1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright (c) 2016-2017 Micron Technology, Inc.
4 *
5 * Authors:
6 * Peter Pan <peterpandong@micron.com>
7 */
8 #ifndef __LINUX_MTD_SPINAND_H
9 #define __LINUX_MTD_SPINAND_H
10
11 #include <linux/mutex.h>
12 #include <linux/bitops.h>
13 #include <linux/device.h>
14 #include <linux/mtd/mtd.h>
15 #include <linux/mtd/nand.h>
16 #include <linux/spi/spi.h>
17 #include <linux/spi/spi-mem.h>
18
19 /**
20 * Standard SPI NAND flash operations
21 */
22
23 #define SPINAND_RESET_OP \
24 SPI_MEM_OP(SPI_MEM_OP_CMD(0xff, 1), \
25 SPI_MEM_OP_NO_ADDR, \
26 SPI_MEM_OP_NO_DUMMY, \
27 SPI_MEM_OP_NO_DATA)
28
29 #define SPINAND_WR_EN_DIS_OP(enable) \
30 SPI_MEM_OP(SPI_MEM_OP_CMD((enable) ? 0x06 : 0x04, 1), \
31 SPI_MEM_OP_NO_ADDR, \
32 SPI_MEM_OP_NO_DUMMY, \
33 SPI_MEM_OP_NO_DATA)
34
35 #define SPINAND_READID_OP(naddr, ndummy, buf, len) \
36 SPI_MEM_OP(SPI_MEM_OP_CMD(0x9f, 1), \
37 SPI_MEM_OP_ADDR(naddr, 0, 1), \
38 SPI_MEM_OP_DUMMY(ndummy, 1), \
39 SPI_MEM_OP_DATA_IN(len, buf, 1))
40
41 #define SPINAND_SET_FEATURE_OP(reg, valptr) \
42 SPI_MEM_OP(SPI_MEM_OP_CMD(0x1f, 1), \
43 SPI_MEM_OP_ADDR(1, reg, 1), \
44 SPI_MEM_OP_NO_DUMMY, \
45 SPI_MEM_OP_DATA_OUT(1, valptr, 1))
46
47 #define SPINAND_GET_FEATURE_OP(reg, valptr) \
48 SPI_MEM_OP(SPI_MEM_OP_CMD(0x0f, 1), \
49 SPI_MEM_OP_ADDR(1, reg, 1), \
50 SPI_MEM_OP_NO_DUMMY, \
51 SPI_MEM_OP_DATA_IN(1, valptr, 1))
52
53 #define SPINAND_BLK_ERASE_OP(addr) \
54 SPI_MEM_OP(SPI_MEM_OP_CMD(0xd8, 1), \
55 SPI_MEM_OP_ADDR(3, addr, 1), \
56 SPI_MEM_OP_NO_DUMMY, \
57 SPI_MEM_OP_NO_DATA)
58
59 #define SPINAND_PAGE_READ_OP(addr) \
60 SPI_MEM_OP(SPI_MEM_OP_CMD(0x13, 1), \
61 SPI_MEM_OP_ADDR(3, addr, 1), \
62 SPI_MEM_OP_NO_DUMMY, \
63 SPI_MEM_OP_NO_DATA)
64
65 #define SPINAND_PAGE_READ_FROM_CACHE_OP(fast, addr, ndummy, buf, len) \
66 SPI_MEM_OP(SPI_MEM_OP_CMD(fast ? 0x0b : 0x03, 1), \
67 SPI_MEM_OP_ADDR(2, addr, 1), \
68 SPI_MEM_OP_DUMMY(ndummy, 1), \
69 SPI_MEM_OP_DATA_IN(len, buf, 1))
70
71 #define SPINAND_PAGE_READ_FROM_CACHE_OP_3A(fast, addr, ndummy, buf, len) \
72 SPI_MEM_OP(SPI_MEM_OP_CMD(fast ? 0x0b : 0x03, 1), \
73 SPI_MEM_OP_ADDR(3, addr, 1), \
74 SPI_MEM_OP_DUMMY(ndummy, 1), \
75 SPI_MEM_OP_DATA_IN(len, buf, 1))
76
77 #define SPINAND_PAGE_READ_FROM_CACHE_X2_OP(addr, ndummy, buf, len) \
78 SPI_MEM_OP(SPI_MEM_OP_CMD(0x3b, 1), \
79 SPI_MEM_OP_ADDR(2, addr, 1), \
80 SPI_MEM_OP_DUMMY(ndummy, 1), \
81 SPI_MEM_OP_DATA_IN(len, buf, 2))
82
83 #define SPINAND_PAGE_READ_FROM_CACHE_X2_OP_3A(addr, ndummy, buf, len) \
84 SPI_MEM_OP(SPI_MEM_OP_CMD(0x3b, 1), \
85 SPI_MEM_OP_ADDR(3, addr, 1), \
86 SPI_MEM_OP_DUMMY(ndummy, 1), \
87 SPI_MEM_OP_DATA_IN(len, buf, 2))
88
89 #define SPINAND_PAGE_READ_FROM_CACHE_X4_OP(addr, ndummy, buf, len) \
90 SPI_MEM_OP(SPI_MEM_OP_CMD(0x6b, 1), \
91 SPI_MEM_OP_ADDR(2, addr, 1), \
92 SPI_MEM_OP_DUMMY(ndummy, 1), \
93 SPI_MEM_OP_DATA_IN(len, buf, 4))
94
95 #define SPINAND_PAGE_READ_FROM_CACHE_X4_OP_3A(addr, ndummy, buf, len) \
96 SPI_MEM_OP(SPI_MEM_OP_CMD(0x6b, 1), \
97 SPI_MEM_OP_ADDR(3, addr, 1), \
98 SPI_MEM_OP_DUMMY(ndummy, 1), \
99 SPI_MEM_OP_DATA_IN(len, buf, 4))
100
101 #define SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(addr, ndummy, buf, len) \
102 SPI_MEM_OP(SPI_MEM_OP_CMD(0xbb, 1), \
103 SPI_MEM_OP_ADDR(2, addr, 2), \
104 SPI_MEM_OP_DUMMY(ndummy, 2), \
105 SPI_MEM_OP_DATA_IN(len, buf, 2))
106
107 #define SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP_3A(addr, ndummy, buf, len) \
108 SPI_MEM_OP(SPI_MEM_OP_CMD(0xbb, 1), \
109 SPI_MEM_OP_ADDR(3, addr, 2), \
110 SPI_MEM_OP_DUMMY(ndummy, 2), \
111 SPI_MEM_OP_DATA_IN(len, buf, 2))
112
113 #define SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(addr, ndummy, buf, len) \
114 SPI_MEM_OP(SPI_MEM_OP_CMD(0xeb, 1), \
115 SPI_MEM_OP_ADDR(2, addr, 4), \
116 SPI_MEM_OP_DUMMY(ndummy, 4), \
117 SPI_MEM_OP_DATA_IN(len, buf, 4))
118
119 #define SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP_3A(addr, ndummy, buf, len) \
120 SPI_MEM_OP(SPI_MEM_OP_CMD(0xeb, 1), \
121 SPI_MEM_OP_ADDR(3, addr, 4), \
122 SPI_MEM_OP_DUMMY(ndummy, 4), \
123 SPI_MEM_OP_DATA_IN(len, buf, 4))
124
125 #define SPINAND_PROG_EXEC_OP(addr) \
126 SPI_MEM_OP(SPI_MEM_OP_CMD(0x10, 1), \
127 SPI_MEM_OP_ADDR(3, addr, 1), \
128 SPI_MEM_OP_NO_DUMMY, \
129 SPI_MEM_OP_NO_DATA)
130
131 #define SPINAND_PROG_LOAD(reset, addr, buf, len) \
132 SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x02 : 0x84, 1), \
133 SPI_MEM_OP_ADDR(2, addr, 1), \
134 SPI_MEM_OP_NO_DUMMY, \
135 SPI_MEM_OP_DATA_OUT(len, buf, 1))
136
137 #define SPINAND_PROG_LOAD_X4(reset, addr, buf, len) \
138 SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x32 : 0x34, 1), \
139 SPI_MEM_OP_ADDR(2, addr, 1), \
140 SPI_MEM_OP_NO_DUMMY, \
141 SPI_MEM_OP_DATA_OUT(len, buf, 4))
142
143 /**
144 * Standard SPI NAND flash commands
145 */
146 #define SPINAND_CMD_PROG_LOAD_X4 0x32
147 #define SPINAND_CMD_PROG_LOAD_RDM_DATA_X4 0x34
148
149 /* feature register */
150 #define REG_BLOCK_LOCK 0xa0
151 #define BL_ALL_UNLOCKED 0x00
152
153 /* configuration register */
154 #define REG_CFG 0xb0
155 #define CFG_OTP_ENABLE BIT(6)
156 #define CFG_ECC_ENABLE BIT(4)
157 #define CFG_QUAD_ENABLE BIT(0)
158
159 /* status register */
160 #define REG_STATUS 0xc0
161 #define STATUS_BUSY BIT(0)
162 #define STATUS_ERASE_FAILED BIT(2)
163 #define STATUS_PROG_FAILED BIT(3)
164 #define STATUS_ECC_MASK GENMASK(5, 4)
165 #define STATUS_ECC_NO_BITFLIPS (0 << 4)
166 #define STATUS_ECC_HAS_BITFLIPS (1 << 4)
167 #define STATUS_ECC_UNCOR_ERROR (2 << 4)
168
169 struct spinand_op;
170 struct spinand_device;
171
172 #define SPINAND_MAX_ID_LEN 4
173
174 /**
175 * struct spinand_id - SPI NAND id structure
176 * @data: buffer containing the id bytes. Currently 4 bytes large, but can
177 * be extended if required
178 * @len: ID length
179 */
180 struct spinand_id {
181 u8 data[SPINAND_MAX_ID_LEN];
182 int len;
183 };
184
185 enum spinand_readid_method {
186 SPINAND_READID_METHOD_OPCODE,
187 SPINAND_READID_METHOD_OPCODE_ADDR,
188 SPINAND_READID_METHOD_OPCODE_DUMMY,
189 };
190
191 /**
192 * struct spinand_devid - SPI NAND device id structure
193 * @id: device id of current chip
194 * @len: number of bytes in device id
195 * @method: method to read chip id
196 * There are 3 possible variants:
197 * SPINAND_READID_METHOD_OPCODE: chip id is returned immediately
198 * after read_id opcode.
199 * SPINAND_READID_METHOD_OPCODE_ADDR: chip id is returned after
200 * read_id opcode + 1-byte address.
201 * SPINAND_READID_METHOD_OPCODE_DUMMY: chip id is returned after
202 * read_id opcode + 1 dummy byte.
203 */
204 struct spinand_devid {
205 const u8 *id;
206 const u8 len;
207 const enum spinand_readid_method method;
208 };
209
210 /**
211 * struct manufacurer_ops - SPI NAND manufacturer specific operations
212 * @init: initialize a SPI NAND device
213 * @cleanup: cleanup a SPI NAND device
214 *
215 * Each SPI NAND manufacturer driver should implement this interface so that
216 * NAND chips coming from this vendor can be initialized properly.
217 */
218 struct spinand_manufacturer_ops {
219 int (*init)(struct spinand_device *spinand);
220 void (*cleanup)(struct spinand_device *spinand);
221 };
222
223 /**
224 * struct spinand_manufacturer - SPI NAND manufacturer instance
225 * @id: manufacturer ID
226 * @name: manufacturer name
227 * @devid_len: number of bytes in device ID
228 * @chips: supported SPI NANDs under current manufacturer
229 * @nchips: number of SPI NANDs available in chips array
230 * @ops: manufacturer operations
231 */
232 struct spinand_manufacturer {
233 u8 id;
234 char *name;
235 const struct spinand_info *chips;
236 const size_t nchips;
237 const struct spinand_manufacturer_ops *ops;
238 };
239
240 /* SPI NAND manufacturers */
241 extern const struct spinand_manufacturer gigadevice_spinand_manufacturer;
242 extern const struct spinand_manufacturer macronix_spinand_manufacturer;
243 extern const struct spinand_manufacturer micron_spinand_manufacturer;
244 extern const struct spinand_manufacturer paragon_spinand_manufacturer;
245 extern const struct spinand_manufacturer toshiba_spinand_manufacturer;
246 extern const struct spinand_manufacturer winbond_spinand_manufacturer;
247
248 /**
249 * struct spinand_op_variants - SPI NAND operation variants
250 * @ops: the list of variants for a given operation
251 * @nops: the number of variants
252 *
253 * Some operations like read-from-cache/write-to-cache have several variants
254 * depending on the number of IO lines you use to transfer data or address
255 * cycles. This structure is a way to describe the different variants supported
256 * by a chip and let the core pick the best one based on the SPI mem controller
257 * capabilities.
258 */
259 struct spinand_op_variants {
260 const struct spi_mem_op *ops;
261 unsigned int nops;
262 };
263
264 #define SPINAND_OP_VARIANTS(name, ...) \
265 const struct spinand_op_variants name = { \
266 .ops = (struct spi_mem_op[]) { __VA_ARGS__ }, \
267 .nops = sizeof((struct spi_mem_op[]){ __VA_ARGS__ }) / \
268 sizeof(struct spi_mem_op), \
269 }
270
271 /**
272 * spinand_ecc_info - description of the on-die ECC implemented by a SPI NAND
273 * chip
274 * @get_status: get the ECC status. Should return a positive number encoding
275 * the number of corrected bitflips if correction was possible or
276 * -EBADMSG if there are uncorrectable errors. I can also return
277 * other negative error codes if the error is not caused by
278 * uncorrectable bitflips
279 * @ooblayout: the OOB layout used by the on-die ECC implementation
280 */
281 struct spinand_ecc_info {
282 int (*get_status)(struct spinand_device *spinand, u8 status);
283 const struct mtd_ooblayout_ops *ooblayout;
284 };
285
286 #define SPINAND_HAS_QE_BIT BIT(0)
287 #define SPINAND_HAS_CR_FEAT_BIT BIT(1)
288
289 /**
290 * struct spinand_info - Structure used to describe SPI NAND chips
291 * @model: model name
292 * @devid: device ID
293 * @flags: OR-ing of the SPINAND_XXX flags
294 * @memorg: memory organization
295 * @eccreq: ECC requirements
296 * @eccinfo: on-die ECC info
297 * @op_variants: operations variants
298 * @op_variants.read_cache: variants of the read-cache operation
299 * @op_variants.write_cache: variants of the write-cache operation
300 * @op_variants.update_cache: variants of the update-cache operation
301 * @select_target: function used to select a target/die. Required only for
302 * multi-die chips
303 *
304 * Each SPI NAND manufacturer driver should have a spinand_info table
305 * describing all the chips supported by the driver.
306 */
307 struct spinand_info {
308 const char *model;
309 struct spinand_devid devid;
310 u32 flags;
311 struct nand_memory_organization memorg;
312 struct nand_ecc_props eccreq;
313 struct spinand_ecc_info eccinfo;
314 struct {
315 const struct spinand_op_variants *read_cache;
316 const struct spinand_op_variants *write_cache;
317 const struct spinand_op_variants *update_cache;
318 } op_variants;
319 int (*select_target)(struct spinand_device *spinand,
320 unsigned int target);
321 };
322
323 #define SPINAND_ID(__method, ...) \
324 { \
325 .id = (const u8[]){ __VA_ARGS__ }, \
326 .len = sizeof((u8[]){ __VA_ARGS__ }), \
327 .method = __method, \
328 }
329
330 #define SPINAND_INFO_OP_VARIANTS(__read, __write, __update) \
331 { \
332 .read_cache = __read, \
333 .write_cache = __write, \
334 .update_cache = __update, \
335 }
336
337 #define SPINAND_ECCINFO(__ooblayout, __get_status) \
338 .eccinfo = { \
339 .ooblayout = __ooblayout, \
340 .get_status = __get_status, \
341 }
342
343 #define SPINAND_SELECT_TARGET(__func) \
344 .select_target = __func,
345
346 #define SPINAND_INFO(__model, __id, __memorg, __eccreq, __op_variants, \
347 __flags, ...) \
348 { \
349 .model = __model, \
350 .devid = __id, \
351 .memorg = __memorg, \
352 .eccreq = __eccreq, \
353 .op_variants = __op_variants, \
354 .flags = __flags, \
355 __VA_ARGS__ \
356 }
357
358 struct spinand_dirmap {
359 struct spi_mem_dirmap_desc *wdesc;
360 struct spi_mem_dirmap_desc *rdesc;
361 };
362
363 /**
364 * struct spinand_device - SPI NAND device instance
365 * @base: NAND device instance
366 * @spimem: pointer to the SPI mem object
367 * @lock: lock used to serialize accesses to the NAND
368 * @id: NAND ID as returned by READ_ID
369 * @flags: NAND flags
370 * @op_templates: various SPI mem op templates
371 * @op_templates.read_cache: read cache op template
372 * @op_templates.write_cache: write cache op template
373 * @op_templates.update_cache: update cache op template
374 * @select_target: select a specific target/die. Usually called before sending
375 * a command addressing a page or an eraseblock embedded in
376 * this die. Only required if your chip exposes several dies
377 * @cur_target: currently selected target/die
378 * @eccinfo: on-die ECC information
379 * @cfg_cache: config register cache. One entry per die
380 * @databuf: bounce buffer for data
381 * @oobbuf: bounce buffer for OOB data
382 * @scratchbuf: buffer used for everything but page accesses. This is needed
383 * because the spi-mem interface explicitly requests that buffers
384 * passed in spi_mem_op be DMA-able, so we can't based the bufs on
385 * the stack
386 * @manufacturer: SPI NAND manufacturer information
387 * @priv: manufacturer private data
388 */
389 struct spinand_device {
390 struct nand_device base;
391 struct spi_mem *spimem;
392 struct mutex lock;
393 struct spinand_id id;
394 u32 flags;
395
396 struct {
397 const struct spi_mem_op *read_cache;
398 const struct spi_mem_op *write_cache;
399 const struct spi_mem_op *update_cache;
400 } op_templates;
401
402 struct spinand_dirmap *dirmaps;
403
404 int (*select_target)(struct spinand_device *spinand,
405 unsigned int target);
406 unsigned int cur_target;
407
408 struct spinand_ecc_info eccinfo;
409
410 u8 *cfg_cache;
411 u8 *databuf;
412 u8 *oobbuf;
413 u8 *scratchbuf;
414 const struct spinand_manufacturer *manufacturer;
415 void *priv;
416 };
417
418 /**
419 * mtd_to_spinand() - Get the SPI NAND device attached to an MTD instance
420 * @mtd: MTD instance
421 *
422 * Return: the SPI NAND device attached to @mtd.
423 */
mtd_to_spinand(struct mtd_info * mtd)424 static inline struct spinand_device *mtd_to_spinand(struct mtd_info *mtd)
425 {
426 return container_of(mtd_to_nanddev(mtd), struct spinand_device, base);
427 }
428
429 /**
430 * spinand_to_mtd() - Get the MTD device embedded in a SPI NAND device
431 * @spinand: SPI NAND device
432 *
433 * Return: the MTD device embedded in @spinand.
434 */
spinand_to_mtd(struct spinand_device * spinand)435 static inline struct mtd_info *spinand_to_mtd(struct spinand_device *spinand)
436 {
437 return nanddev_to_mtd(&spinand->base);
438 }
439
440 /**
441 * nand_to_spinand() - Get the SPI NAND device embedding an NAND object
442 * @nand: NAND object
443 *
444 * Return: the SPI NAND device embedding @nand.
445 */
nand_to_spinand(struct nand_device * nand)446 static inline struct spinand_device *nand_to_spinand(struct nand_device *nand)
447 {
448 return container_of(nand, struct spinand_device, base);
449 }
450
451 /**
452 * spinand_to_nand() - Get the NAND device embedded in a SPI NAND object
453 * @spinand: SPI NAND device
454 *
455 * Return: the NAND device embedded in @spinand.
456 */
457 static inline struct nand_device *
spinand_to_nand(struct spinand_device * spinand)458 spinand_to_nand(struct spinand_device *spinand)
459 {
460 return &spinand->base;
461 }
462
463 /**
464 * spinand_set_of_node - Attach a DT node to a SPI NAND device
465 * @spinand: SPI NAND device
466 * @np: DT node
467 *
468 * Attach a DT node to a SPI NAND device.
469 */
spinand_set_of_node(struct spinand_device * spinand,struct device_node * np)470 static inline void spinand_set_of_node(struct spinand_device *spinand,
471 struct device_node *np)
472 {
473 nanddev_set_of_node(&spinand->base, np);
474 }
475
476 int spinand_match_and_init(struct spinand_device *spinand,
477 const struct spinand_info *table,
478 unsigned int table_size,
479 enum spinand_readid_method rdid_method);
480
481 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val);
482 int spinand_select_target(struct spinand_device *spinand, unsigned int target);
483
484 #endif /* __LINUX_MTD_SPINAND_H */
485