1 /*
2  * Management Module Support for MPT (Message Passing Technology) based
3  * controllers
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_ctl.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30 
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39 
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45 
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/compat.h>
55 #include <linux/poll.h>
56 
57 #include <linux/io.h>
58 #include <linux/uaccess.h>
59 
60 #include "mpt3sas_base.h"
61 #include "mpt3sas_ctl.h"
62 
63 
64 static struct fasync_struct *async_queue;
65 static DECLARE_WAIT_QUEUE_HEAD(ctl_poll_wait);
66 
67 
68 /**
69  * enum block_state - blocking state
70  * @NON_BLOCKING: non blocking
71  * @BLOCKING: blocking
72  *
73  * These states are for ioctls that need to wait for a response
74  * from firmware, so they probably require sleep.
75  */
76 enum block_state {
77 	NON_BLOCKING,
78 	BLOCKING,
79 };
80 
81 /**
82  * _ctl_display_some_debug - debug routine
83  * @ioc: per adapter object
84  * @smid: system request message index
85  * @calling_function_name: string pass from calling function
86  * @mpi_reply: reply message frame
87  * Context: none.
88  *
89  * Function for displaying debug info helpful when debugging issues
90  * in this module.
91  */
92 static void
_ctl_display_some_debug(struct MPT3SAS_ADAPTER * ioc,u16 smid,char * calling_function_name,MPI2DefaultReply_t * mpi_reply)93 _ctl_display_some_debug(struct MPT3SAS_ADAPTER *ioc, u16 smid,
94 	char *calling_function_name, MPI2DefaultReply_t *mpi_reply)
95 {
96 	Mpi2ConfigRequest_t *mpi_request;
97 	char *desc = NULL;
98 
99 	if (!(ioc->logging_level & MPT_DEBUG_IOCTL))
100 		return;
101 
102 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
103 	switch (mpi_request->Function) {
104 	case MPI2_FUNCTION_SCSI_IO_REQUEST:
105 	{
106 		Mpi2SCSIIORequest_t *scsi_request =
107 		    (Mpi2SCSIIORequest_t *)mpi_request;
108 
109 		snprintf(ioc->tmp_string, MPT_STRING_LENGTH,
110 		    "scsi_io, cmd(0x%02x), cdb_len(%d)",
111 		    scsi_request->CDB.CDB32[0],
112 		    le16_to_cpu(scsi_request->IoFlags) & 0xF);
113 		desc = ioc->tmp_string;
114 		break;
115 	}
116 	case MPI2_FUNCTION_SCSI_TASK_MGMT:
117 		desc = "task_mgmt";
118 		break;
119 	case MPI2_FUNCTION_IOC_INIT:
120 		desc = "ioc_init";
121 		break;
122 	case MPI2_FUNCTION_IOC_FACTS:
123 		desc = "ioc_facts";
124 		break;
125 	case MPI2_FUNCTION_CONFIG:
126 	{
127 		Mpi2ConfigRequest_t *config_request =
128 		    (Mpi2ConfigRequest_t *)mpi_request;
129 
130 		snprintf(ioc->tmp_string, MPT_STRING_LENGTH,
131 		    "config, type(0x%02x), ext_type(0x%02x), number(%d)",
132 		    (config_request->Header.PageType &
133 		     MPI2_CONFIG_PAGETYPE_MASK), config_request->ExtPageType,
134 		    config_request->Header.PageNumber);
135 		desc = ioc->tmp_string;
136 		break;
137 	}
138 	case MPI2_FUNCTION_PORT_FACTS:
139 		desc = "port_facts";
140 		break;
141 	case MPI2_FUNCTION_PORT_ENABLE:
142 		desc = "port_enable";
143 		break;
144 	case MPI2_FUNCTION_EVENT_NOTIFICATION:
145 		desc = "event_notification";
146 		break;
147 	case MPI2_FUNCTION_FW_DOWNLOAD:
148 		desc = "fw_download";
149 		break;
150 	case MPI2_FUNCTION_FW_UPLOAD:
151 		desc = "fw_upload";
152 		break;
153 	case MPI2_FUNCTION_RAID_ACTION:
154 		desc = "raid_action";
155 		break;
156 	case MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH:
157 	{
158 		Mpi2SCSIIORequest_t *scsi_request =
159 		    (Mpi2SCSIIORequest_t *)mpi_request;
160 
161 		snprintf(ioc->tmp_string, MPT_STRING_LENGTH,
162 		    "raid_pass, cmd(0x%02x), cdb_len(%d)",
163 		    scsi_request->CDB.CDB32[0],
164 		    le16_to_cpu(scsi_request->IoFlags) & 0xF);
165 		desc = ioc->tmp_string;
166 		break;
167 	}
168 	case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
169 		desc = "sas_iounit_cntl";
170 		break;
171 	case MPI2_FUNCTION_SATA_PASSTHROUGH:
172 		desc = "sata_pass";
173 		break;
174 	case MPI2_FUNCTION_DIAG_BUFFER_POST:
175 		desc = "diag_buffer_post";
176 		break;
177 	case MPI2_FUNCTION_DIAG_RELEASE:
178 		desc = "diag_release";
179 		break;
180 	case MPI2_FUNCTION_SMP_PASSTHROUGH:
181 		desc = "smp_passthrough";
182 		break;
183 	case MPI2_FUNCTION_TOOLBOX:
184 		desc = "toolbox";
185 		break;
186 	case MPI2_FUNCTION_NVME_ENCAPSULATED:
187 		desc = "nvme_encapsulated";
188 		break;
189 	}
190 
191 	if (!desc)
192 		return;
193 
194 	ioc_info(ioc, "%s: %s, smid(%d)\n", calling_function_name, desc, smid);
195 
196 	if (!mpi_reply)
197 		return;
198 
199 	if (mpi_reply->IOCStatus || mpi_reply->IOCLogInfo)
200 		ioc_info(ioc, "\tiocstatus(0x%04x), loginfo(0x%08x)\n",
201 			 le16_to_cpu(mpi_reply->IOCStatus),
202 			 le32_to_cpu(mpi_reply->IOCLogInfo));
203 
204 	if (mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
205 	    mpi_request->Function ==
206 	    MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH) {
207 		Mpi2SCSIIOReply_t *scsi_reply =
208 		    (Mpi2SCSIIOReply_t *)mpi_reply;
209 		struct _sas_device *sas_device = NULL;
210 		struct _pcie_device *pcie_device = NULL;
211 
212 		sas_device = mpt3sas_get_sdev_by_handle(ioc,
213 		    le16_to_cpu(scsi_reply->DevHandle));
214 		if (sas_device) {
215 			ioc_warn(ioc, "\tsas_address(0x%016llx), phy(%d)\n",
216 				 (u64)sas_device->sas_address,
217 				 sas_device->phy);
218 			ioc_warn(ioc, "\tenclosure_logical_id(0x%016llx), slot(%d)\n",
219 				 (u64)sas_device->enclosure_logical_id,
220 				 sas_device->slot);
221 			sas_device_put(sas_device);
222 		}
223 		if (!sas_device) {
224 			pcie_device = mpt3sas_get_pdev_by_handle(ioc,
225 				le16_to_cpu(scsi_reply->DevHandle));
226 			if (pcie_device) {
227 				ioc_warn(ioc, "\tWWID(0x%016llx), port(%d)\n",
228 					 (unsigned long long)pcie_device->wwid,
229 					 pcie_device->port_num);
230 				if (pcie_device->enclosure_handle != 0)
231 					ioc_warn(ioc, "\tenclosure_logical_id(0x%016llx), slot(%d)\n",
232 						 (u64)pcie_device->enclosure_logical_id,
233 						 pcie_device->slot);
234 				pcie_device_put(pcie_device);
235 			}
236 		}
237 		if (scsi_reply->SCSIState || scsi_reply->SCSIStatus)
238 			ioc_info(ioc, "\tscsi_state(0x%02x), scsi_status(0x%02x)\n",
239 				 scsi_reply->SCSIState,
240 				 scsi_reply->SCSIStatus);
241 	}
242 }
243 
244 /**
245  * mpt3sas_ctl_done - ctl module completion routine
246  * @ioc: per adapter object
247  * @smid: system request message index
248  * @msix_index: MSIX table index supplied by the OS
249  * @reply: reply message frame(lower 32bit addr)
250  * Context: none.
251  *
252  * The callback handler when using ioc->ctl_cb_idx.
253  *
254  * Return: 1 meaning mf should be freed from _base_interrupt
255  *         0 means the mf is freed from this function.
256  */
257 u8
mpt3sas_ctl_done(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 msix_index,u32 reply)258 mpt3sas_ctl_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
259 	u32 reply)
260 {
261 	MPI2DefaultReply_t *mpi_reply;
262 	Mpi2SCSIIOReply_t *scsiio_reply;
263 	Mpi26NVMeEncapsulatedErrorReply_t *nvme_error_reply;
264 	const void *sense_data;
265 	u32 sz;
266 
267 	if (ioc->ctl_cmds.status == MPT3_CMD_NOT_USED)
268 		return 1;
269 	if (ioc->ctl_cmds.smid != smid)
270 		return 1;
271 	ioc->ctl_cmds.status |= MPT3_CMD_COMPLETE;
272 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
273 	if (mpi_reply) {
274 		memcpy(ioc->ctl_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
275 		ioc->ctl_cmds.status |= MPT3_CMD_REPLY_VALID;
276 		/* get sense data */
277 		if (mpi_reply->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
278 		    mpi_reply->Function ==
279 		    MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH) {
280 			scsiio_reply = (Mpi2SCSIIOReply_t *)mpi_reply;
281 			if (scsiio_reply->SCSIState &
282 			    MPI2_SCSI_STATE_AUTOSENSE_VALID) {
283 				sz = min_t(u32, SCSI_SENSE_BUFFERSIZE,
284 				    le32_to_cpu(scsiio_reply->SenseCount));
285 				sense_data = mpt3sas_base_get_sense_buffer(ioc,
286 				    smid);
287 				memcpy(ioc->ctl_cmds.sense, sense_data, sz);
288 			}
289 		}
290 		/*
291 		 * Get Error Response data for NVMe device. The ctl_cmds.sense
292 		 * buffer is used to store the Error Response data.
293 		 */
294 		if (mpi_reply->Function == MPI2_FUNCTION_NVME_ENCAPSULATED) {
295 			nvme_error_reply =
296 			    (Mpi26NVMeEncapsulatedErrorReply_t *)mpi_reply;
297 			sz = min_t(u32, NVME_ERROR_RESPONSE_SIZE,
298 			    le16_to_cpu(nvme_error_reply->ErrorResponseCount));
299 			sense_data = mpt3sas_base_get_sense_buffer(ioc, smid);
300 			memcpy(ioc->ctl_cmds.sense, sense_data, sz);
301 		}
302 	}
303 
304 	_ctl_display_some_debug(ioc, smid, "ctl_done", mpi_reply);
305 	ioc->ctl_cmds.status &= ~MPT3_CMD_PENDING;
306 	complete(&ioc->ctl_cmds.done);
307 	return 1;
308 }
309 
310 /**
311  * _ctl_check_event_type - determines when an event needs logging
312  * @ioc: per adapter object
313  * @event: firmware event
314  *
315  * The bitmask in ioc->event_type[] indicates which events should be
316  * be saved in the driver event_log.  This bitmask is set by application.
317  *
318  * Return: 1 when event should be captured, or zero means no match.
319  */
320 static int
_ctl_check_event_type(struct MPT3SAS_ADAPTER * ioc,u16 event)321 _ctl_check_event_type(struct MPT3SAS_ADAPTER *ioc, u16 event)
322 {
323 	u16 i;
324 	u32 desired_event;
325 
326 	if (event >= 128 || !event || !ioc->event_log)
327 		return 0;
328 
329 	desired_event = (1 << (event % 32));
330 	if (!desired_event)
331 		desired_event = 1;
332 	i = event / 32;
333 	return desired_event & ioc->event_type[i];
334 }
335 
336 /**
337  * mpt3sas_ctl_add_to_event_log - add event
338  * @ioc: per adapter object
339  * @mpi_reply: reply message frame
340  */
341 void
mpt3sas_ctl_add_to_event_log(struct MPT3SAS_ADAPTER * ioc,Mpi2EventNotificationReply_t * mpi_reply)342 mpt3sas_ctl_add_to_event_log(struct MPT3SAS_ADAPTER *ioc,
343 	Mpi2EventNotificationReply_t *mpi_reply)
344 {
345 	struct MPT3_IOCTL_EVENTS *event_log;
346 	u16 event;
347 	int i;
348 	u32 sz, event_data_sz;
349 	u8 send_aen = 0;
350 
351 	if (!ioc->event_log)
352 		return;
353 
354 	event = le16_to_cpu(mpi_reply->Event);
355 
356 	if (_ctl_check_event_type(ioc, event)) {
357 
358 		/* insert entry into circular event_log */
359 		i = ioc->event_context % MPT3SAS_CTL_EVENT_LOG_SIZE;
360 		event_log = ioc->event_log;
361 		event_log[i].event = event;
362 		event_log[i].context = ioc->event_context++;
363 
364 		event_data_sz = le16_to_cpu(mpi_reply->EventDataLength)*4;
365 		sz = min_t(u32, event_data_sz, MPT3_EVENT_DATA_SIZE);
366 		memset(event_log[i].data, 0, MPT3_EVENT_DATA_SIZE);
367 		memcpy(event_log[i].data, mpi_reply->EventData, sz);
368 		send_aen = 1;
369 	}
370 
371 	/* This aen_event_read_flag flag is set until the
372 	 * application has read the event log.
373 	 * For MPI2_EVENT_LOG_ENTRY_ADDED, we always notify.
374 	 */
375 	if (event == MPI2_EVENT_LOG_ENTRY_ADDED ||
376 	    (send_aen && !ioc->aen_event_read_flag)) {
377 		ioc->aen_event_read_flag = 1;
378 		wake_up_interruptible(&ctl_poll_wait);
379 		if (async_queue)
380 			kill_fasync(&async_queue, SIGIO, POLL_IN);
381 	}
382 }
383 
384 /**
385  * mpt3sas_ctl_event_callback - firmware event handler (called at ISR time)
386  * @ioc: per adapter object
387  * @msix_index: MSIX table index supplied by the OS
388  * @reply: reply message frame(lower 32bit addr)
389  * Context: interrupt.
390  *
391  * This function merely adds a new work task into ioc->firmware_event_thread.
392  * The tasks are worked from _firmware_event_work in user context.
393  *
394  * Return: 1 meaning mf should be freed from _base_interrupt
395  *         0 means the mf is freed from this function.
396  */
397 u8
mpt3sas_ctl_event_callback(struct MPT3SAS_ADAPTER * ioc,u8 msix_index,u32 reply)398 mpt3sas_ctl_event_callback(struct MPT3SAS_ADAPTER *ioc, u8 msix_index,
399 	u32 reply)
400 {
401 	Mpi2EventNotificationReply_t *mpi_reply;
402 
403 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
404 	if (mpi_reply)
405 		mpt3sas_ctl_add_to_event_log(ioc, mpi_reply);
406 	return 1;
407 }
408 
409 /**
410  * _ctl_verify_adapter - validates ioc_number passed from application
411  * @ioc_number: ?
412  * @iocpp: The ioc pointer is returned in this.
413  * @mpi_version: will be MPI2_VERSION for mpt2ctl ioctl device &
414  * MPI25_VERSION | MPI26_VERSION for mpt3ctl ioctl device.
415  *
416  * Return: (-1) means error, else ioc_number.
417  */
418 static int
_ctl_verify_adapter(int ioc_number,struct MPT3SAS_ADAPTER ** iocpp,int mpi_version)419 _ctl_verify_adapter(int ioc_number, struct MPT3SAS_ADAPTER **iocpp,
420 							int mpi_version)
421 {
422 	struct MPT3SAS_ADAPTER *ioc;
423 	int version = 0;
424 	/* global ioc lock to protect controller on list operations */
425 	spin_lock(&gioc_lock);
426 	list_for_each_entry(ioc, &mpt3sas_ioc_list, list) {
427 		if (ioc->id != ioc_number)
428 			continue;
429 		/* Check whether this ioctl command is from right
430 		 * ioctl device or not, if not continue the search.
431 		 */
432 		version = ioc->hba_mpi_version_belonged;
433 		/* MPI25_VERSION and MPI26_VERSION uses same ioctl
434 		 * device.
435 		 */
436 		if (mpi_version == (MPI25_VERSION | MPI26_VERSION)) {
437 			if ((version == MPI25_VERSION) ||
438 				(version == MPI26_VERSION))
439 				goto out;
440 			else
441 				continue;
442 		} else {
443 			if (version != mpi_version)
444 				continue;
445 		}
446 out:
447 		spin_unlock(&gioc_lock);
448 		*iocpp = ioc;
449 		return ioc_number;
450 	}
451 	spin_unlock(&gioc_lock);
452 	*iocpp = NULL;
453 	return -1;
454 }
455 
456 /**
457  * mpt3sas_ctl_reset_handler - reset callback handler (for ctl)
458  * @ioc: per adapter object
459  *
460  * The handler for doing any required cleanup or initialization.
461  */
mpt3sas_ctl_pre_reset_handler(struct MPT3SAS_ADAPTER * ioc)462 void mpt3sas_ctl_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
463 {
464 	int i;
465 	u8 issue_reset;
466 
467 	dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
468 	for (i = 0; i < MPI2_DIAG_BUF_TYPE_COUNT; i++) {
469 		if (!(ioc->diag_buffer_status[i] &
470 		      MPT3_DIAG_BUFFER_IS_REGISTERED))
471 			continue;
472 		if ((ioc->diag_buffer_status[i] &
473 		     MPT3_DIAG_BUFFER_IS_RELEASED))
474 			continue;
475 
476 		/*
477 		 * add a log message to indicate the release
478 		 */
479 		ioc_info(ioc,
480 		    "%s: Releasing the trace buffer due to adapter reset.",
481 		    __func__);
482 		mpt3sas_send_diag_release(ioc, i, &issue_reset);
483 	}
484 }
485 
486 /**
487  * mpt3sas_ctl_reset_handler - clears outstanding ioctl cmd.
488  * @ioc: per adapter object
489  *
490  * The handler for doing any required cleanup or initialization.
491  */
mpt3sas_ctl_clear_outstanding_ioctls(struct MPT3SAS_ADAPTER * ioc)492 void mpt3sas_ctl_clear_outstanding_ioctls(struct MPT3SAS_ADAPTER *ioc)
493 {
494 	dtmprintk(ioc,
495 	    ioc_info(ioc, "%s: clear outstanding ioctl cmd\n", __func__));
496 	if (ioc->ctl_cmds.status & MPT3_CMD_PENDING) {
497 		ioc->ctl_cmds.status |= MPT3_CMD_RESET;
498 		mpt3sas_base_free_smid(ioc, ioc->ctl_cmds.smid);
499 		complete(&ioc->ctl_cmds.done);
500 	}
501 }
502 
503 /**
504  * mpt3sas_ctl_reset_handler - reset callback handler (for ctl)
505  * @ioc: per adapter object
506  *
507  * The handler for doing any required cleanup or initialization.
508  */
mpt3sas_ctl_reset_done_handler(struct MPT3SAS_ADAPTER * ioc)509 void mpt3sas_ctl_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
510 {
511 	int i;
512 
513 	dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
514 
515 	for (i = 0; i < MPI2_DIAG_BUF_TYPE_COUNT; i++) {
516 		if (!(ioc->diag_buffer_status[i] &
517 		      MPT3_DIAG_BUFFER_IS_REGISTERED))
518 			continue;
519 		if ((ioc->diag_buffer_status[i] &
520 		     MPT3_DIAG_BUFFER_IS_RELEASED))
521 			continue;
522 		ioc->diag_buffer_status[i] |=
523 			MPT3_DIAG_BUFFER_IS_DIAG_RESET;
524 	}
525 }
526 
527 /**
528  * _ctl_fasync -
529  * @fd: ?
530  * @filep: ?
531  * @mode: ?
532  *
533  * Called when application request fasyn callback handler.
534  */
535 static int
_ctl_fasync(int fd,struct file * filep,int mode)536 _ctl_fasync(int fd, struct file *filep, int mode)
537 {
538 	return fasync_helper(fd, filep, mode, &async_queue);
539 }
540 
541 /**
542  * _ctl_poll -
543  * @filep: ?
544  * @wait: ?
545  *
546  */
547 static __poll_t
_ctl_poll(struct file * filep,poll_table * wait)548 _ctl_poll(struct file *filep, poll_table *wait)
549 {
550 	struct MPT3SAS_ADAPTER *ioc;
551 
552 	poll_wait(filep, &ctl_poll_wait, wait);
553 
554 	/* global ioc lock to protect controller on list operations */
555 	spin_lock(&gioc_lock);
556 	list_for_each_entry(ioc, &mpt3sas_ioc_list, list) {
557 		if (ioc->aen_event_read_flag) {
558 			spin_unlock(&gioc_lock);
559 			return EPOLLIN | EPOLLRDNORM;
560 		}
561 	}
562 	spin_unlock(&gioc_lock);
563 	return 0;
564 }
565 
566 /**
567  * _ctl_set_task_mid - assign an active smid to tm request
568  * @ioc: per adapter object
569  * @karg: (struct mpt3_ioctl_command)
570  * @tm_request: pointer to mf from user space
571  *
572  * Return: 0 when an smid if found, else fail.
573  * during failure, the reply frame is filled.
574  */
575 static int
_ctl_set_task_mid(struct MPT3SAS_ADAPTER * ioc,struct mpt3_ioctl_command * karg,Mpi2SCSITaskManagementRequest_t * tm_request)576 _ctl_set_task_mid(struct MPT3SAS_ADAPTER *ioc, struct mpt3_ioctl_command *karg,
577 	Mpi2SCSITaskManagementRequest_t *tm_request)
578 {
579 	u8 found = 0;
580 	u16 smid;
581 	u16 handle;
582 	struct scsi_cmnd *scmd;
583 	struct MPT3SAS_DEVICE *priv_data;
584 	Mpi2SCSITaskManagementReply_t *tm_reply;
585 	u32 sz;
586 	u32 lun;
587 	char *desc = NULL;
588 
589 	if (tm_request->TaskType == MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK)
590 		desc = "abort_task";
591 	else if (tm_request->TaskType == MPI2_SCSITASKMGMT_TASKTYPE_QUERY_TASK)
592 		desc = "query_task";
593 	else
594 		return 0;
595 
596 	lun = scsilun_to_int((struct scsi_lun *)tm_request->LUN);
597 
598 	handle = le16_to_cpu(tm_request->DevHandle);
599 	for (smid = ioc->scsiio_depth; smid && !found; smid--) {
600 		struct scsiio_tracker *st;
601 
602 		scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
603 		if (!scmd)
604 			continue;
605 		if (lun != scmd->device->lun)
606 			continue;
607 		priv_data = scmd->device->hostdata;
608 		if (priv_data->sas_target == NULL)
609 			continue;
610 		if (priv_data->sas_target->handle != handle)
611 			continue;
612 		st = scsi_cmd_priv(scmd);
613 
614 		/*
615 		 * If the given TaskMID from the user space is zero, then the
616 		 * first outstanding smid will be picked up.  Otherwise,
617 		 * targeted smid will be the one.
618 		 */
619 		if (!tm_request->TaskMID || tm_request->TaskMID == st->smid) {
620 			tm_request->TaskMID = cpu_to_le16(st->smid);
621 			found = 1;
622 		}
623 	}
624 
625 	if (!found) {
626 		dctlprintk(ioc,
627 			   ioc_info(ioc, "%s: handle(0x%04x), lun(%d), no active mid!!\n",
628 				    desc, le16_to_cpu(tm_request->DevHandle),
629 				    lun));
630 		tm_reply = ioc->ctl_cmds.reply;
631 		tm_reply->DevHandle = tm_request->DevHandle;
632 		tm_reply->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
633 		tm_reply->TaskType = tm_request->TaskType;
634 		tm_reply->MsgLength = sizeof(Mpi2SCSITaskManagementReply_t)/4;
635 		tm_reply->VP_ID = tm_request->VP_ID;
636 		tm_reply->VF_ID = tm_request->VF_ID;
637 		sz = min_t(u32, karg->max_reply_bytes, ioc->reply_sz);
638 		if (copy_to_user(karg->reply_frame_buf_ptr, ioc->ctl_cmds.reply,
639 		    sz))
640 			pr_err("failure at %s:%d/%s()!\n", __FILE__,
641 			    __LINE__, __func__);
642 		return 1;
643 	}
644 
645 	dctlprintk(ioc,
646 		   ioc_info(ioc, "%s: handle(0x%04x), lun(%d), task_mid(%d)\n",
647 			    desc, le16_to_cpu(tm_request->DevHandle), lun,
648 			    le16_to_cpu(tm_request->TaskMID)));
649 	return 0;
650 }
651 
652 /**
653  * _ctl_do_mpt_command - main handler for MPT3COMMAND opcode
654  * @ioc: per adapter object
655  * @karg: (struct mpt3_ioctl_command)
656  * @mf: pointer to mf in user space
657  */
658 static long
_ctl_do_mpt_command(struct MPT3SAS_ADAPTER * ioc,struct mpt3_ioctl_command karg,void __user * mf)659 _ctl_do_mpt_command(struct MPT3SAS_ADAPTER *ioc, struct mpt3_ioctl_command karg,
660 	void __user *mf)
661 {
662 	MPI2RequestHeader_t *mpi_request = NULL, *request;
663 	MPI2DefaultReply_t *mpi_reply;
664 	Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request = NULL;
665 	struct _pcie_device *pcie_device = NULL;
666 	u16 smid;
667 	unsigned long timeout;
668 	u8 issue_reset;
669 	u32 sz, sz_arg;
670 	void *psge;
671 	void *data_out = NULL;
672 	dma_addr_t data_out_dma = 0;
673 	size_t data_out_sz = 0;
674 	void *data_in = NULL;
675 	dma_addr_t data_in_dma = 0;
676 	size_t data_in_sz = 0;
677 	long ret;
678 	u16 device_handle = MPT3SAS_INVALID_DEVICE_HANDLE;
679 
680 	issue_reset = 0;
681 
682 	if (ioc->ctl_cmds.status != MPT3_CMD_NOT_USED) {
683 		ioc_err(ioc, "%s: ctl_cmd in use\n", __func__);
684 		ret = -EAGAIN;
685 		goto out;
686 	}
687 
688 	ret = mpt3sas_wait_for_ioc(ioc,	IOC_OPERATIONAL_WAIT_COUNT);
689 	if (ret)
690 		goto out;
691 
692 	mpi_request = kzalloc(ioc->request_sz, GFP_KERNEL);
693 	if (!mpi_request) {
694 		ioc_err(ioc, "%s: failed obtaining a memory for mpi_request\n",
695 			__func__);
696 		ret = -ENOMEM;
697 		goto out;
698 	}
699 
700 	/* Check for overflow and wraparound */
701 	if (karg.data_sge_offset * 4 > ioc->request_sz ||
702 	    karg.data_sge_offset > (UINT_MAX / 4)) {
703 		ret = -EINVAL;
704 		goto out;
705 	}
706 
707 	/* copy in request message frame from user */
708 	if (copy_from_user(mpi_request, mf, karg.data_sge_offset*4)) {
709 		pr_err("failure at %s:%d/%s()!\n", __FILE__, __LINE__,
710 		    __func__);
711 		ret = -EFAULT;
712 		goto out;
713 	}
714 
715 	if (mpi_request->Function == MPI2_FUNCTION_SCSI_TASK_MGMT) {
716 		smid = mpt3sas_base_get_smid_hpr(ioc, ioc->ctl_cb_idx);
717 		if (!smid) {
718 			ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
719 			ret = -EAGAIN;
720 			goto out;
721 		}
722 	} else {
723 		/* Use first reserved smid for passthrough ioctls */
724 		smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
725 	}
726 
727 	ret = 0;
728 	ioc->ctl_cmds.status = MPT3_CMD_PENDING;
729 	memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz);
730 	request = mpt3sas_base_get_msg_frame(ioc, smid);
731 	memset(request, 0, ioc->request_sz);
732 	memcpy(request, mpi_request, karg.data_sge_offset*4);
733 	ioc->ctl_cmds.smid = smid;
734 	data_out_sz = karg.data_out_size;
735 	data_in_sz = karg.data_in_size;
736 
737 	if (mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
738 	    mpi_request->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
739 	    mpi_request->Function == MPI2_FUNCTION_SCSI_TASK_MGMT ||
740 	    mpi_request->Function == MPI2_FUNCTION_SATA_PASSTHROUGH ||
741 	    mpi_request->Function == MPI2_FUNCTION_NVME_ENCAPSULATED) {
742 
743 		device_handle = le16_to_cpu(mpi_request->FunctionDependent1);
744 		if (!device_handle || (device_handle >
745 		    ioc->facts.MaxDevHandle)) {
746 			ret = -EINVAL;
747 			mpt3sas_base_free_smid(ioc, smid);
748 			goto out;
749 		}
750 	}
751 
752 	/* obtain dma-able memory for data transfer */
753 	if (data_out_sz) /* WRITE */ {
754 		data_out = dma_alloc_coherent(&ioc->pdev->dev, data_out_sz,
755 				&data_out_dma, GFP_KERNEL);
756 		if (!data_out) {
757 			pr_err("failure at %s:%d/%s()!\n", __FILE__,
758 			    __LINE__, __func__);
759 			ret = -ENOMEM;
760 			mpt3sas_base_free_smid(ioc, smid);
761 			goto out;
762 		}
763 		if (copy_from_user(data_out, karg.data_out_buf_ptr,
764 			data_out_sz)) {
765 			pr_err("failure at %s:%d/%s()!\n", __FILE__,
766 			    __LINE__, __func__);
767 			ret =  -EFAULT;
768 			mpt3sas_base_free_smid(ioc, smid);
769 			goto out;
770 		}
771 	}
772 
773 	if (data_in_sz) /* READ */ {
774 		data_in = dma_alloc_coherent(&ioc->pdev->dev, data_in_sz,
775 				&data_in_dma, GFP_KERNEL);
776 		if (!data_in) {
777 			pr_err("failure at %s:%d/%s()!\n", __FILE__,
778 			    __LINE__, __func__);
779 			ret = -ENOMEM;
780 			mpt3sas_base_free_smid(ioc, smid);
781 			goto out;
782 		}
783 	}
784 
785 	psge = (void *)request + (karg.data_sge_offset*4);
786 
787 	/* send command to firmware */
788 	_ctl_display_some_debug(ioc, smid, "ctl_request", NULL);
789 
790 	init_completion(&ioc->ctl_cmds.done);
791 	switch (mpi_request->Function) {
792 	case MPI2_FUNCTION_NVME_ENCAPSULATED:
793 	{
794 		nvme_encap_request = (Mpi26NVMeEncapsulatedRequest_t *)request;
795 		if (!ioc->pcie_sg_lookup) {
796 			dtmprintk(ioc, ioc_info(ioc,
797 			    "HBA doesn't support NVMe. Rejecting NVMe Encapsulated request.\n"
798 			    ));
799 
800 			if (ioc->logging_level & MPT_DEBUG_TM)
801 				_debug_dump_mf(nvme_encap_request,
802 				    ioc->request_sz/4);
803 			mpt3sas_base_free_smid(ioc, smid);
804 			ret = -EINVAL;
805 			goto out;
806 		}
807 		/*
808 		 * Get the Physical Address of the sense buffer.
809 		 * Use Error Response buffer address field to hold the sense
810 		 * buffer address.
811 		 * Clear the internal sense buffer, which will potentially hold
812 		 * the Completion Queue Entry on return, or 0 if no Entry.
813 		 * Build the PRPs and set direction bits.
814 		 * Send the request.
815 		 */
816 		nvme_encap_request->ErrorResponseBaseAddress =
817 		    cpu_to_le64(ioc->sense_dma & 0xFFFFFFFF00000000UL);
818 		nvme_encap_request->ErrorResponseBaseAddress |=
819 		   cpu_to_le64(le32_to_cpu(
820 		   mpt3sas_base_get_sense_buffer_dma(ioc, smid)));
821 		nvme_encap_request->ErrorResponseAllocationLength =
822 					cpu_to_le16(NVME_ERROR_RESPONSE_SIZE);
823 		memset(ioc->ctl_cmds.sense, 0, NVME_ERROR_RESPONSE_SIZE);
824 		ioc->build_nvme_prp(ioc, smid, nvme_encap_request,
825 		    data_out_dma, data_out_sz, data_in_dma, data_in_sz);
826 		if (test_bit(device_handle, ioc->device_remove_in_progress)) {
827 			dtmprintk(ioc,
828 				  ioc_info(ioc, "handle(0x%04x): ioctl failed due to device removal in progress\n",
829 					   device_handle));
830 			mpt3sas_base_free_smid(ioc, smid);
831 			ret = -EINVAL;
832 			goto out;
833 		}
834 		mpt3sas_base_put_smid_nvme_encap(ioc, smid);
835 		break;
836 	}
837 	case MPI2_FUNCTION_SCSI_IO_REQUEST:
838 	case MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH:
839 	{
840 		Mpi2SCSIIORequest_t *scsiio_request =
841 		    (Mpi2SCSIIORequest_t *)request;
842 		scsiio_request->SenseBufferLength = SCSI_SENSE_BUFFERSIZE;
843 		scsiio_request->SenseBufferLowAddress =
844 		    mpt3sas_base_get_sense_buffer_dma(ioc, smid);
845 		memset(ioc->ctl_cmds.sense, 0, SCSI_SENSE_BUFFERSIZE);
846 		if (test_bit(device_handle, ioc->device_remove_in_progress)) {
847 			dtmprintk(ioc,
848 				  ioc_info(ioc, "handle(0x%04x) :ioctl failed due to device removal in progress\n",
849 					   device_handle));
850 			mpt3sas_base_free_smid(ioc, smid);
851 			ret = -EINVAL;
852 			goto out;
853 		}
854 		ioc->build_sg(ioc, psge, data_out_dma, data_out_sz,
855 		    data_in_dma, data_in_sz);
856 		if (mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST)
857 			ioc->put_smid_scsi_io(ioc, smid, device_handle);
858 		else
859 			ioc->put_smid_default(ioc, smid);
860 		break;
861 	}
862 	case MPI2_FUNCTION_SCSI_TASK_MGMT:
863 	{
864 		Mpi2SCSITaskManagementRequest_t *tm_request =
865 		    (Mpi2SCSITaskManagementRequest_t *)request;
866 
867 		dtmprintk(ioc,
868 			  ioc_info(ioc, "TASK_MGMT: handle(0x%04x), task_type(0x%02x)\n",
869 				   le16_to_cpu(tm_request->DevHandle),
870 				   tm_request->TaskType));
871 		ioc->got_task_abort_from_ioctl = 1;
872 		if (tm_request->TaskType ==
873 		    MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK ||
874 		    tm_request->TaskType ==
875 		    MPI2_SCSITASKMGMT_TASKTYPE_QUERY_TASK) {
876 			if (_ctl_set_task_mid(ioc, &karg, tm_request)) {
877 				mpt3sas_base_free_smid(ioc, smid);
878 				ioc->got_task_abort_from_ioctl = 0;
879 				goto out;
880 			}
881 		}
882 		ioc->got_task_abort_from_ioctl = 0;
883 
884 		if (test_bit(device_handle, ioc->device_remove_in_progress)) {
885 			dtmprintk(ioc,
886 				  ioc_info(ioc, "handle(0x%04x) :ioctl failed due to device removal in progress\n",
887 					   device_handle));
888 			mpt3sas_base_free_smid(ioc, smid);
889 			ret = -EINVAL;
890 			goto out;
891 		}
892 		mpt3sas_scsih_set_tm_flag(ioc, le16_to_cpu(
893 		    tm_request->DevHandle));
894 		ioc->build_sg_mpi(ioc, psge, data_out_dma, data_out_sz,
895 		    data_in_dma, data_in_sz);
896 		ioc->put_smid_hi_priority(ioc, smid, 0);
897 		break;
898 	}
899 	case MPI2_FUNCTION_SMP_PASSTHROUGH:
900 	{
901 		Mpi2SmpPassthroughRequest_t *smp_request =
902 		    (Mpi2SmpPassthroughRequest_t *)mpi_request;
903 		u8 *data;
904 
905 		/* ioc determines which port to use */
906 		smp_request->PhysicalPort = 0xFF;
907 		if (smp_request->PassthroughFlags &
908 		    MPI2_SMP_PT_REQ_PT_FLAGS_IMMEDIATE)
909 			data = (u8 *)&smp_request->SGL;
910 		else {
911 			if (unlikely(data_out == NULL)) {
912 				pr_err("failure at %s:%d/%s()!\n",
913 				    __FILE__, __LINE__, __func__);
914 				mpt3sas_base_free_smid(ioc, smid);
915 				ret = -EINVAL;
916 				goto out;
917 			}
918 			data = data_out;
919 		}
920 
921 		if (data[1] == 0x91 && (data[10] == 1 || data[10] == 2)) {
922 			ioc->ioc_link_reset_in_progress = 1;
923 			ioc->ignore_loginfos = 1;
924 		}
925 		ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, data_in_dma,
926 		    data_in_sz);
927 		ioc->put_smid_default(ioc, smid);
928 		break;
929 	}
930 	case MPI2_FUNCTION_SATA_PASSTHROUGH:
931 	{
932 		if (test_bit(device_handle, ioc->device_remove_in_progress)) {
933 			dtmprintk(ioc,
934 				  ioc_info(ioc, "handle(0x%04x) :ioctl failed due to device removal in progress\n",
935 					   device_handle));
936 			mpt3sas_base_free_smid(ioc, smid);
937 			ret = -EINVAL;
938 			goto out;
939 		}
940 		ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, data_in_dma,
941 		    data_in_sz);
942 		ioc->put_smid_default(ioc, smid);
943 		break;
944 	}
945 	case MPI2_FUNCTION_FW_DOWNLOAD:
946 	case MPI2_FUNCTION_FW_UPLOAD:
947 	{
948 		ioc->build_sg(ioc, psge, data_out_dma, data_out_sz, data_in_dma,
949 		    data_in_sz);
950 		ioc->put_smid_default(ioc, smid);
951 		break;
952 	}
953 	case MPI2_FUNCTION_TOOLBOX:
954 	{
955 		Mpi2ToolboxCleanRequest_t *toolbox_request =
956 			(Mpi2ToolboxCleanRequest_t *)mpi_request;
957 
958 		if ((toolbox_request->Tool == MPI2_TOOLBOX_DIAGNOSTIC_CLI_TOOL)
959 		    || (toolbox_request->Tool ==
960 		    MPI26_TOOLBOX_BACKEND_PCIE_LANE_MARGIN))
961 			ioc->build_sg(ioc, psge, data_out_dma, data_out_sz,
962 				data_in_dma, data_in_sz);
963 		else if (toolbox_request->Tool ==
964 				MPI2_TOOLBOX_MEMORY_MOVE_TOOL) {
965 			Mpi2ToolboxMemMoveRequest_t *mem_move_request =
966 					(Mpi2ToolboxMemMoveRequest_t *)request;
967 			Mpi2SGESimple64_t tmp, *src = NULL, *dst = NULL;
968 
969 			ioc->build_sg_mpi(ioc, psge, data_out_dma,
970 					data_out_sz, data_in_dma, data_in_sz);
971 			if (data_out_sz && !data_in_sz) {
972 				dst =
973 				    (Mpi2SGESimple64_t *)&mem_move_request->SGL;
974 				src = (void *)dst + ioc->sge_size;
975 
976 				memcpy(&tmp, src, ioc->sge_size);
977 				memcpy(src, dst, ioc->sge_size);
978 				memcpy(dst, &tmp, ioc->sge_size);
979 			}
980 			if (ioc->logging_level & MPT_DEBUG_TM) {
981 				ioc_info(ioc,
982 				  "Mpi2ToolboxMemMoveRequest_t request msg\n");
983 				_debug_dump_mf(mem_move_request,
984 							ioc->request_sz/4);
985 			}
986 		} else
987 			ioc->build_sg_mpi(ioc, psge, data_out_dma, data_out_sz,
988 			    data_in_dma, data_in_sz);
989 		ioc->put_smid_default(ioc, smid);
990 		break;
991 	}
992 	case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
993 	{
994 		Mpi2SasIoUnitControlRequest_t *sasiounit_request =
995 		    (Mpi2SasIoUnitControlRequest_t *)mpi_request;
996 
997 		if (sasiounit_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET
998 		    || sasiounit_request->Operation ==
999 		    MPI2_SAS_OP_PHY_LINK_RESET) {
1000 			ioc->ioc_link_reset_in_progress = 1;
1001 			ioc->ignore_loginfos = 1;
1002 		}
1003 		/* drop to default case for posting the request */
1004 	}
1005 		fallthrough;
1006 	default:
1007 		ioc->build_sg_mpi(ioc, psge, data_out_dma, data_out_sz,
1008 		    data_in_dma, data_in_sz);
1009 		ioc->put_smid_default(ioc, smid);
1010 		break;
1011 	}
1012 
1013 	if (karg.timeout < MPT3_IOCTL_DEFAULT_TIMEOUT)
1014 		timeout = MPT3_IOCTL_DEFAULT_TIMEOUT;
1015 	else
1016 		timeout = karg.timeout;
1017 	wait_for_completion_timeout(&ioc->ctl_cmds.done, timeout*HZ);
1018 	if (mpi_request->Function == MPI2_FUNCTION_SCSI_TASK_MGMT) {
1019 		Mpi2SCSITaskManagementRequest_t *tm_request =
1020 		    (Mpi2SCSITaskManagementRequest_t *)mpi_request;
1021 		mpt3sas_scsih_clear_tm_flag(ioc, le16_to_cpu(
1022 		    tm_request->DevHandle));
1023 		mpt3sas_trigger_master(ioc, MASTER_TRIGGER_TASK_MANAGMENT);
1024 	} else if ((mpi_request->Function == MPI2_FUNCTION_SMP_PASSTHROUGH ||
1025 	    mpi_request->Function == MPI2_FUNCTION_SAS_IO_UNIT_CONTROL) &&
1026 		ioc->ioc_link_reset_in_progress) {
1027 		ioc->ioc_link_reset_in_progress = 0;
1028 		ioc->ignore_loginfos = 0;
1029 	}
1030 	if (!(ioc->ctl_cmds.status & MPT3_CMD_COMPLETE)) {
1031 		mpt3sas_check_cmd_timeout(ioc,
1032 		    ioc->ctl_cmds.status, mpi_request,
1033 		    karg.data_sge_offset, issue_reset);
1034 		goto issue_host_reset;
1035 	}
1036 
1037 	mpi_reply = ioc->ctl_cmds.reply;
1038 
1039 	if (mpi_reply->Function == MPI2_FUNCTION_SCSI_TASK_MGMT &&
1040 	    (ioc->logging_level & MPT_DEBUG_TM)) {
1041 		Mpi2SCSITaskManagementReply_t *tm_reply =
1042 		    (Mpi2SCSITaskManagementReply_t *)mpi_reply;
1043 
1044 		ioc_info(ioc, "TASK_MGMT: IOCStatus(0x%04x), IOCLogInfo(0x%08x), TerminationCount(0x%08x)\n",
1045 			 le16_to_cpu(tm_reply->IOCStatus),
1046 			 le32_to_cpu(tm_reply->IOCLogInfo),
1047 			 le32_to_cpu(tm_reply->TerminationCount));
1048 	}
1049 
1050 	/* copy out xdata to user */
1051 	if (data_in_sz) {
1052 		if (copy_to_user(karg.data_in_buf_ptr, data_in,
1053 		    data_in_sz)) {
1054 			pr_err("failure at %s:%d/%s()!\n", __FILE__,
1055 			    __LINE__, __func__);
1056 			ret = -ENODATA;
1057 			goto out;
1058 		}
1059 	}
1060 
1061 	/* copy out reply message frame to user */
1062 	if (karg.max_reply_bytes) {
1063 		sz = min_t(u32, karg.max_reply_bytes, ioc->reply_sz);
1064 		if (copy_to_user(karg.reply_frame_buf_ptr, ioc->ctl_cmds.reply,
1065 		    sz)) {
1066 			pr_err("failure at %s:%d/%s()!\n", __FILE__,
1067 			    __LINE__, __func__);
1068 			ret = -ENODATA;
1069 			goto out;
1070 		}
1071 	}
1072 
1073 	/* copy out sense/NVMe Error Response to user */
1074 	if (karg.max_sense_bytes && (mpi_request->Function ==
1075 	    MPI2_FUNCTION_SCSI_IO_REQUEST || mpi_request->Function ==
1076 	    MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || mpi_request->Function ==
1077 	    MPI2_FUNCTION_NVME_ENCAPSULATED)) {
1078 		if (karg.sense_data_ptr == NULL) {
1079 			ioc_info(ioc, "Response buffer provided by application is NULL; Response data will not be returned\n");
1080 			goto out;
1081 		}
1082 		sz_arg = (mpi_request->Function ==
1083 		MPI2_FUNCTION_NVME_ENCAPSULATED) ? NVME_ERROR_RESPONSE_SIZE :
1084 							SCSI_SENSE_BUFFERSIZE;
1085 		sz = min_t(u32, karg.max_sense_bytes, sz_arg);
1086 		if (copy_to_user(karg.sense_data_ptr, ioc->ctl_cmds.sense,
1087 		    sz)) {
1088 			pr_err("failure at %s:%d/%s()!\n", __FILE__,
1089 				__LINE__, __func__);
1090 			ret = -ENODATA;
1091 			goto out;
1092 		}
1093 	}
1094 
1095  issue_host_reset:
1096 	if (issue_reset) {
1097 		ret = -ENODATA;
1098 		if ((mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
1099 		    mpi_request->Function ==
1100 		    MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
1101 		    mpi_request->Function == MPI2_FUNCTION_SATA_PASSTHROUGH)) {
1102 			ioc_info(ioc, "issue target reset: handle = (0x%04x)\n",
1103 				 le16_to_cpu(mpi_request->FunctionDependent1));
1104 			mpt3sas_halt_firmware(ioc);
1105 			pcie_device = mpt3sas_get_pdev_by_handle(ioc,
1106 				le16_to_cpu(mpi_request->FunctionDependent1));
1107 			if (pcie_device && (!ioc->tm_custom_handling) &&
1108 			    (!(mpt3sas_scsih_is_pcie_scsi_device(
1109 			    pcie_device->device_info))))
1110 				mpt3sas_scsih_issue_locked_tm(ioc,
1111 				  le16_to_cpu(mpi_request->FunctionDependent1),
1112 				  0, 0, 0,
1113 				  MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET, 0,
1114 				  0, pcie_device->reset_timeout,
1115 			MPI26_SCSITASKMGMT_MSGFLAGS_PROTOCOL_LVL_RST_PCIE);
1116 			else
1117 				mpt3sas_scsih_issue_locked_tm(ioc,
1118 				  le16_to_cpu(mpi_request->FunctionDependent1),
1119 				  0, 0, 0,
1120 				  MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET, 0,
1121 				  0, 30, MPI2_SCSITASKMGMT_MSGFLAGS_LINK_RESET);
1122 		} else
1123 			mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
1124 	}
1125 
1126  out:
1127 	if (pcie_device)
1128 		pcie_device_put(pcie_device);
1129 
1130 	/* free memory associated with sg buffers */
1131 	if (data_in)
1132 		dma_free_coherent(&ioc->pdev->dev, data_in_sz, data_in,
1133 		    data_in_dma);
1134 
1135 	if (data_out)
1136 		dma_free_coherent(&ioc->pdev->dev, data_out_sz, data_out,
1137 		    data_out_dma);
1138 
1139 	kfree(mpi_request);
1140 	ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
1141 	return ret;
1142 }
1143 
1144 /**
1145  * _ctl_getiocinfo - main handler for MPT3IOCINFO opcode
1146  * @ioc: per adapter object
1147  * @arg: user space buffer containing ioctl content
1148  */
1149 static long
_ctl_getiocinfo(struct MPT3SAS_ADAPTER * ioc,void __user * arg)1150 _ctl_getiocinfo(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
1151 {
1152 	struct mpt3_ioctl_iocinfo karg;
1153 
1154 	dctlprintk(ioc, ioc_info(ioc, "%s: enter\n",
1155 				 __func__));
1156 
1157 	memset(&karg, 0 , sizeof(karg));
1158 	if (ioc->pfacts)
1159 		karg.port_number = ioc->pfacts[0].PortNumber;
1160 	karg.hw_rev = ioc->pdev->revision;
1161 	karg.pci_id = ioc->pdev->device;
1162 	karg.subsystem_device = ioc->pdev->subsystem_device;
1163 	karg.subsystem_vendor = ioc->pdev->subsystem_vendor;
1164 	karg.pci_information.u.bits.bus = ioc->pdev->bus->number;
1165 	karg.pci_information.u.bits.device = PCI_SLOT(ioc->pdev->devfn);
1166 	karg.pci_information.u.bits.function = PCI_FUNC(ioc->pdev->devfn);
1167 	karg.pci_information.segment_id = pci_domain_nr(ioc->pdev->bus);
1168 	karg.firmware_version = ioc->facts.FWVersion.Word;
1169 	strcpy(karg.driver_version, ioc->driver_name);
1170 	strcat(karg.driver_version, "-");
1171 	switch  (ioc->hba_mpi_version_belonged) {
1172 	case MPI2_VERSION:
1173 		if (ioc->is_warpdrive)
1174 			karg.adapter_type = MPT2_IOCTL_INTERFACE_SAS2_SSS6200;
1175 		else
1176 			karg.adapter_type = MPT2_IOCTL_INTERFACE_SAS2;
1177 		strcat(karg.driver_version, MPT2SAS_DRIVER_VERSION);
1178 		break;
1179 	case MPI25_VERSION:
1180 	case MPI26_VERSION:
1181 		if (ioc->is_gen35_ioc)
1182 			karg.adapter_type = MPT3_IOCTL_INTERFACE_SAS35;
1183 		else
1184 			karg.adapter_type = MPT3_IOCTL_INTERFACE_SAS3;
1185 		strcat(karg.driver_version, MPT3SAS_DRIVER_VERSION);
1186 		break;
1187 	}
1188 	karg.bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
1189 
1190 	if (copy_to_user(arg, &karg, sizeof(karg))) {
1191 		pr_err("failure at %s:%d/%s()!\n",
1192 		    __FILE__, __LINE__, __func__);
1193 		return -EFAULT;
1194 	}
1195 	return 0;
1196 }
1197 
1198 /**
1199  * _ctl_eventquery - main handler for MPT3EVENTQUERY opcode
1200  * @ioc: per adapter object
1201  * @arg: user space buffer containing ioctl content
1202  */
1203 static long
_ctl_eventquery(struct MPT3SAS_ADAPTER * ioc,void __user * arg)1204 _ctl_eventquery(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
1205 {
1206 	struct mpt3_ioctl_eventquery karg;
1207 
1208 	if (copy_from_user(&karg, arg, sizeof(karg))) {
1209 		pr_err("failure at %s:%d/%s()!\n",
1210 		    __FILE__, __LINE__, __func__);
1211 		return -EFAULT;
1212 	}
1213 
1214 	dctlprintk(ioc, ioc_info(ioc, "%s: enter\n",
1215 				 __func__));
1216 
1217 	karg.event_entries = MPT3SAS_CTL_EVENT_LOG_SIZE;
1218 	memcpy(karg.event_types, ioc->event_type,
1219 	    MPI2_EVENT_NOTIFY_EVENTMASK_WORDS * sizeof(u32));
1220 
1221 	if (copy_to_user(arg, &karg, sizeof(karg))) {
1222 		pr_err("failure at %s:%d/%s()!\n",
1223 		    __FILE__, __LINE__, __func__);
1224 		return -EFAULT;
1225 	}
1226 	return 0;
1227 }
1228 
1229 /**
1230  * _ctl_eventenable - main handler for MPT3EVENTENABLE opcode
1231  * @ioc: per adapter object
1232  * @arg: user space buffer containing ioctl content
1233  */
1234 static long
_ctl_eventenable(struct MPT3SAS_ADAPTER * ioc,void __user * arg)1235 _ctl_eventenable(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
1236 {
1237 	struct mpt3_ioctl_eventenable karg;
1238 
1239 	if (copy_from_user(&karg, arg, sizeof(karg))) {
1240 		pr_err("failure at %s:%d/%s()!\n",
1241 		    __FILE__, __LINE__, __func__);
1242 		return -EFAULT;
1243 	}
1244 
1245 	dctlprintk(ioc, ioc_info(ioc, "%s: enter\n",
1246 				 __func__));
1247 
1248 	memcpy(ioc->event_type, karg.event_types,
1249 	    MPI2_EVENT_NOTIFY_EVENTMASK_WORDS * sizeof(u32));
1250 	mpt3sas_base_validate_event_type(ioc, ioc->event_type);
1251 
1252 	if (ioc->event_log)
1253 		return 0;
1254 	/* initialize event_log */
1255 	ioc->event_context = 0;
1256 	ioc->aen_event_read_flag = 0;
1257 	ioc->event_log = kcalloc(MPT3SAS_CTL_EVENT_LOG_SIZE,
1258 	    sizeof(struct MPT3_IOCTL_EVENTS), GFP_KERNEL);
1259 	if (!ioc->event_log) {
1260 		pr_err("failure at %s:%d/%s()!\n",
1261 		    __FILE__, __LINE__, __func__);
1262 		return -ENOMEM;
1263 	}
1264 	return 0;
1265 }
1266 
1267 /**
1268  * _ctl_eventreport - main handler for MPT3EVENTREPORT opcode
1269  * @ioc: per adapter object
1270  * @arg: user space buffer containing ioctl content
1271  */
1272 static long
_ctl_eventreport(struct MPT3SAS_ADAPTER * ioc,void __user * arg)1273 _ctl_eventreport(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
1274 {
1275 	struct mpt3_ioctl_eventreport karg;
1276 	u32 number_bytes, max_events, max;
1277 	struct mpt3_ioctl_eventreport __user *uarg = arg;
1278 
1279 	if (copy_from_user(&karg, arg, sizeof(karg))) {
1280 		pr_err("failure at %s:%d/%s()!\n",
1281 		    __FILE__, __LINE__, __func__);
1282 		return -EFAULT;
1283 	}
1284 
1285 	dctlprintk(ioc, ioc_info(ioc, "%s: enter\n",
1286 				 __func__));
1287 
1288 	number_bytes = karg.hdr.max_data_size -
1289 	    sizeof(struct mpt3_ioctl_header);
1290 	max_events = number_bytes/sizeof(struct MPT3_IOCTL_EVENTS);
1291 	max = min_t(u32, MPT3SAS_CTL_EVENT_LOG_SIZE, max_events);
1292 
1293 	/* If fewer than 1 event is requested, there must have
1294 	 * been some type of error.
1295 	 */
1296 	if (!max || !ioc->event_log)
1297 		return -ENODATA;
1298 
1299 	number_bytes = max * sizeof(struct MPT3_IOCTL_EVENTS);
1300 	if (copy_to_user(uarg->event_data, ioc->event_log, number_bytes)) {
1301 		pr_err("failure at %s:%d/%s()!\n",
1302 		    __FILE__, __LINE__, __func__);
1303 		return -EFAULT;
1304 	}
1305 
1306 	/* reset flag so SIGIO can restart */
1307 	ioc->aen_event_read_flag = 0;
1308 	return 0;
1309 }
1310 
1311 /**
1312  * _ctl_do_reset - main handler for MPT3HARDRESET opcode
1313  * @ioc: per adapter object
1314  * @arg: user space buffer containing ioctl content
1315  */
1316 static long
_ctl_do_reset(struct MPT3SAS_ADAPTER * ioc,void __user * arg)1317 _ctl_do_reset(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
1318 {
1319 	struct mpt3_ioctl_diag_reset karg;
1320 	int retval;
1321 
1322 	if (copy_from_user(&karg, arg, sizeof(karg))) {
1323 		pr_err("failure at %s:%d/%s()!\n",
1324 		    __FILE__, __LINE__, __func__);
1325 		return -EFAULT;
1326 	}
1327 
1328 	if (ioc->shost_recovery || ioc->pci_error_recovery ||
1329 	    ioc->is_driver_loading)
1330 		return -EAGAIN;
1331 
1332 	dctlprintk(ioc, ioc_info(ioc, "%s: enter\n",
1333 				 __func__));
1334 
1335 	retval = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
1336 	ioc_info(ioc,
1337 	    "Ioctl: host reset: %s\n", ((!retval) ? "SUCCESS" : "FAILED"));
1338 	return 0;
1339 }
1340 
1341 /**
1342  * _ctl_btdh_search_sas_device - searching for sas device
1343  * @ioc: per adapter object
1344  * @btdh: btdh ioctl payload
1345  */
1346 static int
_ctl_btdh_search_sas_device(struct MPT3SAS_ADAPTER * ioc,struct mpt3_ioctl_btdh_mapping * btdh)1347 _ctl_btdh_search_sas_device(struct MPT3SAS_ADAPTER *ioc,
1348 	struct mpt3_ioctl_btdh_mapping *btdh)
1349 {
1350 	struct _sas_device *sas_device;
1351 	unsigned long flags;
1352 	int rc = 0;
1353 
1354 	if (list_empty(&ioc->sas_device_list))
1355 		return rc;
1356 
1357 	spin_lock_irqsave(&ioc->sas_device_lock, flags);
1358 	list_for_each_entry(sas_device, &ioc->sas_device_list, list) {
1359 		if (btdh->bus == 0xFFFFFFFF && btdh->id == 0xFFFFFFFF &&
1360 		    btdh->handle == sas_device->handle) {
1361 			btdh->bus = sas_device->channel;
1362 			btdh->id = sas_device->id;
1363 			rc = 1;
1364 			goto out;
1365 		} else if (btdh->bus == sas_device->channel && btdh->id ==
1366 		    sas_device->id && btdh->handle == 0xFFFF) {
1367 			btdh->handle = sas_device->handle;
1368 			rc = 1;
1369 			goto out;
1370 		}
1371 	}
1372  out:
1373 	spin_unlock_irqrestore(&ioc->sas_device_lock, flags);
1374 	return rc;
1375 }
1376 
1377 /**
1378  * _ctl_btdh_search_pcie_device - searching for pcie device
1379  * @ioc: per adapter object
1380  * @btdh: btdh ioctl payload
1381  */
1382 static int
_ctl_btdh_search_pcie_device(struct MPT3SAS_ADAPTER * ioc,struct mpt3_ioctl_btdh_mapping * btdh)1383 _ctl_btdh_search_pcie_device(struct MPT3SAS_ADAPTER *ioc,
1384 	struct mpt3_ioctl_btdh_mapping *btdh)
1385 {
1386 	struct _pcie_device *pcie_device;
1387 	unsigned long flags;
1388 	int rc = 0;
1389 
1390 	if (list_empty(&ioc->pcie_device_list))
1391 		return rc;
1392 
1393 	spin_lock_irqsave(&ioc->pcie_device_lock, flags);
1394 	list_for_each_entry(pcie_device, &ioc->pcie_device_list, list) {
1395 		if (btdh->bus == 0xFFFFFFFF && btdh->id == 0xFFFFFFFF &&
1396 			   btdh->handle == pcie_device->handle) {
1397 			btdh->bus = pcie_device->channel;
1398 			btdh->id = pcie_device->id;
1399 			rc = 1;
1400 			goto out;
1401 		} else if (btdh->bus == pcie_device->channel && btdh->id ==
1402 			   pcie_device->id && btdh->handle == 0xFFFF) {
1403 			btdh->handle = pcie_device->handle;
1404 			rc = 1;
1405 			goto out;
1406 		}
1407 	}
1408  out:
1409 	spin_unlock_irqrestore(&ioc->pcie_device_lock, flags);
1410 	return rc;
1411 }
1412 
1413 /**
1414  * _ctl_btdh_search_raid_device - searching for raid device
1415  * @ioc: per adapter object
1416  * @btdh: btdh ioctl payload
1417  */
1418 static int
_ctl_btdh_search_raid_device(struct MPT3SAS_ADAPTER * ioc,struct mpt3_ioctl_btdh_mapping * btdh)1419 _ctl_btdh_search_raid_device(struct MPT3SAS_ADAPTER *ioc,
1420 	struct mpt3_ioctl_btdh_mapping *btdh)
1421 {
1422 	struct _raid_device *raid_device;
1423 	unsigned long flags;
1424 	int rc = 0;
1425 
1426 	if (list_empty(&ioc->raid_device_list))
1427 		return rc;
1428 
1429 	spin_lock_irqsave(&ioc->raid_device_lock, flags);
1430 	list_for_each_entry(raid_device, &ioc->raid_device_list, list) {
1431 		if (btdh->bus == 0xFFFFFFFF && btdh->id == 0xFFFFFFFF &&
1432 		    btdh->handle == raid_device->handle) {
1433 			btdh->bus = raid_device->channel;
1434 			btdh->id = raid_device->id;
1435 			rc = 1;
1436 			goto out;
1437 		} else if (btdh->bus == raid_device->channel && btdh->id ==
1438 		    raid_device->id && btdh->handle == 0xFFFF) {
1439 			btdh->handle = raid_device->handle;
1440 			rc = 1;
1441 			goto out;
1442 		}
1443 	}
1444  out:
1445 	spin_unlock_irqrestore(&ioc->raid_device_lock, flags);
1446 	return rc;
1447 }
1448 
1449 /**
1450  * _ctl_btdh_mapping - main handler for MPT3BTDHMAPPING opcode
1451  * @ioc: per adapter object
1452  * @arg: user space buffer containing ioctl content
1453  */
1454 static long
_ctl_btdh_mapping(struct MPT3SAS_ADAPTER * ioc,void __user * arg)1455 _ctl_btdh_mapping(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
1456 {
1457 	struct mpt3_ioctl_btdh_mapping karg;
1458 	int rc;
1459 
1460 	if (copy_from_user(&karg, arg, sizeof(karg))) {
1461 		pr_err("failure at %s:%d/%s()!\n",
1462 		    __FILE__, __LINE__, __func__);
1463 		return -EFAULT;
1464 	}
1465 
1466 	dctlprintk(ioc, ioc_info(ioc, "%s\n",
1467 				 __func__));
1468 
1469 	rc = _ctl_btdh_search_sas_device(ioc, &karg);
1470 	if (!rc)
1471 		rc = _ctl_btdh_search_pcie_device(ioc, &karg);
1472 	if (!rc)
1473 		_ctl_btdh_search_raid_device(ioc, &karg);
1474 
1475 	if (copy_to_user(arg, &karg, sizeof(karg))) {
1476 		pr_err("failure at %s:%d/%s()!\n",
1477 		    __FILE__, __LINE__, __func__);
1478 		return -EFAULT;
1479 	}
1480 	return 0;
1481 }
1482 
1483 /**
1484  * _ctl_diag_capability - return diag buffer capability
1485  * @ioc: per adapter object
1486  * @buffer_type: specifies either TRACE, SNAPSHOT, or EXTENDED
1487  *
1488  * returns 1 when diag buffer support is enabled in firmware
1489  */
1490 static u8
_ctl_diag_capability(struct MPT3SAS_ADAPTER * ioc,u8 buffer_type)1491 _ctl_diag_capability(struct MPT3SAS_ADAPTER *ioc, u8 buffer_type)
1492 {
1493 	u8 rc = 0;
1494 
1495 	switch (buffer_type) {
1496 	case MPI2_DIAG_BUF_TYPE_TRACE:
1497 		if (ioc->facts.IOCCapabilities &
1498 		    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER)
1499 			rc = 1;
1500 		break;
1501 	case MPI2_DIAG_BUF_TYPE_SNAPSHOT:
1502 		if (ioc->facts.IOCCapabilities &
1503 		    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER)
1504 			rc = 1;
1505 		break;
1506 	case MPI2_DIAG_BUF_TYPE_EXTENDED:
1507 		if (ioc->facts.IOCCapabilities &
1508 		    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER)
1509 			rc = 1;
1510 	}
1511 
1512 	return rc;
1513 }
1514 
1515 /**
1516  * _ctl_diag_get_bufftype - return diag buffer type
1517  *              either TRACE, SNAPSHOT, or EXTENDED
1518  * @ioc: per adapter object
1519  * @unique_id: specifies the unique_id for the buffer
1520  *
1521  * returns MPT3_DIAG_UID_NOT_FOUND if the id not found
1522  */
1523 static u8
_ctl_diag_get_bufftype(struct MPT3SAS_ADAPTER * ioc,u32 unique_id)1524 _ctl_diag_get_bufftype(struct MPT3SAS_ADAPTER *ioc, u32 unique_id)
1525 {
1526 	u8  index;
1527 
1528 	for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) {
1529 		if (ioc->unique_id[index] == unique_id)
1530 			return index;
1531 	}
1532 
1533 	return MPT3_DIAG_UID_NOT_FOUND;
1534 }
1535 
1536 /**
1537  * _ctl_diag_register_2 - wrapper for registering diag buffer support
1538  * @ioc: per adapter object
1539  * @diag_register: the diag_register struct passed in from user space
1540  *
1541  */
1542 static long
_ctl_diag_register_2(struct MPT3SAS_ADAPTER * ioc,struct mpt3_diag_register * diag_register)1543 _ctl_diag_register_2(struct MPT3SAS_ADAPTER *ioc,
1544 	struct mpt3_diag_register *diag_register)
1545 {
1546 	int rc, i;
1547 	void *request_data = NULL;
1548 	dma_addr_t request_data_dma;
1549 	u32 request_data_sz = 0;
1550 	Mpi2DiagBufferPostRequest_t *mpi_request;
1551 	Mpi2DiagBufferPostReply_t *mpi_reply;
1552 	u8 buffer_type;
1553 	u16 smid;
1554 	u16 ioc_status;
1555 	u32 ioc_state;
1556 	u8 issue_reset = 0;
1557 
1558 	dctlprintk(ioc, ioc_info(ioc, "%s\n",
1559 				 __func__));
1560 
1561 	ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
1562 	if (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
1563 		ioc_err(ioc, "%s: failed due to ioc not operational\n",
1564 			__func__);
1565 		rc = -EAGAIN;
1566 		goto out;
1567 	}
1568 
1569 	if (ioc->ctl_cmds.status != MPT3_CMD_NOT_USED) {
1570 		ioc_err(ioc, "%s: ctl_cmd in use\n", __func__);
1571 		rc = -EAGAIN;
1572 		goto out;
1573 	}
1574 
1575 	buffer_type = diag_register->buffer_type;
1576 	if (!_ctl_diag_capability(ioc, buffer_type)) {
1577 		ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n",
1578 			__func__, buffer_type);
1579 		return -EPERM;
1580 	}
1581 
1582 	if (diag_register->unique_id == 0) {
1583 		ioc_err(ioc,
1584 		    "%s: Invalid UID(0x%08x), buffer_type(0x%02x)\n", __func__,
1585 		    diag_register->unique_id, buffer_type);
1586 		return -EINVAL;
1587 	}
1588 
1589 	if ((ioc->diag_buffer_status[buffer_type] &
1590 	    MPT3_DIAG_BUFFER_IS_APP_OWNED) &&
1591 	    !(ioc->diag_buffer_status[buffer_type] &
1592 	    MPT3_DIAG_BUFFER_IS_RELEASED)) {
1593 		ioc_err(ioc,
1594 		    "%s: buffer_type(0x%02x) is already registered by application with UID(0x%08x)\n",
1595 		    __func__, buffer_type, ioc->unique_id[buffer_type]);
1596 		return -EINVAL;
1597 	}
1598 
1599 	if (ioc->diag_buffer_status[buffer_type] &
1600 	    MPT3_DIAG_BUFFER_IS_REGISTERED) {
1601 		/*
1602 		 * If driver posts buffer initially, then an application wants
1603 		 * to Register that buffer (own it) without Releasing first,
1604 		 * the application Register command MUST have the same buffer
1605 		 * type and size in the Register command (obtained from the
1606 		 * Query command). Otherwise that Register command will be
1607 		 * failed. If the application has released the buffer but wants
1608 		 * to re-register it, it should be allowed as long as the
1609 		 * Unique-Id/Size match.
1610 		 */
1611 
1612 		if (ioc->unique_id[buffer_type] == MPT3DIAGBUFFUNIQUEID &&
1613 		    ioc->diag_buffer_sz[buffer_type] ==
1614 		    diag_register->requested_buffer_size) {
1615 
1616 			if (!(ioc->diag_buffer_status[buffer_type] &
1617 			     MPT3_DIAG_BUFFER_IS_RELEASED)) {
1618 				dctlprintk(ioc, ioc_info(ioc,
1619 				    "%s: diag_buffer (%d) ownership changed. old-ID(0x%08x), new-ID(0x%08x)\n",
1620 				    __func__, buffer_type,
1621 				    ioc->unique_id[buffer_type],
1622 				    diag_register->unique_id));
1623 
1624 				/*
1625 				 * Application wants to own the buffer with
1626 				 * the same size.
1627 				 */
1628 				ioc->unique_id[buffer_type] =
1629 				    diag_register->unique_id;
1630 				rc = 0; /* success */
1631 				goto out;
1632 			}
1633 		} else if (ioc->unique_id[buffer_type] !=
1634 		    MPT3DIAGBUFFUNIQUEID) {
1635 			if (ioc->unique_id[buffer_type] !=
1636 			    diag_register->unique_id ||
1637 			    ioc->diag_buffer_sz[buffer_type] !=
1638 			    diag_register->requested_buffer_size ||
1639 			    !(ioc->diag_buffer_status[buffer_type] &
1640 			    MPT3_DIAG_BUFFER_IS_RELEASED)) {
1641 				ioc_err(ioc,
1642 				    "%s: already has a registered buffer for buffer_type(0x%02x)\n",
1643 				    __func__, buffer_type);
1644 				return -EINVAL;
1645 			}
1646 		} else {
1647 			ioc_err(ioc, "%s: already has a registered buffer for buffer_type(0x%02x)\n",
1648 			    __func__, buffer_type);
1649 			return -EINVAL;
1650 		}
1651 	} else if (ioc->diag_buffer_status[buffer_type] &
1652 	    MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED) {
1653 
1654 		if (ioc->unique_id[buffer_type] != MPT3DIAGBUFFUNIQUEID ||
1655 		    ioc->diag_buffer_sz[buffer_type] !=
1656 		    diag_register->requested_buffer_size) {
1657 
1658 			ioc_err(ioc,
1659 			    "%s: already a buffer is allocated for buffer_type(0x%02x) of size %d bytes, so please try registering again with same size\n",
1660 			     __func__, buffer_type,
1661 			    ioc->diag_buffer_sz[buffer_type]);
1662 			return -EINVAL;
1663 		}
1664 	}
1665 
1666 	if (diag_register->requested_buffer_size % 4)  {
1667 		ioc_err(ioc, "%s: the requested_buffer_size is not 4 byte aligned\n",
1668 			__func__);
1669 		return -EINVAL;
1670 	}
1671 
1672 	smid = mpt3sas_base_get_smid(ioc, ioc->ctl_cb_idx);
1673 	if (!smid) {
1674 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
1675 		rc = -EAGAIN;
1676 		goto out;
1677 	}
1678 
1679 	rc = 0;
1680 	ioc->ctl_cmds.status = MPT3_CMD_PENDING;
1681 	memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz);
1682 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1683 	ioc->ctl_cmds.smid = smid;
1684 
1685 	request_data = ioc->diag_buffer[buffer_type];
1686 	request_data_sz = diag_register->requested_buffer_size;
1687 	ioc->unique_id[buffer_type] = diag_register->unique_id;
1688 	ioc->diag_buffer_status[buffer_type] &=
1689 	    MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED;
1690 	memcpy(ioc->product_specific[buffer_type],
1691 	    diag_register->product_specific, MPT3_PRODUCT_SPECIFIC_DWORDS);
1692 	ioc->diagnostic_flags[buffer_type] = diag_register->diagnostic_flags;
1693 
1694 	if (request_data) {
1695 		request_data_dma = ioc->diag_buffer_dma[buffer_type];
1696 		if (request_data_sz != ioc->diag_buffer_sz[buffer_type]) {
1697 			dma_free_coherent(&ioc->pdev->dev,
1698 					ioc->diag_buffer_sz[buffer_type],
1699 					request_data, request_data_dma);
1700 			request_data = NULL;
1701 		}
1702 	}
1703 
1704 	if (request_data == NULL) {
1705 		ioc->diag_buffer_sz[buffer_type] = 0;
1706 		ioc->diag_buffer_dma[buffer_type] = 0;
1707 		request_data = dma_alloc_coherent(&ioc->pdev->dev,
1708 				request_data_sz, &request_data_dma, GFP_KERNEL);
1709 		if (request_data == NULL) {
1710 			ioc_err(ioc, "%s: failed allocating memory for diag buffers, requested size(%d)\n",
1711 				__func__, request_data_sz);
1712 			mpt3sas_base_free_smid(ioc, smid);
1713 			rc = -ENOMEM;
1714 			goto out;
1715 		}
1716 		ioc->diag_buffer[buffer_type] = request_data;
1717 		ioc->diag_buffer_sz[buffer_type] = request_data_sz;
1718 		ioc->diag_buffer_dma[buffer_type] = request_data_dma;
1719 	}
1720 
1721 	mpi_request->Function = MPI2_FUNCTION_DIAG_BUFFER_POST;
1722 	mpi_request->BufferType = diag_register->buffer_type;
1723 	mpi_request->Flags = cpu_to_le32(diag_register->diagnostic_flags);
1724 	mpi_request->BufferAddress = cpu_to_le64(request_data_dma);
1725 	mpi_request->BufferLength = cpu_to_le32(request_data_sz);
1726 	mpi_request->VF_ID = 0; /* TODO */
1727 	mpi_request->VP_ID = 0;
1728 
1729 	dctlprintk(ioc,
1730 		   ioc_info(ioc, "%s: diag_buffer(0x%p), dma(0x%llx), sz(%d)\n",
1731 			    __func__, request_data,
1732 			    (unsigned long long)request_data_dma,
1733 			    le32_to_cpu(mpi_request->BufferLength)));
1734 
1735 	for (i = 0; i < MPT3_PRODUCT_SPECIFIC_DWORDS; i++)
1736 		mpi_request->ProductSpecific[i] =
1737 			cpu_to_le32(ioc->product_specific[buffer_type][i]);
1738 
1739 	init_completion(&ioc->ctl_cmds.done);
1740 	ioc->put_smid_default(ioc, smid);
1741 	wait_for_completion_timeout(&ioc->ctl_cmds.done,
1742 	    MPT3_IOCTL_DEFAULT_TIMEOUT*HZ);
1743 
1744 	if (!(ioc->ctl_cmds.status & MPT3_CMD_COMPLETE)) {
1745 		mpt3sas_check_cmd_timeout(ioc,
1746 		    ioc->ctl_cmds.status, mpi_request,
1747 		    sizeof(Mpi2DiagBufferPostRequest_t)/4, issue_reset);
1748 		goto issue_host_reset;
1749 	}
1750 
1751 	/* process the completed Reply Message Frame */
1752 	if ((ioc->ctl_cmds.status & MPT3_CMD_REPLY_VALID) == 0) {
1753 		ioc_err(ioc, "%s: no reply message\n", __func__);
1754 		rc = -EFAULT;
1755 		goto out;
1756 	}
1757 
1758 	mpi_reply = ioc->ctl_cmds.reply;
1759 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
1760 
1761 	if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
1762 		ioc->diag_buffer_status[buffer_type] |=
1763 			MPT3_DIAG_BUFFER_IS_REGISTERED;
1764 		dctlprintk(ioc, ioc_info(ioc, "%s: success\n", __func__));
1765 	} else {
1766 		ioc_info(ioc, "%s: ioc_status(0x%04x) log_info(0x%08x)\n",
1767 			 __func__,
1768 			 ioc_status, le32_to_cpu(mpi_reply->IOCLogInfo));
1769 		rc = -EFAULT;
1770 	}
1771 
1772  issue_host_reset:
1773 	if (issue_reset)
1774 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
1775 
1776  out:
1777 
1778 	if (rc && request_data) {
1779 		dma_free_coherent(&ioc->pdev->dev, request_data_sz,
1780 		    request_data, request_data_dma);
1781 		ioc->diag_buffer_status[buffer_type] &=
1782 		    ~MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED;
1783 	}
1784 
1785 	ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
1786 	return rc;
1787 }
1788 
1789 /**
1790  * mpt3sas_enable_diag_buffer - enabling diag_buffers support driver load time
1791  * @ioc: per adapter object
1792  * @bits_to_register: bitwise field where trace is bit 0, and snapshot is bit 1
1793  *
1794  * This is called when command line option diag_buffer_enable is enabled
1795  * at driver load time.
1796  */
1797 void
mpt3sas_enable_diag_buffer(struct MPT3SAS_ADAPTER * ioc,u8 bits_to_register)1798 mpt3sas_enable_diag_buffer(struct MPT3SAS_ADAPTER *ioc, u8 bits_to_register)
1799 {
1800 	struct mpt3_diag_register diag_register;
1801 	u32 ret_val;
1802 	u32 trace_buff_size = ioc->manu_pg11.HostTraceBufferMaxSizeKB<<10;
1803 	u32 min_trace_buff_size = 0;
1804 	u32 decr_trace_buff_size = 0;
1805 
1806 	memset(&diag_register, 0, sizeof(struct mpt3_diag_register));
1807 
1808 	if (bits_to_register & 1) {
1809 		ioc_info(ioc, "registering trace buffer support\n");
1810 		ioc->diag_trigger_master.MasterData =
1811 		    (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET);
1812 		diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_TRACE;
1813 		diag_register.unique_id =
1814 		    (ioc->hba_mpi_version_belonged == MPI2_VERSION) ?
1815 		    (MPT2DIAGBUFFUNIQUEID):(MPT3DIAGBUFFUNIQUEID);
1816 
1817 		if (trace_buff_size != 0) {
1818 			diag_register.requested_buffer_size = trace_buff_size;
1819 			min_trace_buff_size =
1820 			    ioc->manu_pg11.HostTraceBufferMinSizeKB<<10;
1821 			decr_trace_buff_size =
1822 			    ioc->manu_pg11.HostTraceBufferDecrementSizeKB<<10;
1823 
1824 			if (min_trace_buff_size > trace_buff_size) {
1825 				/* The buff size is not set correctly */
1826 				ioc_err(ioc,
1827 				    "Min Trace Buff size (%d KB) greater than Max Trace Buff size (%d KB)\n",
1828 				     min_trace_buff_size>>10,
1829 				     trace_buff_size>>10);
1830 				ioc_err(ioc,
1831 				    "Using zero Min Trace Buff Size\n");
1832 				min_trace_buff_size = 0;
1833 			}
1834 
1835 			if (decr_trace_buff_size == 0) {
1836 				/*
1837 				 * retry the min size if decrement
1838 				 * is not available.
1839 				 */
1840 				decr_trace_buff_size =
1841 				    trace_buff_size - min_trace_buff_size;
1842 			}
1843 		} else {
1844 			/* register for 2MB buffers  */
1845 			diag_register.requested_buffer_size = 2 * (1024 * 1024);
1846 		}
1847 
1848 		do {
1849 			ret_val = _ctl_diag_register_2(ioc,  &diag_register);
1850 
1851 			if (ret_val == -ENOMEM && min_trace_buff_size &&
1852 			    (trace_buff_size - decr_trace_buff_size) >=
1853 			    min_trace_buff_size) {
1854 				/* adjust the buffer size */
1855 				trace_buff_size -= decr_trace_buff_size;
1856 				diag_register.requested_buffer_size =
1857 				    trace_buff_size;
1858 			} else
1859 				break;
1860 		} while (true);
1861 
1862 		if (ret_val == -ENOMEM)
1863 			ioc_err(ioc,
1864 			    "Cannot allocate trace buffer memory. Last memory tried = %d KB\n",
1865 			    diag_register.requested_buffer_size>>10);
1866 		else if (ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE]
1867 		    & MPT3_DIAG_BUFFER_IS_REGISTERED) {
1868 			ioc_err(ioc, "Trace buffer memory %d KB allocated\n",
1869 			    diag_register.requested_buffer_size>>10);
1870 			if (ioc->hba_mpi_version_belonged != MPI2_VERSION)
1871 				ioc->diag_buffer_status[
1872 				    MPI2_DIAG_BUF_TYPE_TRACE] |=
1873 				    MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED;
1874 		}
1875 	}
1876 
1877 	if (bits_to_register & 2) {
1878 		ioc_info(ioc, "registering snapshot buffer support\n");
1879 		diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_SNAPSHOT;
1880 		/* register for 2MB buffers  */
1881 		diag_register.requested_buffer_size = 2 * (1024 * 1024);
1882 		diag_register.unique_id = 0x7075901;
1883 		_ctl_diag_register_2(ioc,  &diag_register);
1884 	}
1885 
1886 	if (bits_to_register & 4) {
1887 		ioc_info(ioc, "registering extended buffer support\n");
1888 		diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_EXTENDED;
1889 		/* register for 2MB buffers  */
1890 		diag_register.requested_buffer_size = 2 * (1024 * 1024);
1891 		diag_register.unique_id = 0x7075901;
1892 		_ctl_diag_register_2(ioc,  &diag_register);
1893 	}
1894 }
1895 
1896 /**
1897  * _ctl_diag_register - application register with driver
1898  * @ioc: per adapter object
1899  * @arg: user space buffer containing ioctl content
1900  *
1901  * This will allow the driver to setup any required buffers that will be
1902  * needed by firmware to communicate with the driver.
1903  */
1904 static long
_ctl_diag_register(struct MPT3SAS_ADAPTER * ioc,void __user * arg)1905 _ctl_diag_register(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
1906 {
1907 	struct mpt3_diag_register karg;
1908 	long rc;
1909 
1910 	if (copy_from_user(&karg, arg, sizeof(karg))) {
1911 		pr_err("failure at %s:%d/%s()!\n",
1912 		    __FILE__, __LINE__, __func__);
1913 		return -EFAULT;
1914 	}
1915 
1916 	rc = _ctl_diag_register_2(ioc, &karg);
1917 
1918 	if (!rc && (ioc->diag_buffer_status[karg.buffer_type] &
1919 	    MPT3_DIAG_BUFFER_IS_REGISTERED))
1920 		ioc->diag_buffer_status[karg.buffer_type] |=
1921 		    MPT3_DIAG_BUFFER_IS_APP_OWNED;
1922 
1923 	return rc;
1924 }
1925 
1926 /**
1927  * _ctl_diag_unregister - application unregister with driver
1928  * @ioc: per adapter object
1929  * @arg: user space buffer containing ioctl content
1930  *
1931  * This will allow the driver to cleanup any memory allocated for diag
1932  * messages and to free up any resources.
1933  */
1934 static long
_ctl_diag_unregister(struct MPT3SAS_ADAPTER * ioc,void __user * arg)1935 _ctl_diag_unregister(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
1936 {
1937 	struct mpt3_diag_unregister karg;
1938 	void *request_data;
1939 	dma_addr_t request_data_dma;
1940 	u32 request_data_sz;
1941 	u8 buffer_type;
1942 
1943 	if (copy_from_user(&karg, arg, sizeof(karg))) {
1944 		pr_err("failure at %s:%d/%s()!\n",
1945 		    __FILE__, __LINE__, __func__);
1946 		return -EFAULT;
1947 	}
1948 
1949 	dctlprintk(ioc, ioc_info(ioc, "%s\n",
1950 				 __func__));
1951 
1952 	buffer_type = _ctl_diag_get_bufftype(ioc, karg.unique_id);
1953 	if (buffer_type == MPT3_DIAG_UID_NOT_FOUND) {
1954 		ioc_err(ioc, "%s: buffer with unique_id(0x%08x) not found\n",
1955 		    __func__, karg.unique_id);
1956 		return -EINVAL;
1957 	}
1958 
1959 	if (!_ctl_diag_capability(ioc, buffer_type)) {
1960 		ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n",
1961 			__func__, buffer_type);
1962 		return -EPERM;
1963 	}
1964 
1965 	if ((ioc->diag_buffer_status[buffer_type] &
1966 	    MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) {
1967 		ioc_err(ioc, "%s: buffer_type(0x%02x) is not registered\n",
1968 			__func__, buffer_type);
1969 		return -EINVAL;
1970 	}
1971 	if ((ioc->diag_buffer_status[buffer_type] &
1972 	    MPT3_DIAG_BUFFER_IS_RELEASED) == 0) {
1973 		ioc_err(ioc, "%s: buffer_type(0x%02x) has not been released\n",
1974 			__func__, buffer_type);
1975 		return -EINVAL;
1976 	}
1977 
1978 	if (karg.unique_id != ioc->unique_id[buffer_type]) {
1979 		ioc_err(ioc, "%s: unique_id(0x%08x) is not registered\n",
1980 			__func__, karg.unique_id);
1981 		return -EINVAL;
1982 	}
1983 
1984 	request_data = ioc->diag_buffer[buffer_type];
1985 	if (!request_data) {
1986 		ioc_err(ioc, "%s: doesn't have memory allocated for buffer_type(0x%02x)\n",
1987 			__func__, buffer_type);
1988 		return -ENOMEM;
1989 	}
1990 
1991 	if (ioc->diag_buffer_status[buffer_type] &
1992 	    MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED) {
1993 		ioc->unique_id[buffer_type] = MPT3DIAGBUFFUNIQUEID;
1994 		ioc->diag_buffer_status[buffer_type] &=
1995 		    ~MPT3_DIAG_BUFFER_IS_APP_OWNED;
1996 		ioc->diag_buffer_status[buffer_type] &=
1997 		    ~MPT3_DIAG_BUFFER_IS_REGISTERED;
1998 	} else {
1999 		request_data_sz = ioc->diag_buffer_sz[buffer_type];
2000 		request_data_dma = ioc->diag_buffer_dma[buffer_type];
2001 		dma_free_coherent(&ioc->pdev->dev, request_data_sz,
2002 				request_data, request_data_dma);
2003 		ioc->diag_buffer[buffer_type] = NULL;
2004 		ioc->diag_buffer_status[buffer_type] = 0;
2005 	}
2006 	return 0;
2007 }
2008 
2009 /**
2010  * _ctl_diag_query - query relevant info associated with diag buffers
2011  * @ioc: per adapter object
2012  * @arg: user space buffer containing ioctl content
2013  *
2014  * The application will send only buffer_type and unique_id.  Driver will
2015  * inspect unique_id first, if valid, fill in all the info.  If unique_id is
2016  * 0x00, the driver will return info specified by Buffer Type.
2017  */
2018 static long
_ctl_diag_query(struct MPT3SAS_ADAPTER * ioc,void __user * arg)2019 _ctl_diag_query(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
2020 {
2021 	struct mpt3_diag_query karg;
2022 	void *request_data;
2023 	int i;
2024 	u8 buffer_type;
2025 
2026 	if (copy_from_user(&karg, arg, sizeof(karg))) {
2027 		pr_err("failure at %s:%d/%s()!\n",
2028 		    __FILE__, __LINE__, __func__);
2029 		return -EFAULT;
2030 	}
2031 
2032 	dctlprintk(ioc, ioc_info(ioc, "%s\n",
2033 				 __func__));
2034 
2035 	karg.application_flags = 0;
2036 	buffer_type = karg.buffer_type;
2037 
2038 	if (!_ctl_diag_capability(ioc, buffer_type)) {
2039 		ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n",
2040 			__func__, buffer_type);
2041 		return -EPERM;
2042 	}
2043 
2044 	if (!(ioc->diag_buffer_status[buffer_type] &
2045 	    MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED)) {
2046 		if ((ioc->diag_buffer_status[buffer_type] &
2047 		    MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) {
2048 			ioc_err(ioc, "%s: buffer_type(0x%02x) is not registered\n",
2049 				__func__, buffer_type);
2050 			return -EINVAL;
2051 		}
2052 	}
2053 
2054 	if (karg.unique_id) {
2055 		if (karg.unique_id != ioc->unique_id[buffer_type]) {
2056 			ioc_err(ioc, "%s: unique_id(0x%08x) is not registered\n",
2057 				__func__, karg.unique_id);
2058 			return -EINVAL;
2059 		}
2060 	}
2061 
2062 	request_data = ioc->diag_buffer[buffer_type];
2063 	if (!request_data) {
2064 		ioc_err(ioc, "%s: doesn't have buffer for buffer_type(0x%02x)\n",
2065 			__func__, buffer_type);
2066 		return -ENOMEM;
2067 	}
2068 
2069 	if ((ioc->diag_buffer_status[buffer_type] &
2070 	    MPT3_DIAG_BUFFER_IS_REGISTERED))
2071 		karg.application_flags |= MPT3_APP_FLAGS_BUFFER_VALID;
2072 
2073 	if (!(ioc->diag_buffer_status[buffer_type] &
2074 	     MPT3_DIAG_BUFFER_IS_RELEASED))
2075 		karg.application_flags |= MPT3_APP_FLAGS_FW_BUFFER_ACCESS;
2076 
2077 	if (!(ioc->diag_buffer_status[buffer_type] &
2078 	    MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED))
2079 		karg.application_flags |= MPT3_APP_FLAGS_DYNAMIC_BUFFER_ALLOC;
2080 
2081 	if ((ioc->diag_buffer_status[buffer_type] &
2082 	    MPT3_DIAG_BUFFER_IS_APP_OWNED))
2083 		karg.application_flags |= MPT3_APP_FLAGS_APP_OWNED;
2084 
2085 	for (i = 0; i < MPT3_PRODUCT_SPECIFIC_DWORDS; i++)
2086 		karg.product_specific[i] =
2087 		    ioc->product_specific[buffer_type][i];
2088 
2089 	karg.total_buffer_size = ioc->diag_buffer_sz[buffer_type];
2090 	karg.driver_added_buffer_size = 0;
2091 	karg.unique_id = ioc->unique_id[buffer_type];
2092 	karg.diagnostic_flags = ioc->diagnostic_flags[buffer_type];
2093 
2094 	if (copy_to_user(arg, &karg, sizeof(struct mpt3_diag_query))) {
2095 		ioc_err(ioc, "%s: unable to write mpt3_diag_query data @ %p\n",
2096 			__func__, arg);
2097 		return -EFAULT;
2098 	}
2099 	return 0;
2100 }
2101 
2102 /**
2103  * mpt3sas_send_diag_release - Diag Release Message
2104  * @ioc: per adapter object
2105  * @buffer_type: specifies either TRACE, SNAPSHOT, or EXTENDED
2106  * @issue_reset: specifies whether host reset is required.
2107  *
2108  */
2109 int
mpt3sas_send_diag_release(struct MPT3SAS_ADAPTER * ioc,u8 buffer_type,u8 * issue_reset)2110 mpt3sas_send_diag_release(struct MPT3SAS_ADAPTER *ioc, u8 buffer_type,
2111 	u8 *issue_reset)
2112 {
2113 	Mpi2DiagReleaseRequest_t *mpi_request;
2114 	Mpi2DiagReleaseReply_t *mpi_reply;
2115 	u16 smid;
2116 	u16 ioc_status;
2117 	u32 ioc_state;
2118 	int rc;
2119 	u8 reset_needed = 0;
2120 
2121 	dctlprintk(ioc, ioc_info(ioc, "%s\n",
2122 				 __func__));
2123 
2124 	rc = 0;
2125 	*issue_reset = 0;
2126 
2127 
2128 	ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
2129 	if (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
2130 		if (ioc->diag_buffer_status[buffer_type] &
2131 		    MPT3_DIAG_BUFFER_IS_REGISTERED)
2132 			ioc->diag_buffer_status[buffer_type] |=
2133 			    MPT3_DIAG_BUFFER_IS_RELEASED;
2134 		dctlprintk(ioc,
2135 			   ioc_info(ioc, "%s: skipping due to FAULT state\n",
2136 				    __func__));
2137 		rc = -EAGAIN;
2138 		goto out;
2139 	}
2140 
2141 	if (ioc->ctl_cmds.status != MPT3_CMD_NOT_USED) {
2142 		ioc_err(ioc, "%s: ctl_cmd in use\n", __func__);
2143 		rc = -EAGAIN;
2144 		goto out;
2145 	}
2146 
2147 	smid = mpt3sas_base_get_smid(ioc, ioc->ctl_cb_idx);
2148 	if (!smid) {
2149 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
2150 		rc = -EAGAIN;
2151 		goto out;
2152 	}
2153 
2154 	ioc->ctl_cmds.status = MPT3_CMD_PENDING;
2155 	memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz);
2156 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2157 	ioc->ctl_cmds.smid = smid;
2158 
2159 	mpi_request->Function = MPI2_FUNCTION_DIAG_RELEASE;
2160 	mpi_request->BufferType = buffer_type;
2161 	mpi_request->VF_ID = 0; /* TODO */
2162 	mpi_request->VP_ID = 0;
2163 
2164 	init_completion(&ioc->ctl_cmds.done);
2165 	ioc->put_smid_default(ioc, smid);
2166 	wait_for_completion_timeout(&ioc->ctl_cmds.done,
2167 	    MPT3_IOCTL_DEFAULT_TIMEOUT*HZ);
2168 
2169 	if (!(ioc->ctl_cmds.status & MPT3_CMD_COMPLETE)) {
2170 		mpt3sas_check_cmd_timeout(ioc,
2171 		    ioc->ctl_cmds.status, mpi_request,
2172 		    sizeof(Mpi2DiagReleaseRequest_t)/4, reset_needed);
2173 		 *issue_reset = reset_needed;
2174 		rc = -EFAULT;
2175 		goto out;
2176 	}
2177 
2178 	/* process the completed Reply Message Frame */
2179 	if ((ioc->ctl_cmds.status & MPT3_CMD_REPLY_VALID) == 0) {
2180 		ioc_err(ioc, "%s: no reply message\n", __func__);
2181 		rc = -EFAULT;
2182 		goto out;
2183 	}
2184 
2185 	mpi_reply = ioc->ctl_cmds.reply;
2186 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
2187 
2188 	if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
2189 		ioc->diag_buffer_status[buffer_type] |=
2190 		    MPT3_DIAG_BUFFER_IS_RELEASED;
2191 		dctlprintk(ioc, ioc_info(ioc, "%s: success\n", __func__));
2192 	} else {
2193 		ioc_info(ioc, "%s: ioc_status(0x%04x) log_info(0x%08x)\n",
2194 			 __func__,
2195 			 ioc_status, le32_to_cpu(mpi_reply->IOCLogInfo));
2196 		rc = -EFAULT;
2197 	}
2198 
2199  out:
2200 	ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
2201 	return rc;
2202 }
2203 
2204 /**
2205  * _ctl_diag_release - request to send Diag Release Message to firmware
2206  * @ioc: ?
2207  * @arg: user space buffer containing ioctl content
2208  *
2209  * This allows ownership of the specified buffer to returned to the driver,
2210  * allowing an application to read the buffer without fear that firmware is
2211  * overwriting information in the buffer.
2212  */
2213 static long
_ctl_diag_release(struct MPT3SAS_ADAPTER * ioc,void __user * arg)2214 _ctl_diag_release(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
2215 {
2216 	struct mpt3_diag_release karg;
2217 	void *request_data;
2218 	int rc;
2219 	u8 buffer_type;
2220 	u8 issue_reset = 0;
2221 
2222 	if (copy_from_user(&karg, arg, sizeof(karg))) {
2223 		pr_err("failure at %s:%d/%s()!\n",
2224 		    __FILE__, __LINE__, __func__);
2225 		return -EFAULT;
2226 	}
2227 
2228 	dctlprintk(ioc, ioc_info(ioc, "%s\n",
2229 				 __func__));
2230 
2231 	buffer_type = _ctl_diag_get_bufftype(ioc, karg.unique_id);
2232 	if (buffer_type == MPT3_DIAG_UID_NOT_FOUND) {
2233 		ioc_err(ioc, "%s: buffer with unique_id(0x%08x) not found\n",
2234 		    __func__, karg.unique_id);
2235 		return -EINVAL;
2236 	}
2237 
2238 	if (!_ctl_diag_capability(ioc, buffer_type)) {
2239 		ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n",
2240 			__func__, buffer_type);
2241 		return -EPERM;
2242 	}
2243 
2244 	if ((ioc->diag_buffer_status[buffer_type] &
2245 	    MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) {
2246 		ioc_err(ioc, "%s: buffer_type(0x%02x) is not registered\n",
2247 			__func__, buffer_type);
2248 		return -EINVAL;
2249 	}
2250 
2251 	if (karg.unique_id != ioc->unique_id[buffer_type]) {
2252 		ioc_err(ioc, "%s: unique_id(0x%08x) is not registered\n",
2253 			__func__, karg.unique_id);
2254 		return -EINVAL;
2255 	}
2256 
2257 	if (ioc->diag_buffer_status[buffer_type] &
2258 	    MPT3_DIAG_BUFFER_IS_RELEASED) {
2259 		ioc_err(ioc, "%s: buffer_type(0x%02x) is already released\n",
2260 			__func__, buffer_type);
2261 		return -EINVAL;
2262 	}
2263 
2264 	request_data = ioc->diag_buffer[buffer_type];
2265 
2266 	if (!request_data) {
2267 		ioc_err(ioc, "%s: doesn't have memory allocated for buffer_type(0x%02x)\n",
2268 			__func__, buffer_type);
2269 		return -ENOMEM;
2270 	}
2271 
2272 	/* buffers were released by due to host reset */
2273 	if ((ioc->diag_buffer_status[buffer_type] &
2274 	    MPT3_DIAG_BUFFER_IS_DIAG_RESET)) {
2275 		ioc->diag_buffer_status[buffer_type] |=
2276 		    MPT3_DIAG_BUFFER_IS_RELEASED;
2277 		ioc->diag_buffer_status[buffer_type] &=
2278 		    ~MPT3_DIAG_BUFFER_IS_DIAG_RESET;
2279 		ioc_err(ioc, "%s: buffer_type(0x%02x) was released due to host reset\n",
2280 			__func__, buffer_type);
2281 		return 0;
2282 	}
2283 
2284 	rc = mpt3sas_send_diag_release(ioc, buffer_type, &issue_reset);
2285 
2286 	if (issue_reset)
2287 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
2288 
2289 	return rc;
2290 }
2291 
2292 /**
2293  * _ctl_diag_read_buffer - request for copy of the diag buffer
2294  * @ioc: per adapter object
2295  * @arg: user space buffer containing ioctl content
2296  */
2297 static long
_ctl_diag_read_buffer(struct MPT3SAS_ADAPTER * ioc,void __user * arg)2298 _ctl_diag_read_buffer(struct MPT3SAS_ADAPTER *ioc, void __user *arg)
2299 {
2300 	struct mpt3_diag_read_buffer karg;
2301 	struct mpt3_diag_read_buffer __user *uarg = arg;
2302 	void *request_data, *diag_data;
2303 	Mpi2DiagBufferPostRequest_t *mpi_request;
2304 	Mpi2DiagBufferPostReply_t *mpi_reply;
2305 	int rc, i;
2306 	u8 buffer_type;
2307 	unsigned long request_size, copy_size;
2308 	u16 smid;
2309 	u16 ioc_status;
2310 	u8 issue_reset = 0;
2311 
2312 	if (copy_from_user(&karg, arg, sizeof(karg))) {
2313 		pr_err("failure at %s:%d/%s()!\n",
2314 		    __FILE__, __LINE__, __func__);
2315 		return -EFAULT;
2316 	}
2317 
2318 	dctlprintk(ioc, ioc_info(ioc, "%s\n",
2319 				 __func__));
2320 
2321 	buffer_type = _ctl_diag_get_bufftype(ioc, karg.unique_id);
2322 	if (buffer_type == MPT3_DIAG_UID_NOT_FOUND) {
2323 		ioc_err(ioc, "%s: buffer with unique_id(0x%08x) not found\n",
2324 		    __func__, karg.unique_id);
2325 		return -EINVAL;
2326 	}
2327 
2328 	if (!_ctl_diag_capability(ioc, buffer_type)) {
2329 		ioc_err(ioc, "%s: doesn't have capability for buffer_type(0x%02x)\n",
2330 			__func__, buffer_type);
2331 		return -EPERM;
2332 	}
2333 
2334 	if (karg.unique_id != ioc->unique_id[buffer_type]) {
2335 		ioc_err(ioc, "%s: unique_id(0x%08x) is not registered\n",
2336 			__func__, karg.unique_id);
2337 		return -EINVAL;
2338 	}
2339 
2340 	request_data = ioc->diag_buffer[buffer_type];
2341 	if (!request_data) {
2342 		ioc_err(ioc, "%s: doesn't have buffer for buffer_type(0x%02x)\n",
2343 			__func__, buffer_type);
2344 		return -ENOMEM;
2345 	}
2346 
2347 	request_size = ioc->diag_buffer_sz[buffer_type];
2348 
2349 	if ((karg.starting_offset % 4) || (karg.bytes_to_read % 4)) {
2350 		ioc_err(ioc, "%s: either the starting_offset or bytes_to_read are not 4 byte aligned\n",
2351 			__func__);
2352 		return -EINVAL;
2353 	}
2354 
2355 	if (karg.starting_offset > request_size)
2356 		return -EINVAL;
2357 
2358 	diag_data = (void *)(request_data + karg.starting_offset);
2359 	dctlprintk(ioc,
2360 		   ioc_info(ioc, "%s: diag_buffer(%p), offset(%d), sz(%d)\n",
2361 			    __func__, diag_data, karg.starting_offset,
2362 			    karg.bytes_to_read));
2363 
2364 	/* Truncate data on requests that are too large */
2365 	if ((diag_data + karg.bytes_to_read < diag_data) ||
2366 	    (diag_data + karg.bytes_to_read > request_data + request_size))
2367 		copy_size = request_size - karg.starting_offset;
2368 	else
2369 		copy_size = karg.bytes_to_read;
2370 
2371 	if (copy_to_user((void __user *)uarg->diagnostic_data,
2372 	    diag_data, copy_size)) {
2373 		ioc_err(ioc, "%s: Unable to write mpt_diag_read_buffer_t data @ %p\n",
2374 			__func__, diag_data);
2375 		return -EFAULT;
2376 	}
2377 
2378 	if ((karg.flags & MPT3_FLAGS_REREGISTER) == 0)
2379 		return 0;
2380 
2381 	dctlprintk(ioc,
2382 		   ioc_info(ioc, "%s: Reregister buffer_type(0x%02x)\n",
2383 			    __func__, buffer_type));
2384 	if ((ioc->diag_buffer_status[buffer_type] &
2385 	    MPT3_DIAG_BUFFER_IS_RELEASED) == 0) {
2386 		dctlprintk(ioc,
2387 			   ioc_info(ioc, "%s: buffer_type(0x%02x) is still registered\n",
2388 				    __func__, buffer_type));
2389 		return 0;
2390 	}
2391 	/* Get a free request frame and save the message context.
2392 	*/
2393 
2394 	if (ioc->ctl_cmds.status != MPT3_CMD_NOT_USED) {
2395 		ioc_err(ioc, "%s: ctl_cmd in use\n", __func__);
2396 		rc = -EAGAIN;
2397 		goto out;
2398 	}
2399 
2400 	smid = mpt3sas_base_get_smid(ioc, ioc->ctl_cb_idx);
2401 	if (!smid) {
2402 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
2403 		rc = -EAGAIN;
2404 		goto out;
2405 	}
2406 
2407 	rc = 0;
2408 	ioc->ctl_cmds.status = MPT3_CMD_PENDING;
2409 	memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz);
2410 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2411 	ioc->ctl_cmds.smid = smid;
2412 
2413 	mpi_request->Function = MPI2_FUNCTION_DIAG_BUFFER_POST;
2414 	mpi_request->BufferType = buffer_type;
2415 	mpi_request->BufferLength =
2416 	    cpu_to_le32(ioc->diag_buffer_sz[buffer_type]);
2417 	mpi_request->BufferAddress =
2418 	    cpu_to_le64(ioc->diag_buffer_dma[buffer_type]);
2419 	for (i = 0; i < MPT3_PRODUCT_SPECIFIC_DWORDS; i++)
2420 		mpi_request->ProductSpecific[i] =
2421 			cpu_to_le32(ioc->product_specific[buffer_type][i]);
2422 	mpi_request->VF_ID = 0; /* TODO */
2423 	mpi_request->VP_ID = 0;
2424 
2425 	init_completion(&ioc->ctl_cmds.done);
2426 	ioc->put_smid_default(ioc, smid);
2427 	wait_for_completion_timeout(&ioc->ctl_cmds.done,
2428 	    MPT3_IOCTL_DEFAULT_TIMEOUT*HZ);
2429 
2430 	if (!(ioc->ctl_cmds.status & MPT3_CMD_COMPLETE)) {
2431 		mpt3sas_check_cmd_timeout(ioc,
2432 		    ioc->ctl_cmds.status, mpi_request,
2433 		    sizeof(Mpi2DiagBufferPostRequest_t)/4, issue_reset);
2434 		goto issue_host_reset;
2435 	}
2436 
2437 	/* process the completed Reply Message Frame */
2438 	if ((ioc->ctl_cmds.status & MPT3_CMD_REPLY_VALID) == 0) {
2439 		ioc_err(ioc, "%s: no reply message\n", __func__);
2440 		rc = -EFAULT;
2441 		goto out;
2442 	}
2443 
2444 	mpi_reply = ioc->ctl_cmds.reply;
2445 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
2446 
2447 	if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
2448 		ioc->diag_buffer_status[buffer_type] |=
2449 		    MPT3_DIAG_BUFFER_IS_REGISTERED;
2450 		ioc->diag_buffer_status[buffer_type] &=
2451 		    ~MPT3_DIAG_BUFFER_IS_RELEASED;
2452 		dctlprintk(ioc, ioc_info(ioc, "%s: success\n", __func__));
2453 	} else {
2454 		ioc_info(ioc, "%s: ioc_status(0x%04x) log_info(0x%08x)\n",
2455 			 __func__, ioc_status,
2456 			 le32_to_cpu(mpi_reply->IOCLogInfo));
2457 		rc = -EFAULT;
2458 	}
2459 
2460  issue_host_reset:
2461 	if (issue_reset)
2462 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
2463 
2464  out:
2465 
2466 	ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
2467 	return rc;
2468 }
2469 
2470 
2471 
2472 #ifdef CONFIG_COMPAT
2473 /**
2474  * _ctl_compat_mpt_command - convert 32bit pointers to 64bit.
2475  * @ioc: per adapter object
2476  * @cmd: ioctl opcode
2477  * @arg: (struct mpt3_ioctl_command32)
2478  *
2479  * MPT3COMMAND32 - Handle 32bit applications running on 64bit os.
2480  */
2481 static long
_ctl_compat_mpt_command(struct MPT3SAS_ADAPTER * ioc,unsigned cmd,void __user * arg)2482 _ctl_compat_mpt_command(struct MPT3SAS_ADAPTER *ioc, unsigned cmd,
2483 	void __user *arg)
2484 {
2485 	struct mpt3_ioctl_command32 karg32;
2486 	struct mpt3_ioctl_command32 __user *uarg;
2487 	struct mpt3_ioctl_command karg;
2488 
2489 	if (_IOC_SIZE(cmd) != sizeof(struct mpt3_ioctl_command32))
2490 		return -EINVAL;
2491 
2492 	uarg = (struct mpt3_ioctl_command32 __user *) arg;
2493 
2494 	if (copy_from_user(&karg32, (char __user *)arg, sizeof(karg32))) {
2495 		pr_err("failure at %s:%d/%s()!\n",
2496 		    __FILE__, __LINE__, __func__);
2497 		return -EFAULT;
2498 	}
2499 
2500 	memset(&karg, 0, sizeof(struct mpt3_ioctl_command));
2501 	karg.hdr.ioc_number = karg32.hdr.ioc_number;
2502 	karg.hdr.port_number = karg32.hdr.port_number;
2503 	karg.hdr.max_data_size = karg32.hdr.max_data_size;
2504 	karg.timeout = karg32.timeout;
2505 	karg.max_reply_bytes = karg32.max_reply_bytes;
2506 	karg.data_in_size = karg32.data_in_size;
2507 	karg.data_out_size = karg32.data_out_size;
2508 	karg.max_sense_bytes = karg32.max_sense_bytes;
2509 	karg.data_sge_offset = karg32.data_sge_offset;
2510 	karg.reply_frame_buf_ptr = compat_ptr(karg32.reply_frame_buf_ptr);
2511 	karg.data_in_buf_ptr = compat_ptr(karg32.data_in_buf_ptr);
2512 	karg.data_out_buf_ptr = compat_ptr(karg32.data_out_buf_ptr);
2513 	karg.sense_data_ptr = compat_ptr(karg32.sense_data_ptr);
2514 	return _ctl_do_mpt_command(ioc, karg, &uarg->mf);
2515 }
2516 #endif
2517 
2518 /**
2519  * _ctl_ioctl_main - main ioctl entry point
2520  * @file:  (struct file)
2521  * @cmd:  ioctl opcode
2522  * @arg:  user space data buffer
2523  * @compat:  handles 32 bit applications in 64bit os
2524  * @mpi_version: will be MPI2_VERSION for mpt2ctl ioctl device &
2525  * MPI25_VERSION | MPI26_VERSION for mpt3ctl ioctl device.
2526  */
2527 static long
_ctl_ioctl_main(struct file * file,unsigned int cmd,void __user * arg,u8 compat,u16 mpi_version)2528 _ctl_ioctl_main(struct file *file, unsigned int cmd, void __user *arg,
2529 	u8 compat, u16 mpi_version)
2530 {
2531 	struct MPT3SAS_ADAPTER *ioc;
2532 	struct mpt3_ioctl_header ioctl_header;
2533 	enum block_state state;
2534 	long ret = -EINVAL;
2535 
2536 	/* get IOCTL header */
2537 	if (copy_from_user(&ioctl_header, (char __user *)arg,
2538 	    sizeof(struct mpt3_ioctl_header))) {
2539 		pr_err("failure at %s:%d/%s()!\n",
2540 		    __FILE__, __LINE__, __func__);
2541 		return -EFAULT;
2542 	}
2543 
2544 	if (_ctl_verify_adapter(ioctl_header.ioc_number,
2545 				&ioc, mpi_version) == -1 || !ioc)
2546 		return -ENODEV;
2547 
2548 	/* pci_access_mutex lock acquired by ioctl path */
2549 	mutex_lock(&ioc->pci_access_mutex);
2550 
2551 	if (ioc->shost_recovery || ioc->pci_error_recovery ||
2552 	    ioc->is_driver_loading || ioc->remove_host) {
2553 		ret = -EAGAIN;
2554 		goto out_unlock_pciaccess;
2555 	}
2556 
2557 	state = (file->f_flags & O_NONBLOCK) ? NON_BLOCKING : BLOCKING;
2558 	if (state == NON_BLOCKING) {
2559 		if (!mutex_trylock(&ioc->ctl_cmds.mutex)) {
2560 			ret = -EAGAIN;
2561 			goto out_unlock_pciaccess;
2562 		}
2563 	} else if (mutex_lock_interruptible(&ioc->ctl_cmds.mutex)) {
2564 		ret = -ERESTARTSYS;
2565 		goto out_unlock_pciaccess;
2566 	}
2567 
2568 
2569 	switch (cmd) {
2570 	case MPT3IOCINFO:
2571 		if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_iocinfo))
2572 			ret = _ctl_getiocinfo(ioc, arg);
2573 		break;
2574 #ifdef CONFIG_COMPAT
2575 	case MPT3COMMAND32:
2576 #endif
2577 	case MPT3COMMAND:
2578 	{
2579 		struct mpt3_ioctl_command __user *uarg;
2580 		struct mpt3_ioctl_command karg;
2581 
2582 #ifdef CONFIG_COMPAT
2583 		if (compat) {
2584 			ret = _ctl_compat_mpt_command(ioc, cmd, arg);
2585 			break;
2586 		}
2587 #endif
2588 		if (copy_from_user(&karg, arg, sizeof(karg))) {
2589 			pr_err("failure at %s:%d/%s()!\n",
2590 			    __FILE__, __LINE__, __func__);
2591 			ret = -EFAULT;
2592 			break;
2593 		}
2594 
2595 		if (karg.hdr.ioc_number != ioctl_header.ioc_number) {
2596 			ret = -EINVAL;
2597 			break;
2598 		}
2599 		if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_command)) {
2600 			uarg = arg;
2601 			ret = _ctl_do_mpt_command(ioc, karg, &uarg->mf);
2602 		}
2603 		break;
2604 	}
2605 	case MPT3EVENTQUERY:
2606 		if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_eventquery))
2607 			ret = _ctl_eventquery(ioc, arg);
2608 		break;
2609 	case MPT3EVENTENABLE:
2610 		if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_eventenable))
2611 			ret = _ctl_eventenable(ioc, arg);
2612 		break;
2613 	case MPT3EVENTREPORT:
2614 		ret = _ctl_eventreport(ioc, arg);
2615 		break;
2616 	case MPT3HARDRESET:
2617 		if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_diag_reset))
2618 			ret = _ctl_do_reset(ioc, arg);
2619 		break;
2620 	case MPT3BTDHMAPPING:
2621 		if (_IOC_SIZE(cmd) == sizeof(struct mpt3_ioctl_btdh_mapping))
2622 			ret = _ctl_btdh_mapping(ioc, arg);
2623 		break;
2624 	case MPT3DIAGREGISTER:
2625 		if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_register))
2626 			ret = _ctl_diag_register(ioc, arg);
2627 		break;
2628 	case MPT3DIAGUNREGISTER:
2629 		if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_unregister))
2630 			ret = _ctl_diag_unregister(ioc, arg);
2631 		break;
2632 	case MPT3DIAGQUERY:
2633 		if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_query))
2634 			ret = _ctl_diag_query(ioc, arg);
2635 		break;
2636 	case MPT3DIAGRELEASE:
2637 		if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_release))
2638 			ret = _ctl_diag_release(ioc, arg);
2639 		break;
2640 	case MPT3DIAGREADBUFFER:
2641 		if (_IOC_SIZE(cmd) == sizeof(struct mpt3_diag_read_buffer))
2642 			ret = _ctl_diag_read_buffer(ioc, arg);
2643 		break;
2644 	default:
2645 		dctlprintk(ioc,
2646 			   ioc_info(ioc, "unsupported ioctl opcode(0x%08x)\n",
2647 				    cmd));
2648 		break;
2649 	}
2650 
2651 	mutex_unlock(&ioc->ctl_cmds.mutex);
2652 out_unlock_pciaccess:
2653 	mutex_unlock(&ioc->pci_access_mutex);
2654 	return ret;
2655 }
2656 
2657 /**
2658  * _ctl_ioctl - mpt3ctl main ioctl entry point (unlocked)
2659  * @file: (struct file)
2660  * @cmd: ioctl opcode
2661  * @arg: ?
2662  */
2663 static long
_ctl_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2664 _ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2665 {
2666 	long ret;
2667 
2668 	/* pass MPI25_VERSION | MPI26_VERSION value,
2669 	 * to indicate that this ioctl cmd
2670 	 * came from mpt3ctl ioctl device.
2671 	 */
2672 	ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 0,
2673 		MPI25_VERSION | MPI26_VERSION);
2674 	return ret;
2675 }
2676 
2677 /**
2678  * _ctl_mpt2_ioctl - mpt2ctl main ioctl entry point (unlocked)
2679  * @file: (struct file)
2680  * @cmd: ioctl opcode
2681  * @arg: ?
2682  */
2683 static long
_ctl_mpt2_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2684 _ctl_mpt2_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2685 {
2686 	long ret;
2687 
2688 	/* pass MPI2_VERSION value, to indicate that this ioctl cmd
2689 	 * came from mpt2ctl ioctl device.
2690 	 */
2691 	ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 0, MPI2_VERSION);
2692 	return ret;
2693 }
2694 #ifdef CONFIG_COMPAT
2695 /**
2696  *_ ctl_ioctl_compat - main ioctl entry point (compat)
2697  * @file: ?
2698  * @cmd: ?
2699  * @arg: ?
2700  *
2701  * This routine handles 32 bit applications in 64bit os.
2702  */
2703 static long
_ctl_ioctl_compat(struct file * file,unsigned cmd,unsigned long arg)2704 _ctl_ioctl_compat(struct file *file, unsigned cmd, unsigned long arg)
2705 {
2706 	long ret;
2707 
2708 	ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 1,
2709 		MPI25_VERSION | MPI26_VERSION);
2710 	return ret;
2711 }
2712 
2713 /**
2714  *_ ctl_mpt2_ioctl_compat - main ioctl entry point (compat)
2715  * @file: ?
2716  * @cmd: ?
2717  * @arg: ?
2718  *
2719  * This routine handles 32 bit applications in 64bit os.
2720  */
2721 static long
_ctl_mpt2_ioctl_compat(struct file * file,unsigned cmd,unsigned long arg)2722 _ctl_mpt2_ioctl_compat(struct file *file, unsigned cmd, unsigned long arg)
2723 {
2724 	long ret;
2725 
2726 	ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 1, MPI2_VERSION);
2727 	return ret;
2728 }
2729 #endif
2730 
2731 /* scsi host attributes */
2732 /**
2733  * version_fw_show - firmware version
2734  * @cdev: pointer to embedded class device
2735  * @attr: ?
2736  * @buf: the buffer returned
2737  *
2738  * A sysfs 'read-only' shost attribute.
2739  */
2740 static ssize_t
version_fw_show(struct device * cdev,struct device_attribute * attr,char * buf)2741 version_fw_show(struct device *cdev, struct device_attribute *attr,
2742 	char *buf)
2743 {
2744 	struct Scsi_Host *shost = class_to_shost(cdev);
2745 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2746 
2747 	return snprintf(buf, PAGE_SIZE, "%02d.%02d.%02d.%02d\n",
2748 	    (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
2749 	    (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
2750 	    (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
2751 	    ioc->facts.FWVersion.Word & 0x000000FF);
2752 }
2753 static DEVICE_ATTR_RO(version_fw);
2754 
2755 /**
2756  * version_bios_show - bios version
2757  * @cdev: pointer to embedded class device
2758  * @attr: ?
2759  * @buf: the buffer returned
2760  *
2761  * A sysfs 'read-only' shost attribute.
2762  */
2763 static ssize_t
version_bios_show(struct device * cdev,struct device_attribute * attr,char * buf)2764 version_bios_show(struct device *cdev, struct device_attribute *attr,
2765 	char *buf)
2766 {
2767 	struct Scsi_Host *shost = class_to_shost(cdev);
2768 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2769 
2770 	u32 version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
2771 
2772 	return snprintf(buf, PAGE_SIZE, "%02d.%02d.%02d.%02d\n",
2773 	    (version & 0xFF000000) >> 24,
2774 	    (version & 0x00FF0000) >> 16,
2775 	    (version & 0x0000FF00) >> 8,
2776 	    version & 0x000000FF);
2777 }
2778 static DEVICE_ATTR_RO(version_bios);
2779 
2780 /**
2781  * version_mpi_show - MPI (message passing interface) version
2782  * @cdev: pointer to embedded class device
2783  * @attr: ?
2784  * @buf: the buffer returned
2785  *
2786  * A sysfs 'read-only' shost attribute.
2787  */
2788 static ssize_t
version_mpi_show(struct device * cdev,struct device_attribute * attr,char * buf)2789 version_mpi_show(struct device *cdev, struct device_attribute *attr,
2790 	char *buf)
2791 {
2792 	struct Scsi_Host *shost = class_to_shost(cdev);
2793 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2794 
2795 	return snprintf(buf, PAGE_SIZE, "%03x.%02x\n",
2796 	    ioc->facts.MsgVersion, ioc->facts.HeaderVersion >> 8);
2797 }
2798 static DEVICE_ATTR_RO(version_mpi);
2799 
2800 /**
2801  * version_product_show - product name
2802  * @cdev: pointer to embedded class device
2803  * @attr: ?
2804  * @buf: the buffer returned
2805  *
2806  * A sysfs 'read-only' shost attribute.
2807  */
2808 static ssize_t
version_product_show(struct device * cdev,struct device_attribute * attr,char * buf)2809 version_product_show(struct device *cdev, struct device_attribute *attr,
2810 	char *buf)
2811 {
2812 	struct Scsi_Host *shost = class_to_shost(cdev);
2813 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2814 
2815 	return snprintf(buf, 16, "%s\n", ioc->manu_pg0.ChipName);
2816 }
2817 static DEVICE_ATTR_RO(version_product);
2818 
2819 /**
2820  * version_nvdata_persistent_show - ndvata persistent version
2821  * @cdev: pointer to embedded class device
2822  * @attr: ?
2823  * @buf: the buffer returned
2824  *
2825  * A sysfs 'read-only' shost attribute.
2826  */
2827 static ssize_t
version_nvdata_persistent_show(struct device * cdev,struct device_attribute * attr,char * buf)2828 version_nvdata_persistent_show(struct device *cdev,
2829 	struct device_attribute *attr, char *buf)
2830 {
2831 	struct Scsi_Host *shost = class_to_shost(cdev);
2832 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2833 
2834 	return snprintf(buf, PAGE_SIZE, "%08xh\n",
2835 	    le32_to_cpu(ioc->iounit_pg0.NvdataVersionPersistent.Word));
2836 }
2837 static DEVICE_ATTR_RO(version_nvdata_persistent);
2838 
2839 /**
2840  * version_nvdata_default_show - nvdata default version
2841  * @cdev: pointer to embedded class device
2842  * @attr: ?
2843  * @buf: the buffer returned
2844  *
2845  * A sysfs 'read-only' shost attribute.
2846  */
2847 static ssize_t
version_nvdata_default_show(struct device * cdev,struct device_attribute * attr,char * buf)2848 version_nvdata_default_show(struct device *cdev, struct device_attribute
2849 	*attr, char *buf)
2850 {
2851 	struct Scsi_Host *shost = class_to_shost(cdev);
2852 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2853 
2854 	return snprintf(buf, PAGE_SIZE, "%08xh\n",
2855 	    le32_to_cpu(ioc->iounit_pg0.NvdataVersionDefault.Word));
2856 }
2857 static DEVICE_ATTR_RO(version_nvdata_default);
2858 
2859 /**
2860  * board_name_show - board name
2861  * @cdev: pointer to embedded class device
2862  * @attr: ?
2863  * @buf: the buffer returned
2864  *
2865  * A sysfs 'read-only' shost attribute.
2866  */
2867 static ssize_t
board_name_show(struct device * cdev,struct device_attribute * attr,char * buf)2868 board_name_show(struct device *cdev, struct device_attribute *attr,
2869 	char *buf)
2870 {
2871 	struct Scsi_Host *shost = class_to_shost(cdev);
2872 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2873 
2874 	return snprintf(buf, 16, "%s\n", ioc->manu_pg0.BoardName);
2875 }
2876 static DEVICE_ATTR_RO(board_name);
2877 
2878 /**
2879  * board_assembly_show - board assembly name
2880  * @cdev: pointer to embedded class device
2881  * @attr: ?
2882  * @buf: the buffer returned
2883  *
2884  * A sysfs 'read-only' shost attribute.
2885  */
2886 static ssize_t
board_assembly_show(struct device * cdev,struct device_attribute * attr,char * buf)2887 board_assembly_show(struct device *cdev, struct device_attribute *attr,
2888 	char *buf)
2889 {
2890 	struct Scsi_Host *shost = class_to_shost(cdev);
2891 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2892 
2893 	return snprintf(buf, 16, "%s\n", ioc->manu_pg0.BoardAssembly);
2894 }
2895 static DEVICE_ATTR_RO(board_assembly);
2896 
2897 /**
2898  * board_tracer_show - board tracer number
2899  * @cdev: pointer to embedded class device
2900  * @attr: ?
2901  * @buf: the buffer returned
2902  *
2903  * A sysfs 'read-only' shost attribute.
2904  */
2905 static ssize_t
board_tracer_show(struct device * cdev,struct device_attribute * attr,char * buf)2906 board_tracer_show(struct device *cdev, struct device_attribute *attr,
2907 	char *buf)
2908 {
2909 	struct Scsi_Host *shost = class_to_shost(cdev);
2910 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2911 
2912 	return snprintf(buf, 16, "%s\n", ioc->manu_pg0.BoardTracerNumber);
2913 }
2914 static DEVICE_ATTR_RO(board_tracer);
2915 
2916 /**
2917  * io_delay_show - io missing delay
2918  * @cdev: pointer to embedded class device
2919  * @attr: ?
2920  * @buf: the buffer returned
2921  *
2922  * This is for firmware implemention for deboucing device
2923  * removal events.
2924  *
2925  * A sysfs 'read-only' shost attribute.
2926  */
2927 static ssize_t
io_delay_show(struct device * cdev,struct device_attribute * attr,char * buf)2928 io_delay_show(struct device *cdev, struct device_attribute *attr,
2929 	char *buf)
2930 {
2931 	struct Scsi_Host *shost = class_to_shost(cdev);
2932 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2933 
2934 	return snprintf(buf, PAGE_SIZE, "%02d\n", ioc->io_missing_delay);
2935 }
2936 static DEVICE_ATTR_RO(io_delay);
2937 
2938 /**
2939  * device_delay_show - device missing delay
2940  * @cdev: pointer to embedded class device
2941  * @attr: ?
2942  * @buf: the buffer returned
2943  *
2944  * This is for firmware implemention for deboucing device
2945  * removal events.
2946  *
2947  * A sysfs 'read-only' shost attribute.
2948  */
2949 static ssize_t
device_delay_show(struct device * cdev,struct device_attribute * attr,char * buf)2950 device_delay_show(struct device *cdev, struct device_attribute *attr,
2951 	char *buf)
2952 {
2953 	struct Scsi_Host *shost = class_to_shost(cdev);
2954 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2955 
2956 	return snprintf(buf, PAGE_SIZE, "%02d\n", ioc->device_missing_delay);
2957 }
2958 static DEVICE_ATTR_RO(device_delay);
2959 
2960 /**
2961  * fw_queue_depth_show - global credits
2962  * @cdev: pointer to embedded class device
2963  * @attr: ?
2964  * @buf: the buffer returned
2965  *
2966  * This is firmware queue depth limit
2967  *
2968  * A sysfs 'read-only' shost attribute.
2969  */
2970 static ssize_t
fw_queue_depth_show(struct device * cdev,struct device_attribute * attr,char * buf)2971 fw_queue_depth_show(struct device *cdev, struct device_attribute *attr,
2972 	char *buf)
2973 {
2974 	struct Scsi_Host *shost = class_to_shost(cdev);
2975 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2976 
2977 	return snprintf(buf, PAGE_SIZE, "%02d\n", ioc->facts.RequestCredit);
2978 }
2979 static DEVICE_ATTR_RO(fw_queue_depth);
2980 
2981 /**
2982  * sas_address_show - sas address
2983  * @cdev: pointer to embedded class device
2984  * @attr: ?
2985  * @buf: the buffer returned
2986  *
2987  * This is the controller sas address
2988  *
2989  * A sysfs 'read-only' shost attribute.
2990  */
2991 static ssize_t
host_sas_address_show(struct device * cdev,struct device_attribute * attr,char * buf)2992 host_sas_address_show(struct device *cdev, struct device_attribute *attr,
2993 	char *buf)
2994 
2995 {
2996 	struct Scsi_Host *shost = class_to_shost(cdev);
2997 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
2998 
2999 	return snprintf(buf, PAGE_SIZE, "0x%016llx\n",
3000 	    (unsigned long long)ioc->sas_hba.sas_address);
3001 }
3002 static DEVICE_ATTR_RO(host_sas_address);
3003 
3004 /**
3005  * logging_level_show - logging level
3006  * @cdev: pointer to embedded class device
3007  * @attr: ?
3008  * @buf: the buffer returned
3009  *
3010  * A sysfs 'read/write' shost attribute.
3011  */
3012 static ssize_t
logging_level_show(struct device * cdev,struct device_attribute * attr,char * buf)3013 logging_level_show(struct device *cdev, struct device_attribute *attr,
3014 	char *buf)
3015 {
3016 	struct Scsi_Host *shost = class_to_shost(cdev);
3017 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3018 
3019 	return snprintf(buf, PAGE_SIZE, "%08xh\n", ioc->logging_level);
3020 }
3021 static ssize_t
logging_level_store(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)3022 logging_level_store(struct device *cdev, struct device_attribute *attr,
3023 	const char *buf, size_t count)
3024 {
3025 	struct Scsi_Host *shost = class_to_shost(cdev);
3026 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3027 	int val = 0;
3028 
3029 	if (sscanf(buf, "%x", &val) != 1)
3030 		return -EINVAL;
3031 
3032 	ioc->logging_level = val;
3033 	ioc_info(ioc, "logging_level=%08xh\n",
3034 		 ioc->logging_level);
3035 	return strlen(buf);
3036 }
3037 static DEVICE_ATTR_RW(logging_level);
3038 
3039 /**
3040  * fwfault_debug_show - show/store fwfault_debug
3041  * @cdev: pointer to embedded class device
3042  * @attr: ?
3043  * @buf: the buffer returned
3044  *
3045  * mpt3sas_fwfault_debug is command line option
3046  * A sysfs 'read/write' shost attribute.
3047  */
3048 static ssize_t
fwfault_debug_show(struct device * cdev,struct device_attribute * attr,char * buf)3049 fwfault_debug_show(struct device *cdev, struct device_attribute *attr,
3050 	char *buf)
3051 {
3052 	struct Scsi_Host *shost = class_to_shost(cdev);
3053 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3054 
3055 	return snprintf(buf, PAGE_SIZE, "%d\n", ioc->fwfault_debug);
3056 }
3057 static ssize_t
fwfault_debug_store(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)3058 fwfault_debug_store(struct device *cdev, struct device_attribute *attr,
3059 	const char *buf, size_t count)
3060 {
3061 	struct Scsi_Host *shost = class_to_shost(cdev);
3062 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3063 	int val = 0;
3064 
3065 	if (sscanf(buf, "%d", &val) != 1)
3066 		return -EINVAL;
3067 
3068 	ioc->fwfault_debug = val;
3069 	ioc_info(ioc, "fwfault_debug=%d\n",
3070 		 ioc->fwfault_debug);
3071 	return strlen(buf);
3072 }
3073 static DEVICE_ATTR_RW(fwfault_debug);
3074 
3075 /**
3076  * ioc_reset_count_show - ioc reset count
3077  * @cdev: pointer to embedded class device
3078  * @attr: ?
3079  * @buf: the buffer returned
3080  *
3081  * This is firmware queue depth limit
3082  *
3083  * A sysfs 'read-only' shost attribute.
3084  */
3085 static ssize_t
ioc_reset_count_show(struct device * cdev,struct device_attribute * attr,char * buf)3086 ioc_reset_count_show(struct device *cdev, struct device_attribute *attr,
3087 	char *buf)
3088 {
3089 	struct Scsi_Host *shost = class_to_shost(cdev);
3090 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3091 
3092 	return snprintf(buf, PAGE_SIZE, "%d\n", ioc->ioc_reset_count);
3093 }
3094 static DEVICE_ATTR_RO(ioc_reset_count);
3095 
3096 /**
3097  * reply_queue_count_show - number of reply queues
3098  * @cdev: pointer to embedded class device
3099  * @attr: ?
3100  * @buf: the buffer returned
3101  *
3102  * This is number of reply queues
3103  *
3104  * A sysfs 'read-only' shost attribute.
3105  */
3106 static ssize_t
reply_queue_count_show(struct device * cdev,struct device_attribute * attr,char * buf)3107 reply_queue_count_show(struct device *cdev,
3108 	struct device_attribute *attr, char *buf)
3109 {
3110 	u8 reply_queue_count;
3111 	struct Scsi_Host *shost = class_to_shost(cdev);
3112 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3113 
3114 	if ((ioc->facts.IOCCapabilities &
3115 	    MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable)
3116 		reply_queue_count = ioc->reply_queue_count;
3117 	else
3118 		reply_queue_count = 1;
3119 
3120 	return snprintf(buf, PAGE_SIZE, "%d\n", reply_queue_count);
3121 }
3122 static DEVICE_ATTR_RO(reply_queue_count);
3123 
3124 /**
3125  * BRM_status_show - Backup Rail Monitor Status
3126  * @cdev: pointer to embedded class device
3127  * @attr: ?
3128  * @buf: the buffer returned
3129  *
3130  * This is number of reply queues
3131  *
3132  * A sysfs 'read-only' shost attribute.
3133  */
3134 static ssize_t
BRM_status_show(struct device * cdev,struct device_attribute * attr,char * buf)3135 BRM_status_show(struct device *cdev, struct device_attribute *attr,
3136 	char *buf)
3137 {
3138 	struct Scsi_Host *shost = class_to_shost(cdev);
3139 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3140 	Mpi2IOUnitPage3_t *io_unit_pg3 = NULL;
3141 	Mpi2ConfigReply_t mpi_reply;
3142 	u16 backup_rail_monitor_status = 0;
3143 	u16 ioc_status;
3144 	int sz;
3145 	ssize_t rc = 0;
3146 
3147 	if (!ioc->is_warpdrive) {
3148 		ioc_err(ioc, "%s: BRM attribute is only for warpdrive\n",
3149 			__func__);
3150 		return 0;
3151 	}
3152 	/* pci_access_mutex lock acquired by sysfs show path */
3153 	mutex_lock(&ioc->pci_access_mutex);
3154 	if (ioc->pci_error_recovery || ioc->remove_host)
3155 		goto out;
3156 
3157 	/* allocate upto GPIOVal 36 entries */
3158 	sz = offsetof(Mpi2IOUnitPage3_t, GPIOVal) + (sizeof(u16) * 36);
3159 	io_unit_pg3 = kzalloc(sz, GFP_KERNEL);
3160 	if (!io_unit_pg3) {
3161 		rc = -ENOMEM;
3162 		ioc_err(ioc, "%s: failed allocating memory for iounit_pg3: (%d) bytes\n",
3163 			__func__, sz);
3164 		goto out;
3165 	}
3166 
3167 	if (mpt3sas_config_get_iounit_pg3(ioc, &mpi_reply, io_unit_pg3, sz) !=
3168 	    0) {
3169 		ioc_err(ioc, "%s: failed reading iounit_pg3\n",
3170 			__func__);
3171 		rc = -EINVAL;
3172 		goto out;
3173 	}
3174 
3175 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
3176 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
3177 		ioc_err(ioc, "%s: iounit_pg3 failed with ioc_status(0x%04x)\n",
3178 			__func__, ioc_status);
3179 		rc = -EINVAL;
3180 		goto out;
3181 	}
3182 
3183 	if (io_unit_pg3->GPIOCount < 25) {
3184 		ioc_err(ioc, "%s: iounit_pg3->GPIOCount less than 25 entries, detected (%d) entries\n",
3185 			__func__, io_unit_pg3->GPIOCount);
3186 		rc = -EINVAL;
3187 		goto out;
3188 	}
3189 
3190 	/* BRM status is in bit zero of GPIOVal[24] */
3191 	backup_rail_monitor_status = le16_to_cpu(io_unit_pg3->GPIOVal[24]);
3192 	rc = snprintf(buf, PAGE_SIZE, "%d\n", (backup_rail_monitor_status & 1));
3193 
3194  out:
3195 	kfree(io_unit_pg3);
3196 	mutex_unlock(&ioc->pci_access_mutex);
3197 	return rc;
3198 }
3199 static DEVICE_ATTR_RO(BRM_status);
3200 
3201 struct DIAG_BUFFER_START {
3202 	__le32	Size;
3203 	__le32	DiagVersion;
3204 	u8	BufferType;
3205 	u8	Reserved[3];
3206 	__le32	Reserved1;
3207 	__le32	Reserved2;
3208 	__le32	Reserved3;
3209 };
3210 
3211 /**
3212  * host_trace_buffer_size_show - host buffer size (trace only)
3213  * @cdev: pointer to embedded class device
3214  * @attr: ?
3215  * @buf: the buffer returned
3216  *
3217  * A sysfs 'read-only' shost attribute.
3218  */
3219 static ssize_t
host_trace_buffer_size_show(struct device * cdev,struct device_attribute * attr,char * buf)3220 host_trace_buffer_size_show(struct device *cdev,
3221 	struct device_attribute *attr, char *buf)
3222 {
3223 	struct Scsi_Host *shost = class_to_shost(cdev);
3224 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3225 	u32 size = 0;
3226 	struct DIAG_BUFFER_START *request_data;
3227 
3228 	if (!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) {
3229 		ioc_err(ioc, "%s: host_trace_buffer is not registered\n",
3230 			__func__);
3231 		return 0;
3232 	}
3233 
3234 	if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
3235 	    MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) {
3236 		ioc_err(ioc, "%s: host_trace_buffer is not registered\n",
3237 			__func__);
3238 		return 0;
3239 	}
3240 
3241 	request_data = (struct DIAG_BUFFER_START *)
3242 	    ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE];
3243 	if ((le32_to_cpu(request_data->DiagVersion) == 0x00000000 ||
3244 	    le32_to_cpu(request_data->DiagVersion) == 0x01000000 ||
3245 	    le32_to_cpu(request_data->DiagVersion) == 0x01010000) &&
3246 	    le32_to_cpu(request_data->Reserved3) == 0x4742444c)
3247 		size = le32_to_cpu(request_data->Size);
3248 
3249 	ioc->ring_buffer_sz = size;
3250 	return snprintf(buf, PAGE_SIZE, "%d\n", size);
3251 }
3252 static DEVICE_ATTR_RO(host_trace_buffer_size);
3253 
3254 /**
3255  * host_trace_buffer_show - firmware ring buffer (trace only)
3256  * @cdev: pointer to embedded class device
3257  * @attr: ?
3258  * @buf: the buffer returned
3259  *
3260  * A sysfs 'read/write' shost attribute.
3261  *
3262  * You will only be able to read 4k bytes of ring buffer at a time.
3263  * In order to read beyond 4k bytes, you will have to write out the
3264  * offset to the same attribute, it will move the pointer.
3265  */
3266 static ssize_t
host_trace_buffer_show(struct device * cdev,struct device_attribute * attr,char * buf)3267 host_trace_buffer_show(struct device *cdev, struct device_attribute *attr,
3268 	char *buf)
3269 {
3270 	struct Scsi_Host *shost = class_to_shost(cdev);
3271 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3272 	void *request_data;
3273 	u32 size;
3274 
3275 	if (!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) {
3276 		ioc_err(ioc, "%s: host_trace_buffer is not registered\n",
3277 			__func__);
3278 		return 0;
3279 	}
3280 
3281 	if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
3282 	    MPT3_DIAG_BUFFER_IS_REGISTERED) == 0) {
3283 		ioc_err(ioc, "%s: host_trace_buffer is not registered\n",
3284 			__func__);
3285 		return 0;
3286 	}
3287 
3288 	if (ioc->ring_buffer_offset > ioc->ring_buffer_sz)
3289 		return 0;
3290 
3291 	size = ioc->ring_buffer_sz - ioc->ring_buffer_offset;
3292 	size = (size >= PAGE_SIZE) ? (PAGE_SIZE - 1) : size;
3293 	request_data = ioc->diag_buffer[0] + ioc->ring_buffer_offset;
3294 	memcpy(buf, request_data, size);
3295 	return size;
3296 }
3297 
3298 static ssize_t
host_trace_buffer_store(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)3299 host_trace_buffer_store(struct device *cdev, struct device_attribute *attr,
3300 	const char *buf, size_t count)
3301 {
3302 	struct Scsi_Host *shost = class_to_shost(cdev);
3303 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3304 	int val = 0;
3305 
3306 	if (sscanf(buf, "%d", &val) != 1)
3307 		return -EINVAL;
3308 
3309 	ioc->ring_buffer_offset = val;
3310 	return strlen(buf);
3311 }
3312 static DEVICE_ATTR_RW(host_trace_buffer);
3313 
3314 
3315 /*****************************************/
3316 
3317 /**
3318  * host_trace_buffer_enable_show - firmware ring buffer (trace only)
3319  * @cdev: pointer to embedded class device
3320  * @attr: ?
3321  * @buf: the buffer returned
3322  *
3323  * A sysfs 'read/write' shost attribute.
3324  *
3325  * This is a mechnism to post/release host_trace_buffers
3326  */
3327 static ssize_t
host_trace_buffer_enable_show(struct device * cdev,struct device_attribute * attr,char * buf)3328 host_trace_buffer_enable_show(struct device *cdev,
3329 	struct device_attribute *attr, char *buf)
3330 {
3331 	struct Scsi_Host *shost = class_to_shost(cdev);
3332 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3333 
3334 	if ((!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) ||
3335 	   ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
3336 	    MPT3_DIAG_BUFFER_IS_REGISTERED) == 0))
3337 		return snprintf(buf, PAGE_SIZE, "off\n");
3338 	else if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
3339 	    MPT3_DIAG_BUFFER_IS_RELEASED))
3340 		return snprintf(buf, PAGE_SIZE, "release\n");
3341 	else
3342 		return snprintf(buf, PAGE_SIZE, "post\n");
3343 }
3344 
3345 static ssize_t
host_trace_buffer_enable_store(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)3346 host_trace_buffer_enable_store(struct device *cdev,
3347 	struct device_attribute *attr, const char *buf, size_t count)
3348 {
3349 	struct Scsi_Host *shost = class_to_shost(cdev);
3350 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3351 	char str[10] = "";
3352 	struct mpt3_diag_register diag_register;
3353 	u8 issue_reset = 0;
3354 
3355 	/* don't allow post/release occurr while recovery is active */
3356 	if (ioc->shost_recovery || ioc->remove_host ||
3357 	    ioc->pci_error_recovery || ioc->is_driver_loading)
3358 		return -EBUSY;
3359 
3360 	if (sscanf(buf, "%9s", str) != 1)
3361 		return -EINVAL;
3362 
3363 	if (!strcmp(str, "post")) {
3364 		/* exit out if host buffers are already posted */
3365 		if ((ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) &&
3366 		    (ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
3367 		    MPT3_DIAG_BUFFER_IS_REGISTERED) &&
3368 		    ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
3369 		    MPT3_DIAG_BUFFER_IS_RELEASED) == 0))
3370 			goto out;
3371 		memset(&diag_register, 0, sizeof(struct mpt3_diag_register));
3372 		ioc_info(ioc, "posting host trace buffers\n");
3373 		diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_TRACE;
3374 
3375 		if (ioc->manu_pg11.HostTraceBufferMaxSizeKB != 0 &&
3376 		    ioc->diag_buffer_sz[MPI2_DIAG_BUF_TYPE_TRACE] != 0) {
3377 			/* post the same buffer allocated previously */
3378 			diag_register.requested_buffer_size =
3379 			    ioc->diag_buffer_sz[MPI2_DIAG_BUF_TYPE_TRACE];
3380 		} else {
3381 			/*
3382 			 * Free the diag buffer memory which was previously
3383 			 * allocated by an application.
3384 			 */
3385 			if ((ioc->diag_buffer_sz[MPI2_DIAG_BUF_TYPE_TRACE] != 0)
3386 			    &&
3387 			    (ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
3388 			    MPT3_DIAG_BUFFER_IS_APP_OWNED)) {
3389 				dma_free_coherent(&ioc->pdev->dev,
3390 						  ioc->diag_buffer_sz[MPI2_DIAG_BUF_TYPE_TRACE],
3391 						  ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE],
3392 						  ioc->diag_buffer_dma[MPI2_DIAG_BUF_TYPE_TRACE]);
3393 				ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE] =
3394 				    NULL;
3395 			}
3396 
3397 			diag_register.requested_buffer_size = (1024 * 1024);
3398 		}
3399 
3400 		diag_register.unique_id =
3401 		    (ioc->hba_mpi_version_belonged == MPI2_VERSION) ?
3402 		    (MPT2DIAGBUFFUNIQUEID):(MPT3DIAGBUFFUNIQUEID);
3403 		ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] = 0;
3404 		_ctl_diag_register_2(ioc,  &diag_register);
3405 		if (ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
3406 		    MPT3_DIAG_BUFFER_IS_REGISTERED) {
3407 			ioc_info(ioc,
3408 			    "Trace buffer %d KB allocated through sysfs\n",
3409 			    diag_register.requested_buffer_size>>10);
3410 			if (ioc->hba_mpi_version_belonged != MPI2_VERSION)
3411 				ioc->diag_buffer_status[
3412 				    MPI2_DIAG_BUF_TYPE_TRACE] |=
3413 				    MPT3_DIAG_BUFFER_IS_DRIVER_ALLOCATED;
3414 		}
3415 	} else if (!strcmp(str, "release")) {
3416 		/* exit out if host buffers are already released */
3417 		if (!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE])
3418 			goto out;
3419 		if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
3420 		    MPT3_DIAG_BUFFER_IS_REGISTERED) == 0)
3421 			goto out;
3422 		if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
3423 		    MPT3_DIAG_BUFFER_IS_RELEASED))
3424 			goto out;
3425 		ioc_info(ioc, "releasing host trace buffer\n");
3426 		mpt3sas_send_diag_release(ioc, MPI2_DIAG_BUF_TYPE_TRACE,
3427 		    &issue_reset);
3428 	}
3429 
3430  out:
3431 	return strlen(buf);
3432 }
3433 static DEVICE_ATTR_RW(host_trace_buffer_enable);
3434 
3435 /*********** diagnostic trigger suppport *********************************/
3436 
3437 /**
3438  * diag_trigger_master_show - show the diag_trigger_master attribute
3439  * @cdev: pointer to embedded class device
3440  * @attr: ?
3441  * @buf: the buffer returned
3442  *
3443  * A sysfs 'read/write' shost attribute.
3444  */
3445 static ssize_t
diag_trigger_master_show(struct device * cdev,struct device_attribute * attr,char * buf)3446 diag_trigger_master_show(struct device *cdev,
3447 	struct device_attribute *attr, char *buf)
3448 
3449 {
3450 	struct Scsi_Host *shost = class_to_shost(cdev);
3451 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3452 	unsigned long flags;
3453 	ssize_t rc;
3454 
3455 	spin_lock_irqsave(&ioc->diag_trigger_lock, flags);
3456 	rc = sizeof(struct SL_WH_MASTER_TRIGGER_T);
3457 	memcpy(buf, &ioc->diag_trigger_master, rc);
3458 	spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags);
3459 	return rc;
3460 }
3461 
3462 /**
3463  * diag_trigger_master_store - store the diag_trigger_master attribute
3464  * @cdev: pointer to embedded class device
3465  * @attr: ?
3466  * @buf: the buffer returned
3467  * @count: ?
3468  *
3469  * A sysfs 'read/write' shost attribute.
3470  */
3471 static ssize_t
diag_trigger_master_store(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)3472 diag_trigger_master_store(struct device *cdev,
3473 	struct device_attribute *attr, const char *buf, size_t count)
3474 
3475 {
3476 	struct Scsi_Host *shost = class_to_shost(cdev);
3477 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3478 	unsigned long flags;
3479 	ssize_t rc;
3480 
3481 	spin_lock_irqsave(&ioc->diag_trigger_lock, flags);
3482 	rc = min(sizeof(struct SL_WH_MASTER_TRIGGER_T), count);
3483 	memset(&ioc->diag_trigger_master, 0,
3484 	    sizeof(struct SL_WH_MASTER_TRIGGER_T));
3485 	memcpy(&ioc->diag_trigger_master, buf, rc);
3486 	ioc->diag_trigger_master.MasterData |=
3487 	    (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET);
3488 	spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags);
3489 	return rc;
3490 }
3491 static DEVICE_ATTR_RW(diag_trigger_master);
3492 
3493 
3494 /**
3495  * diag_trigger_event_show - show the diag_trigger_event attribute
3496  * @cdev: pointer to embedded class device
3497  * @attr: ?
3498  * @buf: the buffer returned
3499  *
3500  * A sysfs 'read/write' shost attribute.
3501  */
3502 static ssize_t
diag_trigger_event_show(struct device * cdev,struct device_attribute * attr,char * buf)3503 diag_trigger_event_show(struct device *cdev,
3504 	struct device_attribute *attr, char *buf)
3505 {
3506 	struct Scsi_Host *shost = class_to_shost(cdev);
3507 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3508 	unsigned long flags;
3509 	ssize_t rc;
3510 
3511 	spin_lock_irqsave(&ioc->diag_trigger_lock, flags);
3512 	rc = sizeof(struct SL_WH_EVENT_TRIGGERS_T);
3513 	memcpy(buf, &ioc->diag_trigger_event, rc);
3514 	spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags);
3515 	return rc;
3516 }
3517 
3518 /**
3519  * diag_trigger_event_store - store the diag_trigger_event attribute
3520  * @cdev: pointer to embedded class device
3521  * @attr: ?
3522  * @buf: the buffer returned
3523  * @count: ?
3524  *
3525  * A sysfs 'read/write' shost attribute.
3526  */
3527 static ssize_t
diag_trigger_event_store(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)3528 diag_trigger_event_store(struct device *cdev,
3529 	struct device_attribute *attr, const char *buf, size_t count)
3530 
3531 {
3532 	struct Scsi_Host *shost = class_to_shost(cdev);
3533 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3534 	unsigned long flags;
3535 	ssize_t sz;
3536 
3537 	spin_lock_irqsave(&ioc->diag_trigger_lock, flags);
3538 	sz = min(sizeof(struct SL_WH_EVENT_TRIGGERS_T), count);
3539 	memset(&ioc->diag_trigger_event, 0,
3540 	    sizeof(struct SL_WH_EVENT_TRIGGERS_T));
3541 	memcpy(&ioc->diag_trigger_event, buf, sz);
3542 	if (ioc->diag_trigger_event.ValidEntries > NUM_VALID_ENTRIES)
3543 		ioc->diag_trigger_event.ValidEntries = NUM_VALID_ENTRIES;
3544 	spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags);
3545 	return sz;
3546 }
3547 static DEVICE_ATTR_RW(diag_trigger_event);
3548 
3549 
3550 /**
3551  * diag_trigger_scsi_show - show the diag_trigger_scsi attribute
3552  * @cdev: pointer to embedded class device
3553  * @attr: ?
3554  * @buf: the buffer returned
3555  *
3556  * A sysfs 'read/write' shost attribute.
3557  */
3558 static ssize_t
diag_trigger_scsi_show(struct device * cdev,struct device_attribute * attr,char * buf)3559 diag_trigger_scsi_show(struct device *cdev,
3560 	struct device_attribute *attr, char *buf)
3561 {
3562 	struct Scsi_Host *shost = class_to_shost(cdev);
3563 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3564 	unsigned long flags;
3565 	ssize_t rc;
3566 
3567 	spin_lock_irqsave(&ioc->diag_trigger_lock, flags);
3568 	rc = sizeof(struct SL_WH_SCSI_TRIGGERS_T);
3569 	memcpy(buf, &ioc->diag_trigger_scsi, rc);
3570 	spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags);
3571 	return rc;
3572 }
3573 
3574 /**
3575  * diag_trigger_scsi_store - store the diag_trigger_scsi attribute
3576  * @cdev: pointer to embedded class device
3577  * @attr: ?
3578  * @buf: the buffer returned
3579  * @count: ?
3580  *
3581  * A sysfs 'read/write' shost attribute.
3582  */
3583 static ssize_t
diag_trigger_scsi_store(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)3584 diag_trigger_scsi_store(struct device *cdev,
3585 	struct device_attribute *attr, const char *buf, size_t count)
3586 {
3587 	struct Scsi_Host *shost = class_to_shost(cdev);
3588 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3589 	unsigned long flags;
3590 	ssize_t sz;
3591 
3592 	spin_lock_irqsave(&ioc->diag_trigger_lock, flags);
3593 	sz = min(sizeof(ioc->diag_trigger_scsi), count);
3594 	memset(&ioc->diag_trigger_scsi, 0, sizeof(ioc->diag_trigger_scsi));
3595 	memcpy(&ioc->diag_trigger_scsi, buf, sz);
3596 	if (ioc->diag_trigger_scsi.ValidEntries > NUM_VALID_ENTRIES)
3597 		ioc->diag_trigger_scsi.ValidEntries = NUM_VALID_ENTRIES;
3598 	spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags);
3599 	return sz;
3600 }
3601 static DEVICE_ATTR_RW(diag_trigger_scsi);
3602 
3603 
3604 /**
3605  * diag_trigger_scsi_show - show the diag_trigger_mpi attribute
3606  * @cdev: pointer to embedded class device
3607  * @attr: ?
3608  * @buf: the buffer returned
3609  *
3610  * A sysfs 'read/write' shost attribute.
3611  */
3612 static ssize_t
diag_trigger_mpi_show(struct device * cdev,struct device_attribute * attr,char * buf)3613 diag_trigger_mpi_show(struct device *cdev,
3614 	struct device_attribute *attr, char *buf)
3615 {
3616 	struct Scsi_Host *shost = class_to_shost(cdev);
3617 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3618 	unsigned long flags;
3619 	ssize_t rc;
3620 
3621 	spin_lock_irqsave(&ioc->diag_trigger_lock, flags);
3622 	rc = sizeof(struct SL_WH_MPI_TRIGGERS_T);
3623 	memcpy(buf, &ioc->diag_trigger_mpi, rc);
3624 	spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags);
3625 	return rc;
3626 }
3627 
3628 /**
3629  * diag_trigger_mpi_store - store the diag_trigger_mpi attribute
3630  * @cdev: pointer to embedded class device
3631  * @attr: ?
3632  * @buf: the buffer returned
3633  * @count: ?
3634  *
3635  * A sysfs 'read/write' shost attribute.
3636  */
3637 static ssize_t
diag_trigger_mpi_store(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)3638 diag_trigger_mpi_store(struct device *cdev,
3639 	struct device_attribute *attr, const char *buf, size_t count)
3640 {
3641 	struct Scsi_Host *shost = class_to_shost(cdev);
3642 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3643 	unsigned long flags;
3644 	ssize_t sz;
3645 
3646 	spin_lock_irqsave(&ioc->diag_trigger_lock, flags);
3647 	sz = min(sizeof(struct SL_WH_MPI_TRIGGERS_T), count);
3648 	memset(&ioc->diag_trigger_mpi, 0,
3649 	    sizeof(ioc->diag_trigger_mpi));
3650 	memcpy(&ioc->diag_trigger_mpi, buf, sz);
3651 	if (ioc->diag_trigger_mpi.ValidEntries > NUM_VALID_ENTRIES)
3652 		ioc->diag_trigger_mpi.ValidEntries = NUM_VALID_ENTRIES;
3653 	spin_unlock_irqrestore(&ioc->diag_trigger_lock, flags);
3654 	return sz;
3655 }
3656 
3657 static DEVICE_ATTR_RW(diag_trigger_mpi);
3658 
3659 /*********** diagnostic trigger suppport *** END ****************************/
3660 
3661 /*****************************************/
3662 
3663 /**
3664  * drv_support_bitmap_show - driver supported feature bitmap
3665  * @cdev: pointer to embedded class device
3666  * @attr: unused
3667  * @buf: the buffer returned
3668  *
3669  * A sysfs 'read-only' shost attribute.
3670  */
3671 static ssize_t
drv_support_bitmap_show(struct device * cdev,struct device_attribute * attr,char * buf)3672 drv_support_bitmap_show(struct device *cdev,
3673 	struct device_attribute *attr, char *buf)
3674 {
3675 	struct Scsi_Host *shost = class_to_shost(cdev);
3676 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3677 
3678 	return snprintf(buf, PAGE_SIZE, "0x%08x\n", ioc->drv_support_bitmap);
3679 }
3680 static DEVICE_ATTR_RO(drv_support_bitmap);
3681 
3682 /**
3683  * enable_sdev_max_qd_show - display whether sdev max qd is enabled/disabled
3684  * @cdev: pointer to embedded class device
3685  * @attr: unused
3686  * @buf: the buffer returned
3687  *
3688  * A sysfs read/write shost attribute. This attribute is used to set the
3689  * targets queue depth to HBA IO queue depth if this attribute is enabled.
3690  */
3691 static ssize_t
enable_sdev_max_qd_show(struct device * cdev,struct device_attribute * attr,char * buf)3692 enable_sdev_max_qd_show(struct device *cdev,
3693 	struct device_attribute *attr, char *buf)
3694 {
3695 	struct Scsi_Host *shost = class_to_shost(cdev);
3696 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3697 
3698 	return snprintf(buf, PAGE_SIZE, "%d\n", ioc->enable_sdev_max_qd);
3699 }
3700 
3701 /**
3702  * enable_sdev_max_qd_store - Enable/disable sdev max qd
3703  * @cdev: pointer to embedded class device
3704  * @attr: unused
3705  * @buf: the buffer returned
3706  * @count: unused
3707  *
3708  * A sysfs read/write shost attribute. This attribute is used to set the
3709  * targets queue depth to HBA IO queue depth if this attribute is enabled.
3710  * If this attribute is disabled then targets will have corresponding default
3711  * queue depth.
3712  */
3713 static ssize_t
enable_sdev_max_qd_store(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)3714 enable_sdev_max_qd_store(struct device *cdev,
3715 	struct device_attribute *attr, const char *buf, size_t count)
3716 {
3717 	struct Scsi_Host *shost = class_to_shost(cdev);
3718 	struct MPT3SAS_ADAPTER *ioc = shost_priv(shost);
3719 	struct MPT3SAS_DEVICE *sas_device_priv_data;
3720 	struct MPT3SAS_TARGET *sas_target_priv_data;
3721 	int val = 0;
3722 	struct scsi_device *sdev;
3723 	struct _raid_device *raid_device;
3724 	int qdepth;
3725 
3726 	if (kstrtoint(buf, 0, &val) != 0)
3727 		return -EINVAL;
3728 
3729 	switch (val) {
3730 	case 0:
3731 		ioc->enable_sdev_max_qd = 0;
3732 		shost_for_each_device(sdev, ioc->shost) {
3733 			sas_device_priv_data = sdev->hostdata;
3734 			if (!sas_device_priv_data)
3735 				continue;
3736 			sas_target_priv_data = sas_device_priv_data->sas_target;
3737 			if (!sas_target_priv_data)
3738 				continue;
3739 
3740 			if (sas_target_priv_data->flags &
3741 			    MPT_TARGET_FLAGS_VOLUME) {
3742 				raid_device =
3743 				    mpt3sas_raid_device_find_by_handle(ioc,
3744 				    sas_target_priv_data->handle);
3745 
3746 				switch (raid_device->volume_type) {
3747 				case MPI2_RAID_VOL_TYPE_RAID0:
3748 					if (raid_device->device_info &
3749 					    MPI2_SAS_DEVICE_INFO_SSP_TARGET)
3750 						qdepth =
3751 						    MPT3SAS_SAS_QUEUE_DEPTH;
3752 					else
3753 						qdepth =
3754 						    MPT3SAS_SATA_QUEUE_DEPTH;
3755 					break;
3756 				case MPI2_RAID_VOL_TYPE_RAID1E:
3757 				case MPI2_RAID_VOL_TYPE_RAID1:
3758 				case MPI2_RAID_VOL_TYPE_RAID10:
3759 				case MPI2_RAID_VOL_TYPE_UNKNOWN:
3760 				default:
3761 					qdepth = MPT3SAS_RAID_QUEUE_DEPTH;
3762 				}
3763 			} else if (sas_target_priv_data->flags &
3764 			    MPT_TARGET_FLAGS_PCIE_DEVICE)
3765 				qdepth = MPT3SAS_NVME_QUEUE_DEPTH;
3766 			else
3767 				qdepth = MPT3SAS_SAS_QUEUE_DEPTH;
3768 
3769 			mpt3sas_scsih_change_queue_depth(sdev, qdepth);
3770 		}
3771 		break;
3772 	case 1:
3773 		ioc->enable_sdev_max_qd = 1;
3774 		shost_for_each_device(sdev, ioc->shost)
3775 			mpt3sas_scsih_change_queue_depth(sdev,
3776 			    shost->can_queue);
3777 		break;
3778 	default:
3779 		return -EINVAL;
3780 	}
3781 
3782 	return strlen(buf);
3783 }
3784 static DEVICE_ATTR_RW(enable_sdev_max_qd);
3785 
3786 struct device_attribute *mpt3sas_host_attrs[] = {
3787 	&dev_attr_version_fw,
3788 	&dev_attr_version_bios,
3789 	&dev_attr_version_mpi,
3790 	&dev_attr_version_product,
3791 	&dev_attr_version_nvdata_persistent,
3792 	&dev_attr_version_nvdata_default,
3793 	&dev_attr_board_name,
3794 	&dev_attr_board_assembly,
3795 	&dev_attr_board_tracer,
3796 	&dev_attr_io_delay,
3797 	&dev_attr_device_delay,
3798 	&dev_attr_logging_level,
3799 	&dev_attr_fwfault_debug,
3800 	&dev_attr_fw_queue_depth,
3801 	&dev_attr_host_sas_address,
3802 	&dev_attr_ioc_reset_count,
3803 	&dev_attr_host_trace_buffer_size,
3804 	&dev_attr_host_trace_buffer,
3805 	&dev_attr_host_trace_buffer_enable,
3806 	&dev_attr_reply_queue_count,
3807 	&dev_attr_diag_trigger_master,
3808 	&dev_attr_diag_trigger_event,
3809 	&dev_attr_diag_trigger_scsi,
3810 	&dev_attr_diag_trigger_mpi,
3811 	&dev_attr_drv_support_bitmap,
3812 	&dev_attr_BRM_status,
3813 	&dev_attr_enable_sdev_max_qd,
3814 	NULL,
3815 };
3816 
3817 /* device attributes */
3818 
3819 /**
3820  * sas_address_show - sas address
3821  * @dev: pointer to embedded class device
3822  * @attr: ?
3823  * @buf: the buffer returned
3824  *
3825  * This is the sas address for the target
3826  *
3827  * A sysfs 'read-only' shost attribute.
3828  */
3829 static ssize_t
sas_address_show(struct device * dev,struct device_attribute * attr,char * buf)3830 sas_address_show(struct device *dev, struct device_attribute *attr,
3831 	char *buf)
3832 {
3833 	struct scsi_device *sdev = to_scsi_device(dev);
3834 	struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata;
3835 
3836 	return snprintf(buf, PAGE_SIZE, "0x%016llx\n",
3837 	    (unsigned long long)sas_device_priv_data->sas_target->sas_address);
3838 }
3839 static DEVICE_ATTR_RO(sas_address);
3840 
3841 /**
3842  * sas_device_handle_show - device handle
3843  * @dev: pointer to embedded class device
3844  * @attr: ?
3845  * @buf: the buffer returned
3846  *
3847  * This is the firmware assigned device handle
3848  *
3849  * A sysfs 'read-only' shost attribute.
3850  */
3851 static ssize_t
sas_device_handle_show(struct device * dev,struct device_attribute * attr,char * buf)3852 sas_device_handle_show(struct device *dev, struct device_attribute *attr,
3853 	char *buf)
3854 {
3855 	struct scsi_device *sdev = to_scsi_device(dev);
3856 	struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata;
3857 
3858 	return snprintf(buf, PAGE_SIZE, "0x%04x\n",
3859 	    sas_device_priv_data->sas_target->handle);
3860 }
3861 static DEVICE_ATTR_RO(sas_device_handle);
3862 
3863 /**
3864  * sas_ncq_io_prio_show - send prioritized io commands to device
3865  * @dev: pointer to embedded device
3866  * @attr: ?
3867  * @buf: the buffer returned
3868  *
3869  * A sysfs 'read/write' sdev attribute, only works with SATA
3870  */
3871 static ssize_t
sas_ncq_prio_enable_show(struct device * dev,struct device_attribute * attr,char * buf)3872 sas_ncq_prio_enable_show(struct device *dev,
3873 				 struct device_attribute *attr, char *buf)
3874 {
3875 	struct scsi_device *sdev = to_scsi_device(dev);
3876 	struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata;
3877 
3878 	return snprintf(buf, PAGE_SIZE, "%d\n",
3879 			sas_device_priv_data->ncq_prio_enable);
3880 }
3881 
3882 static ssize_t
sas_ncq_prio_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3883 sas_ncq_prio_enable_store(struct device *dev,
3884 				  struct device_attribute *attr,
3885 				  const char *buf, size_t count)
3886 {
3887 	struct scsi_device *sdev = to_scsi_device(dev);
3888 	struct MPT3SAS_DEVICE *sas_device_priv_data = sdev->hostdata;
3889 	bool ncq_prio_enable = 0;
3890 
3891 	if (kstrtobool(buf, &ncq_prio_enable))
3892 		return -EINVAL;
3893 
3894 	if (!scsih_ncq_prio_supp(sdev))
3895 		return -EINVAL;
3896 
3897 	sas_device_priv_data->ncq_prio_enable = ncq_prio_enable;
3898 	return strlen(buf);
3899 }
3900 static DEVICE_ATTR_RW(sas_ncq_prio_enable);
3901 
3902 struct device_attribute *mpt3sas_dev_attrs[] = {
3903 	&dev_attr_sas_address,
3904 	&dev_attr_sas_device_handle,
3905 	&dev_attr_sas_ncq_prio_enable,
3906 	NULL,
3907 };
3908 
3909 /* file operations table for mpt3ctl device */
3910 static const struct file_operations ctl_fops = {
3911 	.owner = THIS_MODULE,
3912 	.unlocked_ioctl = _ctl_ioctl,
3913 	.poll = _ctl_poll,
3914 	.fasync = _ctl_fasync,
3915 #ifdef CONFIG_COMPAT
3916 	.compat_ioctl = _ctl_ioctl_compat,
3917 #endif
3918 };
3919 
3920 /* file operations table for mpt2ctl device */
3921 static const struct file_operations ctl_gen2_fops = {
3922 	.owner = THIS_MODULE,
3923 	.unlocked_ioctl = _ctl_mpt2_ioctl,
3924 	.poll = _ctl_poll,
3925 	.fasync = _ctl_fasync,
3926 #ifdef CONFIG_COMPAT
3927 	.compat_ioctl = _ctl_mpt2_ioctl_compat,
3928 #endif
3929 };
3930 
3931 static struct miscdevice ctl_dev = {
3932 	.minor  = MPT3SAS_MINOR,
3933 	.name   = MPT3SAS_DEV_NAME,
3934 	.fops   = &ctl_fops,
3935 };
3936 
3937 static struct miscdevice gen2_ctl_dev = {
3938 	.minor  = MPT2SAS_MINOR,
3939 	.name   = MPT2SAS_DEV_NAME,
3940 	.fops   = &ctl_gen2_fops,
3941 };
3942 
3943 /**
3944  * mpt3sas_ctl_init - main entry point for ctl.
3945  * @hbas_to_enumerate: ?
3946  */
3947 void
mpt3sas_ctl_init(ushort hbas_to_enumerate)3948 mpt3sas_ctl_init(ushort hbas_to_enumerate)
3949 {
3950 	async_queue = NULL;
3951 
3952 	/* Don't register mpt3ctl ioctl device if
3953 	 * hbas_to_enumarate is one.
3954 	 */
3955 	if (hbas_to_enumerate != 1)
3956 		if (misc_register(&ctl_dev) < 0)
3957 			pr_err("%s can't register misc device [minor=%d]\n",
3958 			    MPT3SAS_DRIVER_NAME, MPT3SAS_MINOR);
3959 
3960 	/* Don't register mpt3ctl ioctl device if
3961 	 * hbas_to_enumarate is two.
3962 	 */
3963 	if (hbas_to_enumerate != 2)
3964 		if (misc_register(&gen2_ctl_dev) < 0)
3965 			pr_err("%s can't register misc device [minor=%d]\n",
3966 			    MPT2SAS_DRIVER_NAME, MPT2SAS_MINOR);
3967 
3968 	init_waitqueue_head(&ctl_poll_wait);
3969 }
3970 
3971 /**
3972  * mpt3sas_ctl_exit - exit point for ctl
3973  * @hbas_to_enumerate: ?
3974  */
3975 void
mpt3sas_ctl_exit(ushort hbas_to_enumerate)3976 mpt3sas_ctl_exit(ushort hbas_to_enumerate)
3977 {
3978 	struct MPT3SAS_ADAPTER *ioc;
3979 	int i;
3980 
3981 	list_for_each_entry(ioc, &mpt3sas_ioc_list, list) {
3982 
3983 		/* free memory associated to diag buffers */
3984 		for (i = 0; i < MPI2_DIAG_BUF_TYPE_COUNT; i++) {
3985 			if (!ioc->diag_buffer[i])
3986 				continue;
3987 			dma_free_coherent(&ioc->pdev->dev,
3988 					  ioc->diag_buffer_sz[i],
3989 					  ioc->diag_buffer[i],
3990 					  ioc->diag_buffer_dma[i]);
3991 			ioc->diag_buffer[i] = NULL;
3992 			ioc->diag_buffer_status[i] = 0;
3993 		}
3994 
3995 		kfree(ioc->event_log);
3996 	}
3997 	if (hbas_to_enumerate != 1)
3998 		misc_deregister(&ctl_dev);
3999 	if (hbas_to_enumerate != 2)
4000 		misc_deregister(&gen2_ctl_dev);
4001 }
4002