DCR) {
1165 struct nfit_idt *nfit_idt;
1166 u16 idt_idx;
1167
1168 /* multiple dimms may share a SPA when interleaved */
1169 nfit_mem->spa_dcr = spa;
1170 nfit_mem->memdev_dcr = nfit_memdev->memdev;
1171 idt_idx = nfit_memdev->memdev->interleave_index;
1172 list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
1173 if (nfit_idt->idt->interleave_index != idt_idx)
1174 continue;
1175 nfit_mem->idt_dcr = nfit_idt->idt;
1176 break;
1177 }
1178 nfit_mem_init_bdw(acpi_desc, nfit_mem, spa);
1179 } else if (type == NFIT_SPA_PM) {
1180 /*
1181 * A single dimm may belong to multiple SPA-PM
1182 * ranges, record at least one in addition to
1183 * any SPA-DCR range.
1184 */
1185 nfit_mem->memdev_pmem = nfit_memdev->memdev;
1186 } else
1187 nfit_mem->memdev_dcr = nfit_memdev->memdev;
1188 }
1189
1190 return 0;
1191 }
1192
nfit_mem_cmp(void * priv,struct list_head * _a,struct list_head * _b)1193 static int nfit_mem_cmp(void *priv, struct list_head *_a, struct list_head *_b)
1194 {
1195 struct nfit_mem *a = container_of(_a, typeof(*a), list);
1196 struct nfit_mem *b = container_of(_b, typeof(*b), list);
1197 u32 handleA, handleB;
1198
1199 handleA = __to_nfit_memdev(a)->device_handle;
1200 handleB = __to_nfit_memdev(b)->device_handle;
1201 if (handleA < handleB)
1202 return -1;
1203 else if (handleA > handleB)
1204 return 1;
1205 return 0;
1206 }
1207
nfit_mem_init(struct acpi_nfit_desc * acpi_desc)1208 static int nfit_mem_init(struct acpi_nfit_desc *acpi_desc)
1209 {
1210 struct nfit_spa *nfit_spa;
1211 int rc;
1212
1213
1214 /*
1215 * For each SPA-DCR or SPA-PMEM address range find its
1216 * corresponding MEMDEV(s). From each MEMDEV find the
1217 * corresponding DCR. Then, if we're operating on a SPA-DCR,
1218 * try to find a SPA-BDW and a corresponding BDW that references
1219 * the DCR. Throw it all into an nfit_mem object. Note, that
1220 * BDWs are optional.
1221 */
1222 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
1223 rc = __nfit_mem_init(acpi_desc, nfit_spa->spa);
1224 if (rc)
1225 return rc;
1226 }
1227
1228 /*
1229 * If a DIMM has failed to be mapped into SPA there will be no
1230 * SPA entries above. Find and register all the unmapped DIMMs
1231 * for reporting and recovery purposes.
1232 */
1233 rc = __nfit_mem_init(acpi_desc, NULL);
1234 if (rc)
1235 return rc;
1236
1237 list_sort(NULL, &acpi_desc->dimms, nfit_mem_cmp);
1238
1239 return 0;
1240 }
1241
bus_dsm_mask_show(struct device * dev,struct device_attribute * attr,char * buf)1242 static ssize_t bus_dsm_mask_show(struct device *dev,
1243 struct device_attribute *attr, char *buf)
1244 {
1245 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1246 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1247 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1248
1249 return sprintf(buf, "%#lx\n", acpi_desc->bus_dsm_mask);
1250 }
1251 static struct device_attribute dev_attr_bus_dsm_mask =
1252 __ATTR(dsm_mask, 0444, bus_dsm_mask_show, NULL);
1253
revision_show(struct device * dev,struct device_attribute * attr,char * buf)1254 static ssize_t revision_show(struct device *dev,
1255 struct device_attribute *attr, char *buf)
1256 {
1257 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1258 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1259 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1260
1261 return sprintf(buf, "%d\n", acpi_desc->acpi_header.revision);
1262 }
1263 static DEVICE_ATTR_RO(revision);
1264
hw_error_scrub_show(struct device * dev,struct device_attribute * attr,char * buf)1265 static ssize_t hw_error_scrub_show(struct device *dev,
1266 struct device_attribute *attr, char *buf)
1267 {
1268 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1269 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1270 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1271
1272 return sprintf(buf, "%d\n", acpi_desc->scrub_mode);
1273 }
1274
1275 /*
1276 * The 'hw_error_scrub' attribute can have the following values written to it:
1277 * '0': Switch to the default mode where an exception will only insert
1278 * the address of the memory error into the poison and badblocks lists.
1279 * '1': Enable a full scrub to happen if an exception for a memory error is
1280 * received.
1281 */
hw_error_scrub_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)1282 static ssize_t hw_error_scrub_store(struct device *dev,
1283 struct device_attribute *attr, const char *buf, size_t size)
1284 {
1285 struct nvdimm_bus_descriptor *nd_desc;
1286 ssize_t rc;
1287 long val;
1288
1289 rc = kstrtol(buf, 0, &val);
1290 if (rc)
1291 return rc;
1292
1293 nfit_device_lock(dev);
1294 nd_desc = dev_get_drvdata(dev);
1295 if (nd_desc) {
1296 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1297
1298 switch (val) {
1299 case HW_ERROR_SCRUB_ON:
1300 acpi_desc->scrub_mode = HW_ERROR_SCRUB_ON;
1301 break;
1302 case HW_ERROR_SCRUB_OFF:
1303 acpi_desc->scrub_mode = HW_ERROR_SCRUB_OFF;
1304 break;
1305 default:
1306 rc = -EINVAL;
1307 break;
1308 }
1309 }
1310 nfit_device_unlock(dev);
1311 if (rc)
1312 return rc;
1313 return size;
1314 }
1315 static DEVICE_ATTR_RW(hw_error_scrub);
1316
1317 /*
1318 * This shows the number of full Address Range Scrubs that have been
1319 * completed since driver load time. Userspace can wait on this using
1320 * select/poll etc. A '+' at the end indicates an ARS is in progress
1321 */
scrub_show(struct device * dev,struct device_attribute * attr,char * buf)1322 static ssize_t scrub_show(struct device *dev,
1323 struct device_attribute *attr, char *buf)
1324 {
1325 struct nvdimm_bus_descriptor *nd_desc;
1326 struct acpi_nfit_desc *acpi_desc;
1327 ssize_t rc = -ENXIO;
1328 bool busy;
1329
1330 nfit_device_lock(dev);
1331 nd_desc = dev_get_drvdata(dev);
1332 if (!nd_desc) {
1333 nfit_device_unlock(dev);
1334 return rc;
1335 }
1336 acpi_desc = to_acpi_desc(nd_desc);
1337
1338 mutex_lock(&acpi_desc->init_mutex);
1339 busy = test_bit(ARS_BUSY, &acpi_desc->scrub_flags)
1340 && !test_bit(ARS_CANCEL, &acpi_desc->scrub_flags);
1341 rc = sprintf(buf, "%d%s", acpi_desc->scrub_count, busy ? "+\n" : "\n");
1342 /* Allow an admin to poll the busy state at a higher rate */
1343 if (busy && capable(CAP_SYS_RAWIO) && !test_and_set_bit(ARS_POLL,
1344 &acpi_desc->scrub_flags)) {
1345 acpi_desc->scrub_tmo = 1;
1346 mod_delayed_work(nfit_wq, &acpi_desc->dwork, HZ);
1347 }
1348
1349 mutex_unlock(&acpi_desc->init_mutex);
1350 nfit_device_unlock(dev);
1351 return rc;
1352 }
1353
scrub_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)1354 static ssize_t scrub_store(struct device *dev,
1355 struct device_attribute *attr, const char *buf, size_t size)
1356 {
1357 struct nvdimm_bus_descriptor *nd_desc;
1358 ssize_t rc;
1359 long val;
1360
1361 rc = kstrtol(buf, 0, &val);
1362 if (rc)
1363 return rc;
1364 if (val != 1)
1365 return -EINVAL;
1366
1367 nfit_device_lock(dev);
1368 nd_desc = dev_get_drvdata(dev);
1369 if (nd_desc) {
1370 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1371
1372 rc = acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG);
1373 }
1374 nfit_device_unlock(dev);
1375 if (rc)
1376 return rc;
1377 return size;
1378 }
1379 static DEVICE_ATTR_RW(scrub);
1380
ars_supported(struct nvdimm_bus * nvdimm_bus)1381 static bool ars_supported(struct nvdimm_bus *nvdimm_bus)
1382 {
1383 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1384 const unsigned long mask = 1 << ND_CMD_ARS_CAP | 1 << ND_CMD_ARS_START
1385 | 1 << ND_CMD_ARS_STATUS;
1386
1387 return (nd_desc->cmd_mask & mask) == mask;
1388 }
1389
nfit_visible(struct kobject * kobj,struct attribute * a,int n)1390 static umode_t nfit_visible(struct kobject *kobj, struct attribute *a, int n)
1391 {
1392 struct device *dev = kobj_to_dev(kobj);
1393 struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1394
1395 if (a == &dev_attr_scrub.attr)
1396 return ars_supported(nvdimm_bus) ? a->mode : 0;
1397
1398 if (a == &dev_attr_firmware_activate_noidle.attr)
1399 return intel_fwa_supported(nvdimm_bus) ? a->mode : 0;
1400
1401 return a->mode;
1402 }
1403
1404 static struct attribute *acpi_nfit_attributes[] = {
1405 &dev_attr_revision.attr,
1406 &dev_attr_scrub.attr,
1407 &dev_attr_hw_error_scrub.attr,
1408 &dev_attr_bus_dsm_mask.attr,
1409 &dev_attr_firmware_activate_noidle.attr,
1410 NULL,
1411 };
1412
1413 static const struct attribute_group acpi_nfit_attribute_group = {
1414 .name = "nfit",
1415 .attrs = acpi_nfit_attributes,
1416 .is_visible = nfit_visible,
1417 };
1418
1419 static const struct attribute_group *acpi_nfit_attribute_groups[] = {
1420 &acpi_nfit_attribute_group,
1421 NULL,
1422 };
1423
to_nfit_memdev(struct device * dev)1424 static struct acpi_nfit_memory_map *to_nfit_memdev(struct device *dev)
1425 {
1426 struct nvdimm *nvdimm = to_nvdimm(dev);
1427 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1428
1429 return __to_nfit_memdev(nfit_mem);
1430 }
1431
to_nfit_dcr(struct device * dev)1432 static struct acpi_nfit_control_region *to_nfit_dcr(struct device *dev)
1433 {
1434 struct nvdimm *nvdimm = to_nvdimm(dev);
1435 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1436
1437 return nfit_mem->dcr;
1438 }
1439
handle_show(struct device * dev,struct device_attribute * attr,char * buf)1440 static ssize_t handle_show(struct device *dev,
1441 struct device_attribute *attr, char *buf)
1442 {
1443 struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1444
1445 return sprintf(buf, "%#x\n", memdev->device_handle);
1446 }
1447 static DEVICE_ATTR_RO(handle);
1448
phys_id_show(struct device * dev,struct device_attribute * attr,char * buf)1449 static ssize_t phys_id_show(struct device *dev,
1450 struct device_attribute *attr, char *buf)
1451 {
1452 struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1453
1454 return sprintf(buf, "%#x\n", memdev->physical_id);
1455 }
1456 static DEVICE_ATTR_RO(phys_id);
1457
vendor_show(struct device * dev,struct device_attribute * attr,char * buf)1458 static ssize_t vendor_show(struct device *dev,
1459 struct device_attribute *attr, char *buf)
1460 {
1461 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1462
1463 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->vendor_id));
1464 }
1465 static DEVICE_ATTR_RO(vendor);
1466
rev_id_show(struct device * dev,struct device_attribute * attr,char * buf)1467 static ssize_t rev_id_show(struct device *dev,
1468 struct device_attribute *attr, char *buf)
1469 {
1470 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1471
1472 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->revision_id));
1473 }
1474 static DEVICE_ATTR_RO(rev_id);
1475
device_show(struct device * dev,struct device_attribute * attr,char * buf)1476 static ssize_t device_show(struct device *dev,
1477 struct device_attribute *attr, char *buf)
1478 {
1479 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1480
1481 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->device_id));
1482 }
1483 static DEVICE_ATTR_RO(device);
1484
subsystem_vendor_show(struct device * dev,struct device_attribute * attr,char * buf)1485 static ssize_t subsystem_vendor_show(struct device *dev,
1486 struct device_attribute *attr, char *buf)
1487 {
1488 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1489
1490 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_vendor_id));
1491 }
1492 static DEVICE_ATTR_RO(subsystem_vendor);
1493
subsystem_rev_id_show(struct device * dev,struct device_attribute * attr,char * buf)1494 static ssize_t subsystem_rev_id_show(struct device *dev,
1495 struct device_attribute *attr, char *buf)
1496 {
1497 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1498
1499 return sprintf(buf, "0x%04x\n",
1500 be16_to_cpu(dcr->subsystem_revision_id));
1501 }
1502 static DEVICE_ATTR_RO(subsystem_rev_id);
1503
subsystem_device_show(struct device * dev,struct device_attribute * attr,char * buf)1504 static ssize_t subsystem_device_show(struct device *dev,
1505 struct device_attribute *attr, char *buf)
1506 {
1507 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1508
1509 return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_device_id));
1510 }
1511 static DEVICE_ATTR_RO(subsystem_device);
1512
num_nvdimm_formats(struct nvdimm * nvdimm)1513 static int num_nvdimm_formats(struct nvdimm *nvdimm)
1514 {
1515 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1516 int formats = 0;
1517
1518 if (nfit_mem->memdev_pmem)
1519 formats++;
1520 if (nfit_mem->memdev_bdw)
1521 formats++;
1522 return formats;
1523 }
1524
format_show(struct device * dev,struct device_attribute * attr,char * buf)1525 static ssize_t format_show(struct device *dev,
1526 struct device_attribute *attr, char *buf)
1527 {
1528 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1529
1530 return sprintf(buf, "0x%04x\n", le16_to_cpu(dcr->code));
1531 }
1532 static DEVICE_ATTR_RO(format);
1533
format1_show(struct device * dev,struct device_attribute * attr,char * buf)1534 static ssize_t format1_show(struct device *dev,
1535 struct device_attribute *attr, char *buf)
1536 {
1537 u32 handle;
1538 ssize_t rc = -ENXIO;
1539 struct nfit_mem *nfit_mem;
1540 struct nfit_memdev *nfit_memdev;
1541 struct acpi_nfit_desc *acpi_desc;
1542 struct nvdimm *nvdimm = to_nvdimm(dev);
1543 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1544
1545 nfit_mem = nvdimm_provider_data(nvdimm);
1546 acpi_desc = nfit_mem->acpi_desc;
1547 handle = to_nfit_memdev(dev)->device_handle;
1548
1549 /* assumes DIMMs have at most 2 published interface codes */
1550 mutex_lock(&acpi_desc->init_mutex);
1551 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1552 struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
1553 struct nfit_dcr *nfit_dcr;
1554
1555 if (memdev->device_handle != handle)
1556 continue;
1557
1558 list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1559 if (nfit_dcr->dcr->region_index != memdev->region_index)
1560 continue;
1561 if (nfit_dcr->dcr->code == dcr->code)
1562 continue;
1563 rc = sprintf(buf, "0x%04x\n",
1564 le16_to_cpu(nfit_dcr->dcr->code));
1565 break;
1566 }
1567 if (rc != -ENXIO)
1568 break;
1569 }
1570 mutex_unlock(&acpi_desc->init_mutex);
1571 return rc;
1572 }
1573 static DEVICE_ATTR_RO(format1);
1574
formats_show(struct device * dev,struct device_attribute * attr,char * buf)1575 static ssize_t formats_show(struct device *dev,
1576 struct device_attribute *attr, char *buf)
1577 {
1578 struct nvdimm *nvdimm = to_nvdimm(dev);
1579
1580 return sprintf(buf, "%d\n", num_nvdimm_formats(nvdimm));
1581 }
1582 static DEVICE_ATTR_RO(formats);
1583
serial_show(struct device * dev,struct device_attribute * attr,char * buf)1584 static ssize_t serial_show(struct device *dev,
1585 struct device_attribute *attr, char *buf)
1586 {
1587 struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1588
1589 return sprintf(buf, "0x%08x\n", be32_to_cpu(dcr->serial_number));
1590 }
1591 static DEVICE_ATTR_RO(serial);
1592
family_show(struct device * dev,struct device_attribute * attr,char * buf)1593 static ssize_t family_show(struct device *dev,
1594 struct device_attribute *attr, char *buf)
1595 {
1596 struct nvdimm *nvdimm = to_nvdimm(dev);
1597 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1598
1599 if (nfit_mem->family < 0)
1600 return -ENXIO;
1601 return sprintf(buf, "%d\n", nfit_mem->family);
1602 }
1603 static DEVICE_ATTR_RO(family);
1604
dsm_mask_show(struct device * dev,struct device_attribute * attr,char * buf)1605 static ssize_t dsm_mask_show(struct device *dev,
1606 struct device_attribute *attr, char *buf)
1607 {
1608 struct nvdimm *nvdimm = to_nvdimm(dev);
1609 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1610
1611 if (nfit_mem->family < 0)
1612 return -ENXIO;
1613 return sprintf(buf, "%#lx\n", nfit_mem->dsm_mask);
1614 }
1615 static DEVICE_ATTR_RO(dsm_mask);
1616
flags_show(struct device * dev,struct device_attribute * attr,char * buf)1617 static ssize_t flags_show(struct device *dev,
1618 struct device_attribute *attr, char *buf)
1619 {
1620 struct nvdimm *nvdimm = to_nvdimm(dev);
1621 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1622 u16 flags = __to_nfit_memdev(nfit_mem)->flags;
1623
1624 if (test_bit(NFIT_MEM_DIRTY, &nfit_mem->flags))
1625 flags |= ACPI_NFIT_MEM_FLUSH_FAILED;
1626
1627 return sprintf(buf, "%s%s%s%s%s%s%s\n",
1628 flags & ACPI_NFIT_MEM_SAVE_FAILED ? "save_fail " : "",
1629 flags & ACPI_NFIT_MEM_RESTORE_FAILED ? "restore_fail " : "",
1630 flags & ACPI_NFIT_MEM_FLUSH_FAILED ? "flush_fail " : "",
1631 flags & ACPI_NFIT_MEM_NOT_ARMED ? "not_armed " : "",
1632 flags & ACPI_NFIT_MEM_HEALTH_OBSERVED ? "smart_event " : "",
1633 flags & ACPI_NFIT_MEM_MAP_FAILED ? "map_fail " : "",
1634 flags & ACPI_NFIT_MEM_HEALTH_ENABLED ? "smart_notify " : "");
1635 }
1636 static DEVICE_ATTR_RO(flags);
1637
id_show(struct device * dev,struct device_attribute * attr,char * buf)1638 static ssize_t id_show(struct device *dev,
1639 struct device_attribute *attr, char *buf)
1640 {
1641 struct nvdimm *nvdimm = to_nvdimm(dev);
1642 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1643
1644 return sprintf(buf, "%s\n", nfit_mem->id);
1645 }
1646 static DEVICE_ATTR_RO(id);
1647
dirty_shutdown_show(struct device * dev,struct device_attribute * attr,char * buf)1648 static ssize_t dirty_shutdown_show(struct device *dev,
1649 struct device_attribute *attr, char *buf)
1650 {
1651 struct nvdimm *nvdimm = to_nvdimm(dev);
1652 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1653
1654 return sprintf(buf, "%d\n", nfit_mem->dirty_shutdown);
1655 }
1656 static DEVICE_ATTR_RO(dirty_shutdown);
1657
1658 static struct attribute *acpi_nfit_dimm_attributes[] = {
1659 &dev_attr_handle.attr,
1660 &dev_attr_phys_id.attr,
1661 &dev_attr_vendor.attr,
1662 &dev_attr_device.attr,
1663 &dev_attr_rev_id.attr,
1664 &dev_attr_subsystem_vendor.attr,
1665 &dev_attr_subsystem_device.attr,
1666 &dev_attr_subsystem_rev_id.attr,
1667 &dev_attr_format.attr,
1668 &dev_attr_formats.attr,
1669 &dev_attr_format1.attr,
1670 &dev_attr_serial.attr,
1671 &dev_attr_flags.attr,
1672 &dev_attr_id.attr,
1673 &dev_attr_family.attr,
1674 &dev_attr_dsm_mask.attr,
1675 &dev_attr_dirty_shutdown.attr,
1676 NULL,
1677 };
1678
acpi_nfit_dimm_attr_visible(struct kobject * kobj,struct attribute * a,int n)1679 static umode_t acpi_nfit_dimm_attr_visible(struct kobject *kobj,
1680 struct attribute *a, int n)
1681 {
1682 struct device *dev = kobj_to_dev(kobj);
1683 struct nvdimm *nvdimm = to_nvdimm(dev);
1684 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1685
1686 if (!to_nfit_dcr(dev)) {
1687 /* Without a dcr only the memdev attributes can be surfaced */
1688 if (a == &dev_attr_handle.attr || a == &dev_attr_phys_id.attr
1689 || a == &dev_attr_flags.attr
1690 || a == &dev_attr_family.attr
1691 || a == &dev_attr_dsm_mask.attr)
1692 return a->mode;
1693 return 0;
1694 }
1695
1696 if (a == &dev_attr_format1.attr && num_nvdimm_formats(nvdimm) <= 1)
1697 return 0;
1698
1699 if (!test_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags)
1700 && a == &dev_attr_dirty_shutdown.attr)
1701 return 0;
1702
1703 return a->mode;
1704 }
1705
1706 static const struct attribute_group acpi_nfit_dimm_attribute_group = {
1707 .name = "nfit",
1708 .attrs = acpi_nfit_dimm_attributes,
1709 .is_visible = acpi_nfit_dimm_attr_visible,
1710 };
1711
1712 static const struct attribute_group *acpi_nfit_dimm_attribute_groups[] = {
1713 &acpi_nfit_dimm_attribute_group,
1714 NULL,
1715 };
1716
acpi_nfit_dimm_by_handle(struct acpi_nfit_desc * acpi_desc,u32 device_handle)1717 static struct nvdimm *acpi_nfit_dimm_by_handle(struct acpi_nfit_desc *acpi_desc,
1718 u32 device_handle)
1719 {
1720 struct nfit_mem *nfit_mem;
1721
1722 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1723 if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle)
1724 return nfit_mem->nvdimm;
1725
1726 return NULL;
1727 }
1728
__acpi_nvdimm_notify(struct device * dev,u32 event)1729 void __acpi_nvdimm_notify(struct device *dev, u32 event)
1730 {
1731 struct nfit_mem *nfit_mem;
1732 struct acpi_nfit_desc *acpi_desc;
1733
1734 dev_dbg(dev->parent, "%s: event: %d\n", dev_name(dev),
1735 event);
1736
1737 if (event != NFIT_NOTIFY_DIMM_HEALTH) {
1738 dev_dbg(dev->parent, "%s: unknown event: %d\n", dev_name(dev),
1739 event);
1740 return;
1741 }
1742
1743 acpi_desc = dev_get_drvdata(dev->parent);
1744 if (!acpi_desc)
1745 return;
1746
1747 /*
1748 * If we successfully retrieved acpi_desc, then we know nfit_mem data
1749 * is still valid.
1750 */
1751 nfit_mem = dev_get_drvdata(dev);
1752 if (nfit_mem && nfit_mem->flags_attr)
1753 sysfs_notify_dirent(nfit_mem->flags_attr);
1754 }
1755 EXPORT_SYMBOL_GPL(__acpi_nvdimm_notify);
1756
acpi_nvdimm_notify(acpi_handle handle,u32 event,void * data)1757 static void acpi_nvdimm_notify(acpi_handle handle, u32 event, void *data)
1758 {
1759 struct acpi_device *adev = data;
1760 struct device *dev = &adev->dev;
1761
1762 nfit_device_lock(dev->parent);
1763 __acpi_nvdimm_notify(dev, event);
1764 nfit_device_unlock(dev->parent);
1765 }
1766
acpi_nvdimm_has_method(struct acpi_device * adev,char * method)1767 static bool acpi_nvdimm_has_method(struct acpi_device *adev, char *method)
1768 {
1769 acpi_handle handle;
1770 acpi_status status;
1771
1772 status = acpi_get_handle(adev->handle, method, &handle);
1773
1774 if (ACPI_SUCCESS(status))
1775 return true;
1776 return false;
1777 }
1778
nfit_intel_shutdown_status(struct nfit_mem * nfit_mem)1779 __weak void nfit_intel_shutdown_status(struct nfit_mem *nfit_mem)
1780 {
1781 struct device *dev = &nfit_mem->adev->dev;
1782 struct nd_intel_smart smart = { 0 };
1783 union acpi_object in_buf = {
1784 .buffer.type = ACPI_TYPE_BUFFER,
1785 .buffer.length = 0,
1786 };
1787 union acpi_object in_obj = {
1788 .package.type = ACPI_TYPE_PACKAGE,
1789 .package.count = 1,
1790 .package.elements = &in_buf,
1791 };
1792 const u8 func = ND_INTEL_SMART;
1793 const guid_t *guid = to_nfit_uuid(nfit_mem->family);
1794 u8 revid = nfit_dsm_revid(nfit_mem->family, func);
1795 struct acpi_device *adev = nfit_mem->adev;
1796 acpi_handle handle = adev->handle;
1797 union acpi_object *out_obj;
1798
1799 if ((nfit_mem->dsm_mask & (1 << func)) == 0)
1800 return;
1801
1802 out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj);
1803 if (!out_obj || out_obj->type != ACPI_TYPE_BUFFER
1804 || out_obj->buffer.length < sizeof(smart)) {
1805 dev_dbg(dev->parent, "%s: failed to retrieve initial health\n",
1806 dev_name(dev));
1807 ACPI_FREE(out_obj);
1808 return;
1809 }
1810 memcpy(&smart, out_obj->buffer.pointer, sizeof(smart));
1811 ACPI_FREE(out_obj);
1812
1813 if (smart.flags & ND_INTEL_SMART_SHUTDOWN_VALID) {
1814 if (smart.shutdown_state)
1815 set_bit(NFIT_MEM_DIRTY, &nfit_mem->flags);
1816 }
1817
1818 if (smart.flags & ND_INTEL_SMART_SHUTDOWN_COUNT_VALID) {
1819 set_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags);
1820 nfit_mem->dirty_shutdown = smart.shutdown_count;
1821 }
1822 }
1823
populate_shutdown_status(struct nfit_mem * nfit_mem)1824 static void populate_shutdown_status(struct nfit_mem *nfit_mem)
1825 {
1826 /*
1827 * For DIMMs that provide a dynamic facility to retrieve a
1828 * dirty-shutdown status and/or a dirty-shutdown count, cache
1829 * these values in nfit_mem.
1830 */
1831 if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
1832 nfit_intel_shutdown_status(nfit_mem);
1833 }
1834
acpi_nfit_add_dimm(struct acpi_nfit_desc * acpi_desc,struct nfit_mem * nfit_mem,u32 device_handle)1835 static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc,
1836 struct nfit_mem *nfit_mem, u32 device_handle)
1837 {
1838 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
1839 struct acpi_device *adev, *adev_dimm;
1840 struct device *dev = acpi_desc->dev;
1841 unsigned long dsm_mask, label_mask;
1842 const guid_t *guid;
1843 int i;
1844 int family = -1;
1845 struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
1846
1847 /* nfit test assumes 1:1 relationship between commands and dsms */
1848 nfit_mem->dsm_mask = acpi_desc->dimm_cmd_force_en;
1849 nfit_mem->family = NVDIMM_FAMILY_INTEL;
1850 set_bit(NVDIMM_FAMILY_INTEL, &nd_desc->dimm_family_mask);
1851
1852 if (dcr->valid_fields & ACPI_NFIT_CONTROL_MFG_INFO_VALID)
1853 sprintf(nfit_mem->id, "%04x-%02x-%04x-%08x",
1854 be16_to_cpu(dcr->vendor_id),
1855 dcr->manufacturing_location,
1856 be16_to_cpu(dcr->manufacturing_date),
1857 be32_to_cpu(dcr->serial_number));
1858 else
1859 sprintf(nfit_mem->id, "%04x-%08x",
1860 be16_to_cpu(dcr->vendor_id),
1861 be32_to_cpu(dcr->serial_number));
1862
1863 adev = to_acpi_dev(acpi_desc);
1864 if (!adev) {
1865 /* unit test case */
1866 populate_shutdown_status(nfit_mem);
1867 return 0;
1868 }
1869
1870 adev_dimm = acpi_find_child_device(adev, device_handle, false);
1871 nfit_mem->adev = adev_dimm;
1872 if (!adev_dimm) {
1873 dev_err(dev, "no ACPI.NFIT device with _ADR %#x, disabling...\n",
1874 device_handle);
1875 return force_enable_dimms ? 0 : -ENODEV;
1876 }
1877
1878 if (ACPI_FAILURE(acpi_install_notify_handler(adev_dimm->handle,
1879 ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify, adev_dimm))) {
1880 dev_err(dev, "%s: notification registration failed\n",
1881 dev_name(&adev_dimm->dev));
1882 return -ENXIO;
1883 }
1884 /*
1885 * Record nfit_mem for the notification path to track back to
1886 * the nfit sysfs attributes for this dimm device object.
1887 */
1888 dev_set_drvdata(&adev_dimm->dev, nfit_mem);
1889
1890 /*
1891 * There are 4 "legacy" NVDIMM command sets
1892 * (NVDIMM_FAMILY_{INTEL,MSFT,HPE1,HPE2}) that were created before
1893 * an EFI working group was established to constrain this
1894 * proliferation. The nfit driver probes for the supported command
1895 * set by GUID. Note, if you're a platform developer looking to add
1896 * a new command set to this probe, consider using an existing set,
1897 * or otherwise seek approval to publish the command set at
1898 * http://www.uefi.org/RFIC_LIST.
1899 *
1900 * Note, that checking for function0 (bit0) tells us if any commands
1901 * are reachable through this GUID.
1902 */
1903 clear_bit(NVDIMM_FAMILY_INTEL, &nd_desc->dimm_family_mask);
1904 for (i = 0; i <= NVDIMM_FAMILY_MAX; i++)
1905 if (acpi_check_dsm(adev_dimm->handle, to_nfit_uuid(i), 1, 1)) {
1906 set_bit(i, &nd_desc->dimm_family_mask);
1907 if (family < 0 || i == default_dsm_family)
1908 family = i;
1909 }
1910
1911 /* limit the supported commands to those that are publicly documented */
1912 nfit_mem->family = family;
1913 if (override_dsm_mask && !disable_vendor_specific)
1914 dsm_mask = override_dsm_mask;
1915 else if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
1916 dsm_mask = NVDIMM_INTEL_CMDMASK;
1917 if (disable_vendor_specific)
1918 dsm_mask &= ~(1 << ND_CMD_VENDOR);
1919 } else if (nfit_mem->family == NVDIMM_FAMILY_HPE1) {
1920 dsm_mask = 0x1c3c76;
1921 } else if (nfit_mem->family == NVDIMM_FAMILY_HPE2) {
1922 dsm_mask = 0x1fe;
1923 if (disable_vendor_specific)
1924 dsm_mask &= ~(1 << 8);
1925 } else if (nfit_mem->family == NVDIMM_FAMILY_MSFT) {
1926 dsm_mask = 0xffffffff;
1927 } else if (nfit_mem->family == NVDIMM_FAMILY_HYPERV) {
1928 dsm_mask = 0x1f;
1929 } else {
1930 dev_dbg(dev, "unknown dimm command family\n");
1931 nfit_mem->family = -1;
1932 /* DSMs are optional, continue loading the driver... */
1933 return 0;
1934 }
1935
1936 /*
1937 * Function 0 is the command interrogation function, don't
1938 * export it to potential userspace use, and enable it to be
1939 * used as an error value in acpi_nfit_ctl().
1940 */
1941 dsm_mask &= ~1UL;
1942
1943 guid = to_nfit_uuid(nfit_mem->family);
1944 for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
1945 if (acpi_check_dsm(adev_dimm->handle, guid,
1946 nfit_dsm_revid(nfit_mem->family, i),
1947 1ULL << i))
1948 set_bit(i, &nfit_mem->dsm_mask);
1949
1950 /*
1951 * Prefer the NVDIMM_FAMILY_INTEL label read commands if present
1952 * due to their better semantics handling locked capacity.
1953 */
1954 label_mask = 1 << ND_CMD_GET_CONFIG_SIZE | 1 << ND_CMD_GET_CONFIG_DATA
1955 | 1 << ND_CMD_SET_CONFIG_DATA;
1956 if (family == NVDIMM_FAMILY_INTEL
1957 && (dsm_mask & label_mask) == label_mask)
1958 /* skip _LS{I,R,W} enabling */;
1959 else {
1960 if (acpi_nvdimm_has_method(adev_dimm, "_LSI")
1961 && acpi_nvdimm_has_method(adev_dimm, "_LSR")) {
1962 dev_dbg(dev, "%s: has _LSR\n", dev_name(&adev_dimm->dev));
1963 set_bit(NFIT_MEM_LSR, &nfit_mem->flags);
1964 }
1965
1966 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)
1967 && acpi_nvdimm_has_method(adev_dimm, "_LSW")) {
1968 dev_dbg(dev, "%s: has _LSW\n", dev_name(&adev_dimm->dev));
1969 set_bit(NFIT_MEM_LSW, &nfit_mem->flags);
1970 }
1971
1972 /*
1973 * Quirk read-only label configurations to preserve
1974 * access to label-less namespaces by default.
1975 */
1976 if (!test_bit(NFIT_MEM_LSW, &nfit_mem->flags)
1977 && !force_labels) {
1978 dev_dbg(dev, "%s: No _LSW, disable labels\n",
1979 dev_name(&adev_dimm->dev));
1980 clear_bit(NFIT_MEM_LSR, &nfit_mem->flags);
1981 } else
1982 dev_dbg(dev, "%s: Force enable labels\n",
1983 dev_name(&adev_dimm->dev));
1984 }
1985
1986 populate_shutdown_status(nfit_mem);
1987
1988 return 0;
1989 }
1990
shutdown_dimm_notify(void * data)1991 static void shutdown_dimm_notify(void *data)
1992 {
1993 struct acpi_nfit_desc *acpi_desc = data;
1994 struct nfit_mem *nfit_mem;
1995
1996 mutex_lock(&acpi_desc->init_mutex);
1997 /*
1998 * Clear out the nfit_mem->flags_attr and shut down dimm event
1999 * notifications.
2000 */
2001 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
2002 struct acpi_device *adev_dimm = nfit_mem->adev;
2003
2004 if (nfit_mem->flags_attr) {
2005 sysfs_put(nfit_mem->flags_attr);
2006 nfit_mem->flags_attr = NULL;
2007 }
2008 if (adev_dimm) {
2009 acpi_remove_notify_handler(adev_dimm->handle,
2010 ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify);
2011 dev_set_drvdata(&adev_dimm->dev, NULL);
2012 }
2013 }
2014 mutex_unlock(&acpi_desc->init_mutex);
2015 }
2016
acpi_nfit_get_security_ops(int family)2017 static const struct nvdimm_security_ops *acpi_nfit_get_security_ops(int family)
2018 {
2019 switch (family) {
2020 case NVDIMM_FAMILY_INTEL:
2021 return intel_security_ops;
2022 default:
2023 return NULL;
2024 }
2025 }
2026
acpi_nfit_get_fw_ops(struct nfit_mem * nfit_mem)2027 static const struct nvdimm_fw_ops *acpi_nfit_get_fw_ops(
2028 struct nfit_mem *nfit_mem)
2029 {
2030 unsigned long mask;
2031 struct acpi_nfit_desc *acpi_desc = nfit_mem->acpi_desc;
2032 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2033
2034 if (!nd_desc->fw_ops)
2035 return NULL;
2036
2037 if (nfit_mem->family != NVDIMM_FAMILY_INTEL)
2038 return NULL;
2039
2040 mask = nfit_mem->dsm_mask & NVDIMM_INTEL_FW_ACTIVATE_CMDMASK;
2041 if (mask != NVDIMM_INTEL_FW_ACTIVATE_CMDMASK)
2042 return NULL;
2043
2044 return intel_fw_ops;
2045 }
2046
acpi_nfit_register_dimms(struct acpi_nfit_desc * acpi_desc)2047 static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc)
2048 {
2049 struct nfit_mem *nfit_mem;
2050 int dimm_count = 0, rc;
2051 struct nvdimm *nvdimm;
2052
2053 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
2054 struct acpi_nfit_flush_address *flush;
2055 unsigned long flags = 0, cmd_mask;
2056 struct nfit_memdev *nfit_memdev;
2057 u32 device_handle;
2058 u16 mem_flags;
2059
2060 device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
2061 nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, device_handle);
2062 if (nvdimm) {
2063 dimm_count++;
2064 continue;
2065 }
2066
2067 if (nfit_mem->bdw && nfit_mem->memdev_pmem) {
2068 set_bit(NDD_ALIASING, &flags);
2069 set_bit(NDD_LABELING, &flags);
2070 }
2071
2072 /* collate flags across all memdevs for this dimm */
2073 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
2074 struct acpi_nfit_memory_map *dimm_memdev;
2075
2076 dimm_memdev = __to_nfit_memdev(nfit_mem);
2077 if (dimm_memdev->device_handle
2078 != nfit_memdev->memdev->device_handle)
2079 continue;
2080 dimm_memdev->flags |= nfit_memdev->memdev->flags;
2081 }
2082
2083 mem_flags = __to_nfit_memdev(nfit_mem)->flags;
2084 if (mem_flags & ACPI_NFIT_MEM_NOT_ARMED)
2085 set_bit(NDD_UNARMED, &flags);
2086
2087 rc = acpi_nfit_add_dimm(acpi_desc, nfit_mem, device_handle);
2088 if (rc)
2089 continue;
2090
2091 /*
2092 * TODO: provide translation for non-NVDIMM_FAMILY_INTEL
2093 * devices (i.e. from nd_cmd to acpi_dsm) to standardize the
2094 * userspace interface.
2095 */
2096 cmd_mask = 1UL << ND_CMD_CALL;
2097 if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
2098 /*
2099 * These commands have a 1:1 correspondence
2100 * between DSM payload and libnvdimm ioctl
2101 * payload format.
2102 */
2103 cmd_mask |= nfit_mem->dsm_mask & NVDIMM_STANDARD_CMDMASK;
2104 }
2105
2106 /* Quirk to ignore LOCAL for labels on HYPERV DIMMs */
2107 if (nfit_mem->family == NVDIMM_FAMILY_HYPERV)
2108 set_bit(NDD_NOBLK, &flags);
2109
2110 if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) {
2111 set_bit(ND_CMD_GET_CONFIG_SIZE, &cmd_mask);
2112 set_bit(ND_CMD_GET_CONFIG_DATA, &cmd_mask);
2113 }
2114 if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags))
2115 set_bit(ND_CMD_SET_CONFIG_DATA, &cmd_mask);
2116
2117 flush = nfit_mem->nfit_flush ? nfit_mem->nfit_flush->flush
2118 : NULL;
2119 nvdimm = __nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem,
2120 acpi_nfit_dimm_attribute_groups,
2121 flags, cmd_mask, flush ? flush->hint_count : 0,
2122 nfit_mem->flush_wpq, &nfit_mem->id[0],
2123 acpi_nfit_get_security_ops(nfit_mem->family),
2124 acpi_nfit_get_fw_ops(nfit_mem));
2125 if (!nvdimm)
2126 return -ENOMEM;
2127
2128 nfit_mem->nvdimm = nvdimm;
2129 dimm_count++;
2130
2131 if ((mem_flags & ACPI_NFIT_MEM_FAILED_MASK) == 0)
2132 continue;
2133
2134 dev_err(acpi_desc->dev, "Error found in NVDIMM %s flags:%s%s%s%s%s\n",
2135 nvdimm_name(nvdimm),
2136 mem_flags & ACPI_NFIT_MEM_SAVE_FAILED ? " save_fail" : "",
2137 mem_flags & ACPI_NFIT_MEM_RESTORE_FAILED ? " restore_fail":"",
2138 mem_flags & ACPI_NFIT_MEM_FLUSH_FAILED ? " flush_fail" : "",
2139 mem_flags & ACPI_NFIT_MEM_NOT_ARMED ? " not_armed" : "",
2140 mem_flags & ACPI_NFIT_MEM_MAP_FAILED ? " map_fail" : "");
2141
2142 }
2143
2144 rc = nvdimm_bus_check_dimm_count(acpi_desc->nvdimm_bus, dimm_count);
2145 if (rc)
2146 return rc;
2147
2148 /*
2149 * Now that dimms are successfully registered, and async registration
2150 * is flushed, attempt to enable event notification.
2151 */
2152 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
2153 struct kernfs_node *nfit_kernfs;
2154
2155 nvdimm = nfit_mem->nvdimm;
2156 if (!nvdimm)
2157 continue;
2158
2159 nfit_kernfs = sysfs_get_dirent(nvdimm_kobj(nvdimm)->sd, "nfit");
2160 if (nfit_kernfs)
2161 nfit_mem->flags_attr = sysfs_get_dirent(nfit_kernfs,
2162 "flags");
2163 sysfs_put(nfit_kernfs);
2164 if (!nfit_mem->flags_attr)
2165 dev_warn(acpi_desc->dev, "%s: notifications disabled\n",
2166 nvdimm_name(nvdimm));
2167 }
2168
2169 return devm_add_action_or_reset(acpi_desc->dev, shutdown_dimm_notify,
2170 acpi_desc);
2171 }
2172
2173 /*
2174 * These constants are private because there are no kernel consumers of
2175 * these commands.
2176 */
2177 enum nfit_aux_cmds {
2178 NFIT_CMD_TRANSLATE_SPA = 5,
2179 NFIT_CMD_ARS_INJECT_SET = 7,
2180 NFIT_CMD_ARS_INJECT_CLEAR = 8,
2181 NFIT_CMD_ARS_INJECT_GET = 9,
2182 };
2183
acpi_nfit_init_dsms(struct acpi_nfit_desc * acpi_desc)2184 static void acpi_nfit_init_dsms(struct acpi_nfit_desc *acpi_desc)
2185 {
2186 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2187 const guid_t *guid = to_nfit_uuid(NFIT_DEV_BUS);
2188 unsigned long dsm_mask, *mask;
2189 struct acpi_device *adev;
2190 int i;
2191
2192 set_bit(ND_CMD_CALL, &nd_desc->cmd_mask);
2193 set_bit(NVDIMM_BUS_FAMILY_NFIT, &nd_desc->bus_family_mask);
2194
2195 /* enable nfit_test to inject bus command emulation */
2196 if (acpi_desc->bus_cmd_force_en) {
2197 nd_desc->cmd_mask = acpi_desc->bus_cmd_force_en;
2198 mask = &nd_desc->bus_family_mask;
2199 if (acpi_desc->family_dsm_mask[NVDIMM_BUS_FAMILY_INTEL]) {
2200 set_bit(NVDIMM_BUS_FAMILY_INTEL, mask);
2201 nd_desc->fw_ops = intel_bus_fw_ops;
2202 }
2203 }
2204
2205 adev = to_acpi_dev(acpi_desc);
2206 if (!adev)
2207 return;
2208
2209 for (i = ND_CMD_ARS_CAP; i <= ND_CMD_CLEAR_ERROR; i++)
2210 if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2211 set_bit(i, &nd_desc->cmd_mask);
2212
2213 dsm_mask =
2214 (1 << ND_CMD_ARS_CAP) |
2215 (1 << ND_CMD_ARS_START) |
2216 (1 << ND_CMD_ARS_STATUS) |
2217 (1 << ND_CMD_CLEAR_ERROR) |
2218 (1 << NFIT_CMD_TRANSLATE_SPA) |
2219 (1 << NFIT_CMD_ARS_INJECT_SET) |
2220 (1 << NFIT_CMD_ARS_INJECT_CLEAR) |
2221 (1 << NFIT_CMD_ARS_INJECT_GET);
2222 for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
2223 if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2224 set_bit(i, &acpi_desc->bus_dsm_mask);
2225
2226 /* Enumerate allowed NVDIMM_BUS_FAMILY_INTEL commands */
2227 dsm_mask = NVDIMM_BUS_INTEL_FW_ACTIVATE_CMDMASK;
2228 guid = to_nfit_bus_uuid(NVDIMM_BUS_FAMILY_INTEL);
2229 mask = &acpi_desc->family_dsm_mask[NVDIMM_BUS_FAMILY_INTEL];
2230 for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
2231 if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2232 set_bit(i, mask);
2233
2234 if (*mask == dsm_mask) {
2235 set_bit(NVDIMM_BUS_FAMILY_INTEL, &nd_desc->bus_family_mask);
2236 nd_desc->fw_ops = intel_bus_fw_ops;
2237 }
2238 }
2239
range_index_show(struct device * dev,struct device_attribute * attr,char * buf)2240 static ssize_t range_index_show(struct device *dev,
2241 struct device_attribute *attr, char *buf)
2242 {
2243 struct nd_region *nd_region = to_nd_region(dev);
2244 struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region);
2245
2246 return sprintf(buf, "%d\n", nfit_spa->spa->range_index);
2247 }
2248 static DEVICE_ATTR_RO(range_index);
2249
2250 static struct attribute *acpi_nfit_region_attributes[] = {
2251 &dev_attr_range_index.attr,
2252 NULL,
2253 };
2254
2255 static const struct attribute_group acpi_nfit_region_attribute_group = {
2256 .name = "nfit",
2257 .attrs = acpi_nfit_region_attributes,
2258 };
2259
2260 static const struct attribute_group *acpi_nfit_region_attribute_groups[] = {
2261 &acpi_nfit_region_attribute_group,
2262 NULL,
2263 };
2264
2265 /* enough info to uniquely specify an interleave set */
2266 struct nfit_set_info {
2267 struct nfit_set_info_map {
2268 u64 region_offset;
2269 u32 serial_number;
2270 u32 pad;
2271 } mapping[0];
2272 };
2273
2274 struct nfit_set_info2 {
2275 struct nfit_set_info_map2 {
2276 u64 region_offset;
2277 u32 serial_number;
2278 u16 vendor_id;
2279 u16 manufacturing_date;
2280 u8 manufacturing_location;
2281 u8 reserved[31];
2282 } mapping[0];
2283 };
2284
sizeof_nfit_set_info(int num_mappings)2285 static size_t sizeof_nfit_set_info(int num_mappings)
2286 {
2287 return sizeof(struct nfit_set_info)
2288 + num_mappings * sizeof(struct nfit_set_info_map);
2289 }
2290
sizeof_nfit_set_info2(int num_mappings)2291 static size_t sizeof_nfit_set_info2(int num_mappings)
2292 {
2293 return sizeof(struct nfit_set_info2)
2294 + num_mappings * sizeof(struct nfit_set_info_map2);
2295 }
2296
cmp_map_compat(const void * m0,const void * m1)2297 static int cmp_map_compat(const void *m0, const void *m1)
2298 {
2299 const struct nfit_set_info_map *map0 = m0;
2300 const struct nfit_set_info_map *map1 = m1;
2301
2302 return memcmp(&map0->region_offset, &map1->region_offset,
2303 sizeof(u64));
2304 }
2305
cmp_map(const void * m0,const void * m1)2306 static int cmp_map(const void *m0, const void *m1)
2307 {
2308 const struct nfit_set_info_map *map0 = m0;
2309 const struct nfit_set_info_map *map1 = m1;
2310
2311 if (map0->region_offset < map1->region_offset)
2312 return -1;
2313 else if (map0->region_offset > map1->region_offset)
2314 return 1;
2315 return 0;
2316 }
2317
cmp_map2(const void * m0,const void * m1)2318 static int cmp_map2(const void *m0, const void *m1)
2319 {
2320 const struct nfit_set_info_map2 *map0 = m0;
2321 const struct nfit_set_info_map2 *map1 = m1;
2322
2323 if (map0->region_offset < map1->region_offset)
2324 return -1;
2325 else if (map0->region_offset > map1->region_offset)
2326 return 1;
2327 return 0;
2328 }
2329
2330 /* Retrieve the nth entry referencing this spa */
memdev_from_spa(struct acpi_nfit_desc * acpi_desc,u16 range_index,int n)2331 static struct acpi_nfit_memory_map *memdev_from_spa(
2332 struct acpi_nfit_desc *acpi_desc, u16 range_index, int n)
2333 {
2334 struct nfit_memdev *nfit_memdev;
2335
2336 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list)
2337 if (nfit_memdev->memdev->range_index == range_index)
2338 if (n-- == 0)
2339 return nfit_memdev->memdev;
2340 return NULL;
2341 }
2342
acpi_nfit_init_interleave_set(struct acpi_nfit_desc * acpi_desc,struct nd_region_desc * ndr_desc,struct acpi_nfit_system_address * spa)2343 static int acpi_nfit_init_interleave_set(struct acpi_nfit_desc *acpi_desc,
2344 struct nd_region_desc *ndr_desc,
2345 struct acpi_nfit_system_address *spa)
2346 {
2347 struct device *dev = acpi_desc->dev;
2348 struct nd_interleave_set *nd_set;
2349 u16 nr = ndr_desc->num_mappings;
2350 struct nfit_set_info2 *info2;
2351 struct nfit_set_info *info;
2352 int i;
2353
2354 nd_set = devm_kzalloc(dev, sizeof(*nd_set), GFP_KERNEL);
2355 if (!nd_set)
2356 return -ENOMEM;
2357 import_guid(&nd_set->type_guid, spa->range_guid);
2358
2359 info = devm_kzalloc(dev, sizeof_nfit_set_info(nr), GFP_KERNEL);
2360 if (!info)
2361 return -ENOMEM;
2362
2363 info2 = devm_kzalloc(dev, sizeof_nfit_set_info2(nr), GFP_KERNEL);
2364 if (!info2)
2365 return -ENOMEM;
2366
2367 for (i = 0; i < nr; i++) {
2368 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
2369 struct nfit_set_info_map *map = &info->mapping[i];
2370 struct nfit_set_info_map2 *map2 = &info2->mapping[i];
2371 struct nvdimm *nvdimm = mapping->nvdimm;
2372 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2373 struct acpi_nfit_memory_map *memdev = memdev_from_spa(acpi_desc,
2374 spa->range_index, i);
2375 struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2376
2377 if (!memdev || !nfit_mem->dcr) {
2378 dev_err(dev, "%s: failed to find DCR\n", __func__);
2379 return -ENODEV;
2380 }
2381
2382 map->region_offset = memdev->region_offset;
2383 map->serial_number = dcr->serial_number;
2384
2385 map2->region_offset = memdev->region_offset;
2386 map2->serial_number = dcr->serial_number;
2387 map2->vendor_id = dcr->vendor_id;
2388 map2->manufacturing_date = dcr->manufacturing_date;
2389 map2->manufacturing_location = dcr->manufacturing_location;
2390 }
2391
2392 /* v1.1 namespaces */
2393 sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map),
2394 cmp_map, NULL);
2395 nd_set->cookie1 = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0);
2396
2397 /* v1.2 namespaces */
2398 sort(&info2->mapping[0], nr, sizeof(struct nfit_set_info_map2),
2399 cmp_map2, NULL);
2400 nd_set->cookie2 = nd_fletcher64(info2, sizeof_nfit_set_info2(nr), 0);
2401
2402 /* support v1.1 namespaces created with the wrong sort order */
2403 sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map),
2404 cmp_map_compat, NULL);
2405 nd_set->altcookie = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0);
2406
2407 /* record the result of the sort for the mapping position */
2408 for (i = 0; i < nr; i++) {
2409 struct nfit_set_info_map2 *map2 = &info2->mapping[i];
2410 int j;
2411
2412 for (j = 0; j < nr; j++) {
2413 struct nd_mapping_desc *mapping = &ndr_desc->mapping[j];
2414 struct nvdimm *nvdimm = mapping->nvdimm;
2415 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2416 struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2417
2418 if (map2->serial_number == dcr->serial_number &&
2419 map2->vendor_id == dcr->vendor_id &&
2420 map2->manufacturing_date == dcr->manufacturing_date &&
2421 map2->manufacturing_location
2422 == dcr->manufacturing_location) {
2423 mapping->position = i;
2424 break;
2425 }
2426 }
2427 }
2428
2429 ndr_desc->nd_set = nd_set;
2430 devm_kfree(dev, info);
2431 devm_kfree(dev, info2);
2432
2433 return 0;
2434 }
2435
to_interleave_offset(u64 offset,struct nfit_blk_mmio * mmio)2436 static u64 to_interleave_offset(u64 offset, struct nfit_blk_mmio *mmio)
2437 {
2438 struct acpi_nfit_interleave *idt = mmio->idt;
2439 u32 sub_line_offset, line_index, line_offset;
2440 u64 line_no, table_skip_count, table_offset;
2441
2442 line_no = div_u64_rem(offset, mmio->line_size, &sub_line_offset);
2443 table_skip_count = div_u64_rem(line_no, mmio->num_lines, &line_index);
2444 line_offset = idt->line_offset[line_index]
2445 * mmio->line_size;
2446 table_offset = table_skip_count * mmio->table_size;
2447
2448 return mmio->base_offset + line_offset + table_offset + sub_line_offset;
2449 }
2450
read_blk_stat(struct nfit_blk * nfit_blk,unsigned int bw)2451 static u32 read_blk_stat(struct nfit_blk *nfit_blk, unsigned int bw)
2452 {
2453 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
2454 u64 offset = nfit_blk->stat_offset + mmio->size * bw;
2455 const u32 STATUS_MASK = 0x80000037;
2456
2457 if (mmio->num_lines)
2458 offset = to_interleave_offset(offset, mmio);
2459
2460 return readl(mmio->addr.base + offset) & STATUS_MASK;
2461 }
2462
write_blk_ctl(struct nfit_blk * nfit_blk,unsigned int bw,resource_size_t dpa,unsigned int len,unsigned int write)2463 static void write_blk_ctl(struct nfit_blk *nfit_blk, unsigned int bw,
2464 resource_size_t dpa, unsigned int len, unsigned int write)
2465 {
2466 u64 cmd, offset;
2467 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
2468
2469 enum {
2470 BCW_OFFSET_MASK = (1ULL << 48)-1,
2471 BCW_LEN_SHIFT = 48,
2472 BCW_LEN_MASK = (1ULL << 8) - 1,
2473 BCW_CMD_SHIFT = 56,
2474 };
2475
2476 cmd = (dpa >> L1_CACHE_SHIFT) & BCW_OFFSET_MASK;
2477 len = len >> L1_CACHE_SHIFT;
2478 cmd |= ((u64) len & BCW_LEN_MASK) << BCW_LEN_SHIFT;
2479 cmd |= ((u64) write) << BCW_CMD_SHIFT;
2480
2481 offset = nfit_blk->cmd_offset + mmio->size * bw;
2482 if (mmio->num_lines)
2483 offset = to_interleave_offset(offset, mmio);
2484
2485 writeq(cmd, mmio->addr.base + offset);
2486 nvdimm_flush(nfit_blk->nd_region, NULL);
2487
2488 if (nfit_blk->dimm_flags & NFIT_BLK_DCR_LATCH)
2489 readq(mmio->addr.base + offset);
2490 }
2491
acpi_nfit_blk_single_io(struct nfit_blk * nfit_blk,resource_size_t dpa,void * iobuf,size_t len,int rw,unsigned int lane)2492 static int acpi_nfit_blk_single_io(struct nfit_blk *nfit_blk,
2493 resource_size_t dpa, void *iobuf, size_t len, int rw,
2494 unsigned int lane)
2495 {
2496 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
2497 unsigned int copied = 0;
2498 u64 base_offset;
2499 int rc;
2500
2501 base_offset = nfit_blk->bdw_offset + dpa % L1_CACHE_BYTES
2502 + lane * mmio->size;
2503 write_blk_ctl(nfit_blk, lane, dpa, len, rw);
2504 while (len) {
2505 unsigned int c;
2506 u64 offset;
2507
2508 if (mmio->num_lines) {
2509 u32 line_offset;
2510
2511 offset = to_interleave_offset(base_offset + copied,
2512 mmio);
2513 div_u64_rem(offset, mmio->line_size, &line_offset);
2514 c = min_t(size_t, len, mmio->line_size - line_offset);
2515 } else {
2516 offset = base_offset + nfit_blk->bdw_offset;
2517 c = len;
2518 }
2519
2520 if (rw)
2521 memcpy_flushcache(mmio->addr.aperture + offset, iobuf + copied, c);
2522 else {
2523 if (nfit_blk->dimm_flags & NFIT_BLK_READ_FLUSH)
2524 arch_invalidate_pmem((void __force *)
2525 mmio->addr.aperture + offset, c);
2526
2527 memcpy(iobuf + copied, mmio->addr.aperture + offset, c);
2528 }
2529
2530 copied += c;
2531 len -= c;
2532 }
2533
2534 if (rw)
2535 nvdimm_flush(nfit_blk->nd_region, NULL);
2536
2537 rc = read_blk_stat(nfit_blk, lane) ? -EIO : 0;
2538 return rc;
2539 }
2540
acpi_nfit_blk_region_do_io(struct nd_blk_region * ndbr,resource_size_t dpa,void * iobuf,u64 len,int rw)2541 static int acpi_nfit_blk_region_do_io(struct nd_blk_region *ndbr,
2542 resource_size_t dpa, void *iobuf, u64 len, int rw)
2543 {
2544 struct nfit_blk *nfit_blk = nd_blk_region_provider_data(ndbr);
2545 struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
2546 struct nd_region *nd_region = nfit_blk->nd_region;
2547 unsigned int lane, copied = 0;
2548 int rc = 0;
2549
2550 lane = nd_region_acquire_lane(nd_region);
2551 while (len) {
2552 u64 c = min(len, mmio->size);
2553
2554 rc = acpi_nfit_blk_single_io(nfit_blk, dpa + copied,
2555 iobuf + copied, c, rw, lane);
2556 if (rc)
2557 break;
2558
2559 copied += c;
2560 len -= c;
2561 }
2562 nd_region_release_lane(nd_region, lane);
2563
2564 return rc;
2565 }
2566
nfit_blk_init_interleave(struct nfit_blk_mmio * mmio,struct acpi_nfit_interleave * idt,u16 interleave_ways)2567 static int nfit_blk_init_interleave(struct nfit_blk_mmio *mmio,
2568 struct acpi_nfit_interleave *idt, u16 interleave_ways)
2569 {
2570 if (idt) {
2571 mmio->num_lines = idt->line_count;
2572 mmio->line_size = idt->line_size;
2573 if (interleave_ways == 0)
2574 return -ENXIO;
2575 mmio->table_size = mmio->num_lines * interleave_ways
2576 * mmio->line_size;
2577 }
2578
2579 return 0;
2580 }
2581
acpi_nfit_blk_get_flags(struct nvdimm_bus_descriptor * nd_desc,struct nvdimm * nvdimm,struct nfit_blk * nfit_blk)2582 static int acpi_nfit_blk_get_flags(struct nvdimm_bus_descriptor *nd_desc,
2583 struct nvdimm *nvdimm, struct nfit_blk *nfit_blk)
2584 {
2585 struct nd_cmd_dimm_flags flags;
2586 int rc;
2587
2588 memset(&flags, 0, sizeof(flags));
2589 rc = nd_desc->ndctl(nd_desc, nvdimm, ND_CMD_DIMM_FLAGS, &flags,
2590 sizeof(flags), NULL);
2591
2592 if (rc >= 0 && flags.status == 0)
2593 nfit_blk->dimm_flags = flags.flags;
2594 else if (rc == -ENOTTY) {
2595 /* fall back to a conservative default */
2596 nfit_blk->dimm_flags = NFIT_BLK_DCR_LATCH | NFIT_BLK_READ_FLUSH;
2597 rc = 0;
2598 } else
2599 rc = -ENXIO;
2600
2601 return rc;
2602 }
2603
acpi_nfit_blk_region_enable(struct nvdimm_bus * nvdimm_bus,struct device * dev)2604 static int acpi_nfit_blk_region_enable(struct nvdimm_bus *nvdimm_bus,
2605 struct device *dev)
2606 {
2607 struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
2608 struct nd_blk_region *ndbr = to_nd_blk_region(dev);
2609 struct nfit_blk_mmio *mmio;
2610 struct nfit_blk *nfit_blk;
2611 struct nfit_mem *nfit_mem;
2612 struct nvdimm *nvdimm;
2613 int rc;
2614
2615 nvdimm = nd_blk_region_to_dimm(ndbr);
2616 nfit_mem = nvdimm_provider_data(nvdimm);
2617 if (!nfit_mem || !nfit_mem->dcr || !nfit_mem->bdw) {
2618 dev_dbg(dev, "missing%s%s%s\n",
2619 nfit_mem ? "" : " nfit_mem",
2620 (nfit_mem && nfit_mem->dcr) ? "" : " dcr",
2621 (nfit_mem && nfit_mem->bdw) ? "" : " bdw");
2622 return -ENXIO;
2623 }
2624
2625 nfit_blk = devm_kzalloc(dev, sizeof(*nfit_blk), GFP_KERNEL);
2626 if (!nfit_blk)
2627 return -ENOMEM;
2628 nd_blk_region_set_provider_data(ndbr, nfit_blk);
2629 nfit_blk->nd_region = to_nd_region(dev);
2630
2631 /* map block aperture memory */
2632 nfit_blk->bdw_offset = nfit_mem->bdw->offset;
2633 mmio = &nfit_blk->mmio[BDW];
2634 mmio->addr.base = devm_nvdimm_memremap(dev, nfit_mem->spa_bdw->address,
2635 nfit_mem->spa_bdw->length, nd_blk_memremap_flags(ndbr));
2636 if (!mmio->addr.base) {
2637 dev_dbg(dev, "%s failed to map bdw\n",
2638 nvdimm_name(nvdimm));
2639 return -ENOMEM;
2640 }
2641 mmio->size = nfit_mem->bdw->size;
2642 mmio->base_offset = nfit_mem->memdev_bdw->region_offset;
2643 mmio->idt = nfit_mem->idt_bdw;
2644 mmio->spa = nfit_mem->spa_bdw;
2645 rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_bdw,
2646 nfit_mem->memdev_bdw->interleave_ways);
2647 if (rc) {
2648 dev_dbg(dev, "%s failed to init bdw interleave\n",
2649 nvdimm_name(nvdimm));
2650 return rc;
2651 }
2652
2653 /* map block control memory */
2654 nfit_blk->cmd_offset = nfit_mem->dcr->command_offset;
2655 nfit_blk->stat_offset = nfit_mem->dcr->status_offset;
2656 mmio = &nfit_blk->mmio[DCR];
2657 mmio->addr.base = devm_nvdimm_ioremap(dev, nfit_mem->spa_dcr->address,
2658 nfit_mem->spa_dcr->length);
2659 if (!mmio->addr.base) {
2660 dev_dbg(dev, "%s failed to map dcr\n",
2661 nvdimm_name(nvdimm));
2662 return -ENOMEM;
2663 }
2664 mmio->size = nfit_mem->dcr->window_size;
2665 mmio->base_offset = nfit_mem->memdev_dcr->region_offset;
2666 mmio->idt = nfit_mem->idt_dcr;
2667 mmio->spa = nfit_mem->spa_dcr;
2668 rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_dcr,
2669 nfit_mem->memdev_dcr->interleave_ways);
2670 if (rc) {
2671 dev_dbg(dev, "%s failed to init dcr interleave\n",
2672 nvdimm_name(nvdimm));
2673 return rc;
2674 }
2675
2676 rc = acpi_nfit_blk_get_flags(nd_desc, nvdimm, nfit_blk);
2677 if (rc < 0) {
2678 dev_dbg(dev, "%s failed get DIMM flags\n",
2679 nvdimm_name(nvdimm));
2680 return rc;
2681 }
2682
2683 if (nvdimm_has_flush(nfit_blk->nd_region) < 0)
2684 dev_warn(dev, "unable to guarantee persistence of writes\n");
2685
2686 if (mmio->line_size == 0)
2687 return 0;
2688
2689 if ((u32) nfit_blk->cmd_offset % mmio->line_size
2690 + 8 > mmio->line_size) {
2691 dev_dbg(dev, "cmd_offset crosses interleave boundary\n");
2692 return -ENXIO;
2693 } else if ((u32) nfit_blk->stat_offset % mmio->line_size
2694 + 8 > mmio->line_size) {
2695 dev_dbg(dev, "stat_offset crosses interleave boundary\n");
2696 return -ENXIO;
2697 }
2698
2699 return 0;
2700 }
2701
ars_get_cap(struct acpi_nfit_desc * acpi_desc,struct nd_cmd_ars_cap * cmd,struct nfit_spa * nfit_spa)2702 static int ars_get_cap(struct acpi_nfit_desc *acpi_desc,
2703 struct nd_cmd_ars_cap *cmd, struct nfit_spa *nfit_spa)
2704 {
2705 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2706 struct acpi_nfit_system_address *spa = nfit_spa->spa;
2707 int cmd_rc, rc;
2708
2709 cmd->address = spa->address;
2710 cmd->length = spa->length;
2711 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, cmd,
2712 sizeof(*cmd), &cmd_rc);
2713 if (rc < 0)
2714 return rc;
2715 return cmd_rc;
2716 }
2717
ars_start(struct acpi_nfit_desc * acpi_desc,struct nfit_spa * nfit_spa,enum nfit_ars_state req_type)2718 static int ars_start(struct acpi_nfit_desc *acpi_desc,
2719 struct nfit_spa *nfit_spa, enum nfit_ars_state req_type)
2720 {
2721 int rc;
2722 int cmd_rc;
2723 struct nd_cmd_ars_start ars_start;
2724 struct acpi_nfit_system_address *spa = nfit_spa->spa;
2725 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2726
2727 memset(&ars_start, 0, sizeof(ars_start));
2728 ars_start.address = spa->address;
2729 ars_start.length = spa->length;
2730 if (req_type == ARS_REQ_SHORT)
2731 ars_start.flags = ND_ARS_RETURN_PREV_DATA;
2732 if (nfit_spa_type(spa) == NFIT_SPA_PM)
2733 ars_start.type = ND_ARS_PERSISTENT;
2734 else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE)
2735 ars_start.type = ND_ARS_VOLATILE;
2736 else
2737 return -ENOTTY;
2738
2739 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2740 sizeof(ars_start), &cmd_rc);
2741
2742 if (rc < 0)
2743 return rc;
2744 if (cmd_rc < 0)
2745 return cmd_rc;
2746 set_bit(ARS_VALID, &acpi_desc->scrub_flags);
2747 return 0;
2748 }
2749
ars_continue(struct acpi_nfit_desc * acpi_desc)2750 static int ars_continue(struct acpi_nfit_desc *acpi_desc)
2751 {
2752 int rc, cmd_rc;
2753 struct nd_cmd_ars_start ars_start;
2754 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2755 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2756
2757 ars_start = (struct nd_cmd_ars_start) {
2758 .address = ars_status->restart_address,
2759 .length = ars_status->restart_length,
2760 .type = ars_status->type,
2761 };
2762 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2763 sizeof(ars_start), &cmd_rc);
2764 if (rc < 0)
2765 return rc;
2766 return cmd_rc;
2767 }
2768
ars_get_status(struct acpi_nfit_desc * acpi_desc)2769 static int ars_get_status(struct acpi_nfit_desc *acpi_desc)
2770 {
2771 struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2772 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2773 int rc, cmd_rc;
2774
2775 rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_STATUS, ars_status,
2776 acpi_desc->max_ars, &cmd_rc);
2777 if (rc < 0)
2778 return rc;
2779 return cmd_rc;
2780 }
2781
ars_complete(struct acpi_nfit_desc * acpi_desc,struct nfit_spa * nfit_spa)2782 static void ars_complete(struct acpi_nfit_desc *acpi_desc,
2783 struct nfit_spa *nfit_spa)
2784 {
2785 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2786 struct acpi_nfit_system_address *spa = nfit_spa->spa;
2787 struct nd_region *nd_region = nfit_spa->nd_region;
2788 struct device *dev;
2789
2790 lockdep_assert_held(&acpi_desc->init_mutex);
2791 /*
2792 * Only advance the ARS state for ARS runs initiated by the
2793 * kernel, ignore ARS results from BIOS initiated runs for scrub
2794 * completion tracking.
2795 */
2796 if (acpi_desc->scrub_spa != nfit_spa)
2797 return;
2798
2799 if ((ars_status->address >= spa->address && ars_status->address
2800 < spa->address + spa->length)
2801 || (ars_status->address < spa->address)) {
2802 /*
2803 * Assume that if a scrub starts at an offset from the
2804 * start of nfit_spa that we are in the continuation
2805 * case.
2806 *
2807 * Otherwise, if the scrub covers the spa range, mark
2808 * any pending request complete.
2809 */
2810 if (ars_status->address + ars_status->length
2811 >= spa->address + spa->length)
2812 /* complete */;
2813 else
2814 return;
2815 } else
2816 return;
2817
2818 acpi_desc->scrub_spa = NULL;
2819 if (nd_region) {
2820 dev = nd_region_dev(nd_region);
2821 nvdimm_region_notify(nd_region, NVDIMM_REVALIDATE_POISON);
2822 } else
2823 dev = acpi_desc->dev;
2824 dev_dbg(dev, "ARS: range %d complete\n", spa->range_index);
2825 }
2826
ars_status_process_records(struct acpi_nfit_desc * acpi_desc)2827 static int ars_status_process_records(struct acpi_nfit_desc *acpi_desc)
2828 {
2829 struct nvdimm_bus *nvdimm_bus = acpi_desc->nvdimm_bus;
2830 struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2831 int rc;
2832 u32 i;
2833
2834 /*
2835 * First record starts at 44 byte offset from the start of the
2836 * payload.
2837 */
2838 if (ars_status->out_length < 44)
2839 return 0;
2840
2841 /*
2842 * Ignore potentially stale results that are only refreshed
2843 * after a start-ARS event.
2844 */
2845 if (!test_and_clear_bit(ARS_VALID, &acpi_desc->scrub_flags)) {
2846 dev_dbg(acpi_desc->dev, "skip %d stale records\n",
2847 ars_status->num_records);
2848 return 0;
2849 }
2850
2851 for (i = 0; i < ars_status->num_records; i++) {
2852 /* only process full records */
2853 if (ars_status->out_length
2854 < 44 + sizeof(struct nd_ars_record) * (i + 1))
2855 break;
2856 rc = nvdimm_bus_add_badrange(nvdimm_bus,
2857 ars_status->records[i].err_address,
2858 ars_status->records[i].length);
2859 if (rc)
2860 return rc;
2861 }
2862 if (i < ars_status->num_records)
2863 dev_warn(acpi_desc->dev, "detected truncated ars results\n");
2864
2865 return 0;
2866 }
2867
acpi_nfit_remove_resource(void * data)2868 static void acpi_nfit_remove_resource(void *data)
2869 {
2870 struct resource *res = data;
2871
2872 remove_resource(res);
2873 }
2874
acpi_nfit_insert_resource(struct acpi_nfit_desc * acpi_desc,struct nd_region_desc * ndr_desc)2875 static int acpi_nfit_insert_resource(struct acpi_nfit_desc *acpi_desc,
2876 struct nd_region_desc *ndr_desc)
2877 {
2878 struct resource *res, *nd_res = ndr_desc->res;
2879 int is_pmem, ret;
2880
2881 /* No operation if the region is already registered as PMEM */
2882 is_pmem = region_intersects(nd_res->start, resource_size(nd_res),
2883 IORESOURCE_MEM, IORES_DESC_PERSISTENT_MEMORY);
2884 if (is_pmem == REGION_INTERSECTS)
2885 return 0;
2886
2887 res = devm_kzalloc(acpi_desc->dev, sizeof(*res), GFP_KERNEL);
2888 if (!res)
2889 return -ENOMEM;
2890
2891 res->name = "Persistent Memory";
2892 res->start = nd_res->start;
2893 res->end = nd_res->end;
2894 res->flags = IORESOURCE_MEM;
2895 res->desc = IORES_DESC_PERSISTENT_MEMORY;
2896
2897 ret = insert_resource(&iomem_resource, res);
2898 if (ret)
2899 return ret;
2900
2901 ret = devm_add_action_or_reset(acpi_desc->dev,
2902 acpi_nfit_remove_resource,
2903 res);
2904 if (ret)
2905 return ret;
2906
2907 return 0;
2908 }
2909
acpi_nfit_init_mapping(struct acpi_nfit_desc * acpi_desc,struct nd_mapping_desc * mapping,struct nd_region_desc * ndr_desc,struct acpi_nfit_memory_map * memdev,struct nfit_spa * nfit_spa)2910 static int acpi_nfit_init_mapping(struct acpi_nfit_desc *acpi_desc,
2911 struct nd_mapping_desc *mapping, struct nd_region_desc *ndr_desc,
2912 struct acpi_nfit_memory_map *memdev,
2913 struct nfit_spa *nfit_spa)
2914 {
2915 struct nvdimm *nvdimm = acpi_nfit_dimm_by_handle(acpi_desc,
2916 memdev->device_handle);
2917 struct acpi_nfit_system_address *spa = nfit_spa->spa;
2918 struct nd_blk_region_desc *ndbr_desc;
2919 struct nfit_mem *nfit_mem;
2920 int rc;
2921
2922 if (!nvdimm) {
2923 dev_err(acpi_desc->dev, "spa%d dimm: %#x not found\n",
2924 spa->range_index, memdev->device_handle);
2925 return -ENODEV;
2926 }
2927
2928 mapping->nvdimm = nvdimm;
2929 switch (nfit_spa_type(spa)) {
2930 case NFIT_SPA_PM:
2931 case NFIT_SPA_VOLATILE:
2932 mapping->start = memdev->address;
2933 mapping->size = memdev->region_size;
2934 break;
2935 case NFIT_SPA_DCR:
2936 nfit_mem = nvdimm_provider_data(nvdimm);
2937 if (!nfit_mem || !nfit_mem->bdw) {
2938 dev_dbg(acpi_desc->dev, "spa%d %s missing bdw\n",
2939 spa->range_index, nvdimm_name(nvdimm));
2940 break;
2941 }
2942
2943 mapping->size = nfit_mem->bdw->capacity;
2944 mapping->start = nfit_mem->bdw->start_address;
2945 ndr_desc->num_lanes = nfit_mem->bdw->windows;
2946 ndr_desc->mapping = mapping;
2947 ndr_desc->num_mappings = 1;
2948 ndbr_desc = to_blk_region_desc(ndr_desc);
2949 ndbr_desc->enable = acpi_nfit_blk_region_enable;
2950 ndbr_desc->do_io = acpi_desc->blk_do_io;
2951 rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
2952 if (rc)
2953 return rc;
2954 nfit_spa->nd_region = nvdimm_blk_region_create(acpi_desc->nvdimm_bus,
2955 ndr_desc);
2956 if (!nfit_spa->nd_region)
2957 return -ENOMEM;
2958 break;
2959 }
2960
2961 return 0;
2962 }
2963
nfit_spa_is_virtual(struct acpi_nfit_system_address * spa)2964 static bool nfit_spa_is_virtual(struct acpi_nfit_system_address *spa)
2965 {
2966 return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2967 nfit_spa_type(spa) == NFIT_SPA_VCD ||
2968 nfit_spa_type(spa) == NFIT_SPA_PDISK ||
2969 nfit_spa_type(spa) == NFIT_SPA_PCD);
2970 }
2971
nfit_spa_is_volatile(struct acpi_nfit_system_address * spa)2972 static bool nfit_spa_is_volatile(struct acpi_nfit_system_address *spa)
2973 {
2974 return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2975 nfit_spa_type(spa) == NFIT_SPA_VCD ||
2976 nfit_spa_type(spa) == NFIT_SPA_VOLATILE);
2977 }
2978
acpi_nfit_register_region(struct acpi_nfit_desc * acpi_desc,struct nfit_spa * nfit_spa)2979 static int acpi_nfit_register_region(struct acpi_nfit_desc *acpi_desc,
2980 struct nfit_spa *nfit_spa)
2981 {
2982 static struct nd_mapping_desc mappings[ND_MAX_MAPPINGS];
2983 struct acpi_nfit_system_address *spa = nfit_spa->spa;
2984 struct nd_blk_region_desc ndbr_desc;
2985 struct nd_region_desc *ndr_desc;
2986 struct nfit_memdev *nfit_memdev;
2987 struct nvdimm_bus *nvdimm_bus;
2988 struct resource res;
2989 int count = 0, rc;
2990
2991 if (nfit_spa->nd_region)
2992 return 0;
2993
2994 if (spa->range_index == 0 && !nfit_spa_is_virtual(spa)) {
2995 dev_dbg(acpi_desc->dev, "detected invalid spa index\n");
2996 return 0;
2997 }
2998
2999 memset(&res, 0, sizeof(res));
3000 memset(&mappings, 0, sizeof(mappings));
3001 memset(&ndbr_desc, 0, sizeof(ndbr_desc));
3002 res.start = spa->address;
3003 res.end = res.start + spa->length - 1;
3004 ndr_desc = &ndbr_desc.ndr_desc;
3005 ndr_desc->res = &res;
3006 ndr_desc->provider_data = nfit_spa;
3007 ndr_desc->attr_groups = acpi_nfit_region_attribute_groups;
3008 if (spa->flags & ACPI_NFIT_PROXIMITY_VALID) {
3009 ndr_desc->numa_node = pxm_to_online_node(spa->proximity_domain);
3010 ndr_desc->target_node = pxm_to_node(spa->proximity_domain);
3011 } else {
3012 ndr_desc->numa_node = NUMA_NO_NODE;
3013 ndr_desc->target_node = NUMA_NO_NODE;
3014 }
3015
3016 /*
3017 * Persistence domain bits are hierarchical, if
3018 * ACPI_NFIT_CAPABILITY_CACHE_FLUSH is set then
3019 * ACPI_NFIT_CAPABILITY_MEM_FLUSH is implied.
3020 */
3021 if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_CACHE_FLUSH)
3022 set_bit(ND_REGION_PERSIST_CACHE, &ndr_desc->flags);
3023 else if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_MEM_FLUSH)
3024 set_bit(ND_REGION_PERSIST_MEMCTRL, &ndr_desc->flags);
3025
3026 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
3027 struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
3028 struct nd_mapping_desc *mapping;
3029
3030 if (memdev->range_index != spa->range_index)
3031 continue;
3032 if (count >= ND_MAX_MAPPINGS) {
3033 dev_err(acpi_desc->dev, "spa%d exceeds max mappings %d\n",
3034 spa->range_index, ND_MAX_MAPPINGS);
3035 return -ENXIO;
3036 }
3037 mapping = &mappings[count++];
3038 rc = acpi_nfit_init_mapping(acpi_desc, mapping, ndr_desc,
3039 memdev, nfit_spa);
3040 if (rc)
3041 goto out;
3042 }
3043
3044 ndr_desc->mapping = mappings;
3045 ndr_desc->num_mappings = count;
3046 rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
3047 if (rc)
3048 goto out;
3049
3050 nvdimm_bus = acpi_desc->nvdimm_bus;
3051 if (nfit_spa_type(spa) == NFIT_SPA_PM) {
3052 rc = acpi_nfit_insert_resource(acpi_desc, ndr_desc);
3053 if (rc) {
3054 dev_warn(acpi_desc->dev,
3055 "failed to insert pmem resource to iomem: %d\n",
3056 rc);
3057 goto out;
3058 }
3059
3060 nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
3061 ndr_desc);
3062 if (!nfit_spa->nd_region)
3063 rc = -ENOMEM;
3064 } else if (nfit_spa_is_volatile(spa)) {
3065 nfit_spa->nd_region = nvdimm_volatile_region_create(nvdimm_bus,
3066 ndr_desc);
3067 if (!nfit_spa->nd_region)
3068 rc = -ENOMEM;
3069 } else if (nfit_spa_is_virtual(spa)) {
3070 nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
3071 ndr_desc);
3072 if (!nfit_spa->nd_region)
3073 rc = -ENOMEM;
3074 }
3075
3076 out:
3077 if (rc)
3078 dev_err(acpi_desc->dev, "failed to register spa range %d\n",
3079 nfit_spa->spa->range_index);
3080 return rc;
3081 }
3082
ars_status_alloc(struct acpi_nfit_desc * acpi_desc)3083 static int ars_status_alloc(struct acpi_nfit_desc *acpi_desc)
3084 {
3085 struct device *dev = acpi_desc->dev;
3086 struct nd_cmd_ars_status *ars_status;
3087
3088 if (acpi_desc->ars_status) {
3089 memset(acpi_desc->ars_status, 0, acpi_desc->max_ars);
3090 return 0;
3091 }
3092
3093 ars_status = devm_kzalloc(dev, acpi_desc->max_ars, GFP_KERNEL);
3094 if (!ars_status)
3095 return -ENOMEM;
3096 acpi_desc->ars_status = ars_status;
3097 return 0;
3098 }
3099
acpi_nfit_query_poison(struct acpi_nfit_desc * acpi_desc)3100 static int acpi_nfit_query_poison(struct acpi_nfit_desc *acpi_desc)
3101 {
3102 int rc;
3103
3104 if (ars_status_alloc(acpi_desc))
3105 return -ENOMEM;
3106
3107 rc = ars_get_status(acpi_desc);
3108
3109 if (rc < 0 && rc != -ENOSPC)
3110 return rc;
3111
3112 if (ars_status_process_records(acpi_desc))
3113 dev_err(acpi_desc->dev, "Failed to process ARS records\n");
3114
3115 return rc;
3116 }
3117
ars_register(struct acpi_nfit_desc * acpi_desc,struct nfit_spa * nfit_spa)3118 static int ars_register(struct acpi_nfit_desc *acpi_desc,
3119 struct nfit_spa *nfit_spa)
3120 {
3121 int rc;
3122
3123 if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3124 return acpi_nfit_register_region(acpi_desc, nfit_spa);
3125
3126 set_bit(ARS_REQ_SHORT, &nfit_spa->ars_state);
3127 if (!no_init_ars)
3128 set_bit(ARS_REQ_LONG, &nfit_spa->ars_state);
3129
3130 switch (acpi_nfit_query_poison(acpi_desc)) {
3131 case 0:
3132 case -ENOSPC:
3133 case -EAGAIN:
3134 rc = ars_start(acpi_desc, nfit_spa, ARS_REQ_SHORT);
3135 /* shouldn't happen, try again later */
3136 if (rc == -EBUSY)
3137 break;
3138 if (rc) {
3139 set_bit(ARS_FAILED, &nfit_spa->ars_state);
3140 break;
3141 }
3142 clear_bit(ARS_REQ_SHORT, &nfit_spa->ars_state);
3143 rc = acpi_nfit_query_poison(acpi_desc);
3144 if (rc)
3145 break;
3146 acpi_desc->scrub_spa = nfit_spa;
3147 ars_complete(acpi_desc, nfit_spa);
3148 /*
3149 * If ars_complete() says we didn't complete the
3150 * short scrub, we'll try again with a long
3151 * request.
3152 */
3153 acpi_desc->scrub_spa = NULL;
3154 break;
3155 case -EBUSY:
3156 case -ENOMEM:
3157 /*
3158 * BIOS was using ARS, wait for it to complete (or
3159 * resources to become available) and then perform our
3160 * own scrubs.
3161 */
3162 break;
3163 default:
3164 set_bit(ARS_FAILED, &nfit_spa->ars_state);
3165 break;
3166 }
3167
3168 return acpi_nfit_register_region(acpi_desc, nfit_spa);
3169 }
3170
ars_complete_all(struct acpi_nfit_desc * acpi_desc)3171 static void ars_complete_all(struct acpi_nfit_desc *acpi_desc)
3172 {
3173 struct nfit_spa *nfit_spa;
3174
3175 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3176 if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3177 continue;
3178 ars_complete(acpi_desc, nfit_spa);
3179 }
3180 }
3181
__acpi_nfit_scrub(struct acpi_nfit_desc * acpi_desc,int query_rc)3182 static unsigned int __acpi_nfit_scrub(struct acpi_nfit_desc *acpi_desc,
3183 int query_rc)
3184 {
3185 unsigned int tmo = acpi_desc->scrub_tmo;
3186 struct device *dev = acpi_desc->dev;
3187 struct nfit_spa *nfit_spa;
3188
3189 lockdep_assert_held(&acpi_desc->init_mutex);
3190
3191 if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags))
3192 return 0;
3193
3194 if (query_rc == -EBUSY) {
3195 dev_dbg(dev, "ARS: ARS busy\n");
3196 return min(30U * 60U, tmo * 2);
3197 }
3198 if (query_rc == -ENOSPC) {
3199 dev_dbg(dev, "ARS: ARS continue\n");
3200 ars_continue(acpi_desc);
3201 return 1;
3202 }
3203 if (query_rc && query_rc != -EAGAIN) {
3204 unsigned long long addr, end;
3205
3206 addr = acpi_desc->ars_status->address;
3207 end = addr + acpi_desc->ars_status->length;
3208 dev_dbg(dev, "ARS: %llx-%llx failed (%d)\n", addr, end,
3209 query_rc);
3210 }
3211
3212 ars_complete_all(acpi_desc);
3213 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3214 enum nfit_ars_state req_type;
3215 int rc;
3216
3217 if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3218 continue;
3219
3220 /* prefer short ARS requests first */
3221 if (test_bit(ARS_REQ_SHORT, &nfit_spa->ars_state))
3222 req_type = ARS_REQ_SHORT;
3223 else if (test_bit(ARS_REQ_LONG, &nfit_spa->ars_state))
3224 req_type = ARS_REQ_LONG;
3225 else
3226 continue;
3227 rc = ars_start(acpi_desc, nfit_spa, req_type);
3228
3229 dev = nd_region_dev(nfit_spa->nd_region);
3230 dev_dbg(dev, "ARS: range %d ARS start %s (%d)\n",
3231 nfit_spa->spa->range_index,
3232 req_type == ARS_REQ_SHORT ? "short" : "long",
3233 rc);
3234 /*
3235 * Hmm, we raced someone else starting ARS? Try again in
3236 * a bit.
3237 */
3238 if (rc == -EBUSY)
3239 return 1;
3240 if (rc == 0) {
3241 dev_WARN_ONCE(dev, acpi_desc->scrub_spa,
3242 "scrub start while range %d active\n",
3243 acpi_desc->scrub_spa->spa->range_index);
3244 clear_bit(req_type, &nfit_spa->ars_state);
3245 acpi_desc->scrub_spa = nfit_spa;
3246 /*
3247 * Consider this spa last for future scrub
3248 * requests
3249 */
3250 list_move_tail(&nfit_spa->list, &acpi_desc->spas);
3251 return 1;
3252 }
3253
3254 dev_err(dev, "ARS: range %d ARS failed (%d)\n",
3255 nfit_spa->spa->range_index, rc);
3256 set_bit(ARS_FAILED, &nfit_spa->ars_state);
3257 }
3258 return 0;
3259 }
3260
__sched_ars(struct acpi_nfit_desc * acpi_desc,unsigned int tmo)3261 static void __sched_ars(struct acpi_nfit_desc *acpi_desc, unsigned int tmo)
3262 {
3263 lockdep_assert_held(&acpi_desc->init_mutex);
3264
3265 set_bit(ARS_BUSY, &acpi_desc->scrub_flags);
3266 /* note this should only be set from within the workqueue */
3267 if (tmo)
3268 acpi_desc->scrub_tmo = tmo;
3269 queue_delayed_work(nfit_wq, &acpi_desc->dwork, tmo * HZ);
3270 }
3271
sched_ars(struct acpi_nfit_desc * acpi_desc)3272 static void sched_ars(struct acpi_nfit_desc *acpi_desc)
3273 {
3274 __sched_ars(acpi_desc, 0);
3275 }
3276
notify_ars_done(struct acpi_nfit_desc * acpi_desc)3277 static void notify_ars_done(struct acpi_nfit_desc *acpi_desc)
3278 {
3279 lockdep_assert_held(&acpi_desc->init_mutex);
3280
3281 clear_bit(ARS_BUSY, &acpi_desc->scrub_flags);
3282 acpi_desc->scrub_count++;
3283 if (acpi_desc->scrub_count_state)
3284 sysfs_notify_dirent(acpi_desc->scrub_count_state);
3285 }
3286
acpi_nfit_scrub(struct work_struct * work)3287 static void acpi_nfit_scrub(struct work_struct *work)
3288 {
3289 struct acpi_nfit_desc *acpi_desc;
3290 unsigned int tmo;
3291 int query_rc;
3292
3293 acpi_desc = container_of(work, typeof(*acpi_desc), dwork.work);
3294 mutex_lock(&acpi_desc->init_mutex);
3295 query_rc = acpi_nfit_query_poison(acpi_desc);
3296 tmo = __acpi_nfit_scrub(acpi_desc, query_rc);
3297 if (tmo)
3298 __sched_ars(acpi_desc, tmo);
3299 else
3300 notify_ars_done(acpi_desc);
3301 memset(acpi_desc->ars_status, 0, acpi_desc->max_ars);
3302 clear_bit(ARS_POLL, &acpi_desc->scrub_flags);
3303 mutex_unlock(&acpi_desc->init_mutex);
3304 }
3305
acpi_nfit_init_ars(struct acpi_nfit_desc * acpi_desc,struct nfit_spa * nfit_spa)3306 static void acpi_nfit_init_ars(struct acpi_nfit_desc *acpi_desc,
3307 struct nfit_spa *nfit_spa)
3308 {
3309 int type = nfit_spa_type(nfit_spa->spa);
3310 struct nd_cmd_ars_cap ars_cap;
3311 int rc;
3312
3313 set_bit(ARS_FAILED, &nfit_spa->ars_state);
3314 memset(&ars_cap, 0, sizeof(ars_cap));
3315 rc = ars_get_cap(acpi_desc, &ars_cap, nfit_spa);
3316 if (rc < 0)
3317 return;
3318 /* check that the supported scrub types match the spa type */
3319 if (type == NFIT_SPA_VOLATILE && ((ars_cap.status >> 16)
3320 & ND_ARS_VOLATILE) == 0)
3321 return;
3322 if (type == NFIT_SPA_PM && ((ars_cap.status >> 16)
3323 & ND_ARS_PERSISTENT) == 0)
3324 return;
3325
3326 nfit_spa->max_ars = ars_cap.max_ars_out;
3327 nfit_spa->clear_err_unit = ars_cap.clear_err_unit;
3328 acpi_desc->max_ars = max(nfit_spa->max_ars, acpi_desc->max_ars);
3329 clear_bit(ARS_FAILED, &nfit_spa->ars_state);
3330 }
3331
acpi_nfit_register_regions(struct acpi_nfit_desc * acpi_desc)3332 static int acpi_nfit_register_regions(struct acpi_nfit_desc *acpi_desc)
3333 {
3334 struct nfit_spa *nfit_spa;
3335 int rc, do_sched_ars = 0;
3336
3337 set_bit(ARS_VALID, &acpi_desc->scrub_flags);
3338 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3339 switch (nfit_spa_type(nfit_spa->spa)) {
3340 case NFIT_SPA_VOLATILE:
3341 case NFIT_SPA_PM:
3342 acpi_nfit_init_ars(acpi_desc, nfit_spa);
3343 break;
3344 }
3345 }
3346
3347 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3348 switch (nfit_spa_type(nfit_spa->spa)) {
3349 case NFIT_SPA_VOLATILE:
3350 case NFIT_SPA_PM:
3351 /* register regions and kick off initial ARS run */
3352 rc = ars_register(acpi_desc, nfit_spa);
3353 if (rc)
3354 return rc;
3355
3356 /*
3357 * Kick off background ARS if at least one
3358 * region successfully registered ARS
3359 */
3360 if (!test_bit(ARS_FAILED, &nfit_spa->ars_state))
3361 do_sched_ars++;
3362 break;
3363 case NFIT_SPA_BDW:
3364 /* nothing to register */
3365 break;
3366 case NFIT_SPA_DCR:
3367 case NFIT_SPA_VDISK:
3368 case NFIT_SPA_VCD:
3369 case NFIT_SPA_PDISK:
3370 case NFIT_SPA_PCD:
3371 /* register known regions that don't support ARS */
3372 rc = acpi_nfit_register_region(acpi_desc, nfit_spa);
3373 if (rc)
3374 return rc;
3375 break;
3376 default:
3377 /* don't register unknown regions */
3378 break;
3379 }
3380 }
3381
3382 if (do_sched_ars)
3383 sched_ars(acpi_desc);
3384 return 0;
3385 }
3386
acpi_nfit_check_deletions(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev)3387 static int acpi_nfit_check_deletions(struct acpi_nfit_desc *acpi_desc,
3388 struct nfit_table_prev *prev)
3389 {
3390 struct device *dev = acpi_desc->dev;
3391
3392 if (!list_empty(&prev->spas) ||
3393 !list_empty(&prev->memdevs) ||
3394 !list_empty(&prev->dcrs) ||
3395 !list_empty(&prev->bdws) ||
3396 !list_empty(&prev->idts) ||
3397 !list_empty(&prev->flushes)) {
3398 dev_err(dev, "new nfit deletes entries (unsupported)\n");
3399 return -ENXIO;
3400 }
3401 return 0;
3402 }
3403
acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc * acpi_desc)3404 static int acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc *acpi_desc)
3405 {
3406 struct device *dev = acpi_desc->dev;
3407 struct kernfs_node *nfit;
3408 struct device *bus_dev;
3409
3410 if (!ars_supported(acpi_desc->nvdimm_bus))
3411 return 0;
3412
3413 bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3414 nfit = sysfs_get_dirent(bus_dev->kobj.sd, "nfit");
3415 if (!nfit) {
3416 dev_err(dev, "sysfs_get_dirent 'nfit' failed\n");
3417 return -ENODEV;
3418 }
3419 acpi_desc->scrub_count_state = sysfs_get_dirent(nfit, "scrub");
3420 sysfs_put(nfit);
3421 if (!acpi_desc->scrub_count_state) {
3422 dev_err(dev, "sysfs_get_dirent 'scrub' failed\n");
3423 return -ENODEV;
3424 }
3425
3426 return 0;
3427 }
3428
acpi_nfit_unregister(void * data)3429 static void acpi_nfit_unregister(void *data)
3430 {
3431 struct acpi_nfit_desc *acpi_desc = data;
3432
3433 nvdimm_bus_unregister(acpi_desc->nvdimm_bus);
3434 }
3435
acpi_nfit_init(struct acpi_nfit_desc * acpi_desc,void * data,acpi_size sz)3436 int acpi_nfit_init(struct acpi_nfit_desc *acpi_desc, void *data, acpi_size sz)
3437 {
3438 struct device *dev = acpi_desc->dev;
3439 struct nfit_table_prev prev;
3440 const void *end;
3441 int rc;
3442
3443 if (!acpi_desc->nvdimm_bus) {
3444 acpi_nfit_init_dsms(acpi_desc);
3445
3446 acpi_desc->nvdimm_bus = nvdimm_bus_register(dev,
3447 &acpi_desc->nd_desc);
3448 if (!acpi_desc->nvdimm_bus)
3449 return -ENOMEM;
3450
3451 rc = devm_add_action_or_reset(dev, acpi_nfit_unregister,
3452 acpi_desc);
3453 if (rc)
3454 return rc;
3455
3456 rc = acpi_nfit_desc_init_scrub_attr(acpi_desc);
3457 if (rc)
3458 return rc;
3459
3460 /* register this acpi_desc for mce notifications */
3461 mutex_lock(&acpi_desc_lock);
3462 list_add_tail(&acpi_desc->list, &acpi_descs);
3463 mutex_unlock(&acpi_desc_lock);
3464 }
3465
3466 mutex_lock(&acpi_desc->init_mutex);
3467
3468 INIT_LIST_HEAD(&prev.spas);
3469 INIT_LIST_HEAD(&prev.memdevs);
3470 INIT_LIST_HEAD(&prev.dcrs);
3471 INIT_LIST_HEAD(&prev.bdws);
3472 INIT_LIST_HEAD(&prev.idts);
3473 INIT_LIST_HEAD(&prev.flushes);
3474
3475 list_cut_position(&prev.spas, &acpi_desc->spas,
3476 acpi_desc->spas.prev);
3477 list_cut_position(&prev.memdevs, &acpi_desc->memdevs,
3478 acpi_desc->memdevs.prev);
3479 list_cut_position(&prev.dcrs, &acpi_desc->dcrs,
3480 acpi_desc->dcrs.prev);
3481 list_cut_position(&prev.bdws, &acpi_desc->bdws,
3482 acpi_desc->bdws.prev);
3483 list_cut_position(&prev.idts, &acpi_desc->idts,
3484 acpi_desc->idts.prev);
3485 list_cut_position(&prev.flushes, &acpi_desc->flushes,
3486 acpi_desc->flushes.prev);
3487
3488 end = data + sz;
3489 while (!IS_ERR_OR_NULL(data))
3490 data = add_table(acpi_desc, &prev, data, end);
3491
3492 if (IS_ERR(data)) {
3493 dev_dbg(dev, "nfit table parsing error: %ld\n", PTR_ERR(data));
3494 rc = PTR_ERR(data);
3495 goto out_unlock;
3496 }
3497
3498 rc = acpi_nfit_check_deletions(acpi_desc, &prev);
3499 if (rc)
3500 goto out_unlock;
3501
3502 rc = nfit_mem_init(acpi_desc);
3503 if (rc)
3504 goto out_unlock;
3505
3506 rc = acpi_nfit_register_dimms(acpi_desc);
3507 if (rc)
3508 goto out_unlock;
3509
3510 rc = acpi_nfit_register_regions(acpi_desc);
3511
3512 out_unlock:
3513 mutex_unlock(&acpi_desc->init_mutex);
3514 return rc;
3515 }
3516 EXPORT_SYMBOL_GPL(acpi_nfit_init);
3517
acpi_nfit_flush_probe(struct nvdimm_bus_descriptor * nd_desc)3518 static int acpi_nfit_flush_probe(struct nvdimm_bus_descriptor *nd_desc)
3519 {
3520 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
3521 struct device *dev = acpi_desc->dev;
3522
3523 /* Bounce the device lock to flush acpi_nfit_add / acpi_nfit_notify */
3524 nfit_device_lock(dev);
3525 nfit_device_unlock(dev);
3526
3527 /* Bounce the init_mutex to complete initial registration */
3528 mutex_lock(&acpi_desc->init_mutex);
3529 mutex_unlock(&acpi_desc->init_mutex);
3530
3531 return 0;
3532 }
3533
__acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor * nd_desc,struct nvdimm * nvdimm,unsigned int cmd)3534 static int __acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
3535 struct nvdimm *nvdimm, unsigned int cmd)
3536 {
3537 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
3538
3539 if (nvdimm)
3540 return 0;
3541 if (cmd != ND_CMD_ARS_START)
3542 return 0;
3543
3544 /*
3545 * The kernel and userspace may race to initiate a scrub, but
3546 * the scrub thread is prepared to lose that initial race. It
3547 * just needs guarantees that any ARS it initiates are not
3548 * interrupted by any intervening start requests from userspace.
3549 */
3550 if (work_busy(&acpi_desc->dwork.work))
3551 return -EBUSY;
3552
3553 return 0;
3554 }
3555
3556 /*
3557 * Prevent security and firmware activate commands from being issued via
3558 * ioctl.
3559 */
acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor * nd_desc,struct nvdimm * nvdimm,unsigned int cmd,void * buf)3560 static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
3561 struct nvdimm *nvdimm, unsigned int cmd, void *buf)
3562 {
3563 struct nd_cmd_pkg *call_pkg = buf;
3564 unsigned int func;
3565
3566 if (nvdimm && cmd == ND_CMD_CALL &&
3567 call_pkg->nd_family == NVDIMM_FAMILY_INTEL) {
3568 func = call_pkg->nd_command;
3569 if (func > NVDIMM_CMD_MAX ||
3570 (1 << func) & NVDIMM_INTEL_DENY_CMDMASK)
3571 return -EOPNOTSUPP;
3572 }
3573
3574 /* block all non-nfit bus commands */
3575 if (!nvdimm && cmd == ND_CMD_CALL &&
3576 call_pkg->nd_family != NVDIMM_BUS_FAMILY_NFIT)
3577 return -EOPNOTSUPP;
3578
3579 return __acpi_nfit_clear_to_send(nd_desc, nvdimm, cmd);
3580 }
3581
acpi_nfit_ars_rescan(struct acpi_nfit_desc * acpi_desc,enum nfit_ars_state req_type)3582 int acpi_nfit_ars_rescan(struct acpi_nfit_desc *acpi_desc,
3583 enum nfit_ars_state req_type)
3584 {
3585 struct device *dev = acpi_desc->dev;
3586 int scheduled = 0, busy = 0;
3587 struct nfit_spa *nfit_spa;
3588
3589 mutex_lock(&acpi_desc->init_mutex);
3590 if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags)) {
3591 mutex_unlock(&acpi_desc->init_mutex);
3592 return 0;
3593 }
3594
3595 list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3596 int type = nfit_spa_type(nfit_spa->spa);
3597
3598 if (type != NFIT_SPA_PM && type != NFIT_SPA_VOLATILE)
3599 continue;
3600 if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3601 continue;
3602
3603 if (test_and_set_bit(req_type, &nfit_spa->ars_state))
3604 busy++;
3605 else
3606 scheduled++;
3607 }
3608 if (scheduled) {
3609 sched_ars(acpi_desc);
3610 dev_dbg(dev, "ars_scan triggered\n");
3611 }
3612 mutex_unlock(&acpi_desc->init_mutex);
3613
3614 if (scheduled)
3615 return 0;
3616 if (busy)
3617 return -EBUSY;
3618 return -ENOTTY;
3619 }
3620
acpi_nfit_desc_init(struct acpi_nfit_desc * acpi_desc,struct device * dev)3621 void acpi_nfit_desc_init(struct acpi_nfit_desc *acpi_desc, struct device *dev)
3622 {
3623 struct nvdimm_bus_descriptor *nd_desc;
3624
3625 dev_set_drvdata(dev, acpi_desc);
3626 acpi_desc->dev = dev;
3627 acpi_desc->blk_do_io = acpi_nfit_blk_region_do_io;
3628 nd_desc = &acpi_desc->nd_desc;
3629 nd_desc->provider_name = "ACPI.NFIT";
3630 nd_desc->module = THIS_MODULE;
3631 nd_desc->ndctl = acpi_nfit_ctl;
3632 nd_desc->flush_probe = acpi_nfit_flush_probe;
3633 nd_desc->clear_to_send = acpi_nfit_clear_to_send;
3634 nd_desc->attr_groups = acpi_nfit_attribute_groups;
3635
3636 INIT_LIST_HEAD(&acpi_desc->spas);
3637 INIT_LIST_HEAD(&acpi_desc->dcrs);
3638 INIT_LIST_HEAD(&acpi_desc->bdws);
3639 INIT_LIST_HEAD(&acpi_desc->idts);
3640 INIT_LIST_HEAD(&acpi_desc->flushes);
3641 INIT_LIST_HEAD(&acpi_desc->memdevs);
3642 INIT_LIST_HEAD(&acpi_desc->dimms);
3643 INIT_LIST_HEAD(&acpi_desc->list);
3644 mutex_init(&acpi_desc->init_mutex);
3645 acpi_desc->scrub_tmo = 1;
3646 INIT_DELAYED_WORK(&acpi_desc->dwork, acpi_nfit_scrub);
3647 }
3648 EXPORT_SYMBOL_GPL(acpi_nfit_desc_init);
3649
acpi_nfit_put_table(void * table)3650 static void acpi_nfit_put_table(void *table)
3651 {
3652 acpi_put_table(table);
3653 }
3654
acpi_nfit_shutdown(void * data)3655 void acpi_nfit_shutdown(void *data)
3656 {
3657 struct acpi_nfit_desc *acpi_desc = data;
3658 struct device *bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3659
3660 /*
3661 * Destruct under acpi_desc_lock so that nfit_handle_mce does not
3662 * race teardown
3663 */
3664 mutex_lock(&acpi_desc_lock);
3665 list_del(&acpi_desc->list);
3666 mutex_unlock(&acpi_desc_lock);
3667
3668 mutex_lock(&acpi_desc->init_mutex);
3669 set_bit(ARS_CANCEL, &acpi_desc->scrub_flags);
3670 cancel_delayed_work_sync(&acpi_desc->dwork);
3671 mutex_unlock(&acpi_desc->init_mutex);
3672
3673 /*
3674 * Bounce the nvdimm bus lock to make sure any in-flight
3675 * acpi_nfit_ars_rescan() submissions have had a chance to
3676 * either submit or see ->cancel set.
3677 */
3678 nfit_device_lock(bus_dev);
3679 nfit_device_unlock(bus_dev);
3680
3681 flush_workqueue(nfit_wq);
3682 }
3683 EXPORT_SYMBOL_GPL(acpi_nfit_shutdown);
3684
acpi_nfit_add(struct acpi_device * adev)3685 static int acpi_nfit_add(struct acpi_device *adev)
3686 {
3687 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3688 struct acpi_nfit_desc *acpi_desc;
3689 struct device *dev = &adev->dev;
3690 struct acpi_table_header *tbl;
3691 acpi_status status = AE_OK;
3692 acpi_size sz;
3693 int rc = 0;
3694
3695 status = acpi_get_table(ACPI_SIG_NFIT, 0, &tbl);
3696 if (ACPI_FAILURE(status)) {
3697 /* The NVDIMM root device allows OS to trigger enumeration of
3698 * NVDIMMs through NFIT at boot time and re-enumeration at
3699 * root level via the _FIT method during runtime.
3700 * This is ok to return 0 here, we could have an nvdimm
3701 * hotplugged later and evaluate _FIT method which returns
3702 * data in the format of a series of NFIT Structures.
3703 */
3704 dev_dbg(dev, "failed to find NFIT at startup\n");
3705 return 0;
3706 }
3707
3708 rc = devm_add_action_or_reset(dev, acpi_nfit_put_table, tbl);
3709 if (rc)
3710 return rc;
3711 sz = tbl->length;
3712
3713 acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3714 if (!acpi_desc)
3715 return -ENOMEM;
3716 acpi_nfit_desc_init(acpi_desc, &adev->dev);
3717
3718 /* Save the acpi header for exporting the revision via sysfs */
3719 acpi_desc->acpi_header = *tbl;
3720
3721 /* Evaluate _FIT and override with that if present */
3722 status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf);
3723 if (ACPI_SUCCESS(status) && buf.length > 0) {
3724 union acpi_object *obj = buf.pointer;
3725
3726 if (obj->type == ACPI_TYPE_BUFFER)
3727 rc = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3728 obj->buffer.length);
3729 else
3730 dev_dbg(dev, "invalid type %d, ignoring _FIT\n",
3731 (int) obj->type);
3732 kfree(buf.pointer);
3733 } else
3734 /* skip over the lead-in header table */
3735 rc = acpi_nfit_init(acpi_desc, (void *) tbl
3736 + sizeof(struct acpi_table_nfit),
3737 sz - sizeof(struct acpi_table_nfit));
3738
3739 if (rc)
3740 return rc;
3741 return devm_add_action_or_reset(dev, acpi_nfit_shutdown, acpi_desc);
3742 }
3743
acpi_nfit_remove(struct acpi_device * adev)3744 static int acpi_nfit_remove(struct acpi_device *adev)
3745 {
3746 /* see acpi_nfit_unregister */
3747 return 0;
3748 }
3749
acpi_nfit_update_notify(struct device * dev,acpi_handle handle)3750 static void acpi_nfit_update_notify(struct device *dev, acpi_handle handle)
3751 {
3752 struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3753 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3754 union acpi_object *obj;
3755 acpi_status status;
3756 int ret;
3757
3758 if (!dev->driver) {
3759 /* dev->driver may be null if we're being removed */
3760 dev_dbg(dev, "no driver found for dev\n");
3761 return;
3762 }
3763
3764 if (!acpi_desc) {
3765 acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3766 if (!acpi_desc)
3767 return;
3768 acpi_nfit_desc_init(acpi_desc, dev);
3769 } else {
3770 /*
3771 * Finish previous registration before considering new
3772 * regions.
3773 */
3774 flush_workqueue(nfit_wq);
3775 }
3776
3777 /* Evaluate _FIT */
3778 status = acpi_evaluate_object(handle, "_FIT", NULL, &buf);
3779 if (ACPI_FAILURE(status)) {
3780 dev_err(dev, "failed to evaluate _FIT\n");
3781 return;
3782 }
3783
3784 obj = buf.pointer;
3785 if (obj->type == ACPI_TYPE_BUFFER) {
3786 ret = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3787 obj->buffer.length);
3788 if (ret)
3789 dev_err(dev, "failed to merge updated NFIT\n");
3790 } else
3791 dev_err(dev, "Invalid _FIT\n");
3792 kfree(buf.pointer);
3793 }
3794
acpi_nfit_uc_error_notify(struct device * dev,acpi_handle handle)3795 static void acpi_nfit_uc_error_notify(struct device *dev, acpi_handle handle)
3796 {
3797 struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3798
3799 if (acpi_desc->scrub_mode == HW_ERROR_SCRUB_ON)
3800 acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG);
3801 else
3802 acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_SHORT);
3803 }
3804
__acpi_nfit_notify(struct device * dev,acpi_handle handle,u32 event)3805 void __acpi_nfit_notify(struct device *dev, acpi_handle handle, u32 event)
3806 {
3807 dev_dbg(dev, "event: 0x%x\n", event);
3808
3809 switch (event) {
3810 case NFIT_NOTIFY_UPDATE:
3811 return acpi_nfit_update_notify(dev, handle);
3812 case NFIT_NOTIFY_UC_MEMORY_ERROR:
3813 return acpi_nfit_uc_error_notify(dev, handle);
3814 default:
3815 return;
3816 }
3817 }
3818 EXPORT_SYMBOL_GPL(__acpi_nfit_notify);
3819
acpi_nfit_notify(struct acpi_device * adev,u32 event)3820 static void acpi_nfit_notify(struct acpi_device *adev, u32 event)
3821 {
3822 nfit_device_lock(&adev->dev);
3823 __acpi_nfit_notify(&adev->dev, adev->handle, event);
3824 nfit_device_unlock(&adev->dev);
3825 }
3826
3827 static const struct acpi_device_id acpi_nfit_ids[] = {
3828 { "ACPI0012", 0 },
3829 { "", 0 },
3830 };
3831 MODULE_DEVICE_TABLE(acpi, acpi_nfit_ids);
3832
3833 static struct acpi_driver acpi_nfit_driver = {
3834 .name = KBUILD_MODNAME,
3835 .ids = acpi_nfit_ids,
3836 .ops = {
3837 .add = acpi_nfit_add,
3838 .remove = acpi_nfit_remove,
3839 .notify = acpi_nfit_notify,
3840 },
3841 };
3842
nfit_init(void)3843 static __init int nfit_init(void)
3844 {
3845 int ret;
3846
3847 BUILD_BUG_ON(sizeof(struct acpi_table_nfit) != 40);
3848 BUILD_BUG_ON(sizeof(struct acpi_nfit_system_address) != 56);
3849 BUILD_BUG_ON(sizeof(struct acpi_nfit_memory_map) != 48);
3850 BUILD_BUG_ON(sizeof(struct acpi_nfit_interleave) != 20);
3851 BUILD_BUG_ON(sizeof(struct acpi_nfit_smbios) != 9);
3852 BUILD_BUG_ON(sizeof(struct acpi_nfit_control_region) != 80);
3853 BUILD_BUG_ON(sizeof(struct acpi_nfit_data_region) != 40);
3854 BUILD_BUG_ON(sizeof(struct acpi_nfit_capabilities) != 16);
3855
3856 guid_parse(UUID_VOLATILE_MEMORY, &nfit_uuid[NFIT_SPA_VOLATILE]);
3857 guid_parse(UUID_PERSISTENT_MEMORY, &nfit_uuid[NFIT_SPA_PM]);
3858 guid_parse(UUID_CONTROL_REGION, &nfit_uuid[NFIT_SPA_DCR]);
3859 guid_parse(UUID_DATA_REGION, &nfit_uuid[NFIT_SPA_BDW]);
3860 guid_parse(UUID_VOLATILE_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_VDISK]);
3861 guid_parse(UUID_VOLATILE_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_VCD]);
3862 guid_parse(UUID_PERSISTENT_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_PDISK]);
3863 guid_parse(UUID_PERSISTENT_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_PCD]);
3864 guid_parse(UUID_NFIT_BUS, &nfit_uuid[NFIT_DEV_BUS]);
3865 guid_parse(UUID_NFIT_DIMM, &nfit_uuid[NFIT_DEV_DIMM]);
3866 guid_parse(UUID_NFIT_DIMM_N_HPE1, &nfit_uuid[NFIT_DEV_DIMM_N_HPE1]);
3867 guid_parse(UUID_NFIT_DIMM_N_HPE2, &nfit_uuid[NFIT_DEV_DIMM_N_HPE2]);
3868 guid_parse(UUID_NFIT_DIMM_N_MSFT, &nfit_uuid[NFIT_DEV_DIMM_N_MSFT]);
3869 guid_parse(UUID_NFIT_DIMM_N_HYPERV, &nfit_uuid[NFIT_DEV_DIMM_N_HYPERV]);
3870 guid_parse(UUID_INTEL_BUS, &nfit_uuid[NFIT_BUS_INTEL]);
3871
3872 nfit_wq = create_singlethread_workqueue("nfit");
3873 if (!nfit_wq)
3874 return -ENOMEM;
3875
3876 nfit_mce_register();
3877 ret = acpi_bus_register_driver(&acpi_nfit_driver);
3878 if (ret) {
3879 nfit_mce_unregister();
3880 destroy_workqueue(nfit_wq);
3881 }
3882
3883 return ret;
3884
3885 }
3886
nfit_exit(void)3887 static __exit void nfit_exit(void)
3888 {
3889 nfit_mce_unregister();
3890 acpi_bus_unregister_driver(&acpi_nfit_driver);
3891 destroy_workqueue(nfit_wq);
3892 WARN_ON(!list_empty(&acpi_descs));
3893 }
3894
3895 module_init(nfit_init);
3896 module_exit(nfit_exit);
3897 MODULE_LICENSE("GPL v2");
3898 MODULE_AUTHOR("Intel Corporation");
3899