1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * Copyright 2020 HabanaLabs, Ltd.
4  * All Rights Reserved.
5  *
6  */
7 
8 #ifndef CPUCP_IF_H
9 #define CPUCP_IF_H
10 
11 #include <linux/types.h>
12 
13 /*
14  * EVENT QUEUE
15  */
16 
17 struct hl_eq_header {
18 	__le32 reserved;
19 	__le32 ctl;
20 };
21 
22 struct hl_eq_ecc_data {
23 	__le64 ecc_address;
24 	__le64 ecc_syndrom;
25 	__u8 memory_wrapper_idx;
26 	__u8 pad[7];
27 };
28 
29 struct hl_eq_entry {
30 	struct hl_eq_header hdr;
31 	union {
32 		struct hl_eq_ecc_data ecc_data;
33 		__le64 data[7];
34 	};
35 };
36 
37 #define HL_EQ_ENTRY_SIZE		sizeof(struct hl_eq_entry)
38 
39 #define EQ_CTL_READY_SHIFT		31
40 #define EQ_CTL_READY_MASK		0x80000000
41 
42 #define EQ_CTL_EVENT_TYPE_SHIFT		16
43 #define EQ_CTL_EVENT_TYPE_MASK		0x03FF0000
44 
45 enum pq_init_status {
46 	PQ_INIT_STATUS_NA = 0,
47 	PQ_INIT_STATUS_READY_FOR_CP,
48 	PQ_INIT_STATUS_READY_FOR_HOST,
49 	PQ_INIT_STATUS_READY_FOR_CP_SINGLE_MSI
50 };
51 
52 /*
53  * CpuCP Primary Queue Packets
54  *
55  * During normal operation, the host's kernel driver needs to send various
56  * messages to CpuCP, usually either to SET some value into a H/W periphery or
57  * to GET the current value of some H/W periphery. For example, SET the
58  * frequency of MME/TPC and GET the value of the thermal sensor.
59  *
60  * These messages can be initiated either by the User application or by the
61  * host's driver itself, e.g. power management code. In either case, the
62  * communication from the host's driver to CpuCP will *always* be in
63  * synchronous mode, meaning that the host will send a single message and poll
64  * until the message was acknowledged and the results are ready (if results are
65  * needed).
66  *
67  * This means that only a single message can be sent at a time and the host's
68  * driver must wait for its result before sending the next message. Having said
69  * that, because these are control messages which are sent in a relatively low
70  * frequency, this limitation seems acceptable. It's important to note that
71  * in case of multiple devices, messages to different devices *can* be sent
72  * at the same time.
73  *
74  * The message, inputs/outputs (if relevant) and fence object will be located
75  * on the device DDR at an address that will be determined by the host's driver.
76  * During device initialization phase, the host will pass to CpuCP that address.
77  * Most of the message types will contain inputs/outputs inside the message
78  * itself. The common part of each message will contain the opcode of the
79  * message (its type) and a field representing a fence object.
80  *
81  * When the host's driver wishes to send a message to CPU CP, it will write the
82  * message contents to the device DDR, clear the fence object and then write to
83  * the PSOC_ARC1_AUX_SW_INTR, to issue interrupt 121 to ARC Management CPU.
84  *
85  * Upon receiving the interrupt (#121), CpuCP will read the message from the
86  * DDR. In case the message is a SET operation, CpuCP will first perform the
87  * operation and then write to the fence object on the device DDR. In case the
88  * message is a GET operation, CpuCP will first fill the results section on the
89  * device DDR and then write to the fence object. If an error occurred, CpuCP
90  * will fill the rc field with the right error code.
91  *
92  * In the meantime, the host's driver will poll on the fence object. Once the
93  * host sees that the fence object is signaled, it will read the results from
94  * the device DDR (if relevant) and resume the code execution in the host's
95  * driver.
96  *
97  * To use QMAN packets, the opcode must be the QMAN opcode, shifted by 8
98  * so the value being put by the host's driver matches the value read by CpuCP
99  *
100  * Non-QMAN packets should be limited to values 1 through (2^8 - 1)
101  *
102  * Detailed description:
103  *
104  * CPUCP_PACKET_DISABLE_PCI_ACCESS -
105  *       After receiving this packet the embedded CPU must NOT issue PCI
106  *       transactions (read/write) towards the Host CPU. This also include
107  *       sending MSI-X interrupts.
108  *       This packet is usually sent before the device is moved to D3Hot state.
109  *
110  * CPUCP_PACKET_ENABLE_PCI_ACCESS -
111  *       After receiving this packet the embedded CPU is allowed to issue PCI
112  *       transactions towards the Host CPU, including sending MSI-X interrupts.
113  *       This packet is usually send after the device is moved to D0 state.
114  *
115  * CPUCP_PACKET_TEMPERATURE_GET -
116  *       Fetch the current temperature / Max / Max Hyst / Critical /
117  *       Critical Hyst of a specified thermal sensor. The packet's
118  *       arguments specify the desired sensor and the field to get.
119  *
120  * CPUCP_PACKET_VOLTAGE_GET -
121  *       Fetch the voltage / Max / Min of a specified sensor. The packet's
122  *       arguments specify the sensor and type.
123  *
124  * CPUCP_PACKET_CURRENT_GET -
125  *       Fetch the current / Max / Min of a specified sensor. The packet's
126  *       arguments specify the sensor and type.
127  *
128  * CPUCP_PACKET_FAN_SPEED_GET -
129  *       Fetch the speed / Max / Min of a specified fan. The packet's
130  *       arguments specify the sensor and type.
131  *
132  * CPUCP_PACKET_PWM_GET -
133  *       Fetch the pwm value / mode of a specified pwm. The packet's
134  *       arguments specify the sensor and type.
135  *
136  * CPUCP_PACKET_PWM_SET -
137  *       Set the pwm value / mode of a specified pwm. The packet's
138  *       arguments specify the sensor, type and value.
139  *
140  * CPUCP_PACKET_FREQUENCY_SET -
141  *       Set the frequency of a specified PLL. The packet's arguments specify
142  *       the PLL and the desired frequency. The actual frequency in the device
143  *       might differ from the requested frequency.
144  *
145  * CPUCP_PACKET_FREQUENCY_GET -
146  *       Fetch the frequency of a specified PLL. The packet's arguments specify
147  *       the PLL.
148  *
149  * CPUCP_PACKET_LED_SET -
150  *       Set the state of a specified led. The packet's arguments
151  *       specify the led and the desired state.
152  *
153  * CPUCP_PACKET_I2C_WR -
154  *       Write 32-bit value to I2C device. The packet's arguments specify the
155  *       I2C bus, address and value.
156  *
157  * CPUCP_PACKET_I2C_RD -
158  *       Read 32-bit value from I2C device. The packet's arguments specify the
159  *       I2C bus and address.
160  *
161  * CPUCP_PACKET_INFO_GET -
162  *       Fetch information from the device as specified in the packet's
163  *       structure. The host's driver passes the max size it allows the CpuCP to
164  *       write to the structure, to prevent data corruption in case of
165  *       mismatched driver/FW versions.
166  *
167  * CPUCP_PACKET_FLASH_PROGRAM_REMOVED - this packet was removed
168  *
169  * CPUCP_PACKET_UNMASK_RAZWI_IRQ -
170  *       Unmask the given IRQ. The IRQ number is specified in the value field.
171  *       The packet is sent after receiving an interrupt and printing its
172  *       relevant information.
173  *
174  * CPUCP_PACKET_UNMASK_RAZWI_IRQ_ARRAY -
175  *       Unmask the given IRQs. The IRQs numbers are specified in an array right
176  *       after the cpucp_packet structure, where its first element is the array
177  *       length. The packet is sent after a soft reset was done in order to
178  *       handle any interrupts that were sent during the reset process.
179  *
180  * CPUCP_PACKET_TEST -
181  *       Test packet for CpuCP connectivity. The CPU will put the fence value
182  *       in the result field.
183  *
184  * CPUCP_PACKET_FREQUENCY_CURR_GET -
185  *       Fetch the current frequency of a specified PLL. The packet's arguments
186  *       specify the PLL.
187  *
188  * CPUCP_PACKET_MAX_POWER_GET -
189  *       Fetch the maximal power of the device.
190  *
191  * CPUCP_PACKET_MAX_POWER_SET -
192  *       Set the maximal power of the device. The packet's arguments specify
193  *       the power.
194  *
195  * CPUCP_PACKET_EEPROM_DATA_GET -
196  *       Get EEPROM data from the CpuCP kernel. The buffer is specified in the
197  *       addr field. The CPU will put the returned data size in the result
198  *       field. In addition, the host's driver passes the max size it allows the
199  *       CpuCP to write to the structure, to prevent data corruption in case of
200  *       mismatched driver/FW versions.
201  *
202  * CPUCP_PACKET_TEMPERATURE_SET -
203  *       Set the value of the offset property of a specified thermal sensor.
204  *       The packet's arguments specify the desired sensor and the field to
205  *       set.
206  *
207  * CPUCP_PACKET_VOLTAGE_SET -
208  *       Trigger the reset_history property of a specified voltage sensor.
209  *       The packet's arguments specify the desired sensor and the field to
210  *       set.
211  *
212  * CPUCP_PACKET_CURRENT_SET -
213  *       Trigger the reset_history property of a specified current sensor.
214  *       The packet's arguments specify the desired sensor and the field to
215  *       set.
216  *
217  * CPUCP_PACKET_PLL_REG_GET
218  *       Fetch register of PLL from the required PLL IP.
219  *       The packet's arguments specify the PLL IP and the register to get.
220  *       Each register is 32-bit value which is returned in result field.
221  *
222  */
223 
224 enum cpucp_packet_id {
225 	CPUCP_PACKET_DISABLE_PCI_ACCESS = 1,	/* internal */
226 	CPUCP_PACKET_ENABLE_PCI_ACCESS,		/* internal */
227 	CPUCP_PACKET_TEMPERATURE_GET,		/* sysfs */
228 	CPUCP_PACKET_VOLTAGE_GET,		/* sysfs */
229 	CPUCP_PACKET_CURRENT_GET,		/* sysfs */
230 	CPUCP_PACKET_FAN_SPEED_GET,		/* sysfs */
231 	CPUCP_PACKET_PWM_GET,			/* sysfs */
232 	CPUCP_PACKET_PWM_SET,			/* sysfs */
233 	CPUCP_PACKET_FREQUENCY_SET,		/* sysfs */
234 	CPUCP_PACKET_FREQUENCY_GET,		/* sysfs */
235 	CPUCP_PACKET_LED_SET,			/* debugfs */
236 	CPUCP_PACKET_I2C_WR,			/* debugfs */
237 	CPUCP_PACKET_I2C_RD,			/* debugfs */
238 	CPUCP_PACKET_INFO_GET,			/* IOCTL */
239 	CPUCP_PACKET_FLASH_PROGRAM_REMOVED,
240 	CPUCP_PACKET_UNMASK_RAZWI_IRQ,		/* internal */
241 	CPUCP_PACKET_UNMASK_RAZWI_IRQ_ARRAY,	/* internal */
242 	CPUCP_PACKET_TEST,			/* internal */
243 	CPUCP_PACKET_FREQUENCY_CURR_GET,	/* sysfs */
244 	CPUCP_PACKET_MAX_POWER_GET,		/* sysfs */
245 	CPUCP_PACKET_MAX_POWER_SET,		/* sysfs */
246 	CPUCP_PACKET_EEPROM_DATA_GET,		/* sysfs */
247 	CPUCP_RESERVED,
248 	CPUCP_PACKET_TEMPERATURE_SET,		/* sysfs */
249 	CPUCP_PACKET_VOLTAGE_SET,		/* sysfs */
250 	CPUCP_PACKET_CURRENT_SET,		/* sysfs */
251 	CPUCP_PACKET_PCIE_THROUGHPUT_GET,		/* internal */
252 	CPUCP_PACKET_PCIE_REPLAY_CNT_GET,		/* internal */
253 	CPUCP_PACKET_TOTAL_ENERGY_GET,		/* internal */
254 	CPUCP_PACKET_PLL_REG_GET,		/* internal */
255 };
256 
257 #define CPUCP_PACKET_FENCE_VAL	0xFE8CE7A5
258 
259 #define CPUCP_PKT_CTL_RC_SHIFT		12
260 #define CPUCP_PKT_CTL_RC_MASK		0x0000F000
261 
262 #define CPUCP_PKT_CTL_OPCODE_SHIFT	16
263 #define CPUCP_PKT_CTL_OPCODE_MASK	0x1FFF0000
264 
265 struct cpucp_packet {
266 	union {
267 		__le64 value;	/* For SET packets */
268 		__le64 result;	/* For GET packets */
269 		__le64 addr;	/* For PQ */
270 	};
271 
272 	__le32 ctl;
273 
274 	__le32 fence;		/* Signal to host that message is completed */
275 
276 	union {
277 		struct {/* For temperature/current/voltage/fan/pwm get/set */
278 			__le16 sensor_index;
279 			__le16 type;
280 		};
281 
282 		struct {	/* For I2C read/write */
283 			__u8 i2c_bus;
284 			__u8 i2c_addr;
285 			__u8 i2c_reg;
286 			__u8 pad; /* unused */
287 		};
288 
289 		struct {/* For PLL register fetch */
290 			__le16 pll_type;
291 			__le16 pll_reg;
292 		};
293 
294 		/* For any general request */
295 		__le32 index;
296 
297 		/* For frequency get/set */
298 		__le32 pll_index;
299 
300 		/* For led set */
301 		__le32 led_index;
302 
303 		/* For get CpuCP info/EEPROM data */
304 		__le32 data_max_size;
305 	};
306 
307 	__le32 reserved;
308 };
309 
310 struct cpucp_unmask_irq_arr_packet {
311 	struct cpucp_packet cpucp_pkt;
312 	__le32 length;
313 	__le32 irqs[0];
314 };
315 
316 enum cpucp_packet_rc {
317 	cpucp_packet_success,
318 	cpucp_packet_invalid,
319 	cpucp_packet_fault
320 };
321 
322 /*
323  * cpucp_temp_type should adhere to hwmon_temp_attributes
324  * defined in Linux kernel hwmon.h file
325  */
326 enum cpucp_temp_type {
327 	cpucp_temp_input,
328 	cpucp_temp_max = 6,
329 	cpucp_temp_max_hyst,
330 	cpucp_temp_crit,
331 	cpucp_temp_crit_hyst,
332 	cpucp_temp_offset = 19,
333 	cpucp_temp_highest = 22,
334 	cpucp_temp_reset_history = 23
335 };
336 
337 enum cpucp_in_attributes {
338 	cpucp_in_input,
339 	cpucp_in_min,
340 	cpucp_in_max,
341 	cpucp_in_highest = 7,
342 	cpucp_in_reset_history
343 };
344 
345 enum cpucp_curr_attributes {
346 	cpucp_curr_input,
347 	cpucp_curr_min,
348 	cpucp_curr_max,
349 	cpucp_curr_highest = 7,
350 	cpucp_curr_reset_history
351 };
352 
353 enum cpucp_fan_attributes {
354 	cpucp_fan_input,
355 	cpucp_fan_min = 2,
356 	cpucp_fan_max
357 };
358 
359 enum cpucp_pwm_attributes {
360 	cpucp_pwm_input,
361 	cpucp_pwm_enable
362 };
363 
364 enum cpucp_pcie_throughput_attributes {
365 	cpucp_pcie_throughput_tx,
366 	cpucp_pcie_throughput_rx
367 };
368 
369 enum cpucp_pll_reg_attributes {
370 	cpucp_pll_nr_reg,
371 	cpucp_pll_nf_reg,
372 	cpucp_pll_od_reg,
373 	cpucp_pll_div_factor_reg,
374 	cpucp_pll_div_sel_reg
375 };
376 
377 enum cpucp_pll_type_attributes {
378 	cpucp_pll_cpu,
379 	cpucp_pll_pci,
380 };
381 
382 /* Event Queue Packets */
383 
384 struct eq_generic_event {
385 	__le64 data[7];
386 };
387 
388 /*
389  * CpuCP info
390  */
391 
392 #define CARD_NAME_MAX_LEN		16
393 #define VERSION_MAX_LEN			128
394 #define CPUCP_MAX_SENSORS		128
395 
396 struct cpucp_sensor {
397 	__le32 type;
398 	__le32 flags;
399 };
400 
401 /**
402  * struct cpucp_card_types - ASIC card type.
403  * @cpucp_card_type_pci: PCI card.
404  * @cpucp_card_type_pmc: PCI Mezzanine Card.
405  */
406 enum cpucp_card_types {
407 	cpucp_card_type_pci,
408 	cpucp_card_type_pmc
409 };
410 
411 /**
412  * struct cpucp_info - Info from CpuCP that is necessary to the host's driver
413  * @sensors: available sensors description.
414  * @kernel_version: CpuCP linux kernel version.
415  * @reserved: reserved field.
416  * @card_type: card configuration type.
417  * @card_location: in a server, each card has different connections topology
418  *                 depending on its location (relevant for PMC card type)
419  * @cpld_version: CPLD programmed F/W version.
420  * @infineon_version: Infineon main DC-DC version.
421  * @fuse_version: silicon production FUSE information.
422  * @thermal_version: thermald S/W version.
423  * @cpucp_version: CpuCP S/W version.
424  * @dram_size: available DRAM size.
425  * @card_name: card name that will be displayed in HWMON subsystem on the host
426  */
427 struct cpucp_info {
428 	struct cpucp_sensor sensors[CPUCP_MAX_SENSORS];
429 	__u8 kernel_version[VERSION_MAX_LEN];
430 	__le32 reserved;
431 	__le32 card_type;
432 	__le32 card_location;
433 	__le32 cpld_version;
434 	__le32 infineon_version;
435 	__u8 fuse_version[VERSION_MAX_LEN];
436 	__u8 thermal_version[VERSION_MAX_LEN];
437 	__u8 cpucp_version[VERSION_MAX_LEN];
438 	__le32 reserved2;
439 	__le64 dram_size;
440 	char card_name[CARD_NAME_MAX_LEN];
441 };
442 
443 #endif /* CPUCP_IF_H */
444