1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * STM32 ALSA SoC Digital Audio Interface (SAI) driver.
4 *
5 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
6 * Author(s): Olivier Moysan <olivier.moysan@st.com> for STMicroelectronics.
7 */
8
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_platform.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/regmap.h>
17
18 #include <sound/asoundef.h>
19 #include <sound/core.h>
20 #include <sound/dmaengine_pcm.h>
21 #include <sound/pcm_params.h>
22
23 #include "stm32_sai.h"
24
25 #define SAI_FREE_PROTOCOL 0x0
26 #define SAI_SPDIF_PROTOCOL 0x1
27
28 #define SAI_SLOT_SIZE_AUTO 0x0
29 #define SAI_SLOT_SIZE_16 0x1
30 #define SAI_SLOT_SIZE_32 0x2
31
32 #define SAI_DATASIZE_8 0x2
33 #define SAI_DATASIZE_10 0x3
34 #define SAI_DATASIZE_16 0x4
35 #define SAI_DATASIZE_20 0x5
36 #define SAI_DATASIZE_24 0x6
37 #define SAI_DATASIZE_32 0x7
38
39 #define STM_SAI_DAI_NAME_SIZE 15
40
41 #define STM_SAI_IS_PLAYBACK(ip) ((ip)->dir == SNDRV_PCM_STREAM_PLAYBACK)
42 #define STM_SAI_IS_CAPTURE(ip) ((ip)->dir == SNDRV_PCM_STREAM_CAPTURE)
43
44 #define STM_SAI_A_ID 0x0
45 #define STM_SAI_B_ID 0x1
46
47 #define STM_SAI_IS_SUB_A(x) ((x)->id == STM_SAI_A_ID)
48 #define STM_SAI_IS_SUB_B(x) ((x)->id == STM_SAI_B_ID)
49 #define STM_SAI_BLOCK_NAME(x) (((x)->id == STM_SAI_A_ID) ? "A" : "B")
50
51 #define SAI_SYNC_NONE 0x0
52 #define SAI_SYNC_INTERNAL 0x1
53 #define SAI_SYNC_EXTERNAL 0x2
54
55 #define STM_SAI_PROTOCOL_IS_SPDIF(ip) ((ip)->spdif)
56 #define STM_SAI_HAS_SPDIF(x) ((x)->pdata->conf.has_spdif_pdm)
57 #define STM_SAI_HAS_PDM(x) ((x)->pdata->conf.has_spdif_pdm)
58 #define STM_SAI_HAS_EXT_SYNC(x) (!STM_SAI_IS_F4(sai->pdata))
59
60 #define SAI_IEC60958_BLOCK_FRAMES 192
61 #define SAI_IEC60958_STATUS_BYTES 24
62
63 #define SAI_MCLK_NAME_LEN 32
64 #define SAI_RATE_11K 11025
65
66 /**
67 * struct stm32_sai_sub_data - private data of SAI sub block (block A or B)
68 * @pdev: device data pointer
69 * @regmap: SAI register map pointer
70 * @regmap_config: SAI sub block register map configuration pointer
71 * @dma_params: dma configuration data for rx or tx channel
72 * @cpu_dai_drv: DAI driver data pointer
73 * @cpu_dai: DAI runtime data pointer
74 * @substream: PCM substream data pointer
75 * @pdata: SAI block parent data pointer
76 * @np_sync_provider: synchronization provider node
77 * @sai_ck: kernel clock feeding the SAI clock generator
78 * @sai_mclk: master clock from SAI mclk provider
79 * @phys_addr: SAI registers physical base address
80 * @mclk_rate: SAI block master clock frequency (Hz). set at init
81 * @id: SAI sub block id corresponding to sub-block A or B
82 * @dir: SAI block direction (playback or capture). set at init
83 * @master: SAI block mode flag. (true=master, false=slave) set at init
84 * @spdif: SAI S/PDIF iec60958 mode flag. set at init
85 * @fmt: SAI block format. relevant only for custom protocols. set at init
86 * @sync: SAI block synchronization mode. (none, internal or external)
87 * @synco: SAI block ext sync source (provider setting). (none, sub-block A/B)
88 * @synci: SAI block ext sync source (client setting). (SAI sync provider index)
89 * @fs_length: frame synchronization length. depends on protocol settings
90 * @slots: rx or tx slot number
91 * @slot_width: rx or tx slot width in bits
92 * @slot_mask: rx or tx active slots mask. set at init or at runtime
93 * @data_size: PCM data width. corresponds to PCM substream width.
94 * @spdif_frm_cnt: S/PDIF playback frame counter
95 * @iec958: iec958 data
96 * @ctrl_lock: control lock
97 * @irq_lock: prevent race condition with IRQ
98 */
99 struct stm32_sai_sub_data {
100 struct platform_device *pdev;
101 struct regmap *regmap;
102 const struct regmap_config *regmap_config;
103 struct snd_dmaengine_dai_dma_data dma_params;
104 struct snd_soc_dai_driver cpu_dai_drv;
105 struct snd_soc_dai *cpu_dai;
106 struct snd_pcm_substream *substream;
107 struct stm32_sai_data *pdata;
108 struct device_node *np_sync_provider;
109 struct clk *sai_ck;
110 struct clk *sai_mclk;
111 dma_addr_t phys_addr;
112 unsigned int mclk_rate;
113 unsigned int id;
114 int dir;
115 bool master;
116 bool spdif;
117 int fmt;
118 int sync;
119 int synco;
120 int synci;
121 int fs_length;
122 int slots;
123 int slot_width;
124 int slot_mask;
125 int data_size;
126 unsigned int spdif_frm_cnt;
127 struct snd_aes_iec958 iec958;
128 struct mutex ctrl_lock; /* protect resources accessed by controls */
129 spinlock_t irq_lock; /* used to prevent race condition with IRQ */
130 };
131
132 enum stm32_sai_fifo_th {
133 STM_SAI_FIFO_TH_EMPTY,
134 STM_SAI_FIFO_TH_QUARTER,
135 STM_SAI_FIFO_TH_HALF,
136 STM_SAI_FIFO_TH_3_QUARTER,
137 STM_SAI_FIFO_TH_FULL,
138 };
139
stm32_sai_sub_readable_reg(struct device * dev,unsigned int reg)140 static bool stm32_sai_sub_readable_reg(struct device *dev, unsigned int reg)
141 {
142 switch (reg) {
143 case STM_SAI_CR1_REGX:
144 case STM_SAI_CR2_REGX:
145 case STM_SAI_FRCR_REGX:
146 case STM_SAI_SLOTR_REGX:
147 case STM_SAI_IMR_REGX:
148 case STM_SAI_SR_REGX:
149 case STM_SAI_CLRFR_REGX:
150 case STM_SAI_DR_REGX:
151 case STM_SAI_PDMCR_REGX:
152 case STM_SAI_PDMLY_REGX:
153 return true;
154 default:
155 return false;
156 }
157 }
158
stm32_sai_sub_volatile_reg(struct device * dev,unsigned int reg)159 static bool stm32_sai_sub_volatile_reg(struct device *dev, unsigned int reg)
160 {
161 switch (reg) {
162 case STM_SAI_DR_REGX:
163 case STM_SAI_SR_REGX:
164 return true;
165 default:
166 return false;
167 }
168 }
169
stm32_sai_sub_writeable_reg(struct device * dev,unsigned int reg)170 static bool stm32_sai_sub_writeable_reg(struct device *dev, unsigned int reg)
171 {
172 switch (reg) {
173 case STM_SAI_CR1_REGX:
174 case STM_SAI_CR2_REGX:
175 case STM_SAI_FRCR_REGX:
176 case STM_SAI_SLOTR_REGX:
177 case STM_SAI_IMR_REGX:
178 case STM_SAI_CLRFR_REGX:
179 case STM_SAI_DR_REGX:
180 case STM_SAI_PDMCR_REGX:
181 case STM_SAI_PDMLY_REGX:
182 return true;
183 default:
184 return false;
185 }
186 }
187
stm32_sai_sub_reg_up(struct stm32_sai_sub_data * sai,unsigned int reg,unsigned int mask,unsigned int val)188 static int stm32_sai_sub_reg_up(struct stm32_sai_sub_data *sai,
189 unsigned int reg, unsigned int mask,
190 unsigned int val)
191 {
192 int ret;
193
194 ret = clk_enable(sai->pdata->pclk);
195 if (ret < 0)
196 return ret;
197
198 ret = regmap_update_bits(sai->regmap, reg, mask, val);
199
200 clk_disable(sai->pdata->pclk);
201
202 return ret;
203 }
204
stm32_sai_sub_reg_wr(struct stm32_sai_sub_data * sai,unsigned int reg,unsigned int mask,unsigned int val)205 static int stm32_sai_sub_reg_wr(struct stm32_sai_sub_data *sai,
206 unsigned int reg, unsigned int mask,
207 unsigned int val)
208 {
209 int ret;
210
211 ret = clk_enable(sai->pdata->pclk);
212 if (ret < 0)
213 return ret;
214
215 ret = regmap_write_bits(sai->regmap, reg, mask, val);
216
217 clk_disable(sai->pdata->pclk);
218
219 return ret;
220 }
221
stm32_sai_sub_reg_rd(struct stm32_sai_sub_data * sai,unsigned int reg,unsigned int * val)222 static int stm32_sai_sub_reg_rd(struct stm32_sai_sub_data *sai,
223 unsigned int reg, unsigned int *val)
224 {
225 int ret;
226
227 ret = clk_enable(sai->pdata->pclk);
228 if (ret < 0)
229 return ret;
230
231 ret = regmap_read(sai->regmap, reg, val);
232
233 clk_disable(sai->pdata->pclk);
234
235 return ret;
236 }
237
238 static const struct regmap_config stm32_sai_sub_regmap_config_f4 = {
239 .reg_bits = 32,
240 .reg_stride = 4,
241 .val_bits = 32,
242 .max_register = STM_SAI_DR_REGX,
243 .readable_reg = stm32_sai_sub_readable_reg,
244 .volatile_reg = stm32_sai_sub_volatile_reg,
245 .writeable_reg = stm32_sai_sub_writeable_reg,
246 .fast_io = true,
247 .cache_type = REGCACHE_FLAT,
248 };
249
250 static const struct regmap_config stm32_sai_sub_regmap_config_h7 = {
251 .reg_bits = 32,
252 .reg_stride = 4,
253 .val_bits = 32,
254 .max_register = STM_SAI_PDMLY_REGX,
255 .readable_reg = stm32_sai_sub_readable_reg,
256 .volatile_reg = stm32_sai_sub_volatile_reg,
257 .writeable_reg = stm32_sai_sub_writeable_reg,
258 .fast_io = true,
259 .cache_type = REGCACHE_FLAT,
260 };
261
snd_pcm_iec958_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)262 static int snd_pcm_iec958_info(struct snd_kcontrol *kcontrol,
263 struct snd_ctl_elem_info *uinfo)
264 {
265 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
266 uinfo->count = 1;
267
268 return 0;
269 }
270
snd_pcm_iec958_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * uctl)271 static int snd_pcm_iec958_get(struct snd_kcontrol *kcontrol,
272 struct snd_ctl_elem_value *uctl)
273 {
274 struct stm32_sai_sub_data *sai = snd_kcontrol_chip(kcontrol);
275
276 mutex_lock(&sai->ctrl_lock);
277 memcpy(uctl->value.iec958.status, sai->iec958.status, 4);
278 mutex_unlock(&sai->ctrl_lock);
279
280 return 0;
281 }
282
snd_pcm_iec958_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * uctl)283 static int snd_pcm_iec958_put(struct snd_kcontrol *kcontrol,
284 struct snd_ctl_elem_value *uctl)
285 {
286 struct stm32_sai_sub_data *sai = snd_kcontrol_chip(kcontrol);
287
288 mutex_lock(&sai->ctrl_lock);
289 memcpy(sai->iec958.status, uctl->value.iec958.status, 4);
290 mutex_unlock(&sai->ctrl_lock);
291
292 return 0;
293 }
294
295 static const struct snd_kcontrol_new iec958_ctls = {
296 .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
297 SNDRV_CTL_ELEM_ACCESS_VOLATILE),
298 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
299 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
300 .info = snd_pcm_iec958_info,
301 .get = snd_pcm_iec958_get,
302 .put = snd_pcm_iec958_put,
303 };
304
305 struct stm32_sai_mclk_data {
306 struct clk_hw hw;
307 unsigned long freq;
308 struct stm32_sai_sub_data *sai_data;
309 };
310
311 #define to_mclk_data(_hw) container_of(_hw, struct stm32_sai_mclk_data, hw)
312 #define STM32_SAI_MAX_CLKS 1
313
stm32_sai_get_clk_div(struct stm32_sai_sub_data * sai,unsigned long input_rate,unsigned long output_rate)314 static int stm32_sai_get_clk_div(struct stm32_sai_sub_data *sai,
315 unsigned long input_rate,
316 unsigned long output_rate)
317 {
318 int version = sai->pdata->conf.version;
319 int div;
320
321 div = DIV_ROUND_CLOSEST(input_rate, output_rate);
322 if (div > SAI_XCR1_MCKDIV_MAX(version)) {
323 dev_err(&sai->pdev->dev, "Divider %d out of range\n", div);
324 return -EINVAL;
325 }
326 dev_dbg(&sai->pdev->dev, "SAI divider %d\n", div);
327
328 if (input_rate % div)
329 dev_dbg(&sai->pdev->dev,
330 "Rate not accurate. requested (%ld), actual (%ld)\n",
331 output_rate, input_rate / div);
332
333 return div;
334 }
335
stm32_sai_set_clk_div(struct stm32_sai_sub_data * sai,unsigned int div)336 static int stm32_sai_set_clk_div(struct stm32_sai_sub_data *sai,
337 unsigned int div)
338 {
339 int version = sai->pdata->conf.version;
340 int ret, cr1, mask;
341
342 if (div > SAI_XCR1_MCKDIV_MAX(version)) {
343 dev_err(&sai->pdev->dev, "Divider %d out of range\n", div);
344 return -EINVAL;
345 }
346
347 mask = SAI_XCR1_MCKDIV_MASK(SAI_XCR1_MCKDIV_WIDTH(version));
348 cr1 = SAI_XCR1_MCKDIV_SET(div);
349 ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, mask, cr1);
350 if (ret < 0)
351 dev_err(&sai->pdev->dev, "Failed to update CR1 register\n");
352
353 return ret;
354 }
355
stm32_sai_set_parent_clock(struct stm32_sai_sub_data * sai,unsigned int rate)356 static int stm32_sai_set_parent_clock(struct stm32_sai_sub_data *sai,
357 unsigned int rate)
358 {
359 struct platform_device *pdev = sai->pdev;
360 struct clk *parent_clk = sai->pdata->clk_x8k;
361 int ret;
362
363 if (!(rate % SAI_RATE_11K))
364 parent_clk = sai->pdata->clk_x11k;
365
366 ret = clk_set_parent(sai->sai_ck, parent_clk);
367 if (ret)
368 dev_err(&pdev->dev, " Error %d setting sai_ck parent clock. %s",
369 ret, ret == -EBUSY ?
370 "Active stream rates conflict\n" : "\n");
371
372 return ret;
373 }
374
stm32_sai_mclk_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * prate)375 static long stm32_sai_mclk_round_rate(struct clk_hw *hw, unsigned long rate,
376 unsigned long *prate)
377 {
378 struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
379 struct stm32_sai_sub_data *sai = mclk->sai_data;
380 int div;
381
382 div = stm32_sai_get_clk_div(sai, *prate, rate);
383 if (div < 0)
384 return div;
385
386 mclk->freq = *prate / div;
387
388 return mclk->freq;
389 }
390
stm32_sai_mclk_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)391 static unsigned long stm32_sai_mclk_recalc_rate(struct clk_hw *hw,
392 unsigned long parent_rate)
393 {
394 struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
395
396 return mclk->freq;
397 }
398
stm32_sai_mclk_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)399 static int stm32_sai_mclk_set_rate(struct clk_hw *hw, unsigned long rate,
400 unsigned long parent_rate)
401 {
402 struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
403 struct stm32_sai_sub_data *sai = mclk->sai_data;
404 int div, ret;
405
406 div = stm32_sai_get_clk_div(sai, parent_rate, rate);
407 if (div < 0)
408 return div;
409
410 ret = stm32_sai_set_clk_div(sai, div);
411 if (ret)
412 return ret;
413
414 mclk->freq = rate;
415
416 return 0;
417 }
418
stm32_sai_mclk_enable(struct clk_hw * hw)419 static int stm32_sai_mclk_enable(struct clk_hw *hw)
420 {
421 struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
422 struct stm32_sai_sub_data *sai = mclk->sai_data;
423
424 dev_dbg(&sai->pdev->dev, "Enable master clock\n");
425
426 return stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
427 SAI_XCR1_MCKEN, SAI_XCR1_MCKEN);
428 }
429
stm32_sai_mclk_disable(struct clk_hw * hw)430 static void stm32_sai_mclk_disable(struct clk_hw *hw)
431 {
432 struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
433 struct stm32_sai_sub_data *sai = mclk->sai_data;
434
435 dev_dbg(&sai->pdev->dev, "Disable master clock\n");
436
437 stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, SAI_XCR1_MCKEN, 0);
438 }
439
440 static const struct clk_ops mclk_ops = {
441 .enable = stm32_sai_mclk_enable,
442 .disable = stm32_sai_mclk_disable,
443 .recalc_rate = stm32_sai_mclk_recalc_rate,
444 .round_rate = stm32_sai_mclk_round_rate,
445 .set_rate = stm32_sai_mclk_set_rate,
446 };
447
stm32_sai_add_mclk_provider(struct stm32_sai_sub_data * sai)448 static int stm32_sai_add_mclk_provider(struct stm32_sai_sub_data *sai)
449 {
450 struct clk_hw *hw;
451 struct stm32_sai_mclk_data *mclk;
452 struct device *dev = &sai->pdev->dev;
453 const char *pname = __clk_get_name(sai->sai_ck);
454 char *mclk_name, *p, *s = (char *)pname;
455 int ret, i = 0;
456
457 mclk = devm_kzalloc(dev, sizeof(*mclk), GFP_KERNEL);
458 if (!mclk)
459 return -ENOMEM;
460
461 mclk_name = devm_kcalloc(dev, sizeof(char),
462 SAI_MCLK_NAME_LEN, GFP_KERNEL);
463 if (!mclk_name)
464 return -ENOMEM;
465
466 /*
467 * Forge mclk clock name from parent clock name and suffix.
468 * String after "_" char is stripped in parent name.
469 */
470 p = mclk_name;
471 while (*s && *s != '_' && (i < (SAI_MCLK_NAME_LEN - 7))) {
472 *p++ = *s++;
473 i++;
474 }
475 STM_SAI_IS_SUB_A(sai) ? strcat(p, "a_mclk") : strcat(p, "b_mclk");
476
477 mclk->hw.init = CLK_HW_INIT(mclk_name, pname, &mclk_ops, 0);
478 mclk->sai_data = sai;
479 hw = &mclk->hw;
480
481 dev_dbg(dev, "Register master clock %s\n", mclk_name);
482 ret = devm_clk_hw_register(&sai->pdev->dev, hw);
483 if (ret) {
484 dev_err(dev, "mclk register returned %d\n", ret);
485 return ret;
486 }
487 sai->sai_mclk = hw->clk;
488
489 /* register mclk provider */
490 return devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get, hw);
491 }
492
stm32_sai_isr(int irq,void * devid)493 static irqreturn_t stm32_sai_isr(int irq, void *devid)
494 {
495 struct stm32_sai_sub_data *sai = (struct stm32_sai_sub_data *)devid;
496 struct platform_device *pdev = sai->pdev;
497 unsigned int sr, imr, flags;
498 snd_pcm_state_t status = SNDRV_PCM_STATE_RUNNING;
499
500 stm32_sai_sub_reg_rd(sai, STM_SAI_IMR_REGX, &imr);
501 stm32_sai_sub_reg_rd(sai, STM_SAI_SR_REGX, &sr);
502
503 flags = sr & imr;
504 if (!flags)
505 return IRQ_NONE;
506
507 stm32_sai_sub_reg_wr(sai, STM_SAI_CLRFR_REGX, SAI_XCLRFR_MASK,
508 SAI_XCLRFR_MASK);
509
510 if (!sai->substream) {
511 dev_err(&pdev->dev, "Device stopped. Spurious IRQ 0x%x\n", sr);
512 return IRQ_NONE;
513 }
514
515 if (flags & SAI_XIMR_OVRUDRIE) {
516 dev_err(&pdev->dev, "IRQ %s\n",
517 STM_SAI_IS_PLAYBACK(sai) ? "underrun" : "overrun");
518 status = SNDRV_PCM_STATE_XRUN;
519 }
520
521 if (flags & SAI_XIMR_MUTEDETIE)
522 dev_dbg(&pdev->dev, "IRQ mute detected\n");
523
524 if (flags & SAI_XIMR_WCKCFGIE) {
525 dev_err(&pdev->dev, "IRQ wrong clock configuration\n");
526 status = SNDRV_PCM_STATE_DISCONNECTED;
527 }
528
529 if (flags & SAI_XIMR_CNRDYIE)
530 dev_err(&pdev->dev, "IRQ Codec not ready\n");
531
532 if (flags & SAI_XIMR_AFSDETIE) {
533 dev_err(&pdev->dev, "IRQ Anticipated frame synchro\n");
534 status = SNDRV_PCM_STATE_XRUN;
535 }
536
537 if (flags & SAI_XIMR_LFSDETIE) {
538 dev_err(&pdev->dev, "IRQ Late frame synchro\n");
539 status = SNDRV_PCM_STATE_XRUN;
540 }
541
542 spin_lock(&sai->irq_lock);
543 if (status != SNDRV_PCM_STATE_RUNNING && sai->substream)
544 snd_pcm_stop_xrun(sai->substream);
545 spin_unlock(&sai->irq_lock);
546
547 return IRQ_HANDLED;
548 }
549
stm32_sai_set_sysclk(struct snd_soc_dai * cpu_dai,int clk_id,unsigned int freq,int dir)550 static int stm32_sai_set_sysclk(struct snd_soc_dai *cpu_dai,
551 int clk_id, unsigned int freq, int dir)
552 {
553 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
554 int ret;
555
556 if (dir == SND_SOC_CLOCK_OUT && sai->sai_mclk) {
557 ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
558 SAI_XCR1_NODIV,
559 freq ? 0 : SAI_XCR1_NODIV);
560 if (ret < 0)
561 return ret;
562
563 /* Assume shutdown if requested frequency is 0Hz */
564 if (!freq) {
565 /* Release mclk rate only if rate was actually set */
566 if (sai->mclk_rate) {
567 clk_rate_exclusive_put(sai->sai_mclk);
568 sai->mclk_rate = 0;
569 }
570 return 0;
571 }
572
573 /* If master clock is used, set parent clock now */
574 ret = stm32_sai_set_parent_clock(sai, freq);
575 if (ret)
576 return ret;
577
578 ret = clk_set_rate_exclusive(sai->sai_mclk, freq);
579 if (ret) {
580 dev_err(cpu_dai->dev,
581 ret == -EBUSY ?
582 "Active streams have incompatible rates" :
583 "Could not set mclk rate\n");
584 return ret;
585 }
586
587 dev_dbg(cpu_dai->dev, "SAI MCLK frequency is %uHz\n", freq);
588 sai->mclk_rate = freq;
589 }
590
591 return 0;
592 }
593
stm32_sai_set_dai_tdm_slot(struct snd_soc_dai * cpu_dai,u32 tx_mask,u32 rx_mask,int slots,int slot_width)594 static int stm32_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
595 u32 rx_mask, int slots, int slot_width)
596 {
597 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
598 int slotr, slotr_mask, slot_size;
599
600 if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
601 dev_warn(cpu_dai->dev, "Slot setting relevant only for TDM\n");
602 return 0;
603 }
604
605 dev_dbg(cpu_dai->dev, "Masks tx/rx:%#x/%#x, slots:%d, width:%d\n",
606 tx_mask, rx_mask, slots, slot_width);
607
608 switch (slot_width) {
609 case 16:
610 slot_size = SAI_SLOT_SIZE_16;
611 break;
612 case 32:
613 slot_size = SAI_SLOT_SIZE_32;
614 break;
615 default:
616 slot_size = SAI_SLOT_SIZE_AUTO;
617 break;
618 }
619
620 slotr = SAI_XSLOTR_SLOTSZ_SET(slot_size) |
621 SAI_XSLOTR_NBSLOT_SET(slots - 1);
622 slotr_mask = SAI_XSLOTR_SLOTSZ_MASK | SAI_XSLOTR_NBSLOT_MASK;
623
624 /* tx/rx mask set in machine init, if slot number defined in DT */
625 if (STM_SAI_IS_PLAYBACK(sai)) {
626 sai->slot_mask = tx_mask;
627 slotr |= SAI_XSLOTR_SLOTEN_SET(tx_mask);
628 }
629
630 if (STM_SAI_IS_CAPTURE(sai)) {
631 sai->slot_mask = rx_mask;
632 slotr |= SAI_XSLOTR_SLOTEN_SET(rx_mask);
633 }
634
635 slotr_mask |= SAI_XSLOTR_SLOTEN_MASK;
636
637 stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX, slotr_mask, slotr);
638
639 sai->slot_width = slot_width;
640 sai->slots = slots;
641
642 return 0;
643 }
644
stm32_sai_set_dai_fmt(struct snd_soc_dai * cpu_dai,unsigned int fmt)645 static int stm32_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
646 {
647 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
648 int cr1, frcr = 0;
649 int cr1_mask, frcr_mask = 0;
650 int ret;
651
652 dev_dbg(cpu_dai->dev, "fmt %x\n", fmt);
653
654 /* Do not generate master by default */
655 cr1 = SAI_XCR1_NODIV;
656 cr1_mask = SAI_XCR1_NODIV;
657
658 cr1_mask |= SAI_XCR1_PRTCFG_MASK;
659 if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
660 cr1 |= SAI_XCR1_PRTCFG_SET(SAI_SPDIF_PROTOCOL);
661 goto conf_update;
662 }
663
664 cr1 |= SAI_XCR1_PRTCFG_SET(SAI_FREE_PROTOCOL);
665
666 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
667 /* SCK active high for all protocols */
668 case SND_SOC_DAIFMT_I2S:
669 cr1 |= SAI_XCR1_CKSTR;
670 frcr |= SAI_XFRCR_FSOFF | SAI_XFRCR_FSDEF;
671 break;
672 /* Left justified */
673 case SND_SOC_DAIFMT_MSB:
674 frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSDEF;
675 break;
676 /* Right justified */
677 case SND_SOC_DAIFMT_LSB:
678 frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSDEF;
679 break;
680 case SND_SOC_DAIFMT_DSP_A:
681 frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSOFF;
682 break;
683 case SND_SOC_DAIFMT_DSP_B:
684 frcr |= SAI_XFRCR_FSPOL;
685 break;
686 default:
687 dev_err(cpu_dai->dev, "Unsupported protocol %#x\n",
688 fmt & SND_SOC_DAIFMT_FORMAT_MASK);
689 return -EINVAL;
690 }
691
692 cr1_mask |= SAI_XCR1_CKSTR;
693 frcr_mask |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSOFF |
694 SAI_XFRCR_FSDEF;
695
696 /* DAI clock strobing. Invert setting previously set */
697 switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
698 case SND_SOC_DAIFMT_NB_NF:
699 break;
700 case SND_SOC_DAIFMT_IB_NF:
701 cr1 ^= SAI_XCR1_CKSTR;
702 break;
703 case SND_SOC_DAIFMT_NB_IF:
704 frcr ^= SAI_XFRCR_FSPOL;
705 break;
706 case SND_SOC_DAIFMT_IB_IF:
707 /* Invert fs & sck */
708 cr1 ^= SAI_XCR1_CKSTR;
709 frcr ^= SAI_XFRCR_FSPOL;
710 break;
711 default:
712 dev_err(cpu_dai->dev, "Unsupported strobing %#x\n",
713 fmt & SND_SOC_DAIFMT_INV_MASK);
714 return -EINVAL;
715 }
716 cr1_mask |= SAI_XCR1_CKSTR;
717 frcr_mask |= SAI_XFRCR_FSPOL;
718
719 stm32_sai_sub_reg_up(sai, STM_SAI_FRCR_REGX, frcr_mask, frcr);
720
721 /* DAI clock master masks */
722 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
723 case SND_SOC_DAIFMT_CBM_CFM:
724 /* codec is master */
725 cr1 |= SAI_XCR1_SLAVE;
726 sai->master = false;
727 break;
728 case SND_SOC_DAIFMT_CBS_CFS:
729 sai->master = true;
730 break;
731 default:
732 dev_err(cpu_dai->dev, "Unsupported mode %#x\n",
733 fmt & SND_SOC_DAIFMT_MASTER_MASK);
734 return -EINVAL;
735 }
736
737 /* Set slave mode if sub-block is synchronized with another SAI */
738 if (sai->sync) {
739 dev_dbg(cpu_dai->dev, "Synchronized SAI configured as slave\n");
740 cr1 |= SAI_XCR1_SLAVE;
741 sai->master = false;
742 }
743
744 cr1_mask |= SAI_XCR1_SLAVE;
745
746 conf_update:
747 ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
748 if (ret < 0) {
749 dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
750 return ret;
751 }
752
753 sai->fmt = fmt;
754
755 return 0;
756 }
757
stm32_sai_startup(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)758 static int stm32_sai_startup(struct snd_pcm_substream *substream,
759 struct snd_soc_dai *cpu_dai)
760 {
761 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
762 int imr, cr2, ret;
763 unsigned long flags;
764
765 spin_lock_irqsave(&sai->irq_lock, flags);
766 sai->substream = substream;
767 spin_unlock_irqrestore(&sai->irq_lock, flags);
768
769 if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
770 snd_pcm_hw_constraint_mask64(substream->runtime,
771 SNDRV_PCM_HW_PARAM_FORMAT,
772 SNDRV_PCM_FMTBIT_S32_LE);
773 snd_pcm_hw_constraint_single(substream->runtime,
774 SNDRV_PCM_HW_PARAM_CHANNELS, 2);
775 }
776
777 ret = clk_prepare_enable(sai->sai_ck);
778 if (ret < 0) {
779 dev_err(cpu_dai->dev, "Failed to enable clock: %d\n", ret);
780 return ret;
781 }
782
783 /* Enable ITs */
784 stm32_sai_sub_reg_wr(sai, STM_SAI_CLRFR_REGX,
785 SAI_XCLRFR_MASK, SAI_XCLRFR_MASK);
786
787 imr = SAI_XIMR_OVRUDRIE;
788 if (STM_SAI_IS_CAPTURE(sai)) {
789 stm32_sai_sub_reg_rd(sai, STM_SAI_CR2_REGX, &cr2);
790 if (cr2 & SAI_XCR2_MUTECNT_MASK)
791 imr |= SAI_XIMR_MUTEDETIE;
792 }
793
794 if (sai->master)
795 imr |= SAI_XIMR_WCKCFGIE;
796 else
797 imr |= SAI_XIMR_AFSDETIE | SAI_XIMR_LFSDETIE;
798
799 stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX,
800 SAI_XIMR_MASK, imr);
801
802 return 0;
803 }
804
stm32_sai_set_config(struct snd_soc_dai * cpu_dai,struct snd_pcm_substream * substream,struct snd_pcm_hw_params * params)805 static int stm32_sai_set_config(struct snd_soc_dai *cpu_dai,
806 struct snd_pcm_substream *substream,
807 struct snd_pcm_hw_params *params)
808 {
809 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
810 int cr1, cr1_mask, ret;
811
812 /*
813 * DMA bursts increment is set to 4 words.
814 * SAI fifo threshold is set to half fifo, to keep enough space
815 * for DMA incoming bursts.
816 */
817 stm32_sai_sub_reg_wr(sai, STM_SAI_CR2_REGX,
818 SAI_XCR2_FFLUSH | SAI_XCR2_FTH_MASK,
819 SAI_XCR2_FFLUSH |
820 SAI_XCR2_FTH_SET(STM_SAI_FIFO_TH_HALF));
821
822 /* DS bits in CR1 not set for SPDIF (size forced to 24 bits).*/
823 if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
824 sai->spdif_frm_cnt = 0;
825 return 0;
826 }
827
828 /* Mode, data format and channel config */
829 cr1_mask = SAI_XCR1_DS_MASK;
830 switch (params_format(params)) {
831 case SNDRV_PCM_FORMAT_S8:
832 cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_8);
833 break;
834 case SNDRV_PCM_FORMAT_S16_LE:
835 cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_16);
836 break;
837 case SNDRV_PCM_FORMAT_S32_LE:
838 cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_32);
839 break;
840 default:
841 dev_err(cpu_dai->dev, "Data format not supported\n");
842 return -EINVAL;
843 }
844
845 cr1_mask |= SAI_XCR1_MONO;
846 if ((sai->slots == 2) && (params_channels(params) == 1))
847 cr1 |= SAI_XCR1_MONO;
848
849 ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
850 if (ret < 0) {
851 dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
852 return ret;
853 }
854
855 return 0;
856 }
857
stm32_sai_set_slots(struct snd_soc_dai * cpu_dai)858 static int stm32_sai_set_slots(struct snd_soc_dai *cpu_dai)
859 {
860 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
861 int slotr, slot_sz;
862
863 stm32_sai_sub_reg_rd(sai, STM_SAI_SLOTR_REGX, &slotr);
864
865 /*
866 * If SLOTSZ is set to auto in SLOTR, align slot width on data size
867 * By default slot width = data size, if not forced from DT
868 */
869 slot_sz = slotr & SAI_XSLOTR_SLOTSZ_MASK;
870 if (slot_sz == SAI_XSLOTR_SLOTSZ_SET(SAI_SLOT_SIZE_AUTO))
871 sai->slot_width = sai->data_size;
872
873 if (sai->slot_width < sai->data_size) {
874 dev_err(cpu_dai->dev,
875 "Data size %d larger than slot width\n",
876 sai->data_size);
877 return -EINVAL;
878 }
879
880 /* Slot number is set to 2, if not specified in DT */
881 if (!sai->slots)
882 sai->slots = 2;
883
884 /* The number of slots in the audio frame is equal to NBSLOT[3:0] + 1*/
885 stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX,
886 SAI_XSLOTR_NBSLOT_MASK,
887 SAI_XSLOTR_NBSLOT_SET((sai->slots - 1)));
888
889 /* Set default slots mask if not already set from DT */
890 if (!(slotr & SAI_XSLOTR_SLOTEN_MASK)) {
891 sai->slot_mask = (1 << sai->slots) - 1;
892 stm32_sai_sub_reg_up(sai,
893 STM_SAI_SLOTR_REGX, SAI_XSLOTR_SLOTEN_MASK,
894 SAI_XSLOTR_SLOTEN_SET(sai->slot_mask));
895 }
896
897 dev_dbg(cpu_dai->dev, "Slots %d, slot width %d\n",
898 sai->slots, sai->slot_width);
899
900 return 0;
901 }
902
stm32_sai_set_frame(struct snd_soc_dai * cpu_dai)903 static void stm32_sai_set_frame(struct snd_soc_dai *cpu_dai)
904 {
905 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
906 int fs_active, offset, format;
907 int frcr, frcr_mask;
908
909 format = sai->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
910 sai->fs_length = sai->slot_width * sai->slots;
911
912 fs_active = sai->fs_length / 2;
913 if ((format == SND_SOC_DAIFMT_DSP_A) ||
914 (format == SND_SOC_DAIFMT_DSP_B))
915 fs_active = 1;
916
917 frcr = SAI_XFRCR_FRL_SET((sai->fs_length - 1));
918 frcr |= SAI_XFRCR_FSALL_SET((fs_active - 1));
919 frcr_mask = SAI_XFRCR_FRL_MASK | SAI_XFRCR_FSALL_MASK;
920
921 dev_dbg(cpu_dai->dev, "Frame length %d, frame active %d\n",
922 sai->fs_length, fs_active);
923
924 stm32_sai_sub_reg_up(sai, STM_SAI_FRCR_REGX, frcr_mask, frcr);
925
926 if ((sai->fmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_LSB) {
927 offset = sai->slot_width - sai->data_size;
928
929 stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX,
930 SAI_XSLOTR_FBOFF_MASK,
931 SAI_XSLOTR_FBOFF_SET(offset));
932 }
933 }
934
stm32_sai_init_iec958_status(struct stm32_sai_sub_data * sai)935 static void stm32_sai_init_iec958_status(struct stm32_sai_sub_data *sai)
936 {
937 unsigned char *cs = sai->iec958.status;
938
939 cs[0] = IEC958_AES0_CON_NOT_COPYRIGHT | IEC958_AES0_CON_EMPHASIS_NONE;
940 cs[1] = IEC958_AES1_CON_GENERAL;
941 cs[2] = IEC958_AES2_CON_SOURCE_UNSPEC | IEC958_AES2_CON_CHANNEL_UNSPEC;
942 cs[3] = IEC958_AES3_CON_CLOCK_1000PPM | IEC958_AES3_CON_FS_NOTID;
943 }
944
stm32_sai_set_iec958_status(struct stm32_sai_sub_data * sai,struct snd_pcm_runtime * runtime)945 static void stm32_sai_set_iec958_status(struct stm32_sai_sub_data *sai,
946 struct snd_pcm_runtime *runtime)
947 {
948 if (!runtime)
949 return;
950
951 /* Force the sample rate according to runtime rate */
952 mutex_lock(&sai->ctrl_lock);
953 switch (runtime->rate) {
954 case 22050:
955 sai->iec958.status[3] = IEC958_AES3_CON_FS_22050;
956 break;
957 case 44100:
958 sai->iec958.status[3] = IEC958_AES3_CON_FS_44100;
959 break;
960 case 88200:
961 sai->iec958.status[3] = IEC958_AES3_CON_FS_88200;
962 break;
963 case 176400:
964 sai->iec958.status[3] = IEC958_AES3_CON_FS_176400;
965 break;
966 case 24000:
967 sai->iec958.status[3] = IEC958_AES3_CON_FS_24000;
968 break;
969 case 48000:
970 sai->iec958.status[3] = IEC958_AES3_CON_FS_48000;
971 break;
972 case 96000:
973 sai->iec958.status[3] = IEC958_AES3_CON_FS_96000;
974 break;
975 case 192000:
976 sai->iec958.status[3] = IEC958_AES3_CON_FS_192000;
977 break;
978 case 32000:
979 sai->iec958.status[3] = IEC958_AES3_CON_FS_32000;
980 break;
981 default:
982 sai->iec958.status[3] = IEC958_AES3_CON_FS_NOTID;
983 break;
984 }
985 mutex_unlock(&sai->ctrl_lock);
986 }
987
stm32_sai_configure_clock(struct snd_soc_dai * cpu_dai,struct snd_pcm_hw_params * params)988 static int stm32_sai_configure_clock(struct snd_soc_dai *cpu_dai,
989 struct snd_pcm_hw_params *params)
990 {
991 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
992 int div = 0, cr1 = 0;
993 int sai_clk_rate, mclk_ratio, den;
994 unsigned int rate = params_rate(params);
995 int ret;
996
997 if (!sai->sai_mclk) {
998 ret = stm32_sai_set_parent_clock(sai, rate);
999 if (ret)
1000 return ret;
1001 }
1002 sai_clk_rate = clk_get_rate(sai->sai_ck);
1003
1004 if (STM_SAI_IS_F4(sai->pdata)) {
1005 /* mclk on (NODIV=0)
1006 * mclk_rate = 256 * fs
1007 * MCKDIV = 0 if sai_ck < 3/2 * mclk_rate
1008 * MCKDIV = sai_ck / (2 * mclk_rate) otherwise
1009 * mclk off (NODIV=1)
1010 * MCKDIV ignored. sck = sai_ck
1011 */
1012 if (!sai->mclk_rate)
1013 return 0;
1014
1015 if (2 * sai_clk_rate >= 3 * sai->mclk_rate) {
1016 div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1017 2 * sai->mclk_rate);
1018 if (div < 0)
1019 return div;
1020 }
1021 } else {
1022 /*
1023 * TDM mode :
1024 * mclk on
1025 * MCKDIV = sai_ck / (ws x 256) (NOMCK=0. OSR=0)
1026 * MCKDIV = sai_ck / (ws x 512) (NOMCK=0. OSR=1)
1027 * mclk off
1028 * MCKDIV = sai_ck / (frl x ws) (NOMCK=1)
1029 * Note: NOMCK/NODIV correspond to same bit.
1030 */
1031 if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1032 div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1033 rate * 128);
1034 if (div < 0)
1035 return div;
1036 } else {
1037 if (sai->mclk_rate) {
1038 mclk_ratio = sai->mclk_rate / rate;
1039 if (mclk_ratio == 512) {
1040 cr1 = SAI_XCR1_OSR;
1041 } else if (mclk_ratio != 256) {
1042 dev_err(cpu_dai->dev,
1043 "Wrong mclk ratio %d\n",
1044 mclk_ratio);
1045 return -EINVAL;
1046 }
1047
1048 stm32_sai_sub_reg_up(sai,
1049 STM_SAI_CR1_REGX,
1050 SAI_XCR1_OSR, cr1);
1051
1052 div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1053 sai->mclk_rate);
1054 if (div < 0)
1055 return div;
1056 } else {
1057 /* mclk-fs not set, master clock not active */
1058 den = sai->fs_length * params_rate(params);
1059 div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1060 den);
1061 if (div < 0)
1062 return div;
1063 }
1064 }
1065 }
1066
1067 return stm32_sai_set_clk_div(sai, div);
1068 }
1069
stm32_sai_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * params,struct snd_soc_dai * cpu_dai)1070 static int stm32_sai_hw_params(struct snd_pcm_substream *substream,
1071 struct snd_pcm_hw_params *params,
1072 struct snd_soc_dai *cpu_dai)
1073 {
1074 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1075 int ret;
1076
1077 sai->data_size = params_width(params);
1078
1079 if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1080 /* Rate not already set in runtime structure */
1081 substream->runtime->rate = params_rate(params);
1082 stm32_sai_set_iec958_status(sai, substream->runtime);
1083 } else {
1084 ret = stm32_sai_set_slots(cpu_dai);
1085 if (ret < 0)
1086 return ret;
1087 stm32_sai_set_frame(cpu_dai);
1088 }
1089
1090 ret = stm32_sai_set_config(cpu_dai, substream, params);
1091 if (ret)
1092 return ret;
1093
1094 if (sai->master)
1095 ret = stm32_sai_configure_clock(cpu_dai, params);
1096
1097 return ret;
1098 }
1099
stm32_sai_trigger(struct snd_pcm_substream * substream,int cmd,struct snd_soc_dai * cpu_dai)1100 static int stm32_sai_trigger(struct snd_pcm_substream *substream, int cmd,
1101 struct snd_soc_dai *cpu_dai)
1102 {
1103 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1104 int ret;
1105
1106 switch (cmd) {
1107 case SNDRV_PCM_TRIGGER_START:
1108 case SNDRV_PCM_TRIGGER_RESUME:
1109 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1110 dev_dbg(cpu_dai->dev, "Enable DMA and SAI\n");
1111
1112 stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1113 SAI_XCR1_DMAEN, SAI_XCR1_DMAEN);
1114
1115 /* Enable SAI */
1116 ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1117 SAI_XCR1_SAIEN, SAI_XCR1_SAIEN);
1118 if (ret < 0)
1119 dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
1120 break;
1121 case SNDRV_PCM_TRIGGER_SUSPEND:
1122 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1123 case SNDRV_PCM_TRIGGER_STOP:
1124 dev_dbg(cpu_dai->dev, "Disable DMA and SAI\n");
1125
1126 stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX,
1127 SAI_XIMR_MASK, 0);
1128
1129 stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1130 SAI_XCR1_SAIEN,
1131 (unsigned int)~SAI_XCR1_SAIEN);
1132
1133 ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1134 SAI_XCR1_DMAEN,
1135 (unsigned int)~SAI_XCR1_DMAEN);
1136 if (ret < 0)
1137 dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
1138
1139 if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1140 sai->spdif_frm_cnt = 0;
1141 break;
1142 default:
1143 return -EINVAL;
1144 }
1145
1146 return ret;
1147 }
1148
stm32_sai_shutdown(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)1149 static void stm32_sai_shutdown(struct snd_pcm_substream *substream,
1150 struct snd_soc_dai *cpu_dai)
1151 {
1152 struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1153 unsigned long flags;
1154
1155 stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX, SAI_XIMR_MASK, 0);
1156
1157 clk_disable_unprepare(sai->sai_ck);
1158
1159 spin_lock_irqsave(&sai->irq_lock, flags);
1160 sai->substream = NULL;
1161 spin_unlock_irqrestore(&sai->irq_lock, flags);
1162 }
1163
stm32_sai_pcm_new(struct snd_soc_pcm_runtime * rtd,struct snd_soc_dai * cpu_dai)1164 static int stm32_sai_pcm_new(struct snd_soc_pcm_runtime *rtd,
1165 struct snd_soc_dai *cpu_dai)
1166 {
1167 struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1168 struct snd_kcontrol_new knew = iec958_ctls;
1169
1170 if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1171 dev_dbg(&sai->pdev->dev, "%s: register iec controls", __func__);
1172 knew.device = rtd->pcm->device;
1173 return snd_ctl_add(rtd->pcm->card, snd_ctl_new1(&knew, sai));
1174 }
1175
1176 return 0;
1177 }
1178
stm32_sai_dai_probe(struct snd_soc_dai * cpu_dai)1179 static int stm32_sai_dai_probe(struct snd_soc_dai *cpu_dai)
1180 {
1181 struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1182 int cr1 = 0, cr1_mask, ret;
1183
1184 sai->cpu_dai = cpu_dai;
1185
1186 sai->dma_params.addr = (dma_addr_t)(sai->phys_addr + STM_SAI_DR_REGX);
1187 /*
1188 * DMA supports 4, 8 or 16 burst sizes. Burst size 4 is the best choice,
1189 * as it allows bytes, half-word and words transfers. (See DMA fifos
1190 * constraints).
1191 */
1192 sai->dma_params.maxburst = 4;
1193 if (sai->pdata->conf.fifo_size < 8)
1194 sai->dma_params.maxburst = 1;
1195 /* Buswidth will be set by framework at runtime */
1196 sai->dma_params.addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1197
1198 if (STM_SAI_IS_PLAYBACK(sai))
1199 snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params, NULL);
1200 else
1201 snd_soc_dai_init_dma_data(cpu_dai, NULL, &sai->dma_params);
1202
1203 /* Next settings are not relevant for spdif mode */
1204 if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1205 return 0;
1206
1207 cr1_mask = SAI_XCR1_RX_TX;
1208 if (STM_SAI_IS_CAPTURE(sai))
1209 cr1 |= SAI_XCR1_RX_TX;
1210
1211 /* Configure synchronization */
1212 if (sai->sync == SAI_SYNC_EXTERNAL) {
1213 /* Configure synchro client and provider */
1214 ret = sai->pdata->set_sync(sai->pdata, sai->np_sync_provider,
1215 sai->synco, sai->synci);
1216 if (ret)
1217 return ret;
1218 }
1219
1220 cr1_mask |= SAI_XCR1_SYNCEN_MASK;
1221 cr1 |= SAI_XCR1_SYNCEN_SET(sai->sync);
1222
1223 return stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
1224 }
1225
1226 static const struct snd_soc_dai_ops stm32_sai_pcm_dai_ops = {
1227 .set_sysclk = stm32_sai_set_sysclk,
1228 .set_fmt = stm32_sai_set_dai_fmt,
1229 .set_tdm_slot = stm32_sai_set_dai_tdm_slot,
1230 .startup = stm32_sai_startup,
1231 .hw_params = stm32_sai_hw_params,
1232 .trigger = stm32_sai_trigger,
1233 .shutdown = stm32_sai_shutdown,
1234 };
1235
stm32_sai_pcm_process_spdif(struct snd_pcm_substream * substream,int channel,unsigned long hwoff,void * buf,unsigned long bytes)1236 static int stm32_sai_pcm_process_spdif(struct snd_pcm_substream *substream,
1237 int channel, unsigned long hwoff,
1238 void *buf, unsigned long bytes)
1239 {
1240 struct snd_pcm_runtime *runtime = substream->runtime;
1241 struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
1242 struct snd_soc_dai *cpu_dai = asoc_rtd_to_cpu(rtd, 0);
1243 struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1244 int *ptr = (int *)(runtime->dma_area + hwoff +
1245 channel * (runtime->dma_bytes / runtime->channels));
1246 ssize_t cnt = bytes_to_samples(runtime, bytes);
1247 unsigned int frm_cnt = sai->spdif_frm_cnt;
1248 unsigned int byte;
1249 unsigned int mask;
1250
1251 do {
1252 *ptr = ((*ptr >> 8) & 0x00ffffff);
1253
1254 /* Set channel status bit */
1255 byte = frm_cnt >> 3;
1256 mask = 1 << (frm_cnt - (byte << 3));
1257 if (sai->iec958.status[byte] & mask)
1258 *ptr |= 0x04000000;
1259 ptr++;
1260
1261 if (!(cnt % 2))
1262 frm_cnt++;
1263
1264 if (frm_cnt == SAI_IEC60958_BLOCK_FRAMES)
1265 frm_cnt = 0;
1266 } while (--cnt);
1267 sai->spdif_frm_cnt = frm_cnt;
1268
1269 return 0;
1270 }
1271
1272 /* No support of mmap in S/PDIF mode */
1273 static const struct snd_pcm_hardware stm32_sai_pcm_hw_spdif = {
1274 .info = SNDRV_PCM_INFO_INTERLEAVED,
1275 .buffer_bytes_max = 8 * PAGE_SIZE,
1276 .period_bytes_min = 1024,
1277 .period_bytes_max = PAGE_SIZE,
1278 .periods_min = 2,
1279 .periods_max = 8,
1280 };
1281
1282 static const struct snd_pcm_hardware stm32_sai_pcm_hw = {
1283 .info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP,
1284 .buffer_bytes_max = 8 * PAGE_SIZE,
1285 .period_bytes_min = 1024, /* 5ms at 48kHz */
1286 .period_bytes_max = PAGE_SIZE,
1287 .periods_min = 2,
1288 .periods_max = 8,
1289 };
1290
1291 static struct snd_soc_dai_driver stm32_sai_playback_dai = {
1292 .probe = stm32_sai_dai_probe,
1293 .pcm_new = stm32_sai_pcm_new,
1294 .id = 1, /* avoid call to fmt_single_name() */
1295 .playback = {
1296 .channels_min = 1,
1297 .channels_max = 2,
1298 .rate_min = 8000,
1299 .rate_max = 192000,
1300 .rates = SNDRV_PCM_RATE_CONTINUOUS,
1301 /* DMA does not support 24 bits transfers */
1302 .formats =
1303 SNDRV_PCM_FMTBIT_S8 |
1304 SNDRV_PCM_FMTBIT_S16_LE |
1305 SNDRV_PCM_FMTBIT_S32_LE,
1306 },
1307 .ops = &stm32_sai_pcm_dai_ops,
1308 };
1309
1310 static struct snd_soc_dai_driver stm32_sai_capture_dai = {
1311 .probe = stm32_sai_dai_probe,
1312 .id = 1, /* avoid call to fmt_single_name() */
1313 .capture = {
1314 .channels_min = 1,
1315 .channels_max = 2,
1316 .rate_min = 8000,
1317 .rate_max = 192000,
1318 .rates = SNDRV_PCM_RATE_CONTINUOUS,
1319 /* DMA does not support 24 bits transfers */
1320 .formats =
1321 SNDRV_PCM_FMTBIT_S8 |
1322 SNDRV_PCM_FMTBIT_S16_LE |
1323 SNDRV_PCM_FMTBIT_S32_LE,
1324 },
1325 .ops = &stm32_sai_pcm_dai_ops,
1326 };
1327
1328 static const struct snd_dmaengine_pcm_config stm32_sai_pcm_config = {
1329 .pcm_hardware = &stm32_sai_pcm_hw,
1330 .prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
1331 };
1332
1333 static const struct snd_dmaengine_pcm_config stm32_sai_pcm_config_spdif = {
1334 .pcm_hardware = &stm32_sai_pcm_hw_spdif,
1335 .prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
1336 .process = stm32_sai_pcm_process_spdif,
1337 };
1338
1339 static const struct snd_soc_component_driver stm32_component = {
1340 .name = "stm32-sai",
1341 };
1342
1343 static const struct of_device_id stm32_sai_sub_ids[] = {
1344 { .compatible = "st,stm32-sai-sub-a",
1345 .data = (void *)STM_SAI_A_ID},
1346 { .compatible = "st,stm32-sai-sub-b",
1347 .data = (void *)STM_SAI_B_ID},
1348 {}
1349 };
1350 MODULE_DEVICE_TABLE(of, stm32_sai_sub_ids);
1351
stm32_sai_sub_parse_of(struct platform_device * pdev,struct stm32_sai_sub_data * sai)1352 static int stm32_sai_sub_parse_of(struct platform_device *pdev,
1353 struct stm32_sai_sub_data *sai)
1354 {
1355 struct device_node *np = pdev->dev.of_node;
1356 struct resource *res;
1357 void __iomem *base;
1358 struct of_phandle_args args;
1359 int ret;
1360
1361 if (!np)
1362 return -ENODEV;
1363
1364 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1365 base = devm_ioremap_resource(&pdev->dev, res);
1366 if (IS_ERR(base))
1367 return PTR_ERR(base);
1368
1369 sai->phys_addr = res->start;
1370
1371 sai->regmap_config = &stm32_sai_sub_regmap_config_f4;
1372 /* Note: PDM registers not available for sub-block B */
1373 if (STM_SAI_HAS_PDM(sai) && STM_SAI_IS_SUB_A(sai))
1374 sai->regmap_config = &stm32_sai_sub_regmap_config_h7;
1375
1376 /*
1377 * Do not manage peripheral clock through regmap framework as this
1378 * can lead to circular locking issue with sai master clock provider.
1379 * Manage peripheral clock directly in driver instead.
1380 */
1381 sai->regmap = devm_regmap_init_mmio(&pdev->dev, base,
1382 sai->regmap_config);
1383 if (IS_ERR(sai->regmap)) {
1384 if (PTR_ERR(sai->regmap) != -EPROBE_DEFER)
1385 dev_err(&pdev->dev, "Regmap init error %ld\n",
1386 PTR_ERR(sai->regmap));
1387 return PTR_ERR(sai->regmap);
1388 }
1389
1390 /* Get direction property */
1391 if (of_property_match_string(np, "dma-names", "tx") >= 0) {
1392 sai->dir = SNDRV_PCM_STREAM_PLAYBACK;
1393 } else if (of_property_match_string(np, "dma-names", "rx") >= 0) {
1394 sai->dir = SNDRV_PCM_STREAM_CAPTURE;
1395 } else {
1396 dev_err(&pdev->dev, "Unsupported direction\n");
1397 return -EINVAL;
1398 }
1399
1400 /* Get spdif iec60958 property */
1401 sai->spdif = false;
1402 if (of_get_property(np, "st,iec60958", NULL)) {
1403 if (!STM_SAI_HAS_SPDIF(sai) ||
1404 sai->dir == SNDRV_PCM_STREAM_CAPTURE) {
1405 dev_err(&pdev->dev, "S/PDIF IEC60958 not supported\n");
1406 return -EINVAL;
1407 }
1408 stm32_sai_init_iec958_status(sai);
1409 sai->spdif = true;
1410 sai->master = true;
1411 }
1412
1413 /* Get synchronization property */
1414 args.np = NULL;
1415 ret = of_parse_phandle_with_fixed_args(np, "st,sync", 1, 0, &args);
1416 if (ret < 0 && ret != -ENOENT) {
1417 dev_err(&pdev->dev, "Failed to get st,sync property\n");
1418 return ret;
1419 }
1420
1421 sai->sync = SAI_SYNC_NONE;
1422 if (args.np) {
1423 if (args.np == np) {
1424 dev_err(&pdev->dev, "%pOFn sync own reference\n", np);
1425 of_node_put(args.np);
1426 return -EINVAL;
1427 }
1428
1429 sai->np_sync_provider = of_get_parent(args.np);
1430 if (!sai->np_sync_provider) {
1431 dev_err(&pdev->dev, "%pOFn parent node not found\n",
1432 np);
1433 of_node_put(args.np);
1434 return -ENODEV;
1435 }
1436
1437 sai->sync = SAI_SYNC_INTERNAL;
1438 if (sai->np_sync_provider != sai->pdata->pdev->dev.of_node) {
1439 if (!STM_SAI_HAS_EXT_SYNC(sai)) {
1440 dev_err(&pdev->dev,
1441 "External synchro not supported\n");
1442 of_node_put(args.np);
1443 return -EINVAL;
1444 }
1445 sai->sync = SAI_SYNC_EXTERNAL;
1446
1447 sai->synci = args.args[0];
1448 if (sai->synci < 1 ||
1449 (sai->synci > (SAI_GCR_SYNCIN_MAX + 1))) {
1450 dev_err(&pdev->dev, "Wrong SAI index\n");
1451 of_node_put(args.np);
1452 return -EINVAL;
1453 }
1454
1455 if (of_property_match_string(args.np, "compatible",
1456 "st,stm32-sai-sub-a") >= 0)
1457 sai->synco = STM_SAI_SYNC_OUT_A;
1458
1459 if (of_property_match_string(args.np, "compatible",
1460 "st,stm32-sai-sub-b") >= 0)
1461 sai->synco = STM_SAI_SYNC_OUT_B;
1462
1463 if (!sai->synco) {
1464 dev_err(&pdev->dev, "Unknown SAI sub-block\n");
1465 of_node_put(args.np);
1466 return -EINVAL;
1467 }
1468 }
1469
1470 dev_dbg(&pdev->dev, "%s synchronized with %s\n",
1471 pdev->name, args.np->full_name);
1472 }
1473
1474 of_node_put(args.np);
1475 sai->sai_ck = devm_clk_get(&pdev->dev, "sai_ck");
1476 if (IS_ERR(sai->sai_ck)) {
1477 if (PTR_ERR(sai->sai_ck) != -EPROBE_DEFER)
1478 dev_err(&pdev->dev, "Missing kernel clock sai_ck: %ld\n",
1479 PTR_ERR(sai->sai_ck));
1480 return PTR_ERR(sai->sai_ck);
1481 }
1482
1483 ret = clk_prepare(sai->pdata->pclk);
1484 if (ret < 0)
1485 return ret;
1486
1487 if (STM_SAI_IS_F4(sai->pdata))
1488 return 0;
1489
1490 /* Register mclk provider if requested */
1491 if (of_find_property(np, "#clock-cells", NULL)) {
1492 ret = stm32_sai_add_mclk_provider(sai);
1493 if (ret < 0)
1494 return ret;
1495 } else {
1496 sai->sai_mclk = devm_clk_get(&pdev->dev, "MCLK");
1497 if (IS_ERR(sai->sai_mclk)) {
1498 if (PTR_ERR(sai->sai_mclk) != -ENOENT)
1499 return PTR_ERR(sai->sai_mclk);
1500 sai->sai_mclk = NULL;
1501 }
1502 }
1503
1504 return 0;
1505 }
1506
stm32_sai_sub_probe(struct platform_device * pdev)1507 static int stm32_sai_sub_probe(struct platform_device *pdev)
1508 {
1509 struct stm32_sai_sub_data *sai;
1510 const struct of_device_id *of_id;
1511 const struct snd_dmaengine_pcm_config *conf = &stm32_sai_pcm_config;
1512 int ret;
1513
1514 sai = devm_kzalloc(&pdev->dev, sizeof(*sai), GFP_KERNEL);
1515 if (!sai)
1516 return -ENOMEM;
1517
1518 of_id = of_match_device(stm32_sai_sub_ids, &pdev->dev);
1519 if (!of_id)
1520 return -EINVAL;
1521 sai->id = (uintptr_t)of_id->data;
1522
1523 sai->pdev = pdev;
1524 mutex_init(&sai->ctrl_lock);
1525 spin_lock_init(&sai->irq_lock);
1526 platform_set_drvdata(pdev, sai);
1527
1528 sai->pdata = dev_get_drvdata(pdev->dev.parent);
1529 if (!sai->pdata) {
1530 dev_err(&pdev->dev, "Parent device data not available\n");
1531 return -EINVAL;
1532 }
1533
1534 ret = stm32_sai_sub_parse_of(pdev, sai);
1535 if (ret)
1536 return ret;
1537
1538 if (STM_SAI_IS_PLAYBACK(sai))
1539 sai->cpu_dai_drv = stm32_sai_playback_dai;
1540 else
1541 sai->cpu_dai_drv = stm32_sai_capture_dai;
1542 sai->cpu_dai_drv.name = dev_name(&pdev->dev);
1543
1544 ret = devm_request_irq(&pdev->dev, sai->pdata->irq, stm32_sai_isr,
1545 IRQF_SHARED, dev_name(&pdev->dev), sai);
1546 if (ret) {
1547 dev_err(&pdev->dev, "IRQ request returned %d\n", ret);
1548 return ret;
1549 }
1550
1551 if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1552 conf = &stm32_sai_pcm_config_spdif;
1553
1554 ret = snd_dmaengine_pcm_register(&pdev->dev, conf, 0);
1555 if (ret) {
1556 if (ret != -EPROBE_DEFER)
1557 dev_err(&pdev->dev, "Could not register pcm dma\n");
1558 return ret;
1559 }
1560
1561 ret = snd_soc_register_component(&pdev->dev, &stm32_component,
1562 &sai->cpu_dai_drv, 1);
1563 if (ret) {
1564 snd_dmaengine_pcm_unregister(&pdev->dev);
1565 return ret;
1566 }
1567
1568 pm_runtime_enable(&pdev->dev);
1569
1570 return 0;
1571 }
1572
stm32_sai_sub_remove(struct platform_device * pdev)1573 static int stm32_sai_sub_remove(struct platform_device *pdev)
1574 {
1575 struct stm32_sai_sub_data *sai = dev_get_drvdata(&pdev->dev);
1576
1577 clk_unprepare(sai->pdata->pclk);
1578 snd_dmaengine_pcm_unregister(&pdev->dev);
1579 snd_soc_unregister_component(&pdev->dev);
1580 pm_runtime_disable(&pdev->dev);
1581
1582 return 0;
1583 }
1584
1585 #ifdef CONFIG_PM_SLEEP
stm32_sai_sub_suspend(struct device * dev)1586 static int stm32_sai_sub_suspend(struct device *dev)
1587 {
1588 struct stm32_sai_sub_data *sai = dev_get_drvdata(dev);
1589 int ret;
1590
1591 ret = clk_enable(sai->pdata->pclk);
1592 if (ret < 0)
1593 return ret;
1594
1595 regcache_cache_only(sai->regmap, true);
1596 regcache_mark_dirty(sai->regmap);
1597
1598 clk_disable(sai->pdata->pclk);
1599
1600 return 0;
1601 }
1602
stm32_sai_sub_resume(struct device * dev)1603 static int stm32_sai_sub_resume(struct device *dev)
1604 {
1605 struct stm32_sai_sub_data *sai = dev_get_drvdata(dev);
1606 int ret;
1607
1608 ret = clk_enable(sai->pdata->pclk);
1609 if (ret < 0)
1610 return ret;
1611
1612 regcache_cache_only(sai->regmap, false);
1613 ret = regcache_sync(sai->regmap);
1614
1615 clk_disable(sai->pdata->pclk);
1616
1617 return ret;
1618 }
1619 #endif /* CONFIG_PM_SLEEP */
1620
1621 static const struct dev_pm_ops stm32_sai_sub_pm_ops = {
1622 SET_SYSTEM_SLEEP_PM_OPS(stm32_sai_sub_suspend, stm32_sai_sub_resume)
1623 };
1624
1625 static struct platform_driver stm32_sai_sub_driver = {
1626 .driver = {
1627 .name = "st,stm32-sai-sub",
1628 .of_match_table = stm32_sai_sub_ids,
1629 .pm = &stm32_sai_sub_pm_ops,
1630 },
1631 .probe = stm32_sai_sub_probe,
1632 .remove = stm32_sai_sub_remove,
1633 };
1634
1635 module_platform_driver(stm32_sai_sub_driver);
1636
1637 MODULE_DESCRIPTION("STM32 Soc SAI sub-block Interface");
1638 MODULE_AUTHOR("Olivier Moysan <olivier.moysan@st.com>");
1639 MODULE_ALIAS("platform:st,stm32-sai-sub");
1640 MODULE_LICENSE("GPL v2");
1641