1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      Davicom DM9000 Fast Ethernet driver for Linux.
4  * 	Copyright (C) 1997  Sten Wang
5  *
6  * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
7  *
8  * Additional updates, Copyright:
9  *	Ben Dooks <ben@simtec.co.uk>
10  *	Sascha Hauer <s.hauer@pengutronix.de>
11  */
12 
13 #include <linux/module.h>
14 #include <linux/ioport.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/interrupt.h>
18 #include <linux/skbuff.h>
19 #include <linux/spinlock.h>
20 #include <linux/crc32.h>
21 #include <linux/mii.h>
22 #include <linux/of.h>
23 #include <linux/of_net.h>
24 #include <linux/ethtool.h>
25 #include <linux/dm9000.h>
26 #include <linux/delay.h>
27 #include <linux/platform_device.h>
28 #include <linux/irq.h>
29 #include <linux/slab.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/gpio.h>
32 #include <linux/of_gpio.h>
33 
34 #include <asm/delay.h>
35 #include <asm/irq.h>
36 #include <asm/io.h>
37 
38 #include "dm9000.h"
39 
40 /* Board/System/Debug information/definition ---------------- */
41 
42 #define DM9000_PHY		0x40	/* PHY address 0x01 */
43 
44 #define CARDNAME	"dm9000"
45 
46 /*
47  * Transmit timeout, default 5 seconds.
48  */
49 static int watchdog = 5000;
50 module_param(watchdog, int, 0400);
51 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
52 
53 /*
54  * Debug messages level
55  */
56 static int debug;
57 module_param(debug, int, 0644);
58 MODULE_PARM_DESC(debug, "dm9000 debug level (0-6)");
59 
60 /* DM9000 register address locking.
61  *
62  * The DM9000 uses an address register to control where data written
63  * to the data register goes. This means that the address register
64  * must be preserved over interrupts or similar calls.
65  *
66  * During interrupt and other critical calls, a spinlock is used to
67  * protect the system, but the calls themselves save the address
68  * in the address register in case they are interrupting another
69  * access to the device.
70  *
71  * For general accesses a lock is provided so that calls which are
72  * allowed to sleep are serialised so that the address register does
73  * not need to be saved. This lock also serves to serialise access
74  * to the EEPROM and PHY access registers which are shared between
75  * these two devices.
76  */
77 
78 /* The driver supports the original DM9000E, and now the two newer
79  * devices, DM9000A and DM9000B.
80  */
81 
82 enum dm9000_type {
83 	TYPE_DM9000E,	/* original DM9000 */
84 	TYPE_DM9000A,
85 	TYPE_DM9000B
86 };
87 
88 /* Structure/enum declaration ------------------------------- */
89 struct board_info {
90 
91 	void __iomem	*io_addr;	/* Register I/O base address */
92 	void __iomem	*io_data;	/* Data I/O address */
93 	u16		 irq;		/* IRQ */
94 
95 	u16		tx_pkt_cnt;
96 	u16		queue_pkt_len;
97 	u16		queue_start_addr;
98 	u16		queue_ip_summed;
99 	u16		dbug_cnt;
100 	u8		io_mode;		/* 0:word, 2:byte */
101 	u8		phy_addr;
102 	u8		imr_all;
103 
104 	unsigned int	flags;
105 	unsigned int	in_timeout:1;
106 	unsigned int	in_suspend:1;
107 	unsigned int	wake_supported:1;
108 
109 	enum dm9000_type type;
110 
111 	void (*inblk)(void __iomem *port, void *data, int length);
112 	void (*outblk)(void __iomem *port, void *data, int length);
113 	void (*dumpblk)(void __iomem *port, int length);
114 
115 	struct device	*dev;	     /* parent device */
116 
117 	struct resource	*addr_res;   /* resources found */
118 	struct resource *data_res;
119 	struct resource	*addr_req;   /* resources requested */
120 	struct resource *data_req;
121 
122 	int		 irq_wake;
123 
124 	struct mutex	 addr_lock;	/* phy and eeprom access lock */
125 
126 	struct delayed_work phy_poll;
127 	struct net_device  *ndev;
128 
129 	spinlock_t	lock;
130 
131 	struct mii_if_info mii;
132 	u32		msg_enable;
133 	u32		wake_state;
134 
135 	int		ip_summed;
136 };
137 
138 /* debug code */
139 
140 #define dm9000_dbg(db, lev, msg...) do {		\
141 	if ((lev) < debug) {				\
142 		dev_dbg(db->dev, msg);			\
143 	}						\
144 } while (0)
145 
to_dm9000_board(struct net_device * dev)146 static inline struct board_info *to_dm9000_board(struct net_device *dev)
147 {
148 	return netdev_priv(dev);
149 }
150 
151 /* DM9000 network board routine ---------------------------- */
152 
153 /*
154  *   Read a byte from I/O port
155  */
156 static u8
ior(struct board_info * db,int reg)157 ior(struct board_info *db, int reg)
158 {
159 	writeb(reg, db->io_addr);
160 	return readb(db->io_data);
161 }
162 
163 /*
164  *   Write a byte to I/O port
165  */
166 
167 static void
iow(struct board_info * db,int reg,int value)168 iow(struct board_info *db, int reg, int value)
169 {
170 	writeb(reg, db->io_addr);
171 	writeb(value, db->io_data);
172 }
173 
174 static void
dm9000_reset(struct board_info * db)175 dm9000_reset(struct board_info *db)
176 {
177 	dev_dbg(db->dev, "resetting device\n");
178 
179 	/* Reset DM9000, see DM9000 Application Notes V1.22 Jun 11, 2004 page 29
180 	 * The essential point is that we have to do a double reset, and the
181 	 * instruction is to set LBK into MAC internal loopback mode.
182 	 */
183 	iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
184 	udelay(100); /* Application note says at least 20 us */
185 	if (ior(db, DM9000_NCR) & 1)
186 		dev_err(db->dev, "dm9000 did not respond to first reset\n");
187 
188 	iow(db, DM9000_NCR, 0);
189 	iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
190 	udelay(100);
191 	if (ior(db, DM9000_NCR) & 1)
192 		dev_err(db->dev, "dm9000 did not respond to second reset\n");
193 }
194 
195 /* routines for sending block to chip */
196 
dm9000_outblk_8bit(void __iomem * reg,void * data,int count)197 static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
198 {
199 	iowrite8_rep(reg, data, count);
200 }
201 
dm9000_outblk_16bit(void __iomem * reg,void * data,int count)202 static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
203 {
204 	iowrite16_rep(reg, data, (count+1) >> 1);
205 }
206 
dm9000_outblk_32bit(void __iomem * reg,void * data,int count)207 static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
208 {
209 	iowrite32_rep(reg, data, (count+3) >> 2);
210 }
211 
212 /* input block from chip to memory */
213 
dm9000_inblk_8bit(void __iomem * reg,void * data,int count)214 static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
215 {
216 	ioread8_rep(reg, data, count);
217 }
218 
219 
dm9000_inblk_16bit(void __iomem * reg,void * data,int count)220 static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
221 {
222 	ioread16_rep(reg, data, (count+1) >> 1);
223 }
224 
dm9000_inblk_32bit(void __iomem * reg,void * data,int count)225 static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
226 {
227 	ioread32_rep(reg, data, (count+3) >> 2);
228 }
229 
230 /* dump block from chip to null */
231 
dm9000_dumpblk_8bit(void __iomem * reg,int count)232 static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
233 {
234 	int i;
235 	int tmp;
236 
237 	for (i = 0; i < count; i++)
238 		tmp = readb(reg);
239 }
240 
dm9000_dumpblk_16bit(void __iomem * reg,int count)241 static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
242 {
243 	int i;
244 	int tmp;
245 
246 	count = (count + 1) >> 1;
247 
248 	for (i = 0; i < count; i++)
249 		tmp = readw(reg);
250 }
251 
dm9000_dumpblk_32bit(void __iomem * reg,int count)252 static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
253 {
254 	int i;
255 	int tmp;
256 
257 	count = (count + 3) >> 2;
258 
259 	for (i = 0; i < count; i++)
260 		tmp = readl(reg);
261 }
262 
263 /*
264  * Sleep, either by using msleep() or if we are suspending, then
265  * use mdelay() to sleep.
266  */
dm9000_msleep(struct board_info * db,unsigned int ms)267 static void dm9000_msleep(struct board_info *db, unsigned int ms)
268 {
269 	if (db->in_suspend || db->in_timeout)
270 		mdelay(ms);
271 	else
272 		msleep(ms);
273 }
274 
275 /* Read a word from phyxcer */
276 static int
dm9000_phy_read(struct net_device * dev,int phy_reg_unused,int reg)277 dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
278 {
279 	struct board_info *db = netdev_priv(dev);
280 	unsigned long flags;
281 	unsigned int reg_save;
282 	int ret;
283 
284 	mutex_lock(&db->addr_lock);
285 
286 	spin_lock_irqsave(&db->lock, flags);
287 
288 	/* Save previous register address */
289 	reg_save = readb(db->io_addr);
290 
291 	/* Fill the phyxcer register into REG_0C */
292 	iow(db, DM9000_EPAR, DM9000_PHY | reg);
293 
294 	/* Issue phyxcer read command */
295 	iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS);
296 
297 	writeb(reg_save, db->io_addr);
298 	spin_unlock_irqrestore(&db->lock, flags);
299 
300 	dm9000_msleep(db, 1);		/* Wait read complete */
301 
302 	spin_lock_irqsave(&db->lock, flags);
303 	reg_save = readb(db->io_addr);
304 
305 	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer read command */
306 
307 	/* The read data keeps on REG_0D & REG_0E */
308 	ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
309 
310 	/* restore the previous address */
311 	writeb(reg_save, db->io_addr);
312 	spin_unlock_irqrestore(&db->lock, flags);
313 
314 	mutex_unlock(&db->addr_lock);
315 
316 	dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
317 	return ret;
318 }
319 
320 /* Write a word to phyxcer */
321 static void
dm9000_phy_write(struct net_device * dev,int phyaddr_unused,int reg,int value)322 dm9000_phy_write(struct net_device *dev,
323 		 int phyaddr_unused, int reg, int value)
324 {
325 	struct board_info *db = netdev_priv(dev);
326 	unsigned long flags;
327 	unsigned long reg_save;
328 
329 	dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
330 	if (!db->in_timeout)
331 		mutex_lock(&db->addr_lock);
332 
333 	spin_lock_irqsave(&db->lock, flags);
334 
335 	/* Save previous register address */
336 	reg_save = readb(db->io_addr);
337 
338 	/* Fill the phyxcer register into REG_0C */
339 	iow(db, DM9000_EPAR, DM9000_PHY | reg);
340 
341 	/* Fill the written data into REG_0D & REG_0E */
342 	iow(db, DM9000_EPDRL, value);
343 	iow(db, DM9000_EPDRH, value >> 8);
344 
345 	/* Issue phyxcer write command */
346 	iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW);
347 
348 	writeb(reg_save, db->io_addr);
349 	spin_unlock_irqrestore(&db->lock, flags);
350 
351 	dm9000_msleep(db, 1);		/* Wait write complete */
352 
353 	spin_lock_irqsave(&db->lock, flags);
354 	reg_save = readb(db->io_addr);
355 
356 	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer write command */
357 
358 	/* restore the previous address */
359 	writeb(reg_save, db->io_addr);
360 
361 	spin_unlock_irqrestore(&db->lock, flags);
362 	if (!db->in_timeout)
363 		mutex_unlock(&db->addr_lock);
364 }
365 
366 /* dm9000_set_io
367  *
368  * select the specified set of io routines to use with the
369  * device
370  */
371 
dm9000_set_io(struct board_info * db,int byte_width)372 static void dm9000_set_io(struct board_info *db, int byte_width)
373 {
374 	/* use the size of the data resource to work out what IO
375 	 * routines we want to use
376 	 */
377 
378 	switch (byte_width) {
379 	case 1:
380 		db->dumpblk = dm9000_dumpblk_8bit;
381 		db->outblk  = dm9000_outblk_8bit;
382 		db->inblk   = dm9000_inblk_8bit;
383 		break;
384 
385 
386 	case 3:
387 		dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
388 		fallthrough;
389 	case 2:
390 		db->dumpblk = dm9000_dumpblk_16bit;
391 		db->outblk  = dm9000_outblk_16bit;
392 		db->inblk   = dm9000_inblk_16bit;
393 		break;
394 
395 	case 4:
396 	default:
397 		db->dumpblk = dm9000_dumpblk_32bit;
398 		db->outblk  = dm9000_outblk_32bit;
399 		db->inblk   = dm9000_inblk_32bit;
400 		break;
401 	}
402 }
403 
dm9000_schedule_poll(struct board_info * db)404 static void dm9000_schedule_poll(struct board_info *db)
405 {
406 	if (db->type == TYPE_DM9000E)
407 		schedule_delayed_work(&db->phy_poll, HZ * 2);
408 }
409 
dm9000_ioctl(struct net_device * dev,struct ifreq * req,int cmd)410 static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
411 {
412 	struct board_info *dm = to_dm9000_board(dev);
413 
414 	if (!netif_running(dev))
415 		return -EINVAL;
416 
417 	return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
418 }
419 
420 static unsigned int
dm9000_read_locked(struct board_info * db,int reg)421 dm9000_read_locked(struct board_info *db, int reg)
422 {
423 	unsigned long flags;
424 	unsigned int ret;
425 
426 	spin_lock_irqsave(&db->lock, flags);
427 	ret = ior(db, reg);
428 	spin_unlock_irqrestore(&db->lock, flags);
429 
430 	return ret;
431 }
432 
dm9000_wait_eeprom(struct board_info * db)433 static int dm9000_wait_eeprom(struct board_info *db)
434 {
435 	unsigned int status;
436 	int timeout = 8;	/* wait max 8msec */
437 
438 	/* The DM9000 data sheets say we should be able to
439 	 * poll the ERRE bit in EPCR to wait for the EEPROM
440 	 * operation. From testing several chips, this bit
441 	 * does not seem to work.
442 	 *
443 	 * We attempt to use the bit, but fall back to the
444 	 * timeout (which is why we do not return an error
445 	 * on expiry) to say that the EEPROM operation has
446 	 * completed.
447 	 */
448 
449 	while (1) {
450 		status = dm9000_read_locked(db, DM9000_EPCR);
451 
452 		if ((status & EPCR_ERRE) == 0)
453 			break;
454 
455 		msleep(1);
456 
457 		if (timeout-- < 0) {
458 			dev_dbg(db->dev, "timeout waiting EEPROM\n");
459 			break;
460 		}
461 	}
462 
463 	return 0;
464 }
465 
466 /*
467  *  Read a word data from EEPROM
468  */
469 static void
dm9000_read_eeprom(struct board_info * db,int offset,u8 * to)470 dm9000_read_eeprom(struct board_info *db, int offset, u8 *to)
471 {
472 	unsigned long flags;
473 
474 	if (db->flags & DM9000_PLATF_NO_EEPROM) {
475 		to[0] = 0xff;
476 		to[1] = 0xff;
477 		return;
478 	}
479 
480 	mutex_lock(&db->addr_lock);
481 
482 	spin_lock_irqsave(&db->lock, flags);
483 
484 	iow(db, DM9000_EPAR, offset);
485 	iow(db, DM9000_EPCR, EPCR_ERPRR);
486 
487 	spin_unlock_irqrestore(&db->lock, flags);
488 
489 	dm9000_wait_eeprom(db);
490 
491 	/* delay for at-least 150uS */
492 	msleep(1);
493 
494 	spin_lock_irqsave(&db->lock, flags);
495 
496 	iow(db, DM9000_EPCR, 0x0);
497 
498 	to[0] = ior(db, DM9000_EPDRL);
499 	to[1] = ior(db, DM9000_EPDRH);
500 
501 	spin_unlock_irqrestore(&db->lock, flags);
502 
503 	mutex_unlock(&db->addr_lock);
504 }
505 
506 /*
507  * Write a word data to SROM
508  */
509 static void
dm9000_write_eeprom(struct board_info * db,int offset,u8 * data)510 dm9000_write_eeprom(struct board_info *db, int offset, u8 *data)
511 {
512 	unsigned long flags;
513 
514 	if (db->flags & DM9000_PLATF_NO_EEPROM)
515 		return;
516 
517 	mutex_lock(&db->addr_lock);
518 
519 	spin_lock_irqsave(&db->lock, flags);
520 	iow(db, DM9000_EPAR, offset);
521 	iow(db, DM9000_EPDRH, data[1]);
522 	iow(db, DM9000_EPDRL, data[0]);
523 	iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
524 	spin_unlock_irqrestore(&db->lock, flags);
525 
526 	dm9000_wait_eeprom(db);
527 
528 	mdelay(1);	/* wait at least 150uS to clear */
529 
530 	spin_lock_irqsave(&db->lock, flags);
531 	iow(db, DM9000_EPCR, 0);
532 	spin_unlock_irqrestore(&db->lock, flags);
533 
534 	mutex_unlock(&db->addr_lock);
535 }
536 
537 /* ethtool ops */
538 
dm9000_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)539 static void dm9000_get_drvinfo(struct net_device *dev,
540 			       struct ethtool_drvinfo *info)
541 {
542 	struct board_info *dm = to_dm9000_board(dev);
543 
544 	strlcpy(info->driver, CARDNAME, sizeof(info->driver));
545 	strlcpy(info->bus_info, to_platform_device(dm->dev)->name,
546 		sizeof(info->bus_info));
547 }
548 
dm9000_get_msglevel(struct net_device * dev)549 static u32 dm9000_get_msglevel(struct net_device *dev)
550 {
551 	struct board_info *dm = to_dm9000_board(dev);
552 
553 	return dm->msg_enable;
554 }
555 
dm9000_set_msglevel(struct net_device * dev,u32 value)556 static void dm9000_set_msglevel(struct net_device *dev, u32 value)
557 {
558 	struct board_info *dm = to_dm9000_board(dev);
559 
560 	dm->msg_enable = value;
561 }
562 
dm9000_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)563 static int dm9000_get_link_ksettings(struct net_device *dev,
564 				     struct ethtool_link_ksettings *cmd)
565 {
566 	struct board_info *dm = to_dm9000_board(dev);
567 
568 	mii_ethtool_get_link_ksettings(&dm->mii, cmd);
569 	return 0;
570 }
571 
dm9000_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)572 static int dm9000_set_link_ksettings(struct net_device *dev,
573 				     const struct ethtool_link_ksettings *cmd)
574 {
575 	struct board_info *dm = to_dm9000_board(dev);
576 
577 	return mii_ethtool_set_link_ksettings(&dm->mii, cmd);
578 }
579 
dm9000_nway_reset(struct net_device * dev)580 static int dm9000_nway_reset(struct net_device *dev)
581 {
582 	struct board_info *dm = to_dm9000_board(dev);
583 	return mii_nway_restart(&dm->mii);
584 }
585 
dm9000_set_features(struct net_device * dev,netdev_features_t features)586 static int dm9000_set_features(struct net_device *dev,
587 	netdev_features_t features)
588 {
589 	struct board_info *dm = to_dm9000_board(dev);
590 	netdev_features_t changed = dev->features ^ features;
591 	unsigned long flags;
592 
593 	if (!(changed & NETIF_F_RXCSUM))
594 		return 0;
595 
596 	spin_lock_irqsave(&dm->lock, flags);
597 	iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
598 	spin_unlock_irqrestore(&dm->lock, flags);
599 
600 	return 0;
601 }
602 
dm9000_get_link(struct net_device * dev)603 static u32 dm9000_get_link(struct net_device *dev)
604 {
605 	struct board_info *dm = to_dm9000_board(dev);
606 	u32 ret;
607 
608 	if (dm->flags & DM9000_PLATF_EXT_PHY)
609 		ret = mii_link_ok(&dm->mii);
610 	else
611 		ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
612 
613 	return ret;
614 }
615 
616 #define DM_EEPROM_MAGIC		(0x444D394B)
617 
dm9000_get_eeprom_len(struct net_device * dev)618 static int dm9000_get_eeprom_len(struct net_device *dev)
619 {
620 	return 128;
621 }
622 
dm9000_get_eeprom(struct net_device * dev,struct ethtool_eeprom * ee,u8 * data)623 static int dm9000_get_eeprom(struct net_device *dev,
624 			     struct ethtool_eeprom *ee, u8 *data)
625 {
626 	struct board_info *dm = to_dm9000_board(dev);
627 	int offset = ee->offset;
628 	int len = ee->len;
629 	int i;
630 
631 	/* EEPROM access is aligned to two bytes */
632 
633 	if ((len & 1) != 0 || (offset & 1) != 0)
634 		return -EINVAL;
635 
636 	if (dm->flags & DM9000_PLATF_NO_EEPROM)
637 		return -ENOENT;
638 
639 	ee->magic = DM_EEPROM_MAGIC;
640 
641 	for (i = 0; i < len; i += 2)
642 		dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
643 
644 	return 0;
645 }
646 
dm9000_set_eeprom(struct net_device * dev,struct ethtool_eeprom * ee,u8 * data)647 static int dm9000_set_eeprom(struct net_device *dev,
648 			     struct ethtool_eeprom *ee, u8 *data)
649 {
650 	struct board_info *dm = to_dm9000_board(dev);
651 	int offset = ee->offset;
652 	int len = ee->len;
653 	int done;
654 
655 	/* EEPROM access is aligned to two bytes */
656 
657 	if (dm->flags & DM9000_PLATF_NO_EEPROM)
658 		return -ENOENT;
659 
660 	if (ee->magic != DM_EEPROM_MAGIC)
661 		return -EINVAL;
662 
663 	while (len > 0) {
664 		if (len & 1 || offset & 1) {
665 			int which = offset & 1;
666 			u8 tmp[2];
667 
668 			dm9000_read_eeprom(dm, offset / 2, tmp);
669 			tmp[which] = *data;
670 			dm9000_write_eeprom(dm, offset / 2, tmp);
671 
672 			done = 1;
673 		} else {
674 			dm9000_write_eeprom(dm, offset / 2, data);
675 			done = 2;
676 		}
677 
678 		data += done;
679 		offset += done;
680 		len -= done;
681 	}
682 
683 	return 0;
684 }
685 
dm9000_get_wol(struct net_device * dev,struct ethtool_wolinfo * w)686 static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
687 {
688 	struct board_info *dm = to_dm9000_board(dev);
689 
690 	memset(w, 0, sizeof(struct ethtool_wolinfo));
691 
692 	/* note, we could probably support wake-phy too */
693 	w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
694 	w->wolopts = dm->wake_state;
695 }
696 
dm9000_set_wol(struct net_device * dev,struct ethtool_wolinfo * w)697 static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
698 {
699 	struct board_info *dm = to_dm9000_board(dev);
700 	unsigned long flags;
701 	u32 opts = w->wolopts;
702 	u32 wcr = 0;
703 
704 	if (!dm->wake_supported)
705 		return -EOPNOTSUPP;
706 
707 	if (opts & ~WAKE_MAGIC)
708 		return -EINVAL;
709 
710 	if (opts & WAKE_MAGIC)
711 		wcr |= WCR_MAGICEN;
712 
713 	mutex_lock(&dm->addr_lock);
714 
715 	spin_lock_irqsave(&dm->lock, flags);
716 	iow(dm, DM9000_WCR, wcr);
717 	spin_unlock_irqrestore(&dm->lock, flags);
718 
719 	mutex_unlock(&dm->addr_lock);
720 
721 	if (dm->wake_state != opts) {
722 		/* change in wol state, update IRQ state */
723 
724 		if (!dm->wake_state)
725 			irq_set_irq_wake(dm->irq_wake, 1);
726 		else if (dm->wake_state && !opts)
727 			irq_set_irq_wake(dm->irq_wake, 0);
728 	}
729 
730 	dm->wake_state = opts;
731 	return 0;
732 }
733 
734 static const struct ethtool_ops dm9000_ethtool_ops = {
735 	.get_drvinfo		= dm9000_get_drvinfo,
736 	.get_msglevel		= dm9000_get_msglevel,
737 	.set_msglevel		= dm9000_set_msglevel,
738 	.nway_reset		= dm9000_nway_reset,
739 	.get_link		= dm9000_get_link,
740 	.get_wol		= dm9000_get_wol,
741 	.set_wol		= dm9000_set_wol,
742 	.get_eeprom_len		= dm9000_get_eeprom_len,
743 	.get_eeprom		= dm9000_get_eeprom,
744 	.set_eeprom		= dm9000_set_eeprom,
745 	.get_link_ksettings	= dm9000_get_link_ksettings,
746 	.set_link_ksettings	= dm9000_set_link_ksettings,
747 };
748 
dm9000_show_carrier(struct board_info * db,unsigned carrier,unsigned nsr)749 static void dm9000_show_carrier(struct board_info *db,
750 				unsigned carrier, unsigned nsr)
751 {
752 	int lpa;
753 	struct net_device *ndev = db->ndev;
754 	struct mii_if_info *mii = &db->mii;
755 	unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
756 
757 	if (carrier) {
758 		lpa = mii->mdio_read(mii->dev, mii->phy_id, MII_LPA);
759 		dev_info(db->dev,
760 			 "%s: link up, %dMbps, %s-duplex, lpa 0x%04X\n",
761 			 ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
762 			 (ncr & NCR_FDX) ? "full" : "half", lpa);
763 	} else {
764 		dev_info(db->dev, "%s: link down\n", ndev->name);
765 	}
766 }
767 
768 static void
dm9000_poll_work(struct work_struct * w)769 dm9000_poll_work(struct work_struct *w)
770 {
771 	struct delayed_work *dw = to_delayed_work(w);
772 	struct board_info *db = container_of(dw, struct board_info, phy_poll);
773 	struct net_device *ndev = db->ndev;
774 
775 	if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
776 	    !(db->flags & DM9000_PLATF_EXT_PHY)) {
777 		unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
778 		unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
779 		unsigned new_carrier;
780 
781 		new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
782 
783 		if (old_carrier != new_carrier) {
784 			if (netif_msg_link(db))
785 				dm9000_show_carrier(db, new_carrier, nsr);
786 
787 			if (!new_carrier)
788 				netif_carrier_off(ndev);
789 			else
790 				netif_carrier_on(ndev);
791 		}
792 	} else
793 		mii_check_media(&db->mii, netif_msg_link(db), 0);
794 
795 	if (netif_running(ndev))
796 		dm9000_schedule_poll(db);
797 }
798 
799 /* dm9000_release_board
800  *
801  * release a board, and any mapped resources
802  */
803 
804 static void
dm9000_release_board(struct platform_device * pdev,struct board_info * db)805 dm9000_release_board(struct platform_device *pdev, struct board_info *db)
806 {
807 	/* unmap our resources */
808 
809 	iounmap(db->io_addr);
810 	iounmap(db->io_data);
811 
812 	/* release the resources */
813 
814 	if (db->data_req)
815 		release_resource(db->data_req);
816 	kfree(db->data_req);
817 
818 	if (db->addr_req)
819 		release_resource(db->addr_req);
820 	kfree(db->addr_req);
821 }
822 
dm9000_type_to_char(enum dm9000_type type)823 static unsigned char dm9000_type_to_char(enum dm9000_type type)
824 {
825 	switch (type) {
826 	case TYPE_DM9000E: return 'e';
827 	case TYPE_DM9000A: return 'a';
828 	case TYPE_DM9000B: return 'b';
829 	}
830 
831 	return '?';
832 }
833 
834 /*
835  *  Set DM9000 multicast address
836  */
837 static void
dm9000_hash_table_unlocked(struct net_device * dev)838 dm9000_hash_table_unlocked(struct net_device *dev)
839 {
840 	struct board_info *db = netdev_priv(dev);
841 	struct netdev_hw_addr *ha;
842 	int i, oft;
843 	u32 hash_val;
844 	u16 hash_table[4] = { 0, 0, 0, 0x8000 }; /* broadcast address */
845 	u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
846 
847 	dm9000_dbg(db, 1, "entering %s\n", __func__);
848 
849 	for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
850 		iow(db, oft, dev->dev_addr[i]);
851 
852 	if (dev->flags & IFF_PROMISC)
853 		rcr |= RCR_PRMSC;
854 
855 	if (dev->flags & IFF_ALLMULTI)
856 		rcr |= RCR_ALL;
857 
858 	/* the multicast address in Hash Table : 64 bits */
859 	netdev_for_each_mc_addr(ha, dev) {
860 		hash_val = ether_crc_le(6, ha->addr) & 0x3f;
861 		hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
862 	}
863 
864 	/* Write the hash table to MAC MD table */
865 	for (i = 0, oft = DM9000_MAR; i < 4; i++) {
866 		iow(db, oft++, hash_table[i]);
867 		iow(db, oft++, hash_table[i] >> 8);
868 	}
869 
870 	iow(db, DM9000_RCR, rcr);
871 }
872 
873 static void
dm9000_hash_table(struct net_device * dev)874 dm9000_hash_table(struct net_device *dev)
875 {
876 	struct board_info *db = netdev_priv(dev);
877 	unsigned long flags;
878 
879 	spin_lock_irqsave(&db->lock, flags);
880 	dm9000_hash_table_unlocked(dev);
881 	spin_unlock_irqrestore(&db->lock, flags);
882 }
883 
884 static void
dm9000_mask_interrupts(struct board_info * db)885 dm9000_mask_interrupts(struct board_info *db)
886 {
887 	iow(db, DM9000_IMR, IMR_PAR);
888 }
889 
890 static void
dm9000_unmask_interrupts(struct board_info * db)891 dm9000_unmask_interrupts(struct board_info *db)
892 {
893 	iow(db, DM9000_IMR, db->imr_all);
894 }
895 
896 /*
897  * Initialize dm9000 board
898  */
899 static void
dm9000_init_dm9000(struct net_device * dev)900 dm9000_init_dm9000(struct net_device *dev)
901 {
902 	struct board_info *db = netdev_priv(dev);
903 	unsigned int imr;
904 	unsigned int ncr;
905 
906 	dm9000_dbg(db, 1, "entering %s\n", __func__);
907 
908 	dm9000_reset(db);
909 	dm9000_mask_interrupts(db);
910 
911 	/* I/O mode */
912 	db->io_mode = ior(db, DM9000_ISR) >> 6;	/* ISR bit7:6 keeps I/O mode */
913 
914 	/* Checksum mode */
915 	if (dev->hw_features & NETIF_F_RXCSUM)
916 		iow(db, DM9000_RCSR,
917 			(dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
918 
919 	iow(db, DM9000_GPCR, GPCR_GEP_CNTL);	/* Let GPIO0 output */
920 	iow(db, DM9000_GPR, 0);
921 
922 	/* If we are dealing with DM9000B, some extra steps are required: a
923 	 * manual phy reset, and setting init params.
924 	 */
925 	if (db->type == TYPE_DM9000B) {
926 		dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);
927 		dm9000_phy_write(dev, 0, MII_DM_DSPCR, DSPCR_INIT_PARAM);
928 	}
929 
930 	ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
931 
932 	/* if wol is needed, then always set NCR_WAKEEN otherwise we end
933 	 * up dumping the wake events if we disable this. There is already
934 	 * a wake-mask in DM9000_WCR */
935 	if (db->wake_supported)
936 		ncr |= NCR_WAKEEN;
937 
938 	iow(db, DM9000_NCR, ncr);
939 
940 	/* Program operating register */
941 	iow(db, DM9000_TCR, 0);	        /* TX Polling clear */
942 	iow(db, DM9000_BPTR, 0x3f);	/* Less 3Kb, 200us */
943 	iow(db, DM9000_FCR, 0xff);	/* Flow Control */
944 	iow(db, DM9000_SMCR, 0);        /* Special Mode */
945 	/* clear TX status */
946 	iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
947 	iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
948 
949 	/* Set address filter table */
950 	dm9000_hash_table_unlocked(dev);
951 
952 	imr = IMR_PAR | IMR_PTM | IMR_PRM;
953 	if (db->type != TYPE_DM9000E)
954 		imr |= IMR_LNKCHNG;
955 
956 	db->imr_all = imr;
957 
958 	/* Init Driver variable */
959 	db->tx_pkt_cnt = 0;
960 	db->queue_pkt_len = 0;
961 	netif_trans_update(dev);
962 }
963 
964 /* Our watchdog timed out. Called by the networking layer */
dm9000_timeout(struct net_device * dev,unsigned int txqueue)965 static void dm9000_timeout(struct net_device *dev, unsigned int txqueue)
966 {
967 	struct board_info *db = netdev_priv(dev);
968 	u8 reg_save;
969 	unsigned long flags;
970 
971 	/* Save previous register address */
972 	spin_lock_irqsave(&db->lock, flags);
973 	db->in_timeout = 1;
974 	reg_save = readb(db->io_addr);
975 
976 	netif_stop_queue(dev);
977 	dm9000_init_dm9000(dev);
978 	dm9000_unmask_interrupts(db);
979 	/* We can accept TX packets again */
980 	netif_trans_update(dev); /* prevent tx timeout */
981 	netif_wake_queue(dev);
982 
983 	/* Restore previous register address */
984 	writeb(reg_save, db->io_addr);
985 	db->in_timeout = 0;
986 	spin_unlock_irqrestore(&db->lock, flags);
987 }
988 
dm9000_send_packet(struct net_device * dev,int ip_summed,u16 pkt_len)989 static void dm9000_send_packet(struct net_device *dev,
990 			       int ip_summed,
991 			       u16 pkt_len)
992 {
993 	struct board_info *dm = to_dm9000_board(dev);
994 
995 	/* The DM9000 is not smart enough to leave fragmented packets alone. */
996 	if (dm->ip_summed != ip_summed) {
997 		if (ip_summed == CHECKSUM_NONE)
998 			iow(dm, DM9000_TCCR, 0);
999 		else
1000 			iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
1001 		dm->ip_summed = ip_summed;
1002 	}
1003 
1004 	/* Set TX length to DM9000 */
1005 	iow(dm, DM9000_TXPLL, pkt_len);
1006 	iow(dm, DM9000_TXPLH, pkt_len >> 8);
1007 
1008 	/* Issue TX polling command */
1009 	iow(dm, DM9000_TCR, TCR_TXREQ);	/* Cleared after TX complete */
1010 }
1011 
1012 /*
1013  *  Hardware start transmission.
1014  *  Send a packet to media from the upper layer.
1015  */
1016 static int
dm9000_start_xmit(struct sk_buff * skb,struct net_device * dev)1017 dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
1018 {
1019 	unsigned long flags;
1020 	struct board_info *db = netdev_priv(dev);
1021 
1022 	dm9000_dbg(db, 3, "%s:\n", __func__);
1023 
1024 	if (db->tx_pkt_cnt > 1)
1025 		return NETDEV_TX_BUSY;
1026 
1027 	spin_lock_irqsave(&db->lock, flags);
1028 
1029 	/* Move data to DM9000 TX RAM */
1030 	writeb(DM9000_MWCMD, db->io_addr);
1031 
1032 	(db->outblk)(db->io_data, skb->data, skb->len);
1033 	dev->stats.tx_bytes += skb->len;
1034 
1035 	db->tx_pkt_cnt++;
1036 	/* TX control: First packet immediately send, second packet queue */
1037 	if (db->tx_pkt_cnt == 1) {
1038 		dm9000_send_packet(dev, skb->ip_summed, skb->len);
1039 	} else {
1040 		/* Second packet */
1041 		db->queue_pkt_len = skb->len;
1042 		db->queue_ip_summed = skb->ip_summed;
1043 		netif_stop_queue(dev);
1044 	}
1045 
1046 	spin_unlock_irqrestore(&db->lock, flags);
1047 
1048 	/* free this SKB */
1049 	dev_consume_skb_any(skb);
1050 
1051 	return NETDEV_TX_OK;
1052 }
1053 
1054 /*
1055  * DM9000 interrupt handler
1056  * receive the packet to upper layer, free the transmitted packet
1057  */
1058 
dm9000_tx_done(struct net_device * dev,struct board_info * db)1059 static void dm9000_tx_done(struct net_device *dev, struct board_info *db)
1060 {
1061 	int tx_status = ior(db, DM9000_NSR);	/* Got TX status */
1062 
1063 	if (tx_status & (NSR_TX2END | NSR_TX1END)) {
1064 		/* One packet sent complete */
1065 		db->tx_pkt_cnt--;
1066 		dev->stats.tx_packets++;
1067 
1068 		if (netif_msg_tx_done(db))
1069 			dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
1070 
1071 		/* Queue packet check & send */
1072 		if (db->tx_pkt_cnt > 0)
1073 			dm9000_send_packet(dev, db->queue_ip_summed,
1074 					   db->queue_pkt_len);
1075 		netif_wake_queue(dev);
1076 	}
1077 }
1078 
1079 struct dm9000_rxhdr {
1080 	u8	RxPktReady;
1081 	u8	RxStatus;
1082 	__le16	RxLen;
1083 } __packed;
1084 
1085 /*
1086  *  Received a packet and pass to upper layer
1087  */
1088 static void
dm9000_rx(struct net_device * dev)1089 dm9000_rx(struct net_device *dev)
1090 {
1091 	struct board_info *db = netdev_priv(dev);
1092 	struct dm9000_rxhdr rxhdr;
1093 	struct sk_buff *skb;
1094 	u8 rxbyte, *rdptr;
1095 	bool GoodPacket;
1096 	int RxLen;
1097 
1098 	/* Check packet ready or not */
1099 	do {
1100 		ior(db, DM9000_MRCMDX);	/* Dummy read */
1101 
1102 		/* Get most updated data */
1103 		rxbyte = readb(db->io_data);
1104 
1105 		/* Status check: this byte must be 0 or 1 */
1106 		if (rxbyte & DM9000_PKT_ERR) {
1107 			dev_warn(db->dev, "status check fail: %d\n", rxbyte);
1108 			iow(db, DM9000_RCR, 0x00);	/* Stop Device */
1109 			return;
1110 		}
1111 
1112 		if (!(rxbyte & DM9000_PKT_RDY))
1113 			return;
1114 
1115 		/* A packet ready now  & Get status/length */
1116 		GoodPacket = true;
1117 		writeb(DM9000_MRCMD, db->io_addr);
1118 
1119 		(db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
1120 
1121 		RxLen = le16_to_cpu(rxhdr.RxLen);
1122 
1123 		if (netif_msg_rx_status(db))
1124 			dev_dbg(db->dev, "RX: status %02x, length %04x\n",
1125 				rxhdr.RxStatus, RxLen);
1126 
1127 		/* Packet Status check */
1128 		if (RxLen < 0x40) {
1129 			GoodPacket = false;
1130 			if (netif_msg_rx_err(db))
1131 				dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
1132 		}
1133 
1134 		if (RxLen > DM9000_PKT_MAX) {
1135 			dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
1136 		}
1137 
1138 		/* rxhdr.RxStatus is identical to RSR register. */
1139 		if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
1140 				      RSR_PLE | RSR_RWTO |
1141 				      RSR_LCS | RSR_RF)) {
1142 			GoodPacket = false;
1143 			if (rxhdr.RxStatus & RSR_FOE) {
1144 				if (netif_msg_rx_err(db))
1145 					dev_dbg(db->dev, "fifo error\n");
1146 				dev->stats.rx_fifo_errors++;
1147 			}
1148 			if (rxhdr.RxStatus & RSR_CE) {
1149 				if (netif_msg_rx_err(db))
1150 					dev_dbg(db->dev, "crc error\n");
1151 				dev->stats.rx_crc_errors++;
1152 			}
1153 			if (rxhdr.RxStatus & RSR_RF) {
1154 				if (netif_msg_rx_err(db))
1155 					dev_dbg(db->dev, "length error\n");
1156 				dev->stats.rx_length_errors++;
1157 			}
1158 		}
1159 
1160 		/* Move data from DM9000 */
1161 		if (GoodPacket &&
1162 		    ((skb = netdev_alloc_skb(dev, RxLen + 4)) != NULL)) {
1163 			skb_reserve(skb, 2);
1164 			rdptr = skb_put(skb, RxLen - 4);
1165 
1166 			/* Read received packet from RX SRAM */
1167 
1168 			(db->inblk)(db->io_data, rdptr, RxLen);
1169 			dev->stats.rx_bytes += RxLen;
1170 
1171 			/* Pass to upper layer */
1172 			skb->protocol = eth_type_trans(skb, dev);
1173 			if (dev->features & NETIF_F_RXCSUM) {
1174 				if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
1175 					skb->ip_summed = CHECKSUM_UNNECESSARY;
1176 				else
1177 					skb_checksum_none_assert(skb);
1178 			}
1179 			netif_rx(skb);
1180 			dev->stats.rx_packets++;
1181 
1182 		} else {
1183 			/* need to dump the packet's data */
1184 
1185 			(db->dumpblk)(db->io_data, RxLen);
1186 		}
1187 	} while (rxbyte & DM9000_PKT_RDY);
1188 }
1189 
dm9000_interrupt(int irq,void * dev_id)1190 static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
1191 {
1192 	struct net_device *dev = dev_id;
1193 	struct board_info *db = netdev_priv(dev);
1194 	int int_status;
1195 	unsigned long flags;
1196 	u8 reg_save;
1197 
1198 	dm9000_dbg(db, 3, "entering %s\n", __func__);
1199 
1200 	/* A real interrupt coming */
1201 
1202 	/* holders of db->lock must always block IRQs */
1203 	spin_lock_irqsave(&db->lock, flags);
1204 
1205 	/* Save previous register address */
1206 	reg_save = readb(db->io_addr);
1207 
1208 	dm9000_mask_interrupts(db);
1209 	/* Got DM9000 interrupt status */
1210 	int_status = ior(db, DM9000_ISR);	/* Got ISR */
1211 	iow(db, DM9000_ISR, int_status);	/* Clear ISR status */
1212 
1213 	if (netif_msg_intr(db))
1214 		dev_dbg(db->dev, "interrupt status %02x\n", int_status);
1215 
1216 	/* Received the coming packet */
1217 	if (int_status & ISR_PRS)
1218 		dm9000_rx(dev);
1219 
1220 	/* Transmit Interrupt check */
1221 	if (int_status & ISR_PTS)
1222 		dm9000_tx_done(dev, db);
1223 
1224 	if (db->type != TYPE_DM9000E) {
1225 		if (int_status & ISR_LNKCHNG) {
1226 			/* fire a link-change request */
1227 			schedule_delayed_work(&db->phy_poll, 1);
1228 		}
1229 	}
1230 
1231 	dm9000_unmask_interrupts(db);
1232 	/* Restore previous register address */
1233 	writeb(reg_save, db->io_addr);
1234 
1235 	spin_unlock_irqrestore(&db->lock, flags);
1236 
1237 	return IRQ_HANDLED;
1238 }
1239 
dm9000_wol_interrupt(int irq,void * dev_id)1240 static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
1241 {
1242 	struct net_device *dev = dev_id;
1243 	struct board_info *db = netdev_priv(dev);
1244 	unsigned long flags;
1245 	unsigned nsr, wcr;
1246 
1247 	spin_lock_irqsave(&db->lock, flags);
1248 
1249 	nsr = ior(db, DM9000_NSR);
1250 	wcr = ior(db, DM9000_WCR);
1251 
1252 	dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
1253 
1254 	if (nsr & NSR_WAKEST) {
1255 		/* clear, so we can avoid */
1256 		iow(db, DM9000_NSR, NSR_WAKEST);
1257 
1258 		if (wcr & WCR_LINKST)
1259 			dev_info(db->dev, "wake by link status change\n");
1260 		if (wcr & WCR_SAMPLEST)
1261 			dev_info(db->dev, "wake by sample packet\n");
1262 		if (wcr & WCR_MAGICST)
1263 			dev_info(db->dev, "wake by magic packet\n");
1264 		if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
1265 			dev_err(db->dev, "wake signalled with no reason? "
1266 				"NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
1267 	}
1268 
1269 	spin_unlock_irqrestore(&db->lock, flags);
1270 
1271 	return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
1272 }
1273 
1274 #ifdef CONFIG_NET_POLL_CONTROLLER
1275 /*
1276  *Used by netconsole
1277  */
dm9000_poll_controller(struct net_device * dev)1278 static void dm9000_poll_controller(struct net_device *dev)
1279 {
1280 	disable_irq(dev->irq);
1281 	dm9000_interrupt(dev->irq, dev);
1282 	enable_irq(dev->irq);
1283 }
1284 #endif
1285 
1286 /*
1287  *  Open the interface.
1288  *  The interface is opened whenever "ifconfig" actives it.
1289  */
1290 static int
dm9000_open(struct net_device * dev)1291 dm9000_open(struct net_device *dev)
1292 {
1293 	struct board_info *db = netdev_priv(dev);
1294 	unsigned int irq_flags = irq_get_trigger_type(dev->irq);
1295 
1296 	if (netif_msg_ifup(db))
1297 		dev_dbg(db->dev, "enabling %s\n", dev->name);
1298 
1299 	/* If there is no IRQ type specified, tell the user that this is a
1300 	 * problem
1301 	 */
1302 	if (irq_flags == IRQF_TRIGGER_NONE)
1303 		dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
1304 
1305 	irq_flags |= IRQF_SHARED;
1306 
1307 	/* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
1308 	iow(db, DM9000_GPR, 0);	/* REG_1F bit0 activate phyxcer */
1309 	mdelay(1); /* delay needs by DM9000B */
1310 
1311 	/* Initialize DM9000 board */
1312 	dm9000_init_dm9000(dev);
1313 
1314 	if (request_irq(dev->irq, dm9000_interrupt, irq_flags, dev->name, dev))
1315 		return -EAGAIN;
1316 	/* Now that we have an interrupt handler hooked up we can unmask
1317 	 * our interrupts
1318 	 */
1319 	dm9000_unmask_interrupts(db);
1320 
1321 	/* Init driver variable */
1322 	db->dbug_cnt = 0;
1323 
1324 	mii_check_media(&db->mii, netif_msg_link(db), 1);
1325 	netif_start_queue(dev);
1326 
1327 	/* Poll initial link status */
1328 	schedule_delayed_work(&db->phy_poll, 1);
1329 
1330 	return 0;
1331 }
1332 
1333 static void
dm9000_shutdown(struct net_device * dev)1334 dm9000_shutdown(struct net_device *dev)
1335 {
1336 	struct board_info *db = netdev_priv(dev);
1337 
1338 	/* RESET device */
1339 	dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);	/* PHY RESET */
1340 	iow(db, DM9000_GPR, 0x01);	/* Power-Down PHY */
1341 	dm9000_mask_interrupts(db);
1342 	iow(db, DM9000_RCR, 0x00);	/* Disable RX */
1343 }
1344 
1345 /*
1346  * Stop the interface.
1347  * The interface is stopped when it is brought.
1348  */
1349 static int
dm9000_stop(struct net_device * ndev)1350 dm9000_stop(struct net_device *ndev)
1351 {
1352 	struct board_info *db = netdev_priv(ndev);
1353 
1354 	if (netif_msg_ifdown(db))
1355 		dev_dbg(db->dev, "shutting down %s\n", ndev->name);
1356 
1357 	cancel_delayed_work_sync(&db->phy_poll);
1358 
1359 	netif_stop_queue(ndev);
1360 	netif_carrier_off(ndev);
1361 
1362 	/* free interrupt */
1363 	free_irq(ndev->irq, ndev);
1364 
1365 	dm9000_shutdown(ndev);
1366 
1367 	return 0;
1368 }
1369 
1370 static const struct net_device_ops dm9000_netdev_ops = {
1371 	.ndo_open		= dm9000_open,
1372 	.ndo_stop		= dm9000_stop,
1373 	.ndo_start_xmit		= dm9000_start_xmit,
1374 	.ndo_tx_timeout		= dm9000_timeout,
1375 	.ndo_set_rx_mode	= dm9000_hash_table,
1376 	.ndo_do_ioctl		= dm9000_ioctl,
1377 	.ndo_set_features	= dm9000_set_features,
1378 	.ndo_validate_addr	= eth_validate_addr,
1379 	.ndo_set_mac_address	= eth_mac_addr,
1380 #ifdef CONFIG_NET_POLL_CONTROLLER
1381 	.ndo_poll_controller	= dm9000_poll_controller,
1382 #endif
1383 };
1384 
dm9000_parse_dt(struct device * dev)1385 static struct dm9000_plat_data *dm9000_parse_dt(struct device *dev)
1386 {
1387 	struct dm9000_plat_data *pdata;
1388 	struct device_node *np = dev->of_node;
1389 	const void *mac_addr;
1390 
1391 	if (!IS_ENABLED(CONFIG_OF) || !np)
1392 		return ERR_PTR(-ENXIO);
1393 
1394 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1395 	if (!pdata)
1396 		return ERR_PTR(-ENOMEM);
1397 
1398 	if (of_find_property(np, "davicom,ext-phy", NULL))
1399 		pdata->flags |= DM9000_PLATF_EXT_PHY;
1400 	if (of_find_property(np, "davicom,no-eeprom", NULL))
1401 		pdata->flags |= DM9000_PLATF_NO_EEPROM;
1402 
1403 	mac_addr = of_get_mac_address(np);
1404 	if (!IS_ERR(mac_addr))
1405 		ether_addr_copy(pdata->dev_addr, mac_addr);
1406 	else if (PTR_ERR(mac_addr) == -EPROBE_DEFER)
1407 		return ERR_CAST(mac_addr);
1408 
1409 	return pdata;
1410 }
1411 
1412 /*
1413  * Search DM9000 board, allocate space and register it
1414  */
1415 static int
dm9000_probe(struct platform_device * pdev)1416 dm9000_probe(struct platform_device *pdev)
1417 {
1418 	struct dm9000_plat_data *pdata = dev_get_platdata(&pdev->dev);
1419 	struct board_info *db;	/* Point a board information structure */
1420 	struct net_device *ndev;
1421 	struct device *dev = &pdev->dev;
1422 	const unsigned char *mac_src;
1423 	int ret = 0;
1424 	int iosize;
1425 	int i;
1426 	u32 id_val;
1427 	int reset_gpios;
1428 	enum of_gpio_flags flags;
1429 	struct regulator *power;
1430 	bool inv_mac_addr = false;
1431 
1432 	power = devm_regulator_get(dev, "vcc");
1433 	if (IS_ERR(power)) {
1434 		if (PTR_ERR(power) == -EPROBE_DEFER)
1435 			return -EPROBE_DEFER;
1436 		dev_dbg(dev, "no regulator provided\n");
1437 	} else {
1438 		ret = regulator_enable(power);
1439 		if (ret != 0) {
1440 			dev_err(dev,
1441 				"Failed to enable power regulator: %d\n", ret);
1442 			return ret;
1443 		}
1444 		dev_dbg(dev, "regulator enabled\n");
1445 	}
1446 
1447 	reset_gpios = of_get_named_gpio_flags(dev->of_node, "reset-gpios", 0,
1448 					      &flags);
1449 	if (gpio_is_valid(reset_gpios)) {
1450 		ret = devm_gpio_request_one(dev, reset_gpios, flags,
1451 					    "dm9000_reset");
1452 		if (ret) {
1453 			dev_err(dev, "failed to request reset gpio %d: %d\n",
1454 				reset_gpios, ret);
1455 			return -ENODEV;
1456 		}
1457 
1458 		/* According to manual PWRST# Low Period Min 1ms */
1459 		msleep(2);
1460 		gpio_set_value(reset_gpios, 1);
1461 		/* Needs 3ms to read eeprom when PWRST is deasserted */
1462 		msleep(4);
1463 	}
1464 
1465 	if (!pdata) {
1466 		pdata = dm9000_parse_dt(&pdev->dev);
1467 		if (IS_ERR(pdata))
1468 			return PTR_ERR(pdata);
1469 	}
1470 
1471 	/* Init network device */
1472 	ndev = alloc_etherdev(sizeof(struct board_info));
1473 	if (!ndev)
1474 		return -ENOMEM;
1475 
1476 	SET_NETDEV_DEV(ndev, &pdev->dev);
1477 
1478 	dev_dbg(&pdev->dev, "dm9000_probe()\n");
1479 
1480 	/* setup board info structure */
1481 	db = netdev_priv(ndev);
1482 
1483 	db->dev = &pdev->dev;
1484 	db->ndev = ndev;
1485 
1486 	spin_lock_init(&db->lock);
1487 	mutex_init(&db->addr_lock);
1488 
1489 	INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
1490 
1491 	db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1492 	db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1493 
1494 	if (!db->addr_res || !db->data_res) {
1495 		dev_err(db->dev, "insufficient resources addr=%p data=%p\n",
1496 			db->addr_res, db->data_res);
1497 		ret = -ENOENT;
1498 		goto out;
1499 	}
1500 
1501 	ndev->irq = platform_get_irq(pdev, 0);
1502 	if (ndev->irq < 0) {
1503 		ret = ndev->irq;
1504 		goto out;
1505 	}
1506 
1507 	db->irq_wake = platform_get_irq(pdev, 1);
1508 	if (db->irq_wake >= 0) {
1509 		dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
1510 
1511 		ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
1512 				  IRQF_SHARED, dev_name(db->dev), ndev);
1513 		if (ret) {
1514 			dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
1515 		} else {
1516 
1517 			/* test to see if irq is really wakeup capable */
1518 			ret = irq_set_irq_wake(db->irq_wake, 1);
1519 			if (ret) {
1520 				dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
1521 					db->irq_wake, ret);
1522 				ret = 0;
1523 			} else {
1524 				irq_set_irq_wake(db->irq_wake, 0);
1525 				db->wake_supported = 1;
1526 			}
1527 		}
1528 	}
1529 
1530 	iosize = resource_size(db->addr_res);
1531 	db->addr_req = request_mem_region(db->addr_res->start, iosize,
1532 					  pdev->name);
1533 
1534 	if (db->addr_req == NULL) {
1535 		dev_err(db->dev, "cannot claim address reg area\n");
1536 		ret = -EIO;
1537 		goto out;
1538 	}
1539 
1540 	db->io_addr = ioremap(db->addr_res->start, iosize);
1541 
1542 	if (db->io_addr == NULL) {
1543 		dev_err(db->dev, "failed to ioremap address reg\n");
1544 		ret = -EINVAL;
1545 		goto out;
1546 	}
1547 
1548 	iosize = resource_size(db->data_res);
1549 	db->data_req = request_mem_region(db->data_res->start, iosize,
1550 					  pdev->name);
1551 
1552 	if (db->data_req == NULL) {
1553 		dev_err(db->dev, "cannot claim data reg area\n");
1554 		ret = -EIO;
1555 		goto out;
1556 	}
1557 
1558 	db->io_data = ioremap(db->data_res->start, iosize);
1559 
1560 	if (db->io_data == NULL) {
1561 		dev_err(db->dev, "failed to ioremap data reg\n");
1562 		ret = -EINVAL;
1563 		goto out;
1564 	}
1565 
1566 	/* fill in parameters for net-dev structure */
1567 	ndev->base_addr = (unsigned long)db->io_addr;
1568 
1569 	/* ensure at least we have a default set of IO routines */
1570 	dm9000_set_io(db, iosize);
1571 
1572 	/* check to see if anything is being over-ridden */
1573 	if (pdata != NULL) {
1574 		/* check to see if the driver wants to over-ride the
1575 		 * default IO width */
1576 
1577 		if (pdata->flags & DM9000_PLATF_8BITONLY)
1578 			dm9000_set_io(db, 1);
1579 
1580 		if (pdata->flags & DM9000_PLATF_16BITONLY)
1581 			dm9000_set_io(db, 2);
1582 
1583 		if (pdata->flags & DM9000_PLATF_32BITONLY)
1584 			dm9000_set_io(db, 4);
1585 
1586 		/* check to see if there are any IO routine
1587 		 * over-rides */
1588 
1589 		if (pdata->inblk != NULL)
1590 			db->inblk = pdata->inblk;
1591 
1592 		if (pdata->outblk != NULL)
1593 			db->outblk = pdata->outblk;
1594 
1595 		if (pdata->dumpblk != NULL)
1596 			db->dumpblk = pdata->dumpblk;
1597 
1598 		db->flags = pdata->flags;
1599 	}
1600 
1601 #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
1602 	db->flags |= DM9000_PLATF_SIMPLE_PHY;
1603 #endif
1604 
1605 	dm9000_reset(db);
1606 
1607 	/* try multiple times, DM9000 sometimes gets the read wrong */
1608 	for (i = 0; i < 8; i++) {
1609 		id_val  = ior(db, DM9000_VIDL);
1610 		id_val |= (u32)ior(db, DM9000_VIDH) << 8;
1611 		id_val |= (u32)ior(db, DM9000_PIDL) << 16;
1612 		id_val |= (u32)ior(db, DM9000_PIDH) << 24;
1613 
1614 		if (id_val == DM9000_ID)
1615 			break;
1616 		dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
1617 	}
1618 
1619 	if (id_val != DM9000_ID) {
1620 		dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
1621 		ret = -ENODEV;
1622 		goto out;
1623 	}
1624 
1625 	/* Identify what type of DM9000 we are working on */
1626 
1627 	id_val = ior(db, DM9000_CHIPR);
1628 	dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
1629 
1630 	switch (id_val) {
1631 	case CHIPR_DM9000A:
1632 		db->type = TYPE_DM9000A;
1633 		break;
1634 	case CHIPR_DM9000B:
1635 		db->type = TYPE_DM9000B;
1636 		break;
1637 	default:
1638 		dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
1639 		db->type = TYPE_DM9000E;
1640 	}
1641 
1642 	/* dm9000a/b are capable of hardware checksum offload */
1643 	if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
1644 		ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;
1645 		ndev->features |= ndev->hw_features;
1646 	}
1647 
1648 	/* from this point we assume that we have found a DM9000 */
1649 
1650 	ndev->netdev_ops	= &dm9000_netdev_ops;
1651 	ndev->watchdog_timeo	= msecs_to_jiffies(watchdog);
1652 	ndev->ethtool_ops	= &dm9000_ethtool_ops;
1653 
1654 	db->msg_enable       = NETIF_MSG_LINK;
1655 	db->mii.phy_id_mask  = 0x1f;
1656 	db->mii.reg_num_mask = 0x1f;
1657 	db->mii.force_media  = 0;
1658 	db->mii.full_duplex  = 0;
1659 	db->mii.dev	     = ndev;
1660 	db->mii.mdio_read    = dm9000_phy_read;
1661 	db->mii.mdio_write   = dm9000_phy_write;
1662 
1663 	mac_src = "eeprom";
1664 
1665 	/* try reading the node address from the attached EEPROM */
1666 	for (i = 0; i < 6; i += 2)
1667 		dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
1668 
1669 	if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
1670 		mac_src = "platform data";
1671 		memcpy(ndev->dev_addr, pdata->dev_addr, ETH_ALEN);
1672 	}
1673 
1674 	if (!is_valid_ether_addr(ndev->dev_addr)) {
1675 		/* try reading from mac */
1676 
1677 		mac_src = "chip";
1678 		for (i = 0; i < 6; i++)
1679 			ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
1680 	}
1681 
1682 	if (!is_valid_ether_addr(ndev->dev_addr)) {
1683 		inv_mac_addr = true;
1684 		eth_hw_addr_random(ndev);
1685 		mac_src = "random";
1686 	}
1687 
1688 
1689 	platform_set_drvdata(pdev, ndev);
1690 	ret = register_netdev(ndev);
1691 
1692 	if (ret == 0) {
1693 		if (inv_mac_addr)
1694 			dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please set using ip\n",
1695 				 ndev->name);
1696 		printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
1697 		       ndev->name, dm9000_type_to_char(db->type),
1698 		       db->io_addr, db->io_data, ndev->irq,
1699 		       ndev->dev_addr, mac_src);
1700 	}
1701 	return 0;
1702 
1703 out:
1704 	dev_err(db->dev, "not found (%d).\n", ret);
1705 
1706 	dm9000_release_board(pdev, db);
1707 	free_netdev(ndev);
1708 
1709 	return ret;
1710 }
1711 
1712 static int
dm9000_drv_suspend(struct device * dev)1713 dm9000_drv_suspend(struct device *dev)
1714 {
1715 	struct net_device *ndev = dev_get_drvdata(dev);
1716 	struct board_info *db;
1717 
1718 	if (ndev) {
1719 		db = netdev_priv(ndev);
1720 		db->in_suspend = 1;
1721 
1722 		if (!netif_running(ndev))
1723 			return 0;
1724 
1725 		netif_device_detach(ndev);
1726 
1727 		/* only shutdown if not using WoL */
1728 		if (!db->wake_state)
1729 			dm9000_shutdown(ndev);
1730 	}
1731 	return 0;
1732 }
1733 
1734 static int
dm9000_drv_resume(struct device * dev)1735 dm9000_drv_resume(struct device *dev)
1736 {
1737 	struct net_device *ndev = dev_get_drvdata(dev);
1738 	struct board_info *db = netdev_priv(ndev);
1739 
1740 	if (ndev) {
1741 		if (netif_running(ndev)) {
1742 			/* reset if we were not in wake mode to ensure if
1743 			 * the device was powered off it is in a known state */
1744 			if (!db->wake_state) {
1745 				dm9000_init_dm9000(ndev);
1746 				dm9000_unmask_interrupts(db);
1747 			}
1748 
1749 			netif_device_attach(ndev);
1750 		}
1751 
1752 		db->in_suspend = 0;
1753 	}
1754 	return 0;
1755 }
1756 
1757 static const struct dev_pm_ops dm9000_drv_pm_ops = {
1758 	.suspend	= dm9000_drv_suspend,
1759 	.resume		= dm9000_drv_resume,
1760 };
1761 
1762 static int
dm9000_drv_remove(struct platform_device * pdev)1763 dm9000_drv_remove(struct platform_device *pdev)
1764 {
1765 	struct net_device *ndev = platform_get_drvdata(pdev);
1766 
1767 	unregister_netdev(ndev);
1768 	dm9000_release_board(pdev, netdev_priv(ndev));
1769 	free_netdev(ndev);		/* free device structure */
1770 
1771 	dev_dbg(&pdev->dev, "released and freed device\n");
1772 	return 0;
1773 }
1774 
1775 #ifdef CONFIG_OF
1776 static const struct of_device_id dm9000_of_matches[] = {
1777 	{ .compatible = "davicom,dm9000", },
1778 	{ /* sentinel */ }
1779 };
1780 MODULE_DEVICE_TABLE(of, dm9000_of_matches);
1781 #endif
1782 
1783 static struct platform_driver dm9000_driver = {
1784 	.driver	= {
1785 		.name    = "dm9000",
1786 		.pm	 = &dm9000_drv_pm_ops,
1787 		.of_match_table = of_match_ptr(dm9000_of_matches),
1788 	},
1789 	.probe   = dm9000_probe,
1790 	.remove  = dm9000_drv_remove,
1791 };
1792 
1793 module_platform_driver(dm9000_driver);
1794 
1795 MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
1796 MODULE_DESCRIPTION("Davicom DM9000 network driver");
1797 MODULE_LICENSE("GPL");
1798 MODULE_ALIAS("platform:dm9000");
1799