1 /*
2  * Just-In-Time compiler for BPF filters on MIPS
3  *
4  * Copyright (c) 2014 Imagination Technologies Ltd.
5  * Author: Markos Chandras <markos.chandras@imgtec.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License as published by the
9  * Free Software Foundation; version 2 of the License.
10  */
11 
12 #include <linux/bitops.h>
13 #include <linux/compiler.h>
14 #include <linux/errno.h>
15 #include <linux/filter.h>
16 #include <linux/if_vlan.h>
17 #include <linux/moduleloader.h>
18 #include <linux/netdevice.h>
19 #include <linux/string.h>
20 #include <linux/slab.h>
21 #include <linux/types.h>
22 #include <asm/asm.h>
23 #include <asm/bitops.h>
24 #include <asm/cacheflush.h>
25 #include <asm/cpu-features.h>
26 #include <asm/uasm.h>
27 
28 #include "bpf_jit.h"
29 
30 /* ABI
31  * r_skb_hl	SKB header length
32  * r_data	SKB data pointer
33  * r_off	Offset
34  * r_A		BPF register A
35  * r_X		BPF register X
36  * r_skb	*skb
37  * r_M		*scratch memory
38  * r_skb_len	SKB length
39  *
40  * On entry (*bpf_func)(*skb, *filter)
41  * a0 = MIPS_R_A0 = skb;
42  * a1 = MIPS_R_A1 = filter;
43  *
44  * Stack
45  * ...
46  * M[15]
47  * M[14]
48  * M[13]
49  * ...
50  * M[0] <-- r_M
51  * saved reg k-1
52  * saved reg k-2
53  * ...
54  * saved reg 0 <-- r_sp
55  * <no argument area>
56  *
57  *                     Packet layout
58  *
59  * <--------------------- len ------------------------>
60  * <--skb-len(r_skb_hl)-->< ----- skb->data_len ------>
61  * ----------------------------------------------------
62  * |                  skb->data                       |
63  * ----------------------------------------------------
64  */
65 
66 #define ptr typeof(unsigned long)
67 
68 #define SCRATCH_OFF(k)		(4 * (k))
69 
70 /* JIT flags */
71 #define SEEN_CALL		(1 << BPF_MEMWORDS)
72 #define SEEN_SREG_SFT		(BPF_MEMWORDS + 1)
73 #define SEEN_SREG_BASE		(1 << SEEN_SREG_SFT)
74 #define SEEN_SREG(x)		(SEEN_SREG_BASE << (x))
75 #define SEEN_OFF		SEEN_SREG(2)
76 #define SEEN_A			SEEN_SREG(3)
77 #define SEEN_X			SEEN_SREG(4)
78 #define SEEN_SKB		SEEN_SREG(5)
79 #define SEEN_MEM		SEEN_SREG(6)
80 /* SEEN_SK_DATA also implies skb_hl an skb_len */
81 #define SEEN_SKB_DATA		(SEEN_SREG(7) | SEEN_SREG(1) | SEEN_SREG(0))
82 
83 /* Arguments used by JIT */
84 #define ARGS_USED_BY_JIT	2 /* only applicable to 64-bit */
85 
86 #define SBIT(x)			(1 << (x)) /* Signed version of BIT() */
87 
88 /**
89  * struct jit_ctx - JIT context
90  * @skf:		The sk_filter
91  * @prologue_bytes:	Number of bytes for prologue
92  * @idx:		Instruction index
93  * @flags:		JIT flags
94  * @offsets:		Instruction offsets
95  * @target:		Memory location for the compiled filter
96  */
97 struct jit_ctx {
98 	const struct bpf_prog *skf;
99 	unsigned int prologue_bytes;
100 	u32 idx;
101 	u32 flags;
102 	u32 *offsets;
103 	u32 *target;
104 };
105 
106 
optimize_div(u32 * k)107 static inline int optimize_div(u32 *k)
108 {
109 	/* power of 2 divides can be implemented with right shift */
110 	if (!(*k & (*k-1))) {
111 		*k = ilog2(*k);
112 		return 1;
113 	}
114 
115 	return 0;
116 }
117 
118 static inline void emit_jit_reg_move(ptr dst, ptr src, struct jit_ctx *ctx);
119 
120 /* Simply emit the instruction if the JIT memory space has been allocated */
121 #define emit_instr(ctx, func, ...)			\
122 do {							\
123 	if ((ctx)->target != NULL) {			\
124 		u32 *p = &(ctx)->target[ctx->idx];	\
125 		uasm_i_##func(&p, ##__VA_ARGS__);	\
126 	}						\
127 	(ctx)->idx++;					\
128 } while (0)
129 
130 /*
131  * Similar to emit_instr but it must be used when we need to emit
132  * 32-bit or 64-bit instructions
133  */
134 #define emit_long_instr(ctx, func, ...)			\
135 do {							\
136 	if ((ctx)->target != NULL) {			\
137 		u32 *p = &(ctx)->target[ctx->idx];	\
138 		UASM_i_##func(&p, ##__VA_ARGS__);	\
139 	}						\
140 	(ctx)->idx++;					\
141 } while (0)
142 
143 /* Determine if immediate is within the 16-bit signed range */
is_range16(s32 imm)144 static inline bool is_range16(s32 imm)
145 {
146 	return !(imm >= SBIT(15) || imm < -SBIT(15));
147 }
148 
emit_addu(unsigned int dst,unsigned int src1,unsigned int src2,struct jit_ctx * ctx)149 static inline void emit_addu(unsigned int dst, unsigned int src1,
150 			     unsigned int src2, struct jit_ctx *ctx)
151 {
152 	emit_instr(ctx, addu, dst, src1, src2);
153 }
154 
emit_nop(struct jit_ctx * ctx)155 static inline void emit_nop(struct jit_ctx *ctx)
156 {
157 	emit_instr(ctx, nop);
158 }
159 
160 /* Load a u32 immediate to a register */
emit_load_imm(unsigned int dst,u32 imm,struct jit_ctx * ctx)161 static inline void emit_load_imm(unsigned int dst, u32 imm, struct jit_ctx *ctx)
162 {
163 	if (ctx->target != NULL) {
164 		/* addiu can only handle s16 */
165 		if (!is_range16(imm)) {
166 			u32 *p = &ctx->target[ctx->idx];
167 			uasm_i_lui(&p, r_tmp_imm, (s32)imm >> 16);
168 			p = &ctx->target[ctx->idx + 1];
169 			uasm_i_ori(&p, dst, r_tmp_imm, imm & 0xffff);
170 		} else {
171 			u32 *p = &ctx->target[ctx->idx];
172 			uasm_i_addiu(&p, dst, r_zero, imm);
173 		}
174 	}
175 	ctx->idx++;
176 
177 	if (!is_range16(imm))
178 		ctx->idx++;
179 }
180 
emit_or(unsigned int dst,unsigned int src1,unsigned int src2,struct jit_ctx * ctx)181 static inline void emit_or(unsigned int dst, unsigned int src1,
182 			   unsigned int src2, struct jit_ctx *ctx)
183 {
184 	emit_instr(ctx, or, dst, src1, src2);
185 }
186 
emit_ori(unsigned int dst,unsigned src,u32 imm,struct jit_ctx * ctx)187 static inline void emit_ori(unsigned int dst, unsigned src, u32 imm,
188 			    struct jit_ctx *ctx)
189 {
190 	if (imm >= BIT(16)) {
191 		emit_load_imm(r_tmp, imm, ctx);
192 		emit_or(dst, src, r_tmp, ctx);
193 	} else {
194 		emit_instr(ctx, ori, dst, src, imm);
195 	}
196 }
197 
emit_daddiu(unsigned int dst,unsigned int src,int imm,struct jit_ctx * ctx)198 static inline void emit_daddiu(unsigned int dst, unsigned int src,
199 			       int imm, struct jit_ctx *ctx)
200 {
201 	/*
202 	 * Only used for stack, so the imm is relatively small
203 	 * and it fits in 15-bits
204 	 */
205 	emit_instr(ctx, daddiu, dst, src, imm);
206 }
207 
emit_addiu(unsigned int dst,unsigned int src,u32 imm,struct jit_ctx * ctx)208 static inline void emit_addiu(unsigned int dst, unsigned int src,
209 			      u32 imm, struct jit_ctx *ctx)
210 {
211 	if (!is_range16(imm)) {
212 		emit_load_imm(r_tmp, imm, ctx);
213 		emit_addu(dst, r_tmp, src, ctx);
214 	} else {
215 		emit_instr(ctx, addiu, dst, src, imm);
216 	}
217 }
218 
emit_and(unsigned int dst,unsigned int src1,unsigned int src2,struct jit_ctx * ctx)219 static inline void emit_and(unsigned int dst, unsigned int src1,
220 			    unsigned int src2, struct jit_ctx *ctx)
221 {
222 	emit_instr(ctx, and, dst, src1, src2);
223 }
224 
emit_andi(unsigned int dst,unsigned int src,u32 imm,struct jit_ctx * ctx)225 static inline void emit_andi(unsigned int dst, unsigned int src,
226 			     u32 imm, struct jit_ctx *ctx)
227 {
228 	/* If imm does not fit in u16 then load it to register */
229 	if (imm >= BIT(16)) {
230 		emit_load_imm(r_tmp, imm, ctx);
231 		emit_and(dst, src, r_tmp, ctx);
232 	} else {
233 		emit_instr(ctx, andi, dst, src, imm);
234 	}
235 }
236 
emit_xor(unsigned int dst,unsigned int src1,unsigned int src2,struct jit_ctx * ctx)237 static inline void emit_xor(unsigned int dst, unsigned int src1,
238 			    unsigned int src2, struct jit_ctx *ctx)
239 {
240 	emit_instr(ctx, xor, dst, src1, src2);
241 }
242 
emit_xori(ptr dst,ptr src,u32 imm,struct jit_ctx * ctx)243 static inline void emit_xori(ptr dst, ptr src, u32 imm, struct jit_ctx *ctx)
244 {
245 	/* If imm does not fit in u16 then load it to register */
246 	if (imm >= BIT(16)) {
247 		emit_load_imm(r_tmp, imm, ctx);
248 		emit_xor(dst, src, r_tmp, ctx);
249 	} else {
250 		emit_instr(ctx, xori, dst, src, imm);
251 	}
252 }
253 
emit_stack_offset(int offset,struct jit_ctx * ctx)254 static inline void emit_stack_offset(int offset, struct jit_ctx *ctx)
255 {
256 	emit_long_instr(ctx, ADDIU, r_sp, r_sp, offset);
257 }
258 
emit_subu(unsigned int dst,unsigned int src1,unsigned int src2,struct jit_ctx * ctx)259 static inline void emit_subu(unsigned int dst, unsigned int src1,
260 			     unsigned int src2, struct jit_ctx *ctx)
261 {
262 	emit_instr(ctx, subu, dst, src1, src2);
263 }
264 
emit_neg(unsigned int reg,struct jit_ctx * ctx)265 static inline void emit_neg(unsigned int reg, struct jit_ctx *ctx)
266 {
267 	emit_subu(reg, r_zero, reg, ctx);
268 }
269 
emit_sllv(unsigned int dst,unsigned int src,unsigned int sa,struct jit_ctx * ctx)270 static inline void emit_sllv(unsigned int dst, unsigned int src,
271 			     unsigned int sa, struct jit_ctx *ctx)
272 {
273 	emit_instr(ctx, sllv, dst, src, sa);
274 }
275 
emit_sll(unsigned int dst,unsigned int src,unsigned int sa,struct jit_ctx * ctx)276 static inline void emit_sll(unsigned int dst, unsigned int src,
277 			    unsigned int sa, struct jit_ctx *ctx)
278 {
279 	/* sa is 5-bits long */
280 	if (sa >= BIT(5))
281 		/* Shifting >= 32 results in zero */
282 		emit_jit_reg_move(dst, r_zero, ctx);
283 	else
284 		emit_instr(ctx, sll, dst, src, sa);
285 }
286 
emit_srlv(unsigned int dst,unsigned int src,unsigned int sa,struct jit_ctx * ctx)287 static inline void emit_srlv(unsigned int dst, unsigned int src,
288 			     unsigned int sa, struct jit_ctx *ctx)
289 {
290 	emit_instr(ctx, srlv, dst, src, sa);
291 }
292 
emit_srl(unsigned int dst,unsigned int src,unsigned int sa,struct jit_ctx * ctx)293 static inline void emit_srl(unsigned int dst, unsigned int src,
294 			    unsigned int sa, struct jit_ctx *ctx)
295 {
296 	/* sa is 5-bits long */
297 	if (sa >= BIT(5))
298 		/* Shifting >= 32 results in zero */
299 		emit_jit_reg_move(dst, r_zero, ctx);
300 	else
301 		emit_instr(ctx, srl, dst, src, sa);
302 }
303 
emit_slt(unsigned int dst,unsigned int src1,unsigned int src2,struct jit_ctx * ctx)304 static inline void emit_slt(unsigned int dst, unsigned int src1,
305 			    unsigned int src2, struct jit_ctx *ctx)
306 {
307 	emit_instr(ctx, slt, dst, src1, src2);
308 }
309 
emit_sltu(unsigned int dst,unsigned int src1,unsigned int src2,struct jit_ctx * ctx)310 static inline void emit_sltu(unsigned int dst, unsigned int src1,
311 			     unsigned int src2, struct jit_ctx *ctx)
312 {
313 	emit_instr(ctx, sltu, dst, src1, src2);
314 }
315 
emit_sltiu(unsigned dst,unsigned int src,unsigned int imm,struct jit_ctx * ctx)316 static inline void emit_sltiu(unsigned dst, unsigned int src,
317 			      unsigned int imm, struct jit_ctx *ctx)
318 {
319 	/* 16 bit immediate */
320 	if (!is_range16((s32)imm)) {
321 		emit_load_imm(r_tmp, imm, ctx);
322 		emit_sltu(dst, src, r_tmp, ctx);
323 	} else {
324 		emit_instr(ctx, sltiu, dst, src, imm);
325 	}
326 
327 }
328 
329 /* Store register on the stack */
emit_store_stack_reg(ptr reg,ptr base,unsigned int offset,struct jit_ctx * ctx)330 static inline void emit_store_stack_reg(ptr reg, ptr base,
331 					unsigned int offset,
332 					struct jit_ctx *ctx)
333 {
334 	emit_long_instr(ctx, SW, reg, offset, base);
335 }
336 
emit_store(ptr reg,ptr base,unsigned int offset,struct jit_ctx * ctx)337 static inline void emit_store(ptr reg, ptr base, unsigned int offset,
338 			      struct jit_ctx *ctx)
339 {
340 	emit_instr(ctx, sw, reg, offset, base);
341 }
342 
emit_load_stack_reg(ptr reg,ptr base,unsigned int offset,struct jit_ctx * ctx)343 static inline void emit_load_stack_reg(ptr reg, ptr base,
344 				       unsigned int offset,
345 				       struct jit_ctx *ctx)
346 {
347 	emit_long_instr(ctx, LW, reg, offset, base);
348 }
349 
emit_load(unsigned int reg,unsigned int base,unsigned int offset,struct jit_ctx * ctx)350 static inline void emit_load(unsigned int reg, unsigned int base,
351 			     unsigned int offset, struct jit_ctx *ctx)
352 {
353 	emit_instr(ctx, lw, reg, offset, base);
354 }
355 
emit_load_byte(unsigned int reg,unsigned int base,unsigned int offset,struct jit_ctx * ctx)356 static inline void emit_load_byte(unsigned int reg, unsigned int base,
357 				  unsigned int offset, struct jit_ctx *ctx)
358 {
359 	emit_instr(ctx, lb, reg, offset, base);
360 }
361 
emit_half_load(unsigned int reg,unsigned int base,unsigned int offset,struct jit_ctx * ctx)362 static inline void emit_half_load(unsigned int reg, unsigned int base,
363 				  unsigned int offset, struct jit_ctx *ctx)
364 {
365 	emit_instr(ctx, lh, reg, offset, base);
366 }
367 
emit_half_load_unsigned(unsigned int reg,unsigned int base,unsigned int offset,struct jit_ctx * ctx)368 static inline void emit_half_load_unsigned(unsigned int reg, unsigned int base,
369 					   unsigned int offset, struct jit_ctx *ctx)
370 {
371 	emit_instr(ctx, lhu, reg, offset, base);
372 }
373 
emit_mul(unsigned int dst,unsigned int src1,unsigned int src2,struct jit_ctx * ctx)374 static inline void emit_mul(unsigned int dst, unsigned int src1,
375 			    unsigned int src2, struct jit_ctx *ctx)
376 {
377 	emit_instr(ctx, mul, dst, src1, src2);
378 }
379 
emit_div(unsigned int dst,unsigned int src,struct jit_ctx * ctx)380 static inline void emit_div(unsigned int dst, unsigned int src,
381 			    struct jit_ctx *ctx)
382 {
383 	if (ctx->target != NULL) {
384 		u32 *p = &ctx->target[ctx->idx];
385 		uasm_i_divu(&p, dst, src);
386 		p = &ctx->target[ctx->idx + 1];
387 		uasm_i_mflo(&p, dst);
388 	}
389 	ctx->idx += 2; /* 2 insts */
390 }
391 
emit_mod(unsigned int dst,unsigned int src,struct jit_ctx * ctx)392 static inline void emit_mod(unsigned int dst, unsigned int src,
393 			    struct jit_ctx *ctx)
394 {
395 	if (ctx->target != NULL) {
396 		u32 *p = &ctx->target[ctx->idx];
397 		uasm_i_divu(&p, dst, src);
398 		p = &ctx->target[ctx->idx + 1];
399 		uasm_i_mfhi(&p, dst);
400 	}
401 	ctx->idx += 2; /* 2 insts */
402 }
403 
emit_dsll(unsigned int dst,unsigned int src,unsigned int sa,struct jit_ctx * ctx)404 static inline void emit_dsll(unsigned int dst, unsigned int src,
405 			     unsigned int sa, struct jit_ctx *ctx)
406 {
407 	emit_instr(ctx, dsll, dst, src, sa);
408 }
409 
emit_dsrl32(unsigned int dst,unsigned int src,unsigned int sa,struct jit_ctx * ctx)410 static inline void emit_dsrl32(unsigned int dst, unsigned int src,
411 			       unsigned int sa, struct jit_ctx *ctx)
412 {
413 	emit_instr(ctx, dsrl32, dst, src, sa);
414 }
415 
emit_wsbh(unsigned int dst,unsigned int src,struct jit_ctx * ctx)416 static inline void emit_wsbh(unsigned int dst, unsigned int src,
417 			     struct jit_ctx *ctx)
418 {
419 	emit_instr(ctx, wsbh, dst, src);
420 }
421 
422 /* load pointer to register */
emit_load_ptr(unsigned int dst,unsigned int src,int imm,struct jit_ctx * ctx)423 static inline void emit_load_ptr(unsigned int dst, unsigned int src,
424 				     int imm, struct jit_ctx *ctx)
425 {
426 	/* src contains the base addr of the 32/64-pointer */
427 	emit_long_instr(ctx, LW, dst, imm, src);
428 }
429 
430 /* load a function pointer to register */
emit_load_func(unsigned int reg,ptr imm,struct jit_ctx * ctx)431 static inline void emit_load_func(unsigned int reg, ptr imm,
432 				  struct jit_ctx *ctx)
433 {
434 	if (IS_ENABLED(CONFIG_64BIT)) {
435 		/* At this point imm is always 64-bit */
436 		emit_load_imm(r_tmp, (u64)imm >> 32, ctx);
437 		emit_dsll(r_tmp_imm, r_tmp, 16, ctx); /* left shift by 16 */
438 		emit_ori(r_tmp, r_tmp_imm, (imm >> 16) & 0xffff, ctx);
439 		emit_dsll(r_tmp_imm, r_tmp, 16, ctx); /* left shift by 16 */
440 		emit_ori(reg, r_tmp_imm, imm & 0xffff, ctx);
441 	} else {
442 		emit_load_imm(reg, imm, ctx);
443 	}
444 }
445 
446 /* Move to real MIPS register */
emit_reg_move(ptr dst,ptr src,struct jit_ctx * ctx)447 static inline void emit_reg_move(ptr dst, ptr src, struct jit_ctx *ctx)
448 {
449 	emit_long_instr(ctx, ADDU, dst, src, r_zero);
450 }
451 
452 /* Move to JIT (32-bit) register */
emit_jit_reg_move(ptr dst,ptr src,struct jit_ctx * ctx)453 static inline void emit_jit_reg_move(ptr dst, ptr src, struct jit_ctx *ctx)
454 {
455 	emit_addu(dst, src, r_zero, ctx);
456 }
457 
458 /* Compute the immediate value for PC-relative branches. */
b_imm(unsigned int tgt,struct jit_ctx * ctx)459 static inline u32 b_imm(unsigned int tgt, struct jit_ctx *ctx)
460 {
461 	if (ctx->target == NULL)
462 		return 0;
463 
464 	/*
465 	 * We want a pc-relative branch. We only do forward branches
466 	 * so tgt is always after pc. tgt is the instruction offset
467 	 * we want to jump to.
468 
469 	 * Branch on MIPS:
470 	 * I: target_offset <- sign_extend(offset)
471 	 * I+1: PC += target_offset (delay slot)
472 	 *
473 	 * ctx->idx currently points to the branch instruction
474 	 * but the offset is added to the delay slot so we need
475 	 * to subtract 4.
476 	 */
477 	return ctx->offsets[tgt] -
478 		(ctx->idx * 4 - ctx->prologue_bytes) - 4;
479 }
480 
emit_bcond(int cond,unsigned int reg1,unsigned int reg2,unsigned int imm,struct jit_ctx * ctx)481 static inline void emit_bcond(int cond, unsigned int reg1, unsigned int reg2,
482 			     unsigned int imm, struct jit_ctx *ctx)
483 {
484 	if (ctx->target != NULL) {
485 		u32 *p = &ctx->target[ctx->idx];
486 
487 		switch (cond) {
488 		case MIPS_COND_EQ:
489 			uasm_i_beq(&p, reg1, reg2, imm);
490 			break;
491 		case MIPS_COND_NE:
492 			uasm_i_bne(&p, reg1, reg2, imm);
493 			break;
494 		case MIPS_COND_ALL:
495 			uasm_i_b(&p, imm);
496 			break;
497 		default:
498 			pr_warn("%s: Unhandled branch conditional: %d\n",
499 				__func__, cond);
500 		}
501 	}
502 	ctx->idx++;
503 }
504 
emit_b(unsigned int imm,struct jit_ctx * ctx)505 static inline void emit_b(unsigned int imm, struct jit_ctx *ctx)
506 {
507 	emit_bcond(MIPS_COND_ALL, r_zero, r_zero, imm, ctx);
508 }
509 
emit_jalr(unsigned int link,unsigned int reg,struct jit_ctx * ctx)510 static inline void emit_jalr(unsigned int link, unsigned int reg,
511 			     struct jit_ctx *ctx)
512 {
513 	emit_instr(ctx, jalr, link, reg);
514 }
515 
emit_jr(unsigned int reg,struct jit_ctx * ctx)516 static inline void emit_jr(unsigned int reg, struct jit_ctx *ctx)
517 {
518 	emit_instr(ctx, jr, reg);
519 }
520 
align_sp(unsigned int num)521 static inline u16 align_sp(unsigned int num)
522 {
523 	/* Double word alignment for 32-bit, quadword for 64-bit */
524 	unsigned int align = IS_ENABLED(CONFIG_64BIT) ? 16 : 8;
525 	num = (num + (align - 1)) & -align;
526 	return num;
527 }
528 
save_bpf_jit_regs(struct jit_ctx * ctx,unsigned offset)529 static void save_bpf_jit_regs(struct jit_ctx *ctx, unsigned offset)
530 {
531 	int i = 0, real_off = 0;
532 	u32 sflags, tmp_flags;
533 
534 	/* Adjust the stack pointer */
535 	if (offset)
536 		emit_stack_offset(-align_sp(offset), ctx);
537 
538 	tmp_flags = sflags = ctx->flags >> SEEN_SREG_SFT;
539 	/* sflags is essentially a bitmap */
540 	while (tmp_flags) {
541 		if ((sflags >> i) & 0x1) {
542 			emit_store_stack_reg(MIPS_R_S0 + i, r_sp, real_off,
543 					     ctx);
544 			real_off += SZREG;
545 		}
546 		i++;
547 		tmp_flags >>= 1;
548 	}
549 
550 	/* save return address */
551 	if (ctx->flags & SEEN_CALL) {
552 		emit_store_stack_reg(r_ra, r_sp, real_off, ctx);
553 		real_off += SZREG;
554 	}
555 
556 	/* Setup r_M leaving the alignment gap if necessary */
557 	if (ctx->flags & SEEN_MEM) {
558 		if (real_off % (SZREG * 2))
559 			real_off += SZREG;
560 		emit_long_instr(ctx, ADDIU, r_M, r_sp, real_off);
561 	}
562 }
563 
restore_bpf_jit_regs(struct jit_ctx * ctx,unsigned int offset)564 static void restore_bpf_jit_regs(struct jit_ctx *ctx,
565 				 unsigned int offset)
566 {
567 	int i, real_off = 0;
568 	u32 sflags, tmp_flags;
569 
570 	tmp_flags = sflags = ctx->flags >> SEEN_SREG_SFT;
571 	/* sflags is a bitmap */
572 	i = 0;
573 	while (tmp_flags) {
574 		if ((sflags >> i) & 0x1) {
575 			emit_load_stack_reg(MIPS_R_S0 + i, r_sp, real_off,
576 					    ctx);
577 			real_off += SZREG;
578 		}
579 		i++;
580 		tmp_flags >>= 1;
581 	}
582 
583 	/* restore return address */
584 	if (ctx->flags & SEEN_CALL)
585 		emit_load_stack_reg(r_ra, r_sp, real_off, ctx);
586 
587 	/* Restore the sp and discard the scrach memory */
588 	if (offset)
589 		emit_stack_offset(align_sp(offset), ctx);
590 }
591 
get_stack_depth(struct jit_ctx * ctx)592 static unsigned int get_stack_depth(struct jit_ctx *ctx)
593 {
594 	int sp_off = 0;
595 
596 
597 	/* How may s* regs do we need to preserved? */
598 	sp_off += hweight32(ctx->flags >> SEEN_SREG_SFT) * SZREG;
599 
600 	if (ctx->flags & SEEN_MEM)
601 		sp_off += 4 * BPF_MEMWORDS; /* BPF_MEMWORDS are 32-bit */
602 
603 	if (ctx->flags & SEEN_CALL)
604 		sp_off += SZREG; /* Space for our ra register */
605 
606 	return sp_off;
607 }
608 
build_prologue(struct jit_ctx * ctx)609 static void build_prologue(struct jit_ctx *ctx)
610 {
611 	int sp_off;
612 
613 	/* Calculate the total offset for the stack pointer */
614 	sp_off = get_stack_depth(ctx);
615 	save_bpf_jit_regs(ctx, sp_off);
616 
617 	if (ctx->flags & SEEN_SKB)
618 		emit_reg_move(r_skb, MIPS_R_A0, ctx);
619 
620 	if (ctx->flags & SEEN_SKB_DATA) {
621 		/* Load packet length */
622 		emit_load(r_skb_len, r_skb, offsetof(struct sk_buff, len),
623 			  ctx);
624 		emit_load(r_tmp, r_skb, offsetof(struct sk_buff, data_len),
625 			  ctx);
626 		/* Load the data pointer */
627 		emit_load_ptr(r_skb_data, r_skb,
628 			      offsetof(struct sk_buff, data), ctx);
629 		/* Load the header length */
630 		emit_subu(r_skb_hl, r_skb_len, r_tmp, ctx);
631 	}
632 
633 	if (ctx->flags & SEEN_X)
634 		emit_jit_reg_move(r_X, r_zero, ctx);
635 
636 	/*
637 	 * Do not leak kernel data to userspace, we only need to clear
638 	 * r_A if it is ever used.  In fact if it is never used, we
639 	 * will not save/restore it, so clearing it in this case would
640 	 * corrupt the state of the caller.
641 	 */
642 	if (bpf_needs_clear_a(&ctx->skf->insns[0]) &&
643 	    (ctx->flags & SEEN_A))
644 		emit_jit_reg_move(r_A, r_zero, ctx);
645 }
646 
build_epilogue(struct jit_ctx * ctx)647 static void build_epilogue(struct jit_ctx *ctx)
648 {
649 	unsigned int sp_off;
650 
651 	/* Calculate the total offset for the stack pointer */
652 
653 	sp_off = get_stack_depth(ctx);
654 	restore_bpf_jit_regs(ctx, sp_off);
655 
656 	/* Return */
657 	emit_jr(r_ra, ctx);
658 	emit_nop(ctx);
659 }
660 
661 #define CHOOSE_LOAD_FUNC(K, func) \
662 	((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative : func) : \
663 	 func##_positive)
664 
build_body(struct jit_ctx * ctx)665 static int build_body(struct jit_ctx *ctx)
666 {
667 	const struct bpf_prog *prog = ctx->skf;
668 	const struct sock_filter *inst;
669 	unsigned int i, off, condt;
670 	u32 k, b_off __maybe_unused;
671 	u8 (*sk_load_func)(unsigned long *skb, int offset);
672 
673 	for (i = 0; i < prog->len; i++) {
674 		u16 code;
675 
676 		inst = &(prog->insns[i]);
677 		pr_debug("%s: code->0x%02x, jt->0x%x, jf->0x%x, k->0x%x\n",
678 			 __func__, inst->code, inst->jt, inst->jf, inst->k);
679 		k = inst->k;
680 		code = bpf_anc_helper(inst);
681 
682 		if (ctx->target == NULL)
683 			ctx->offsets[i] = ctx->idx * 4;
684 
685 		switch (code) {
686 		case BPF_LD | BPF_IMM:
687 			/* A <- k ==> li r_A, k */
688 			ctx->flags |= SEEN_A;
689 			emit_load_imm(r_A, k, ctx);
690 			break;
691 		case BPF_LD | BPF_W | BPF_LEN:
692 			BUILD_BUG_ON(sizeof_field(struct sk_buff, len) != 4);
693 			/* A <- len ==> lw r_A, offset(skb) */
694 			ctx->flags |= SEEN_SKB | SEEN_A;
695 			off = offsetof(struct sk_buff, len);
696 			emit_load(r_A, r_skb, off, ctx);
697 			break;
698 		case BPF_LD | BPF_MEM:
699 			/* A <- M[k] ==> lw r_A, offset(M) */
700 			ctx->flags |= SEEN_MEM | SEEN_A;
701 			emit_load(r_A, r_M, SCRATCH_OFF(k), ctx);
702 			break;
703 		case BPF_LD | BPF_W | BPF_ABS:
704 			/* A <- P[k:4] */
705 			sk_load_func = CHOOSE_LOAD_FUNC(k, sk_load_word);
706 			goto load;
707 		case BPF_LD | BPF_H | BPF_ABS:
708 			/* A <- P[k:2] */
709 			sk_load_func = CHOOSE_LOAD_FUNC(k, sk_load_half);
710 			goto load;
711 		case BPF_LD | BPF_B | BPF_ABS:
712 			/* A <- P[k:1] */
713 			sk_load_func = CHOOSE_LOAD_FUNC(k, sk_load_byte);
714 load:
715 			emit_load_imm(r_off, k, ctx);
716 load_common:
717 			ctx->flags |= SEEN_CALL | SEEN_OFF |
718 				SEEN_SKB | SEEN_A | SEEN_SKB_DATA;
719 
720 			emit_load_func(r_s0, (ptr)sk_load_func, ctx);
721 			emit_reg_move(MIPS_R_A0, r_skb, ctx);
722 			emit_jalr(MIPS_R_RA, r_s0, ctx);
723 			/* Load second argument to delay slot */
724 			emit_reg_move(MIPS_R_A1, r_off, ctx);
725 			/* Check the error value */
726 			emit_bcond(MIPS_COND_EQ, r_ret, 0, b_imm(i + 1, ctx),
727 				   ctx);
728 			/* Load return register on DS for failures */
729 			emit_reg_move(r_ret, r_zero, ctx);
730 			/* Return with error */
731 			emit_b(b_imm(prog->len, ctx), ctx);
732 			emit_nop(ctx);
733 			break;
734 		case BPF_LD | BPF_W | BPF_IND:
735 			/* A <- P[X + k:4] */
736 			sk_load_func = sk_load_word;
737 			goto load_ind;
738 		case BPF_LD | BPF_H | BPF_IND:
739 			/* A <- P[X + k:2] */
740 			sk_load_func = sk_load_half;
741 			goto load_ind;
742 		case BPF_LD | BPF_B | BPF_IND:
743 			/* A <- P[X + k:1] */
744 			sk_load_func = sk_load_byte;
745 load_ind:
746 			ctx->flags |= SEEN_OFF | SEEN_X;
747 			emit_addiu(r_off, r_X, k, ctx);
748 			goto load_common;
749 		case BPF_LDX | BPF_IMM:
750 			/* X <- k */
751 			ctx->flags |= SEEN_X;
752 			emit_load_imm(r_X, k, ctx);
753 			break;
754 		case BPF_LDX | BPF_MEM:
755 			/* X <- M[k] */
756 			ctx->flags |= SEEN_X | SEEN_MEM;
757 			emit_load(r_X, r_M, SCRATCH_OFF(k), ctx);
758 			break;
759 		case BPF_LDX | BPF_W | BPF_LEN:
760 			/* X <- len */
761 			ctx->flags |= SEEN_X | SEEN_SKB;
762 			off = offsetof(struct sk_buff, len);
763 			emit_load(r_X, r_skb, off, ctx);
764 			break;
765 		case BPF_LDX | BPF_B | BPF_MSH:
766 			/* X <- 4 * (P[k:1] & 0xf) */
767 			ctx->flags |= SEEN_X | SEEN_CALL | SEEN_SKB;
768 			/* Load offset to a1 */
769 			emit_load_func(r_s0, (ptr)sk_load_byte, ctx);
770 			/*
771 			 * This may emit two instructions so it may not fit
772 			 * in the delay slot. So use a0 in the delay slot.
773 			 */
774 			emit_load_imm(MIPS_R_A1, k, ctx);
775 			emit_jalr(MIPS_R_RA, r_s0, ctx);
776 			emit_reg_move(MIPS_R_A0, r_skb, ctx); /* delay slot */
777 			/* Check the error value */
778 			emit_bcond(MIPS_COND_NE, r_ret, 0,
779 				   b_imm(prog->len, ctx), ctx);
780 			emit_reg_move(r_ret, r_zero, ctx);
781 			/* We are good */
782 			/* X <- P[1:K] & 0xf */
783 			emit_andi(r_X, r_A, 0xf, ctx);
784 			/* X << 2 */
785 			emit_b(b_imm(i + 1, ctx), ctx);
786 			emit_sll(r_X, r_X, 2, ctx); /* delay slot */
787 			break;
788 		case BPF_ST:
789 			/* M[k] <- A */
790 			ctx->flags |= SEEN_MEM | SEEN_A;
791 			emit_store(r_A, r_M, SCRATCH_OFF(k), ctx);
792 			break;
793 		case BPF_STX:
794 			/* M[k] <- X */
795 			ctx->flags |= SEEN_MEM | SEEN_X;
796 			emit_store(r_X, r_M, SCRATCH_OFF(k), ctx);
797 			break;
798 		case BPF_ALU | BPF_ADD | BPF_K:
799 			/* A += K */
800 			ctx->flags |= SEEN_A;
801 			emit_addiu(r_A, r_A, k, ctx);
802 			break;
803 		case BPF_ALU | BPF_ADD | BPF_X:
804 			/* A += X */
805 			ctx->flags |= SEEN_A | SEEN_X;
806 			emit_addu(r_A, r_A, r_X, ctx);
807 			break;
808 		case BPF_ALU | BPF_SUB | BPF_K:
809 			/* A -= K */
810 			ctx->flags |= SEEN_A;
811 			emit_addiu(r_A, r_A, -k, ctx);
812 			break;
813 		case BPF_ALU | BPF_SUB | BPF_X:
814 			/* A -= X */
815 			ctx->flags |= SEEN_A | SEEN_X;
816 			emit_subu(r_A, r_A, r_X, ctx);
817 			break;
818 		case BPF_ALU | BPF_MUL | BPF_K:
819 			/* A *= K */
820 			/* Load K to scratch register before MUL */
821 			ctx->flags |= SEEN_A;
822 			emit_load_imm(r_s0, k, ctx);
823 			emit_mul(r_A, r_A, r_s0, ctx);
824 			break;
825 		case BPF_ALU | BPF_MUL | BPF_X:
826 			/* A *= X */
827 			ctx->flags |= SEEN_A | SEEN_X;
828 			emit_mul(r_A, r_A, r_X, ctx);
829 			break;
830 		case BPF_ALU | BPF_DIV | BPF_K:
831 			/* A /= k */
832 			if (k == 1)
833 				break;
834 			if (optimize_div(&k)) {
835 				ctx->flags |= SEEN_A;
836 				emit_srl(r_A, r_A, k, ctx);
837 				break;
838 			}
839 			ctx->flags |= SEEN_A;
840 			emit_load_imm(r_s0, k, ctx);
841 			emit_div(r_A, r_s0, ctx);
842 			break;
843 		case BPF_ALU | BPF_MOD | BPF_K:
844 			/* A %= k */
845 			if (k == 1) {
846 				ctx->flags |= SEEN_A;
847 				emit_jit_reg_move(r_A, r_zero, ctx);
848 			} else {
849 				ctx->flags |= SEEN_A;
850 				emit_load_imm(r_s0, k, ctx);
851 				emit_mod(r_A, r_s0, ctx);
852 			}
853 			break;
854 		case BPF_ALU | BPF_DIV | BPF_X:
855 			/* A /= X */
856 			ctx->flags |= SEEN_X | SEEN_A;
857 			/* Check if r_X is zero */
858 			emit_bcond(MIPS_COND_EQ, r_X, r_zero,
859 				   b_imm(prog->len, ctx), ctx);
860 			emit_load_imm(r_ret, 0, ctx); /* delay slot */
861 			emit_div(r_A, r_X, ctx);
862 			break;
863 		case BPF_ALU | BPF_MOD | BPF_X:
864 			/* A %= X */
865 			ctx->flags |= SEEN_X | SEEN_A;
866 			/* Check if r_X is zero */
867 			emit_bcond(MIPS_COND_EQ, r_X, r_zero,
868 				   b_imm(prog->len, ctx), ctx);
869 			emit_load_imm(r_ret, 0, ctx); /* delay slot */
870 			emit_mod(r_A, r_X, ctx);
871 			break;
872 		case BPF_ALU | BPF_OR | BPF_K:
873 			/* A |= K */
874 			ctx->flags |= SEEN_A;
875 			emit_ori(r_A, r_A, k, ctx);
876 			break;
877 		case BPF_ALU | BPF_OR | BPF_X:
878 			/* A |= X */
879 			ctx->flags |= SEEN_A;
880 			emit_ori(r_A, r_A, r_X, ctx);
881 			break;
882 		case BPF_ALU | BPF_XOR | BPF_K:
883 			/* A ^= k */
884 			ctx->flags |= SEEN_A;
885 			emit_xori(r_A, r_A, k, ctx);
886 			break;
887 		case BPF_ANC | SKF_AD_ALU_XOR_X:
888 		case BPF_ALU | BPF_XOR | BPF_X:
889 			/* A ^= X */
890 			ctx->flags |= SEEN_A;
891 			emit_xor(r_A, r_A, r_X, ctx);
892 			break;
893 		case BPF_ALU | BPF_AND | BPF_K:
894 			/* A &= K */
895 			ctx->flags |= SEEN_A;
896 			emit_andi(r_A, r_A, k, ctx);
897 			break;
898 		case BPF_ALU | BPF_AND | BPF_X:
899 			/* A &= X */
900 			ctx->flags |= SEEN_A | SEEN_X;
901 			emit_and(r_A, r_A, r_X, ctx);
902 			break;
903 		case BPF_ALU | BPF_LSH | BPF_K:
904 			/* A <<= K */
905 			ctx->flags |= SEEN_A;
906 			emit_sll(r_A, r_A, k, ctx);
907 			break;
908 		case BPF_ALU | BPF_LSH | BPF_X:
909 			/* A <<= X */
910 			ctx->flags |= SEEN_A | SEEN_X;
911 			emit_sllv(r_A, r_A, r_X, ctx);
912 			break;
913 		case BPF_ALU | BPF_RSH | BPF_K:
914 			/* A >>= K */
915 			ctx->flags |= SEEN_A;
916 			emit_srl(r_A, r_A, k, ctx);
917 			break;
918 		case BPF_ALU | BPF_RSH | BPF_X:
919 			ctx->flags |= SEEN_A | SEEN_X;
920 			emit_srlv(r_A, r_A, r_X, ctx);
921 			break;
922 		case BPF_ALU | BPF_NEG:
923 			/* A = -A */
924 			ctx->flags |= SEEN_A;
925 			emit_neg(r_A, ctx);
926 			break;
927 		case BPF_JMP | BPF_JA:
928 			/* pc += K */
929 			emit_b(b_imm(i + k + 1, ctx), ctx);
930 			emit_nop(ctx);
931 			break;
932 		case BPF_JMP | BPF_JEQ | BPF_K:
933 			/* pc += ( A == K ) ? pc->jt : pc->jf */
934 			condt = MIPS_COND_EQ | MIPS_COND_K;
935 			goto jmp_cmp;
936 		case BPF_JMP | BPF_JEQ | BPF_X:
937 			ctx->flags |= SEEN_X;
938 			/* pc += ( A == X ) ? pc->jt : pc->jf */
939 			condt = MIPS_COND_EQ | MIPS_COND_X;
940 			goto jmp_cmp;
941 		case BPF_JMP | BPF_JGE | BPF_K:
942 			/* pc += ( A >= K ) ? pc->jt : pc->jf */
943 			condt = MIPS_COND_GE | MIPS_COND_K;
944 			goto jmp_cmp;
945 		case BPF_JMP | BPF_JGE | BPF_X:
946 			ctx->flags |= SEEN_X;
947 			/* pc += ( A >= X ) ? pc->jt : pc->jf */
948 			condt = MIPS_COND_GE | MIPS_COND_X;
949 			goto jmp_cmp;
950 		case BPF_JMP | BPF_JGT | BPF_K:
951 			/* pc += ( A > K ) ? pc->jt : pc->jf */
952 			condt = MIPS_COND_GT | MIPS_COND_K;
953 			goto jmp_cmp;
954 		case BPF_JMP | BPF_JGT | BPF_X:
955 			ctx->flags |= SEEN_X;
956 			/* pc += ( A > X ) ? pc->jt : pc->jf */
957 			condt = MIPS_COND_GT | MIPS_COND_X;
958 jmp_cmp:
959 			/* Greater or Equal */
960 			if ((condt & MIPS_COND_GE) ||
961 			    (condt & MIPS_COND_GT)) {
962 				if (condt & MIPS_COND_K) { /* K */
963 					ctx->flags |= SEEN_A;
964 					emit_sltiu(r_s0, r_A, k, ctx);
965 				} else { /* X */
966 					ctx->flags |= SEEN_A |
967 						SEEN_X;
968 					emit_sltu(r_s0, r_A, r_X, ctx);
969 				}
970 				/* A < (K|X) ? r_scrach = 1 */
971 				b_off = b_imm(i + inst->jf + 1, ctx);
972 				emit_bcond(MIPS_COND_NE, r_s0, r_zero, b_off,
973 					   ctx);
974 				emit_nop(ctx);
975 				/* A > (K|X) ? scratch = 0 */
976 				if (condt & MIPS_COND_GT) {
977 					/* Checking for equality */
978 					ctx->flags |= SEEN_A | SEEN_X;
979 					if (condt & MIPS_COND_K)
980 						emit_load_imm(r_s0, k, ctx);
981 					else
982 						emit_jit_reg_move(r_s0, r_X,
983 								  ctx);
984 					b_off = b_imm(i + inst->jf + 1, ctx);
985 					emit_bcond(MIPS_COND_EQ, r_A, r_s0,
986 						   b_off, ctx);
987 					emit_nop(ctx);
988 					/* Finally, A > K|X */
989 					b_off = b_imm(i + inst->jt + 1, ctx);
990 					emit_b(b_off, ctx);
991 					emit_nop(ctx);
992 				} else {
993 					/* A >= (K|X) so jump */
994 					b_off = b_imm(i + inst->jt + 1, ctx);
995 					emit_b(b_off, ctx);
996 					emit_nop(ctx);
997 				}
998 			} else {
999 				/* A == K|X */
1000 				if (condt & MIPS_COND_K) { /* K */
1001 					ctx->flags |= SEEN_A;
1002 					emit_load_imm(r_s0, k, ctx);
1003 					/* jump true */
1004 					b_off = b_imm(i + inst->jt + 1, ctx);
1005 					emit_bcond(MIPS_COND_EQ, r_A, r_s0,
1006 						   b_off, ctx);
1007 					emit_nop(ctx);
1008 					/* jump false */
1009 					b_off = b_imm(i + inst->jf + 1,
1010 						      ctx);
1011 					emit_bcond(MIPS_COND_NE, r_A, r_s0,
1012 						   b_off, ctx);
1013 					emit_nop(ctx);
1014 				} else { /* X */
1015 					/* jump true */
1016 					ctx->flags |= SEEN_A | SEEN_X;
1017 					b_off = b_imm(i + inst->jt + 1,
1018 						      ctx);
1019 					emit_bcond(MIPS_COND_EQ, r_A, r_X,
1020 						   b_off, ctx);
1021 					emit_nop(ctx);
1022 					/* jump false */
1023 					b_off = b_imm(i + inst->jf + 1, ctx);
1024 					emit_bcond(MIPS_COND_NE, r_A, r_X,
1025 						   b_off, ctx);
1026 					emit_nop(ctx);
1027 				}
1028 			}
1029 			break;
1030 		case BPF_JMP | BPF_JSET | BPF_K:
1031 			ctx->flags |= SEEN_A;
1032 			/* pc += (A & K) ? pc -> jt : pc -> jf */
1033 			emit_load_imm(r_s1, k, ctx);
1034 			emit_and(r_s0, r_A, r_s1, ctx);
1035 			/* jump true */
1036 			b_off = b_imm(i + inst->jt + 1, ctx);
1037 			emit_bcond(MIPS_COND_NE, r_s0, r_zero, b_off, ctx);
1038 			emit_nop(ctx);
1039 			/* jump false */
1040 			b_off = b_imm(i + inst->jf + 1, ctx);
1041 			emit_b(b_off, ctx);
1042 			emit_nop(ctx);
1043 			break;
1044 		case BPF_JMP | BPF_JSET | BPF_X:
1045 			ctx->flags |= SEEN_X | SEEN_A;
1046 			/* pc += (A & X) ? pc -> jt : pc -> jf */
1047 			emit_and(r_s0, r_A, r_X, ctx);
1048 			/* jump true */
1049 			b_off = b_imm(i + inst->jt + 1, ctx);
1050 			emit_bcond(MIPS_COND_NE, r_s0, r_zero, b_off, ctx);
1051 			emit_nop(ctx);
1052 			/* jump false */
1053 			b_off = b_imm(i + inst->jf + 1, ctx);
1054 			emit_b(b_off, ctx);
1055 			emit_nop(ctx);
1056 			break;
1057 		case BPF_RET | BPF_A:
1058 			ctx->flags |= SEEN_A;
1059 			if (i != prog->len - 1)
1060 				/*
1061 				 * If this is not the last instruction
1062 				 * then jump to the epilogue
1063 				 */
1064 				emit_b(b_imm(prog->len, ctx), ctx);
1065 			emit_reg_move(r_ret, r_A, ctx); /* delay slot */
1066 			break;
1067 		case BPF_RET | BPF_K:
1068 			/*
1069 			 * It can emit two instructions so it does not fit on
1070 			 * the delay slot.
1071 			 */
1072 			emit_load_imm(r_ret, k, ctx);
1073 			if (i != prog->len - 1) {
1074 				/*
1075 				 * If this is not the last instruction
1076 				 * then jump to the epilogue
1077 				 */
1078 				emit_b(b_imm(prog->len, ctx), ctx);
1079 				emit_nop(ctx);
1080 			}
1081 			break;
1082 		case BPF_MISC | BPF_TAX:
1083 			/* X = A */
1084 			ctx->flags |= SEEN_X | SEEN_A;
1085 			emit_jit_reg_move(r_X, r_A, ctx);
1086 			break;
1087 		case BPF_MISC | BPF_TXA:
1088 			/* A = X */
1089 			ctx->flags |= SEEN_A | SEEN_X;
1090 			emit_jit_reg_move(r_A, r_X, ctx);
1091 			break;
1092 		/* AUX */
1093 		case BPF_ANC | SKF_AD_PROTOCOL:
1094 			/* A = ntohs(skb->protocol */
1095 			ctx->flags |= SEEN_SKB | SEEN_OFF | SEEN_A;
1096 			BUILD_BUG_ON(sizeof_field(struct sk_buff,
1097 						  protocol) != 2);
1098 			off = offsetof(struct sk_buff, protocol);
1099 			emit_half_load(r_A, r_skb, off, ctx);
1100 #ifdef CONFIG_CPU_LITTLE_ENDIAN
1101 			/* This needs little endian fixup */
1102 			if (cpu_has_wsbh) {
1103 				/* R2 and later have the wsbh instruction */
1104 				emit_wsbh(r_A, r_A, ctx);
1105 			} else {
1106 				/* Get first byte */
1107 				emit_andi(r_tmp_imm, r_A, 0xff, ctx);
1108 				/* Shift it */
1109 				emit_sll(r_tmp, r_tmp_imm, 8, ctx);
1110 				/* Get second byte */
1111 				emit_srl(r_tmp_imm, r_A, 8, ctx);
1112 				emit_andi(r_tmp_imm, r_tmp_imm, 0xff, ctx);
1113 				/* Put everyting together in r_A */
1114 				emit_or(r_A, r_tmp, r_tmp_imm, ctx);
1115 			}
1116 #endif
1117 			break;
1118 		case BPF_ANC | SKF_AD_CPU:
1119 			ctx->flags |= SEEN_A | SEEN_OFF;
1120 			/* A = current_thread_info()->cpu */
1121 			BUILD_BUG_ON(sizeof_field(struct thread_info,
1122 						  cpu) != 4);
1123 			off = offsetof(struct thread_info, cpu);
1124 			/* $28/gp points to the thread_info struct */
1125 			emit_load(r_A, 28, off, ctx);
1126 			break;
1127 		case BPF_ANC | SKF_AD_IFINDEX:
1128 			/* A = skb->dev->ifindex */
1129 		case BPF_ANC | SKF_AD_HATYPE:
1130 			/* A = skb->dev->type */
1131 			ctx->flags |= SEEN_SKB | SEEN_A;
1132 			off = offsetof(struct sk_buff, dev);
1133 			/* Load *dev pointer */
1134 			emit_load_ptr(r_s0, r_skb, off, ctx);
1135 			/* error (0) in the delay slot */
1136 			emit_bcond(MIPS_COND_EQ, r_s0, r_zero,
1137 				   b_imm(prog->len, ctx), ctx);
1138 			emit_reg_move(r_ret, r_zero, ctx);
1139 			if (code == (BPF_ANC | SKF_AD_IFINDEX)) {
1140 				BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
1141 				off = offsetof(struct net_device, ifindex);
1142 				emit_load(r_A, r_s0, off, ctx);
1143 			} else { /* (code == (BPF_ANC | SKF_AD_HATYPE) */
1144 				BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
1145 				off = offsetof(struct net_device, type);
1146 				emit_half_load_unsigned(r_A, r_s0, off, ctx);
1147 			}
1148 			break;
1149 		case BPF_ANC | SKF_AD_MARK:
1150 			ctx->flags |= SEEN_SKB | SEEN_A;
1151 			BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
1152 			off = offsetof(struct sk_buff, mark);
1153 			emit_load(r_A, r_skb, off, ctx);
1154 			break;
1155 		case BPF_ANC | SKF_AD_RXHASH:
1156 			ctx->flags |= SEEN_SKB | SEEN_A;
1157 			BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
1158 			off = offsetof(struct sk_buff, hash);
1159 			emit_load(r_A, r_skb, off, ctx);
1160 			break;
1161 		case BPF_ANC | SKF_AD_VLAN_TAG:
1162 			ctx->flags |= SEEN_SKB | SEEN_A;
1163 			BUILD_BUG_ON(sizeof_field(struct sk_buff,
1164 						  vlan_tci) != 2);
1165 			off = offsetof(struct sk_buff, vlan_tci);
1166 			emit_half_load_unsigned(r_A, r_skb, off, ctx);
1167 			break;
1168 		case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
1169 			ctx->flags |= SEEN_SKB | SEEN_A;
1170 			emit_load_byte(r_A, r_skb, PKT_VLAN_PRESENT_OFFSET(), ctx);
1171 			if (PKT_VLAN_PRESENT_BIT)
1172 				emit_srl(r_A, r_A, PKT_VLAN_PRESENT_BIT, ctx);
1173 			if (PKT_VLAN_PRESENT_BIT < 7)
1174 				emit_andi(r_A, r_A, 1, ctx);
1175 			break;
1176 		case BPF_ANC | SKF_AD_PKTTYPE:
1177 			ctx->flags |= SEEN_SKB;
1178 
1179 			emit_load_byte(r_tmp, r_skb, PKT_TYPE_OFFSET(), ctx);
1180 			/* Keep only the last 3 bits */
1181 			emit_andi(r_A, r_tmp, PKT_TYPE_MAX, ctx);
1182 #ifdef __BIG_ENDIAN_BITFIELD
1183 			/* Get the actual packet type to the lower 3 bits */
1184 			emit_srl(r_A, r_A, 5, ctx);
1185 #endif
1186 			break;
1187 		case BPF_ANC | SKF_AD_QUEUE:
1188 			ctx->flags |= SEEN_SKB | SEEN_A;
1189 			BUILD_BUG_ON(sizeof_field(struct sk_buff,
1190 						  queue_mapping) != 2);
1191 			BUILD_BUG_ON(offsetof(struct sk_buff,
1192 					      queue_mapping) > 0xff);
1193 			off = offsetof(struct sk_buff, queue_mapping);
1194 			emit_half_load_unsigned(r_A, r_skb, off, ctx);
1195 			break;
1196 		default:
1197 			pr_debug("%s: Unhandled opcode: 0x%02x\n", __FILE__,
1198 				 inst->code);
1199 			return -1;
1200 		}
1201 	}
1202 
1203 	/* compute offsets only during the first pass */
1204 	if (ctx->target == NULL)
1205 		ctx->offsets[i] = ctx->idx * 4;
1206 
1207 	return 0;
1208 }
1209 
bpf_jit_compile(struct bpf_prog * fp)1210 void bpf_jit_compile(struct bpf_prog *fp)
1211 {
1212 	struct jit_ctx ctx;
1213 	unsigned int alloc_size, tmp_idx;
1214 
1215 	if (!bpf_jit_enable)
1216 		return;
1217 
1218 	memset(&ctx, 0, sizeof(ctx));
1219 
1220 	ctx.offsets = kcalloc(fp->len + 1, sizeof(*ctx.offsets), GFP_KERNEL);
1221 	if (ctx.offsets == NULL)
1222 		return;
1223 
1224 	ctx.skf = fp;
1225 
1226 	if (build_body(&ctx))
1227 		goto out;
1228 
1229 	tmp_idx = ctx.idx;
1230 	build_prologue(&ctx);
1231 	ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
1232 	/* just to complete the ctx.idx count */
1233 	build_epilogue(&ctx);
1234 
1235 	alloc_size = 4 * ctx.idx;
1236 	ctx.target = module_alloc(alloc_size);
1237 	if (ctx.target == NULL)
1238 		goto out;
1239 
1240 	/* Clean it */
1241 	memset(ctx.target, 0, alloc_size);
1242 
1243 	ctx.idx = 0;
1244 
1245 	/* Generate the actual JIT code */
1246 	build_prologue(&ctx);
1247 	build_body(&ctx);
1248 	build_epilogue(&ctx);
1249 
1250 	/* Update the icache */
1251 	flush_icache_range((ptr)ctx.target, (ptr)(ctx.target + ctx.idx));
1252 
1253 	if (bpf_jit_enable > 1)
1254 		/* Dump JIT code */
1255 		bpf_jit_dump(fp->len, alloc_size, 2, ctx.target);
1256 
1257 	fp->bpf_func = (void *)ctx.target;
1258 	fp->jited = 1;
1259 
1260 out:
1261 	kfree(ctx.offsets);
1262 }
1263 
bpf_jit_free(struct bpf_prog * fp)1264 void bpf_jit_free(struct bpf_prog *fp)
1265 {
1266 	if (fp->jited)
1267 		module_memfree(fp->bpf_func);
1268 
1269 	bpf_prog_unlock_free(fp);
1270 }
1271