1  /* SPDX-License-Identifier: GPL-2.0 */
2  /*
3   * Apple Peripheral System Controller (PSC)
4   *
5   * The PSC is used on the AV Macs to control IO functions not handled
6   * by the VIAs (Ethernet, DSP, SCC, Sound). This includes nine DMA
7   * channels.
8   *
9   * The first seven DMA channels appear to be "one-shot" and are actually
10   * sets of two channels; one member is active while the other is being
11   * configured, and then you flip the active member and start all over again.
12   * The one-shot channels are grouped together and are:
13   *
14   * 1. SCSI
15   * 2. Ethernet Read
16   * 3. Ethernet Write
17   * 4. Floppy Disk Controller
18   * 5. SCC Channel A Receive
19   * 6. SCC Channel B Receive
20   * 7. SCC Channel A Transmit
21   *
22   * The remaining two channels are handled somewhat differently. They appear
23   * to be closely tied and share one set of registers. They also seem to run
24   * continuously, although how you keep the buffer filled in this scenario is
25   * not understood as there seems to be only one input and one output buffer
26   * pointer.
27   *
28   * Much of this was extrapolated from what was known about the Ethernet
29   * registers and subsequently confirmed using MacsBug (ie by pinging the
30   * machine with easy-to-find patterns and looking for them in the DMA
31   * buffers, or by sending a file over the serial ports and finding the
32   * file in the buffers.)
33   *
34   * 1999-05-25 (jmt)
35   */
36  
37  #define PSC_BASE	(0x50F31000)
38  
39  /*
40   * The IER/IFR registers work like the VIA, except that it has 4
41   * of them each on different interrupt levels, and each register
42   * set only seems to handle four interrupts instead of seven.
43   *
44   * To access a particular set of registers, add 0xn0 to the base
45   * where n = 3,4,5 or 6.
46   */
47  
48  #define pIFRbase	0x100
49  #define pIERbase	0x104
50  
51  /*
52   * One-shot DMA control registers
53   */
54  
55  #define PSC_MYSTERY	0x804
56  
57  #define PSC_CTL_BASE	0xC00
58  
59  #define PSC_SCSI_CTL	0xC00
60  #define PSC_ENETRD_CTL  0xC10
61  #define PSC_ENETWR_CTL  0xC20
62  #define PSC_FDC_CTL	0xC30
63  #define PSC_SCCA_CTL	0xC40
64  #define PSC_SCCB_CTL	0xC50
65  #define PSC_SCCATX_CTL	0xC60
66  
67  /*
68   * DMA channels. Add +0x10 for the second channel in the set.
69   * You're supposed to use one channel while the other runs and
70   * then flip channels and do the whole thing again.
71   */
72  
73  #define PSC_ADDR_BASE	0x1000
74  #define PSC_LEN_BASE	0x1004
75  #define PSC_CMD_BASE	0x1008
76  
77  #define PSC_SET0	0x00
78  #define PSC_SET1	0x10
79  
80  #define PSC_SCSI_ADDR	0x1000	/* confirmed */
81  #define PSC_SCSI_LEN	0x1004	/* confirmed */
82  #define PSC_SCSI_CMD	0x1008	/* confirmed */
83  #define PSC_ENETRD_ADDR 0x1020	/* confirmed */
84  #define PSC_ENETRD_LEN  0x1024	/* confirmed */
85  #define PSC_ENETRD_CMD  0x1028	/* confirmed */
86  #define PSC_ENETWR_ADDR 0x1040	/* confirmed */
87  #define PSC_ENETWR_LEN  0x1044	/* confirmed */
88  #define PSC_ENETWR_CMD  0x1048	/* confirmed */
89  #define PSC_FDC_ADDR	0x1060	/* strongly suspected */
90  #define PSC_FDC_LEN	0x1064	/* strongly suspected */
91  #define PSC_FDC_CMD	0x1068	/* strongly suspected */
92  #define PSC_SCCA_ADDR	0x1080	/* confirmed */
93  #define PSC_SCCA_LEN	0x1084	/* confirmed */
94  #define PSC_SCCA_CMD	0x1088	/* confirmed */
95  #define PSC_SCCB_ADDR	0x10A0	/* confirmed */
96  #define PSC_SCCB_LEN	0x10A4	/* confirmed */
97  #define PSC_SCCB_CMD	0x10A8	/* confirmed */
98  #define PSC_SCCATX_ADDR	0x10C0	/* confirmed */
99  #define PSC_SCCATX_LEN	0x10C4	/* confirmed */
100  #define PSC_SCCATX_CMD	0x10C8	/* confirmed */
101  
102  /*
103   * Free-running DMA registers. The only part known for sure are the bits in
104   * the control register, the buffer addresses and the buffer length. Everything
105   * else is anybody's guess.
106   *
107   * These registers seem to be mirrored every thirty-two bytes up until offset
108   * 0x300. It's safe to assume then that a new set of registers starts there.
109   */
110  
111  #define PSC_SND_CTL	0x200	/*
112  				 * [ 16-bit ]
113  				 * Sound (Singer?) control register.
114  				 *
115  				 * bit 0  : ????
116  				 * bit 1  : ????
117  				 * bit 2  : Set to one to enable sound
118  				 *          output. Possibly a mute flag.
119  				 * bit 3  : ????
120  				 * bit 4  : ????
121  				 * bit 5  : ????
122  				 * bit 6  : Set to one to enable pass-thru
123  				 *          audio. In this mode the audio data
124  				 *          seems to appear in both the input
125  				 *          buffer and the output buffer.
126  				 * bit 7  : Set to one to activate the
127  				 *          sound input DMA or zero to
128  				 *          disable it.
129  				 * bit 8  : Set to one to activate the
130  				 *          sound output DMA or zero to
131  				 *          disable it.
132  				 * bit 9  : \
133  				 * bit 11 :  |
134  				 *          These two bits control the sample
135  				 *          rate. Usually set to binary 10 and
136  				 *	    MacOS 8.0 says I'm at 48 KHz. Using
137  				 *	    a binary value of 01 makes things
138  				 *	    sound about 1/2 speed (24 KHz?) and
139  				 *          binary 00 is slower still (22 KHz?)
140  				 *
141  				 * Setting this to 0x0000 is a good way to
142  				 * kill all DMA at boot time so that the
143  				 * PSC won't overwrite the kernel image
144  				 * with sound data.
145  				 */
146  
147  /*
148   * 0x0202 - 0x0203 is unused. Writing there
149   * seems to clobber the control register.
150   */
151  
152  #define PSC_SND_SOURCE	0x204	/*
153  				 * [ 32-bit ]
154  				 * Controls input source and volume:
155  				 *
156  				 * bits 12-15 : input source volume, 0 - F
157  				 * bits 16-19 : unknown, always 0x5
158  				 * bits 20-23 : input source selection:
159  				 *                  0x3 = CD Audio
160  				 *                  0x4 = External Audio
161  				 *
162  				 * The volume is definitely not the general
163  				 * output volume as it doesn't affect the
164  				 * alert sound volume.
165  				 */
166  #define PSC_SND_STATUS1	0x208	/*
167  				 * [ 32-bit ]
168  				 * Appears to be a read-only status register.
169  				 * The usual value is 0x00400002.
170  				 */
171  #define PSC_SND_HUH3	0x20C	/*
172  				 * [ 16-bit ]
173  				 * Unknown 16-bit value, always 0x0000.
174  				 */
175  #define PSC_SND_BITS2GO	0x20E	/*
176  				 * [ 16-bit ]
177  				 * Counts down to zero from some constant
178  				 * value. The value appears to be the
179  				 * number of _bits_ remaining before the
180  				 * buffer is full, which would make sense
181  				 * since Apple's docs say the sound DMA
182  				 * channels are 1 bit wide.
183  				 */
184  #define PSC_SND_INADDR	0x210	/*
185  				 * [ 32-bit ]
186  				 * Address of the sound input DMA buffer
187  				 */
188  #define PSC_SND_OUTADDR	0x214	/*
189  				 * [ 32-bit ]
190  				 * Address of the sound output DMA buffer
191  				 */
192  #define PSC_SND_LEN	0x218	/*
193  				 * [ 16-bit ]
194  				 * Length of both buffers in eight-byte units.
195  				 */
196  #define PSC_SND_HUH4	0x21A	/*
197  				 * [ 16-bit ]
198  				 * Unknown, always 0x0000.
199  				 */
200  #define PSC_SND_STATUS2	0x21C	/*
201  				 * [ 16-bit ]
202  				 * Appears to e a read-only status register.
203  				 * The usual value is 0x0200.
204  				 */
205  #define PSC_SND_HUH5	0x21E	/*
206  				 * [ 16-bit ]
207  				 * Unknown, always 0x0000.
208  				 */
209  
210  #ifndef __ASSEMBLY__
211  
212  extern volatile __u8 *psc;
213  
214  extern void psc_register_interrupts(void);
215  extern void psc_irq_enable(int);
216  extern void psc_irq_disable(int);
217  
218  /*
219   *	Access functions
220   */
221  
psc_write_byte(int offset,__u8 data)222  static inline void psc_write_byte(int offset, __u8 data)
223  {
224  	*((volatile __u8 *)(psc + offset)) = data;
225  }
226  
psc_write_word(int offset,__u16 data)227  static inline void psc_write_word(int offset, __u16 data)
228  {
229  	*((volatile __u16 *)(psc + offset)) = data;
230  }
231  
psc_write_long(int offset,__u32 data)232  static inline void psc_write_long(int offset, __u32 data)
233  {
234  	*((volatile __u32 *)(psc + offset)) = data;
235  }
236  
psc_read_byte(int offset)237  static inline u8 psc_read_byte(int offset)
238  {
239  	return *((volatile __u8 *)(psc + offset));
240  }
241  
psc_read_word(int offset)242  static inline u16 psc_read_word(int offset)
243  {
244  	return *((volatile __u16 *)(psc + offset));
245  }
246  
psc_read_long(int offset)247  static inline u32 psc_read_long(int offset)
248  {
249  	return *((volatile __u32 *)(psc + offset));
250  }
251  
252  #endif /* __ASSEMBLY__ */
253