1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Linux Socket Filter - Kernel level socket filtering
4 *
5 * Based on the design of the Berkeley Packet Filter. The new
6 * internal format has been designed by PLUMgrid:
7 *
8 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9 *
10 * Authors:
11 *
12 * Jay Schulist <jschlst@samba.org>
13 * Alexei Starovoitov <ast@plumgrid.com>
14 * Daniel Borkmann <dborkman@redhat.com>
15 *
16 * Andi Kleen - Fix a few bad bugs and races.
17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18 */
19
20 #include <linux/module.h>
21 #include <linux/types.h>
22 #include <linux/mm.h>
23 #include <linux/fcntl.h>
24 #include <linux/socket.h>
25 #include <linux/sock_diag.h>
26 #include <linux/in.h>
27 #include <linux/inet.h>
28 #include <linux/netdevice.h>
29 #include <linux/if_packet.h>
30 #include <linux/if_arp.h>
31 #include <linux/gfp.h>
32 #include <net/inet_common.h>
33 #include <net/ip.h>
34 #include <net/protocol.h>
35 #include <net/netlink.h>
36 #include <linux/skbuff.h>
37 #include <linux/skmsg.h>
38 #include <net/sock.h>
39 #include <net/flow_dissector.h>
40 #include <linux/errno.h>
41 #include <linux/timer.h>
42 #include <linux/uaccess.h>
43 #include <asm/unaligned.h>
44 #include <asm/cmpxchg.h>
45 #include <linux/filter.h>
46 #include <linux/ratelimit.h>
47 #include <linux/seccomp.h>
48 #include <linux/if_vlan.h>
49 #include <linux/bpf.h>
50 #include <linux/btf.h>
51 #include <net/sch_generic.h>
52 #include <net/cls_cgroup.h>
53 #include <net/dst_metadata.h>
54 #include <net/dst.h>
55 #include <net/sock_reuseport.h>
56 #include <net/busy_poll.h>
57 #include <net/tcp.h>
58 #include <net/xfrm.h>
59 #include <net/udp.h>
60 #include <linux/bpf_trace.h>
61 #include <net/xdp_sock.h>
62 #include <linux/inetdevice.h>
63 #include <net/inet_hashtables.h>
64 #include <net/inet6_hashtables.h>
65 #include <net/ip_fib.h>
66 #include <net/nexthop.h>
67 #include <net/flow.h>
68 #include <net/arp.h>
69 #include <net/ipv6.h>
70 #include <net/net_namespace.h>
71 #include <linux/seg6_local.h>
72 #include <net/seg6.h>
73 #include <net/seg6_local.h>
74 #include <net/lwtunnel.h>
75 #include <net/ipv6_stubs.h>
76 #include <net/bpf_sk_storage.h>
77 #include <net/transp_v6.h>
78 #include <linux/btf_ids.h>
79 #include <net/tls.h>
80
81 static const struct bpf_func_proto *
82 bpf_sk_base_func_proto(enum bpf_func_id func_id);
83
copy_bpf_fprog_from_user(struct sock_fprog * dst,sockptr_t src,int len)84 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
85 {
86 if (in_compat_syscall()) {
87 struct compat_sock_fprog f32;
88
89 if (len != sizeof(f32))
90 return -EINVAL;
91 if (copy_from_sockptr(&f32, src, sizeof(f32)))
92 return -EFAULT;
93 memset(dst, 0, sizeof(*dst));
94 dst->len = f32.len;
95 dst->filter = compat_ptr(f32.filter);
96 } else {
97 if (len != sizeof(*dst))
98 return -EINVAL;
99 if (copy_from_sockptr(dst, src, sizeof(*dst)))
100 return -EFAULT;
101 }
102
103 return 0;
104 }
105 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
106
107 /**
108 * sk_filter_trim_cap - run a packet through a socket filter
109 * @sk: sock associated with &sk_buff
110 * @skb: buffer to filter
111 * @cap: limit on how short the eBPF program may trim the packet
112 *
113 * Run the eBPF program and then cut skb->data to correct size returned by
114 * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
115 * than pkt_len we keep whole skb->data. This is the socket level
116 * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
117 * be accepted or -EPERM if the packet should be tossed.
118 *
119 */
sk_filter_trim_cap(struct sock * sk,struct sk_buff * skb,unsigned int cap)120 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
121 {
122 int err;
123 struct sk_filter *filter;
124
125 /*
126 * If the skb was allocated from pfmemalloc reserves, only
127 * allow SOCK_MEMALLOC sockets to use it as this socket is
128 * helping free memory
129 */
130 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
131 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
132 return -ENOMEM;
133 }
134 err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
135 if (err)
136 return err;
137
138 err = security_sock_rcv_skb(sk, skb);
139 if (err)
140 return err;
141
142 rcu_read_lock();
143 filter = rcu_dereference(sk->sk_filter);
144 if (filter) {
145 struct sock *save_sk = skb->sk;
146 unsigned int pkt_len;
147
148 skb->sk = sk;
149 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
150 skb->sk = save_sk;
151 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
152 }
153 rcu_read_unlock();
154
155 return err;
156 }
157 EXPORT_SYMBOL(sk_filter_trim_cap);
158
BPF_CALL_1(bpf_skb_get_pay_offset,struct sk_buff *,skb)159 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
160 {
161 return skb_get_poff(skb);
162 }
163
BPF_CALL_3(bpf_skb_get_nlattr,struct sk_buff *,skb,u32,a,u32,x)164 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
165 {
166 struct nlattr *nla;
167
168 if (skb_is_nonlinear(skb))
169 return 0;
170
171 if (skb->len < sizeof(struct nlattr))
172 return 0;
173
174 if (a > skb->len - sizeof(struct nlattr))
175 return 0;
176
177 nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
178 if (nla)
179 return (void *) nla - (void *) skb->data;
180
181 return 0;
182 }
183
BPF_CALL_3(bpf_skb_get_nlattr_nest,struct sk_buff *,skb,u32,a,u32,x)184 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
185 {
186 struct nlattr *nla;
187
188 if (skb_is_nonlinear(skb))
189 return 0;
190
191 if (skb->len < sizeof(struct nlattr))
192 return 0;
193
194 if (a > skb->len - sizeof(struct nlattr))
195 return 0;
196
197 nla = (struct nlattr *) &skb->data[a];
198 if (nla->nla_len > skb->len - a)
199 return 0;
200
201 nla = nla_find_nested(nla, x);
202 if (nla)
203 return (void *) nla - (void *) skb->data;
204
205 return 0;
206 }
207
BPF_CALL_4(bpf_skb_load_helper_8,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)208 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
209 data, int, headlen, int, offset)
210 {
211 u8 tmp, *ptr;
212 const int len = sizeof(tmp);
213
214 if (offset >= 0) {
215 if (headlen - offset >= len)
216 return *(u8 *)(data + offset);
217 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
218 return tmp;
219 } else {
220 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
221 if (likely(ptr))
222 return *(u8 *)ptr;
223 }
224
225 return -EFAULT;
226 }
227
BPF_CALL_2(bpf_skb_load_helper_8_no_cache,const struct sk_buff *,skb,int,offset)228 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
229 int, offset)
230 {
231 return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
232 offset);
233 }
234
BPF_CALL_4(bpf_skb_load_helper_16,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)235 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
236 data, int, headlen, int, offset)
237 {
238 u16 tmp, *ptr;
239 const int len = sizeof(tmp);
240
241 if (offset >= 0) {
242 if (headlen - offset >= len)
243 return get_unaligned_be16(data + offset);
244 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
245 return be16_to_cpu(tmp);
246 } else {
247 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
248 if (likely(ptr))
249 return get_unaligned_be16(ptr);
250 }
251
252 return -EFAULT;
253 }
254
BPF_CALL_2(bpf_skb_load_helper_16_no_cache,const struct sk_buff *,skb,int,offset)255 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
256 int, offset)
257 {
258 return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
259 offset);
260 }
261
BPF_CALL_4(bpf_skb_load_helper_32,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)262 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
263 data, int, headlen, int, offset)
264 {
265 u32 tmp, *ptr;
266 const int len = sizeof(tmp);
267
268 if (likely(offset >= 0)) {
269 if (headlen - offset >= len)
270 return get_unaligned_be32(data + offset);
271 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
272 return be32_to_cpu(tmp);
273 } else {
274 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
275 if (likely(ptr))
276 return get_unaligned_be32(ptr);
277 }
278
279 return -EFAULT;
280 }
281
BPF_CALL_2(bpf_skb_load_helper_32_no_cache,const struct sk_buff *,skb,int,offset)282 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
283 int, offset)
284 {
285 return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
286 offset);
287 }
288
convert_skb_access(int skb_field,int dst_reg,int src_reg,struct bpf_insn * insn_buf)289 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
290 struct bpf_insn *insn_buf)
291 {
292 struct bpf_insn *insn = insn_buf;
293
294 switch (skb_field) {
295 case SKF_AD_MARK:
296 BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
297
298 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
299 offsetof(struct sk_buff, mark));
300 break;
301
302 case SKF_AD_PKTTYPE:
303 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
304 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
305 #ifdef __BIG_ENDIAN_BITFIELD
306 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
307 #endif
308 break;
309
310 case SKF_AD_QUEUE:
311 BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
312
313 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
314 offsetof(struct sk_buff, queue_mapping));
315 break;
316
317 case SKF_AD_VLAN_TAG:
318 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
319
320 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
321 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
322 offsetof(struct sk_buff, vlan_tci));
323 break;
324 case SKF_AD_VLAN_TAG_PRESENT:
325 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET());
326 if (PKT_VLAN_PRESENT_BIT)
327 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
328 if (PKT_VLAN_PRESENT_BIT < 7)
329 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
330 break;
331 }
332
333 return insn - insn_buf;
334 }
335
convert_bpf_extensions(struct sock_filter * fp,struct bpf_insn ** insnp)336 static bool convert_bpf_extensions(struct sock_filter *fp,
337 struct bpf_insn **insnp)
338 {
339 struct bpf_insn *insn = *insnp;
340 u32 cnt;
341
342 switch (fp->k) {
343 case SKF_AD_OFF + SKF_AD_PROTOCOL:
344 BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
345
346 /* A = *(u16 *) (CTX + offsetof(protocol)) */
347 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
348 offsetof(struct sk_buff, protocol));
349 /* A = ntohs(A) [emitting a nop or swap16] */
350 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
351 break;
352
353 case SKF_AD_OFF + SKF_AD_PKTTYPE:
354 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
355 insn += cnt - 1;
356 break;
357
358 case SKF_AD_OFF + SKF_AD_IFINDEX:
359 case SKF_AD_OFF + SKF_AD_HATYPE:
360 BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
361 BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
362
363 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
364 BPF_REG_TMP, BPF_REG_CTX,
365 offsetof(struct sk_buff, dev));
366 /* if (tmp != 0) goto pc + 1 */
367 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
368 *insn++ = BPF_EXIT_INSN();
369 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
370 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
371 offsetof(struct net_device, ifindex));
372 else
373 *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
374 offsetof(struct net_device, type));
375 break;
376
377 case SKF_AD_OFF + SKF_AD_MARK:
378 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
379 insn += cnt - 1;
380 break;
381
382 case SKF_AD_OFF + SKF_AD_RXHASH:
383 BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
384
385 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
386 offsetof(struct sk_buff, hash));
387 break;
388
389 case SKF_AD_OFF + SKF_AD_QUEUE:
390 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
391 insn += cnt - 1;
392 break;
393
394 case SKF_AD_OFF + SKF_AD_VLAN_TAG:
395 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
396 BPF_REG_A, BPF_REG_CTX, insn);
397 insn += cnt - 1;
398 break;
399
400 case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
401 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
402 BPF_REG_A, BPF_REG_CTX, insn);
403 insn += cnt - 1;
404 break;
405
406 case SKF_AD_OFF + SKF_AD_VLAN_TPID:
407 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
408
409 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
410 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
411 offsetof(struct sk_buff, vlan_proto));
412 /* A = ntohs(A) [emitting a nop or swap16] */
413 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
414 break;
415
416 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
417 case SKF_AD_OFF + SKF_AD_NLATTR:
418 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
419 case SKF_AD_OFF + SKF_AD_CPU:
420 case SKF_AD_OFF + SKF_AD_RANDOM:
421 /* arg1 = CTX */
422 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
423 /* arg2 = A */
424 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
425 /* arg3 = X */
426 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
427 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
428 switch (fp->k) {
429 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
430 *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
431 break;
432 case SKF_AD_OFF + SKF_AD_NLATTR:
433 *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
434 break;
435 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
436 *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
437 break;
438 case SKF_AD_OFF + SKF_AD_CPU:
439 *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
440 break;
441 case SKF_AD_OFF + SKF_AD_RANDOM:
442 *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
443 bpf_user_rnd_init_once();
444 break;
445 }
446 break;
447
448 case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
449 /* A ^= X */
450 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
451 break;
452
453 default:
454 /* This is just a dummy call to avoid letting the compiler
455 * evict __bpf_call_base() as an optimization. Placed here
456 * where no-one bothers.
457 */
458 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
459 return false;
460 }
461
462 *insnp = insn;
463 return true;
464 }
465
convert_bpf_ld_abs(struct sock_filter * fp,struct bpf_insn ** insnp)466 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
467 {
468 const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
469 int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
470 bool endian = BPF_SIZE(fp->code) == BPF_H ||
471 BPF_SIZE(fp->code) == BPF_W;
472 bool indirect = BPF_MODE(fp->code) == BPF_IND;
473 const int ip_align = NET_IP_ALIGN;
474 struct bpf_insn *insn = *insnp;
475 int offset = fp->k;
476
477 if (!indirect &&
478 ((unaligned_ok && offset >= 0) ||
479 (!unaligned_ok && offset >= 0 &&
480 offset + ip_align >= 0 &&
481 offset + ip_align % size == 0))) {
482 bool ldx_off_ok = offset <= S16_MAX;
483
484 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
485 if (offset)
486 *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
487 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
488 size, 2 + endian + (!ldx_off_ok * 2));
489 if (ldx_off_ok) {
490 *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
491 BPF_REG_D, offset);
492 } else {
493 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
494 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
495 *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
496 BPF_REG_TMP, 0);
497 }
498 if (endian)
499 *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
500 *insn++ = BPF_JMP_A(8);
501 }
502
503 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
504 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
505 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
506 if (!indirect) {
507 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
508 } else {
509 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
510 if (fp->k)
511 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
512 }
513
514 switch (BPF_SIZE(fp->code)) {
515 case BPF_B:
516 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
517 break;
518 case BPF_H:
519 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
520 break;
521 case BPF_W:
522 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
523 break;
524 default:
525 return false;
526 }
527
528 *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
529 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
530 *insn = BPF_EXIT_INSN();
531
532 *insnp = insn;
533 return true;
534 }
535
536 /**
537 * bpf_convert_filter - convert filter program
538 * @prog: the user passed filter program
539 * @len: the length of the user passed filter program
540 * @new_prog: allocated 'struct bpf_prog' or NULL
541 * @new_len: pointer to store length of converted program
542 * @seen_ld_abs: bool whether we've seen ld_abs/ind
543 *
544 * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
545 * style extended BPF (eBPF).
546 * Conversion workflow:
547 *
548 * 1) First pass for calculating the new program length:
549 * bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
550 *
551 * 2) 2nd pass to remap in two passes: 1st pass finds new
552 * jump offsets, 2nd pass remapping:
553 * bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
554 */
bpf_convert_filter(struct sock_filter * prog,int len,struct bpf_prog * new_prog,int * new_len,bool * seen_ld_abs)555 static int bpf_convert_filter(struct sock_filter *prog, int len,
556 struct bpf_prog *new_prog, int *new_len,
557 bool *seen_ld_abs)
558 {
559 int new_flen = 0, pass = 0, target, i, stack_off;
560 struct bpf_insn *new_insn, *first_insn = NULL;
561 struct sock_filter *fp;
562 int *addrs = NULL;
563 u8 bpf_src;
564
565 BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
566 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
567
568 if (len <= 0 || len > BPF_MAXINSNS)
569 return -EINVAL;
570
571 if (new_prog) {
572 first_insn = new_prog->insnsi;
573 addrs = kcalloc(len, sizeof(*addrs),
574 GFP_KERNEL | __GFP_NOWARN);
575 if (!addrs)
576 return -ENOMEM;
577 }
578
579 do_pass:
580 new_insn = first_insn;
581 fp = prog;
582
583 /* Classic BPF related prologue emission. */
584 if (new_prog) {
585 /* Classic BPF expects A and X to be reset first. These need
586 * to be guaranteed to be the first two instructions.
587 */
588 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
589 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
590
591 /* All programs must keep CTX in callee saved BPF_REG_CTX.
592 * In eBPF case it's done by the compiler, here we need to
593 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
594 */
595 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
596 if (*seen_ld_abs) {
597 /* For packet access in classic BPF, cache skb->data
598 * in callee-saved BPF R8 and skb->len - skb->data_len
599 * (headlen) in BPF R9. Since classic BPF is read-only
600 * on CTX, we only need to cache it once.
601 */
602 *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
603 BPF_REG_D, BPF_REG_CTX,
604 offsetof(struct sk_buff, data));
605 *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
606 offsetof(struct sk_buff, len));
607 *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
608 offsetof(struct sk_buff, data_len));
609 *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
610 }
611 } else {
612 new_insn += 3;
613 }
614
615 for (i = 0; i < len; fp++, i++) {
616 struct bpf_insn tmp_insns[32] = { };
617 struct bpf_insn *insn = tmp_insns;
618
619 if (addrs)
620 addrs[i] = new_insn - first_insn;
621
622 switch (fp->code) {
623 /* All arithmetic insns and skb loads map as-is. */
624 case BPF_ALU | BPF_ADD | BPF_X:
625 case BPF_ALU | BPF_ADD | BPF_K:
626 case BPF_ALU | BPF_SUB | BPF_X:
627 case BPF_ALU | BPF_SUB | BPF_K:
628 case BPF_ALU | BPF_AND | BPF_X:
629 case BPF_ALU | BPF_AND | BPF_K:
630 case BPF_ALU | BPF_OR | BPF_X:
631 case BPF_ALU | BPF_OR | BPF_K:
632 case BPF_ALU | BPF_LSH | BPF_X:
633 case BPF_ALU | BPF_LSH | BPF_K:
634 case BPF_ALU | BPF_RSH | BPF_X:
635 case BPF_ALU | BPF_RSH | BPF_K:
636 case BPF_ALU | BPF_XOR | BPF_X:
637 case BPF_ALU | BPF_XOR | BPF_K:
638 case BPF_ALU | BPF_MUL | BPF_X:
639 case BPF_ALU | BPF_MUL | BPF_K:
640 case BPF_ALU | BPF_DIV | BPF_X:
641 case BPF_ALU | BPF_DIV | BPF_K:
642 case BPF_ALU | BPF_MOD | BPF_X:
643 case BPF_ALU | BPF_MOD | BPF_K:
644 case BPF_ALU | BPF_NEG:
645 case BPF_LD | BPF_ABS | BPF_W:
646 case BPF_LD | BPF_ABS | BPF_H:
647 case BPF_LD | BPF_ABS | BPF_B:
648 case BPF_LD | BPF_IND | BPF_W:
649 case BPF_LD | BPF_IND | BPF_H:
650 case BPF_LD | BPF_IND | BPF_B:
651 /* Check for overloaded BPF extension and
652 * directly convert it if found, otherwise
653 * just move on with mapping.
654 */
655 if (BPF_CLASS(fp->code) == BPF_LD &&
656 BPF_MODE(fp->code) == BPF_ABS &&
657 convert_bpf_extensions(fp, &insn))
658 break;
659 if (BPF_CLASS(fp->code) == BPF_LD &&
660 convert_bpf_ld_abs(fp, &insn)) {
661 *seen_ld_abs = true;
662 break;
663 }
664
665 if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
666 fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
667 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
668 /* Error with exception code on div/mod by 0.
669 * For cBPF programs, this was always return 0.
670 */
671 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
672 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
673 *insn++ = BPF_EXIT_INSN();
674 }
675
676 *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
677 break;
678
679 /* Jump transformation cannot use BPF block macros
680 * everywhere as offset calculation and target updates
681 * require a bit more work than the rest, i.e. jump
682 * opcodes map as-is, but offsets need adjustment.
683 */
684
685 #define BPF_EMIT_JMP \
686 do { \
687 const s32 off_min = S16_MIN, off_max = S16_MAX; \
688 s32 off; \
689 \
690 if (target >= len || target < 0) \
691 goto err; \
692 off = addrs ? addrs[target] - addrs[i] - 1 : 0; \
693 /* Adjust pc relative offset for 2nd or 3rd insn. */ \
694 off -= insn - tmp_insns; \
695 /* Reject anything not fitting into insn->off. */ \
696 if (off < off_min || off > off_max) \
697 goto err; \
698 insn->off = off; \
699 } while (0)
700
701 case BPF_JMP | BPF_JA:
702 target = i + fp->k + 1;
703 insn->code = fp->code;
704 BPF_EMIT_JMP;
705 break;
706
707 case BPF_JMP | BPF_JEQ | BPF_K:
708 case BPF_JMP | BPF_JEQ | BPF_X:
709 case BPF_JMP | BPF_JSET | BPF_K:
710 case BPF_JMP | BPF_JSET | BPF_X:
711 case BPF_JMP | BPF_JGT | BPF_K:
712 case BPF_JMP | BPF_JGT | BPF_X:
713 case BPF_JMP | BPF_JGE | BPF_K:
714 case BPF_JMP | BPF_JGE | BPF_X:
715 if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
716 /* BPF immediates are signed, zero extend
717 * immediate into tmp register and use it
718 * in compare insn.
719 */
720 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
721
722 insn->dst_reg = BPF_REG_A;
723 insn->src_reg = BPF_REG_TMP;
724 bpf_src = BPF_X;
725 } else {
726 insn->dst_reg = BPF_REG_A;
727 insn->imm = fp->k;
728 bpf_src = BPF_SRC(fp->code);
729 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
730 }
731
732 /* Common case where 'jump_false' is next insn. */
733 if (fp->jf == 0) {
734 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
735 target = i + fp->jt + 1;
736 BPF_EMIT_JMP;
737 break;
738 }
739
740 /* Convert some jumps when 'jump_true' is next insn. */
741 if (fp->jt == 0) {
742 switch (BPF_OP(fp->code)) {
743 case BPF_JEQ:
744 insn->code = BPF_JMP | BPF_JNE | bpf_src;
745 break;
746 case BPF_JGT:
747 insn->code = BPF_JMP | BPF_JLE | bpf_src;
748 break;
749 case BPF_JGE:
750 insn->code = BPF_JMP | BPF_JLT | bpf_src;
751 break;
752 default:
753 goto jmp_rest;
754 }
755
756 target = i + fp->jf + 1;
757 BPF_EMIT_JMP;
758 break;
759 }
760 jmp_rest:
761 /* Other jumps are mapped into two insns: Jxx and JA. */
762 target = i + fp->jt + 1;
763 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
764 BPF_EMIT_JMP;
765 insn++;
766
767 insn->code = BPF_JMP | BPF_JA;
768 target = i + fp->jf + 1;
769 BPF_EMIT_JMP;
770 break;
771
772 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
773 case BPF_LDX | BPF_MSH | BPF_B: {
774 struct sock_filter tmp = {
775 .code = BPF_LD | BPF_ABS | BPF_B,
776 .k = fp->k,
777 };
778
779 *seen_ld_abs = true;
780
781 /* X = A */
782 *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
783 /* A = BPF_R0 = *(u8 *) (skb->data + K) */
784 convert_bpf_ld_abs(&tmp, &insn);
785 insn++;
786 /* A &= 0xf */
787 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
788 /* A <<= 2 */
789 *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
790 /* tmp = X */
791 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
792 /* X = A */
793 *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
794 /* A = tmp */
795 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
796 break;
797 }
798 /* RET_K is remaped into 2 insns. RET_A case doesn't need an
799 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
800 */
801 case BPF_RET | BPF_A:
802 case BPF_RET | BPF_K:
803 if (BPF_RVAL(fp->code) == BPF_K)
804 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
805 0, fp->k);
806 *insn = BPF_EXIT_INSN();
807 break;
808
809 /* Store to stack. */
810 case BPF_ST:
811 case BPF_STX:
812 stack_off = fp->k * 4 + 4;
813 *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
814 BPF_ST ? BPF_REG_A : BPF_REG_X,
815 -stack_off);
816 /* check_load_and_stores() verifies that classic BPF can
817 * load from stack only after write, so tracking
818 * stack_depth for ST|STX insns is enough
819 */
820 if (new_prog && new_prog->aux->stack_depth < stack_off)
821 new_prog->aux->stack_depth = stack_off;
822 break;
823
824 /* Load from stack. */
825 case BPF_LD | BPF_MEM:
826 case BPF_LDX | BPF_MEM:
827 stack_off = fp->k * 4 + 4;
828 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
829 BPF_REG_A : BPF_REG_X, BPF_REG_FP,
830 -stack_off);
831 break;
832
833 /* A = K or X = K */
834 case BPF_LD | BPF_IMM:
835 case BPF_LDX | BPF_IMM:
836 *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
837 BPF_REG_A : BPF_REG_X, fp->k);
838 break;
839
840 /* X = A */
841 case BPF_MISC | BPF_TAX:
842 *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
843 break;
844
845 /* A = X */
846 case BPF_MISC | BPF_TXA:
847 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
848 break;
849
850 /* A = skb->len or X = skb->len */
851 case BPF_LD | BPF_W | BPF_LEN:
852 case BPF_LDX | BPF_W | BPF_LEN:
853 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
854 BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
855 offsetof(struct sk_buff, len));
856 break;
857
858 /* Access seccomp_data fields. */
859 case BPF_LDX | BPF_ABS | BPF_W:
860 /* A = *(u32 *) (ctx + K) */
861 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
862 break;
863
864 /* Unknown instruction. */
865 default:
866 goto err;
867 }
868
869 insn++;
870 if (new_prog)
871 memcpy(new_insn, tmp_insns,
872 sizeof(*insn) * (insn - tmp_insns));
873 new_insn += insn - tmp_insns;
874 }
875
876 if (!new_prog) {
877 /* Only calculating new length. */
878 *new_len = new_insn - first_insn;
879 if (*seen_ld_abs)
880 *new_len += 4; /* Prologue bits. */
881 return 0;
882 }
883
884 pass++;
885 if (new_flen != new_insn - first_insn) {
886 new_flen = new_insn - first_insn;
887 if (pass > 2)
888 goto err;
889 goto do_pass;
890 }
891
892 kfree(addrs);
893 BUG_ON(*new_len != new_flen);
894 return 0;
895 err:
896 kfree(addrs);
897 return -EINVAL;
898 }
899
900 /* Security:
901 *
902 * As we dont want to clear mem[] array for each packet going through
903 * __bpf_prog_run(), we check that filter loaded by user never try to read
904 * a cell if not previously written, and we check all branches to be sure
905 * a malicious user doesn't try to abuse us.
906 */
check_load_and_stores(const struct sock_filter * filter,int flen)907 static int check_load_and_stores(const struct sock_filter *filter, int flen)
908 {
909 u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
910 int pc, ret = 0;
911
912 BUILD_BUG_ON(BPF_MEMWORDS > 16);
913
914 masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
915 if (!masks)
916 return -ENOMEM;
917
918 memset(masks, 0xff, flen * sizeof(*masks));
919
920 for (pc = 0; pc < flen; pc++) {
921 memvalid &= masks[pc];
922
923 switch (filter[pc].code) {
924 case BPF_ST:
925 case BPF_STX:
926 memvalid |= (1 << filter[pc].k);
927 break;
928 case BPF_LD | BPF_MEM:
929 case BPF_LDX | BPF_MEM:
930 if (!(memvalid & (1 << filter[pc].k))) {
931 ret = -EINVAL;
932 goto error;
933 }
934 break;
935 case BPF_JMP | BPF_JA:
936 /* A jump must set masks on target */
937 masks[pc + 1 + filter[pc].k] &= memvalid;
938 memvalid = ~0;
939 break;
940 case BPF_JMP | BPF_JEQ | BPF_K:
941 case BPF_JMP | BPF_JEQ | BPF_X:
942 case BPF_JMP | BPF_JGE | BPF_K:
943 case BPF_JMP | BPF_JGE | BPF_X:
944 case BPF_JMP | BPF_JGT | BPF_K:
945 case BPF_JMP | BPF_JGT | BPF_X:
946 case BPF_JMP | BPF_JSET | BPF_K:
947 case BPF_JMP | BPF_JSET | BPF_X:
948 /* A jump must set masks on targets */
949 masks[pc + 1 + filter[pc].jt] &= memvalid;
950 masks[pc + 1 + filter[pc].jf] &= memvalid;
951 memvalid = ~0;
952 break;
953 }
954 }
955 error:
956 kfree(masks);
957 return ret;
958 }
959
chk_code_allowed(u16 code_to_probe)960 static bool chk_code_allowed(u16 code_to_probe)
961 {
962 static const bool codes[] = {
963 /* 32 bit ALU operations */
964 [BPF_ALU | BPF_ADD | BPF_K] = true,
965 [BPF_ALU | BPF_ADD | BPF_X] = true,
966 [BPF_ALU | BPF_SUB | BPF_K] = true,
967 [BPF_ALU | BPF_SUB | BPF_X] = true,
968 [BPF_ALU | BPF_MUL | BPF_K] = true,
969 [BPF_ALU | BPF_MUL | BPF_X] = true,
970 [BPF_ALU | BPF_DIV | BPF_K] = true,
971 [BPF_ALU | BPF_DIV | BPF_X] = true,
972 [BPF_ALU | BPF_MOD | BPF_K] = true,
973 [BPF_ALU | BPF_MOD | BPF_X] = true,
974 [BPF_ALU | BPF_AND | BPF_K] = true,
975 [BPF_ALU | BPF_AND | BPF_X] = true,
976 [BPF_ALU | BPF_OR | BPF_K] = true,
977 [BPF_ALU | BPF_OR | BPF_X] = true,
978 [BPF_ALU | BPF_XOR | BPF_K] = true,
979 [BPF_ALU | BPF_XOR | BPF_X] = true,
980 [BPF_ALU | BPF_LSH | BPF_K] = true,
981 [BPF_ALU | BPF_LSH | BPF_X] = true,
982 [BPF_ALU | BPF_RSH | BPF_K] = true,
983 [BPF_ALU | BPF_RSH | BPF_X] = true,
984 [BPF_ALU | BPF_NEG] = true,
985 /* Load instructions */
986 [BPF_LD | BPF_W | BPF_ABS] = true,
987 [BPF_LD | BPF_H | BPF_ABS] = true,
988 [BPF_LD | BPF_B | BPF_ABS] = true,
989 [BPF_LD | BPF_W | BPF_LEN] = true,
990 [BPF_LD | BPF_W | BPF_IND] = true,
991 [BPF_LD | BPF_H | BPF_IND] = true,
992 [BPF_LD | BPF_B | BPF_IND] = true,
993 [BPF_LD | BPF_IMM] = true,
994 [BPF_LD | BPF_MEM] = true,
995 [BPF_LDX | BPF_W | BPF_LEN] = true,
996 [BPF_LDX | BPF_B | BPF_MSH] = true,
997 [BPF_LDX | BPF_IMM] = true,
998 [BPF_LDX | BPF_MEM] = true,
999 /* Store instructions */
1000 [BPF_ST] = true,
1001 [BPF_STX] = true,
1002 /* Misc instructions */
1003 [BPF_MISC | BPF_TAX] = true,
1004 [BPF_MISC | BPF_TXA] = true,
1005 /* Return instructions */
1006 [BPF_RET | BPF_K] = true,
1007 [BPF_RET | BPF_A] = true,
1008 /* Jump instructions */
1009 [BPF_JMP | BPF_JA] = true,
1010 [BPF_JMP | BPF_JEQ | BPF_K] = true,
1011 [BPF_JMP | BPF_JEQ | BPF_X] = true,
1012 [BPF_JMP | BPF_JGE | BPF_K] = true,
1013 [BPF_JMP | BPF_JGE | BPF_X] = true,
1014 [BPF_JMP | BPF_JGT | BPF_K] = true,
1015 [BPF_JMP | BPF_JGT | BPF_X] = true,
1016 [BPF_JMP | BPF_JSET | BPF_K] = true,
1017 [BPF_JMP | BPF_JSET | BPF_X] = true,
1018 };
1019
1020 if (code_to_probe >= ARRAY_SIZE(codes))
1021 return false;
1022
1023 return codes[code_to_probe];
1024 }
1025
bpf_check_basics_ok(const struct sock_filter * filter,unsigned int flen)1026 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1027 unsigned int flen)
1028 {
1029 if (filter == NULL)
1030 return false;
1031 if (flen == 0 || flen > BPF_MAXINSNS)
1032 return false;
1033
1034 return true;
1035 }
1036
1037 /**
1038 * bpf_check_classic - verify socket filter code
1039 * @filter: filter to verify
1040 * @flen: length of filter
1041 *
1042 * Check the user's filter code. If we let some ugly
1043 * filter code slip through kaboom! The filter must contain
1044 * no references or jumps that are out of range, no illegal
1045 * instructions, and must end with a RET instruction.
1046 *
1047 * All jumps are forward as they are not signed.
1048 *
1049 * Returns 0 if the rule set is legal or -EINVAL if not.
1050 */
bpf_check_classic(const struct sock_filter * filter,unsigned int flen)1051 static int bpf_check_classic(const struct sock_filter *filter,
1052 unsigned int flen)
1053 {
1054 bool anc_found;
1055 int pc;
1056
1057 /* Check the filter code now */
1058 for (pc = 0; pc < flen; pc++) {
1059 const struct sock_filter *ftest = &filter[pc];
1060
1061 /* May we actually operate on this code? */
1062 if (!chk_code_allowed(ftest->code))
1063 return -EINVAL;
1064
1065 /* Some instructions need special checks */
1066 switch (ftest->code) {
1067 case BPF_ALU | BPF_DIV | BPF_K:
1068 case BPF_ALU | BPF_MOD | BPF_K:
1069 /* Check for division by zero */
1070 if (ftest->k == 0)
1071 return -EINVAL;
1072 break;
1073 case BPF_ALU | BPF_LSH | BPF_K:
1074 case BPF_ALU | BPF_RSH | BPF_K:
1075 if (ftest->k >= 32)
1076 return -EINVAL;
1077 break;
1078 case BPF_LD | BPF_MEM:
1079 case BPF_LDX | BPF_MEM:
1080 case BPF_ST:
1081 case BPF_STX:
1082 /* Check for invalid memory addresses */
1083 if (ftest->k >= BPF_MEMWORDS)
1084 return -EINVAL;
1085 break;
1086 case BPF_JMP | BPF_JA:
1087 /* Note, the large ftest->k might cause loops.
1088 * Compare this with conditional jumps below,
1089 * where offsets are limited. --ANK (981016)
1090 */
1091 if (ftest->k >= (unsigned int)(flen - pc - 1))
1092 return -EINVAL;
1093 break;
1094 case BPF_JMP | BPF_JEQ | BPF_K:
1095 case BPF_JMP | BPF_JEQ | BPF_X:
1096 case BPF_JMP | BPF_JGE | BPF_K:
1097 case BPF_JMP | BPF_JGE | BPF_X:
1098 case BPF_JMP | BPF_JGT | BPF_K:
1099 case BPF_JMP | BPF_JGT | BPF_X:
1100 case BPF_JMP | BPF_JSET | BPF_K:
1101 case BPF_JMP | BPF_JSET | BPF_X:
1102 /* Both conditionals must be safe */
1103 if (pc + ftest->jt + 1 >= flen ||
1104 pc + ftest->jf + 1 >= flen)
1105 return -EINVAL;
1106 break;
1107 case BPF_LD | BPF_W | BPF_ABS:
1108 case BPF_LD | BPF_H | BPF_ABS:
1109 case BPF_LD | BPF_B | BPF_ABS:
1110 anc_found = false;
1111 if (bpf_anc_helper(ftest) & BPF_ANC)
1112 anc_found = true;
1113 /* Ancillary operation unknown or unsupported */
1114 if (anc_found == false && ftest->k >= SKF_AD_OFF)
1115 return -EINVAL;
1116 }
1117 }
1118
1119 /* Last instruction must be a RET code */
1120 switch (filter[flen - 1].code) {
1121 case BPF_RET | BPF_K:
1122 case BPF_RET | BPF_A:
1123 return check_load_and_stores(filter, flen);
1124 }
1125
1126 return -EINVAL;
1127 }
1128
bpf_prog_store_orig_filter(struct bpf_prog * fp,const struct sock_fprog * fprog)1129 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1130 const struct sock_fprog *fprog)
1131 {
1132 unsigned int fsize = bpf_classic_proglen(fprog);
1133 struct sock_fprog_kern *fkprog;
1134
1135 fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1136 if (!fp->orig_prog)
1137 return -ENOMEM;
1138
1139 fkprog = fp->orig_prog;
1140 fkprog->len = fprog->len;
1141
1142 fkprog->filter = kmemdup(fp->insns, fsize,
1143 GFP_KERNEL | __GFP_NOWARN);
1144 if (!fkprog->filter) {
1145 kfree(fp->orig_prog);
1146 return -ENOMEM;
1147 }
1148
1149 return 0;
1150 }
1151
bpf_release_orig_filter(struct bpf_prog * fp)1152 static void bpf_release_orig_filter(struct bpf_prog *fp)
1153 {
1154 struct sock_fprog_kern *fprog = fp->orig_prog;
1155
1156 if (fprog) {
1157 kfree(fprog->filter);
1158 kfree(fprog);
1159 }
1160 }
1161
__bpf_prog_release(struct bpf_prog * prog)1162 static void __bpf_prog_release(struct bpf_prog *prog)
1163 {
1164 if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1165 bpf_prog_put(prog);
1166 } else {
1167 bpf_release_orig_filter(prog);
1168 bpf_prog_free(prog);
1169 }
1170 }
1171
__sk_filter_release(struct sk_filter * fp)1172 static void __sk_filter_release(struct sk_filter *fp)
1173 {
1174 __bpf_prog_release(fp->prog);
1175 kfree(fp);
1176 }
1177
1178 /**
1179 * sk_filter_release_rcu - Release a socket filter by rcu_head
1180 * @rcu: rcu_head that contains the sk_filter to free
1181 */
sk_filter_release_rcu(struct rcu_head * rcu)1182 static void sk_filter_release_rcu(struct rcu_head *rcu)
1183 {
1184 struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1185
1186 __sk_filter_release(fp);
1187 }
1188
1189 /**
1190 * sk_filter_release - release a socket filter
1191 * @fp: filter to remove
1192 *
1193 * Remove a filter from a socket and release its resources.
1194 */
sk_filter_release(struct sk_filter * fp)1195 static void sk_filter_release(struct sk_filter *fp)
1196 {
1197 if (refcount_dec_and_test(&fp->refcnt))
1198 call_rcu(&fp->rcu, sk_filter_release_rcu);
1199 }
1200
sk_filter_uncharge(struct sock * sk,struct sk_filter * fp)1201 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1202 {
1203 u32 filter_size = bpf_prog_size(fp->prog->len);
1204
1205 atomic_sub(filter_size, &sk->sk_omem_alloc);
1206 sk_filter_release(fp);
1207 }
1208
1209 /* try to charge the socket memory if there is space available
1210 * return true on success
1211 */
__sk_filter_charge(struct sock * sk,struct sk_filter * fp)1212 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1213 {
1214 u32 filter_size = bpf_prog_size(fp->prog->len);
1215
1216 /* same check as in sock_kmalloc() */
1217 if (filter_size <= sysctl_optmem_max &&
1218 atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1219 atomic_add(filter_size, &sk->sk_omem_alloc);
1220 return true;
1221 }
1222 return false;
1223 }
1224
sk_filter_charge(struct sock * sk,struct sk_filter * fp)1225 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1226 {
1227 if (!refcount_inc_not_zero(&fp->refcnt))
1228 return false;
1229
1230 if (!__sk_filter_charge(sk, fp)) {
1231 sk_filter_release(fp);
1232 return false;
1233 }
1234 return true;
1235 }
1236
bpf_migrate_filter(struct bpf_prog * fp)1237 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1238 {
1239 struct sock_filter *old_prog;
1240 struct bpf_prog *old_fp;
1241 int err, new_len, old_len = fp->len;
1242 bool seen_ld_abs = false;
1243
1244 /* We are free to overwrite insns et al right here as it
1245 * won't be used at this point in time anymore internally
1246 * after the migration to the internal BPF instruction
1247 * representation.
1248 */
1249 BUILD_BUG_ON(sizeof(struct sock_filter) !=
1250 sizeof(struct bpf_insn));
1251
1252 /* Conversion cannot happen on overlapping memory areas,
1253 * so we need to keep the user BPF around until the 2nd
1254 * pass. At this time, the user BPF is stored in fp->insns.
1255 */
1256 old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1257 GFP_KERNEL | __GFP_NOWARN);
1258 if (!old_prog) {
1259 err = -ENOMEM;
1260 goto out_err;
1261 }
1262
1263 /* 1st pass: calculate the new program length. */
1264 err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1265 &seen_ld_abs);
1266 if (err)
1267 goto out_err_free;
1268
1269 /* Expand fp for appending the new filter representation. */
1270 old_fp = fp;
1271 fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1272 if (!fp) {
1273 /* The old_fp is still around in case we couldn't
1274 * allocate new memory, so uncharge on that one.
1275 */
1276 fp = old_fp;
1277 err = -ENOMEM;
1278 goto out_err_free;
1279 }
1280
1281 fp->len = new_len;
1282
1283 /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1284 err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1285 &seen_ld_abs);
1286 if (err)
1287 /* 2nd bpf_convert_filter() can fail only if it fails
1288 * to allocate memory, remapping must succeed. Note,
1289 * that at this time old_fp has already been released
1290 * by krealloc().
1291 */
1292 goto out_err_free;
1293
1294 fp = bpf_prog_select_runtime(fp, &err);
1295 if (err)
1296 goto out_err_free;
1297
1298 kfree(old_prog);
1299 return fp;
1300
1301 out_err_free:
1302 kfree(old_prog);
1303 out_err:
1304 __bpf_prog_release(fp);
1305 return ERR_PTR(err);
1306 }
1307
bpf_prepare_filter(struct bpf_prog * fp,bpf_aux_classic_check_t trans)1308 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1309 bpf_aux_classic_check_t trans)
1310 {
1311 int err;
1312
1313 fp->bpf_func = NULL;
1314 fp->jited = 0;
1315
1316 err = bpf_check_classic(fp->insns, fp->len);
1317 if (err) {
1318 __bpf_prog_release(fp);
1319 return ERR_PTR(err);
1320 }
1321
1322 /* There might be additional checks and transformations
1323 * needed on classic filters, f.e. in case of seccomp.
1324 */
1325 if (trans) {
1326 err = trans(fp->insns, fp->len);
1327 if (err) {
1328 __bpf_prog_release(fp);
1329 return ERR_PTR(err);
1330 }
1331 }
1332
1333 /* Probe if we can JIT compile the filter and if so, do
1334 * the compilation of the filter.
1335 */
1336 bpf_jit_compile(fp);
1337
1338 /* JIT compiler couldn't process this filter, so do the
1339 * internal BPF translation for the optimized interpreter.
1340 */
1341 if (!fp->jited)
1342 fp = bpf_migrate_filter(fp);
1343
1344 return fp;
1345 }
1346
1347 /**
1348 * bpf_prog_create - create an unattached filter
1349 * @pfp: the unattached filter that is created
1350 * @fprog: the filter program
1351 *
1352 * Create a filter independent of any socket. We first run some
1353 * sanity checks on it to make sure it does not explode on us later.
1354 * If an error occurs or there is insufficient memory for the filter
1355 * a negative errno code is returned. On success the return is zero.
1356 */
bpf_prog_create(struct bpf_prog ** pfp,struct sock_fprog_kern * fprog)1357 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1358 {
1359 unsigned int fsize = bpf_classic_proglen(fprog);
1360 struct bpf_prog *fp;
1361
1362 /* Make sure new filter is there and in the right amounts. */
1363 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1364 return -EINVAL;
1365
1366 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1367 if (!fp)
1368 return -ENOMEM;
1369
1370 memcpy(fp->insns, fprog->filter, fsize);
1371
1372 fp->len = fprog->len;
1373 /* Since unattached filters are not copied back to user
1374 * space through sk_get_filter(), we do not need to hold
1375 * a copy here, and can spare us the work.
1376 */
1377 fp->orig_prog = NULL;
1378
1379 /* bpf_prepare_filter() already takes care of freeing
1380 * memory in case something goes wrong.
1381 */
1382 fp = bpf_prepare_filter(fp, NULL);
1383 if (IS_ERR(fp))
1384 return PTR_ERR(fp);
1385
1386 *pfp = fp;
1387 return 0;
1388 }
1389 EXPORT_SYMBOL_GPL(bpf_prog_create);
1390
1391 /**
1392 * bpf_prog_create_from_user - create an unattached filter from user buffer
1393 * @pfp: the unattached filter that is created
1394 * @fprog: the filter program
1395 * @trans: post-classic verifier transformation handler
1396 * @save_orig: save classic BPF program
1397 *
1398 * This function effectively does the same as bpf_prog_create(), only
1399 * that it builds up its insns buffer from user space provided buffer.
1400 * It also allows for passing a bpf_aux_classic_check_t handler.
1401 */
bpf_prog_create_from_user(struct bpf_prog ** pfp,struct sock_fprog * fprog,bpf_aux_classic_check_t trans,bool save_orig)1402 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1403 bpf_aux_classic_check_t trans, bool save_orig)
1404 {
1405 unsigned int fsize = bpf_classic_proglen(fprog);
1406 struct bpf_prog *fp;
1407 int err;
1408
1409 /* Make sure new filter is there and in the right amounts. */
1410 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1411 return -EINVAL;
1412
1413 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1414 if (!fp)
1415 return -ENOMEM;
1416
1417 if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1418 __bpf_prog_free(fp);
1419 return -EFAULT;
1420 }
1421
1422 fp->len = fprog->len;
1423 fp->orig_prog = NULL;
1424
1425 if (save_orig) {
1426 err = bpf_prog_store_orig_filter(fp, fprog);
1427 if (err) {
1428 __bpf_prog_free(fp);
1429 return -ENOMEM;
1430 }
1431 }
1432
1433 /* bpf_prepare_filter() already takes care of freeing
1434 * memory in case something goes wrong.
1435 */
1436 fp = bpf_prepare_filter(fp, trans);
1437 if (IS_ERR(fp))
1438 return PTR_ERR(fp);
1439
1440 *pfp = fp;
1441 return 0;
1442 }
1443 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1444
bpf_prog_destroy(struct bpf_prog * fp)1445 void bpf_prog_destroy(struct bpf_prog *fp)
1446 {
1447 __bpf_prog_release(fp);
1448 }
1449 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1450
__sk_attach_prog(struct bpf_prog * prog,struct sock * sk)1451 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1452 {
1453 struct sk_filter *fp, *old_fp;
1454
1455 fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1456 if (!fp)
1457 return -ENOMEM;
1458
1459 fp->prog = prog;
1460
1461 if (!__sk_filter_charge(sk, fp)) {
1462 kfree(fp);
1463 return -ENOMEM;
1464 }
1465 refcount_set(&fp->refcnt, 1);
1466
1467 old_fp = rcu_dereference_protected(sk->sk_filter,
1468 lockdep_sock_is_held(sk));
1469 rcu_assign_pointer(sk->sk_filter, fp);
1470
1471 if (old_fp)
1472 sk_filter_uncharge(sk, old_fp);
1473
1474 return 0;
1475 }
1476
1477 static
__get_filter(struct sock_fprog * fprog,struct sock * sk)1478 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1479 {
1480 unsigned int fsize = bpf_classic_proglen(fprog);
1481 struct bpf_prog *prog;
1482 int err;
1483
1484 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1485 return ERR_PTR(-EPERM);
1486
1487 /* Make sure new filter is there and in the right amounts. */
1488 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1489 return ERR_PTR(-EINVAL);
1490
1491 prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1492 if (!prog)
1493 return ERR_PTR(-ENOMEM);
1494
1495 if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1496 __bpf_prog_free(prog);
1497 return ERR_PTR(-EFAULT);
1498 }
1499
1500 prog->len = fprog->len;
1501
1502 err = bpf_prog_store_orig_filter(prog, fprog);
1503 if (err) {
1504 __bpf_prog_free(prog);
1505 return ERR_PTR(-ENOMEM);
1506 }
1507
1508 /* bpf_prepare_filter() already takes care of freeing
1509 * memory in case something goes wrong.
1510 */
1511 return bpf_prepare_filter(prog, NULL);
1512 }
1513
1514 /**
1515 * sk_attach_filter - attach a socket filter
1516 * @fprog: the filter program
1517 * @sk: the socket to use
1518 *
1519 * Attach the user's filter code. We first run some sanity checks on
1520 * it to make sure it does not explode on us later. If an error
1521 * occurs or there is insufficient memory for the filter a negative
1522 * errno code is returned. On success the return is zero.
1523 */
sk_attach_filter(struct sock_fprog * fprog,struct sock * sk)1524 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1525 {
1526 struct bpf_prog *prog = __get_filter(fprog, sk);
1527 int err;
1528
1529 if (IS_ERR(prog))
1530 return PTR_ERR(prog);
1531
1532 err = __sk_attach_prog(prog, sk);
1533 if (err < 0) {
1534 __bpf_prog_release(prog);
1535 return err;
1536 }
1537
1538 return 0;
1539 }
1540 EXPORT_SYMBOL_GPL(sk_attach_filter);
1541
sk_reuseport_attach_filter(struct sock_fprog * fprog,struct sock * sk)1542 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1543 {
1544 struct bpf_prog *prog = __get_filter(fprog, sk);
1545 int err;
1546
1547 if (IS_ERR(prog))
1548 return PTR_ERR(prog);
1549
1550 if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1551 err = -ENOMEM;
1552 else
1553 err = reuseport_attach_prog(sk, prog);
1554
1555 if (err)
1556 __bpf_prog_release(prog);
1557
1558 return err;
1559 }
1560
__get_bpf(u32 ufd,struct sock * sk)1561 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1562 {
1563 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1564 return ERR_PTR(-EPERM);
1565
1566 return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1567 }
1568
sk_attach_bpf(u32 ufd,struct sock * sk)1569 int sk_attach_bpf(u32 ufd, struct sock *sk)
1570 {
1571 struct bpf_prog *prog = __get_bpf(ufd, sk);
1572 int err;
1573
1574 if (IS_ERR(prog))
1575 return PTR_ERR(prog);
1576
1577 err = __sk_attach_prog(prog, sk);
1578 if (err < 0) {
1579 bpf_prog_put(prog);
1580 return err;
1581 }
1582
1583 return 0;
1584 }
1585
sk_reuseport_attach_bpf(u32 ufd,struct sock * sk)1586 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1587 {
1588 struct bpf_prog *prog;
1589 int err;
1590
1591 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1592 return -EPERM;
1593
1594 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1595 if (PTR_ERR(prog) == -EINVAL)
1596 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1597 if (IS_ERR(prog))
1598 return PTR_ERR(prog);
1599
1600 if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1601 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1602 * bpf prog (e.g. sockmap). It depends on the
1603 * limitation imposed by bpf_prog_load().
1604 * Hence, sysctl_optmem_max is not checked.
1605 */
1606 if ((sk->sk_type != SOCK_STREAM &&
1607 sk->sk_type != SOCK_DGRAM) ||
1608 (sk->sk_protocol != IPPROTO_UDP &&
1609 sk->sk_protocol != IPPROTO_TCP) ||
1610 (sk->sk_family != AF_INET &&
1611 sk->sk_family != AF_INET6)) {
1612 err = -ENOTSUPP;
1613 goto err_prog_put;
1614 }
1615 } else {
1616 /* BPF_PROG_TYPE_SOCKET_FILTER */
1617 if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
1618 err = -ENOMEM;
1619 goto err_prog_put;
1620 }
1621 }
1622
1623 err = reuseport_attach_prog(sk, prog);
1624 err_prog_put:
1625 if (err)
1626 bpf_prog_put(prog);
1627
1628 return err;
1629 }
1630
sk_reuseport_prog_free(struct bpf_prog * prog)1631 void sk_reuseport_prog_free(struct bpf_prog *prog)
1632 {
1633 if (!prog)
1634 return;
1635
1636 if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1637 bpf_prog_put(prog);
1638 else
1639 bpf_prog_destroy(prog);
1640 }
1641
1642 struct bpf_scratchpad {
1643 union {
1644 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1645 u8 buff[MAX_BPF_STACK];
1646 };
1647 };
1648
1649 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1650
__bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1651 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1652 unsigned int write_len)
1653 {
1654 return skb_ensure_writable(skb, write_len);
1655 }
1656
bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1657 static inline int bpf_try_make_writable(struct sk_buff *skb,
1658 unsigned int write_len)
1659 {
1660 int err = __bpf_try_make_writable(skb, write_len);
1661
1662 bpf_compute_data_pointers(skb);
1663 return err;
1664 }
1665
bpf_try_make_head_writable(struct sk_buff * skb)1666 static int bpf_try_make_head_writable(struct sk_buff *skb)
1667 {
1668 return bpf_try_make_writable(skb, skb_headlen(skb));
1669 }
1670
bpf_push_mac_rcsum(struct sk_buff * skb)1671 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1672 {
1673 if (skb_at_tc_ingress(skb))
1674 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1675 }
1676
bpf_pull_mac_rcsum(struct sk_buff * skb)1677 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1678 {
1679 if (skb_at_tc_ingress(skb))
1680 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1681 }
1682
BPF_CALL_5(bpf_skb_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len,u64,flags)1683 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1684 const void *, from, u32, len, u64, flags)
1685 {
1686 void *ptr;
1687
1688 if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1689 return -EINVAL;
1690 if (unlikely(offset > 0xffff))
1691 return -EFAULT;
1692 if (unlikely(bpf_try_make_writable(skb, offset + len)))
1693 return -EFAULT;
1694
1695 ptr = skb->data + offset;
1696 if (flags & BPF_F_RECOMPUTE_CSUM)
1697 __skb_postpull_rcsum(skb, ptr, len, offset);
1698
1699 memcpy(ptr, from, len);
1700
1701 if (flags & BPF_F_RECOMPUTE_CSUM)
1702 __skb_postpush_rcsum(skb, ptr, len, offset);
1703 if (flags & BPF_F_INVALIDATE_HASH)
1704 skb_clear_hash(skb);
1705
1706 return 0;
1707 }
1708
1709 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1710 .func = bpf_skb_store_bytes,
1711 .gpl_only = false,
1712 .ret_type = RET_INTEGER,
1713 .arg1_type = ARG_PTR_TO_CTX,
1714 .arg2_type = ARG_ANYTHING,
1715 .arg3_type = ARG_PTR_TO_MEM,
1716 .arg4_type = ARG_CONST_SIZE,
1717 .arg5_type = ARG_ANYTHING,
1718 };
1719
BPF_CALL_4(bpf_skb_load_bytes,const struct sk_buff *,skb,u32,offset,void *,to,u32,len)1720 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1721 void *, to, u32, len)
1722 {
1723 void *ptr;
1724
1725 if (unlikely(offset > 0xffff))
1726 goto err_clear;
1727
1728 ptr = skb_header_pointer(skb, offset, len, to);
1729 if (unlikely(!ptr))
1730 goto err_clear;
1731 if (ptr != to)
1732 memcpy(to, ptr, len);
1733
1734 return 0;
1735 err_clear:
1736 memset(to, 0, len);
1737 return -EFAULT;
1738 }
1739
1740 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1741 .func = bpf_skb_load_bytes,
1742 .gpl_only = false,
1743 .ret_type = RET_INTEGER,
1744 .arg1_type = ARG_PTR_TO_CTX,
1745 .arg2_type = ARG_ANYTHING,
1746 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1747 .arg4_type = ARG_CONST_SIZE,
1748 };
1749
BPF_CALL_4(bpf_flow_dissector_load_bytes,const struct bpf_flow_dissector *,ctx,u32,offset,void *,to,u32,len)1750 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1751 const struct bpf_flow_dissector *, ctx, u32, offset,
1752 void *, to, u32, len)
1753 {
1754 void *ptr;
1755
1756 if (unlikely(offset > 0xffff))
1757 goto err_clear;
1758
1759 if (unlikely(!ctx->skb))
1760 goto err_clear;
1761
1762 ptr = skb_header_pointer(ctx->skb, offset, len, to);
1763 if (unlikely(!ptr))
1764 goto err_clear;
1765 if (ptr != to)
1766 memcpy(to, ptr, len);
1767
1768 return 0;
1769 err_clear:
1770 memset(to, 0, len);
1771 return -EFAULT;
1772 }
1773
1774 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1775 .func = bpf_flow_dissector_load_bytes,
1776 .gpl_only = false,
1777 .ret_type = RET_INTEGER,
1778 .arg1_type = ARG_PTR_TO_CTX,
1779 .arg2_type = ARG_ANYTHING,
1780 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1781 .arg4_type = ARG_CONST_SIZE,
1782 };
1783
BPF_CALL_5(bpf_skb_load_bytes_relative,const struct sk_buff *,skb,u32,offset,void *,to,u32,len,u32,start_header)1784 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1785 u32, offset, void *, to, u32, len, u32, start_header)
1786 {
1787 u8 *end = skb_tail_pointer(skb);
1788 u8 *start, *ptr;
1789
1790 if (unlikely(offset > 0xffff))
1791 goto err_clear;
1792
1793 switch (start_header) {
1794 case BPF_HDR_START_MAC:
1795 if (unlikely(!skb_mac_header_was_set(skb)))
1796 goto err_clear;
1797 start = skb_mac_header(skb);
1798 break;
1799 case BPF_HDR_START_NET:
1800 start = skb_network_header(skb);
1801 break;
1802 default:
1803 goto err_clear;
1804 }
1805
1806 ptr = start + offset;
1807
1808 if (likely(ptr + len <= end)) {
1809 memcpy(to, ptr, len);
1810 return 0;
1811 }
1812
1813 err_clear:
1814 memset(to, 0, len);
1815 return -EFAULT;
1816 }
1817
1818 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1819 .func = bpf_skb_load_bytes_relative,
1820 .gpl_only = false,
1821 .ret_type = RET_INTEGER,
1822 .arg1_type = ARG_PTR_TO_CTX,
1823 .arg2_type = ARG_ANYTHING,
1824 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1825 .arg4_type = ARG_CONST_SIZE,
1826 .arg5_type = ARG_ANYTHING,
1827 };
1828
BPF_CALL_2(bpf_skb_pull_data,struct sk_buff *,skb,u32,len)1829 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1830 {
1831 /* Idea is the following: should the needed direct read/write
1832 * test fail during runtime, we can pull in more data and redo
1833 * again, since implicitly, we invalidate previous checks here.
1834 *
1835 * Or, since we know how much we need to make read/writeable,
1836 * this can be done once at the program beginning for direct
1837 * access case. By this we overcome limitations of only current
1838 * headroom being accessible.
1839 */
1840 return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1841 }
1842
1843 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1844 .func = bpf_skb_pull_data,
1845 .gpl_only = false,
1846 .ret_type = RET_INTEGER,
1847 .arg1_type = ARG_PTR_TO_CTX,
1848 .arg2_type = ARG_ANYTHING,
1849 };
1850
BPF_CALL_1(bpf_sk_fullsock,struct sock *,sk)1851 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1852 {
1853 return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1854 }
1855
1856 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1857 .func = bpf_sk_fullsock,
1858 .gpl_only = false,
1859 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
1860 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
1861 };
1862
sk_skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)1863 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1864 unsigned int write_len)
1865 {
1866 int err = __bpf_try_make_writable(skb, write_len);
1867
1868 bpf_compute_data_end_sk_skb(skb);
1869 return err;
1870 }
1871
BPF_CALL_2(sk_skb_pull_data,struct sk_buff *,skb,u32,len)1872 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1873 {
1874 /* Idea is the following: should the needed direct read/write
1875 * test fail during runtime, we can pull in more data and redo
1876 * again, since implicitly, we invalidate previous checks here.
1877 *
1878 * Or, since we know how much we need to make read/writeable,
1879 * this can be done once at the program beginning for direct
1880 * access case. By this we overcome limitations of only current
1881 * headroom being accessible.
1882 */
1883 return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1884 }
1885
1886 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1887 .func = sk_skb_pull_data,
1888 .gpl_only = false,
1889 .ret_type = RET_INTEGER,
1890 .arg1_type = ARG_PTR_TO_CTX,
1891 .arg2_type = ARG_ANYTHING,
1892 };
1893
BPF_CALL_5(bpf_l3_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1894 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1895 u64, from, u64, to, u64, flags)
1896 {
1897 __sum16 *ptr;
1898
1899 if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1900 return -EINVAL;
1901 if (unlikely(offset > 0xffff || offset & 1))
1902 return -EFAULT;
1903 if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1904 return -EFAULT;
1905
1906 ptr = (__sum16 *)(skb->data + offset);
1907 switch (flags & BPF_F_HDR_FIELD_MASK) {
1908 case 0:
1909 if (unlikely(from != 0))
1910 return -EINVAL;
1911
1912 csum_replace_by_diff(ptr, to);
1913 break;
1914 case 2:
1915 csum_replace2(ptr, from, to);
1916 break;
1917 case 4:
1918 csum_replace4(ptr, from, to);
1919 break;
1920 default:
1921 return -EINVAL;
1922 }
1923
1924 return 0;
1925 }
1926
1927 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1928 .func = bpf_l3_csum_replace,
1929 .gpl_only = false,
1930 .ret_type = RET_INTEGER,
1931 .arg1_type = ARG_PTR_TO_CTX,
1932 .arg2_type = ARG_ANYTHING,
1933 .arg3_type = ARG_ANYTHING,
1934 .arg4_type = ARG_ANYTHING,
1935 .arg5_type = ARG_ANYTHING,
1936 };
1937
BPF_CALL_5(bpf_l4_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1938 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1939 u64, from, u64, to, u64, flags)
1940 {
1941 bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1942 bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1943 bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1944 __sum16 *ptr;
1945
1946 if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1947 BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1948 return -EINVAL;
1949 if (unlikely(offset > 0xffff || offset & 1))
1950 return -EFAULT;
1951 if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1952 return -EFAULT;
1953
1954 ptr = (__sum16 *)(skb->data + offset);
1955 if (is_mmzero && !do_mforce && !*ptr)
1956 return 0;
1957
1958 switch (flags & BPF_F_HDR_FIELD_MASK) {
1959 case 0:
1960 if (unlikely(from != 0))
1961 return -EINVAL;
1962
1963 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1964 break;
1965 case 2:
1966 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1967 break;
1968 case 4:
1969 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1970 break;
1971 default:
1972 return -EINVAL;
1973 }
1974
1975 if (is_mmzero && !*ptr)
1976 *ptr = CSUM_MANGLED_0;
1977 return 0;
1978 }
1979
1980 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1981 .func = bpf_l4_csum_replace,
1982 .gpl_only = false,
1983 .ret_type = RET_INTEGER,
1984 .arg1_type = ARG_PTR_TO_CTX,
1985 .arg2_type = ARG_ANYTHING,
1986 .arg3_type = ARG_ANYTHING,
1987 .arg4_type = ARG_ANYTHING,
1988 .arg5_type = ARG_ANYTHING,
1989 };
1990
BPF_CALL_5(bpf_csum_diff,__be32 *,from,u32,from_size,__be32 *,to,u32,to_size,__wsum,seed)1991 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1992 __be32 *, to, u32, to_size, __wsum, seed)
1993 {
1994 struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1995 u32 diff_size = from_size + to_size;
1996 int i, j = 0;
1997
1998 /* This is quite flexible, some examples:
1999 *
2000 * from_size == 0, to_size > 0, seed := csum --> pushing data
2001 * from_size > 0, to_size == 0, seed := csum --> pulling data
2002 * from_size > 0, to_size > 0, seed := 0 --> diffing data
2003 *
2004 * Even for diffing, from_size and to_size don't need to be equal.
2005 */
2006 if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2007 diff_size > sizeof(sp->diff)))
2008 return -EINVAL;
2009
2010 for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2011 sp->diff[j] = ~from[i];
2012 for (i = 0; i < to_size / sizeof(__be32); i++, j++)
2013 sp->diff[j] = to[i];
2014
2015 return csum_partial(sp->diff, diff_size, seed);
2016 }
2017
2018 static const struct bpf_func_proto bpf_csum_diff_proto = {
2019 .func = bpf_csum_diff,
2020 .gpl_only = false,
2021 .pkt_access = true,
2022 .ret_type = RET_INTEGER,
2023 .arg1_type = ARG_PTR_TO_MEM_OR_NULL,
2024 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
2025 .arg3_type = ARG_PTR_TO_MEM_OR_NULL,
2026 .arg4_type = ARG_CONST_SIZE_OR_ZERO,
2027 .arg5_type = ARG_ANYTHING,
2028 };
2029
BPF_CALL_2(bpf_csum_update,struct sk_buff *,skb,__wsum,csum)2030 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2031 {
2032 /* The interface is to be used in combination with bpf_csum_diff()
2033 * for direct packet writes. csum rotation for alignment as well
2034 * as emulating csum_sub() can be done from the eBPF program.
2035 */
2036 if (skb->ip_summed == CHECKSUM_COMPLETE)
2037 return (skb->csum = csum_add(skb->csum, csum));
2038
2039 return -ENOTSUPP;
2040 }
2041
2042 static const struct bpf_func_proto bpf_csum_update_proto = {
2043 .func = bpf_csum_update,
2044 .gpl_only = false,
2045 .ret_type = RET_INTEGER,
2046 .arg1_type = ARG_PTR_TO_CTX,
2047 .arg2_type = ARG_ANYTHING,
2048 };
2049
BPF_CALL_2(bpf_csum_level,struct sk_buff *,skb,u64,level)2050 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2051 {
2052 /* The interface is to be used in combination with bpf_skb_adjust_room()
2053 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2054 * is passed as flags, for example.
2055 */
2056 switch (level) {
2057 case BPF_CSUM_LEVEL_INC:
2058 __skb_incr_checksum_unnecessary(skb);
2059 break;
2060 case BPF_CSUM_LEVEL_DEC:
2061 __skb_decr_checksum_unnecessary(skb);
2062 break;
2063 case BPF_CSUM_LEVEL_RESET:
2064 __skb_reset_checksum_unnecessary(skb);
2065 break;
2066 case BPF_CSUM_LEVEL_QUERY:
2067 return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2068 skb->csum_level : -EACCES;
2069 default:
2070 return -EINVAL;
2071 }
2072
2073 return 0;
2074 }
2075
2076 static const struct bpf_func_proto bpf_csum_level_proto = {
2077 .func = bpf_csum_level,
2078 .gpl_only = false,
2079 .ret_type = RET_INTEGER,
2080 .arg1_type = ARG_PTR_TO_CTX,
2081 .arg2_type = ARG_ANYTHING,
2082 };
2083
__bpf_rx_skb(struct net_device * dev,struct sk_buff * skb)2084 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2085 {
2086 return dev_forward_skb(dev, skb);
2087 }
2088
__bpf_rx_skb_no_mac(struct net_device * dev,struct sk_buff * skb)2089 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2090 struct sk_buff *skb)
2091 {
2092 int ret = ____dev_forward_skb(dev, skb);
2093
2094 if (likely(!ret)) {
2095 skb->dev = dev;
2096 ret = netif_rx(skb);
2097 }
2098
2099 return ret;
2100 }
2101
__bpf_tx_skb(struct net_device * dev,struct sk_buff * skb)2102 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2103 {
2104 int ret;
2105
2106 if (dev_xmit_recursion()) {
2107 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2108 kfree_skb(skb);
2109 return -ENETDOWN;
2110 }
2111
2112 skb->dev = dev;
2113 skb->tstamp = 0;
2114
2115 dev_xmit_recursion_inc();
2116 ret = dev_queue_xmit(skb);
2117 dev_xmit_recursion_dec();
2118
2119 return ret;
2120 }
2121
__bpf_redirect_no_mac(struct sk_buff * skb,struct net_device * dev,u32 flags)2122 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2123 u32 flags)
2124 {
2125 unsigned int mlen = skb_network_offset(skb);
2126
2127 if (mlen) {
2128 __skb_pull(skb, mlen);
2129
2130 /* At ingress, the mac header has already been pulled once.
2131 * At egress, skb_pospull_rcsum has to be done in case that
2132 * the skb is originated from ingress (i.e. a forwarded skb)
2133 * to ensure that rcsum starts at net header.
2134 */
2135 if (!skb_at_tc_ingress(skb))
2136 skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2137 }
2138 skb_pop_mac_header(skb);
2139 skb_reset_mac_len(skb);
2140 return flags & BPF_F_INGRESS ?
2141 __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2142 }
2143
__bpf_redirect_common(struct sk_buff * skb,struct net_device * dev,u32 flags)2144 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2145 u32 flags)
2146 {
2147 /* Verify that a link layer header is carried */
2148 if (unlikely(skb->mac_header >= skb->network_header)) {
2149 kfree_skb(skb);
2150 return -ERANGE;
2151 }
2152
2153 bpf_push_mac_rcsum(skb);
2154 return flags & BPF_F_INGRESS ?
2155 __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2156 }
2157
__bpf_redirect(struct sk_buff * skb,struct net_device * dev,u32 flags)2158 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2159 u32 flags)
2160 {
2161 if (dev_is_mac_header_xmit(dev))
2162 return __bpf_redirect_common(skb, dev, flags);
2163 else
2164 return __bpf_redirect_no_mac(skb, dev, flags);
2165 }
2166
2167 #if IS_ENABLED(CONFIG_IPV6)
bpf_out_neigh_v6(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2168 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2169 struct net_device *dev, struct bpf_nh_params *nh)
2170 {
2171 u32 hh_len = LL_RESERVED_SPACE(dev);
2172 const struct in6_addr *nexthop;
2173 struct dst_entry *dst = NULL;
2174 struct neighbour *neigh;
2175
2176 if (dev_xmit_recursion()) {
2177 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2178 goto out_drop;
2179 }
2180
2181 skb->dev = dev;
2182 skb->tstamp = 0;
2183
2184 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2185 struct sk_buff *skb2;
2186
2187 skb2 = skb_realloc_headroom(skb, hh_len);
2188 if (unlikely(!skb2)) {
2189 kfree_skb(skb);
2190 return -ENOMEM;
2191 }
2192 if (skb->sk)
2193 skb_set_owner_w(skb2, skb->sk);
2194 consume_skb(skb);
2195 skb = skb2;
2196 }
2197
2198 rcu_read_lock_bh();
2199 if (!nh) {
2200 dst = skb_dst(skb);
2201 nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2202 &ipv6_hdr(skb)->daddr);
2203 } else {
2204 nexthop = &nh->ipv6_nh;
2205 }
2206 neigh = ip_neigh_gw6(dev, nexthop);
2207 if (likely(!IS_ERR(neigh))) {
2208 int ret;
2209
2210 sock_confirm_neigh(skb, neigh);
2211 dev_xmit_recursion_inc();
2212 ret = neigh_output(neigh, skb, false);
2213 dev_xmit_recursion_dec();
2214 rcu_read_unlock_bh();
2215 return ret;
2216 }
2217 rcu_read_unlock_bh();
2218 if (dst)
2219 IP6_INC_STATS(dev_net(dst->dev),
2220 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2221 out_drop:
2222 kfree_skb(skb);
2223 return -ENETDOWN;
2224 }
2225
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2226 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2227 struct bpf_nh_params *nh)
2228 {
2229 const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2230 struct net *net = dev_net(dev);
2231 int err, ret = NET_XMIT_DROP;
2232
2233 if (!nh) {
2234 struct dst_entry *dst;
2235 struct flowi6 fl6 = {
2236 .flowi6_flags = FLOWI_FLAG_ANYSRC,
2237 .flowi6_mark = skb->mark,
2238 .flowlabel = ip6_flowinfo(ip6h),
2239 .flowi6_oif = dev->ifindex,
2240 .flowi6_proto = ip6h->nexthdr,
2241 .daddr = ip6h->daddr,
2242 .saddr = ip6h->saddr,
2243 };
2244
2245 dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2246 if (IS_ERR(dst))
2247 goto out_drop;
2248
2249 skb_dst_set(skb, dst);
2250 } else if (nh->nh_family != AF_INET6) {
2251 goto out_drop;
2252 }
2253
2254 err = bpf_out_neigh_v6(net, skb, dev, nh);
2255 if (unlikely(net_xmit_eval(err)))
2256 dev->stats.tx_errors++;
2257 else
2258 ret = NET_XMIT_SUCCESS;
2259 goto out_xmit;
2260 out_drop:
2261 dev->stats.tx_errors++;
2262 kfree_skb(skb);
2263 out_xmit:
2264 return ret;
2265 }
2266 #else
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2267 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2268 struct bpf_nh_params *nh)
2269 {
2270 kfree_skb(skb);
2271 return NET_XMIT_DROP;
2272 }
2273 #endif /* CONFIG_IPV6 */
2274
2275 #if IS_ENABLED(CONFIG_INET)
bpf_out_neigh_v4(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2276 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2277 struct net_device *dev, struct bpf_nh_params *nh)
2278 {
2279 u32 hh_len = LL_RESERVED_SPACE(dev);
2280 struct neighbour *neigh;
2281 bool is_v6gw = false;
2282
2283 if (dev_xmit_recursion()) {
2284 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2285 goto out_drop;
2286 }
2287
2288 skb->dev = dev;
2289 skb->tstamp = 0;
2290
2291 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2292 struct sk_buff *skb2;
2293
2294 skb2 = skb_realloc_headroom(skb, hh_len);
2295 if (unlikely(!skb2)) {
2296 kfree_skb(skb);
2297 return -ENOMEM;
2298 }
2299 if (skb->sk)
2300 skb_set_owner_w(skb2, skb->sk);
2301 consume_skb(skb);
2302 skb = skb2;
2303 }
2304
2305 rcu_read_lock_bh();
2306 if (!nh) {
2307 struct dst_entry *dst = skb_dst(skb);
2308 struct rtable *rt = container_of(dst, struct rtable, dst);
2309
2310 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2311 } else if (nh->nh_family == AF_INET6) {
2312 neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2313 is_v6gw = true;
2314 } else if (nh->nh_family == AF_INET) {
2315 neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2316 } else {
2317 rcu_read_unlock_bh();
2318 goto out_drop;
2319 }
2320
2321 if (likely(!IS_ERR(neigh))) {
2322 int ret;
2323
2324 sock_confirm_neigh(skb, neigh);
2325 dev_xmit_recursion_inc();
2326 ret = neigh_output(neigh, skb, is_v6gw);
2327 dev_xmit_recursion_dec();
2328 rcu_read_unlock_bh();
2329 return ret;
2330 }
2331 rcu_read_unlock_bh();
2332 out_drop:
2333 kfree_skb(skb);
2334 return -ENETDOWN;
2335 }
2336
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2337 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2338 struct bpf_nh_params *nh)
2339 {
2340 const struct iphdr *ip4h = ip_hdr(skb);
2341 struct net *net = dev_net(dev);
2342 int err, ret = NET_XMIT_DROP;
2343
2344 if (!nh) {
2345 struct flowi4 fl4 = {
2346 .flowi4_flags = FLOWI_FLAG_ANYSRC,
2347 .flowi4_mark = skb->mark,
2348 .flowi4_tos = RT_TOS(ip4h->tos),
2349 .flowi4_oif = dev->ifindex,
2350 .flowi4_proto = ip4h->protocol,
2351 .daddr = ip4h->daddr,
2352 .saddr = ip4h->saddr,
2353 };
2354 struct rtable *rt;
2355
2356 rt = ip_route_output_flow(net, &fl4, NULL);
2357 if (IS_ERR(rt))
2358 goto out_drop;
2359 if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2360 ip_rt_put(rt);
2361 goto out_drop;
2362 }
2363
2364 skb_dst_set(skb, &rt->dst);
2365 }
2366
2367 err = bpf_out_neigh_v4(net, skb, dev, nh);
2368 if (unlikely(net_xmit_eval(err)))
2369 dev->stats.tx_errors++;
2370 else
2371 ret = NET_XMIT_SUCCESS;
2372 goto out_xmit;
2373 out_drop:
2374 dev->stats.tx_errors++;
2375 kfree_skb(skb);
2376 out_xmit:
2377 return ret;
2378 }
2379 #else
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2380 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2381 struct bpf_nh_params *nh)
2382 {
2383 kfree_skb(skb);
2384 return NET_XMIT_DROP;
2385 }
2386 #endif /* CONFIG_INET */
2387
__bpf_redirect_neigh(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2388 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2389 struct bpf_nh_params *nh)
2390 {
2391 struct ethhdr *ethh = eth_hdr(skb);
2392
2393 if (unlikely(skb->mac_header >= skb->network_header))
2394 goto out;
2395 bpf_push_mac_rcsum(skb);
2396 if (is_multicast_ether_addr(ethh->h_dest))
2397 goto out;
2398
2399 skb_pull(skb, sizeof(*ethh));
2400 skb_unset_mac_header(skb);
2401 skb_reset_network_header(skb);
2402
2403 if (skb->protocol == htons(ETH_P_IP))
2404 return __bpf_redirect_neigh_v4(skb, dev, nh);
2405 else if (skb->protocol == htons(ETH_P_IPV6))
2406 return __bpf_redirect_neigh_v6(skb, dev, nh);
2407 out:
2408 kfree_skb(skb);
2409 return -ENOTSUPP;
2410 }
2411
2412 /* Internal, non-exposed redirect flags. */
2413 enum {
2414 BPF_F_NEIGH = (1ULL << 1),
2415 BPF_F_PEER = (1ULL << 2),
2416 BPF_F_NEXTHOP = (1ULL << 3),
2417 #define BPF_F_REDIRECT_INTERNAL (BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2418 };
2419
BPF_CALL_3(bpf_clone_redirect,struct sk_buff *,skb,u32,ifindex,u64,flags)2420 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2421 {
2422 struct net_device *dev;
2423 struct sk_buff *clone;
2424 int ret;
2425
2426 if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2427 return -EINVAL;
2428
2429 dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2430 if (unlikely(!dev))
2431 return -EINVAL;
2432
2433 clone = skb_clone(skb, GFP_ATOMIC);
2434 if (unlikely(!clone))
2435 return -ENOMEM;
2436
2437 /* For direct write, we need to keep the invariant that the skbs
2438 * we're dealing with need to be uncloned. Should uncloning fail
2439 * here, we need to free the just generated clone to unclone once
2440 * again.
2441 */
2442 ret = bpf_try_make_head_writable(skb);
2443 if (unlikely(ret)) {
2444 kfree_skb(clone);
2445 return -ENOMEM;
2446 }
2447
2448 return __bpf_redirect(clone, dev, flags);
2449 }
2450
2451 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2452 .func = bpf_clone_redirect,
2453 .gpl_only = false,
2454 .ret_type = RET_INTEGER,
2455 .arg1_type = ARG_PTR_TO_CTX,
2456 .arg2_type = ARG_ANYTHING,
2457 .arg3_type = ARG_ANYTHING,
2458 };
2459
2460 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2461 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2462
skb_do_redirect(struct sk_buff * skb)2463 int skb_do_redirect(struct sk_buff *skb)
2464 {
2465 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2466 struct net *net = dev_net(skb->dev);
2467 struct net_device *dev;
2468 u32 flags = ri->flags;
2469
2470 dev = dev_get_by_index_rcu(net, ri->tgt_index);
2471 ri->tgt_index = 0;
2472 ri->flags = 0;
2473 if (unlikely(!dev))
2474 goto out_drop;
2475 if (flags & BPF_F_PEER) {
2476 const struct net_device_ops *ops = dev->netdev_ops;
2477
2478 if (unlikely(!ops->ndo_get_peer_dev ||
2479 !skb_at_tc_ingress(skb)))
2480 goto out_drop;
2481 dev = ops->ndo_get_peer_dev(dev);
2482 if (unlikely(!dev ||
2483 !is_skb_forwardable(dev, skb) ||
2484 net_eq(net, dev_net(dev))))
2485 goto out_drop;
2486 skb->dev = dev;
2487 return -EAGAIN;
2488 }
2489 return flags & BPF_F_NEIGH ?
2490 __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2491 &ri->nh : NULL) :
2492 __bpf_redirect(skb, dev, flags);
2493 out_drop:
2494 kfree_skb(skb);
2495 return -EINVAL;
2496 }
2497
BPF_CALL_2(bpf_redirect,u32,ifindex,u64,flags)2498 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2499 {
2500 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2501
2502 if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2503 return TC_ACT_SHOT;
2504
2505 ri->flags = flags;
2506 ri->tgt_index = ifindex;
2507
2508 return TC_ACT_REDIRECT;
2509 }
2510
2511 static const struct bpf_func_proto bpf_redirect_proto = {
2512 .func = bpf_redirect,
2513 .gpl_only = false,
2514 .ret_type = RET_INTEGER,
2515 .arg1_type = ARG_ANYTHING,
2516 .arg2_type = ARG_ANYTHING,
2517 };
2518
BPF_CALL_2(bpf_redirect_peer,u32,ifindex,u64,flags)2519 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2520 {
2521 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2522
2523 if (unlikely(flags))
2524 return TC_ACT_SHOT;
2525
2526 ri->flags = BPF_F_PEER;
2527 ri->tgt_index = ifindex;
2528
2529 return TC_ACT_REDIRECT;
2530 }
2531
2532 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2533 .func = bpf_redirect_peer,
2534 .gpl_only = false,
2535 .ret_type = RET_INTEGER,
2536 .arg1_type = ARG_ANYTHING,
2537 .arg2_type = ARG_ANYTHING,
2538 };
2539
BPF_CALL_4(bpf_redirect_neigh,u32,ifindex,struct bpf_redir_neigh *,params,int,plen,u64,flags)2540 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2541 int, plen, u64, flags)
2542 {
2543 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2544
2545 if (unlikely((plen && plen < sizeof(*params)) || flags))
2546 return TC_ACT_SHOT;
2547
2548 ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2549 ri->tgt_index = ifindex;
2550
2551 BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2552 if (plen)
2553 memcpy(&ri->nh, params, sizeof(ri->nh));
2554
2555 return TC_ACT_REDIRECT;
2556 }
2557
2558 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2559 .func = bpf_redirect_neigh,
2560 .gpl_only = false,
2561 .ret_type = RET_INTEGER,
2562 .arg1_type = ARG_ANYTHING,
2563 .arg2_type = ARG_PTR_TO_MEM_OR_NULL,
2564 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
2565 .arg4_type = ARG_ANYTHING,
2566 };
2567
BPF_CALL_2(bpf_msg_apply_bytes,struct sk_msg *,msg,u32,bytes)2568 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2569 {
2570 msg->apply_bytes = bytes;
2571 return 0;
2572 }
2573
2574 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2575 .func = bpf_msg_apply_bytes,
2576 .gpl_only = false,
2577 .ret_type = RET_INTEGER,
2578 .arg1_type = ARG_PTR_TO_CTX,
2579 .arg2_type = ARG_ANYTHING,
2580 };
2581
BPF_CALL_2(bpf_msg_cork_bytes,struct sk_msg *,msg,u32,bytes)2582 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2583 {
2584 msg->cork_bytes = bytes;
2585 return 0;
2586 }
2587
2588 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2589 .func = bpf_msg_cork_bytes,
2590 .gpl_only = false,
2591 .ret_type = RET_INTEGER,
2592 .arg1_type = ARG_PTR_TO_CTX,
2593 .arg2_type = ARG_ANYTHING,
2594 };
2595
BPF_CALL_4(bpf_msg_pull_data,struct sk_msg *,msg,u32,start,u32,end,u64,flags)2596 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2597 u32, end, u64, flags)
2598 {
2599 u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2600 u32 first_sge, last_sge, i, shift, bytes_sg_total;
2601 struct scatterlist *sge;
2602 u8 *raw, *to, *from;
2603 struct page *page;
2604
2605 if (unlikely(flags || end <= start))
2606 return -EINVAL;
2607
2608 /* First find the starting scatterlist element */
2609 i = msg->sg.start;
2610 do {
2611 offset += len;
2612 len = sk_msg_elem(msg, i)->length;
2613 if (start < offset + len)
2614 break;
2615 sk_msg_iter_var_next(i);
2616 } while (i != msg->sg.end);
2617
2618 if (unlikely(start >= offset + len))
2619 return -EINVAL;
2620
2621 first_sge = i;
2622 /* The start may point into the sg element so we need to also
2623 * account for the headroom.
2624 */
2625 bytes_sg_total = start - offset + bytes;
2626 if (!test_bit(i, &msg->sg.copy) && bytes_sg_total <= len)
2627 goto out;
2628
2629 /* At this point we need to linearize multiple scatterlist
2630 * elements or a single shared page. Either way we need to
2631 * copy into a linear buffer exclusively owned by BPF. Then
2632 * place the buffer in the scatterlist and fixup the original
2633 * entries by removing the entries now in the linear buffer
2634 * and shifting the remaining entries. For now we do not try
2635 * to copy partial entries to avoid complexity of running out
2636 * of sg_entry slots. The downside is reading a single byte
2637 * will copy the entire sg entry.
2638 */
2639 do {
2640 copy += sk_msg_elem(msg, i)->length;
2641 sk_msg_iter_var_next(i);
2642 if (bytes_sg_total <= copy)
2643 break;
2644 } while (i != msg->sg.end);
2645 last_sge = i;
2646
2647 if (unlikely(bytes_sg_total > copy))
2648 return -EINVAL;
2649
2650 page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2651 get_order(copy));
2652 if (unlikely(!page))
2653 return -ENOMEM;
2654
2655 raw = page_address(page);
2656 i = first_sge;
2657 do {
2658 sge = sk_msg_elem(msg, i);
2659 from = sg_virt(sge);
2660 len = sge->length;
2661 to = raw + poffset;
2662
2663 memcpy(to, from, len);
2664 poffset += len;
2665 sge->length = 0;
2666 put_page(sg_page(sge));
2667
2668 sk_msg_iter_var_next(i);
2669 } while (i != last_sge);
2670
2671 sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2672
2673 /* To repair sg ring we need to shift entries. If we only
2674 * had a single entry though we can just replace it and
2675 * be done. Otherwise walk the ring and shift the entries.
2676 */
2677 WARN_ON_ONCE(last_sge == first_sge);
2678 shift = last_sge > first_sge ?
2679 last_sge - first_sge - 1 :
2680 NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2681 if (!shift)
2682 goto out;
2683
2684 i = first_sge;
2685 sk_msg_iter_var_next(i);
2686 do {
2687 u32 move_from;
2688
2689 if (i + shift >= NR_MSG_FRAG_IDS)
2690 move_from = i + shift - NR_MSG_FRAG_IDS;
2691 else
2692 move_from = i + shift;
2693 if (move_from == msg->sg.end)
2694 break;
2695
2696 msg->sg.data[i] = msg->sg.data[move_from];
2697 msg->sg.data[move_from].length = 0;
2698 msg->sg.data[move_from].page_link = 0;
2699 msg->sg.data[move_from].offset = 0;
2700 sk_msg_iter_var_next(i);
2701 } while (1);
2702
2703 msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2704 msg->sg.end - shift + NR_MSG_FRAG_IDS :
2705 msg->sg.end - shift;
2706 out:
2707 msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2708 msg->data_end = msg->data + bytes;
2709 return 0;
2710 }
2711
2712 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2713 .func = bpf_msg_pull_data,
2714 .gpl_only = false,
2715 .ret_type = RET_INTEGER,
2716 .arg1_type = ARG_PTR_TO_CTX,
2717 .arg2_type = ARG_ANYTHING,
2718 .arg3_type = ARG_ANYTHING,
2719 .arg4_type = ARG_ANYTHING,
2720 };
2721
BPF_CALL_4(bpf_msg_push_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2722 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2723 u32, len, u64, flags)
2724 {
2725 struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2726 u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2727 u8 *raw, *to, *from;
2728 struct page *page;
2729
2730 if (unlikely(flags))
2731 return -EINVAL;
2732
2733 /* First find the starting scatterlist element */
2734 i = msg->sg.start;
2735 do {
2736 offset += l;
2737 l = sk_msg_elem(msg, i)->length;
2738
2739 if (start < offset + l)
2740 break;
2741 sk_msg_iter_var_next(i);
2742 } while (i != msg->sg.end);
2743
2744 if (start >= offset + l)
2745 return -EINVAL;
2746
2747 space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2748
2749 /* If no space available will fallback to copy, we need at
2750 * least one scatterlist elem available to push data into
2751 * when start aligns to the beginning of an element or two
2752 * when it falls inside an element. We handle the start equals
2753 * offset case because its the common case for inserting a
2754 * header.
2755 */
2756 if (!space || (space == 1 && start != offset))
2757 copy = msg->sg.data[i].length;
2758
2759 page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2760 get_order(copy + len));
2761 if (unlikely(!page))
2762 return -ENOMEM;
2763
2764 if (copy) {
2765 int front, back;
2766
2767 raw = page_address(page);
2768
2769 psge = sk_msg_elem(msg, i);
2770 front = start - offset;
2771 back = psge->length - front;
2772 from = sg_virt(psge);
2773
2774 if (front)
2775 memcpy(raw, from, front);
2776
2777 if (back) {
2778 from += front;
2779 to = raw + front + len;
2780
2781 memcpy(to, from, back);
2782 }
2783
2784 put_page(sg_page(psge));
2785 } else if (start - offset) {
2786 psge = sk_msg_elem(msg, i);
2787 rsge = sk_msg_elem_cpy(msg, i);
2788
2789 psge->length = start - offset;
2790 rsge.length -= psge->length;
2791 rsge.offset += start;
2792
2793 sk_msg_iter_var_next(i);
2794 sg_unmark_end(psge);
2795 sg_unmark_end(&rsge);
2796 sk_msg_iter_next(msg, end);
2797 }
2798
2799 /* Slot(s) to place newly allocated data */
2800 new = i;
2801
2802 /* Shift one or two slots as needed */
2803 if (!copy) {
2804 sge = sk_msg_elem_cpy(msg, i);
2805
2806 sk_msg_iter_var_next(i);
2807 sg_unmark_end(&sge);
2808 sk_msg_iter_next(msg, end);
2809
2810 nsge = sk_msg_elem_cpy(msg, i);
2811 if (rsge.length) {
2812 sk_msg_iter_var_next(i);
2813 nnsge = sk_msg_elem_cpy(msg, i);
2814 }
2815
2816 while (i != msg->sg.end) {
2817 msg->sg.data[i] = sge;
2818 sge = nsge;
2819 sk_msg_iter_var_next(i);
2820 if (rsge.length) {
2821 nsge = nnsge;
2822 nnsge = sk_msg_elem_cpy(msg, i);
2823 } else {
2824 nsge = sk_msg_elem_cpy(msg, i);
2825 }
2826 }
2827 }
2828
2829 /* Place newly allocated data buffer */
2830 sk_mem_charge(msg->sk, len);
2831 msg->sg.size += len;
2832 __clear_bit(new, &msg->sg.copy);
2833 sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2834 if (rsge.length) {
2835 get_page(sg_page(&rsge));
2836 sk_msg_iter_var_next(new);
2837 msg->sg.data[new] = rsge;
2838 }
2839
2840 sk_msg_compute_data_pointers(msg);
2841 return 0;
2842 }
2843
2844 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2845 .func = bpf_msg_push_data,
2846 .gpl_only = false,
2847 .ret_type = RET_INTEGER,
2848 .arg1_type = ARG_PTR_TO_CTX,
2849 .arg2_type = ARG_ANYTHING,
2850 .arg3_type = ARG_ANYTHING,
2851 .arg4_type = ARG_ANYTHING,
2852 };
2853
sk_msg_shift_left(struct sk_msg * msg,int i)2854 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2855 {
2856 int prev;
2857
2858 do {
2859 prev = i;
2860 sk_msg_iter_var_next(i);
2861 msg->sg.data[prev] = msg->sg.data[i];
2862 } while (i != msg->sg.end);
2863
2864 sk_msg_iter_prev(msg, end);
2865 }
2866
sk_msg_shift_right(struct sk_msg * msg,int i)2867 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2868 {
2869 struct scatterlist tmp, sge;
2870
2871 sk_msg_iter_next(msg, end);
2872 sge = sk_msg_elem_cpy(msg, i);
2873 sk_msg_iter_var_next(i);
2874 tmp = sk_msg_elem_cpy(msg, i);
2875
2876 while (i != msg->sg.end) {
2877 msg->sg.data[i] = sge;
2878 sk_msg_iter_var_next(i);
2879 sge = tmp;
2880 tmp = sk_msg_elem_cpy(msg, i);
2881 }
2882 }
2883
BPF_CALL_4(bpf_msg_pop_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2884 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2885 u32, len, u64, flags)
2886 {
2887 u32 i = 0, l = 0, space, offset = 0;
2888 u64 last = start + len;
2889 int pop;
2890
2891 if (unlikely(flags))
2892 return -EINVAL;
2893
2894 /* First find the starting scatterlist element */
2895 i = msg->sg.start;
2896 do {
2897 offset += l;
2898 l = sk_msg_elem(msg, i)->length;
2899
2900 if (start < offset + l)
2901 break;
2902 sk_msg_iter_var_next(i);
2903 } while (i != msg->sg.end);
2904
2905 /* Bounds checks: start and pop must be inside message */
2906 if (start >= offset + l || last >= msg->sg.size)
2907 return -EINVAL;
2908
2909 space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2910
2911 pop = len;
2912 /* --------------| offset
2913 * -| start |-------- len -------|
2914 *
2915 * |----- a ----|-------- pop -------|----- b ----|
2916 * |______________________________________________| length
2917 *
2918 *
2919 * a: region at front of scatter element to save
2920 * b: region at back of scatter element to save when length > A + pop
2921 * pop: region to pop from element, same as input 'pop' here will be
2922 * decremented below per iteration.
2923 *
2924 * Two top-level cases to handle when start != offset, first B is non
2925 * zero and second B is zero corresponding to when a pop includes more
2926 * than one element.
2927 *
2928 * Then if B is non-zero AND there is no space allocate space and
2929 * compact A, B regions into page. If there is space shift ring to
2930 * the rigth free'ing the next element in ring to place B, leaving
2931 * A untouched except to reduce length.
2932 */
2933 if (start != offset) {
2934 struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2935 int a = start;
2936 int b = sge->length - pop - a;
2937
2938 sk_msg_iter_var_next(i);
2939
2940 if (pop < sge->length - a) {
2941 if (space) {
2942 sge->length = a;
2943 sk_msg_shift_right(msg, i);
2944 nsge = sk_msg_elem(msg, i);
2945 get_page(sg_page(sge));
2946 sg_set_page(nsge,
2947 sg_page(sge),
2948 b, sge->offset + pop + a);
2949 } else {
2950 struct page *page, *orig;
2951 u8 *to, *from;
2952
2953 page = alloc_pages(__GFP_NOWARN |
2954 __GFP_COMP | GFP_ATOMIC,
2955 get_order(a + b));
2956 if (unlikely(!page))
2957 return -ENOMEM;
2958
2959 sge->length = a;
2960 orig = sg_page(sge);
2961 from = sg_virt(sge);
2962 to = page_address(page);
2963 memcpy(to, from, a);
2964 memcpy(to + a, from + a + pop, b);
2965 sg_set_page(sge, page, a + b, 0);
2966 put_page(orig);
2967 }
2968 pop = 0;
2969 } else if (pop >= sge->length - a) {
2970 pop -= (sge->length - a);
2971 sge->length = a;
2972 }
2973 }
2974
2975 /* From above the current layout _must_ be as follows,
2976 *
2977 * -| offset
2978 * -| start
2979 *
2980 * |---- pop ---|---------------- b ------------|
2981 * |____________________________________________| length
2982 *
2983 * Offset and start of the current msg elem are equal because in the
2984 * previous case we handled offset != start and either consumed the
2985 * entire element and advanced to the next element OR pop == 0.
2986 *
2987 * Two cases to handle here are first pop is less than the length
2988 * leaving some remainder b above. Simply adjust the element's layout
2989 * in this case. Or pop >= length of the element so that b = 0. In this
2990 * case advance to next element decrementing pop.
2991 */
2992 while (pop) {
2993 struct scatterlist *sge = sk_msg_elem(msg, i);
2994
2995 if (pop < sge->length) {
2996 sge->length -= pop;
2997 sge->offset += pop;
2998 pop = 0;
2999 } else {
3000 pop -= sge->length;
3001 sk_msg_shift_left(msg, i);
3002 }
3003 sk_msg_iter_var_next(i);
3004 }
3005
3006 sk_mem_uncharge(msg->sk, len - pop);
3007 msg->sg.size -= (len - pop);
3008 sk_msg_compute_data_pointers(msg);
3009 return 0;
3010 }
3011
3012 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3013 .func = bpf_msg_pop_data,
3014 .gpl_only = false,
3015 .ret_type = RET_INTEGER,
3016 .arg1_type = ARG_PTR_TO_CTX,
3017 .arg2_type = ARG_ANYTHING,
3018 .arg3_type = ARG_ANYTHING,
3019 .arg4_type = ARG_ANYTHING,
3020 };
3021
3022 #ifdef CONFIG_CGROUP_NET_CLASSID
BPF_CALL_0(bpf_get_cgroup_classid_curr)3023 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3024 {
3025 return __task_get_classid(current);
3026 }
3027
3028 static const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3029 .func = bpf_get_cgroup_classid_curr,
3030 .gpl_only = false,
3031 .ret_type = RET_INTEGER,
3032 };
3033
BPF_CALL_1(bpf_skb_cgroup_classid,const struct sk_buff *,skb)3034 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3035 {
3036 struct sock *sk = skb_to_full_sk(skb);
3037
3038 if (!sk || !sk_fullsock(sk))
3039 return 0;
3040
3041 return sock_cgroup_classid(&sk->sk_cgrp_data);
3042 }
3043
3044 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3045 .func = bpf_skb_cgroup_classid,
3046 .gpl_only = false,
3047 .ret_type = RET_INTEGER,
3048 .arg1_type = ARG_PTR_TO_CTX,
3049 };
3050 #endif
3051
BPF_CALL_1(bpf_get_cgroup_classid,const struct sk_buff *,skb)3052 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3053 {
3054 return task_get_classid(skb);
3055 }
3056
3057 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3058 .func = bpf_get_cgroup_classid,
3059 .gpl_only = false,
3060 .ret_type = RET_INTEGER,
3061 .arg1_type = ARG_PTR_TO_CTX,
3062 };
3063
BPF_CALL_1(bpf_get_route_realm,const struct sk_buff *,skb)3064 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3065 {
3066 return dst_tclassid(skb);
3067 }
3068
3069 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3070 .func = bpf_get_route_realm,
3071 .gpl_only = false,
3072 .ret_type = RET_INTEGER,
3073 .arg1_type = ARG_PTR_TO_CTX,
3074 };
3075
BPF_CALL_1(bpf_get_hash_recalc,struct sk_buff *,skb)3076 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3077 {
3078 /* If skb_clear_hash() was called due to mangling, we can
3079 * trigger SW recalculation here. Later access to hash
3080 * can then use the inline skb->hash via context directly
3081 * instead of calling this helper again.
3082 */
3083 return skb_get_hash(skb);
3084 }
3085
3086 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3087 .func = bpf_get_hash_recalc,
3088 .gpl_only = false,
3089 .ret_type = RET_INTEGER,
3090 .arg1_type = ARG_PTR_TO_CTX,
3091 };
3092
BPF_CALL_1(bpf_set_hash_invalid,struct sk_buff *,skb)3093 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3094 {
3095 /* After all direct packet write, this can be used once for
3096 * triggering a lazy recalc on next skb_get_hash() invocation.
3097 */
3098 skb_clear_hash(skb);
3099 return 0;
3100 }
3101
3102 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3103 .func = bpf_set_hash_invalid,
3104 .gpl_only = false,
3105 .ret_type = RET_INTEGER,
3106 .arg1_type = ARG_PTR_TO_CTX,
3107 };
3108
BPF_CALL_2(bpf_set_hash,struct sk_buff *,skb,u32,hash)3109 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3110 {
3111 /* Set user specified hash as L4(+), so that it gets returned
3112 * on skb_get_hash() call unless BPF prog later on triggers a
3113 * skb_clear_hash().
3114 */
3115 __skb_set_sw_hash(skb, hash, true);
3116 return 0;
3117 }
3118
3119 static const struct bpf_func_proto bpf_set_hash_proto = {
3120 .func = bpf_set_hash,
3121 .gpl_only = false,
3122 .ret_type = RET_INTEGER,
3123 .arg1_type = ARG_PTR_TO_CTX,
3124 .arg2_type = ARG_ANYTHING,
3125 };
3126
BPF_CALL_3(bpf_skb_vlan_push,struct sk_buff *,skb,__be16,vlan_proto,u16,vlan_tci)3127 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3128 u16, vlan_tci)
3129 {
3130 int ret;
3131
3132 if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3133 vlan_proto != htons(ETH_P_8021AD)))
3134 vlan_proto = htons(ETH_P_8021Q);
3135
3136 bpf_push_mac_rcsum(skb);
3137 ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3138 bpf_pull_mac_rcsum(skb);
3139
3140 bpf_compute_data_pointers(skb);
3141 return ret;
3142 }
3143
3144 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3145 .func = bpf_skb_vlan_push,
3146 .gpl_only = false,
3147 .ret_type = RET_INTEGER,
3148 .arg1_type = ARG_PTR_TO_CTX,
3149 .arg2_type = ARG_ANYTHING,
3150 .arg3_type = ARG_ANYTHING,
3151 };
3152
BPF_CALL_1(bpf_skb_vlan_pop,struct sk_buff *,skb)3153 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3154 {
3155 int ret;
3156
3157 bpf_push_mac_rcsum(skb);
3158 ret = skb_vlan_pop(skb);
3159 bpf_pull_mac_rcsum(skb);
3160
3161 bpf_compute_data_pointers(skb);
3162 return ret;
3163 }
3164
3165 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3166 .func = bpf_skb_vlan_pop,
3167 .gpl_only = false,
3168 .ret_type = RET_INTEGER,
3169 .arg1_type = ARG_PTR_TO_CTX,
3170 };
3171
bpf_skb_generic_push(struct sk_buff * skb,u32 off,u32 len)3172 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3173 {
3174 /* Caller already did skb_cow() with len as headroom,
3175 * so no need to do it here.
3176 */
3177 skb_push(skb, len);
3178 memmove(skb->data, skb->data + len, off);
3179 memset(skb->data + off, 0, len);
3180
3181 /* No skb_postpush_rcsum(skb, skb->data + off, len)
3182 * needed here as it does not change the skb->csum
3183 * result for checksum complete when summing over
3184 * zeroed blocks.
3185 */
3186 return 0;
3187 }
3188
bpf_skb_generic_pop(struct sk_buff * skb,u32 off,u32 len)3189 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3190 {
3191 /* skb_ensure_writable() is not needed here, as we're
3192 * already working on an uncloned skb.
3193 */
3194 if (unlikely(!pskb_may_pull(skb, off + len)))
3195 return -ENOMEM;
3196
3197 skb_postpull_rcsum(skb, skb->data + off, len);
3198 memmove(skb->data + len, skb->data, off);
3199 __skb_pull(skb, len);
3200
3201 return 0;
3202 }
3203
bpf_skb_net_hdr_push(struct sk_buff * skb,u32 off,u32 len)3204 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3205 {
3206 bool trans_same = skb->transport_header == skb->network_header;
3207 int ret;
3208
3209 /* There's no need for __skb_push()/__skb_pull() pair to
3210 * get to the start of the mac header as we're guaranteed
3211 * to always start from here under eBPF.
3212 */
3213 ret = bpf_skb_generic_push(skb, off, len);
3214 if (likely(!ret)) {
3215 skb->mac_header -= len;
3216 skb->network_header -= len;
3217 if (trans_same)
3218 skb->transport_header = skb->network_header;
3219 }
3220
3221 return ret;
3222 }
3223
bpf_skb_net_hdr_pop(struct sk_buff * skb,u32 off,u32 len)3224 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3225 {
3226 bool trans_same = skb->transport_header == skb->network_header;
3227 int ret;
3228
3229 /* Same here, __skb_push()/__skb_pull() pair not needed. */
3230 ret = bpf_skb_generic_pop(skb, off, len);
3231 if (likely(!ret)) {
3232 skb->mac_header += len;
3233 skb->network_header += len;
3234 if (trans_same)
3235 skb->transport_header = skb->network_header;
3236 }
3237
3238 return ret;
3239 }
3240
bpf_skb_proto_4_to_6(struct sk_buff * skb)3241 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3242 {
3243 const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3244 u32 off = skb_mac_header_len(skb);
3245 int ret;
3246
3247 if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
3248 return -ENOTSUPP;
3249
3250 ret = skb_cow(skb, len_diff);
3251 if (unlikely(ret < 0))
3252 return ret;
3253
3254 ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3255 if (unlikely(ret < 0))
3256 return ret;
3257
3258 if (skb_is_gso(skb)) {
3259 struct skb_shared_info *shinfo = skb_shinfo(skb);
3260
3261 /* SKB_GSO_TCPV4 needs to be changed into
3262 * SKB_GSO_TCPV6.
3263 */
3264 if (shinfo->gso_type & SKB_GSO_TCPV4) {
3265 shinfo->gso_type &= ~SKB_GSO_TCPV4;
3266 shinfo->gso_type |= SKB_GSO_TCPV6;
3267 }
3268
3269 /* Due to IPv6 header, MSS needs to be downgraded. */
3270 skb_decrease_gso_size(shinfo, len_diff);
3271 /* Header must be checked, and gso_segs recomputed. */
3272 shinfo->gso_type |= SKB_GSO_DODGY;
3273 shinfo->gso_segs = 0;
3274 }
3275
3276 skb->protocol = htons(ETH_P_IPV6);
3277 skb_clear_hash(skb);
3278
3279 return 0;
3280 }
3281
bpf_skb_proto_6_to_4(struct sk_buff * skb)3282 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3283 {
3284 const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3285 u32 off = skb_mac_header_len(skb);
3286 int ret;
3287
3288 if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
3289 return -ENOTSUPP;
3290
3291 ret = skb_unclone(skb, GFP_ATOMIC);
3292 if (unlikely(ret < 0))
3293 return ret;
3294
3295 ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3296 if (unlikely(ret < 0))
3297 return ret;
3298
3299 if (skb_is_gso(skb)) {
3300 struct skb_shared_info *shinfo = skb_shinfo(skb);
3301
3302 /* SKB_GSO_TCPV6 needs to be changed into
3303 * SKB_GSO_TCPV4.
3304 */
3305 if (shinfo->gso_type & SKB_GSO_TCPV6) {
3306 shinfo->gso_type &= ~SKB_GSO_TCPV6;
3307 shinfo->gso_type |= SKB_GSO_TCPV4;
3308 }
3309
3310 /* Due to IPv4 header, MSS can be upgraded. */
3311 skb_increase_gso_size(shinfo, len_diff);
3312 /* Header must be checked, and gso_segs recomputed. */
3313 shinfo->gso_type |= SKB_GSO_DODGY;
3314 shinfo->gso_segs = 0;
3315 }
3316
3317 skb->protocol = htons(ETH_P_IP);
3318 skb_clear_hash(skb);
3319
3320 return 0;
3321 }
3322
bpf_skb_proto_xlat(struct sk_buff * skb,__be16 to_proto)3323 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3324 {
3325 __be16 from_proto = skb->protocol;
3326
3327 if (from_proto == htons(ETH_P_IP) &&
3328 to_proto == htons(ETH_P_IPV6))
3329 return bpf_skb_proto_4_to_6(skb);
3330
3331 if (from_proto == htons(ETH_P_IPV6) &&
3332 to_proto == htons(ETH_P_IP))
3333 return bpf_skb_proto_6_to_4(skb);
3334
3335 return -ENOTSUPP;
3336 }
3337
BPF_CALL_3(bpf_skb_change_proto,struct sk_buff *,skb,__be16,proto,u64,flags)3338 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3339 u64, flags)
3340 {
3341 int ret;
3342
3343 if (unlikely(flags))
3344 return -EINVAL;
3345
3346 /* General idea is that this helper does the basic groundwork
3347 * needed for changing the protocol, and eBPF program fills the
3348 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3349 * and other helpers, rather than passing a raw buffer here.
3350 *
3351 * The rationale is to keep this minimal and without a need to
3352 * deal with raw packet data. F.e. even if we would pass buffers
3353 * here, the program still needs to call the bpf_lX_csum_replace()
3354 * helpers anyway. Plus, this way we keep also separation of
3355 * concerns, since f.e. bpf_skb_store_bytes() should only take
3356 * care of stores.
3357 *
3358 * Currently, additional options and extension header space are
3359 * not supported, but flags register is reserved so we can adapt
3360 * that. For offloads, we mark packet as dodgy, so that headers
3361 * need to be verified first.
3362 */
3363 ret = bpf_skb_proto_xlat(skb, proto);
3364 bpf_compute_data_pointers(skb);
3365 return ret;
3366 }
3367
3368 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3369 .func = bpf_skb_change_proto,
3370 .gpl_only = false,
3371 .ret_type = RET_INTEGER,
3372 .arg1_type = ARG_PTR_TO_CTX,
3373 .arg2_type = ARG_ANYTHING,
3374 .arg3_type = ARG_ANYTHING,
3375 };
3376
BPF_CALL_2(bpf_skb_change_type,struct sk_buff *,skb,u32,pkt_type)3377 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3378 {
3379 /* We only allow a restricted subset to be changed for now. */
3380 if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3381 !skb_pkt_type_ok(pkt_type)))
3382 return -EINVAL;
3383
3384 skb->pkt_type = pkt_type;
3385 return 0;
3386 }
3387
3388 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3389 .func = bpf_skb_change_type,
3390 .gpl_only = false,
3391 .ret_type = RET_INTEGER,
3392 .arg1_type = ARG_PTR_TO_CTX,
3393 .arg2_type = ARG_ANYTHING,
3394 };
3395
bpf_skb_net_base_len(const struct sk_buff * skb)3396 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3397 {
3398 switch (skb->protocol) {
3399 case htons(ETH_P_IP):
3400 return sizeof(struct iphdr);
3401 case htons(ETH_P_IPV6):
3402 return sizeof(struct ipv6hdr);
3403 default:
3404 return ~0U;
3405 }
3406 }
3407
3408 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3409 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3410
3411 #define BPF_F_ADJ_ROOM_MASK (BPF_F_ADJ_ROOM_FIXED_GSO | \
3412 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3413 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3414 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3415 BPF_F_ADJ_ROOM_ENCAP_L2( \
3416 BPF_ADJ_ROOM_ENCAP_L2_MASK))
3417
bpf_skb_net_grow(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3418 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3419 u64 flags)
3420 {
3421 u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3422 bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3423 u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3424 unsigned int gso_type = SKB_GSO_DODGY;
3425 int ret;
3426
3427 if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3428 /* udp gso_size delineates datagrams, only allow if fixed */
3429 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3430 !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3431 return -ENOTSUPP;
3432 }
3433
3434 ret = skb_cow_head(skb, len_diff);
3435 if (unlikely(ret < 0))
3436 return ret;
3437
3438 if (encap) {
3439 if (skb->protocol != htons(ETH_P_IP) &&
3440 skb->protocol != htons(ETH_P_IPV6))
3441 return -ENOTSUPP;
3442
3443 if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3444 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3445 return -EINVAL;
3446
3447 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3448 flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3449 return -EINVAL;
3450
3451 if (skb->encapsulation)
3452 return -EALREADY;
3453
3454 mac_len = skb->network_header - skb->mac_header;
3455 inner_net = skb->network_header;
3456 if (inner_mac_len > len_diff)
3457 return -EINVAL;
3458 inner_trans = skb->transport_header;
3459 }
3460
3461 ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3462 if (unlikely(ret < 0))
3463 return ret;
3464
3465 if (encap) {
3466 skb->inner_mac_header = inner_net - inner_mac_len;
3467 skb->inner_network_header = inner_net;
3468 skb->inner_transport_header = inner_trans;
3469 skb_set_inner_protocol(skb, skb->protocol);
3470
3471 skb->encapsulation = 1;
3472 skb_set_network_header(skb, mac_len);
3473
3474 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3475 gso_type |= SKB_GSO_UDP_TUNNEL;
3476 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3477 gso_type |= SKB_GSO_GRE;
3478 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3479 gso_type |= SKB_GSO_IPXIP6;
3480 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3481 gso_type |= SKB_GSO_IPXIP4;
3482
3483 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3484 flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3485 int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3486 sizeof(struct ipv6hdr) :
3487 sizeof(struct iphdr);
3488
3489 skb_set_transport_header(skb, mac_len + nh_len);
3490 }
3491
3492 /* Match skb->protocol to new outer l3 protocol */
3493 if (skb->protocol == htons(ETH_P_IP) &&
3494 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3495 skb->protocol = htons(ETH_P_IPV6);
3496 else if (skb->protocol == htons(ETH_P_IPV6) &&
3497 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3498 skb->protocol = htons(ETH_P_IP);
3499 }
3500
3501 if (skb_is_gso(skb)) {
3502 struct skb_shared_info *shinfo = skb_shinfo(skb);
3503
3504 /* Due to header grow, MSS needs to be downgraded. */
3505 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3506 skb_decrease_gso_size(shinfo, len_diff);
3507
3508 /* Header must be checked, and gso_segs recomputed. */
3509 shinfo->gso_type |= gso_type;
3510 shinfo->gso_segs = 0;
3511 }
3512
3513 return 0;
3514 }
3515
bpf_skb_net_shrink(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3516 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3517 u64 flags)
3518 {
3519 int ret;
3520
3521 if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3522 BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3523 return -EINVAL;
3524
3525 if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3526 /* udp gso_size delineates datagrams, only allow if fixed */
3527 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3528 !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3529 return -ENOTSUPP;
3530 }
3531
3532 ret = skb_unclone(skb, GFP_ATOMIC);
3533 if (unlikely(ret < 0))
3534 return ret;
3535
3536 ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3537 if (unlikely(ret < 0))
3538 return ret;
3539
3540 if (skb_is_gso(skb)) {
3541 struct skb_shared_info *shinfo = skb_shinfo(skb);
3542
3543 /* Due to header shrink, MSS can be upgraded. */
3544 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3545 skb_increase_gso_size(shinfo, len_diff);
3546
3547 /* Header must be checked, and gso_segs recomputed. */
3548 shinfo->gso_type |= SKB_GSO_DODGY;
3549 shinfo->gso_segs = 0;
3550 }
3551
3552 return 0;
3553 }
3554
__bpf_skb_max_len(const struct sk_buff * skb)3555 static u32 __bpf_skb_max_len(const struct sk_buff *skb)
3556 {
3557 return skb->dev ? skb->dev->mtu + skb->dev->hard_header_len :
3558 SKB_MAX_ALLOC;
3559 }
3560
BPF_CALL_4(sk_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3561 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3562 u32, mode, u64, flags)
3563 {
3564 u32 len_diff_abs = abs(len_diff);
3565 bool shrink = len_diff < 0;
3566 int ret = 0;
3567
3568 if (unlikely(flags || mode))
3569 return -EINVAL;
3570 if (unlikely(len_diff_abs > 0xfffU))
3571 return -EFAULT;
3572
3573 if (!shrink) {
3574 ret = skb_cow(skb, len_diff);
3575 if (unlikely(ret < 0))
3576 return ret;
3577 __skb_push(skb, len_diff_abs);
3578 memset(skb->data, 0, len_diff_abs);
3579 } else {
3580 if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3581 return -ENOMEM;
3582 __skb_pull(skb, len_diff_abs);
3583 }
3584 bpf_compute_data_end_sk_skb(skb);
3585 if (tls_sw_has_ctx_rx(skb->sk)) {
3586 struct strp_msg *rxm = strp_msg(skb);
3587
3588 rxm->full_len += len_diff;
3589 }
3590 return ret;
3591 }
3592
3593 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3594 .func = sk_skb_adjust_room,
3595 .gpl_only = false,
3596 .ret_type = RET_INTEGER,
3597 .arg1_type = ARG_PTR_TO_CTX,
3598 .arg2_type = ARG_ANYTHING,
3599 .arg3_type = ARG_ANYTHING,
3600 .arg4_type = ARG_ANYTHING,
3601 };
3602
BPF_CALL_4(bpf_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3603 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3604 u32, mode, u64, flags)
3605 {
3606 u32 len_cur, len_diff_abs = abs(len_diff);
3607 u32 len_min = bpf_skb_net_base_len(skb);
3608 u32 len_max = __bpf_skb_max_len(skb);
3609 __be16 proto = skb->protocol;
3610 bool shrink = len_diff < 0;
3611 u32 off;
3612 int ret;
3613
3614 if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3615 BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3616 return -EINVAL;
3617 if (unlikely(len_diff_abs > 0xfffU))
3618 return -EFAULT;
3619 if (unlikely(proto != htons(ETH_P_IP) &&
3620 proto != htons(ETH_P_IPV6)))
3621 return -ENOTSUPP;
3622
3623 off = skb_mac_header_len(skb);
3624 switch (mode) {
3625 case BPF_ADJ_ROOM_NET:
3626 off += bpf_skb_net_base_len(skb);
3627 break;
3628 case BPF_ADJ_ROOM_MAC:
3629 break;
3630 default:
3631 return -ENOTSUPP;
3632 }
3633
3634 len_cur = skb->len - skb_network_offset(skb);
3635 if ((shrink && (len_diff_abs >= len_cur ||
3636 len_cur - len_diff_abs < len_min)) ||
3637 (!shrink && (skb->len + len_diff_abs > len_max &&
3638 !skb_is_gso(skb))))
3639 return -ENOTSUPP;
3640
3641 ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3642 bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3643 if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3644 __skb_reset_checksum_unnecessary(skb);
3645
3646 bpf_compute_data_pointers(skb);
3647 return ret;
3648 }
3649
3650 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3651 .func = bpf_skb_adjust_room,
3652 .gpl_only = false,
3653 .ret_type = RET_INTEGER,
3654 .arg1_type = ARG_PTR_TO_CTX,
3655 .arg2_type = ARG_ANYTHING,
3656 .arg3_type = ARG_ANYTHING,
3657 .arg4_type = ARG_ANYTHING,
3658 };
3659
__bpf_skb_min_len(const struct sk_buff * skb)3660 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3661 {
3662 u32 min_len = skb_network_offset(skb);
3663
3664 if (skb_transport_header_was_set(skb))
3665 min_len = skb_transport_offset(skb);
3666 if (skb->ip_summed == CHECKSUM_PARTIAL)
3667 min_len = skb_checksum_start_offset(skb) +
3668 skb->csum_offset + sizeof(__sum16);
3669 return min_len;
3670 }
3671
bpf_skb_grow_rcsum(struct sk_buff * skb,unsigned int new_len)3672 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3673 {
3674 unsigned int old_len = skb->len;
3675 int ret;
3676
3677 ret = __skb_grow_rcsum(skb, new_len);
3678 if (!ret)
3679 memset(skb->data + old_len, 0, new_len - old_len);
3680 return ret;
3681 }
3682
bpf_skb_trim_rcsum(struct sk_buff * skb,unsigned int new_len)3683 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3684 {
3685 return __skb_trim_rcsum(skb, new_len);
3686 }
3687
__bpf_skb_change_tail(struct sk_buff * skb,u32 new_len,u64 flags)3688 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3689 u64 flags)
3690 {
3691 u32 max_len = __bpf_skb_max_len(skb);
3692 u32 min_len = __bpf_skb_min_len(skb);
3693 int ret;
3694
3695 if (unlikely(flags || new_len > max_len || new_len < min_len))
3696 return -EINVAL;
3697 if (skb->encapsulation)
3698 return -ENOTSUPP;
3699
3700 /* The basic idea of this helper is that it's performing the
3701 * needed work to either grow or trim an skb, and eBPF program
3702 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3703 * bpf_lX_csum_replace() and others rather than passing a raw
3704 * buffer here. This one is a slow path helper and intended
3705 * for replies with control messages.
3706 *
3707 * Like in bpf_skb_change_proto(), we want to keep this rather
3708 * minimal and without protocol specifics so that we are able
3709 * to separate concerns as in bpf_skb_store_bytes() should only
3710 * be the one responsible for writing buffers.
3711 *
3712 * It's really expected to be a slow path operation here for
3713 * control message replies, so we're implicitly linearizing,
3714 * uncloning and drop offloads from the skb by this.
3715 */
3716 ret = __bpf_try_make_writable(skb, skb->len);
3717 if (!ret) {
3718 if (new_len > skb->len)
3719 ret = bpf_skb_grow_rcsum(skb, new_len);
3720 else if (new_len < skb->len)
3721 ret = bpf_skb_trim_rcsum(skb, new_len);
3722 if (!ret && skb_is_gso(skb))
3723 skb_gso_reset(skb);
3724 }
3725 return ret;
3726 }
3727
BPF_CALL_3(bpf_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3728 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3729 u64, flags)
3730 {
3731 int ret = __bpf_skb_change_tail(skb, new_len, flags);
3732
3733 bpf_compute_data_pointers(skb);
3734 return ret;
3735 }
3736
3737 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3738 .func = bpf_skb_change_tail,
3739 .gpl_only = false,
3740 .ret_type = RET_INTEGER,
3741 .arg1_type = ARG_PTR_TO_CTX,
3742 .arg2_type = ARG_ANYTHING,
3743 .arg3_type = ARG_ANYTHING,
3744 };
3745
BPF_CALL_3(sk_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3746 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3747 u64, flags)
3748 {
3749 int ret = __bpf_skb_change_tail(skb, new_len, flags);
3750
3751 bpf_compute_data_end_sk_skb(skb);
3752 return ret;
3753 }
3754
3755 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3756 .func = sk_skb_change_tail,
3757 .gpl_only = false,
3758 .ret_type = RET_INTEGER,
3759 .arg1_type = ARG_PTR_TO_CTX,
3760 .arg2_type = ARG_ANYTHING,
3761 .arg3_type = ARG_ANYTHING,
3762 };
3763
__bpf_skb_change_head(struct sk_buff * skb,u32 head_room,u64 flags)3764 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3765 u64 flags)
3766 {
3767 u32 max_len = __bpf_skb_max_len(skb);
3768 u32 new_len = skb->len + head_room;
3769 int ret;
3770
3771 if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3772 new_len < skb->len))
3773 return -EINVAL;
3774
3775 ret = skb_cow(skb, head_room);
3776 if (likely(!ret)) {
3777 /* Idea for this helper is that we currently only
3778 * allow to expand on mac header. This means that
3779 * skb->protocol network header, etc, stay as is.
3780 * Compared to bpf_skb_change_tail(), we're more
3781 * flexible due to not needing to linearize or
3782 * reset GSO. Intention for this helper is to be
3783 * used by an L3 skb that needs to push mac header
3784 * for redirection into L2 device.
3785 */
3786 __skb_push(skb, head_room);
3787 memset(skb->data, 0, head_room);
3788 skb_reset_mac_header(skb);
3789 }
3790
3791 return ret;
3792 }
3793
BPF_CALL_3(bpf_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3794 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3795 u64, flags)
3796 {
3797 int ret = __bpf_skb_change_head(skb, head_room, flags);
3798
3799 bpf_compute_data_pointers(skb);
3800 return ret;
3801 }
3802
3803 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3804 .func = bpf_skb_change_head,
3805 .gpl_only = false,
3806 .ret_type = RET_INTEGER,
3807 .arg1_type = ARG_PTR_TO_CTX,
3808 .arg2_type = ARG_ANYTHING,
3809 .arg3_type = ARG_ANYTHING,
3810 };
3811
BPF_CALL_3(sk_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3812 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3813 u64, flags)
3814 {
3815 int ret = __bpf_skb_change_head(skb, head_room, flags);
3816
3817 bpf_compute_data_end_sk_skb(skb);
3818 return ret;
3819 }
3820
3821 static const struct bpf_func_proto sk_skb_change_head_proto = {
3822 .func = sk_skb_change_head,
3823 .gpl_only = false,
3824 .ret_type = RET_INTEGER,
3825 .arg1_type = ARG_PTR_TO_CTX,
3826 .arg2_type = ARG_ANYTHING,
3827 .arg3_type = ARG_ANYTHING,
3828 };
xdp_get_metalen(const struct xdp_buff * xdp)3829 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3830 {
3831 return xdp_data_meta_unsupported(xdp) ? 0 :
3832 xdp->data - xdp->data_meta;
3833 }
3834
BPF_CALL_2(bpf_xdp_adjust_head,struct xdp_buff *,xdp,int,offset)3835 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3836 {
3837 void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3838 unsigned long metalen = xdp_get_metalen(xdp);
3839 void *data_start = xdp_frame_end + metalen;
3840 void *data = xdp->data + offset;
3841
3842 if (unlikely(data < data_start ||
3843 data > xdp->data_end - ETH_HLEN))
3844 return -EINVAL;
3845
3846 if (metalen)
3847 memmove(xdp->data_meta + offset,
3848 xdp->data_meta, metalen);
3849 xdp->data_meta += offset;
3850 xdp->data = data;
3851
3852 return 0;
3853 }
3854
3855 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3856 .func = bpf_xdp_adjust_head,
3857 .gpl_only = false,
3858 .ret_type = RET_INTEGER,
3859 .arg1_type = ARG_PTR_TO_CTX,
3860 .arg2_type = ARG_ANYTHING,
3861 };
3862
BPF_CALL_2(bpf_xdp_adjust_tail,struct xdp_buff *,xdp,int,offset)3863 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3864 {
3865 void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
3866 void *data_end = xdp->data_end + offset;
3867
3868 /* Notice that xdp_data_hard_end have reserved some tailroom */
3869 if (unlikely(data_end > data_hard_end))
3870 return -EINVAL;
3871
3872 /* ALL drivers MUST init xdp->frame_sz, chicken check below */
3873 if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
3874 WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
3875 return -EINVAL;
3876 }
3877
3878 if (unlikely(data_end < xdp->data + ETH_HLEN))
3879 return -EINVAL;
3880
3881 /* Clear memory area on grow, can contain uninit kernel memory */
3882 if (offset > 0)
3883 memset(xdp->data_end, 0, offset);
3884
3885 xdp->data_end = data_end;
3886
3887 return 0;
3888 }
3889
3890 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3891 .func = bpf_xdp_adjust_tail,
3892 .gpl_only = false,
3893 .ret_type = RET_INTEGER,
3894 .arg1_type = ARG_PTR_TO_CTX,
3895 .arg2_type = ARG_ANYTHING,
3896 };
3897
BPF_CALL_2(bpf_xdp_adjust_meta,struct xdp_buff *,xdp,int,offset)3898 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3899 {
3900 void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3901 void *meta = xdp->data_meta + offset;
3902 unsigned long metalen = xdp->data - meta;
3903
3904 if (xdp_data_meta_unsupported(xdp))
3905 return -ENOTSUPP;
3906 if (unlikely(meta < xdp_frame_end ||
3907 meta > xdp->data))
3908 return -EINVAL;
3909 if (unlikely((metalen & (sizeof(__u32) - 1)) ||
3910 (metalen > 32)))
3911 return -EACCES;
3912
3913 xdp->data_meta = meta;
3914
3915 return 0;
3916 }
3917
3918 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3919 .func = bpf_xdp_adjust_meta,
3920 .gpl_only = false,
3921 .ret_type = RET_INTEGER,
3922 .arg1_type = ARG_PTR_TO_CTX,
3923 .arg2_type = ARG_ANYTHING,
3924 };
3925
__bpf_tx_xdp_map(struct net_device * dev_rx,void * fwd,struct bpf_map * map,struct xdp_buff * xdp)3926 static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
3927 struct bpf_map *map, struct xdp_buff *xdp)
3928 {
3929 switch (map->map_type) {
3930 case BPF_MAP_TYPE_DEVMAP:
3931 case BPF_MAP_TYPE_DEVMAP_HASH:
3932 return dev_map_enqueue(fwd, xdp, dev_rx);
3933 case BPF_MAP_TYPE_CPUMAP:
3934 return cpu_map_enqueue(fwd, xdp, dev_rx);
3935 case BPF_MAP_TYPE_XSKMAP:
3936 return __xsk_map_redirect(fwd, xdp);
3937 default:
3938 return -EBADRQC;
3939 }
3940 return 0;
3941 }
3942
xdp_do_flush(void)3943 void xdp_do_flush(void)
3944 {
3945 __dev_flush();
3946 __cpu_map_flush();
3947 __xsk_map_flush();
3948 }
3949 EXPORT_SYMBOL_GPL(xdp_do_flush);
3950
__xdp_map_lookup_elem(struct bpf_map * map,u32 index)3951 static inline void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
3952 {
3953 switch (map->map_type) {
3954 case BPF_MAP_TYPE_DEVMAP:
3955 return __dev_map_lookup_elem(map, index);
3956 case BPF_MAP_TYPE_DEVMAP_HASH:
3957 return __dev_map_hash_lookup_elem(map, index);
3958 case BPF_MAP_TYPE_CPUMAP:
3959 return __cpu_map_lookup_elem(map, index);
3960 case BPF_MAP_TYPE_XSKMAP:
3961 return __xsk_map_lookup_elem(map, index);
3962 default:
3963 return NULL;
3964 }
3965 }
3966
bpf_clear_redirect_map(struct bpf_map * map)3967 void bpf_clear_redirect_map(struct bpf_map *map)
3968 {
3969 struct bpf_redirect_info *ri;
3970 int cpu;
3971
3972 for_each_possible_cpu(cpu) {
3973 ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3974 /* Avoid polluting remote cacheline due to writes if
3975 * not needed. Once we pass this test, we need the
3976 * cmpxchg() to make sure it hasn't been changed in
3977 * the meantime by remote CPU.
3978 */
3979 if (unlikely(READ_ONCE(ri->map) == map))
3980 cmpxchg(&ri->map, map, NULL);
3981 }
3982 }
3983
xdp_do_redirect(struct net_device * dev,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)3984 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3985 struct bpf_prog *xdp_prog)
3986 {
3987 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3988 struct bpf_map *map = READ_ONCE(ri->map);
3989 u32 index = ri->tgt_index;
3990 void *fwd = ri->tgt_value;
3991 int err;
3992
3993 ri->tgt_index = 0;
3994 ri->tgt_value = NULL;
3995 WRITE_ONCE(ri->map, NULL);
3996
3997 if (unlikely(!map)) {
3998 fwd = dev_get_by_index_rcu(dev_net(dev), index);
3999 if (unlikely(!fwd)) {
4000 err = -EINVAL;
4001 goto err;
4002 }
4003
4004 err = dev_xdp_enqueue(fwd, xdp, dev);
4005 } else {
4006 err = __bpf_tx_xdp_map(dev, fwd, map, xdp);
4007 }
4008
4009 if (unlikely(err))
4010 goto err;
4011
4012 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
4013 return 0;
4014 err:
4015 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
4016 return err;
4017 }
4018 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4019
xdp_do_generic_redirect_map(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog,struct bpf_map * map)4020 static int xdp_do_generic_redirect_map(struct net_device *dev,
4021 struct sk_buff *skb,
4022 struct xdp_buff *xdp,
4023 struct bpf_prog *xdp_prog,
4024 struct bpf_map *map)
4025 {
4026 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4027 u32 index = ri->tgt_index;
4028 void *fwd = ri->tgt_value;
4029 int err = 0;
4030
4031 ri->tgt_index = 0;
4032 ri->tgt_value = NULL;
4033 WRITE_ONCE(ri->map, NULL);
4034
4035 if (map->map_type == BPF_MAP_TYPE_DEVMAP ||
4036 map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
4037 struct bpf_dtab_netdev *dst = fwd;
4038
4039 err = dev_map_generic_redirect(dst, skb, xdp_prog);
4040 if (unlikely(err))
4041 goto err;
4042 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
4043 struct xdp_sock *xs = fwd;
4044
4045 err = xsk_generic_rcv(xs, xdp);
4046 if (err)
4047 goto err;
4048 consume_skb(skb);
4049 } else {
4050 /* TODO: Handle BPF_MAP_TYPE_CPUMAP */
4051 err = -EBADRQC;
4052 goto err;
4053 }
4054
4055 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
4056 return 0;
4057 err:
4058 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
4059 return err;
4060 }
4061
xdp_do_generic_redirect(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4062 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4063 struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4064 {
4065 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4066 struct bpf_map *map = READ_ONCE(ri->map);
4067 u32 index = ri->tgt_index;
4068 struct net_device *fwd;
4069 int err = 0;
4070
4071 if (map)
4072 return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog,
4073 map);
4074 ri->tgt_index = 0;
4075 fwd = dev_get_by_index_rcu(dev_net(dev), index);
4076 if (unlikely(!fwd)) {
4077 err = -EINVAL;
4078 goto err;
4079 }
4080
4081 err = xdp_ok_fwd_dev(fwd, skb->len);
4082 if (unlikely(err))
4083 goto err;
4084
4085 skb->dev = fwd;
4086 _trace_xdp_redirect(dev, xdp_prog, index);
4087 generic_xdp_tx(skb, xdp_prog);
4088 return 0;
4089 err:
4090 _trace_xdp_redirect_err(dev, xdp_prog, index, err);
4091 return err;
4092 }
4093
BPF_CALL_2(bpf_xdp_redirect,u32,ifindex,u64,flags)4094 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4095 {
4096 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4097
4098 if (unlikely(flags))
4099 return XDP_ABORTED;
4100
4101 ri->flags = flags;
4102 ri->tgt_index = ifindex;
4103 ri->tgt_value = NULL;
4104 WRITE_ONCE(ri->map, NULL);
4105
4106 return XDP_REDIRECT;
4107 }
4108
4109 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4110 .func = bpf_xdp_redirect,
4111 .gpl_only = false,
4112 .ret_type = RET_INTEGER,
4113 .arg1_type = ARG_ANYTHING,
4114 .arg2_type = ARG_ANYTHING,
4115 };
4116
BPF_CALL_3(bpf_xdp_redirect_map,struct bpf_map *,map,u32,ifindex,u64,flags)4117 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
4118 u64, flags)
4119 {
4120 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4121
4122 /* Lower bits of the flags are used as return code on lookup failure */
4123 if (unlikely(flags > XDP_TX))
4124 return XDP_ABORTED;
4125
4126 ri->tgt_value = __xdp_map_lookup_elem(map, ifindex);
4127 if (unlikely(!ri->tgt_value)) {
4128 /* If the lookup fails we want to clear out the state in the
4129 * redirect_info struct completely, so that if an eBPF program
4130 * performs multiple lookups, the last one always takes
4131 * precedence.
4132 */
4133 WRITE_ONCE(ri->map, NULL);
4134 return flags;
4135 }
4136
4137 ri->flags = flags;
4138 ri->tgt_index = ifindex;
4139 WRITE_ONCE(ri->map, map);
4140
4141 return XDP_REDIRECT;
4142 }
4143
4144 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4145 .func = bpf_xdp_redirect_map,
4146 .gpl_only = false,
4147 .ret_type = RET_INTEGER,
4148 .arg1_type = ARG_CONST_MAP_PTR,
4149 .arg2_type = ARG_ANYTHING,
4150 .arg3_type = ARG_ANYTHING,
4151 };
4152
bpf_skb_copy(void * dst_buff,const void * skb,unsigned long off,unsigned long len)4153 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4154 unsigned long off, unsigned long len)
4155 {
4156 void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4157
4158 if (unlikely(!ptr))
4159 return len;
4160 if (ptr != dst_buff)
4161 memcpy(dst_buff, ptr, len);
4162
4163 return 0;
4164 }
4165
BPF_CALL_5(bpf_skb_event_output,struct sk_buff *,skb,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)4166 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4167 u64, flags, void *, meta, u64, meta_size)
4168 {
4169 u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4170
4171 if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4172 return -EINVAL;
4173 if (unlikely(!skb || skb_size > skb->len))
4174 return -EFAULT;
4175
4176 return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4177 bpf_skb_copy);
4178 }
4179
4180 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4181 .func = bpf_skb_event_output,
4182 .gpl_only = true,
4183 .ret_type = RET_INTEGER,
4184 .arg1_type = ARG_PTR_TO_CTX,
4185 .arg2_type = ARG_CONST_MAP_PTR,
4186 .arg3_type = ARG_ANYTHING,
4187 .arg4_type = ARG_PTR_TO_MEM,
4188 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
4189 };
4190
4191 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4192
4193 const struct bpf_func_proto bpf_skb_output_proto = {
4194 .func = bpf_skb_event_output,
4195 .gpl_only = true,
4196 .ret_type = RET_INTEGER,
4197 .arg1_type = ARG_PTR_TO_BTF_ID,
4198 .arg1_btf_id = &bpf_skb_output_btf_ids[0],
4199 .arg2_type = ARG_CONST_MAP_PTR,
4200 .arg3_type = ARG_ANYTHING,
4201 .arg4_type = ARG_PTR_TO_MEM,
4202 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
4203 };
4204
bpf_tunnel_key_af(u64 flags)4205 static unsigned short bpf_tunnel_key_af(u64 flags)
4206 {
4207 return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4208 }
4209
BPF_CALL_4(bpf_skb_get_tunnel_key,struct sk_buff *,skb,struct bpf_tunnel_key *,to,u32,size,u64,flags)4210 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4211 u32, size, u64, flags)
4212 {
4213 const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4214 u8 compat[sizeof(struct bpf_tunnel_key)];
4215 void *to_orig = to;
4216 int err;
4217
4218 if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
4219 err = -EINVAL;
4220 goto err_clear;
4221 }
4222 if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4223 err = -EPROTO;
4224 goto err_clear;
4225 }
4226 if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4227 err = -EINVAL;
4228 switch (size) {
4229 case offsetof(struct bpf_tunnel_key, tunnel_label):
4230 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4231 goto set_compat;
4232 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4233 /* Fixup deprecated structure layouts here, so we have
4234 * a common path later on.
4235 */
4236 if (ip_tunnel_info_af(info) != AF_INET)
4237 goto err_clear;
4238 set_compat:
4239 to = (struct bpf_tunnel_key *)compat;
4240 break;
4241 default:
4242 goto err_clear;
4243 }
4244 }
4245
4246 to->tunnel_id = be64_to_cpu(info->key.tun_id);
4247 to->tunnel_tos = info->key.tos;
4248 to->tunnel_ttl = info->key.ttl;
4249 to->tunnel_ext = 0;
4250
4251 if (flags & BPF_F_TUNINFO_IPV6) {
4252 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4253 sizeof(to->remote_ipv6));
4254 to->tunnel_label = be32_to_cpu(info->key.label);
4255 } else {
4256 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4257 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4258 to->tunnel_label = 0;
4259 }
4260
4261 if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4262 memcpy(to_orig, to, size);
4263
4264 return 0;
4265 err_clear:
4266 memset(to_orig, 0, size);
4267 return err;
4268 }
4269
4270 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4271 .func = bpf_skb_get_tunnel_key,
4272 .gpl_only = false,
4273 .ret_type = RET_INTEGER,
4274 .arg1_type = ARG_PTR_TO_CTX,
4275 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
4276 .arg3_type = ARG_CONST_SIZE,
4277 .arg4_type = ARG_ANYTHING,
4278 };
4279
BPF_CALL_3(bpf_skb_get_tunnel_opt,struct sk_buff *,skb,u8 *,to,u32,size)4280 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4281 {
4282 const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4283 int err;
4284
4285 if (unlikely(!info ||
4286 !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4287 err = -ENOENT;
4288 goto err_clear;
4289 }
4290 if (unlikely(size < info->options_len)) {
4291 err = -ENOMEM;
4292 goto err_clear;
4293 }
4294
4295 ip_tunnel_info_opts_get(to, info);
4296 if (size > info->options_len)
4297 memset(to + info->options_len, 0, size - info->options_len);
4298
4299 return info->options_len;
4300 err_clear:
4301 memset(to, 0, size);
4302 return err;
4303 }
4304
4305 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4306 .func = bpf_skb_get_tunnel_opt,
4307 .gpl_only = false,
4308 .ret_type = RET_INTEGER,
4309 .arg1_type = ARG_PTR_TO_CTX,
4310 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
4311 .arg3_type = ARG_CONST_SIZE,
4312 };
4313
4314 static struct metadata_dst __percpu *md_dst;
4315
BPF_CALL_4(bpf_skb_set_tunnel_key,struct sk_buff *,skb,const struct bpf_tunnel_key *,from,u32,size,u64,flags)4316 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4317 const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4318 {
4319 struct metadata_dst *md = this_cpu_ptr(md_dst);
4320 u8 compat[sizeof(struct bpf_tunnel_key)];
4321 struct ip_tunnel_info *info;
4322
4323 if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4324 BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
4325 return -EINVAL;
4326 if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4327 switch (size) {
4328 case offsetof(struct bpf_tunnel_key, tunnel_label):
4329 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4330 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4331 /* Fixup deprecated structure layouts here, so we have
4332 * a common path later on.
4333 */
4334 memcpy(compat, from, size);
4335 memset(compat + size, 0, sizeof(compat) - size);
4336 from = (const struct bpf_tunnel_key *) compat;
4337 break;
4338 default:
4339 return -EINVAL;
4340 }
4341 }
4342 if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4343 from->tunnel_ext))
4344 return -EINVAL;
4345
4346 skb_dst_drop(skb);
4347 dst_hold((struct dst_entry *) md);
4348 skb_dst_set(skb, (struct dst_entry *) md);
4349
4350 info = &md->u.tun_info;
4351 memset(info, 0, sizeof(*info));
4352 info->mode = IP_TUNNEL_INFO_TX;
4353
4354 info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4355 if (flags & BPF_F_DONT_FRAGMENT)
4356 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4357 if (flags & BPF_F_ZERO_CSUM_TX)
4358 info->key.tun_flags &= ~TUNNEL_CSUM;
4359 if (flags & BPF_F_SEQ_NUMBER)
4360 info->key.tun_flags |= TUNNEL_SEQ;
4361
4362 info->key.tun_id = cpu_to_be64(from->tunnel_id);
4363 info->key.tos = from->tunnel_tos;
4364 info->key.ttl = from->tunnel_ttl;
4365
4366 if (flags & BPF_F_TUNINFO_IPV6) {
4367 info->mode |= IP_TUNNEL_INFO_IPV6;
4368 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4369 sizeof(from->remote_ipv6));
4370 info->key.label = cpu_to_be32(from->tunnel_label) &
4371 IPV6_FLOWLABEL_MASK;
4372 } else {
4373 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4374 }
4375
4376 return 0;
4377 }
4378
4379 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4380 .func = bpf_skb_set_tunnel_key,
4381 .gpl_only = false,
4382 .ret_type = RET_INTEGER,
4383 .arg1_type = ARG_PTR_TO_CTX,
4384 .arg2_type = ARG_PTR_TO_MEM,
4385 .arg3_type = ARG_CONST_SIZE,
4386 .arg4_type = ARG_ANYTHING,
4387 };
4388
BPF_CALL_3(bpf_skb_set_tunnel_opt,struct sk_buff *,skb,const u8 *,from,u32,size)4389 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4390 const u8 *, from, u32, size)
4391 {
4392 struct ip_tunnel_info *info = skb_tunnel_info(skb);
4393 const struct metadata_dst *md = this_cpu_ptr(md_dst);
4394
4395 if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4396 return -EINVAL;
4397 if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4398 return -ENOMEM;
4399
4400 ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4401
4402 return 0;
4403 }
4404
4405 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4406 .func = bpf_skb_set_tunnel_opt,
4407 .gpl_only = false,
4408 .ret_type = RET_INTEGER,
4409 .arg1_type = ARG_PTR_TO_CTX,
4410 .arg2_type = ARG_PTR_TO_MEM,
4411 .arg3_type = ARG_CONST_SIZE,
4412 };
4413
4414 static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)4415 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4416 {
4417 if (!md_dst) {
4418 struct metadata_dst __percpu *tmp;
4419
4420 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4421 METADATA_IP_TUNNEL,
4422 GFP_KERNEL);
4423 if (!tmp)
4424 return NULL;
4425 if (cmpxchg(&md_dst, NULL, tmp))
4426 metadata_dst_free_percpu(tmp);
4427 }
4428
4429 switch (which) {
4430 case BPF_FUNC_skb_set_tunnel_key:
4431 return &bpf_skb_set_tunnel_key_proto;
4432 case BPF_FUNC_skb_set_tunnel_opt:
4433 return &bpf_skb_set_tunnel_opt_proto;
4434 default:
4435 return NULL;
4436 }
4437 }
4438
BPF_CALL_3(bpf_skb_under_cgroup,struct sk_buff *,skb,struct bpf_map *,map,u32,idx)4439 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4440 u32, idx)
4441 {
4442 struct bpf_array *array = container_of(map, struct bpf_array, map);
4443 struct cgroup *cgrp;
4444 struct sock *sk;
4445
4446 sk = skb_to_full_sk(skb);
4447 if (!sk || !sk_fullsock(sk))
4448 return -ENOENT;
4449 if (unlikely(idx >= array->map.max_entries))
4450 return -E2BIG;
4451
4452 cgrp = READ_ONCE(array->ptrs[idx]);
4453 if (unlikely(!cgrp))
4454 return -EAGAIN;
4455
4456 return sk_under_cgroup_hierarchy(sk, cgrp);
4457 }
4458
4459 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4460 .func = bpf_skb_under_cgroup,
4461 .gpl_only = false,
4462 .ret_type = RET_INTEGER,
4463 .arg1_type = ARG_PTR_TO_CTX,
4464 .arg2_type = ARG_CONST_MAP_PTR,
4465 .arg3_type = ARG_ANYTHING,
4466 };
4467
4468 #ifdef CONFIG_SOCK_CGROUP_DATA
__bpf_sk_cgroup_id(struct sock * sk)4469 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4470 {
4471 struct cgroup *cgrp;
4472
4473 sk = sk_to_full_sk(sk);
4474 if (!sk || !sk_fullsock(sk))
4475 return 0;
4476
4477 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4478 return cgroup_id(cgrp);
4479 }
4480
BPF_CALL_1(bpf_skb_cgroup_id,const struct sk_buff *,skb)4481 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4482 {
4483 return __bpf_sk_cgroup_id(skb->sk);
4484 }
4485
4486 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4487 .func = bpf_skb_cgroup_id,
4488 .gpl_only = false,
4489 .ret_type = RET_INTEGER,
4490 .arg1_type = ARG_PTR_TO_CTX,
4491 };
4492
__bpf_sk_ancestor_cgroup_id(struct sock * sk,int ancestor_level)4493 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4494 int ancestor_level)
4495 {
4496 struct cgroup *ancestor;
4497 struct cgroup *cgrp;
4498
4499 sk = sk_to_full_sk(sk);
4500 if (!sk || !sk_fullsock(sk))
4501 return 0;
4502
4503 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4504 ancestor = cgroup_ancestor(cgrp, ancestor_level);
4505 if (!ancestor)
4506 return 0;
4507
4508 return cgroup_id(ancestor);
4509 }
4510
BPF_CALL_2(bpf_skb_ancestor_cgroup_id,const struct sk_buff *,skb,int,ancestor_level)4511 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4512 ancestor_level)
4513 {
4514 return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4515 }
4516
4517 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4518 .func = bpf_skb_ancestor_cgroup_id,
4519 .gpl_only = false,
4520 .ret_type = RET_INTEGER,
4521 .arg1_type = ARG_PTR_TO_CTX,
4522 .arg2_type = ARG_ANYTHING,
4523 };
4524
BPF_CALL_1(bpf_sk_cgroup_id,struct sock *,sk)4525 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4526 {
4527 return __bpf_sk_cgroup_id(sk);
4528 }
4529
4530 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4531 .func = bpf_sk_cgroup_id,
4532 .gpl_only = false,
4533 .ret_type = RET_INTEGER,
4534 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4535 };
4536
BPF_CALL_2(bpf_sk_ancestor_cgroup_id,struct sock *,sk,int,ancestor_level)4537 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4538 {
4539 return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4540 }
4541
4542 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4543 .func = bpf_sk_ancestor_cgroup_id,
4544 .gpl_only = false,
4545 .ret_type = RET_INTEGER,
4546 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4547 .arg2_type = ARG_ANYTHING,
4548 };
4549 #endif
4550
bpf_xdp_copy(void * dst_buff,const void * src_buff,unsigned long off,unsigned long len)4551 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
4552 unsigned long off, unsigned long len)
4553 {
4554 memcpy(dst_buff, src_buff + off, len);
4555 return 0;
4556 }
4557
BPF_CALL_5(bpf_xdp_event_output,struct xdp_buff *,xdp,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)4558 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4559 u64, flags, void *, meta, u64, meta_size)
4560 {
4561 u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4562
4563 if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4564 return -EINVAL;
4565 if (unlikely(!xdp ||
4566 xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
4567 return -EFAULT;
4568
4569 return bpf_event_output(map, flags, meta, meta_size, xdp->data,
4570 xdp_size, bpf_xdp_copy);
4571 }
4572
4573 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4574 .func = bpf_xdp_event_output,
4575 .gpl_only = true,
4576 .ret_type = RET_INTEGER,
4577 .arg1_type = ARG_PTR_TO_CTX,
4578 .arg2_type = ARG_CONST_MAP_PTR,
4579 .arg3_type = ARG_ANYTHING,
4580 .arg4_type = ARG_PTR_TO_MEM,
4581 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
4582 };
4583
4584 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4585
4586 const struct bpf_func_proto bpf_xdp_output_proto = {
4587 .func = bpf_xdp_event_output,
4588 .gpl_only = true,
4589 .ret_type = RET_INTEGER,
4590 .arg1_type = ARG_PTR_TO_BTF_ID,
4591 .arg1_btf_id = &bpf_xdp_output_btf_ids[0],
4592 .arg2_type = ARG_CONST_MAP_PTR,
4593 .arg3_type = ARG_ANYTHING,
4594 .arg4_type = ARG_PTR_TO_MEM,
4595 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
4596 };
4597
BPF_CALL_1(bpf_get_socket_cookie,struct sk_buff *,skb)4598 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4599 {
4600 return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4601 }
4602
4603 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4604 .func = bpf_get_socket_cookie,
4605 .gpl_only = false,
4606 .ret_type = RET_INTEGER,
4607 .arg1_type = ARG_PTR_TO_CTX,
4608 };
4609
BPF_CALL_1(bpf_get_socket_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)4610 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4611 {
4612 return __sock_gen_cookie(ctx->sk);
4613 }
4614
4615 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4616 .func = bpf_get_socket_cookie_sock_addr,
4617 .gpl_only = false,
4618 .ret_type = RET_INTEGER,
4619 .arg1_type = ARG_PTR_TO_CTX,
4620 };
4621
BPF_CALL_1(bpf_get_socket_cookie_sock,struct sock *,ctx)4622 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4623 {
4624 return __sock_gen_cookie(ctx);
4625 }
4626
4627 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4628 .func = bpf_get_socket_cookie_sock,
4629 .gpl_only = false,
4630 .ret_type = RET_INTEGER,
4631 .arg1_type = ARG_PTR_TO_CTX,
4632 };
4633
BPF_CALL_1(bpf_get_socket_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)4634 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4635 {
4636 return __sock_gen_cookie(ctx->sk);
4637 }
4638
4639 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4640 .func = bpf_get_socket_cookie_sock_ops,
4641 .gpl_only = false,
4642 .ret_type = RET_INTEGER,
4643 .arg1_type = ARG_PTR_TO_CTX,
4644 };
4645
__bpf_get_netns_cookie(struct sock * sk)4646 static u64 __bpf_get_netns_cookie(struct sock *sk)
4647 {
4648 #ifdef CONFIG_NET_NS
4649 return __net_gen_cookie(sk ? sk->sk_net.net : &init_net);
4650 #else
4651 return 0;
4652 #endif
4653 }
4654
BPF_CALL_1(bpf_get_netns_cookie_sock,struct sock *,ctx)4655 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4656 {
4657 return __bpf_get_netns_cookie(ctx);
4658 }
4659
4660 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4661 .func = bpf_get_netns_cookie_sock,
4662 .gpl_only = false,
4663 .ret_type = RET_INTEGER,
4664 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
4665 };
4666
BPF_CALL_1(bpf_get_netns_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)4667 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4668 {
4669 return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4670 }
4671
4672 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4673 .func = bpf_get_netns_cookie_sock_addr,
4674 .gpl_only = false,
4675 .ret_type = RET_INTEGER,
4676 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
4677 };
4678
BPF_CALL_1(bpf_get_socket_uid,struct sk_buff *,skb)4679 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4680 {
4681 struct sock *sk = sk_to_full_sk(skb->sk);
4682 kuid_t kuid;
4683
4684 if (!sk || !sk_fullsock(sk))
4685 return overflowuid;
4686 kuid = sock_net_uid(sock_net(sk), sk);
4687 return from_kuid_munged(sock_net(sk)->user_ns, kuid);
4688 }
4689
4690 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
4691 .func = bpf_get_socket_uid,
4692 .gpl_only = false,
4693 .ret_type = RET_INTEGER,
4694 .arg1_type = ARG_PTR_TO_CTX,
4695 };
4696
_bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)4697 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
4698 char *optval, int optlen)
4699 {
4700 char devname[IFNAMSIZ];
4701 int val, valbool;
4702 struct net *net;
4703 int ifindex;
4704 int ret = 0;
4705
4706 if (!sk_fullsock(sk))
4707 return -EINVAL;
4708
4709 sock_owned_by_me(sk);
4710
4711 if (level == SOL_SOCKET) {
4712 if (optlen != sizeof(int) && optname != SO_BINDTODEVICE)
4713 return -EINVAL;
4714 val = *((int *)optval);
4715 valbool = val ? 1 : 0;
4716
4717 /* Only some socketops are supported */
4718 switch (optname) {
4719 case SO_RCVBUF:
4720 val = min_t(u32, val, sysctl_rmem_max);
4721 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
4722 WRITE_ONCE(sk->sk_rcvbuf,
4723 max_t(int, val * 2, SOCK_MIN_RCVBUF));
4724 break;
4725 case SO_SNDBUF:
4726 val = min_t(u32, val, sysctl_wmem_max);
4727 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
4728 WRITE_ONCE(sk->sk_sndbuf,
4729 max_t(int, val * 2, SOCK_MIN_SNDBUF));
4730 break;
4731 case SO_MAX_PACING_RATE: /* 32bit version */
4732 if (val != ~0U)
4733 cmpxchg(&sk->sk_pacing_status,
4734 SK_PACING_NONE,
4735 SK_PACING_NEEDED);
4736 sk->sk_max_pacing_rate = (val == ~0U) ?
4737 ~0UL : (unsigned int)val;
4738 sk->sk_pacing_rate = min(sk->sk_pacing_rate,
4739 sk->sk_max_pacing_rate);
4740 break;
4741 case SO_PRIORITY:
4742 sk->sk_priority = val;
4743 break;
4744 case SO_RCVLOWAT:
4745 if (val < 0)
4746 val = INT_MAX;
4747 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
4748 break;
4749 case SO_MARK:
4750 if (sk->sk_mark != val) {
4751 sk->sk_mark = val;
4752 sk_dst_reset(sk);
4753 }
4754 break;
4755 case SO_BINDTODEVICE:
4756 optlen = min_t(long, optlen, IFNAMSIZ - 1);
4757 strncpy(devname, optval, optlen);
4758 devname[optlen] = 0;
4759
4760 ifindex = 0;
4761 if (devname[0] != '\0') {
4762 struct net_device *dev;
4763
4764 ret = -ENODEV;
4765
4766 net = sock_net(sk);
4767 dev = dev_get_by_name(net, devname);
4768 if (!dev)
4769 break;
4770 ifindex = dev->ifindex;
4771 dev_put(dev);
4772 }
4773 ret = sock_bindtoindex(sk, ifindex, false);
4774 break;
4775 case SO_KEEPALIVE:
4776 if (sk->sk_prot->keepalive)
4777 sk->sk_prot->keepalive(sk, valbool);
4778 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
4779 break;
4780 default:
4781 ret = -EINVAL;
4782 }
4783 #ifdef CONFIG_INET
4784 } else if (level == SOL_IP) {
4785 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4786 return -EINVAL;
4787
4788 val = *((int *)optval);
4789 /* Only some options are supported */
4790 switch (optname) {
4791 case IP_TOS:
4792 if (val < -1 || val > 0xff) {
4793 ret = -EINVAL;
4794 } else {
4795 struct inet_sock *inet = inet_sk(sk);
4796
4797 if (val == -1)
4798 val = 0;
4799 inet->tos = val;
4800 }
4801 break;
4802 default:
4803 ret = -EINVAL;
4804 }
4805 #if IS_ENABLED(CONFIG_IPV6)
4806 } else if (level == SOL_IPV6) {
4807 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4808 return -EINVAL;
4809
4810 val = *((int *)optval);
4811 /* Only some options are supported */
4812 switch (optname) {
4813 case IPV6_TCLASS:
4814 if (val < -1 || val > 0xff) {
4815 ret = -EINVAL;
4816 } else {
4817 struct ipv6_pinfo *np = inet6_sk(sk);
4818
4819 if (val == -1)
4820 val = 0;
4821 np->tclass = val;
4822 }
4823 break;
4824 default:
4825 ret = -EINVAL;
4826 }
4827 #endif
4828 } else if (level == SOL_TCP &&
4829 sk->sk_prot->setsockopt == tcp_setsockopt) {
4830 if (optname == TCP_CONGESTION) {
4831 char name[TCP_CA_NAME_MAX];
4832
4833 strncpy(name, optval, min_t(long, optlen,
4834 TCP_CA_NAME_MAX-1));
4835 name[TCP_CA_NAME_MAX-1] = 0;
4836 ret = tcp_set_congestion_control(sk, name, false, true);
4837 } else {
4838 struct inet_connection_sock *icsk = inet_csk(sk);
4839 struct tcp_sock *tp = tcp_sk(sk);
4840 unsigned long timeout;
4841
4842 if (optlen != sizeof(int))
4843 return -EINVAL;
4844
4845 val = *((int *)optval);
4846 /* Only some options are supported */
4847 switch (optname) {
4848 case TCP_BPF_IW:
4849 if (val <= 0 || tp->data_segs_out > tp->syn_data)
4850 ret = -EINVAL;
4851 else
4852 tp->snd_cwnd = val;
4853 break;
4854 case TCP_BPF_SNDCWND_CLAMP:
4855 if (val <= 0) {
4856 ret = -EINVAL;
4857 } else {
4858 tp->snd_cwnd_clamp = val;
4859 tp->snd_ssthresh = val;
4860 }
4861 break;
4862 case TCP_BPF_DELACK_MAX:
4863 timeout = usecs_to_jiffies(val);
4864 if (timeout > TCP_DELACK_MAX ||
4865 timeout < TCP_TIMEOUT_MIN)
4866 return -EINVAL;
4867 inet_csk(sk)->icsk_delack_max = timeout;
4868 break;
4869 case TCP_BPF_RTO_MIN:
4870 timeout = usecs_to_jiffies(val);
4871 if (timeout > TCP_RTO_MIN ||
4872 timeout < TCP_TIMEOUT_MIN)
4873 return -EINVAL;
4874 inet_csk(sk)->icsk_rto_min = timeout;
4875 break;
4876 case TCP_SAVE_SYN:
4877 if (val < 0 || val > 1)
4878 ret = -EINVAL;
4879 else
4880 tp->save_syn = val;
4881 break;
4882 case TCP_KEEPIDLE:
4883 ret = tcp_sock_set_keepidle_locked(sk, val);
4884 break;
4885 case TCP_KEEPINTVL:
4886 if (val < 1 || val > MAX_TCP_KEEPINTVL)
4887 ret = -EINVAL;
4888 else
4889 tp->keepalive_intvl = val * HZ;
4890 break;
4891 case TCP_KEEPCNT:
4892 if (val < 1 || val > MAX_TCP_KEEPCNT)
4893 ret = -EINVAL;
4894 else
4895 tp->keepalive_probes = val;
4896 break;
4897 case TCP_SYNCNT:
4898 if (val < 1 || val > MAX_TCP_SYNCNT)
4899 ret = -EINVAL;
4900 else
4901 icsk->icsk_syn_retries = val;
4902 break;
4903 case TCP_USER_TIMEOUT:
4904 if (val < 0)
4905 ret = -EINVAL;
4906 else
4907 icsk->icsk_user_timeout = val;
4908 break;
4909 case TCP_NOTSENT_LOWAT:
4910 tp->notsent_lowat = val;
4911 sk->sk_write_space(sk);
4912 break;
4913 default:
4914 ret = -EINVAL;
4915 }
4916 }
4917 #endif
4918 } else {
4919 ret = -EINVAL;
4920 }
4921 return ret;
4922 }
4923
_bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)4924 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
4925 char *optval, int optlen)
4926 {
4927 if (!sk_fullsock(sk))
4928 goto err_clear;
4929
4930 sock_owned_by_me(sk);
4931
4932 #ifdef CONFIG_INET
4933 if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
4934 struct inet_connection_sock *icsk;
4935 struct tcp_sock *tp;
4936
4937 switch (optname) {
4938 case TCP_CONGESTION:
4939 icsk = inet_csk(sk);
4940
4941 if (!icsk->icsk_ca_ops || optlen <= 1)
4942 goto err_clear;
4943 strncpy(optval, icsk->icsk_ca_ops->name, optlen);
4944 optval[optlen - 1] = 0;
4945 break;
4946 case TCP_SAVED_SYN:
4947 tp = tcp_sk(sk);
4948
4949 if (optlen <= 0 || !tp->saved_syn ||
4950 optlen > tcp_saved_syn_len(tp->saved_syn))
4951 goto err_clear;
4952 memcpy(optval, tp->saved_syn->data, optlen);
4953 break;
4954 default:
4955 goto err_clear;
4956 }
4957 } else if (level == SOL_IP) {
4958 struct inet_sock *inet = inet_sk(sk);
4959
4960 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4961 goto err_clear;
4962
4963 /* Only some options are supported */
4964 switch (optname) {
4965 case IP_TOS:
4966 *((int *)optval) = (int)inet->tos;
4967 break;
4968 default:
4969 goto err_clear;
4970 }
4971 #if IS_ENABLED(CONFIG_IPV6)
4972 } else if (level == SOL_IPV6) {
4973 struct ipv6_pinfo *np = inet6_sk(sk);
4974
4975 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4976 goto err_clear;
4977
4978 /* Only some options are supported */
4979 switch (optname) {
4980 case IPV6_TCLASS:
4981 *((int *)optval) = (int)np->tclass;
4982 break;
4983 default:
4984 goto err_clear;
4985 }
4986 #endif
4987 } else {
4988 goto err_clear;
4989 }
4990 return 0;
4991 #endif
4992 err_clear:
4993 memset(optval, 0, optlen);
4994 return -EINVAL;
4995 }
4996
BPF_CALL_5(bpf_sock_addr_setsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)4997 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
4998 int, level, int, optname, char *, optval, int, optlen)
4999 {
5000 return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5001 }
5002
5003 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5004 .func = bpf_sock_addr_setsockopt,
5005 .gpl_only = false,
5006 .ret_type = RET_INTEGER,
5007 .arg1_type = ARG_PTR_TO_CTX,
5008 .arg2_type = ARG_ANYTHING,
5009 .arg3_type = ARG_ANYTHING,
5010 .arg4_type = ARG_PTR_TO_MEM,
5011 .arg5_type = ARG_CONST_SIZE,
5012 };
5013
BPF_CALL_5(bpf_sock_addr_getsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5014 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5015 int, level, int, optname, char *, optval, int, optlen)
5016 {
5017 return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5018 }
5019
5020 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5021 .func = bpf_sock_addr_getsockopt,
5022 .gpl_only = false,
5023 .ret_type = RET_INTEGER,
5024 .arg1_type = ARG_PTR_TO_CTX,
5025 .arg2_type = ARG_ANYTHING,
5026 .arg3_type = ARG_ANYTHING,
5027 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5028 .arg5_type = ARG_CONST_SIZE,
5029 };
5030
BPF_CALL_5(bpf_sock_ops_setsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5031 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5032 int, level, int, optname, char *, optval, int, optlen)
5033 {
5034 return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5035 }
5036
5037 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5038 .func = bpf_sock_ops_setsockopt,
5039 .gpl_only = false,
5040 .ret_type = RET_INTEGER,
5041 .arg1_type = ARG_PTR_TO_CTX,
5042 .arg2_type = ARG_ANYTHING,
5043 .arg3_type = ARG_ANYTHING,
5044 .arg4_type = ARG_PTR_TO_MEM,
5045 .arg5_type = ARG_CONST_SIZE,
5046 };
5047
bpf_sock_ops_get_syn(struct bpf_sock_ops_kern * bpf_sock,int optname,const u8 ** start)5048 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5049 int optname, const u8 **start)
5050 {
5051 struct sk_buff *syn_skb = bpf_sock->syn_skb;
5052 const u8 *hdr_start;
5053 int ret;
5054
5055 if (syn_skb) {
5056 /* sk is a request_sock here */
5057
5058 if (optname == TCP_BPF_SYN) {
5059 hdr_start = syn_skb->data;
5060 ret = tcp_hdrlen(syn_skb);
5061 } else if (optname == TCP_BPF_SYN_IP) {
5062 hdr_start = skb_network_header(syn_skb);
5063 ret = skb_network_header_len(syn_skb) +
5064 tcp_hdrlen(syn_skb);
5065 } else {
5066 /* optname == TCP_BPF_SYN_MAC */
5067 hdr_start = skb_mac_header(syn_skb);
5068 ret = skb_mac_header_len(syn_skb) +
5069 skb_network_header_len(syn_skb) +
5070 tcp_hdrlen(syn_skb);
5071 }
5072 } else {
5073 struct sock *sk = bpf_sock->sk;
5074 struct saved_syn *saved_syn;
5075
5076 if (sk->sk_state == TCP_NEW_SYN_RECV)
5077 /* synack retransmit. bpf_sock->syn_skb will
5078 * not be available. It has to resort to
5079 * saved_syn (if it is saved).
5080 */
5081 saved_syn = inet_reqsk(sk)->saved_syn;
5082 else
5083 saved_syn = tcp_sk(sk)->saved_syn;
5084
5085 if (!saved_syn)
5086 return -ENOENT;
5087
5088 if (optname == TCP_BPF_SYN) {
5089 hdr_start = saved_syn->data +
5090 saved_syn->mac_hdrlen +
5091 saved_syn->network_hdrlen;
5092 ret = saved_syn->tcp_hdrlen;
5093 } else if (optname == TCP_BPF_SYN_IP) {
5094 hdr_start = saved_syn->data +
5095 saved_syn->mac_hdrlen;
5096 ret = saved_syn->network_hdrlen +
5097 saved_syn->tcp_hdrlen;
5098 } else {
5099 /* optname == TCP_BPF_SYN_MAC */
5100
5101 /* TCP_SAVE_SYN may not have saved the mac hdr */
5102 if (!saved_syn->mac_hdrlen)
5103 return -ENOENT;
5104
5105 hdr_start = saved_syn->data;
5106 ret = saved_syn->mac_hdrlen +
5107 saved_syn->network_hdrlen +
5108 saved_syn->tcp_hdrlen;
5109 }
5110 }
5111
5112 *start = hdr_start;
5113 return ret;
5114 }
5115
BPF_CALL_5(bpf_sock_ops_getsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5116 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5117 int, level, int, optname, char *, optval, int, optlen)
5118 {
5119 if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5120 optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5121 int ret, copy_len = 0;
5122 const u8 *start;
5123
5124 ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5125 if (ret > 0) {
5126 copy_len = ret;
5127 if (optlen < copy_len) {
5128 copy_len = optlen;
5129 ret = -ENOSPC;
5130 }
5131
5132 memcpy(optval, start, copy_len);
5133 }
5134
5135 /* Zero out unused buffer at the end */
5136 memset(optval + copy_len, 0, optlen - copy_len);
5137
5138 return ret;
5139 }
5140
5141 return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5142 }
5143
5144 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5145 .func = bpf_sock_ops_getsockopt,
5146 .gpl_only = false,
5147 .ret_type = RET_INTEGER,
5148 .arg1_type = ARG_PTR_TO_CTX,
5149 .arg2_type = ARG_ANYTHING,
5150 .arg3_type = ARG_ANYTHING,
5151 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5152 .arg5_type = ARG_CONST_SIZE,
5153 };
5154
BPF_CALL_2(bpf_sock_ops_cb_flags_set,struct bpf_sock_ops_kern *,bpf_sock,int,argval)5155 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5156 int, argval)
5157 {
5158 struct sock *sk = bpf_sock->sk;
5159 int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5160
5161 if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5162 return -EINVAL;
5163
5164 tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5165
5166 return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5167 }
5168
5169 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5170 .func = bpf_sock_ops_cb_flags_set,
5171 .gpl_only = false,
5172 .ret_type = RET_INTEGER,
5173 .arg1_type = ARG_PTR_TO_CTX,
5174 .arg2_type = ARG_ANYTHING,
5175 };
5176
5177 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5178 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5179
BPF_CALL_3(bpf_bind,struct bpf_sock_addr_kern *,ctx,struct sockaddr *,addr,int,addr_len)5180 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5181 int, addr_len)
5182 {
5183 #ifdef CONFIG_INET
5184 struct sock *sk = ctx->sk;
5185 u32 flags = BIND_FROM_BPF;
5186 int err;
5187
5188 err = -EINVAL;
5189 if (addr_len < offsetofend(struct sockaddr, sa_family))
5190 return err;
5191 if (addr->sa_family == AF_INET) {
5192 if (addr_len < sizeof(struct sockaddr_in))
5193 return err;
5194 if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5195 flags |= BIND_FORCE_ADDRESS_NO_PORT;
5196 return __inet_bind(sk, addr, addr_len, flags);
5197 #if IS_ENABLED(CONFIG_IPV6)
5198 } else if (addr->sa_family == AF_INET6) {
5199 if (addr_len < SIN6_LEN_RFC2133)
5200 return err;
5201 if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5202 flags |= BIND_FORCE_ADDRESS_NO_PORT;
5203 /* ipv6_bpf_stub cannot be NULL, since it's called from
5204 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5205 */
5206 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5207 #endif /* CONFIG_IPV6 */
5208 }
5209 #endif /* CONFIG_INET */
5210
5211 return -EAFNOSUPPORT;
5212 }
5213
5214 static const struct bpf_func_proto bpf_bind_proto = {
5215 .func = bpf_bind,
5216 .gpl_only = false,
5217 .ret_type = RET_INTEGER,
5218 .arg1_type = ARG_PTR_TO_CTX,
5219 .arg2_type = ARG_PTR_TO_MEM,
5220 .arg3_type = ARG_CONST_SIZE,
5221 };
5222
5223 #ifdef CONFIG_XFRM
BPF_CALL_5(bpf_skb_get_xfrm_state,struct sk_buff *,skb,u32,index,struct bpf_xfrm_state *,to,u32,size,u64,flags)5224 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5225 struct bpf_xfrm_state *, to, u32, size, u64, flags)
5226 {
5227 const struct sec_path *sp = skb_sec_path(skb);
5228 const struct xfrm_state *x;
5229
5230 if (!sp || unlikely(index >= sp->len || flags))
5231 goto err_clear;
5232
5233 x = sp->xvec[index];
5234
5235 if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5236 goto err_clear;
5237
5238 to->reqid = x->props.reqid;
5239 to->spi = x->id.spi;
5240 to->family = x->props.family;
5241 to->ext = 0;
5242
5243 if (to->family == AF_INET6) {
5244 memcpy(to->remote_ipv6, x->props.saddr.a6,
5245 sizeof(to->remote_ipv6));
5246 } else {
5247 to->remote_ipv4 = x->props.saddr.a4;
5248 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5249 }
5250
5251 return 0;
5252 err_clear:
5253 memset(to, 0, size);
5254 return -EINVAL;
5255 }
5256
5257 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5258 .func = bpf_skb_get_xfrm_state,
5259 .gpl_only = false,
5260 .ret_type = RET_INTEGER,
5261 .arg1_type = ARG_PTR_TO_CTX,
5262 .arg2_type = ARG_ANYTHING,
5263 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
5264 .arg4_type = ARG_CONST_SIZE,
5265 .arg5_type = ARG_ANYTHING,
5266 };
5267 #endif
5268
5269 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
bpf_fib_set_fwd_params(struct bpf_fib_lookup * params,const struct neighbour * neigh,const struct net_device * dev)5270 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
5271 const struct neighbour *neigh,
5272 const struct net_device *dev)
5273 {
5274 memcpy(params->dmac, neigh->ha, ETH_ALEN);
5275 memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5276 params->h_vlan_TCI = 0;
5277 params->h_vlan_proto = 0;
5278
5279 return 0;
5280 }
5281 #endif
5282
5283 #if IS_ENABLED(CONFIG_INET)
bpf_ipv4_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)5284 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5285 u32 flags, bool check_mtu)
5286 {
5287 struct fib_nh_common *nhc;
5288 struct in_device *in_dev;
5289 struct neighbour *neigh;
5290 struct net_device *dev;
5291 struct fib_result res;
5292 struct flowi4 fl4;
5293 int err;
5294 u32 mtu;
5295
5296 dev = dev_get_by_index_rcu(net, params->ifindex);
5297 if (unlikely(!dev))
5298 return -ENODEV;
5299
5300 /* verify forwarding is enabled on this interface */
5301 in_dev = __in_dev_get_rcu(dev);
5302 if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5303 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5304
5305 if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5306 fl4.flowi4_iif = 1;
5307 fl4.flowi4_oif = params->ifindex;
5308 } else {
5309 fl4.flowi4_iif = params->ifindex;
5310 fl4.flowi4_oif = 0;
5311 }
5312 fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5313 fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5314 fl4.flowi4_flags = 0;
5315
5316 fl4.flowi4_proto = params->l4_protocol;
5317 fl4.daddr = params->ipv4_dst;
5318 fl4.saddr = params->ipv4_src;
5319 fl4.fl4_sport = params->sport;
5320 fl4.fl4_dport = params->dport;
5321 fl4.flowi4_multipath_hash = 0;
5322
5323 if (flags & BPF_FIB_LOOKUP_DIRECT) {
5324 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5325 struct fib_table *tb;
5326
5327 tb = fib_get_table(net, tbid);
5328 if (unlikely(!tb))
5329 return BPF_FIB_LKUP_RET_NOT_FWDED;
5330
5331 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5332 } else {
5333 fl4.flowi4_mark = 0;
5334 fl4.flowi4_secid = 0;
5335 fl4.flowi4_tun_key.tun_id = 0;
5336 fl4.flowi4_uid = sock_net_uid(net, NULL);
5337
5338 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5339 }
5340
5341 if (err) {
5342 /* map fib lookup errors to RTN_ type */
5343 if (err == -EINVAL)
5344 return BPF_FIB_LKUP_RET_BLACKHOLE;
5345 if (err == -EHOSTUNREACH)
5346 return BPF_FIB_LKUP_RET_UNREACHABLE;
5347 if (err == -EACCES)
5348 return BPF_FIB_LKUP_RET_PROHIBIT;
5349
5350 return BPF_FIB_LKUP_RET_NOT_FWDED;
5351 }
5352
5353 if (res.type != RTN_UNICAST)
5354 return BPF_FIB_LKUP_RET_NOT_FWDED;
5355
5356 if (fib_info_num_path(res.fi) > 1)
5357 fib_select_path(net, &res, &fl4, NULL);
5358
5359 if (check_mtu) {
5360 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5361 if (params->tot_len > mtu)
5362 return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5363 }
5364
5365 nhc = res.nhc;
5366
5367 /* do not handle lwt encaps right now */
5368 if (nhc->nhc_lwtstate)
5369 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5370
5371 dev = nhc->nhc_dev;
5372
5373 params->rt_metric = res.fi->fib_priority;
5374 params->ifindex = dev->ifindex;
5375
5376 /* xdp and cls_bpf programs are run in RCU-bh so
5377 * rcu_read_lock_bh is not needed here
5378 */
5379 if (likely(nhc->nhc_gw_family != AF_INET6)) {
5380 if (nhc->nhc_gw_family)
5381 params->ipv4_dst = nhc->nhc_gw.ipv4;
5382
5383 neigh = __ipv4_neigh_lookup_noref(dev,
5384 (__force u32)params->ipv4_dst);
5385 } else {
5386 struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5387
5388 params->family = AF_INET6;
5389 *dst = nhc->nhc_gw.ipv6;
5390 neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5391 }
5392
5393 if (!neigh)
5394 return BPF_FIB_LKUP_RET_NO_NEIGH;
5395
5396 return bpf_fib_set_fwd_params(params, neigh, dev);
5397 }
5398 #endif
5399
5400 #if IS_ENABLED(CONFIG_IPV6)
bpf_ipv6_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)5401 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5402 u32 flags, bool check_mtu)
5403 {
5404 struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5405 struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5406 struct fib6_result res = {};
5407 struct neighbour *neigh;
5408 struct net_device *dev;
5409 struct inet6_dev *idev;
5410 struct flowi6 fl6;
5411 int strict = 0;
5412 int oif, err;
5413 u32 mtu;
5414
5415 /* link local addresses are never forwarded */
5416 if (rt6_need_strict(dst) || rt6_need_strict(src))
5417 return BPF_FIB_LKUP_RET_NOT_FWDED;
5418
5419 dev = dev_get_by_index_rcu(net, params->ifindex);
5420 if (unlikely(!dev))
5421 return -ENODEV;
5422
5423 idev = __in6_dev_get_safely(dev);
5424 if (unlikely(!idev || !idev->cnf.forwarding))
5425 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5426
5427 if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5428 fl6.flowi6_iif = 1;
5429 oif = fl6.flowi6_oif = params->ifindex;
5430 } else {
5431 oif = fl6.flowi6_iif = params->ifindex;
5432 fl6.flowi6_oif = 0;
5433 strict = RT6_LOOKUP_F_HAS_SADDR;
5434 }
5435 fl6.flowlabel = params->flowinfo;
5436 fl6.flowi6_scope = 0;
5437 fl6.flowi6_flags = 0;
5438 fl6.mp_hash = 0;
5439
5440 fl6.flowi6_proto = params->l4_protocol;
5441 fl6.daddr = *dst;
5442 fl6.saddr = *src;
5443 fl6.fl6_sport = params->sport;
5444 fl6.fl6_dport = params->dport;
5445
5446 if (flags & BPF_FIB_LOOKUP_DIRECT) {
5447 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5448 struct fib6_table *tb;
5449
5450 tb = ipv6_stub->fib6_get_table(net, tbid);
5451 if (unlikely(!tb))
5452 return BPF_FIB_LKUP_RET_NOT_FWDED;
5453
5454 err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5455 strict);
5456 } else {
5457 fl6.flowi6_mark = 0;
5458 fl6.flowi6_secid = 0;
5459 fl6.flowi6_tun_key.tun_id = 0;
5460 fl6.flowi6_uid = sock_net_uid(net, NULL);
5461
5462 err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5463 }
5464
5465 if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5466 res.f6i == net->ipv6.fib6_null_entry))
5467 return BPF_FIB_LKUP_RET_NOT_FWDED;
5468
5469 switch (res.fib6_type) {
5470 /* only unicast is forwarded */
5471 case RTN_UNICAST:
5472 break;
5473 case RTN_BLACKHOLE:
5474 return BPF_FIB_LKUP_RET_BLACKHOLE;
5475 case RTN_UNREACHABLE:
5476 return BPF_FIB_LKUP_RET_UNREACHABLE;
5477 case RTN_PROHIBIT:
5478 return BPF_FIB_LKUP_RET_PROHIBIT;
5479 default:
5480 return BPF_FIB_LKUP_RET_NOT_FWDED;
5481 }
5482
5483 ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5484 fl6.flowi6_oif != 0, NULL, strict);
5485
5486 if (check_mtu) {
5487 mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5488 if (params->tot_len > mtu)
5489 return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5490 }
5491
5492 if (res.nh->fib_nh_lws)
5493 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5494
5495 if (res.nh->fib_nh_gw_family)
5496 *dst = res.nh->fib_nh_gw6;
5497
5498 dev = res.nh->fib_nh_dev;
5499 params->rt_metric = res.f6i->fib6_metric;
5500 params->ifindex = dev->ifindex;
5501
5502 /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5503 * not needed here.
5504 */
5505 neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5506 if (!neigh)
5507 return BPF_FIB_LKUP_RET_NO_NEIGH;
5508
5509 return bpf_fib_set_fwd_params(params, neigh, dev);
5510 }
5511 #endif
5512
BPF_CALL_4(bpf_xdp_fib_lookup,struct xdp_buff *,ctx,struct bpf_fib_lookup *,params,int,plen,u32,flags)5513 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5514 struct bpf_fib_lookup *, params, int, plen, u32, flags)
5515 {
5516 if (plen < sizeof(*params))
5517 return -EINVAL;
5518
5519 if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5520 return -EINVAL;
5521
5522 switch (params->family) {
5523 #if IS_ENABLED(CONFIG_INET)
5524 case AF_INET:
5525 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
5526 flags, true);
5527 #endif
5528 #if IS_ENABLED(CONFIG_IPV6)
5529 case AF_INET6:
5530 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
5531 flags, true);
5532 #endif
5533 }
5534 return -EAFNOSUPPORT;
5535 }
5536
5537 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
5538 .func = bpf_xdp_fib_lookup,
5539 .gpl_only = true,
5540 .ret_type = RET_INTEGER,
5541 .arg1_type = ARG_PTR_TO_CTX,
5542 .arg2_type = ARG_PTR_TO_MEM,
5543 .arg3_type = ARG_CONST_SIZE,
5544 .arg4_type = ARG_ANYTHING,
5545 };
5546
BPF_CALL_4(bpf_skb_fib_lookup,struct sk_buff *,skb,struct bpf_fib_lookup *,params,int,plen,u32,flags)5547 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
5548 struct bpf_fib_lookup *, params, int, plen, u32, flags)
5549 {
5550 struct net *net = dev_net(skb->dev);
5551 int rc = -EAFNOSUPPORT;
5552
5553 if (plen < sizeof(*params))
5554 return -EINVAL;
5555
5556 if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5557 return -EINVAL;
5558
5559 switch (params->family) {
5560 #if IS_ENABLED(CONFIG_INET)
5561 case AF_INET:
5562 rc = bpf_ipv4_fib_lookup(net, params, flags, false);
5563 break;
5564 #endif
5565 #if IS_ENABLED(CONFIG_IPV6)
5566 case AF_INET6:
5567 rc = bpf_ipv6_fib_lookup(net, params, flags, false);
5568 break;
5569 #endif
5570 }
5571
5572 if (!rc) {
5573 struct net_device *dev;
5574
5575 dev = dev_get_by_index_rcu(net, params->ifindex);
5576 if (!is_skb_forwardable(dev, skb))
5577 rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
5578 }
5579
5580 return rc;
5581 }
5582
5583 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
5584 .func = bpf_skb_fib_lookup,
5585 .gpl_only = true,
5586 .ret_type = RET_INTEGER,
5587 .arg1_type = ARG_PTR_TO_CTX,
5588 .arg2_type = ARG_PTR_TO_MEM,
5589 .arg3_type = ARG_CONST_SIZE,
5590 .arg4_type = ARG_ANYTHING,
5591 };
5592
5593 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
bpf_push_seg6_encap(struct sk_buff * skb,u32 type,void * hdr,u32 len)5594 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
5595 {
5596 int err;
5597 struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
5598
5599 if (!seg6_validate_srh(srh, len, false))
5600 return -EINVAL;
5601
5602 switch (type) {
5603 case BPF_LWT_ENCAP_SEG6_INLINE:
5604 if (skb->protocol != htons(ETH_P_IPV6))
5605 return -EBADMSG;
5606
5607 err = seg6_do_srh_inline(skb, srh);
5608 break;
5609 case BPF_LWT_ENCAP_SEG6:
5610 skb_reset_inner_headers(skb);
5611 skb->encapsulation = 1;
5612 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
5613 break;
5614 default:
5615 return -EINVAL;
5616 }
5617
5618 bpf_compute_data_pointers(skb);
5619 if (err)
5620 return err;
5621
5622 ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5623 skb_set_transport_header(skb, sizeof(struct ipv6hdr));
5624
5625 return seg6_lookup_nexthop(skb, NULL, 0);
5626 }
5627 #endif /* CONFIG_IPV6_SEG6_BPF */
5628
5629 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
bpf_push_ip_encap(struct sk_buff * skb,void * hdr,u32 len,bool ingress)5630 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
5631 bool ingress)
5632 {
5633 return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
5634 }
5635 #endif
5636
BPF_CALL_4(bpf_lwt_in_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)5637 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
5638 u32, len)
5639 {
5640 switch (type) {
5641 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5642 case BPF_LWT_ENCAP_SEG6:
5643 case BPF_LWT_ENCAP_SEG6_INLINE:
5644 return bpf_push_seg6_encap(skb, type, hdr, len);
5645 #endif
5646 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5647 case BPF_LWT_ENCAP_IP:
5648 return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
5649 #endif
5650 default:
5651 return -EINVAL;
5652 }
5653 }
5654
BPF_CALL_4(bpf_lwt_xmit_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)5655 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
5656 void *, hdr, u32, len)
5657 {
5658 switch (type) {
5659 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5660 case BPF_LWT_ENCAP_IP:
5661 return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
5662 #endif
5663 default:
5664 return -EINVAL;
5665 }
5666 }
5667
5668 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
5669 .func = bpf_lwt_in_push_encap,
5670 .gpl_only = false,
5671 .ret_type = RET_INTEGER,
5672 .arg1_type = ARG_PTR_TO_CTX,
5673 .arg2_type = ARG_ANYTHING,
5674 .arg3_type = ARG_PTR_TO_MEM,
5675 .arg4_type = ARG_CONST_SIZE
5676 };
5677
5678 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
5679 .func = bpf_lwt_xmit_push_encap,
5680 .gpl_only = false,
5681 .ret_type = RET_INTEGER,
5682 .arg1_type = ARG_PTR_TO_CTX,
5683 .arg2_type = ARG_ANYTHING,
5684 .arg3_type = ARG_PTR_TO_MEM,
5685 .arg4_type = ARG_CONST_SIZE
5686 };
5687
5688 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
BPF_CALL_4(bpf_lwt_seg6_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len)5689 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
5690 const void *, from, u32, len)
5691 {
5692 struct seg6_bpf_srh_state *srh_state =
5693 this_cpu_ptr(&seg6_bpf_srh_states);
5694 struct ipv6_sr_hdr *srh = srh_state->srh;
5695 void *srh_tlvs, *srh_end, *ptr;
5696 int srhoff = 0;
5697
5698 if (srh == NULL)
5699 return -EINVAL;
5700
5701 srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
5702 srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
5703
5704 ptr = skb->data + offset;
5705 if (ptr >= srh_tlvs && ptr + len <= srh_end)
5706 srh_state->valid = false;
5707 else if (ptr < (void *)&srh->flags ||
5708 ptr + len > (void *)&srh->segments)
5709 return -EFAULT;
5710
5711 if (unlikely(bpf_try_make_writable(skb, offset + len)))
5712 return -EFAULT;
5713 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5714 return -EINVAL;
5715 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5716
5717 memcpy(skb->data + offset, from, len);
5718 return 0;
5719 }
5720
5721 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
5722 .func = bpf_lwt_seg6_store_bytes,
5723 .gpl_only = false,
5724 .ret_type = RET_INTEGER,
5725 .arg1_type = ARG_PTR_TO_CTX,
5726 .arg2_type = ARG_ANYTHING,
5727 .arg3_type = ARG_PTR_TO_MEM,
5728 .arg4_type = ARG_CONST_SIZE
5729 };
5730
bpf_update_srh_state(struct sk_buff * skb)5731 static void bpf_update_srh_state(struct sk_buff *skb)
5732 {
5733 struct seg6_bpf_srh_state *srh_state =
5734 this_cpu_ptr(&seg6_bpf_srh_states);
5735 int srhoff = 0;
5736
5737 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
5738 srh_state->srh = NULL;
5739 } else {
5740 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5741 srh_state->hdrlen = srh_state->srh->hdrlen << 3;
5742 srh_state->valid = true;
5743 }
5744 }
5745
BPF_CALL_4(bpf_lwt_seg6_action,struct sk_buff *,skb,u32,action,void *,param,u32,param_len)5746 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
5747 u32, action, void *, param, u32, param_len)
5748 {
5749 struct seg6_bpf_srh_state *srh_state =
5750 this_cpu_ptr(&seg6_bpf_srh_states);
5751 int hdroff = 0;
5752 int err;
5753
5754 switch (action) {
5755 case SEG6_LOCAL_ACTION_END_X:
5756 if (!seg6_bpf_has_valid_srh(skb))
5757 return -EBADMSG;
5758 if (param_len != sizeof(struct in6_addr))
5759 return -EINVAL;
5760 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
5761 case SEG6_LOCAL_ACTION_END_T:
5762 if (!seg6_bpf_has_valid_srh(skb))
5763 return -EBADMSG;
5764 if (param_len != sizeof(int))
5765 return -EINVAL;
5766 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5767 case SEG6_LOCAL_ACTION_END_DT6:
5768 if (!seg6_bpf_has_valid_srh(skb))
5769 return -EBADMSG;
5770 if (param_len != sizeof(int))
5771 return -EINVAL;
5772
5773 if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
5774 return -EBADMSG;
5775 if (!pskb_pull(skb, hdroff))
5776 return -EBADMSG;
5777
5778 skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
5779 skb_reset_network_header(skb);
5780 skb_reset_transport_header(skb);
5781 skb->encapsulation = 0;
5782
5783 bpf_compute_data_pointers(skb);
5784 bpf_update_srh_state(skb);
5785 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5786 case SEG6_LOCAL_ACTION_END_B6:
5787 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5788 return -EBADMSG;
5789 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
5790 param, param_len);
5791 if (!err)
5792 bpf_update_srh_state(skb);
5793
5794 return err;
5795 case SEG6_LOCAL_ACTION_END_B6_ENCAP:
5796 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5797 return -EBADMSG;
5798 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
5799 param, param_len);
5800 if (!err)
5801 bpf_update_srh_state(skb);
5802
5803 return err;
5804 default:
5805 return -EINVAL;
5806 }
5807 }
5808
5809 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
5810 .func = bpf_lwt_seg6_action,
5811 .gpl_only = false,
5812 .ret_type = RET_INTEGER,
5813 .arg1_type = ARG_PTR_TO_CTX,
5814 .arg2_type = ARG_ANYTHING,
5815 .arg3_type = ARG_PTR_TO_MEM,
5816 .arg4_type = ARG_CONST_SIZE
5817 };
5818
BPF_CALL_3(bpf_lwt_seg6_adjust_srh,struct sk_buff *,skb,u32,offset,s32,len)5819 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
5820 s32, len)
5821 {
5822 struct seg6_bpf_srh_state *srh_state =
5823 this_cpu_ptr(&seg6_bpf_srh_states);
5824 struct ipv6_sr_hdr *srh = srh_state->srh;
5825 void *srh_end, *srh_tlvs, *ptr;
5826 struct ipv6hdr *hdr;
5827 int srhoff = 0;
5828 int ret;
5829
5830 if (unlikely(srh == NULL))
5831 return -EINVAL;
5832
5833 srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
5834 ((srh->first_segment + 1) << 4));
5835 srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
5836 srh_state->hdrlen);
5837 ptr = skb->data + offset;
5838
5839 if (unlikely(ptr < srh_tlvs || ptr > srh_end))
5840 return -EFAULT;
5841 if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
5842 return -EFAULT;
5843
5844 if (len > 0) {
5845 ret = skb_cow_head(skb, len);
5846 if (unlikely(ret < 0))
5847 return ret;
5848
5849 ret = bpf_skb_net_hdr_push(skb, offset, len);
5850 } else {
5851 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
5852 }
5853
5854 bpf_compute_data_pointers(skb);
5855 if (unlikely(ret < 0))
5856 return ret;
5857
5858 hdr = (struct ipv6hdr *)skb->data;
5859 hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5860
5861 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5862 return -EINVAL;
5863 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5864 srh_state->hdrlen += len;
5865 srh_state->valid = false;
5866 return 0;
5867 }
5868
5869 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
5870 .func = bpf_lwt_seg6_adjust_srh,
5871 .gpl_only = false,
5872 .ret_type = RET_INTEGER,
5873 .arg1_type = ARG_PTR_TO_CTX,
5874 .arg2_type = ARG_ANYTHING,
5875 .arg3_type = ARG_ANYTHING,
5876 };
5877 #endif /* CONFIG_IPV6_SEG6_BPF */
5878
5879 #ifdef CONFIG_INET
sk_lookup(struct net * net,struct bpf_sock_tuple * tuple,int dif,int sdif,u8 family,u8 proto)5880 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
5881 int dif, int sdif, u8 family, u8 proto)
5882 {
5883 bool refcounted = false;
5884 struct sock *sk = NULL;
5885
5886 if (family == AF_INET) {
5887 __be32 src4 = tuple->ipv4.saddr;
5888 __be32 dst4 = tuple->ipv4.daddr;
5889
5890 if (proto == IPPROTO_TCP)
5891 sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
5892 src4, tuple->ipv4.sport,
5893 dst4, tuple->ipv4.dport,
5894 dif, sdif, &refcounted);
5895 else
5896 sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
5897 dst4, tuple->ipv4.dport,
5898 dif, sdif, &udp_table, NULL);
5899 #if IS_ENABLED(CONFIG_IPV6)
5900 } else {
5901 struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
5902 struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
5903
5904 if (proto == IPPROTO_TCP)
5905 sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
5906 src6, tuple->ipv6.sport,
5907 dst6, ntohs(tuple->ipv6.dport),
5908 dif, sdif, &refcounted);
5909 else if (likely(ipv6_bpf_stub))
5910 sk = ipv6_bpf_stub->udp6_lib_lookup(net,
5911 src6, tuple->ipv6.sport,
5912 dst6, tuple->ipv6.dport,
5913 dif, sdif,
5914 &udp_table, NULL);
5915 #endif
5916 }
5917
5918 if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
5919 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
5920 sk = NULL;
5921 }
5922 return sk;
5923 }
5924
5925 /* bpf_skc_lookup performs the core lookup for different types of sockets,
5926 * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
5927 * Returns the socket as an 'unsigned long' to simplify the casting in the
5928 * callers to satisfy BPF_CALL declarations.
5929 */
5930 static struct sock *
__bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags)5931 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5932 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5933 u64 flags)
5934 {
5935 struct sock *sk = NULL;
5936 u8 family = AF_UNSPEC;
5937 struct net *net;
5938 int sdif;
5939
5940 if (len == sizeof(tuple->ipv4))
5941 family = AF_INET;
5942 else if (len == sizeof(tuple->ipv6))
5943 family = AF_INET6;
5944 else
5945 return NULL;
5946
5947 if (unlikely(family == AF_UNSPEC || flags ||
5948 !((s32)netns_id < 0 || netns_id <= S32_MAX)))
5949 goto out;
5950
5951 if (family == AF_INET)
5952 sdif = inet_sdif(skb);
5953 else
5954 sdif = inet6_sdif(skb);
5955
5956 if ((s32)netns_id < 0) {
5957 net = caller_net;
5958 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5959 } else {
5960 net = get_net_ns_by_id(caller_net, netns_id);
5961 if (unlikely(!net))
5962 goto out;
5963 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5964 put_net(net);
5965 }
5966
5967 out:
5968 return sk;
5969 }
5970
5971 static struct sock *
__bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags)5972 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5973 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5974 u64 flags)
5975 {
5976 struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
5977 ifindex, proto, netns_id, flags);
5978
5979 if (sk) {
5980 sk = sk_to_full_sk(sk);
5981 if (!sk_fullsock(sk)) {
5982 sock_gen_put(sk);
5983 return NULL;
5984 }
5985 }
5986
5987 return sk;
5988 }
5989
5990 static struct sock *
bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)5991 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5992 u8 proto, u64 netns_id, u64 flags)
5993 {
5994 struct net *caller_net;
5995 int ifindex;
5996
5997 if (skb->dev) {
5998 caller_net = dev_net(skb->dev);
5999 ifindex = skb->dev->ifindex;
6000 } else {
6001 caller_net = sock_net(skb->sk);
6002 ifindex = 0;
6003 }
6004
6005 return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6006 netns_id, flags);
6007 }
6008
6009 static struct sock *
bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6010 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6011 u8 proto, u64 netns_id, u64 flags)
6012 {
6013 struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6014 flags);
6015
6016 if (sk) {
6017 sk = sk_to_full_sk(sk);
6018 if (!sk_fullsock(sk)) {
6019 sock_gen_put(sk);
6020 return NULL;
6021 }
6022 }
6023
6024 return sk;
6025 }
6026
BPF_CALL_5(bpf_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6027 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6028 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6029 {
6030 return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6031 netns_id, flags);
6032 }
6033
6034 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6035 .func = bpf_skc_lookup_tcp,
6036 .gpl_only = false,
6037 .pkt_access = true,
6038 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6039 .arg1_type = ARG_PTR_TO_CTX,
6040 .arg2_type = ARG_PTR_TO_MEM,
6041 .arg3_type = ARG_CONST_SIZE,
6042 .arg4_type = ARG_ANYTHING,
6043 .arg5_type = ARG_ANYTHING,
6044 };
6045
BPF_CALL_5(bpf_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6046 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6047 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6048 {
6049 return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6050 netns_id, flags);
6051 }
6052
6053 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6054 .func = bpf_sk_lookup_tcp,
6055 .gpl_only = false,
6056 .pkt_access = true,
6057 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6058 .arg1_type = ARG_PTR_TO_CTX,
6059 .arg2_type = ARG_PTR_TO_MEM,
6060 .arg3_type = ARG_CONST_SIZE,
6061 .arg4_type = ARG_ANYTHING,
6062 .arg5_type = ARG_ANYTHING,
6063 };
6064
BPF_CALL_5(bpf_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6065 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6066 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6067 {
6068 return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6069 netns_id, flags);
6070 }
6071
6072 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6073 .func = bpf_sk_lookup_udp,
6074 .gpl_only = false,
6075 .pkt_access = true,
6076 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6077 .arg1_type = ARG_PTR_TO_CTX,
6078 .arg2_type = ARG_PTR_TO_MEM,
6079 .arg3_type = ARG_CONST_SIZE,
6080 .arg4_type = ARG_ANYTHING,
6081 .arg5_type = ARG_ANYTHING,
6082 };
6083
BPF_CALL_1(bpf_sk_release,struct sock *,sk)6084 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6085 {
6086 if (sk && sk_is_refcounted(sk))
6087 sock_gen_put(sk);
6088 return 0;
6089 }
6090
6091 static const struct bpf_func_proto bpf_sk_release_proto = {
6092 .func = bpf_sk_release,
6093 .gpl_only = false,
6094 .ret_type = RET_INTEGER,
6095 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6096 };
6097
BPF_CALL_5(bpf_xdp_sk_lookup_udp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6098 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6099 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6100 {
6101 struct net *caller_net = dev_net(ctx->rxq->dev);
6102 int ifindex = ctx->rxq->dev->ifindex;
6103
6104 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6105 ifindex, IPPROTO_UDP, netns_id,
6106 flags);
6107 }
6108
6109 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6110 .func = bpf_xdp_sk_lookup_udp,
6111 .gpl_only = false,
6112 .pkt_access = true,
6113 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6114 .arg1_type = ARG_PTR_TO_CTX,
6115 .arg2_type = ARG_PTR_TO_MEM,
6116 .arg3_type = ARG_CONST_SIZE,
6117 .arg4_type = ARG_ANYTHING,
6118 .arg5_type = ARG_ANYTHING,
6119 };
6120
BPF_CALL_5(bpf_xdp_skc_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6121 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6122 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6123 {
6124 struct net *caller_net = dev_net(ctx->rxq->dev);
6125 int ifindex = ctx->rxq->dev->ifindex;
6126
6127 return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6128 ifindex, IPPROTO_TCP, netns_id,
6129 flags);
6130 }
6131
6132 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6133 .func = bpf_xdp_skc_lookup_tcp,
6134 .gpl_only = false,
6135 .pkt_access = true,
6136 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6137 .arg1_type = ARG_PTR_TO_CTX,
6138 .arg2_type = ARG_PTR_TO_MEM,
6139 .arg3_type = ARG_CONST_SIZE,
6140 .arg4_type = ARG_ANYTHING,
6141 .arg5_type = ARG_ANYTHING,
6142 };
6143
BPF_CALL_5(bpf_xdp_sk_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6144 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6145 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6146 {
6147 struct net *caller_net = dev_net(ctx->rxq->dev);
6148 int ifindex = ctx->rxq->dev->ifindex;
6149
6150 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6151 ifindex, IPPROTO_TCP, netns_id,
6152 flags);
6153 }
6154
6155 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6156 .func = bpf_xdp_sk_lookup_tcp,
6157 .gpl_only = false,
6158 .pkt_access = true,
6159 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6160 .arg1_type = ARG_PTR_TO_CTX,
6161 .arg2_type = ARG_PTR_TO_MEM,
6162 .arg3_type = ARG_CONST_SIZE,
6163 .arg4_type = ARG_ANYTHING,
6164 .arg5_type = ARG_ANYTHING,
6165 };
6166
BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6167 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6168 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6169 {
6170 return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6171 sock_net(ctx->sk), 0,
6172 IPPROTO_TCP, netns_id, flags);
6173 }
6174
6175 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6176 .func = bpf_sock_addr_skc_lookup_tcp,
6177 .gpl_only = false,
6178 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6179 .arg1_type = ARG_PTR_TO_CTX,
6180 .arg2_type = ARG_PTR_TO_MEM,
6181 .arg3_type = ARG_CONST_SIZE,
6182 .arg4_type = ARG_ANYTHING,
6183 .arg5_type = ARG_ANYTHING,
6184 };
6185
BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6186 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6187 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6188 {
6189 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6190 sock_net(ctx->sk), 0, IPPROTO_TCP,
6191 netns_id, flags);
6192 }
6193
6194 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6195 .func = bpf_sock_addr_sk_lookup_tcp,
6196 .gpl_only = false,
6197 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6198 .arg1_type = ARG_PTR_TO_CTX,
6199 .arg2_type = ARG_PTR_TO_MEM,
6200 .arg3_type = ARG_CONST_SIZE,
6201 .arg4_type = ARG_ANYTHING,
6202 .arg5_type = ARG_ANYTHING,
6203 };
6204
BPF_CALL_5(bpf_sock_addr_sk_lookup_udp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6205 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6206 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6207 {
6208 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6209 sock_net(ctx->sk), 0, IPPROTO_UDP,
6210 netns_id, flags);
6211 }
6212
6213 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6214 .func = bpf_sock_addr_sk_lookup_udp,
6215 .gpl_only = false,
6216 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6217 .arg1_type = ARG_PTR_TO_CTX,
6218 .arg2_type = ARG_PTR_TO_MEM,
6219 .arg3_type = ARG_CONST_SIZE,
6220 .arg4_type = ARG_ANYTHING,
6221 .arg5_type = ARG_ANYTHING,
6222 };
6223
bpf_tcp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)6224 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6225 struct bpf_insn_access_aux *info)
6226 {
6227 if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6228 icsk_retransmits))
6229 return false;
6230
6231 if (off % size != 0)
6232 return false;
6233
6234 switch (off) {
6235 case offsetof(struct bpf_tcp_sock, bytes_received):
6236 case offsetof(struct bpf_tcp_sock, bytes_acked):
6237 return size == sizeof(__u64);
6238 default:
6239 return size == sizeof(__u32);
6240 }
6241 }
6242
bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)6243 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6244 const struct bpf_insn *si,
6245 struct bpf_insn *insn_buf,
6246 struct bpf_prog *prog, u32 *target_size)
6247 {
6248 struct bpf_insn *insn = insn_buf;
6249
6250 #define BPF_TCP_SOCK_GET_COMMON(FIELD) \
6251 do { \
6252 BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) > \
6253 sizeof_field(struct bpf_tcp_sock, FIELD)); \
6254 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6255 si->dst_reg, si->src_reg, \
6256 offsetof(struct tcp_sock, FIELD)); \
6257 } while (0)
6258
6259 #define BPF_INET_SOCK_GET_COMMON(FIELD) \
6260 do { \
6261 BUILD_BUG_ON(sizeof_field(struct inet_connection_sock, \
6262 FIELD) > \
6263 sizeof_field(struct bpf_tcp_sock, FIELD)); \
6264 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
6265 struct inet_connection_sock, \
6266 FIELD), \
6267 si->dst_reg, si->src_reg, \
6268 offsetof( \
6269 struct inet_connection_sock, \
6270 FIELD)); \
6271 } while (0)
6272
6273 if (insn > insn_buf)
6274 return insn - insn_buf;
6275
6276 switch (si->off) {
6277 case offsetof(struct bpf_tcp_sock, rtt_min):
6278 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
6279 sizeof(struct minmax));
6280 BUILD_BUG_ON(sizeof(struct minmax) <
6281 sizeof(struct minmax_sample));
6282
6283 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6284 offsetof(struct tcp_sock, rtt_min) +
6285 offsetof(struct minmax_sample, v));
6286 break;
6287 case offsetof(struct bpf_tcp_sock, snd_cwnd):
6288 BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
6289 break;
6290 case offsetof(struct bpf_tcp_sock, srtt_us):
6291 BPF_TCP_SOCK_GET_COMMON(srtt_us);
6292 break;
6293 case offsetof(struct bpf_tcp_sock, snd_ssthresh):
6294 BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
6295 break;
6296 case offsetof(struct bpf_tcp_sock, rcv_nxt):
6297 BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
6298 break;
6299 case offsetof(struct bpf_tcp_sock, snd_nxt):
6300 BPF_TCP_SOCK_GET_COMMON(snd_nxt);
6301 break;
6302 case offsetof(struct bpf_tcp_sock, snd_una):
6303 BPF_TCP_SOCK_GET_COMMON(snd_una);
6304 break;
6305 case offsetof(struct bpf_tcp_sock, mss_cache):
6306 BPF_TCP_SOCK_GET_COMMON(mss_cache);
6307 break;
6308 case offsetof(struct bpf_tcp_sock, ecn_flags):
6309 BPF_TCP_SOCK_GET_COMMON(ecn_flags);
6310 break;
6311 case offsetof(struct bpf_tcp_sock, rate_delivered):
6312 BPF_TCP_SOCK_GET_COMMON(rate_delivered);
6313 break;
6314 case offsetof(struct bpf_tcp_sock, rate_interval_us):
6315 BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
6316 break;
6317 case offsetof(struct bpf_tcp_sock, packets_out):
6318 BPF_TCP_SOCK_GET_COMMON(packets_out);
6319 break;
6320 case offsetof(struct bpf_tcp_sock, retrans_out):
6321 BPF_TCP_SOCK_GET_COMMON(retrans_out);
6322 break;
6323 case offsetof(struct bpf_tcp_sock, total_retrans):
6324 BPF_TCP_SOCK_GET_COMMON(total_retrans);
6325 break;
6326 case offsetof(struct bpf_tcp_sock, segs_in):
6327 BPF_TCP_SOCK_GET_COMMON(segs_in);
6328 break;
6329 case offsetof(struct bpf_tcp_sock, data_segs_in):
6330 BPF_TCP_SOCK_GET_COMMON(data_segs_in);
6331 break;
6332 case offsetof(struct bpf_tcp_sock, segs_out):
6333 BPF_TCP_SOCK_GET_COMMON(segs_out);
6334 break;
6335 case offsetof(struct bpf_tcp_sock, data_segs_out):
6336 BPF_TCP_SOCK_GET_COMMON(data_segs_out);
6337 break;
6338 case offsetof(struct bpf_tcp_sock, lost_out):
6339 BPF_TCP_SOCK_GET_COMMON(lost_out);
6340 break;
6341 case offsetof(struct bpf_tcp_sock, sacked_out):
6342 BPF_TCP_SOCK_GET_COMMON(sacked_out);
6343 break;
6344 case offsetof(struct bpf_tcp_sock, bytes_received):
6345 BPF_TCP_SOCK_GET_COMMON(bytes_received);
6346 break;
6347 case offsetof(struct bpf_tcp_sock, bytes_acked):
6348 BPF_TCP_SOCK_GET_COMMON(bytes_acked);
6349 break;
6350 case offsetof(struct bpf_tcp_sock, dsack_dups):
6351 BPF_TCP_SOCK_GET_COMMON(dsack_dups);
6352 break;
6353 case offsetof(struct bpf_tcp_sock, delivered):
6354 BPF_TCP_SOCK_GET_COMMON(delivered);
6355 break;
6356 case offsetof(struct bpf_tcp_sock, delivered_ce):
6357 BPF_TCP_SOCK_GET_COMMON(delivered_ce);
6358 break;
6359 case offsetof(struct bpf_tcp_sock, icsk_retransmits):
6360 BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
6361 break;
6362 }
6363
6364 return insn - insn_buf;
6365 }
6366
BPF_CALL_1(bpf_tcp_sock,struct sock *,sk)6367 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
6368 {
6369 if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
6370 return (unsigned long)sk;
6371
6372 return (unsigned long)NULL;
6373 }
6374
6375 const struct bpf_func_proto bpf_tcp_sock_proto = {
6376 .func = bpf_tcp_sock,
6377 .gpl_only = false,
6378 .ret_type = RET_PTR_TO_TCP_SOCK_OR_NULL,
6379 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
6380 };
6381
BPF_CALL_1(bpf_get_listener_sock,struct sock *,sk)6382 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
6383 {
6384 sk = sk_to_full_sk(sk);
6385
6386 if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
6387 return (unsigned long)sk;
6388
6389 return (unsigned long)NULL;
6390 }
6391
6392 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
6393 .func = bpf_get_listener_sock,
6394 .gpl_only = false,
6395 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6396 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
6397 };
6398
BPF_CALL_1(bpf_skb_ecn_set_ce,struct sk_buff *,skb)6399 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
6400 {
6401 unsigned int iphdr_len;
6402
6403 switch (skb_protocol(skb, true)) {
6404 case cpu_to_be16(ETH_P_IP):
6405 iphdr_len = sizeof(struct iphdr);
6406 break;
6407 case cpu_to_be16(ETH_P_IPV6):
6408 iphdr_len = sizeof(struct ipv6hdr);
6409 break;
6410 default:
6411 return 0;
6412 }
6413
6414 if (skb_headlen(skb) < iphdr_len)
6415 return 0;
6416
6417 if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
6418 return 0;
6419
6420 return INET_ECN_set_ce(skb);
6421 }
6422
bpf_xdp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)6423 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6424 struct bpf_insn_access_aux *info)
6425 {
6426 if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
6427 return false;
6428
6429 if (off % size != 0)
6430 return false;
6431
6432 switch (off) {
6433 default:
6434 return size == sizeof(__u32);
6435 }
6436 }
6437
bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)6438 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
6439 const struct bpf_insn *si,
6440 struct bpf_insn *insn_buf,
6441 struct bpf_prog *prog, u32 *target_size)
6442 {
6443 struct bpf_insn *insn = insn_buf;
6444
6445 #define BPF_XDP_SOCK_GET(FIELD) \
6446 do { \
6447 BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) > \
6448 sizeof_field(struct bpf_xdp_sock, FIELD)); \
6449 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
6450 si->dst_reg, si->src_reg, \
6451 offsetof(struct xdp_sock, FIELD)); \
6452 } while (0)
6453
6454 switch (si->off) {
6455 case offsetof(struct bpf_xdp_sock, queue_id):
6456 BPF_XDP_SOCK_GET(queue_id);
6457 break;
6458 }
6459
6460 return insn - insn_buf;
6461 }
6462
6463 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
6464 .func = bpf_skb_ecn_set_ce,
6465 .gpl_only = false,
6466 .ret_type = RET_INTEGER,
6467 .arg1_type = ARG_PTR_TO_CTX,
6468 };
6469
BPF_CALL_5(bpf_tcp_check_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)6470 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6471 struct tcphdr *, th, u32, th_len)
6472 {
6473 #ifdef CONFIG_SYN_COOKIES
6474 u32 cookie;
6475 int ret;
6476
6477 if (unlikely(!sk || th_len < sizeof(*th)))
6478 return -EINVAL;
6479
6480 /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
6481 if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6482 return -EINVAL;
6483
6484 if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
6485 return -EINVAL;
6486
6487 if (!th->ack || th->rst || th->syn)
6488 return -ENOENT;
6489
6490 if (tcp_synq_no_recent_overflow(sk))
6491 return -ENOENT;
6492
6493 cookie = ntohl(th->ack_seq) - 1;
6494
6495 switch (sk->sk_family) {
6496 case AF_INET:
6497 if (unlikely(iph_len < sizeof(struct iphdr)))
6498 return -EINVAL;
6499
6500 ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
6501 break;
6502
6503 #if IS_BUILTIN(CONFIG_IPV6)
6504 case AF_INET6:
6505 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6506 return -EINVAL;
6507
6508 ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
6509 break;
6510 #endif /* CONFIG_IPV6 */
6511
6512 default:
6513 return -EPROTONOSUPPORT;
6514 }
6515
6516 if (ret > 0)
6517 return 0;
6518
6519 return -ENOENT;
6520 #else
6521 return -ENOTSUPP;
6522 #endif
6523 }
6524
6525 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
6526 .func = bpf_tcp_check_syncookie,
6527 .gpl_only = true,
6528 .pkt_access = true,
6529 .ret_type = RET_INTEGER,
6530 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6531 .arg2_type = ARG_PTR_TO_MEM,
6532 .arg3_type = ARG_CONST_SIZE,
6533 .arg4_type = ARG_PTR_TO_MEM,
6534 .arg5_type = ARG_CONST_SIZE,
6535 };
6536
BPF_CALL_5(bpf_tcp_gen_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)6537 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6538 struct tcphdr *, th, u32, th_len)
6539 {
6540 #ifdef CONFIG_SYN_COOKIES
6541 u32 cookie;
6542 u16 mss;
6543
6544 if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
6545 return -EINVAL;
6546
6547 if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6548 return -EINVAL;
6549
6550 if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
6551 return -ENOENT;
6552
6553 if (!th->syn || th->ack || th->fin || th->rst)
6554 return -EINVAL;
6555
6556 if (unlikely(iph_len < sizeof(struct iphdr)))
6557 return -EINVAL;
6558
6559 /* Both struct iphdr and struct ipv6hdr have the version field at the
6560 * same offset so we can cast to the shorter header (struct iphdr).
6561 */
6562 switch (((struct iphdr *)iph)->version) {
6563 case 4:
6564 if (sk->sk_family == AF_INET6 && sk->sk_ipv6only)
6565 return -EINVAL;
6566
6567 mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
6568 break;
6569
6570 #if IS_BUILTIN(CONFIG_IPV6)
6571 case 6:
6572 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6573 return -EINVAL;
6574
6575 if (sk->sk_family != AF_INET6)
6576 return -EINVAL;
6577
6578 mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
6579 break;
6580 #endif /* CONFIG_IPV6 */
6581
6582 default:
6583 return -EPROTONOSUPPORT;
6584 }
6585 if (mss == 0)
6586 return -ENOENT;
6587
6588 return cookie | ((u64)mss << 32);
6589 #else
6590 return -EOPNOTSUPP;
6591 #endif /* CONFIG_SYN_COOKIES */
6592 }
6593
6594 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
6595 .func = bpf_tcp_gen_syncookie,
6596 .gpl_only = true, /* __cookie_v*_init_sequence() is GPL */
6597 .pkt_access = true,
6598 .ret_type = RET_INTEGER,
6599 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6600 .arg2_type = ARG_PTR_TO_MEM,
6601 .arg3_type = ARG_CONST_SIZE,
6602 .arg4_type = ARG_PTR_TO_MEM,
6603 .arg5_type = ARG_CONST_SIZE,
6604 };
6605
BPF_CALL_3(bpf_sk_assign,struct sk_buff *,skb,struct sock *,sk,u64,flags)6606 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
6607 {
6608 if (!sk || flags != 0)
6609 return -EINVAL;
6610 if (!skb_at_tc_ingress(skb))
6611 return -EOPNOTSUPP;
6612 if (unlikely(dev_net(skb->dev) != sock_net(sk)))
6613 return -ENETUNREACH;
6614 if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
6615 return -ESOCKTNOSUPPORT;
6616 if (sk_is_refcounted(sk) &&
6617 unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
6618 return -ENOENT;
6619
6620 skb_orphan(skb);
6621 skb->sk = sk;
6622 skb->destructor = sock_pfree;
6623
6624 return 0;
6625 }
6626
6627 static const struct bpf_func_proto bpf_sk_assign_proto = {
6628 .func = bpf_sk_assign,
6629 .gpl_only = false,
6630 .ret_type = RET_INTEGER,
6631 .arg1_type = ARG_PTR_TO_CTX,
6632 .arg2_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6633 .arg3_type = ARG_ANYTHING,
6634 };
6635
bpf_search_tcp_opt(const u8 * op,const u8 * opend,u8 search_kind,const u8 * magic,u8 magic_len,bool * eol)6636 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
6637 u8 search_kind, const u8 *magic,
6638 u8 magic_len, bool *eol)
6639 {
6640 u8 kind, kind_len;
6641
6642 *eol = false;
6643
6644 while (op < opend) {
6645 kind = op[0];
6646
6647 if (kind == TCPOPT_EOL) {
6648 *eol = true;
6649 return ERR_PTR(-ENOMSG);
6650 } else if (kind == TCPOPT_NOP) {
6651 op++;
6652 continue;
6653 }
6654
6655 if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
6656 /* Something is wrong in the received header.
6657 * Follow the TCP stack's tcp_parse_options()
6658 * and just bail here.
6659 */
6660 return ERR_PTR(-EFAULT);
6661
6662 kind_len = op[1];
6663 if (search_kind == kind) {
6664 if (!magic_len)
6665 return op;
6666
6667 if (magic_len > kind_len - 2)
6668 return ERR_PTR(-ENOMSG);
6669
6670 if (!memcmp(&op[2], magic, magic_len))
6671 return op;
6672 }
6673
6674 op += kind_len;
6675 }
6676
6677 return ERR_PTR(-ENOMSG);
6678 }
6679
BPF_CALL_4(bpf_sock_ops_load_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,void *,search_res,u32,len,u64,flags)6680 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6681 void *, search_res, u32, len, u64, flags)
6682 {
6683 bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
6684 const u8 *op, *opend, *magic, *search = search_res;
6685 u8 search_kind, search_len, copy_len, magic_len;
6686 int ret;
6687
6688 /* 2 byte is the minimal option len except TCPOPT_NOP and
6689 * TCPOPT_EOL which are useless for the bpf prog to learn
6690 * and this helper disallow loading them also.
6691 */
6692 if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
6693 return -EINVAL;
6694
6695 search_kind = search[0];
6696 search_len = search[1];
6697
6698 if (search_len > len || search_kind == TCPOPT_NOP ||
6699 search_kind == TCPOPT_EOL)
6700 return -EINVAL;
6701
6702 if (search_kind == TCPOPT_EXP || search_kind == 253) {
6703 /* 16 or 32 bit magic. +2 for kind and kind length */
6704 if (search_len != 4 && search_len != 6)
6705 return -EINVAL;
6706 magic = &search[2];
6707 magic_len = search_len - 2;
6708 } else {
6709 if (search_len)
6710 return -EINVAL;
6711 magic = NULL;
6712 magic_len = 0;
6713 }
6714
6715 if (load_syn) {
6716 ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
6717 if (ret < 0)
6718 return ret;
6719
6720 opend = op + ret;
6721 op += sizeof(struct tcphdr);
6722 } else {
6723 if (!bpf_sock->skb ||
6724 bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
6725 /* This bpf_sock->op cannot call this helper */
6726 return -EPERM;
6727
6728 opend = bpf_sock->skb_data_end;
6729 op = bpf_sock->skb->data + sizeof(struct tcphdr);
6730 }
6731
6732 op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
6733 &eol);
6734 if (IS_ERR(op))
6735 return PTR_ERR(op);
6736
6737 copy_len = op[1];
6738 ret = copy_len;
6739 if (copy_len > len) {
6740 ret = -ENOSPC;
6741 copy_len = len;
6742 }
6743
6744 memcpy(search_res, op, copy_len);
6745 return ret;
6746 }
6747
6748 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
6749 .func = bpf_sock_ops_load_hdr_opt,
6750 .gpl_only = false,
6751 .ret_type = RET_INTEGER,
6752 .arg1_type = ARG_PTR_TO_CTX,
6753 .arg2_type = ARG_PTR_TO_MEM,
6754 .arg3_type = ARG_CONST_SIZE,
6755 .arg4_type = ARG_ANYTHING,
6756 };
6757
BPF_CALL_4(bpf_sock_ops_store_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,const void *,from,u32,len,u64,flags)6758 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6759 const void *, from, u32, len, u64, flags)
6760 {
6761 u8 new_kind, new_kind_len, magic_len = 0, *opend;
6762 const u8 *op, *new_op, *magic = NULL;
6763 struct sk_buff *skb;
6764 bool eol;
6765
6766 if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
6767 return -EPERM;
6768
6769 if (len < 2 || flags)
6770 return -EINVAL;
6771
6772 new_op = from;
6773 new_kind = new_op[0];
6774 new_kind_len = new_op[1];
6775
6776 if (new_kind_len > len || new_kind == TCPOPT_NOP ||
6777 new_kind == TCPOPT_EOL)
6778 return -EINVAL;
6779
6780 if (new_kind_len > bpf_sock->remaining_opt_len)
6781 return -ENOSPC;
6782
6783 /* 253 is another experimental kind */
6784 if (new_kind == TCPOPT_EXP || new_kind == 253) {
6785 if (new_kind_len < 4)
6786 return -EINVAL;
6787 /* Match for the 2 byte magic also.
6788 * RFC 6994: the magic could be 2 or 4 bytes.
6789 * Hence, matching by 2 byte only is on the
6790 * conservative side but it is the right
6791 * thing to do for the 'search-for-duplication'
6792 * purpose.
6793 */
6794 magic = &new_op[2];
6795 magic_len = 2;
6796 }
6797
6798 /* Check for duplication */
6799 skb = bpf_sock->skb;
6800 op = skb->data + sizeof(struct tcphdr);
6801 opend = bpf_sock->skb_data_end;
6802
6803 op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
6804 &eol);
6805 if (!IS_ERR(op))
6806 return -EEXIST;
6807
6808 if (PTR_ERR(op) != -ENOMSG)
6809 return PTR_ERR(op);
6810
6811 if (eol)
6812 /* The option has been ended. Treat it as no more
6813 * header option can be written.
6814 */
6815 return -ENOSPC;
6816
6817 /* No duplication found. Store the header option. */
6818 memcpy(opend, from, new_kind_len);
6819
6820 bpf_sock->remaining_opt_len -= new_kind_len;
6821 bpf_sock->skb_data_end += new_kind_len;
6822
6823 return 0;
6824 }
6825
6826 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
6827 .func = bpf_sock_ops_store_hdr_opt,
6828 .gpl_only = false,
6829 .ret_type = RET_INTEGER,
6830 .arg1_type = ARG_PTR_TO_CTX,
6831 .arg2_type = ARG_PTR_TO_MEM,
6832 .arg3_type = ARG_CONST_SIZE,
6833 .arg4_type = ARG_ANYTHING,
6834 };
6835
BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,u32,len,u64,flags)6836 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6837 u32, len, u64, flags)
6838 {
6839 if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
6840 return -EPERM;
6841
6842 if (flags || len < 2)
6843 return -EINVAL;
6844
6845 if (len > bpf_sock->remaining_opt_len)
6846 return -ENOSPC;
6847
6848 bpf_sock->remaining_opt_len -= len;
6849
6850 return 0;
6851 }
6852
6853 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
6854 .func = bpf_sock_ops_reserve_hdr_opt,
6855 .gpl_only = false,
6856 .ret_type = RET_INTEGER,
6857 .arg1_type = ARG_PTR_TO_CTX,
6858 .arg2_type = ARG_ANYTHING,
6859 .arg3_type = ARG_ANYTHING,
6860 };
6861
6862 #endif /* CONFIG_INET */
6863
bpf_helper_changes_pkt_data(void * func)6864 bool bpf_helper_changes_pkt_data(void *func)
6865 {
6866 if (func == bpf_skb_vlan_push ||
6867 func == bpf_skb_vlan_pop ||
6868 func == bpf_skb_store_bytes ||
6869 func == bpf_skb_change_proto ||
6870 func == bpf_skb_change_head ||
6871 func == sk_skb_change_head ||
6872 func == bpf_skb_change_tail ||
6873 func == sk_skb_change_tail ||
6874 func == bpf_skb_adjust_room ||
6875 func == sk_skb_adjust_room ||
6876 func == bpf_skb_pull_data ||
6877 func == sk_skb_pull_data ||
6878 func == bpf_clone_redirect ||
6879 func == bpf_l3_csum_replace ||
6880 func == bpf_l4_csum_replace ||
6881 func == bpf_xdp_adjust_head ||
6882 func == bpf_xdp_adjust_meta ||
6883 func == bpf_msg_pull_data ||
6884 func == bpf_msg_push_data ||
6885 func == bpf_msg_pop_data ||
6886 func == bpf_xdp_adjust_tail ||
6887 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6888 func == bpf_lwt_seg6_store_bytes ||
6889 func == bpf_lwt_seg6_adjust_srh ||
6890 func == bpf_lwt_seg6_action ||
6891 #endif
6892 #ifdef CONFIG_INET
6893 func == bpf_sock_ops_store_hdr_opt ||
6894 #endif
6895 func == bpf_lwt_in_push_encap ||
6896 func == bpf_lwt_xmit_push_encap)
6897 return true;
6898
6899 return false;
6900 }
6901
6902 const struct bpf_func_proto bpf_event_output_data_proto __weak;
6903 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
6904
6905 static const struct bpf_func_proto *
sock_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)6906 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6907 {
6908 switch (func_id) {
6909 /* inet and inet6 sockets are created in a process
6910 * context so there is always a valid uid/gid
6911 */
6912 case BPF_FUNC_get_current_uid_gid:
6913 return &bpf_get_current_uid_gid_proto;
6914 case BPF_FUNC_get_local_storage:
6915 return &bpf_get_local_storage_proto;
6916 case BPF_FUNC_get_socket_cookie:
6917 return &bpf_get_socket_cookie_sock_proto;
6918 case BPF_FUNC_get_netns_cookie:
6919 return &bpf_get_netns_cookie_sock_proto;
6920 case BPF_FUNC_perf_event_output:
6921 return &bpf_event_output_data_proto;
6922 case BPF_FUNC_get_current_pid_tgid:
6923 return &bpf_get_current_pid_tgid_proto;
6924 case BPF_FUNC_get_current_comm:
6925 return &bpf_get_current_comm_proto;
6926 #ifdef CONFIG_CGROUPS
6927 case BPF_FUNC_get_current_cgroup_id:
6928 return &bpf_get_current_cgroup_id_proto;
6929 case BPF_FUNC_get_current_ancestor_cgroup_id:
6930 return &bpf_get_current_ancestor_cgroup_id_proto;
6931 #endif
6932 #ifdef CONFIG_CGROUP_NET_CLASSID
6933 case BPF_FUNC_get_cgroup_classid:
6934 return &bpf_get_cgroup_classid_curr_proto;
6935 #endif
6936 case BPF_FUNC_sk_storage_get:
6937 return &bpf_sk_storage_get_cg_sock_proto;
6938 default:
6939 return bpf_base_func_proto(func_id);
6940 }
6941 }
6942
6943 static const struct bpf_func_proto *
sock_addr_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)6944 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6945 {
6946 switch (func_id) {
6947 /* inet and inet6 sockets are created in a process
6948 * context so there is always a valid uid/gid
6949 */
6950 case BPF_FUNC_get_current_uid_gid:
6951 return &bpf_get_current_uid_gid_proto;
6952 case BPF_FUNC_bind:
6953 switch (prog->expected_attach_type) {
6954 case BPF_CGROUP_INET4_CONNECT:
6955 case BPF_CGROUP_INET6_CONNECT:
6956 return &bpf_bind_proto;
6957 default:
6958 return NULL;
6959 }
6960 case BPF_FUNC_get_socket_cookie:
6961 return &bpf_get_socket_cookie_sock_addr_proto;
6962 case BPF_FUNC_get_netns_cookie:
6963 return &bpf_get_netns_cookie_sock_addr_proto;
6964 case BPF_FUNC_get_local_storage:
6965 return &bpf_get_local_storage_proto;
6966 case BPF_FUNC_perf_event_output:
6967 return &bpf_event_output_data_proto;
6968 case BPF_FUNC_get_current_pid_tgid:
6969 return &bpf_get_current_pid_tgid_proto;
6970 case BPF_FUNC_get_current_comm:
6971 return &bpf_get_current_comm_proto;
6972 #ifdef CONFIG_CGROUPS
6973 case BPF_FUNC_get_current_cgroup_id:
6974 return &bpf_get_current_cgroup_id_proto;
6975 case BPF_FUNC_get_current_ancestor_cgroup_id:
6976 return &bpf_get_current_ancestor_cgroup_id_proto;
6977 #endif
6978 #ifdef CONFIG_CGROUP_NET_CLASSID
6979 case BPF_FUNC_get_cgroup_classid:
6980 return &bpf_get_cgroup_classid_curr_proto;
6981 #endif
6982 #ifdef CONFIG_INET
6983 case BPF_FUNC_sk_lookup_tcp:
6984 return &bpf_sock_addr_sk_lookup_tcp_proto;
6985 case BPF_FUNC_sk_lookup_udp:
6986 return &bpf_sock_addr_sk_lookup_udp_proto;
6987 case BPF_FUNC_sk_release:
6988 return &bpf_sk_release_proto;
6989 case BPF_FUNC_skc_lookup_tcp:
6990 return &bpf_sock_addr_skc_lookup_tcp_proto;
6991 #endif /* CONFIG_INET */
6992 case BPF_FUNC_sk_storage_get:
6993 return &bpf_sk_storage_get_proto;
6994 case BPF_FUNC_sk_storage_delete:
6995 return &bpf_sk_storage_delete_proto;
6996 case BPF_FUNC_setsockopt:
6997 switch (prog->expected_attach_type) {
6998 case BPF_CGROUP_INET4_CONNECT:
6999 case BPF_CGROUP_INET6_CONNECT:
7000 return &bpf_sock_addr_setsockopt_proto;
7001 default:
7002 return NULL;
7003 }
7004 case BPF_FUNC_getsockopt:
7005 switch (prog->expected_attach_type) {
7006 case BPF_CGROUP_INET4_CONNECT:
7007 case BPF_CGROUP_INET6_CONNECT:
7008 return &bpf_sock_addr_getsockopt_proto;
7009 default:
7010 return NULL;
7011 }
7012 default:
7013 return bpf_sk_base_func_proto(func_id);
7014 }
7015 }
7016
7017 static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7018 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7019 {
7020 switch (func_id) {
7021 case BPF_FUNC_skb_load_bytes:
7022 return &bpf_skb_load_bytes_proto;
7023 case BPF_FUNC_skb_load_bytes_relative:
7024 return &bpf_skb_load_bytes_relative_proto;
7025 case BPF_FUNC_get_socket_cookie:
7026 return &bpf_get_socket_cookie_proto;
7027 case BPF_FUNC_get_socket_uid:
7028 return &bpf_get_socket_uid_proto;
7029 case BPF_FUNC_perf_event_output:
7030 return &bpf_skb_event_output_proto;
7031 default:
7032 return bpf_sk_base_func_proto(func_id);
7033 }
7034 }
7035
7036 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7037 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7038
7039 static const struct bpf_func_proto *
cg_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7040 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7041 {
7042 switch (func_id) {
7043 case BPF_FUNC_get_local_storage:
7044 return &bpf_get_local_storage_proto;
7045 case BPF_FUNC_sk_fullsock:
7046 return &bpf_sk_fullsock_proto;
7047 case BPF_FUNC_sk_storage_get:
7048 return &bpf_sk_storage_get_proto;
7049 case BPF_FUNC_sk_storage_delete:
7050 return &bpf_sk_storage_delete_proto;
7051 case BPF_FUNC_perf_event_output:
7052 return &bpf_skb_event_output_proto;
7053 #ifdef CONFIG_SOCK_CGROUP_DATA
7054 case BPF_FUNC_skb_cgroup_id:
7055 return &bpf_skb_cgroup_id_proto;
7056 case BPF_FUNC_skb_ancestor_cgroup_id:
7057 return &bpf_skb_ancestor_cgroup_id_proto;
7058 case BPF_FUNC_sk_cgroup_id:
7059 return &bpf_sk_cgroup_id_proto;
7060 case BPF_FUNC_sk_ancestor_cgroup_id:
7061 return &bpf_sk_ancestor_cgroup_id_proto;
7062 #endif
7063 #ifdef CONFIG_INET
7064 case BPF_FUNC_sk_lookup_tcp:
7065 return &bpf_sk_lookup_tcp_proto;
7066 case BPF_FUNC_sk_lookup_udp:
7067 return &bpf_sk_lookup_udp_proto;
7068 case BPF_FUNC_sk_release:
7069 return &bpf_sk_release_proto;
7070 case BPF_FUNC_skc_lookup_tcp:
7071 return &bpf_skc_lookup_tcp_proto;
7072 case BPF_FUNC_tcp_sock:
7073 return &bpf_tcp_sock_proto;
7074 case BPF_FUNC_get_listener_sock:
7075 return &bpf_get_listener_sock_proto;
7076 case BPF_FUNC_skb_ecn_set_ce:
7077 return &bpf_skb_ecn_set_ce_proto;
7078 #endif
7079 default:
7080 return sk_filter_func_proto(func_id, prog);
7081 }
7082 }
7083
7084 static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7085 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7086 {
7087 switch (func_id) {
7088 case BPF_FUNC_skb_store_bytes:
7089 return &bpf_skb_store_bytes_proto;
7090 case BPF_FUNC_skb_load_bytes:
7091 return &bpf_skb_load_bytes_proto;
7092 case BPF_FUNC_skb_load_bytes_relative:
7093 return &bpf_skb_load_bytes_relative_proto;
7094 case BPF_FUNC_skb_pull_data:
7095 return &bpf_skb_pull_data_proto;
7096 case BPF_FUNC_csum_diff:
7097 return &bpf_csum_diff_proto;
7098 case BPF_FUNC_csum_update:
7099 return &bpf_csum_update_proto;
7100 case BPF_FUNC_csum_level:
7101 return &bpf_csum_level_proto;
7102 case BPF_FUNC_l3_csum_replace:
7103 return &bpf_l3_csum_replace_proto;
7104 case BPF_FUNC_l4_csum_replace:
7105 return &bpf_l4_csum_replace_proto;
7106 case BPF_FUNC_clone_redirect:
7107 return &bpf_clone_redirect_proto;
7108 case BPF_FUNC_get_cgroup_classid:
7109 return &bpf_get_cgroup_classid_proto;
7110 case BPF_FUNC_skb_vlan_push:
7111 return &bpf_skb_vlan_push_proto;
7112 case BPF_FUNC_skb_vlan_pop:
7113 return &bpf_skb_vlan_pop_proto;
7114 case BPF_FUNC_skb_change_proto:
7115 return &bpf_skb_change_proto_proto;
7116 case BPF_FUNC_skb_change_type:
7117 return &bpf_skb_change_type_proto;
7118 case BPF_FUNC_skb_adjust_room:
7119 return &bpf_skb_adjust_room_proto;
7120 case BPF_FUNC_skb_change_tail:
7121 return &bpf_skb_change_tail_proto;
7122 case BPF_FUNC_skb_change_head:
7123 return &bpf_skb_change_head_proto;
7124 case BPF_FUNC_skb_get_tunnel_key:
7125 return &bpf_skb_get_tunnel_key_proto;
7126 case BPF_FUNC_skb_set_tunnel_key:
7127 return bpf_get_skb_set_tunnel_proto(func_id);
7128 case BPF_FUNC_skb_get_tunnel_opt:
7129 return &bpf_skb_get_tunnel_opt_proto;
7130 case BPF_FUNC_skb_set_tunnel_opt:
7131 return bpf_get_skb_set_tunnel_proto(func_id);
7132 case BPF_FUNC_redirect:
7133 return &bpf_redirect_proto;
7134 case BPF_FUNC_redirect_neigh:
7135 return &bpf_redirect_neigh_proto;
7136 case BPF_FUNC_redirect_peer:
7137 return &bpf_redirect_peer_proto;
7138 case BPF_FUNC_get_route_realm:
7139 return &bpf_get_route_realm_proto;
7140 case BPF_FUNC_get_hash_recalc:
7141 return &bpf_get_hash_recalc_proto;
7142 case BPF_FUNC_set_hash_invalid:
7143 return &bpf_set_hash_invalid_proto;
7144 case BPF_FUNC_set_hash:
7145 return &bpf_set_hash_proto;
7146 case BPF_FUNC_perf_event_output:
7147 return &bpf_skb_event_output_proto;
7148 case BPF_FUNC_get_smp_processor_id:
7149 return &bpf_get_smp_processor_id_proto;
7150 case BPF_FUNC_skb_under_cgroup:
7151 return &bpf_skb_under_cgroup_proto;
7152 case BPF_FUNC_get_socket_cookie:
7153 return &bpf_get_socket_cookie_proto;
7154 case BPF_FUNC_get_socket_uid:
7155 return &bpf_get_socket_uid_proto;
7156 case BPF_FUNC_fib_lookup:
7157 return &bpf_skb_fib_lookup_proto;
7158 case BPF_FUNC_sk_fullsock:
7159 return &bpf_sk_fullsock_proto;
7160 case BPF_FUNC_sk_storage_get:
7161 return &bpf_sk_storage_get_proto;
7162 case BPF_FUNC_sk_storage_delete:
7163 return &bpf_sk_storage_delete_proto;
7164 #ifdef CONFIG_XFRM
7165 case BPF_FUNC_skb_get_xfrm_state:
7166 return &bpf_skb_get_xfrm_state_proto;
7167 #endif
7168 #ifdef CONFIG_CGROUP_NET_CLASSID
7169 case BPF_FUNC_skb_cgroup_classid:
7170 return &bpf_skb_cgroup_classid_proto;
7171 #endif
7172 #ifdef CONFIG_SOCK_CGROUP_DATA
7173 case BPF_FUNC_skb_cgroup_id:
7174 return &bpf_skb_cgroup_id_proto;
7175 case BPF_FUNC_skb_ancestor_cgroup_id:
7176 return &bpf_skb_ancestor_cgroup_id_proto;
7177 #endif
7178 #ifdef CONFIG_INET
7179 case BPF_FUNC_sk_lookup_tcp:
7180 return &bpf_sk_lookup_tcp_proto;
7181 case BPF_FUNC_sk_lookup_udp:
7182 return &bpf_sk_lookup_udp_proto;
7183 case BPF_FUNC_sk_release:
7184 return &bpf_sk_release_proto;
7185 case BPF_FUNC_tcp_sock:
7186 return &bpf_tcp_sock_proto;
7187 case BPF_FUNC_get_listener_sock:
7188 return &bpf_get_listener_sock_proto;
7189 case BPF_FUNC_skc_lookup_tcp:
7190 return &bpf_skc_lookup_tcp_proto;
7191 case BPF_FUNC_tcp_check_syncookie:
7192 return &bpf_tcp_check_syncookie_proto;
7193 case BPF_FUNC_skb_ecn_set_ce:
7194 return &bpf_skb_ecn_set_ce_proto;
7195 case BPF_FUNC_tcp_gen_syncookie:
7196 return &bpf_tcp_gen_syncookie_proto;
7197 case BPF_FUNC_sk_assign:
7198 return &bpf_sk_assign_proto;
7199 #endif
7200 default:
7201 return bpf_sk_base_func_proto(func_id);
7202 }
7203 }
7204
7205 static const struct bpf_func_proto *
xdp_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7206 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7207 {
7208 switch (func_id) {
7209 case BPF_FUNC_perf_event_output:
7210 return &bpf_xdp_event_output_proto;
7211 case BPF_FUNC_get_smp_processor_id:
7212 return &bpf_get_smp_processor_id_proto;
7213 case BPF_FUNC_csum_diff:
7214 return &bpf_csum_diff_proto;
7215 case BPF_FUNC_xdp_adjust_head:
7216 return &bpf_xdp_adjust_head_proto;
7217 case BPF_FUNC_xdp_adjust_meta:
7218 return &bpf_xdp_adjust_meta_proto;
7219 case BPF_FUNC_redirect:
7220 return &bpf_xdp_redirect_proto;
7221 case BPF_FUNC_redirect_map:
7222 return &bpf_xdp_redirect_map_proto;
7223 case BPF_FUNC_xdp_adjust_tail:
7224 return &bpf_xdp_adjust_tail_proto;
7225 case BPF_FUNC_fib_lookup:
7226 return &bpf_xdp_fib_lookup_proto;
7227 #ifdef CONFIG_INET
7228 case BPF_FUNC_sk_lookup_udp:
7229 return &bpf_xdp_sk_lookup_udp_proto;
7230 case BPF_FUNC_sk_lookup_tcp:
7231 return &bpf_xdp_sk_lookup_tcp_proto;
7232 case BPF_FUNC_sk_release:
7233 return &bpf_sk_release_proto;
7234 case BPF_FUNC_skc_lookup_tcp:
7235 return &bpf_xdp_skc_lookup_tcp_proto;
7236 case BPF_FUNC_tcp_check_syncookie:
7237 return &bpf_tcp_check_syncookie_proto;
7238 case BPF_FUNC_tcp_gen_syncookie:
7239 return &bpf_tcp_gen_syncookie_proto;
7240 #endif
7241 default:
7242 return bpf_sk_base_func_proto(func_id);
7243 }
7244 }
7245
7246 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
7247 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
7248
7249 static const struct bpf_func_proto *
sock_ops_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7250 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7251 {
7252 switch (func_id) {
7253 case BPF_FUNC_setsockopt:
7254 return &bpf_sock_ops_setsockopt_proto;
7255 case BPF_FUNC_getsockopt:
7256 return &bpf_sock_ops_getsockopt_proto;
7257 case BPF_FUNC_sock_ops_cb_flags_set:
7258 return &bpf_sock_ops_cb_flags_set_proto;
7259 case BPF_FUNC_sock_map_update:
7260 return &bpf_sock_map_update_proto;
7261 case BPF_FUNC_sock_hash_update:
7262 return &bpf_sock_hash_update_proto;
7263 case BPF_FUNC_get_socket_cookie:
7264 return &bpf_get_socket_cookie_sock_ops_proto;
7265 case BPF_FUNC_get_local_storage:
7266 return &bpf_get_local_storage_proto;
7267 case BPF_FUNC_perf_event_output:
7268 return &bpf_event_output_data_proto;
7269 case BPF_FUNC_sk_storage_get:
7270 return &bpf_sk_storage_get_proto;
7271 case BPF_FUNC_sk_storage_delete:
7272 return &bpf_sk_storage_delete_proto;
7273 #ifdef CONFIG_INET
7274 case BPF_FUNC_load_hdr_opt:
7275 return &bpf_sock_ops_load_hdr_opt_proto;
7276 case BPF_FUNC_store_hdr_opt:
7277 return &bpf_sock_ops_store_hdr_opt_proto;
7278 case BPF_FUNC_reserve_hdr_opt:
7279 return &bpf_sock_ops_reserve_hdr_opt_proto;
7280 case BPF_FUNC_tcp_sock:
7281 return &bpf_tcp_sock_proto;
7282 #endif /* CONFIG_INET */
7283 default:
7284 return bpf_sk_base_func_proto(func_id);
7285 }
7286 }
7287
7288 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
7289 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
7290
7291 static const struct bpf_func_proto *
sk_msg_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7292 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7293 {
7294 switch (func_id) {
7295 case BPF_FUNC_msg_redirect_map:
7296 return &bpf_msg_redirect_map_proto;
7297 case BPF_FUNC_msg_redirect_hash:
7298 return &bpf_msg_redirect_hash_proto;
7299 case BPF_FUNC_msg_apply_bytes:
7300 return &bpf_msg_apply_bytes_proto;
7301 case BPF_FUNC_msg_cork_bytes:
7302 return &bpf_msg_cork_bytes_proto;
7303 case BPF_FUNC_msg_pull_data:
7304 return &bpf_msg_pull_data_proto;
7305 case BPF_FUNC_msg_push_data:
7306 return &bpf_msg_push_data_proto;
7307 case BPF_FUNC_msg_pop_data:
7308 return &bpf_msg_pop_data_proto;
7309 case BPF_FUNC_perf_event_output:
7310 return &bpf_event_output_data_proto;
7311 case BPF_FUNC_get_current_uid_gid:
7312 return &bpf_get_current_uid_gid_proto;
7313 case BPF_FUNC_get_current_pid_tgid:
7314 return &bpf_get_current_pid_tgid_proto;
7315 case BPF_FUNC_sk_storage_get:
7316 return &bpf_sk_storage_get_proto;
7317 case BPF_FUNC_sk_storage_delete:
7318 return &bpf_sk_storage_delete_proto;
7319 #ifdef CONFIG_CGROUPS
7320 case BPF_FUNC_get_current_cgroup_id:
7321 return &bpf_get_current_cgroup_id_proto;
7322 case BPF_FUNC_get_current_ancestor_cgroup_id:
7323 return &bpf_get_current_ancestor_cgroup_id_proto;
7324 #endif
7325 #ifdef CONFIG_CGROUP_NET_CLASSID
7326 case BPF_FUNC_get_cgroup_classid:
7327 return &bpf_get_cgroup_classid_curr_proto;
7328 #endif
7329 default:
7330 return bpf_sk_base_func_proto(func_id);
7331 }
7332 }
7333
7334 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
7335 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
7336
7337 static const struct bpf_func_proto *
sk_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7338 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7339 {
7340 switch (func_id) {
7341 case BPF_FUNC_skb_store_bytes:
7342 return &bpf_skb_store_bytes_proto;
7343 case BPF_FUNC_skb_load_bytes:
7344 return &bpf_skb_load_bytes_proto;
7345 case BPF_FUNC_skb_pull_data:
7346 return &sk_skb_pull_data_proto;
7347 case BPF_FUNC_skb_change_tail:
7348 return &sk_skb_change_tail_proto;
7349 case BPF_FUNC_skb_change_head:
7350 return &sk_skb_change_head_proto;
7351 case BPF_FUNC_skb_adjust_room:
7352 return &sk_skb_adjust_room_proto;
7353 case BPF_FUNC_get_socket_cookie:
7354 return &bpf_get_socket_cookie_proto;
7355 case BPF_FUNC_get_socket_uid:
7356 return &bpf_get_socket_uid_proto;
7357 case BPF_FUNC_sk_redirect_map:
7358 return &bpf_sk_redirect_map_proto;
7359 case BPF_FUNC_sk_redirect_hash:
7360 return &bpf_sk_redirect_hash_proto;
7361 case BPF_FUNC_perf_event_output:
7362 return &bpf_skb_event_output_proto;
7363 #ifdef CONFIG_INET
7364 case BPF_FUNC_sk_lookup_tcp:
7365 return &bpf_sk_lookup_tcp_proto;
7366 case BPF_FUNC_sk_lookup_udp:
7367 return &bpf_sk_lookup_udp_proto;
7368 case BPF_FUNC_sk_release:
7369 return &bpf_sk_release_proto;
7370 case BPF_FUNC_skc_lookup_tcp:
7371 return &bpf_skc_lookup_tcp_proto;
7372 #endif
7373 default:
7374 return bpf_sk_base_func_proto(func_id);
7375 }
7376 }
7377
7378 static const struct bpf_func_proto *
flow_dissector_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7379 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7380 {
7381 switch (func_id) {
7382 case BPF_FUNC_skb_load_bytes:
7383 return &bpf_flow_dissector_load_bytes_proto;
7384 default:
7385 return bpf_sk_base_func_proto(func_id);
7386 }
7387 }
7388
7389 static const struct bpf_func_proto *
lwt_out_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7390 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7391 {
7392 switch (func_id) {
7393 case BPF_FUNC_skb_load_bytes:
7394 return &bpf_skb_load_bytes_proto;
7395 case BPF_FUNC_skb_pull_data:
7396 return &bpf_skb_pull_data_proto;
7397 case BPF_FUNC_csum_diff:
7398 return &bpf_csum_diff_proto;
7399 case BPF_FUNC_get_cgroup_classid:
7400 return &bpf_get_cgroup_classid_proto;
7401 case BPF_FUNC_get_route_realm:
7402 return &bpf_get_route_realm_proto;
7403 case BPF_FUNC_get_hash_recalc:
7404 return &bpf_get_hash_recalc_proto;
7405 case BPF_FUNC_perf_event_output:
7406 return &bpf_skb_event_output_proto;
7407 case BPF_FUNC_get_smp_processor_id:
7408 return &bpf_get_smp_processor_id_proto;
7409 case BPF_FUNC_skb_under_cgroup:
7410 return &bpf_skb_under_cgroup_proto;
7411 default:
7412 return bpf_sk_base_func_proto(func_id);
7413 }
7414 }
7415
7416 static const struct bpf_func_proto *
lwt_in_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7417 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7418 {
7419 switch (func_id) {
7420 case BPF_FUNC_lwt_push_encap:
7421 return &bpf_lwt_in_push_encap_proto;
7422 default:
7423 return lwt_out_func_proto(func_id, prog);
7424 }
7425 }
7426
7427 static const struct bpf_func_proto *
lwt_xmit_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7428 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7429 {
7430 switch (func_id) {
7431 case BPF_FUNC_skb_get_tunnel_key:
7432 return &bpf_skb_get_tunnel_key_proto;
7433 case BPF_FUNC_skb_set_tunnel_key:
7434 return bpf_get_skb_set_tunnel_proto(func_id);
7435 case BPF_FUNC_skb_get_tunnel_opt:
7436 return &bpf_skb_get_tunnel_opt_proto;
7437 case BPF_FUNC_skb_set_tunnel_opt:
7438 return bpf_get_skb_set_tunnel_proto(func_id);
7439 case BPF_FUNC_redirect:
7440 return &bpf_redirect_proto;
7441 case BPF_FUNC_clone_redirect:
7442 return &bpf_clone_redirect_proto;
7443 case BPF_FUNC_skb_change_tail:
7444 return &bpf_skb_change_tail_proto;
7445 case BPF_FUNC_skb_change_head:
7446 return &bpf_skb_change_head_proto;
7447 case BPF_FUNC_skb_store_bytes:
7448 return &bpf_skb_store_bytes_proto;
7449 case BPF_FUNC_csum_update:
7450 return &bpf_csum_update_proto;
7451 case BPF_FUNC_csum_level:
7452 return &bpf_csum_level_proto;
7453 case BPF_FUNC_l3_csum_replace:
7454 return &bpf_l3_csum_replace_proto;
7455 case BPF_FUNC_l4_csum_replace:
7456 return &bpf_l4_csum_replace_proto;
7457 case BPF_FUNC_set_hash_invalid:
7458 return &bpf_set_hash_invalid_proto;
7459 case BPF_FUNC_lwt_push_encap:
7460 return &bpf_lwt_xmit_push_encap_proto;
7461 default:
7462 return lwt_out_func_proto(func_id, prog);
7463 }
7464 }
7465
7466 static const struct bpf_func_proto *
lwt_seg6local_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7467 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7468 {
7469 switch (func_id) {
7470 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7471 case BPF_FUNC_lwt_seg6_store_bytes:
7472 return &bpf_lwt_seg6_store_bytes_proto;
7473 case BPF_FUNC_lwt_seg6_action:
7474 return &bpf_lwt_seg6_action_proto;
7475 case BPF_FUNC_lwt_seg6_adjust_srh:
7476 return &bpf_lwt_seg6_adjust_srh_proto;
7477 #endif
7478 default:
7479 return lwt_out_func_proto(func_id, prog);
7480 }
7481 }
7482
bpf_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7483 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
7484 const struct bpf_prog *prog,
7485 struct bpf_insn_access_aux *info)
7486 {
7487 const int size_default = sizeof(__u32);
7488
7489 if (off < 0 || off >= sizeof(struct __sk_buff))
7490 return false;
7491
7492 /* The verifier guarantees that size > 0. */
7493 if (off % size != 0)
7494 return false;
7495
7496 switch (off) {
7497 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7498 if (off + size > offsetofend(struct __sk_buff, cb[4]))
7499 return false;
7500 break;
7501 case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
7502 case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
7503 case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
7504 case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
7505 case bpf_ctx_range(struct __sk_buff, data):
7506 case bpf_ctx_range(struct __sk_buff, data_meta):
7507 case bpf_ctx_range(struct __sk_buff, data_end):
7508 if (size != size_default)
7509 return false;
7510 break;
7511 case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
7512 return false;
7513 case bpf_ctx_range(struct __sk_buff, tstamp):
7514 if (size != sizeof(__u64))
7515 return false;
7516 break;
7517 case offsetof(struct __sk_buff, sk):
7518 if (type == BPF_WRITE || size != sizeof(__u64))
7519 return false;
7520 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
7521 break;
7522 default:
7523 /* Only narrow read access allowed for now. */
7524 if (type == BPF_WRITE) {
7525 if (size != size_default)
7526 return false;
7527 } else {
7528 bpf_ctx_record_field_size(info, size_default);
7529 if (!bpf_ctx_narrow_access_ok(off, size, size_default))
7530 return false;
7531 }
7532 }
7533
7534 return true;
7535 }
7536
sk_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7537 static bool sk_filter_is_valid_access(int off, int size,
7538 enum bpf_access_type type,
7539 const struct bpf_prog *prog,
7540 struct bpf_insn_access_aux *info)
7541 {
7542 switch (off) {
7543 case bpf_ctx_range(struct __sk_buff, tc_classid):
7544 case bpf_ctx_range(struct __sk_buff, data):
7545 case bpf_ctx_range(struct __sk_buff, data_meta):
7546 case bpf_ctx_range(struct __sk_buff, data_end):
7547 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7548 case bpf_ctx_range(struct __sk_buff, tstamp):
7549 case bpf_ctx_range(struct __sk_buff, wire_len):
7550 return false;
7551 }
7552
7553 if (type == BPF_WRITE) {
7554 switch (off) {
7555 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7556 break;
7557 default:
7558 return false;
7559 }
7560 }
7561
7562 return bpf_skb_is_valid_access(off, size, type, prog, info);
7563 }
7564
cg_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7565 static bool cg_skb_is_valid_access(int off, int size,
7566 enum bpf_access_type type,
7567 const struct bpf_prog *prog,
7568 struct bpf_insn_access_aux *info)
7569 {
7570 switch (off) {
7571 case bpf_ctx_range(struct __sk_buff, tc_classid):
7572 case bpf_ctx_range(struct __sk_buff, data_meta):
7573 case bpf_ctx_range(struct __sk_buff, wire_len):
7574 return false;
7575 case bpf_ctx_range(struct __sk_buff, data):
7576 case bpf_ctx_range(struct __sk_buff, data_end):
7577 if (!bpf_capable())
7578 return false;
7579 break;
7580 }
7581
7582 if (type == BPF_WRITE) {
7583 switch (off) {
7584 case bpf_ctx_range(struct __sk_buff, mark):
7585 case bpf_ctx_range(struct __sk_buff, priority):
7586 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7587 break;
7588 case bpf_ctx_range(struct __sk_buff, tstamp):
7589 if (!bpf_capable())
7590 return false;
7591 break;
7592 default:
7593 return false;
7594 }
7595 }
7596
7597 switch (off) {
7598 case bpf_ctx_range(struct __sk_buff, data):
7599 info->reg_type = PTR_TO_PACKET;
7600 break;
7601 case bpf_ctx_range(struct __sk_buff, data_end):
7602 info->reg_type = PTR_TO_PACKET_END;
7603 break;
7604 }
7605
7606 return bpf_skb_is_valid_access(off, size, type, prog, info);
7607 }
7608
lwt_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7609 static bool lwt_is_valid_access(int off, int size,
7610 enum bpf_access_type type,
7611 const struct bpf_prog *prog,
7612 struct bpf_insn_access_aux *info)
7613 {
7614 switch (off) {
7615 case bpf_ctx_range(struct __sk_buff, tc_classid):
7616 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7617 case bpf_ctx_range(struct __sk_buff, data_meta):
7618 case bpf_ctx_range(struct __sk_buff, tstamp):
7619 case bpf_ctx_range(struct __sk_buff, wire_len):
7620 return false;
7621 }
7622
7623 if (type == BPF_WRITE) {
7624 switch (off) {
7625 case bpf_ctx_range(struct __sk_buff, mark):
7626 case bpf_ctx_range(struct __sk_buff, priority):
7627 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7628 break;
7629 default:
7630 return false;
7631 }
7632 }
7633
7634 switch (off) {
7635 case bpf_ctx_range(struct __sk_buff, data):
7636 info->reg_type = PTR_TO_PACKET;
7637 break;
7638 case bpf_ctx_range(struct __sk_buff, data_end):
7639 info->reg_type = PTR_TO_PACKET_END;
7640 break;
7641 }
7642
7643 return bpf_skb_is_valid_access(off, size, type, prog, info);
7644 }
7645
7646 /* Attach type specific accesses */
__sock_filter_check_attach_type(int off,enum bpf_access_type access_type,enum bpf_attach_type attach_type)7647 static bool __sock_filter_check_attach_type(int off,
7648 enum bpf_access_type access_type,
7649 enum bpf_attach_type attach_type)
7650 {
7651 switch (off) {
7652 case offsetof(struct bpf_sock, bound_dev_if):
7653 case offsetof(struct bpf_sock, mark):
7654 case offsetof(struct bpf_sock, priority):
7655 switch (attach_type) {
7656 case BPF_CGROUP_INET_SOCK_CREATE:
7657 case BPF_CGROUP_INET_SOCK_RELEASE:
7658 goto full_access;
7659 default:
7660 return false;
7661 }
7662 case bpf_ctx_range(struct bpf_sock, src_ip4):
7663 switch (attach_type) {
7664 case BPF_CGROUP_INET4_POST_BIND:
7665 goto read_only;
7666 default:
7667 return false;
7668 }
7669 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7670 switch (attach_type) {
7671 case BPF_CGROUP_INET6_POST_BIND:
7672 goto read_only;
7673 default:
7674 return false;
7675 }
7676 case bpf_ctx_range(struct bpf_sock, src_port):
7677 switch (attach_type) {
7678 case BPF_CGROUP_INET4_POST_BIND:
7679 case BPF_CGROUP_INET6_POST_BIND:
7680 goto read_only;
7681 default:
7682 return false;
7683 }
7684 }
7685 read_only:
7686 return access_type == BPF_READ;
7687 full_access:
7688 return true;
7689 }
7690
bpf_sock_common_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7691 bool bpf_sock_common_is_valid_access(int off, int size,
7692 enum bpf_access_type type,
7693 struct bpf_insn_access_aux *info)
7694 {
7695 switch (off) {
7696 case bpf_ctx_range_till(struct bpf_sock, type, priority):
7697 return false;
7698 default:
7699 return bpf_sock_is_valid_access(off, size, type, info);
7700 }
7701 }
7702
bpf_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7703 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7704 struct bpf_insn_access_aux *info)
7705 {
7706 const int size_default = sizeof(__u32);
7707
7708 if (off < 0 || off >= sizeof(struct bpf_sock))
7709 return false;
7710 if (off % size != 0)
7711 return false;
7712
7713 switch (off) {
7714 case offsetof(struct bpf_sock, state):
7715 case offsetof(struct bpf_sock, family):
7716 case offsetof(struct bpf_sock, type):
7717 case offsetof(struct bpf_sock, protocol):
7718 case offsetof(struct bpf_sock, dst_port):
7719 case offsetof(struct bpf_sock, src_port):
7720 case offsetof(struct bpf_sock, rx_queue_mapping):
7721 case bpf_ctx_range(struct bpf_sock, src_ip4):
7722 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7723 case bpf_ctx_range(struct bpf_sock, dst_ip4):
7724 case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
7725 bpf_ctx_record_field_size(info, size_default);
7726 return bpf_ctx_narrow_access_ok(off, size, size_default);
7727 }
7728
7729 return size == size_default;
7730 }
7731
sock_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7732 static bool sock_filter_is_valid_access(int off, int size,
7733 enum bpf_access_type type,
7734 const struct bpf_prog *prog,
7735 struct bpf_insn_access_aux *info)
7736 {
7737 if (!bpf_sock_is_valid_access(off, size, type, info))
7738 return false;
7739 return __sock_filter_check_attach_type(off, type,
7740 prog->expected_attach_type);
7741 }
7742
bpf_noop_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)7743 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
7744 const struct bpf_prog *prog)
7745 {
7746 /* Neither direct read nor direct write requires any preliminary
7747 * action.
7748 */
7749 return 0;
7750 }
7751
bpf_unclone_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog,int drop_verdict)7752 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
7753 const struct bpf_prog *prog, int drop_verdict)
7754 {
7755 struct bpf_insn *insn = insn_buf;
7756
7757 if (!direct_write)
7758 return 0;
7759
7760 /* if (!skb->cloned)
7761 * goto start;
7762 *
7763 * (Fast-path, otherwise approximation that we might be
7764 * a clone, do the rest in helper.)
7765 */
7766 *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
7767 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
7768 *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
7769
7770 /* ret = bpf_skb_pull_data(skb, 0); */
7771 *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
7772 *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
7773 *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
7774 BPF_FUNC_skb_pull_data);
7775 /* if (!ret)
7776 * goto restore;
7777 * return TC_ACT_SHOT;
7778 */
7779 *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
7780 *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
7781 *insn++ = BPF_EXIT_INSN();
7782
7783 /* restore: */
7784 *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
7785 /* start: */
7786 *insn++ = prog->insnsi[0];
7787
7788 return insn - insn_buf;
7789 }
7790
bpf_gen_ld_abs(const struct bpf_insn * orig,struct bpf_insn * insn_buf)7791 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
7792 struct bpf_insn *insn_buf)
7793 {
7794 bool indirect = BPF_MODE(orig->code) == BPF_IND;
7795 struct bpf_insn *insn = insn_buf;
7796
7797 if (!indirect) {
7798 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
7799 } else {
7800 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
7801 if (orig->imm)
7802 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
7803 }
7804 /* We're guaranteed here that CTX is in R6. */
7805 *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
7806
7807 switch (BPF_SIZE(orig->code)) {
7808 case BPF_B:
7809 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
7810 break;
7811 case BPF_H:
7812 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
7813 break;
7814 case BPF_W:
7815 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
7816 break;
7817 }
7818
7819 *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
7820 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
7821 *insn++ = BPF_EXIT_INSN();
7822
7823 return insn - insn_buf;
7824 }
7825
tc_cls_act_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)7826 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
7827 const struct bpf_prog *prog)
7828 {
7829 return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
7830 }
7831
tc_cls_act_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7832 static bool tc_cls_act_is_valid_access(int off, int size,
7833 enum bpf_access_type type,
7834 const struct bpf_prog *prog,
7835 struct bpf_insn_access_aux *info)
7836 {
7837 if (type == BPF_WRITE) {
7838 switch (off) {
7839 case bpf_ctx_range(struct __sk_buff, mark):
7840 case bpf_ctx_range(struct __sk_buff, tc_index):
7841 case bpf_ctx_range(struct __sk_buff, priority):
7842 case bpf_ctx_range(struct __sk_buff, tc_classid):
7843 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7844 case bpf_ctx_range(struct __sk_buff, tstamp):
7845 case bpf_ctx_range(struct __sk_buff, queue_mapping):
7846 break;
7847 default:
7848 return false;
7849 }
7850 }
7851
7852 switch (off) {
7853 case bpf_ctx_range(struct __sk_buff, data):
7854 info->reg_type = PTR_TO_PACKET;
7855 break;
7856 case bpf_ctx_range(struct __sk_buff, data_meta):
7857 info->reg_type = PTR_TO_PACKET_META;
7858 break;
7859 case bpf_ctx_range(struct __sk_buff, data_end):
7860 info->reg_type = PTR_TO_PACKET_END;
7861 break;
7862 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7863 return false;
7864 }
7865
7866 return bpf_skb_is_valid_access(off, size, type, prog, info);
7867 }
7868
__is_valid_xdp_access(int off,int size)7869 static bool __is_valid_xdp_access(int off, int size)
7870 {
7871 if (off < 0 || off >= sizeof(struct xdp_md))
7872 return false;
7873 if (off % size != 0)
7874 return false;
7875 if (size != sizeof(__u32))
7876 return false;
7877
7878 return true;
7879 }
7880
xdp_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7881 static bool xdp_is_valid_access(int off, int size,
7882 enum bpf_access_type type,
7883 const struct bpf_prog *prog,
7884 struct bpf_insn_access_aux *info)
7885 {
7886 if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
7887 switch (off) {
7888 case offsetof(struct xdp_md, egress_ifindex):
7889 return false;
7890 }
7891 }
7892
7893 if (type == BPF_WRITE) {
7894 if (bpf_prog_is_dev_bound(prog->aux)) {
7895 switch (off) {
7896 case offsetof(struct xdp_md, rx_queue_index):
7897 return __is_valid_xdp_access(off, size);
7898 }
7899 }
7900 return false;
7901 }
7902
7903 switch (off) {
7904 case offsetof(struct xdp_md, data):
7905 info->reg_type = PTR_TO_PACKET;
7906 break;
7907 case offsetof(struct xdp_md, data_meta):
7908 info->reg_type = PTR_TO_PACKET_META;
7909 break;
7910 case offsetof(struct xdp_md, data_end):
7911 info->reg_type = PTR_TO_PACKET_END;
7912 break;
7913 }
7914
7915 return __is_valid_xdp_access(off, size);
7916 }
7917
bpf_warn_invalid_xdp_action(u32 act)7918 void bpf_warn_invalid_xdp_action(u32 act)
7919 {
7920 const u32 act_max = XDP_REDIRECT;
7921
7922 WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
7923 act > act_max ? "Illegal" : "Driver unsupported",
7924 act);
7925 }
7926 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
7927
sock_addr_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7928 static bool sock_addr_is_valid_access(int off, int size,
7929 enum bpf_access_type type,
7930 const struct bpf_prog *prog,
7931 struct bpf_insn_access_aux *info)
7932 {
7933 const int size_default = sizeof(__u32);
7934
7935 if (off < 0 || off >= sizeof(struct bpf_sock_addr))
7936 return false;
7937 if (off % size != 0)
7938 return false;
7939
7940 /* Disallow access to IPv6 fields from IPv4 contex and vise
7941 * versa.
7942 */
7943 switch (off) {
7944 case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
7945 switch (prog->expected_attach_type) {
7946 case BPF_CGROUP_INET4_BIND:
7947 case BPF_CGROUP_INET4_CONNECT:
7948 case BPF_CGROUP_INET4_GETPEERNAME:
7949 case BPF_CGROUP_INET4_GETSOCKNAME:
7950 case BPF_CGROUP_UDP4_SENDMSG:
7951 case BPF_CGROUP_UDP4_RECVMSG:
7952 break;
7953 default:
7954 return false;
7955 }
7956 break;
7957 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
7958 switch (prog->expected_attach_type) {
7959 case BPF_CGROUP_INET6_BIND:
7960 case BPF_CGROUP_INET6_CONNECT:
7961 case BPF_CGROUP_INET6_GETPEERNAME:
7962 case BPF_CGROUP_INET6_GETSOCKNAME:
7963 case BPF_CGROUP_UDP6_SENDMSG:
7964 case BPF_CGROUP_UDP6_RECVMSG:
7965 break;
7966 default:
7967 return false;
7968 }
7969 break;
7970 case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
7971 switch (prog->expected_attach_type) {
7972 case BPF_CGROUP_UDP4_SENDMSG:
7973 break;
7974 default:
7975 return false;
7976 }
7977 break;
7978 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
7979 msg_src_ip6[3]):
7980 switch (prog->expected_attach_type) {
7981 case BPF_CGROUP_UDP6_SENDMSG:
7982 break;
7983 default:
7984 return false;
7985 }
7986 break;
7987 }
7988
7989 switch (off) {
7990 case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
7991 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
7992 case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
7993 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
7994 msg_src_ip6[3]):
7995 case bpf_ctx_range(struct bpf_sock_addr, user_port):
7996 if (type == BPF_READ) {
7997 bpf_ctx_record_field_size(info, size_default);
7998
7999 if (bpf_ctx_wide_access_ok(off, size,
8000 struct bpf_sock_addr,
8001 user_ip6))
8002 return true;
8003
8004 if (bpf_ctx_wide_access_ok(off, size,
8005 struct bpf_sock_addr,
8006 msg_src_ip6))
8007 return true;
8008
8009 if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8010 return false;
8011 } else {
8012 if (bpf_ctx_wide_access_ok(off, size,
8013 struct bpf_sock_addr,
8014 user_ip6))
8015 return true;
8016
8017 if (bpf_ctx_wide_access_ok(off, size,
8018 struct bpf_sock_addr,
8019 msg_src_ip6))
8020 return true;
8021
8022 if (size != size_default)
8023 return false;
8024 }
8025 break;
8026 case offsetof(struct bpf_sock_addr, sk):
8027 if (type != BPF_READ)
8028 return false;
8029 if (size != sizeof(__u64))
8030 return false;
8031 info->reg_type = PTR_TO_SOCKET;
8032 break;
8033 default:
8034 if (type == BPF_READ) {
8035 if (size != size_default)
8036 return false;
8037 } else {
8038 return false;
8039 }
8040 }
8041
8042 return true;
8043 }
8044
sock_ops_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8045 static bool sock_ops_is_valid_access(int off, int size,
8046 enum bpf_access_type type,
8047 const struct bpf_prog *prog,
8048 struct bpf_insn_access_aux *info)
8049 {
8050 const int size_default = sizeof(__u32);
8051
8052 if (off < 0 || off >= sizeof(struct bpf_sock_ops))
8053 return false;
8054
8055 /* The verifier guarantees that size > 0. */
8056 if (off % size != 0)
8057 return false;
8058
8059 if (type == BPF_WRITE) {
8060 switch (off) {
8061 case offsetof(struct bpf_sock_ops, reply):
8062 case offsetof(struct bpf_sock_ops, sk_txhash):
8063 if (size != size_default)
8064 return false;
8065 break;
8066 default:
8067 return false;
8068 }
8069 } else {
8070 switch (off) {
8071 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
8072 bytes_acked):
8073 if (size != sizeof(__u64))
8074 return false;
8075 break;
8076 case offsetof(struct bpf_sock_ops, sk):
8077 if (size != sizeof(__u64))
8078 return false;
8079 info->reg_type = PTR_TO_SOCKET_OR_NULL;
8080 break;
8081 case offsetof(struct bpf_sock_ops, skb_data):
8082 if (size != sizeof(__u64))
8083 return false;
8084 info->reg_type = PTR_TO_PACKET;
8085 break;
8086 case offsetof(struct bpf_sock_ops, skb_data_end):
8087 if (size != sizeof(__u64))
8088 return false;
8089 info->reg_type = PTR_TO_PACKET_END;
8090 break;
8091 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
8092 bpf_ctx_record_field_size(info, size_default);
8093 return bpf_ctx_narrow_access_ok(off, size,
8094 size_default);
8095 default:
8096 if (size != size_default)
8097 return false;
8098 break;
8099 }
8100 }
8101
8102 return true;
8103 }
8104
sk_skb_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)8105 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
8106 const struct bpf_prog *prog)
8107 {
8108 return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
8109 }
8110
sk_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8111 static bool sk_skb_is_valid_access(int off, int size,
8112 enum bpf_access_type type,
8113 const struct bpf_prog *prog,
8114 struct bpf_insn_access_aux *info)
8115 {
8116 switch (off) {
8117 case bpf_ctx_range(struct __sk_buff, tc_classid):
8118 case bpf_ctx_range(struct __sk_buff, data_meta):
8119 case bpf_ctx_range(struct __sk_buff, tstamp):
8120 case bpf_ctx_range(struct __sk_buff, wire_len):
8121 return false;
8122 }
8123
8124 if (type == BPF_WRITE) {
8125 switch (off) {
8126 case bpf_ctx_range(struct __sk_buff, tc_index):
8127 case bpf_ctx_range(struct __sk_buff, priority):
8128 break;
8129 default:
8130 return false;
8131 }
8132 }
8133
8134 switch (off) {
8135 case bpf_ctx_range(struct __sk_buff, mark):
8136 return false;
8137 case bpf_ctx_range(struct __sk_buff, data):
8138 info->reg_type = PTR_TO_PACKET;
8139 break;
8140 case bpf_ctx_range(struct __sk_buff, data_end):
8141 info->reg_type = PTR_TO_PACKET_END;
8142 break;
8143 }
8144
8145 return bpf_skb_is_valid_access(off, size, type, prog, info);
8146 }
8147
sk_msg_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8148 static bool sk_msg_is_valid_access(int off, int size,
8149 enum bpf_access_type type,
8150 const struct bpf_prog *prog,
8151 struct bpf_insn_access_aux *info)
8152 {
8153 if (type == BPF_WRITE)
8154 return false;
8155
8156 if (off % size != 0)
8157 return false;
8158
8159 switch (off) {
8160 case offsetof(struct sk_msg_md, data):
8161 info->reg_type = PTR_TO_PACKET;
8162 if (size != sizeof(__u64))
8163 return false;
8164 break;
8165 case offsetof(struct sk_msg_md, data_end):
8166 info->reg_type = PTR_TO_PACKET_END;
8167 if (size != sizeof(__u64))
8168 return false;
8169 break;
8170 case offsetof(struct sk_msg_md, sk):
8171 if (size != sizeof(__u64))
8172 return false;
8173 info->reg_type = PTR_TO_SOCKET;
8174 break;
8175 case bpf_ctx_range(struct sk_msg_md, family):
8176 case bpf_ctx_range(struct sk_msg_md, remote_ip4):
8177 case bpf_ctx_range(struct sk_msg_md, local_ip4):
8178 case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
8179 case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
8180 case bpf_ctx_range(struct sk_msg_md, remote_port):
8181 case bpf_ctx_range(struct sk_msg_md, local_port):
8182 case bpf_ctx_range(struct sk_msg_md, size):
8183 if (size != sizeof(__u32))
8184 return false;
8185 break;
8186 default:
8187 return false;
8188 }
8189 return true;
8190 }
8191
flow_dissector_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8192 static bool flow_dissector_is_valid_access(int off, int size,
8193 enum bpf_access_type type,
8194 const struct bpf_prog *prog,
8195 struct bpf_insn_access_aux *info)
8196 {
8197 const int size_default = sizeof(__u32);
8198
8199 if (off < 0 || off >= sizeof(struct __sk_buff))
8200 return false;
8201
8202 if (type == BPF_WRITE)
8203 return false;
8204
8205 switch (off) {
8206 case bpf_ctx_range(struct __sk_buff, data):
8207 if (size != size_default)
8208 return false;
8209 info->reg_type = PTR_TO_PACKET;
8210 return true;
8211 case bpf_ctx_range(struct __sk_buff, data_end):
8212 if (size != size_default)
8213 return false;
8214 info->reg_type = PTR_TO_PACKET_END;
8215 return true;
8216 case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8217 if (size != sizeof(__u64))
8218 return false;
8219 info->reg_type = PTR_TO_FLOW_KEYS;
8220 return true;
8221 default:
8222 return false;
8223 }
8224 }
8225
flow_dissector_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)8226 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
8227 const struct bpf_insn *si,
8228 struct bpf_insn *insn_buf,
8229 struct bpf_prog *prog,
8230 u32 *target_size)
8231
8232 {
8233 struct bpf_insn *insn = insn_buf;
8234
8235 switch (si->off) {
8236 case offsetof(struct __sk_buff, data):
8237 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
8238 si->dst_reg, si->src_reg,
8239 offsetof(struct bpf_flow_dissector, data));
8240 break;
8241
8242 case offsetof(struct __sk_buff, data_end):
8243 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
8244 si->dst_reg, si->src_reg,
8245 offsetof(struct bpf_flow_dissector, data_end));
8246 break;
8247
8248 case offsetof(struct __sk_buff, flow_keys):
8249 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
8250 si->dst_reg, si->src_reg,
8251 offsetof(struct bpf_flow_dissector, flow_keys));
8252 break;
8253 }
8254
8255 return insn - insn_buf;
8256 }
8257
bpf_convert_shinfo_access(const struct bpf_insn * si,struct bpf_insn * insn)8258 static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
8259 struct bpf_insn *insn)
8260 {
8261 /* si->dst_reg = skb_shinfo(SKB); */
8262 #ifdef NET_SKBUFF_DATA_USES_OFFSET
8263 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8264 BPF_REG_AX, si->src_reg,
8265 offsetof(struct sk_buff, end));
8266 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
8267 si->dst_reg, si->src_reg,
8268 offsetof(struct sk_buff, head));
8269 *insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
8270 #else
8271 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8272 si->dst_reg, si->src_reg,
8273 offsetof(struct sk_buff, end));
8274 #endif
8275
8276 return insn;
8277 }
8278
bpf_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)8279 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
8280 const struct bpf_insn *si,
8281 struct bpf_insn *insn_buf,
8282 struct bpf_prog *prog, u32 *target_size)
8283 {
8284 struct bpf_insn *insn = insn_buf;
8285 int off;
8286
8287 switch (si->off) {
8288 case offsetof(struct __sk_buff, len):
8289 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8290 bpf_target_off(struct sk_buff, len, 4,
8291 target_size));
8292 break;
8293
8294 case offsetof(struct __sk_buff, protocol):
8295 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8296 bpf_target_off(struct sk_buff, protocol, 2,
8297 target_size));
8298 break;
8299
8300 case offsetof(struct __sk_buff, vlan_proto):
8301 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8302 bpf_target_off(struct sk_buff, vlan_proto, 2,
8303 target_size));
8304 break;
8305
8306 case offsetof(struct __sk_buff, priority):
8307 if (type == BPF_WRITE)
8308 *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8309 bpf_target_off(struct sk_buff, priority, 4,
8310 target_size));
8311 else
8312 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8313 bpf_target_off(struct sk_buff, priority, 4,
8314 target_size));
8315 break;
8316
8317 case offsetof(struct __sk_buff, ingress_ifindex):
8318 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8319 bpf_target_off(struct sk_buff, skb_iif, 4,
8320 target_size));
8321 break;
8322
8323 case offsetof(struct __sk_buff, ifindex):
8324 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
8325 si->dst_reg, si->src_reg,
8326 offsetof(struct sk_buff, dev));
8327 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
8328 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8329 bpf_target_off(struct net_device, ifindex, 4,
8330 target_size));
8331 break;
8332
8333 case offsetof(struct __sk_buff, hash):
8334 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8335 bpf_target_off(struct sk_buff, hash, 4,
8336 target_size));
8337 break;
8338
8339 case offsetof(struct __sk_buff, mark):
8340 if (type == BPF_WRITE)
8341 *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8342 bpf_target_off(struct sk_buff, mark, 4,
8343 target_size));
8344 else
8345 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8346 bpf_target_off(struct sk_buff, mark, 4,
8347 target_size));
8348 break;
8349
8350 case offsetof(struct __sk_buff, pkt_type):
8351 *target_size = 1;
8352 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8353 PKT_TYPE_OFFSET());
8354 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
8355 #ifdef __BIG_ENDIAN_BITFIELD
8356 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
8357 #endif
8358 break;
8359
8360 case offsetof(struct __sk_buff, queue_mapping):
8361 if (type == BPF_WRITE) {
8362 *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
8363 *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8364 bpf_target_off(struct sk_buff,
8365 queue_mapping,
8366 2, target_size));
8367 } else {
8368 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8369 bpf_target_off(struct sk_buff,
8370 queue_mapping,
8371 2, target_size));
8372 }
8373 break;
8374
8375 case offsetof(struct __sk_buff, vlan_present):
8376 *target_size = 1;
8377 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8378 PKT_VLAN_PRESENT_OFFSET());
8379 if (PKT_VLAN_PRESENT_BIT)
8380 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
8381 if (PKT_VLAN_PRESENT_BIT < 7)
8382 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
8383 break;
8384
8385 case offsetof(struct __sk_buff, vlan_tci):
8386 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8387 bpf_target_off(struct sk_buff, vlan_tci, 2,
8388 target_size));
8389 break;
8390
8391 case offsetof(struct __sk_buff, cb[0]) ...
8392 offsetofend(struct __sk_buff, cb[4]) - 1:
8393 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
8394 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
8395 offsetof(struct qdisc_skb_cb, data)) %
8396 sizeof(__u64));
8397
8398 prog->cb_access = 1;
8399 off = si->off;
8400 off -= offsetof(struct __sk_buff, cb[0]);
8401 off += offsetof(struct sk_buff, cb);
8402 off += offsetof(struct qdisc_skb_cb, data);
8403 if (type == BPF_WRITE)
8404 *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
8405 si->src_reg, off);
8406 else
8407 *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
8408 si->src_reg, off);
8409 break;
8410
8411 case offsetof(struct __sk_buff, tc_classid):
8412 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
8413
8414 off = si->off;
8415 off -= offsetof(struct __sk_buff, tc_classid);
8416 off += offsetof(struct sk_buff, cb);
8417 off += offsetof(struct qdisc_skb_cb, tc_classid);
8418 *target_size = 2;
8419 if (type == BPF_WRITE)
8420 *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
8421 si->src_reg, off);
8422 else
8423 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
8424 si->src_reg, off);
8425 break;
8426
8427 case offsetof(struct __sk_buff, data):
8428 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
8429 si->dst_reg, si->src_reg,
8430 offsetof(struct sk_buff, data));
8431 break;
8432
8433 case offsetof(struct __sk_buff, data_meta):
8434 off = si->off;
8435 off -= offsetof(struct __sk_buff, data_meta);
8436 off += offsetof(struct sk_buff, cb);
8437 off += offsetof(struct bpf_skb_data_end, data_meta);
8438 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8439 si->src_reg, off);
8440 break;
8441
8442 case offsetof(struct __sk_buff, data_end):
8443 off = si->off;
8444 off -= offsetof(struct __sk_buff, data_end);
8445 off += offsetof(struct sk_buff, cb);
8446 off += offsetof(struct bpf_skb_data_end, data_end);
8447 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8448 si->src_reg, off);
8449 break;
8450
8451 case offsetof(struct __sk_buff, tc_index):
8452 #ifdef CONFIG_NET_SCHED
8453 if (type == BPF_WRITE)
8454 *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8455 bpf_target_off(struct sk_buff, tc_index, 2,
8456 target_size));
8457 else
8458 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8459 bpf_target_off(struct sk_buff, tc_index, 2,
8460 target_size));
8461 #else
8462 *target_size = 2;
8463 if (type == BPF_WRITE)
8464 *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
8465 else
8466 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8467 #endif
8468 break;
8469
8470 case offsetof(struct __sk_buff, napi_id):
8471 #if defined(CONFIG_NET_RX_BUSY_POLL)
8472 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8473 bpf_target_off(struct sk_buff, napi_id, 4,
8474 target_size));
8475 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
8476 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8477 #else
8478 *target_size = 4;
8479 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8480 #endif
8481 break;
8482 case offsetof(struct __sk_buff, family):
8483 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
8484
8485 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8486 si->dst_reg, si->src_reg,
8487 offsetof(struct sk_buff, sk));
8488 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8489 bpf_target_off(struct sock_common,
8490 skc_family,
8491 2, target_size));
8492 break;
8493 case offsetof(struct __sk_buff, remote_ip4):
8494 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
8495
8496 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8497 si->dst_reg, si->src_reg,
8498 offsetof(struct sk_buff, sk));
8499 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8500 bpf_target_off(struct sock_common,
8501 skc_daddr,
8502 4, target_size));
8503 break;
8504 case offsetof(struct __sk_buff, local_ip4):
8505 BUILD_BUG_ON(sizeof_field(struct sock_common,
8506 skc_rcv_saddr) != 4);
8507
8508 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8509 si->dst_reg, si->src_reg,
8510 offsetof(struct sk_buff, sk));
8511 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8512 bpf_target_off(struct sock_common,
8513 skc_rcv_saddr,
8514 4, target_size));
8515 break;
8516 case offsetof(struct __sk_buff, remote_ip6[0]) ...
8517 offsetof(struct __sk_buff, remote_ip6[3]):
8518 #if IS_ENABLED(CONFIG_IPV6)
8519 BUILD_BUG_ON(sizeof_field(struct sock_common,
8520 skc_v6_daddr.s6_addr32[0]) != 4);
8521
8522 off = si->off;
8523 off -= offsetof(struct __sk_buff, remote_ip6[0]);
8524
8525 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8526 si->dst_reg, si->src_reg,
8527 offsetof(struct sk_buff, sk));
8528 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8529 offsetof(struct sock_common,
8530 skc_v6_daddr.s6_addr32[0]) +
8531 off);
8532 #else
8533 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8534 #endif
8535 break;
8536 case offsetof(struct __sk_buff, local_ip6[0]) ...
8537 offsetof(struct __sk_buff, local_ip6[3]):
8538 #if IS_ENABLED(CONFIG_IPV6)
8539 BUILD_BUG_ON(sizeof_field(struct sock_common,
8540 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8541
8542 off = si->off;
8543 off -= offsetof(struct __sk_buff, local_ip6[0]);
8544
8545 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8546 si->dst_reg, si->src_reg,
8547 offsetof(struct sk_buff, sk));
8548 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8549 offsetof(struct sock_common,
8550 skc_v6_rcv_saddr.s6_addr32[0]) +
8551 off);
8552 #else
8553 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8554 #endif
8555 break;
8556
8557 case offsetof(struct __sk_buff, remote_port):
8558 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
8559
8560 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8561 si->dst_reg, si->src_reg,
8562 offsetof(struct sk_buff, sk));
8563 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8564 bpf_target_off(struct sock_common,
8565 skc_dport,
8566 2, target_size));
8567 #ifndef __BIG_ENDIAN_BITFIELD
8568 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8569 #endif
8570 break;
8571
8572 case offsetof(struct __sk_buff, local_port):
8573 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
8574
8575 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8576 si->dst_reg, si->src_reg,
8577 offsetof(struct sk_buff, sk));
8578 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8579 bpf_target_off(struct sock_common,
8580 skc_num, 2, target_size));
8581 break;
8582
8583 case offsetof(struct __sk_buff, tstamp):
8584 BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
8585
8586 if (type == BPF_WRITE)
8587 *insn++ = BPF_STX_MEM(BPF_DW,
8588 si->dst_reg, si->src_reg,
8589 bpf_target_off(struct sk_buff,
8590 tstamp, 8,
8591 target_size));
8592 else
8593 *insn++ = BPF_LDX_MEM(BPF_DW,
8594 si->dst_reg, si->src_reg,
8595 bpf_target_off(struct sk_buff,
8596 tstamp, 8,
8597 target_size));
8598 break;
8599
8600 case offsetof(struct __sk_buff, gso_segs):
8601 insn = bpf_convert_shinfo_access(si, insn);
8602 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
8603 si->dst_reg, si->dst_reg,
8604 bpf_target_off(struct skb_shared_info,
8605 gso_segs, 2,
8606 target_size));
8607 break;
8608 case offsetof(struct __sk_buff, gso_size):
8609 insn = bpf_convert_shinfo_access(si, insn);
8610 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
8611 si->dst_reg, si->dst_reg,
8612 bpf_target_off(struct skb_shared_info,
8613 gso_size, 2,
8614 target_size));
8615 break;
8616 case offsetof(struct __sk_buff, wire_len):
8617 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
8618
8619 off = si->off;
8620 off -= offsetof(struct __sk_buff, wire_len);
8621 off += offsetof(struct sk_buff, cb);
8622 off += offsetof(struct qdisc_skb_cb, pkt_len);
8623 *target_size = 4;
8624 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
8625 break;
8626
8627 case offsetof(struct __sk_buff, sk):
8628 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8629 si->dst_reg, si->src_reg,
8630 offsetof(struct sk_buff, sk));
8631 break;
8632 }
8633
8634 return insn - insn_buf;
8635 }
8636
bpf_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)8637 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
8638 const struct bpf_insn *si,
8639 struct bpf_insn *insn_buf,
8640 struct bpf_prog *prog, u32 *target_size)
8641 {
8642 struct bpf_insn *insn = insn_buf;
8643 int off;
8644
8645 switch (si->off) {
8646 case offsetof(struct bpf_sock, bound_dev_if):
8647 BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
8648
8649 if (type == BPF_WRITE)
8650 *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8651 offsetof(struct sock, sk_bound_dev_if));
8652 else
8653 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8654 offsetof(struct sock, sk_bound_dev_if));
8655 break;
8656
8657 case offsetof(struct bpf_sock, mark):
8658 BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
8659
8660 if (type == BPF_WRITE)
8661 *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8662 offsetof(struct sock, sk_mark));
8663 else
8664 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8665 offsetof(struct sock, sk_mark));
8666 break;
8667
8668 case offsetof(struct bpf_sock, priority):
8669 BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
8670
8671 if (type == BPF_WRITE)
8672 *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8673 offsetof(struct sock, sk_priority));
8674 else
8675 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8676 offsetof(struct sock, sk_priority));
8677 break;
8678
8679 case offsetof(struct bpf_sock, family):
8680 *insn++ = BPF_LDX_MEM(
8681 BPF_FIELD_SIZEOF(struct sock_common, skc_family),
8682 si->dst_reg, si->src_reg,
8683 bpf_target_off(struct sock_common,
8684 skc_family,
8685 sizeof_field(struct sock_common,
8686 skc_family),
8687 target_size));
8688 break;
8689
8690 case offsetof(struct bpf_sock, type):
8691 *insn++ = BPF_LDX_MEM(
8692 BPF_FIELD_SIZEOF(struct sock, sk_type),
8693 si->dst_reg, si->src_reg,
8694 bpf_target_off(struct sock, sk_type,
8695 sizeof_field(struct sock, sk_type),
8696 target_size));
8697 break;
8698
8699 case offsetof(struct bpf_sock, protocol):
8700 *insn++ = BPF_LDX_MEM(
8701 BPF_FIELD_SIZEOF(struct sock, sk_protocol),
8702 si->dst_reg, si->src_reg,
8703 bpf_target_off(struct sock, sk_protocol,
8704 sizeof_field(struct sock, sk_protocol),
8705 target_size));
8706 break;
8707
8708 case offsetof(struct bpf_sock, src_ip4):
8709 *insn++ = BPF_LDX_MEM(
8710 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8711 bpf_target_off(struct sock_common, skc_rcv_saddr,
8712 sizeof_field(struct sock_common,
8713 skc_rcv_saddr),
8714 target_size));
8715 break;
8716
8717 case offsetof(struct bpf_sock, dst_ip4):
8718 *insn++ = BPF_LDX_MEM(
8719 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8720 bpf_target_off(struct sock_common, skc_daddr,
8721 sizeof_field(struct sock_common,
8722 skc_daddr),
8723 target_size));
8724 break;
8725
8726 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8727 #if IS_ENABLED(CONFIG_IPV6)
8728 off = si->off;
8729 off -= offsetof(struct bpf_sock, src_ip6[0]);
8730 *insn++ = BPF_LDX_MEM(
8731 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8732 bpf_target_off(
8733 struct sock_common,
8734 skc_v6_rcv_saddr.s6_addr32[0],
8735 sizeof_field(struct sock_common,
8736 skc_v6_rcv_saddr.s6_addr32[0]),
8737 target_size) + off);
8738 #else
8739 (void)off;
8740 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8741 #endif
8742 break;
8743
8744 case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8745 #if IS_ENABLED(CONFIG_IPV6)
8746 off = si->off;
8747 off -= offsetof(struct bpf_sock, dst_ip6[0]);
8748 *insn++ = BPF_LDX_MEM(
8749 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8750 bpf_target_off(struct sock_common,
8751 skc_v6_daddr.s6_addr32[0],
8752 sizeof_field(struct sock_common,
8753 skc_v6_daddr.s6_addr32[0]),
8754 target_size) + off);
8755 #else
8756 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8757 *target_size = 4;
8758 #endif
8759 break;
8760
8761 case offsetof(struct bpf_sock, src_port):
8762 *insn++ = BPF_LDX_MEM(
8763 BPF_FIELD_SIZEOF(struct sock_common, skc_num),
8764 si->dst_reg, si->src_reg,
8765 bpf_target_off(struct sock_common, skc_num,
8766 sizeof_field(struct sock_common,
8767 skc_num),
8768 target_size));
8769 break;
8770
8771 case offsetof(struct bpf_sock, dst_port):
8772 *insn++ = BPF_LDX_MEM(
8773 BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
8774 si->dst_reg, si->src_reg,
8775 bpf_target_off(struct sock_common, skc_dport,
8776 sizeof_field(struct sock_common,
8777 skc_dport),
8778 target_size));
8779 break;
8780
8781 case offsetof(struct bpf_sock, state):
8782 *insn++ = BPF_LDX_MEM(
8783 BPF_FIELD_SIZEOF(struct sock_common, skc_state),
8784 si->dst_reg, si->src_reg,
8785 bpf_target_off(struct sock_common, skc_state,
8786 sizeof_field(struct sock_common,
8787 skc_state),
8788 target_size));
8789 break;
8790 case offsetof(struct bpf_sock, rx_queue_mapping):
8791 #ifdef CONFIG_XPS
8792 *insn++ = BPF_LDX_MEM(
8793 BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
8794 si->dst_reg, si->src_reg,
8795 bpf_target_off(struct sock, sk_rx_queue_mapping,
8796 sizeof_field(struct sock,
8797 sk_rx_queue_mapping),
8798 target_size));
8799 *insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
8800 1);
8801 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
8802 #else
8803 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
8804 *target_size = 2;
8805 #endif
8806 break;
8807 }
8808
8809 return insn - insn_buf;
8810 }
8811
tc_cls_act_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)8812 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
8813 const struct bpf_insn *si,
8814 struct bpf_insn *insn_buf,
8815 struct bpf_prog *prog, u32 *target_size)
8816 {
8817 struct bpf_insn *insn = insn_buf;
8818
8819 switch (si->off) {
8820 case offsetof(struct __sk_buff, ifindex):
8821 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
8822 si->dst_reg, si->src_reg,
8823 offsetof(struct sk_buff, dev));
8824 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8825 bpf_target_off(struct net_device, ifindex, 4,
8826 target_size));
8827 break;
8828 default:
8829 return bpf_convert_ctx_access(type, si, insn_buf, prog,
8830 target_size);
8831 }
8832
8833 return insn - insn_buf;
8834 }
8835
xdp_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)8836 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
8837 const struct bpf_insn *si,
8838 struct bpf_insn *insn_buf,
8839 struct bpf_prog *prog, u32 *target_size)
8840 {
8841 struct bpf_insn *insn = insn_buf;
8842
8843 switch (si->off) {
8844 case offsetof(struct xdp_md, data):
8845 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
8846 si->dst_reg, si->src_reg,
8847 offsetof(struct xdp_buff, data));
8848 break;
8849 case offsetof(struct xdp_md, data_meta):
8850 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
8851 si->dst_reg, si->src_reg,
8852 offsetof(struct xdp_buff, data_meta));
8853 break;
8854 case offsetof(struct xdp_md, data_end):
8855 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
8856 si->dst_reg, si->src_reg,
8857 offsetof(struct xdp_buff, data_end));
8858 break;
8859 case offsetof(struct xdp_md, ingress_ifindex):
8860 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
8861 si->dst_reg, si->src_reg,
8862 offsetof(struct xdp_buff, rxq));
8863 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
8864 si->dst_reg, si->dst_reg,
8865 offsetof(struct xdp_rxq_info, dev));
8866 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8867 offsetof(struct net_device, ifindex));
8868 break;
8869 case offsetof(struct xdp_md, rx_queue_index):
8870 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
8871 si->dst_reg, si->src_reg,
8872 offsetof(struct xdp_buff, rxq));
8873 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8874 offsetof(struct xdp_rxq_info,
8875 queue_index));
8876 break;
8877 case offsetof(struct xdp_md, egress_ifindex):
8878 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
8879 si->dst_reg, si->src_reg,
8880 offsetof(struct xdp_buff, txq));
8881 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
8882 si->dst_reg, si->dst_reg,
8883 offsetof(struct xdp_txq_info, dev));
8884 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8885 offsetof(struct net_device, ifindex));
8886 break;
8887 }
8888
8889 return insn - insn_buf;
8890 }
8891
8892 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
8893 * context Structure, F is Field in context structure that contains a pointer
8894 * to Nested Structure of type NS that has the field NF.
8895 *
8896 * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
8897 * sure that SIZE is not greater than actual size of S.F.NF.
8898 *
8899 * If offset OFF is provided, the load happens from that offset relative to
8900 * offset of NF.
8901 */
8902 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF) \
8903 do { \
8904 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg, \
8905 si->src_reg, offsetof(S, F)); \
8906 *insn++ = BPF_LDX_MEM( \
8907 SIZE, si->dst_reg, si->dst_reg, \
8908 bpf_target_off(NS, NF, sizeof_field(NS, NF), \
8909 target_size) \
8910 + OFF); \
8911 } while (0)
8912
8913 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF) \
8914 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, \
8915 BPF_FIELD_SIZEOF(NS, NF), 0)
8916
8917 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
8918 * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
8919 *
8920 * In addition it uses Temporary Field TF (member of struct S) as the 3rd
8921 * "register" since two registers available in convert_ctx_access are not
8922 * enough: we can't override neither SRC, since it contains value to store, nor
8923 * DST since it contains pointer to context that may be used by later
8924 * instructions. But we need a temporary place to save pointer to nested
8925 * structure whose field we want to store to.
8926 */
8927 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF) \
8928 do { \
8929 int tmp_reg = BPF_REG_9; \
8930 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg) \
8931 --tmp_reg; \
8932 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg) \
8933 --tmp_reg; \
8934 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg, \
8935 offsetof(S, TF)); \
8936 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg, \
8937 si->dst_reg, offsetof(S, F)); \
8938 *insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg, \
8939 bpf_target_off(NS, NF, sizeof_field(NS, NF), \
8940 target_size) \
8941 + OFF); \
8942 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg, \
8943 offsetof(S, TF)); \
8944 } while (0)
8945
8946 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
8947 TF) \
8948 do { \
8949 if (type == BPF_WRITE) { \
8950 SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, \
8951 OFF, TF); \
8952 } else { \
8953 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF( \
8954 S, NS, F, NF, SIZE, OFF); \
8955 } \
8956 } while (0)
8957
8958 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF) \
8959 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF( \
8960 S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
8961
sock_addr_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)8962 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
8963 const struct bpf_insn *si,
8964 struct bpf_insn *insn_buf,
8965 struct bpf_prog *prog, u32 *target_size)
8966 {
8967 int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
8968 struct bpf_insn *insn = insn_buf;
8969
8970 switch (si->off) {
8971 case offsetof(struct bpf_sock_addr, user_family):
8972 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
8973 struct sockaddr, uaddr, sa_family);
8974 break;
8975
8976 case offsetof(struct bpf_sock_addr, user_ip4):
8977 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8978 struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
8979 sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
8980 break;
8981
8982 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8983 off = si->off;
8984 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
8985 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8986 struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
8987 sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
8988 tmp_reg);
8989 break;
8990
8991 case offsetof(struct bpf_sock_addr, user_port):
8992 /* To get port we need to know sa_family first and then treat
8993 * sockaddr as either sockaddr_in or sockaddr_in6.
8994 * Though we can simplify since port field has same offset and
8995 * size in both structures.
8996 * Here we check this invariant and use just one of the
8997 * structures if it's true.
8998 */
8999 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
9000 offsetof(struct sockaddr_in6, sin6_port));
9001 BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
9002 sizeof_field(struct sockaddr_in6, sin6_port));
9003 /* Account for sin6_port being smaller than user_port. */
9004 port_size = min(port_size, BPF_LDST_BYTES(si));
9005 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9006 struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9007 sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
9008 break;
9009
9010 case offsetof(struct bpf_sock_addr, family):
9011 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9012 struct sock, sk, sk_family);
9013 break;
9014
9015 case offsetof(struct bpf_sock_addr, type):
9016 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9017 struct sock, sk, sk_type);
9018 break;
9019
9020 case offsetof(struct bpf_sock_addr, protocol):
9021 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9022 struct sock, sk, sk_protocol);
9023 break;
9024
9025 case offsetof(struct bpf_sock_addr, msg_src_ip4):
9026 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
9027 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9028 struct bpf_sock_addr_kern, struct in_addr, t_ctx,
9029 s_addr, BPF_SIZE(si->code), 0, tmp_reg);
9030 break;
9031
9032 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9033 msg_src_ip6[3]):
9034 off = si->off;
9035 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
9036 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
9037 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9038 struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
9039 s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
9040 break;
9041 case offsetof(struct bpf_sock_addr, sk):
9042 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
9043 si->dst_reg, si->src_reg,
9044 offsetof(struct bpf_sock_addr_kern, sk));
9045 break;
9046 }
9047
9048 return insn - insn_buf;
9049 }
9050
sock_ops_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9051 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
9052 const struct bpf_insn *si,
9053 struct bpf_insn *insn_buf,
9054 struct bpf_prog *prog,
9055 u32 *target_size)
9056 {
9057 struct bpf_insn *insn = insn_buf;
9058 int off;
9059
9060 /* Helper macro for adding read access to tcp_sock or sock fields. */
9061 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ) \
9062 do { \
9063 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2; \
9064 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) > \
9065 sizeof_field(struct bpf_sock_ops, BPF_FIELD)); \
9066 if (si->dst_reg == reg || si->src_reg == reg) \
9067 reg--; \
9068 if (si->dst_reg == reg || si->src_reg == reg) \
9069 reg--; \
9070 if (si->dst_reg == si->src_reg) { \
9071 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, \
9072 offsetof(struct bpf_sock_ops_kern, \
9073 temp)); \
9074 fullsock_reg = reg; \
9075 jmp += 2; \
9076 } \
9077 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
9078 struct bpf_sock_ops_kern, \
9079 is_fullsock), \
9080 fullsock_reg, si->src_reg, \
9081 offsetof(struct bpf_sock_ops_kern, \
9082 is_fullsock)); \
9083 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp); \
9084 if (si->dst_reg == si->src_reg) \
9085 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
9086 offsetof(struct bpf_sock_ops_kern, \
9087 temp)); \
9088 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
9089 struct bpf_sock_ops_kern, sk),\
9090 si->dst_reg, si->src_reg, \
9091 offsetof(struct bpf_sock_ops_kern, sk));\
9092 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ, \
9093 OBJ_FIELD), \
9094 si->dst_reg, si->dst_reg, \
9095 offsetof(OBJ, OBJ_FIELD)); \
9096 if (si->dst_reg == si->src_reg) { \
9097 *insn++ = BPF_JMP_A(1); \
9098 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
9099 offsetof(struct bpf_sock_ops_kern, \
9100 temp)); \
9101 } \
9102 } while (0)
9103
9104 #define SOCK_OPS_GET_SK() \
9105 do { \
9106 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1; \
9107 if (si->dst_reg == reg || si->src_reg == reg) \
9108 reg--; \
9109 if (si->dst_reg == reg || si->src_reg == reg) \
9110 reg--; \
9111 if (si->dst_reg == si->src_reg) { \
9112 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, \
9113 offsetof(struct bpf_sock_ops_kern, \
9114 temp)); \
9115 fullsock_reg = reg; \
9116 jmp += 2; \
9117 } \
9118 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
9119 struct bpf_sock_ops_kern, \
9120 is_fullsock), \
9121 fullsock_reg, si->src_reg, \
9122 offsetof(struct bpf_sock_ops_kern, \
9123 is_fullsock)); \
9124 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp); \
9125 if (si->dst_reg == si->src_reg) \
9126 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
9127 offsetof(struct bpf_sock_ops_kern, \
9128 temp)); \
9129 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
9130 struct bpf_sock_ops_kern, sk),\
9131 si->dst_reg, si->src_reg, \
9132 offsetof(struct bpf_sock_ops_kern, sk));\
9133 if (si->dst_reg == si->src_reg) { \
9134 *insn++ = BPF_JMP_A(1); \
9135 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
9136 offsetof(struct bpf_sock_ops_kern, \
9137 temp)); \
9138 } \
9139 } while (0)
9140
9141 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
9142 SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
9143
9144 /* Helper macro for adding write access to tcp_sock or sock fields.
9145 * The macro is called with two registers, dst_reg which contains a pointer
9146 * to ctx (context) and src_reg which contains the value that should be
9147 * stored. However, we need an additional register since we cannot overwrite
9148 * dst_reg because it may be used later in the program.
9149 * Instead we "borrow" one of the other register. We first save its value
9150 * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
9151 * it at the end of the macro.
9152 */
9153 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ) \
9154 do { \
9155 int reg = BPF_REG_9; \
9156 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) > \
9157 sizeof_field(struct bpf_sock_ops, BPF_FIELD)); \
9158 if (si->dst_reg == reg || si->src_reg == reg) \
9159 reg--; \
9160 if (si->dst_reg == reg || si->src_reg == reg) \
9161 reg--; \
9162 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg, \
9163 offsetof(struct bpf_sock_ops_kern, \
9164 temp)); \
9165 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
9166 struct bpf_sock_ops_kern, \
9167 is_fullsock), \
9168 reg, si->dst_reg, \
9169 offsetof(struct bpf_sock_ops_kern, \
9170 is_fullsock)); \
9171 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2); \
9172 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
9173 struct bpf_sock_ops_kern, sk),\
9174 reg, si->dst_reg, \
9175 offsetof(struct bpf_sock_ops_kern, sk));\
9176 *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD), \
9177 reg, si->src_reg, \
9178 offsetof(OBJ, OBJ_FIELD)); \
9179 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg, \
9180 offsetof(struct bpf_sock_ops_kern, \
9181 temp)); \
9182 } while (0)
9183
9184 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE) \
9185 do { \
9186 if (TYPE == BPF_WRITE) \
9187 SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ); \
9188 else \
9189 SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ); \
9190 } while (0)
9191
9192 if (insn > insn_buf)
9193 return insn - insn_buf;
9194
9195 switch (si->off) {
9196 case offsetof(struct bpf_sock_ops, op):
9197 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9198 op),
9199 si->dst_reg, si->src_reg,
9200 offsetof(struct bpf_sock_ops_kern, op));
9201 break;
9202
9203 case offsetof(struct bpf_sock_ops, replylong[0]) ...
9204 offsetof(struct bpf_sock_ops, replylong[3]):
9205 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
9206 sizeof_field(struct bpf_sock_ops_kern, reply));
9207 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
9208 sizeof_field(struct bpf_sock_ops_kern, replylong));
9209 off = si->off;
9210 off -= offsetof(struct bpf_sock_ops, replylong[0]);
9211 off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
9212 if (type == BPF_WRITE)
9213 *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9214 off);
9215 else
9216 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9217 off);
9218 break;
9219
9220 case offsetof(struct bpf_sock_ops, family):
9221 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9222
9223 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9224 struct bpf_sock_ops_kern, sk),
9225 si->dst_reg, si->src_reg,
9226 offsetof(struct bpf_sock_ops_kern, sk));
9227 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9228 offsetof(struct sock_common, skc_family));
9229 break;
9230
9231 case offsetof(struct bpf_sock_ops, remote_ip4):
9232 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9233
9234 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9235 struct bpf_sock_ops_kern, sk),
9236 si->dst_reg, si->src_reg,
9237 offsetof(struct bpf_sock_ops_kern, sk));
9238 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9239 offsetof(struct sock_common, skc_daddr));
9240 break;
9241
9242 case offsetof(struct bpf_sock_ops, local_ip4):
9243 BUILD_BUG_ON(sizeof_field(struct sock_common,
9244 skc_rcv_saddr) != 4);
9245
9246 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9247 struct bpf_sock_ops_kern, sk),
9248 si->dst_reg, si->src_reg,
9249 offsetof(struct bpf_sock_ops_kern, sk));
9250 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9251 offsetof(struct sock_common,
9252 skc_rcv_saddr));
9253 break;
9254
9255 case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
9256 offsetof(struct bpf_sock_ops, remote_ip6[3]):
9257 #if IS_ENABLED(CONFIG_IPV6)
9258 BUILD_BUG_ON(sizeof_field(struct sock_common,
9259 skc_v6_daddr.s6_addr32[0]) != 4);
9260
9261 off = si->off;
9262 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
9263 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9264 struct bpf_sock_ops_kern, sk),
9265 si->dst_reg, si->src_reg,
9266 offsetof(struct bpf_sock_ops_kern, sk));
9267 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9268 offsetof(struct sock_common,
9269 skc_v6_daddr.s6_addr32[0]) +
9270 off);
9271 #else
9272 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9273 #endif
9274 break;
9275
9276 case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
9277 offsetof(struct bpf_sock_ops, local_ip6[3]):
9278 #if IS_ENABLED(CONFIG_IPV6)
9279 BUILD_BUG_ON(sizeof_field(struct sock_common,
9280 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9281
9282 off = si->off;
9283 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
9284 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9285 struct bpf_sock_ops_kern, sk),
9286 si->dst_reg, si->src_reg,
9287 offsetof(struct bpf_sock_ops_kern, sk));
9288 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9289 offsetof(struct sock_common,
9290 skc_v6_rcv_saddr.s6_addr32[0]) +
9291 off);
9292 #else
9293 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9294 #endif
9295 break;
9296
9297 case offsetof(struct bpf_sock_ops, remote_port):
9298 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9299
9300 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9301 struct bpf_sock_ops_kern, sk),
9302 si->dst_reg, si->src_reg,
9303 offsetof(struct bpf_sock_ops_kern, sk));
9304 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9305 offsetof(struct sock_common, skc_dport));
9306 #ifndef __BIG_ENDIAN_BITFIELD
9307 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9308 #endif
9309 break;
9310
9311 case offsetof(struct bpf_sock_ops, local_port):
9312 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9313
9314 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9315 struct bpf_sock_ops_kern, sk),
9316 si->dst_reg, si->src_reg,
9317 offsetof(struct bpf_sock_ops_kern, sk));
9318 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9319 offsetof(struct sock_common, skc_num));
9320 break;
9321
9322 case offsetof(struct bpf_sock_ops, is_fullsock):
9323 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9324 struct bpf_sock_ops_kern,
9325 is_fullsock),
9326 si->dst_reg, si->src_reg,
9327 offsetof(struct bpf_sock_ops_kern,
9328 is_fullsock));
9329 break;
9330
9331 case offsetof(struct bpf_sock_ops, state):
9332 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
9333
9334 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9335 struct bpf_sock_ops_kern, sk),
9336 si->dst_reg, si->src_reg,
9337 offsetof(struct bpf_sock_ops_kern, sk));
9338 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
9339 offsetof(struct sock_common, skc_state));
9340 break;
9341
9342 case offsetof(struct bpf_sock_ops, rtt_min):
9343 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
9344 sizeof(struct minmax));
9345 BUILD_BUG_ON(sizeof(struct minmax) <
9346 sizeof(struct minmax_sample));
9347
9348 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9349 struct bpf_sock_ops_kern, sk),
9350 si->dst_reg, si->src_reg,
9351 offsetof(struct bpf_sock_ops_kern, sk));
9352 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9353 offsetof(struct tcp_sock, rtt_min) +
9354 sizeof_field(struct minmax_sample, t));
9355 break;
9356
9357 case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
9358 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
9359 struct tcp_sock);
9360 break;
9361
9362 case offsetof(struct bpf_sock_ops, sk_txhash):
9363 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
9364 struct sock, type);
9365 break;
9366 case offsetof(struct bpf_sock_ops, snd_cwnd):
9367 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
9368 break;
9369 case offsetof(struct bpf_sock_ops, srtt_us):
9370 SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
9371 break;
9372 case offsetof(struct bpf_sock_ops, snd_ssthresh):
9373 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
9374 break;
9375 case offsetof(struct bpf_sock_ops, rcv_nxt):
9376 SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
9377 break;
9378 case offsetof(struct bpf_sock_ops, snd_nxt):
9379 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
9380 break;
9381 case offsetof(struct bpf_sock_ops, snd_una):
9382 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
9383 break;
9384 case offsetof(struct bpf_sock_ops, mss_cache):
9385 SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
9386 break;
9387 case offsetof(struct bpf_sock_ops, ecn_flags):
9388 SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
9389 break;
9390 case offsetof(struct bpf_sock_ops, rate_delivered):
9391 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
9392 break;
9393 case offsetof(struct bpf_sock_ops, rate_interval_us):
9394 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
9395 break;
9396 case offsetof(struct bpf_sock_ops, packets_out):
9397 SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
9398 break;
9399 case offsetof(struct bpf_sock_ops, retrans_out):
9400 SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
9401 break;
9402 case offsetof(struct bpf_sock_ops, total_retrans):
9403 SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
9404 break;
9405 case offsetof(struct bpf_sock_ops, segs_in):
9406 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
9407 break;
9408 case offsetof(struct bpf_sock_ops, data_segs_in):
9409 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
9410 break;
9411 case offsetof(struct bpf_sock_ops, segs_out):
9412 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
9413 break;
9414 case offsetof(struct bpf_sock_ops, data_segs_out):
9415 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
9416 break;
9417 case offsetof(struct bpf_sock_ops, lost_out):
9418 SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
9419 break;
9420 case offsetof(struct bpf_sock_ops, sacked_out):
9421 SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
9422 break;
9423 case offsetof(struct bpf_sock_ops, bytes_received):
9424 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
9425 break;
9426 case offsetof(struct bpf_sock_ops, bytes_acked):
9427 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
9428 break;
9429 case offsetof(struct bpf_sock_ops, sk):
9430 SOCK_OPS_GET_SK();
9431 break;
9432 case offsetof(struct bpf_sock_ops, skb_data_end):
9433 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9434 skb_data_end),
9435 si->dst_reg, si->src_reg,
9436 offsetof(struct bpf_sock_ops_kern,
9437 skb_data_end));
9438 break;
9439 case offsetof(struct bpf_sock_ops, skb_data):
9440 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9441 skb),
9442 si->dst_reg, si->src_reg,
9443 offsetof(struct bpf_sock_ops_kern,
9444 skb));
9445 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9446 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9447 si->dst_reg, si->dst_reg,
9448 offsetof(struct sk_buff, data));
9449 break;
9450 case offsetof(struct bpf_sock_ops, skb_len):
9451 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9452 skb),
9453 si->dst_reg, si->src_reg,
9454 offsetof(struct bpf_sock_ops_kern,
9455 skb));
9456 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9457 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
9458 si->dst_reg, si->dst_reg,
9459 offsetof(struct sk_buff, len));
9460 break;
9461 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9462 off = offsetof(struct sk_buff, cb);
9463 off += offsetof(struct tcp_skb_cb, tcp_flags);
9464 *target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
9465 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9466 skb),
9467 si->dst_reg, si->src_reg,
9468 offsetof(struct bpf_sock_ops_kern,
9469 skb));
9470 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9471 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
9472 tcp_flags),
9473 si->dst_reg, si->dst_reg, off);
9474 break;
9475 }
9476 return insn - insn_buf;
9477 }
9478
sk_skb_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9479 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
9480 const struct bpf_insn *si,
9481 struct bpf_insn *insn_buf,
9482 struct bpf_prog *prog, u32 *target_size)
9483 {
9484 struct bpf_insn *insn = insn_buf;
9485 int off;
9486
9487 switch (si->off) {
9488 case offsetof(struct __sk_buff, data_end):
9489 off = si->off;
9490 off -= offsetof(struct __sk_buff, data_end);
9491 off += offsetof(struct sk_buff, cb);
9492 off += offsetof(struct tcp_skb_cb, bpf.data_end);
9493 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9494 si->src_reg, off);
9495 break;
9496 default:
9497 return bpf_convert_ctx_access(type, si, insn_buf, prog,
9498 target_size);
9499 }
9500
9501 return insn - insn_buf;
9502 }
9503
sk_msg_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9504 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
9505 const struct bpf_insn *si,
9506 struct bpf_insn *insn_buf,
9507 struct bpf_prog *prog, u32 *target_size)
9508 {
9509 struct bpf_insn *insn = insn_buf;
9510 #if IS_ENABLED(CONFIG_IPV6)
9511 int off;
9512 #endif
9513
9514 /* convert ctx uses the fact sg element is first in struct */
9515 BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
9516
9517 switch (si->off) {
9518 case offsetof(struct sk_msg_md, data):
9519 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
9520 si->dst_reg, si->src_reg,
9521 offsetof(struct sk_msg, data));
9522 break;
9523 case offsetof(struct sk_msg_md, data_end):
9524 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
9525 si->dst_reg, si->src_reg,
9526 offsetof(struct sk_msg, data_end));
9527 break;
9528 case offsetof(struct sk_msg_md, family):
9529 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9530
9531 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9532 struct sk_msg, sk),
9533 si->dst_reg, si->src_reg,
9534 offsetof(struct sk_msg, sk));
9535 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9536 offsetof(struct sock_common, skc_family));
9537 break;
9538
9539 case offsetof(struct sk_msg_md, remote_ip4):
9540 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9541
9542 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9543 struct sk_msg, sk),
9544 si->dst_reg, si->src_reg,
9545 offsetof(struct sk_msg, sk));
9546 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9547 offsetof(struct sock_common, skc_daddr));
9548 break;
9549
9550 case offsetof(struct sk_msg_md, local_ip4):
9551 BUILD_BUG_ON(sizeof_field(struct sock_common,
9552 skc_rcv_saddr) != 4);
9553
9554 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9555 struct sk_msg, sk),
9556 si->dst_reg, si->src_reg,
9557 offsetof(struct sk_msg, sk));
9558 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9559 offsetof(struct sock_common,
9560 skc_rcv_saddr));
9561 break;
9562
9563 case offsetof(struct sk_msg_md, remote_ip6[0]) ...
9564 offsetof(struct sk_msg_md, remote_ip6[3]):
9565 #if IS_ENABLED(CONFIG_IPV6)
9566 BUILD_BUG_ON(sizeof_field(struct sock_common,
9567 skc_v6_daddr.s6_addr32[0]) != 4);
9568
9569 off = si->off;
9570 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
9571 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9572 struct sk_msg, sk),
9573 si->dst_reg, si->src_reg,
9574 offsetof(struct sk_msg, sk));
9575 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9576 offsetof(struct sock_common,
9577 skc_v6_daddr.s6_addr32[0]) +
9578 off);
9579 #else
9580 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9581 #endif
9582 break;
9583
9584 case offsetof(struct sk_msg_md, local_ip6[0]) ...
9585 offsetof(struct sk_msg_md, local_ip6[3]):
9586 #if IS_ENABLED(CONFIG_IPV6)
9587 BUILD_BUG_ON(sizeof_field(struct sock_common,
9588 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9589
9590 off = si->off;
9591 off -= offsetof(struct sk_msg_md, local_ip6[0]);
9592 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9593 struct sk_msg, sk),
9594 si->dst_reg, si->src_reg,
9595 offsetof(struct sk_msg, sk));
9596 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9597 offsetof(struct sock_common,
9598 skc_v6_rcv_saddr.s6_addr32[0]) +
9599 off);
9600 #else
9601 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9602 #endif
9603 break;
9604
9605 case offsetof(struct sk_msg_md, remote_port):
9606 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9607
9608 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9609 struct sk_msg, sk),
9610 si->dst_reg, si->src_reg,
9611 offsetof(struct sk_msg, sk));
9612 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9613 offsetof(struct sock_common, skc_dport));
9614 #ifndef __BIG_ENDIAN_BITFIELD
9615 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9616 #endif
9617 break;
9618
9619 case offsetof(struct sk_msg_md, local_port):
9620 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9621
9622 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9623 struct sk_msg, sk),
9624 si->dst_reg, si->src_reg,
9625 offsetof(struct sk_msg, sk));
9626 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9627 offsetof(struct sock_common, skc_num));
9628 break;
9629
9630 case offsetof(struct sk_msg_md, size):
9631 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
9632 si->dst_reg, si->src_reg,
9633 offsetof(struct sk_msg_sg, size));
9634 break;
9635
9636 case offsetof(struct sk_msg_md, sk):
9637 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
9638 si->dst_reg, si->src_reg,
9639 offsetof(struct sk_msg, sk));
9640 break;
9641 }
9642
9643 return insn - insn_buf;
9644 }
9645
9646 const struct bpf_verifier_ops sk_filter_verifier_ops = {
9647 .get_func_proto = sk_filter_func_proto,
9648 .is_valid_access = sk_filter_is_valid_access,
9649 .convert_ctx_access = bpf_convert_ctx_access,
9650 .gen_ld_abs = bpf_gen_ld_abs,
9651 };
9652
9653 const struct bpf_prog_ops sk_filter_prog_ops = {
9654 .test_run = bpf_prog_test_run_skb,
9655 };
9656
9657 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
9658 .get_func_proto = tc_cls_act_func_proto,
9659 .is_valid_access = tc_cls_act_is_valid_access,
9660 .convert_ctx_access = tc_cls_act_convert_ctx_access,
9661 .gen_prologue = tc_cls_act_prologue,
9662 .gen_ld_abs = bpf_gen_ld_abs,
9663 };
9664
9665 const struct bpf_prog_ops tc_cls_act_prog_ops = {
9666 .test_run = bpf_prog_test_run_skb,
9667 };
9668
9669 const struct bpf_verifier_ops xdp_verifier_ops = {
9670 .get_func_proto = xdp_func_proto,
9671 .is_valid_access = xdp_is_valid_access,
9672 .convert_ctx_access = xdp_convert_ctx_access,
9673 .gen_prologue = bpf_noop_prologue,
9674 };
9675
9676 const struct bpf_prog_ops xdp_prog_ops = {
9677 .test_run = bpf_prog_test_run_xdp,
9678 };
9679
9680 const struct bpf_verifier_ops cg_skb_verifier_ops = {
9681 .get_func_proto = cg_skb_func_proto,
9682 .is_valid_access = cg_skb_is_valid_access,
9683 .convert_ctx_access = bpf_convert_ctx_access,
9684 };
9685
9686 const struct bpf_prog_ops cg_skb_prog_ops = {
9687 .test_run = bpf_prog_test_run_skb,
9688 };
9689
9690 const struct bpf_verifier_ops lwt_in_verifier_ops = {
9691 .get_func_proto = lwt_in_func_proto,
9692 .is_valid_access = lwt_is_valid_access,
9693 .convert_ctx_access = bpf_convert_ctx_access,
9694 };
9695
9696 const struct bpf_prog_ops lwt_in_prog_ops = {
9697 .test_run = bpf_prog_test_run_skb,
9698 };
9699
9700 const struct bpf_verifier_ops lwt_out_verifier_ops = {
9701 .get_func_proto = lwt_out_func_proto,
9702 .is_valid_access = lwt_is_valid_access,
9703 .convert_ctx_access = bpf_convert_ctx_access,
9704 };
9705
9706 const struct bpf_prog_ops lwt_out_prog_ops = {
9707 .test_run = bpf_prog_test_run_skb,
9708 };
9709
9710 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
9711 .get_func_proto = lwt_xmit_func_proto,
9712 .is_valid_access = lwt_is_valid_access,
9713 .convert_ctx_access = bpf_convert_ctx_access,
9714 .gen_prologue = tc_cls_act_prologue,
9715 };
9716
9717 const struct bpf_prog_ops lwt_xmit_prog_ops = {
9718 .test_run = bpf_prog_test_run_skb,
9719 };
9720
9721 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
9722 .get_func_proto = lwt_seg6local_func_proto,
9723 .is_valid_access = lwt_is_valid_access,
9724 .convert_ctx_access = bpf_convert_ctx_access,
9725 };
9726
9727 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
9728 .test_run = bpf_prog_test_run_skb,
9729 };
9730
9731 const struct bpf_verifier_ops cg_sock_verifier_ops = {
9732 .get_func_proto = sock_filter_func_proto,
9733 .is_valid_access = sock_filter_is_valid_access,
9734 .convert_ctx_access = bpf_sock_convert_ctx_access,
9735 };
9736
9737 const struct bpf_prog_ops cg_sock_prog_ops = {
9738 };
9739
9740 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
9741 .get_func_proto = sock_addr_func_proto,
9742 .is_valid_access = sock_addr_is_valid_access,
9743 .convert_ctx_access = sock_addr_convert_ctx_access,
9744 };
9745
9746 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
9747 };
9748
9749 const struct bpf_verifier_ops sock_ops_verifier_ops = {
9750 .get_func_proto = sock_ops_func_proto,
9751 .is_valid_access = sock_ops_is_valid_access,
9752 .convert_ctx_access = sock_ops_convert_ctx_access,
9753 };
9754
9755 const struct bpf_prog_ops sock_ops_prog_ops = {
9756 };
9757
9758 const struct bpf_verifier_ops sk_skb_verifier_ops = {
9759 .get_func_proto = sk_skb_func_proto,
9760 .is_valid_access = sk_skb_is_valid_access,
9761 .convert_ctx_access = sk_skb_convert_ctx_access,
9762 .gen_prologue = sk_skb_prologue,
9763 };
9764
9765 const struct bpf_prog_ops sk_skb_prog_ops = {
9766 };
9767
9768 const struct bpf_verifier_ops sk_msg_verifier_ops = {
9769 .get_func_proto = sk_msg_func_proto,
9770 .is_valid_access = sk_msg_is_valid_access,
9771 .convert_ctx_access = sk_msg_convert_ctx_access,
9772 .gen_prologue = bpf_noop_prologue,
9773 };
9774
9775 const struct bpf_prog_ops sk_msg_prog_ops = {
9776 };
9777
9778 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
9779 .get_func_proto = flow_dissector_func_proto,
9780 .is_valid_access = flow_dissector_is_valid_access,
9781 .convert_ctx_access = flow_dissector_convert_ctx_access,
9782 };
9783
9784 const struct bpf_prog_ops flow_dissector_prog_ops = {
9785 .test_run = bpf_prog_test_run_flow_dissector,
9786 };
9787
sk_detach_filter(struct sock * sk)9788 int sk_detach_filter(struct sock *sk)
9789 {
9790 int ret = -ENOENT;
9791 struct sk_filter *filter;
9792
9793 if (sock_flag(sk, SOCK_FILTER_LOCKED))
9794 return -EPERM;
9795
9796 filter = rcu_dereference_protected(sk->sk_filter,
9797 lockdep_sock_is_held(sk));
9798 if (filter) {
9799 RCU_INIT_POINTER(sk->sk_filter, NULL);
9800 sk_filter_uncharge(sk, filter);
9801 ret = 0;
9802 }
9803
9804 return ret;
9805 }
9806 EXPORT_SYMBOL_GPL(sk_detach_filter);
9807
sk_get_filter(struct sock * sk,struct sock_filter __user * ubuf,unsigned int len)9808 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
9809 unsigned int len)
9810 {
9811 struct sock_fprog_kern *fprog;
9812 struct sk_filter *filter;
9813 int ret = 0;
9814
9815 lock_sock(sk);
9816 filter = rcu_dereference_protected(sk->sk_filter,
9817 lockdep_sock_is_held(sk));
9818 if (!filter)
9819 goto out;
9820
9821 /* We're copying the filter that has been originally attached,
9822 * so no conversion/decode needed anymore. eBPF programs that
9823 * have no original program cannot be dumped through this.
9824 */
9825 ret = -EACCES;
9826 fprog = filter->prog->orig_prog;
9827 if (!fprog)
9828 goto out;
9829
9830 ret = fprog->len;
9831 if (!len)
9832 /* User space only enquires number of filter blocks. */
9833 goto out;
9834
9835 ret = -EINVAL;
9836 if (len < fprog->len)
9837 goto out;
9838
9839 ret = -EFAULT;
9840 if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
9841 goto out;
9842
9843 /* Instead of bytes, the API requests to return the number
9844 * of filter blocks.
9845 */
9846 ret = fprog->len;
9847 out:
9848 release_sock(sk);
9849 return ret;
9850 }
9851
9852 #ifdef CONFIG_INET
bpf_init_reuseport_kern(struct sk_reuseport_kern * reuse_kern,struct sock_reuseport * reuse,struct sock * sk,struct sk_buff * skb,u32 hash)9853 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
9854 struct sock_reuseport *reuse,
9855 struct sock *sk, struct sk_buff *skb,
9856 u32 hash)
9857 {
9858 reuse_kern->skb = skb;
9859 reuse_kern->sk = sk;
9860 reuse_kern->selected_sk = NULL;
9861 reuse_kern->data_end = skb->data + skb_headlen(skb);
9862 reuse_kern->hash = hash;
9863 reuse_kern->reuseport_id = reuse->reuseport_id;
9864 reuse_kern->bind_inany = reuse->bind_inany;
9865 }
9866
bpf_run_sk_reuseport(struct sock_reuseport * reuse,struct sock * sk,struct bpf_prog * prog,struct sk_buff * skb,u32 hash)9867 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
9868 struct bpf_prog *prog, struct sk_buff *skb,
9869 u32 hash)
9870 {
9871 struct sk_reuseport_kern reuse_kern;
9872 enum sk_action action;
9873
9874 bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, hash);
9875 action = BPF_PROG_RUN(prog, &reuse_kern);
9876
9877 if (action == SK_PASS)
9878 return reuse_kern.selected_sk;
9879 else
9880 return ERR_PTR(-ECONNREFUSED);
9881 }
9882
BPF_CALL_4(sk_select_reuseport,struct sk_reuseport_kern *,reuse_kern,struct bpf_map *,map,void *,key,u32,flags)9883 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
9884 struct bpf_map *, map, void *, key, u32, flags)
9885 {
9886 bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
9887 struct sock_reuseport *reuse;
9888 struct sock *selected_sk;
9889
9890 selected_sk = map->ops->map_lookup_elem(map, key);
9891 if (!selected_sk)
9892 return -ENOENT;
9893
9894 reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
9895 if (!reuse) {
9896 /* Lookup in sock_map can return TCP ESTABLISHED sockets. */
9897 if (sk_is_refcounted(selected_sk))
9898 sock_put(selected_sk);
9899
9900 /* reuseport_array has only sk with non NULL sk_reuseport_cb.
9901 * The only (!reuse) case here is - the sk has already been
9902 * unhashed (e.g. by close()), so treat it as -ENOENT.
9903 *
9904 * Other maps (e.g. sock_map) do not provide this guarantee and
9905 * the sk may never be in the reuseport group to begin with.
9906 */
9907 return is_sockarray ? -ENOENT : -EINVAL;
9908 }
9909
9910 if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
9911 struct sock *sk = reuse_kern->sk;
9912
9913 if (sk->sk_protocol != selected_sk->sk_protocol)
9914 return -EPROTOTYPE;
9915 else if (sk->sk_family != selected_sk->sk_family)
9916 return -EAFNOSUPPORT;
9917
9918 /* Catch all. Likely bound to a different sockaddr. */
9919 return -EBADFD;
9920 }
9921
9922 reuse_kern->selected_sk = selected_sk;
9923
9924 return 0;
9925 }
9926
9927 static const struct bpf_func_proto sk_select_reuseport_proto = {
9928 .func = sk_select_reuseport,
9929 .gpl_only = false,
9930 .ret_type = RET_INTEGER,
9931 .arg1_type = ARG_PTR_TO_CTX,
9932 .arg2_type = ARG_CONST_MAP_PTR,
9933 .arg3_type = ARG_PTR_TO_MAP_KEY,
9934 .arg4_type = ARG_ANYTHING,
9935 };
9936
BPF_CALL_4(sk_reuseport_load_bytes,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len)9937 BPF_CALL_4(sk_reuseport_load_bytes,
9938 const struct sk_reuseport_kern *, reuse_kern, u32, offset,
9939 void *, to, u32, len)
9940 {
9941 return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
9942 }
9943
9944 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
9945 .func = sk_reuseport_load_bytes,
9946 .gpl_only = false,
9947 .ret_type = RET_INTEGER,
9948 .arg1_type = ARG_PTR_TO_CTX,
9949 .arg2_type = ARG_ANYTHING,
9950 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
9951 .arg4_type = ARG_CONST_SIZE,
9952 };
9953
BPF_CALL_5(sk_reuseport_load_bytes_relative,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len,u32,start_header)9954 BPF_CALL_5(sk_reuseport_load_bytes_relative,
9955 const struct sk_reuseport_kern *, reuse_kern, u32, offset,
9956 void *, to, u32, len, u32, start_header)
9957 {
9958 return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
9959 len, start_header);
9960 }
9961
9962 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
9963 .func = sk_reuseport_load_bytes_relative,
9964 .gpl_only = false,
9965 .ret_type = RET_INTEGER,
9966 .arg1_type = ARG_PTR_TO_CTX,
9967 .arg2_type = ARG_ANYTHING,
9968 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
9969 .arg4_type = ARG_CONST_SIZE,
9970 .arg5_type = ARG_ANYTHING,
9971 };
9972
9973 static const struct bpf_func_proto *
sk_reuseport_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)9974 sk_reuseport_func_proto(enum bpf_func_id func_id,
9975 const struct bpf_prog *prog)
9976 {
9977 switch (func_id) {
9978 case BPF_FUNC_sk_select_reuseport:
9979 return &sk_select_reuseport_proto;
9980 case BPF_FUNC_skb_load_bytes:
9981 return &sk_reuseport_load_bytes_proto;
9982 case BPF_FUNC_skb_load_bytes_relative:
9983 return &sk_reuseport_load_bytes_relative_proto;
9984 default:
9985 return bpf_base_func_proto(func_id);
9986 }
9987 }
9988
9989 static bool
sk_reuseport_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9990 sk_reuseport_is_valid_access(int off, int size,
9991 enum bpf_access_type type,
9992 const struct bpf_prog *prog,
9993 struct bpf_insn_access_aux *info)
9994 {
9995 const u32 size_default = sizeof(__u32);
9996
9997 if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
9998 off % size || type != BPF_READ)
9999 return false;
10000
10001 switch (off) {
10002 case offsetof(struct sk_reuseport_md, data):
10003 info->reg_type = PTR_TO_PACKET;
10004 return size == sizeof(__u64);
10005
10006 case offsetof(struct sk_reuseport_md, data_end):
10007 info->reg_type = PTR_TO_PACKET_END;
10008 return size == sizeof(__u64);
10009
10010 case offsetof(struct sk_reuseport_md, hash):
10011 return size == size_default;
10012
10013 /* Fields that allow narrowing */
10014 case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
10015 if (size < sizeof_field(struct sk_buff, protocol))
10016 return false;
10017 fallthrough;
10018 case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
10019 case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
10020 case bpf_ctx_range(struct sk_reuseport_md, len):
10021 bpf_ctx_record_field_size(info, size_default);
10022 return bpf_ctx_narrow_access_ok(off, size, size_default);
10023
10024 default:
10025 return false;
10026 }
10027 }
10028
10029 #define SK_REUSEPORT_LOAD_FIELD(F) ({ \
10030 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
10031 si->dst_reg, si->src_reg, \
10032 bpf_target_off(struct sk_reuseport_kern, F, \
10033 sizeof_field(struct sk_reuseport_kern, F), \
10034 target_size)); \
10035 })
10036
10037 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD) \
10038 SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern, \
10039 struct sk_buff, \
10040 skb, \
10041 SKB_FIELD)
10042
10043 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD) \
10044 SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern, \
10045 struct sock, \
10046 sk, \
10047 SK_FIELD)
10048
sk_reuseport_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10049 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
10050 const struct bpf_insn *si,
10051 struct bpf_insn *insn_buf,
10052 struct bpf_prog *prog,
10053 u32 *target_size)
10054 {
10055 struct bpf_insn *insn = insn_buf;
10056
10057 switch (si->off) {
10058 case offsetof(struct sk_reuseport_md, data):
10059 SK_REUSEPORT_LOAD_SKB_FIELD(data);
10060 break;
10061
10062 case offsetof(struct sk_reuseport_md, len):
10063 SK_REUSEPORT_LOAD_SKB_FIELD(len);
10064 break;
10065
10066 case offsetof(struct sk_reuseport_md, eth_protocol):
10067 SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
10068 break;
10069
10070 case offsetof(struct sk_reuseport_md, ip_protocol):
10071 SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
10072 break;
10073
10074 case offsetof(struct sk_reuseport_md, data_end):
10075 SK_REUSEPORT_LOAD_FIELD(data_end);
10076 break;
10077
10078 case offsetof(struct sk_reuseport_md, hash):
10079 SK_REUSEPORT_LOAD_FIELD(hash);
10080 break;
10081
10082 case offsetof(struct sk_reuseport_md, bind_inany):
10083 SK_REUSEPORT_LOAD_FIELD(bind_inany);
10084 break;
10085 }
10086
10087 return insn - insn_buf;
10088 }
10089
10090 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
10091 .get_func_proto = sk_reuseport_func_proto,
10092 .is_valid_access = sk_reuseport_is_valid_access,
10093 .convert_ctx_access = sk_reuseport_convert_ctx_access,
10094 };
10095
10096 const struct bpf_prog_ops sk_reuseport_prog_ops = {
10097 };
10098
10099 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
10100 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
10101
BPF_CALL_3(bpf_sk_lookup_assign,struct bpf_sk_lookup_kern *,ctx,struct sock *,sk,u64,flags)10102 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
10103 struct sock *, sk, u64, flags)
10104 {
10105 if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
10106 BPF_SK_LOOKUP_F_NO_REUSEPORT)))
10107 return -EINVAL;
10108 if (unlikely(sk && sk_is_refcounted(sk)))
10109 return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
10110 if (unlikely(sk && sk->sk_state == TCP_ESTABLISHED))
10111 return -ESOCKTNOSUPPORT; /* reject connected sockets */
10112
10113 /* Check if socket is suitable for packet L3/L4 protocol */
10114 if (sk && sk->sk_protocol != ctx->protocol)
10115 return -EPROTOTYPE;
10116 if (sk && sk->sk_family != ctx->family &&
10117 (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
10118 return -EAFNOSUPPORT;
10119
10120 if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
10121 return -EEXIST;
10122
10123 /* Select socket as lookup result */
10124 ctx->selected_sk = sk;
10125 ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
10126 return 0;
10127 }
10128
10129 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
10130 .func = bpf_sk_lookup_assign,
10131 .gpl_only = false,
10132 .ret_type = RET_INTEGER,
10133 .arg1_type = ARG_PTR_TO_CTX,
10134 .arg2_type = ARG_PTR_TO_SOCKET_OR_NULL,
10135 .arg3_type = ARG_ANYTHING,
10136 };
10137
10138 static const struct bpf_func_proto *
sk_lookup_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)10139 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
10140 {
10141 switch (func_id) {
10142 case BPF_FUNC_perf_event_output:
10143 return &bpf_event_output_data_proto;
10144 case BPF_FUNC_sk_assign:
10145 return &bpf_sk_lookup_assign_proto;
10146 case BPF_FUNC_sk_release:
10147 return &bpf_sk_release_proto;
10148 default:
10149 return bpf_sk_base_func_proto(func_id);
10150 }
10151 }
10152
sk_lookup_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)10153 static bool sk_lookup_is_valid_access(int off, int size,
10154 enum bpf_access_type type,
10155 const struct bpf_prog *prog,
10156 struct bpf_insn_access_aux *info)
10157 {
10158 if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
10159 return false;
10160 if (off % size != 0)
10161 return false;
10162 if (type != BPF_READ)
10163 return false;
10164
10165 switch (off) {
10166 case offsetof(struct bpf_sk_lookup, sk):
10167 info->reg_type = PTR_TO_SOCKET_OR_NULL;
10168 return size == sizeof(__u64);
10169
10170 case bpf_ctx_range(struct bpf_sk_lookup, family):
10171 case bpf_ctx_range(struct bpf_sk_lookup, protocol):
10172 case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
10173 case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
10174 case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
10175 case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
10176 case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
10177 case bpf_ctx_range(struct bpf_sk_lookup, local_port):
10178 bpf_ctx_record_field_size(info, sizeof(__u32));
10179 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
10180
10181 default:
10182 return false;
10183 }
10184 }
10185
sk_lookup_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10186 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
10187 const struct bpf_insn *si,
10188 struct bpf_insn *insn_buf,
10189 struct bpf_prog *prog,
10190 u32 *target_size)
10191 {
10192 struct bpf_insn *insn = insn_buf;
10193
10194 switch (si->off) {
10195 case offsetof(struct bpf_sk_lookup, sk):
10196 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10197 offsetof(struct bpf_sk_lookup_kern, selected_sk));
10198 break;
10199
10200 case offsetof(struct bpf_sk_lookup, family):
10201 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10202 bpf_target_off(struct bpf_sk_lookup_kern,
10203 family, 2, target_size));
10204 break;
10205
10206 case offsetof(struct bpf_sk_lookup, protocol):
10207 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10208 bpf_target_off(struct bpf_sk_lookup_kern,
10209 protocol, 2, target_size));
10210 break;
10211
10212 case offsetof(struct bpf_sk_lookup, remote_ip4):
10213 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10214 bpf_target_off(struct bpf_sk_lookup_kern,
10215 v4.saddr, 4, target_size));
10216 break;
10217
10218 case offsetof(struct bpf_sk_lookup, local_ip4):
10219 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10220 bpf_target_off(struct bpf_sk_lookup_kern,
10221 v4.daddr, 4, target_size));
10222 break;
10223
10224 case bpf_ctx_range_till(struct bpf_sk_lookup,
10225 remote_ip6[0], remote_ip6[3]): {
10226 #if IS_ENABLED(CONFIG_IPV6)
10227 int off = si->off;
10228
10229 off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
10230 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10231 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10232 offsetof(struct bpf_sk_lookup_kern, v6.saddr));
10233 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10234 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10235 #else
10236 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10237 #endif
10238 break;
10239 }
10240 case bpf_ctx_range_till(struct bpf_sk_lookup,
10241 local_ip6[0], local_ip6[3]): {
10242 #if IS_ENABLED(CONFIG_IPV6)
10243 int off = si->off;
10244
10245 off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
10246 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10247 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10248 offsetof(struct bpf_sk_lookup_kern, v6.daddr));
10249 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10250 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10251 #else
10252 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10253 #endif
10254 break;
10255 }
10256 case offsetof(struct bpf_sk_lookup, remote_port):
10257 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10258 bpf_target_off(struct bpf_sk_lookup_kern,
10259 sport, 2, target_size));
10260 break;
10261
10262 case offsetof(struct bpf_sk_lookup, local_port):
10263 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10264 bpf_target_off(struct bpf_sk_lookup_kern,
10265 dport, 2, target_size));
10266 break;
10267 }
10268
10269 return insn - insn_buf;
10270 }
10271
10272 const struct bpf_prog_ops sk_lookup_prog_ops = {
10273 };
10274
10275 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
10276 .get_func_proto = sk_lookup_func_proto,
10277 .is_valid_access = sk_lookup_is_valid_access,
10278 .convert_ctx_access = sk_lookup_convert_ctx_access,
10279 };
10280
10281 #endif /* CONFIG_INET */
10282
DEFINE_BPF_DISPATCHER(xdp)10283 DEFINE_BPF_DISPATCHER(xdp)
10284
10285 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
10286 {
10287 bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
10288 }
10289
10290 #ifdef CONFIG_DEBUG_INFO_BTF
BTF_ID_LIST_GLOBAL(btf_sock_ids)10291 BTF_ID_LIST_GLOBAL(btf_sock_ids)
10292 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
10293 BTF_SOCK_TYPE_xxx
10294 #undef BTF_SOCK_TYPE
10295 #else
10296 u32 btf_sock_ids[MAX_BTF_SOCK_TYPE];
10297 #endif
10298
10299 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
10300 {
10301 /* tcp6_sock type is not generated in dwarf and hence btf,
10302 * trigger an explicit type generation here.
10303 */
10304 BTF_TYPE_EMIT(struct tcp6_sock);
10305 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
10306 sk->sk_family == AF_INET6)
10307 return (unsigned long)sk;
10308
10309 return (unsigned long)NULL;
10310 }
10311
10312 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
10313 .func = bpf_skc_to_tcp6_sock,
10314 .gpl_only = false,
10315 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
10316 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10317 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
10318 };
10319
BPF_CALL_1(bpf_skc_to_tcp_sock,struct sock *,sk)10320 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
10321 {
10322 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
10323 return (unsigned long)sk;
10324
10325 return (unsigned long)NULL;
10326 }
10327
10328 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
10329 .func = bpf_skc_to_tcp_sock,
10330 .gpl_only = false,
10331 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
10332 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10333 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
10334 };
10335
BPF_CALL_1(bpf_skc_to_tcp_timewait_sock,struct sock *,sk)10336 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
10337 {
10338 /* BTF types for tcp_timewait_sock and inet_timewait_sock are not
10339 * generated if CONFIG_INET=n. Trigger an explicit generation here.
10340 */
10341 BTF_TYPE_EMIT(struct inet_timewait_sock);
10342 BTF_TYPE_EMIT(struct tcp_timewait_sock);
10343
10344 #ifdef CONFIG_INET
10345 if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
10346 return (unsigned long)sk;
10347 #endif
10348
10349 #if IS_BUILTIN(CONFIG_IPV6)
10350 if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
10351 return (unsigned long)sk;
10352 #endif
10353
10354 return (unsigned long)NULL;
10355 }
10356
10357 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
10358 .func = bpf_skc_to_tcp_timewait_sock,
10359 .gpl_only = false,
10360 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
10361 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10362 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
10363 };
10364
BPF_CALL_1(bpf_skc_to_tcp_request_sock,struct sock *,sk)10365 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
10366 {
10367 #ifdef CONFIG_INET
10368 if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10369 return (unsigned long)sk;
10370 #endif
10371
10372 #if IS_BUILTIN(CONFIG_IPV6)
10373 if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10374 return (unsigned long)sk;
10375 #endif
10376
10377 return (unsigned long)NULL;
10378 }
10379
10380 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
10381 .func = bpf_skc_to_tcp_request_sock,
10382 .gpl_only = false,
10383 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
10384 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10385 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
10386 };
10387
BPF_CALL_1(bpf_skc_to_udp6_sock,struct sock *,sk)10388 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
10389 {
10390 /* udp6_sock type is not generated in dwarf and hence btf,
10391 * trigger an explicit type generation here.
10392 */
10393 BTF_TYPE_EMIT(struct udp6_sock);
10394 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
10395 sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
10396 return (unsigned long)sk;
10397
10398 return (unsigned long)NULL;
10399 }
10400
10401 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
10402 .func = bpf_skc_to_udp6_sock,
10403 .gpl_only = false,
10404 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
10405 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10406 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
10407 };
10408
10409 static const struct bpf_func_proto *
bpf_sk_base_func_proto(enum bpf_func_id func_id)10410 bpf_sk_base_func_proto(enum bpf_func_id func_id)
10411 {
10412 const struct bpf_func_proto *func;
10413
10414 switch (func_id) {
10415 case BPF_FUNC_skc_to_tcp6_sock:
10416 func = &bpf_skc_to_tcp6_sock_proto;
10417 break;
10418 case BPF_FUNC_skc_to_tcp_sock:
10419 func = &bpf_skc_to_tcp_sock_proto;
10420 break;
10421 case BPF_FUNC_skc_to_tcp_timewait_sock:
10422 func = &bpf_skc_to_tcp_timewait_sock_proto;
10423 break;
10424 case BPF_FUNC_skc_to_tcp_request_sock:
10425 func = &bpf_skc_to_tcp_request_sock_proto;
10426 break;
10427 case BPF_FUNC_skc_to_udp6_sock:
10428 func = &bpf_skc_to_udp6_sock_proto;
10429 break;
10430 default:
10431 return bpf_base_func_proto(func_id);
10432 }
10433
10434 if (!perfmon_capable())
10435 return NULL;
10436
10437 return func;
10438 }
10439